

UL 1480

STANDARD FOR SAFETY

Speakers for Fire Alarm and Signaling Systems, Including Accessories

JUNORM. CHICK TO VIEW

ULMORIN.COM. Click to View the full PDF of UL 1480 2023

MAY 26, 2023 - UL1480 tr1

UL Standard for Safety for Speakers for Fire Alarm and Signaling Systems, Including Accessories, UL 1480

Seventh Edition, Dated May 26, 2023

Summary of Topics

This Seventh Edition of UL 1480 dated May 26, 2023 has been issued to incorporate changes from proposals dated May 31, 2022 and October 28, 2022.

The requirements are substantially in accordance with Proposal(s) on this subject dated May 31, 2022 and October 28, 2022.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical photocopying, recording, or otherwise without prior permission of ULSE Inc. (ULSE).

ULSE provides this Standard "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for any purpose.

In no event will ULSE be liable for any special, incidental, consequential, indirect or similar damages, including loss of profits, lost savings, loss of data, or any other damages arising out of the use of or the inability to use this Standard, even if ULSE or an authorized ULSE representative has been advised of the possibility of such damage. In no event shall ULSE's liability for any damage ever exceed the price paid for this Standard, regardless of the form of the claim.

Users of the electronic versions of UL's Standards for Safety agree to defend, indemnify, and hold ULSE harmless from and against any loss, expense, liability, damage, claim, or judgment (including reasonable attorney's fees) resulting from any error or deviation introduced while purchaser is storing an electronic Standard on the purchaser's computer system.

tr2 MAY 26, 2023 - UL1480

No Text on This Page

ULMORM.COM. Click to View the full POF of UL 1480 2023

ULC Standards ULC Standards
Normes ULC

CAN/ULC 541:2023

Fifth Edition Fifth Edition

ULSE Inc. ANSI/UL 1480 Seventh Edition

Speakers for Fire Alarm and Signaling Systems, Including Accessories

May 26, 2023

May 26, 2023

May 26, 2023

May 26, 2024

Ma

Commitment for Amendments

This Standard is issued jointly by ULSE Inc. (ULSE) and ULC Standards. Amendments to this Standard will be made only after processing according to the Standards writing procedures by ULSE and ULC Standards.

ISSN 0317-526X Copyright © 2023 ULC Standards

All rights reserved.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, whatsoever without the prior permission of the publisher.

Comments or proposals for revisions on any part of the Standard may be submitted at any time. Proposals should be submitted via a Proposal Request in the Collaborative Standards Development System (CSDS) at https://csds.ul.com.

Copyright © 2023 ULSE INC.

Our Standards for Safety are copyrighted by ULSE Inc. Neither a printed nor electronic copy of a Standard should be altered in any way. All of our Standards and all copyrights, ownerships, and rights regarding those Standards shall remain the sole and exclusive property of ULSE Inc.

This ANSI/UL Standard for Safety consists of the Seventh Edition. The most recent designation of ANSI/UL 1480 as an American National Standard (ANSI) occurred on May 26, 2023. ANSI approval for a standard does not include the Cover Page, Transmittal Pages, Title Page (front and back), or the Preface.

Comments or proposals for revisions on any part of the Standard may be submitted to ULSE at any time. Proposals should be submitted via a Proposal Request in ULSE's Collaborative Standards Development System (CSDS) at https://csds.ul.com.

For information on ULSE Standards, visit https://www.shopulstandards.com, call toll free 1-888-853-3503 or email us at ClientService@shopULStandards.com.

CONTENTS

Preface	9	7
INTROE	DUCTION	
1	Scope	۵
	·	
2	Components	
3	Units of Measurement	
4	Referenced Publications	
5	Glossary	
6	Control Unit Interface	14
7	Audible Signal Pattern	14
	7.1 Format for fire alarm signals	14
	7.2 Format for carbon monoxide signals	14
	Audible Signal Pattern 7.1 Format for fire alarm signals 7.2 Format for carbon monoxide signals RUCTION General Enclosures 9.1 General 9.2 Cast metal enclosures 9.3 Sheet metal enclosures 9.4 Nonmetallic enclosures 9.5 Outdoor use enclosures 9.6 Openings 9.7 Gaskets 9.8 Covers Corrosion Protection	
CONST	RUCTION	
8	General	14
9	Enclosures	15
J	9.1 General	15
	9.2 Cast matal anclosuras	16
	0.2 Sheet metal analogures	16
	0.4 Normatallia analoguras	10
	9.4 Noninetallic enclosures	10
	9.5 Outdoor use enclosures	10
	9.6 Openings	18
	9.7 Gaskets	23
	9.8 Covers	23
	Corrosion Protection	24
11	Field Wiring Connection	24
	11.1 General	24
	11.2 Field wiring compartment	
	11.3 Field wiring terminals and leads	26
12	Internal Wiring	28
	12.1 General	28
	12.2 Separation of circuits	29
13	Bonding for Grounding	
14	Electrical Components	
	14.1 Mounting	
	14.2 Insulating materials	
	14.3 Current-carrying parts	
	14.4 Bushings	
	14.5 Semiconductors.	
	14.6 Transformers, relays, and coils	
	14.7 Capacitors	
	·	
	14.8 Operating parts	
	14.9 Connectors and receptacles	
	14.10 Printed wiring boards	
	14.11 Motors	
	14.12 Batteries	
15	Spacings	
16	Firmware Update (If Provided)	
	16.1 General	
	16.2 Firmware update	38

PERFORMANCE

17	General	
18	Samples	40
19	Input Test	41
20	Frequency Response and Output Sound Pressure Level	
	20.1 Frequency response	
	20.2 Output sound pressure level – determination of rating	42
	20.3 Determination of sound reduction.	
	20.4 Harmonic distortion	
21	Directional Characteristic	
22	Temperature Rise	
23	Dialostria Valtaga Withstand	40
	Fire tractions of Dadwood Conscious on Drinted Wining Decade	40
24	Dielectric Voltage-Withstand Evaluation of Reduced Spacings on Printed-Wiring Boards Endurance	49
25	Endurance	49
26	Variable Ambient Temperature	50
	26.1 General	50
	Variable Ambient Temperature 26.1 General. 26.2 Effect of shipping/storage temperature	50
	26.3 High and low ambient temperature	51
27	Humidity Test	52
28	Abnormal Operation and Burnout	53
	28.1 General	53
	28.2 Components test	53
	28.3 Speakers with multiple input voltages	54
	28.4 Compliance	54
29	Component Stress	54
30	Jarring	55
31	Component Stress. Jarring. Vibration. Strain Relief.	56
32	Strain Relief	57
33	Corrosion Tests	57
	33.1 General	57
	33.2 Hydrogen sulphide	58
	33.3 Sulphur dioxide – carbon dioxide	58
	33.4 Salt spray	59
	33.5 Alternative indoor corrosion test (21-day)	59
34	Water Spray	
35	Polarity Reversal	
36	Electric Shock Current	
37	Tests on Polymeric (Plastic) Materials	
	37.1 General	
	37.2 Air-oven aging test (temperature)	
	37.3 Flame test – 19 mm (3/4 in)	
	37.4 Flame test – 127 mm (5 in)	
	37.5 Ultraviolet light and water exposure test	
38	Mechanical Strength Tests for Enclosures	
39	Interference from Radio Frequency and Electromagnetic Radiation	
00	39.1 General	
	39.2 Extraneous radio frequency transients	
	39.3 Supply-line transients	
	39.4 Internally induced transients	
	•	
40	39.5 Signal-line transients	
40	Evaluation of Conformal Coatings on Printed Wiring Boards	
41	Locked Rotor Test	
	41.1 General	
	41.2 Thermal or overcurrent protection	
	41.3 Impedance protection	/ /

42	Battery-Powered Units	
	42.1 General	
	42.2 Battery trouble voltage determination	
	42.3 Primary battery tests	
	42.4 Rechargeable batteries used as standby power source	
	42.5 Battery charging current test	82
	42.6 Battery replacement test	82
MANUF	ACTURING AND PRODUCTION TESTS	
43	General	82
44	Production-Line Dielectric Voltage-Withstand	
45	Production-Line Grounding-Continuity Test for AC Mains-Voltage, Cord-Connected	
73	Products	84
	1100000	
	NO.	
MARKI	NGS	
	General	
46	General Marking Permanence 47.1 General 47.2 Permanence of marking test	84
47	Marking Permanence	86
	47.1 General	86
	47.2 Permanence of marking test	86
INSTRU	ICTIONS	
48	Manufacturer's Published Instructions	86
	*No	
SDECIA	47.2 Permanence of marking test ICTIONS Manufacturer's Published Instructions	
SFLCIA	ALIZED REGUIREMENTS/AFFEIGATIONS	
49	Deguirements for Drotective Coversand Assessantias for Speakers	00
49	Requirements for Protective Covers and Accessories for Speakers	88
	49.2 Manufacturer's published instructions	
	49.3 Construction requirements	
	49.4 Markings	
	49.5 Performance tests	
50	Requirements for Wireless Systems	
51	Requirements for Dwelling Unit Speakers (Canada Only)	
	51.1 General.	90
	51.2 Output sound pressure level	90
	51.3 Operation	90
	51.4 Endurance	91
	51.5 Timer tests	
	51.6 Operating mechanism	91
	51.7 Polarity reversal test	
	· · · · · · · · · · · · · · · · · · ·	
A NINEY	A (Normative) – STANDARDS FOR COMPONENTS	
~!4!4EX	A (HOLLING) - OLAHDAKDO LOK GOME GIALIATO	
ANNEX	B (Normative) – ALARM SIGNAL TEMPORAL PATTERN	
B1	General	
B2	Temporal Pattern for Fire Alarm Signal	
В3	Temporal Pattern for Carbon Monoxide Signal	95

ANNEX C (Normative) – FRENCH TRANSLATIONS OF REQUIRED MARKINGS

ANNEX D (Informative) – TEST SAMPLE SEQUENCE

ULMORM.COM. Click to View the full POF of UL 1480 2023

Preface

This is the common ULSE and ULC Standard for Speakers for Fire Alarm and Signaling Systems, Including Accessories. It is the fifth edition of CAN/ULC 541 and Seventh edition of UL 1480.

This Joint Standard was prepared by UL Standards & Engagement Inc. (ULSE), ULC Standards, and the NEMA Technical Harmonization Committee on Notification Appliances. The standard was formally approved by the ULSE Technical Committee on Signal Appliances and the ULC Technical Committee on Fire Alarm and Life Safety Equipment and Systems. The efforts and support of the NEMA Technical Harmonization Committee, ULSE Technical Committee, and ULC Technical Committee are gratefully acknowledged.

Only metric SI units of measurement are used in this Standard. If a value for measurement is followed by a value in other units in parentheses, the second value may be approximate. The first stated value is the requirement.

In Canada, there are two official languages, English and French. All safety warnings must be in French and English. Attention is drawn to the possibility that some Canadian authorities may require additional markings and/or installation instructions to be in both official languages.

Annexes A, B and C are identified as normative and form a mandatory part of this Standard.

Annex D is identified as informative and is for informational purposes only.

Note: Although the intended primary application of this Standard is stated in its scope, it is important to note that it remains the responsibility of the users of the standard to judge its suitability for their particular purpose.

No Text on This Page

ULMORM.COM. Click to View the full POF of UL 1480 2023

INTRODUCTION

1 Scope

- 1.1 These requirements apply to speakers, rated at 300 V or less, for fire alarm and signaling systems intended for indoor and/or outdoor installation:
 - a) In Canada only: in accordance with CSA C22.1, Canadian Electrical Code, Part I, Safety Standard for Electrical Installations, and with ULC-S524, Standard for Installation of Fire Alarm Systems.
 - b) In the United States only: in accordance with the National Electrical Code, NFPA 70, and the National Fire Alarm and Signaling Code, NFPA 72.
- 1.2 These requirements apply to speakers for use in ordinary (non-hazardous or non-corrosive) locations.
- 1.3 This Standard also covers protective covers and other accessories used with speakers.
- 1.4 Speakers for use in hazardous or corrosive locations shall comply with the requirements of this Standard and the applicable requirements:
 - a) In Canada only: CSA C22.1, Canadian Electrical Code, Part I, Safety Standard for Electrical Installations, with respect to the hazard or category classification.
 - b) In the United States only: the National Electrical Code, NFPA 70.
- 1.5 Each product or device referred to as a speaker in this Standard is a speaker assembly suitable for separate installation as a component of a fire alarm system.
- 1.6 A supplementary visual signal, incorporated as part of a speaker which is intended for fire alarm application shall comply with the requirements of this Standard and the applicable requirements of the Standard for Visible Signaling Devices for Fire Alarm and Signaling Systems, Including Accessories, ULC 526 and UL 1638.
- 1.7 Speakers intended for use with fire alarm systems and having integral amplifiers shall comply with the requirements in this standard in addition to the applicable requirements in:
 - a) In Canada only: ULC 527, Standard for Control Units for Fire Alarm Systems.
 - b) In the United States only: UL 864, Control Units and Accessories for Fire Alarm Systems.
- 1.8 Speakers intended for installations requiring a low frequency (520 Hz) notification to awaken sleeping persons shall also be evaluated to:
 - a) In Canada only: ULC 527, Control Units for Fire Alarm Systems.
 - b) In the United States only: UL 864, Standard for Control Units and Accessories for Fire Alarm Systems.
- 1.9 Speakers intended for use in air-handling spaces (plenums) shall comply with the requirements in this standard and the requirements in:
 - a) In Canada only: ULC-S142, Standard Method of Fire Test for Heat and Visible Smoke Release for Discrete Products.

- b) In the United States only: UL 2043, Standard for Fire Test for Heat and Visible Smoke Release for Discrete Products and Their Accessories Installed in Air-Handling Spaces.
- 1.10 These requirements do not cover the following:
 - a) Speakers intended for personal or private consumer use;
 - b) Speakers which are intended for commercial or professional audio applications; and
 - c) Speakers intended for security applications.

2 Components

- 2.1 Except as indicated in $\underline{2.2}$, a component of a product covered by this Standard shall components for that component. See Annex \underline{A} for a list of Standards covering components generally used in the products covered by this Standard.
- 2.2 A component need not comply with a specific requirement that:
 - a) Involves a feature or characteristic not needed in the application of the component in the product covered by this Standard; or
 - b) Is superseded by a requirement in this Standard.
- 2.3 A component shall be used in accordance with rating(s) established by its manufacturer for the intended conditions of use.

3 Units of Measurement

3.1 Values stated without parentheses are the requirement. Values in parentheses are explanatory or approximate information.

4 Referenced Publications

- 4.1 Any undated reference to a code or standard appearing in the requirements of this Standard shall be interpreted as referring to the latest edition of that code or standard.
- 4.2 The following publications are referenced in this Standard:

ASA S12.51/ISO 3741, Determination of sound power levels and sound energy levels of noise sources using sound pressure – Precision methods for reverberation test rooms

ASTM B86, Specifications for Zinc and Zinc-Aluminum (ZA) Alloy Foundry and Die Castings

ASTM B117, Standard Practice for Operating Salt Spray (Fog) Apparatus

ASTM E28, Standard Test Methods for Softening Point of Resins Derived from Pine Chemicals and Hydrocarbons, by Ring-and-Ball Apparatus

CTA-CEB 19, Recommended Loudspeaker Safety Practices

CSA 6.19, Residential carbon monoxide alarming devices

CSA C22.1, Canadian Electrical Code, Part I, Safety Standard for Electrical Installations

CSA C22.2 No. 0.4, Bonding of Electrical Equipment

CSA C22.2 No. 0.15, Adhesive Labels

CSA C22.2 No. 0.17, Evaluation of Properties of Polymeric Materials

CSA C22.2 No. 77, Motors with Inherent Overheating Protection

CSA C22.2 No. 198.1, Extruded Insulating Tubing

CSA C22.2 No. 60065, Audio, Video, and Similar Electronic Apparatus – Safety Requirements

CSA C22.2 No. 60086-4, Primary Batteries- Part 4: Safety of Lithium Batteries

IEC 61672-1, Electroacoustics – Sound Level Meters – Part 1: Specifications

ISO 8201, Alarm Systems – Audible emergency evacuation signal

NBC, National Building Code of Canada

NFPA 70, National Electrical Code

NFPA 72, National Fire Alarm and Signaling Code

UL 94, Test for Flammability of Plastic Materials for Parts in Devices and Appliances

UL 224, Extruded Insulating Tubing

UL 746C, Polymeric Materials – Use in Electrical Equipment Evaluations

UL 796, Printed Wiring Boards

UL 864, Control Units and Accessories for Fire Alarm Systems

UL 969, Marking and Labeling Systems

UL 1004-1, Rotating Electrical Machines – General Requirements

UL 1004-2, Impedance Protected Motors

UL 1004-3, Thermally Protected Motors

UL 1642, Lithium Batteries

UL 2043, Fire Test for Heat and Visible Smoke Release for Discrete Products and Their Accessories Installed in Air-Handling Spaces

UL 2054, Household and Commercial Batteries

UL 60065, Audio, Video, and Similar Electronic Apparatus – Safety requirements

UL 60086-4, Primary Batteries – Part 4: Safety of Lithium Batteries

UL 60384-14, Fixed Capacitors for Use in Electronic Equipment – Part 14: Sectional Specification: Fixed Capacitors for Electromagnetic Interference Suppression and Connection to the Supply Mains

ULC-S142, Fire Test for Heat and Visible Smoke Release for Discrete Products

ULC-S524, Installation of Fire Alarm Systems

ULC 525, Audible Signal Devices for Fire Alarm and Signaling Systems, Including Accessories

ULC 526, Visible Signaling Devices for Fire Alarm and Signaling Systems, Including Accessories

ULC 527, Control Units for Fire Alarm Systems

5 Glossary

For the purpose of this Standard, the following definitions apply:

- 5.1 CONSTANT TEMPERATURE Temperature is considered to be constant when three successive readings indicate no change when taken at intervals of 10 % of the previously elapsed duration of the test, but not less than at 5 min intervals.
- 5.2 CREST FACTOR The ratio of the peak or maximum value to the root-mean-square (rms) value.
- 5.3 DECIBEL (dB) One-tenth of a bel, the number of decibels denoting the ratio of the two amounts of power being ten times the logarithm to the base 10 of the ratio.

NOTE: The abbreviation dB is commonly used for the term decibel, and is determined as follows:

$$= 10 \log_{10} \frac{P_1}{P_2} \, \mathrm{dB}$$

where:

 P_1 and P_2 = The two values of power, expressed in the same unit (e.g. sound pressure level)

n = Value in decibels

- 5.4 DUTY CYCLE The ratio of the sum of all pulse durations to the total period, during a specified period of operation.
- 5.5 DWELLING UNIT A suite operated as a housekeeping unit, used or intended to be used as a domicile by one or more persons and usually containing cooking, eating, living, sleeping and sanitary facilities.

NOTE: Definition of this term is consistent with that used in the National Building Code of Canada.

- 5.6 EMERGENCY WARNING A system used to provide information and instructions to people in a building, area, site, or other space using intelligible voice communications methods. An Emergency Warning System is used to notify occupants that an emergency exists.
- 5.7 FIRMWARE A control program that is embedded in the notification appliance.

- 5.8 FREE FIELD An environment in which a sound wave may propagate in all directions without obstructions or reflections within the frequency range of interest.
- 5.9 MANUFACTURER'S PUBLISHED INSTRUCTIONS Published installation and operating documentation provided for each product or component. The documentation includes directions and necessary information for the intended installation, maintenance, and operation of the product or component.

(Reproduced with permission of NFPA from NFPA 72[®], *National Fire Alarm and Signaling Code*, 2022 edition. Copyright© 2021, National Fire Protection Association. For a full copy of NFPA 72[®], please go to www.nfpa.org.)

(NFPA 72[®] and *National Fire Alarm and Signaling Code*[®] are registered trademarks of the National Fire Protection Association, Quincy, MA. All rights reserved.)

- 5.10 PINK NOISE Broadband noise whose energy content is inversely proportional for frequency -3 dB per octave or -10 dB per decade.
- 5.11 PRIMARY BATTERY A battery which can only be discharged once. It is not designed to be rechargeable and must be protected from a charging current.
- 5.12 PRIVATE MODE Mode of operation intended to notify only those persons directly concerned with the implementation and direction of emergency action initiation and procedure in the area protected by the fire-alarm and signaling system.
- 5.13 PUBLIC MODE Mode of operation intended to notify occupants or inhabitants in the area protected by the fire-alarm and signaling system.
- 5.14 REFERENCE AXIS The "reference axis" of a signaling device is a line passing through the reference point coincident with the geometrical axis of the sound propagation pattern. For symmetrical structures, the reference axis is usually perpendicular to a plane passing through the edge of the sound source or opening of a horn.
- 5.15 REFERENCE POINT The "reference point" of a signaling device is a point on the outside of the signaling device in line with the geometrical center of the sound source projected perpendicular to a plane passing through the edge of the sound source. For horn type speaker, the "reference point" is the geometrical center of the opening of the horn.
- 5.16 RESONANCE Condition of peak vibratory response where a small change in excitation frequency causes a decrease in system response.
- 5.17 SECONDARY BATTERY A battery that is intended to be discharged and recharged many times in accordance with the manufacturer's recommendations.
- 5.18 SOFTWARE A program that is used to program a notification appliance's function and or its performance through the device's firmware.
- 5.19 SOUND Energy that is transmitted by pressure waves in air or other materials and is the objective cause of the sensation of hearing. Commonly called noise if it is unwanted.
- 5.20 SOUND LEVEL METER An electronic instrument for measuring the RMS level of sound in accordance with an accepted national or international standard.

- 5.21 SOUND PRESSURE A fluctuating pressure superimposed on the static pressure by the presence of sound. The unqualified term means the root-mean-square sound pressure. In air, the static pressure is barometric pressure.
- 5.22 SOUND PRESSURE LEVEL (SPL) Ten times the common logarithm of the ratio of the square of the sound pressure under consideration to the square of the standard reference pressure of 20 µPa. The quantity obtained is expressed in decibels.
- 5.23 SPECIAL TOOL A device not normally carried by the public (e.g. a key), normally provided by the manufacturer, to deter unauthorized access to the equipment.

NOTE: This is intended to deter unauthorized access to the equipment, while being available on site either at a defined location or from a "responsible person" familiar with and having knowledge of the equipment.

5.24 TROUBLE SIGNAL – A visual, audible, or transmitted signal indicating a fault condition associated with a notification appliance.

6 Control Unit Interface

- 6.1 A speaker incorporating circuitry for functional interfacing with a control unit for purposes such as supervision, point addressing, multiplexing, synchronization, wireless communication etc., shall also . Click to view the full comply with the applicable functional requirements of standards such as:
 - a) In Canada only:
 - 1) ULC 525; and
 - 2) ULC-S545.
 - b) In the United States only:
 - 1) UL 864; and
 - 2) UL 985.

7 Audible Signal Pattern

7.1 Format for fire alarm signals

7.1.1 Speakers used for fire alarm signals whose signal format is not controlled by a control unit shall be capable of reproducing a 3 pulse signal temporal pattern conforming with Figure B2.1 in Annex B, either internally or when pulsed from an external source.

7.2 Format for carbon monoxide signals

7.2.1 Speakers used for carbon monoxide alarms and whose signal format is not controlled by a control unit, shall be capable of reproducing a 4 pulse signal temporal pattern either internally or when pulsed from an external source. Refer to Figure B3.1 in Annex B.

CONSTRUCTION

8 General

8.1 The construction of a speaker shall comply with the construction requirements contained in this section, unless, where permitted by test, the construction is determined to be equivalent to these requirements. A means of determining construction equivalence shall comply with the requirements in CTA-CEB 19.

8.2 Unless otherwise indicated, the construction requirements specified for a product shall also apply to any accessories with which it is to be used.

9 Enclosures

9.1 General

- 9.1.1 The frame and enclosure of a speaker shall be sufficiently strong and rigid to resist the abuses to which it is likely to be subjected without adversely affecting its performance due to total or partial collapse with attendant reduction of spacings, loosening or displacement of parts and development of other conditions which could impair operation of the speaker and increase the risk of fire of electrical shock. Refer to Section 38, Mechanical Strength Tests for Enclosures.
- 9.1.2 Electrical parts or hazardous moving parts of a speaker shall be located or enclosed to provide protection from unintentional contact with uninsulated live parts.
- 9.1.3 A speaker intended to be installed on an outlet box or similar mounting enclosure, is to be judged with respect to compliance of the combination with the requirements of 9.1.1 and 9.1.2.
- 9.1.4 An operating part, such as a gear mechanism, light-duty relay, or similar device, shall be protected against mechanical damage and fouling by dust or other material which impairs its intended operation.
- 9.1.5 The enclosure of a speaker shall be provided with means for mounting in the intended manner. Any fittings, such as brackets, hangers, or similar hardware required for mounting shall be furnished with the device.
- 9.1.6 An enclosure shall have provision for the connection of metal-clad cable, conduit, or nonmetallic sheathed cable. Space shall be provided within a terminal or wiring compartment to permit the use of a standard conduit bushing on conduit connected to the compartment when a bushing is required for installation. An enclosure without such provision is permitted when:
- 9.1.7 A speaker intended for either flush or surface mounting in a back box shall use a standard enclosure that has been evaluated for the intended use or an enclosure that complies with the requirements of this standard.
- 9.1.8 A speaker need not be furnished with a back box where means for attachment to a standard outlet box are provided and the spacings comply with Section 15, Spacings.
- 9.1.9 The mounting means of a speaker to an enclosure shall be accessible without disassembly of any components not identified in the installation instructions of the speaker. The mounting means shall be independent of those means used for securing components or parts of the assembly. Removal of a complete assembly is not considered to be disassembly of a component.
- 9.1.10 An enclosure shall be constructed to minimize the possibility of emission of flame, molten metal, flaming or glowing particles, or flaming drops. See Section 28, Abnormal Operation and Burnout Test.
- 9.1.11 A speaker of less than 23 kg (50.7 lb) mass may be arranged for mounting to an outlet box provided that, if the speaker mass is more than 11 kg (24-1/4 lb), it is plainly marked as specified in Section 46, Markings, General.

9.1.12 A speaker of more than 23 kg (50.7 lb) mass shall incorporate space or a compartment for field wiring and shall be provided with means for physical mounting and support by other than an outlet box.

9.2 Cast metal enclosures

9.2.1 The thickness of cast metal for an enclosure shall be as indicated in Table 9.1.

Exception: Cast metal of lesser thickness may be employed if, consideration being given to the shape, size, and function of the enclosure, it provides equivalent mechanical strength. See Section 38, Mechanical Strength Tests for Enclosures.

Table 9.1 Cast Metal Enclosures

Minimum thickness				
Die-cast metal,		Cast metal of other than the die-cast type,		
mm	(in)	mm	(in)	
1.6	(1/16 ^a)	3.2	(1/8)	
24)	(3/32)	3.2	(1/8)	
6.4	(1/4)	6.4	(1/4)	
3.2	(1/8)	3.2	(1/8)	
	mm 1.6 2.4	Die-cast metal, mm (in) 1.6 (1/16 ^a) 24 (3/32) 6.4 (1/4)	Die-cast metal, Cast metal of the die-comm (in) mm 1.6 (1/16a) 3.2 24 (3/32) 3.2 6.4 (1/4) 6.4	

^a The area limitation for metal 1.6 mm (1/16 in) in thickness may be obtained by the provision of reinforcing ribs subdividing a larger area.

- 9.2.2 If threads for the connection of conduit are tapped all the way through a hole in an enclosure wall, there shall be not less than 3.5 or more than 5 threads in the metal, and the construction shall be such that a standard conduit bushing can be properly attached.
- 9.2.3 If threads for the connection of conduit are tapped only part of the way through a hole in an enclosure wall, there shall be not less than 3.5 full threads in the metal and there shall be a smooth, rounded inlet hole which shall afford protection to the conductors equivalent to that provided by a standard conduit bushing.
- 9.2.4 A speaker assembly designed to be supported by rigid conduit shall be of sufficient strength to be able to support 5 times the weight of the speaker assembly and comply with Section 38, Mechanical Strength Test for Enclosures. When provided with a conduit hub, or the equivalent, the hub shall have not less than 5 full threads.
- 9.2.5 Die-cast metal for other than flush boxes is permitted when it complies with one of the alloy specifications given in ASTM B86.

9.3 Sheet metal enclosures

9.3.1 The thickness of sheet metal employed for the enclosure of an speaker shall be not less than that indicated in <u>Table 9.2</u>.

Exception: Sheet metal of lesser thickness may be employed if, consideration being given to the shape, size, and function of the enclosure, it provides equivalent mechanical strength. See Section 38, Mechanical Strength Tests for Enclosures.

Maximum dimensions of sucleasure						Minimur	n thickness	of sheet me	etal	
Maximum dimensions of enclosure						Ste	el		Copper,	brass or
	Length o	or width,	Are	ea,	Zinc-coated,		Unco	Uncoated,		inum,
Group	mm	(in)	cm²	(in²)	mm	(in)	mm	(in)	mm	(in)
Α	76.2	(3)	39ª	(6)	0.64 ^b	(0.025)	0.53 ^b	(0.021)	0.58 ^c	(0.023)
В	203	(8)	232	(36)	0.76 ^{b,d}	(0.030)	0.69 ^{b,d}	(0.027)	0.91 ^d	(0.036)
С	305	(12)	581	(90)	0.86 ^d	(0.034)	0.81 ^d	(0.032)	1.14 ^d	(0.045)

Table 9.2
Minimum Thickness of Sheet Metal

- 9.3.2 A plate or plug closure for an unused conduit opening or other hole in the enclosure shall have a thickness not less than:
 - a) 0.36 mm (0.014 in) for steel or 0.43 mm (0.017 in) for nonferrous metal for a hole having a 6.4 mm (1/4 in) maximum dimension; and
 - b) 0.69 mm (0.027 in) for steel or 0.81 mm (0.032 in) for nonferrous metal for a hole having a 35 mm (1-3/8 in) maximum dimension.
- 9.3.3 A hole larger than 35 mm (1-3/8 in) diameter shall have a closure whose thickness is not less than that required for the enclosure of the speaker or shall have a standard knockout seal. Such plates or plugs shall be securely mounted.
- 9.3.4 A knockout in a sheet metal enclosure shall be secured but shall be capable of being removed without undue deformation of the enclosure. See Section 38, Mechanical Strength Tests for Enclosures.
- 9.3.5 A knockout shall be provided with a surrounding surface area of sufficient size to permit seating of a conduit bushing, and shall be so located that a bushing employed at any knockout likely to be used during installation will not result in spacings between uninsulated live parts and the bushing of less than those indicated under Section 15, Spacings
- 9.3.6 A sheet metal member to which a wiring system is to be connected in the field shall have a thickness not less than 0.81 mm (0.032 in) for uncoated steel, of not less than 0.86 mm (0.040 in) for galvanized steel, and not less than 1.14 mm (0.045 in) for nonferrous metal.
- 9.3.7 At any point where conduit or metal-clad cable is to be attached, sheet metal shall be of such thickness or shall be so formed or reinforced that it has a stiffness at least equivalent to that of an uncoated flat steel sheet having a minimum thickness of 1.35 mm (0.053 in).
- 9.3.8 An enclosure intended for recessed mounting shall have no nonfunctional openings on any of the enclosed sides.

^a Volume of enclosure not more than 197 cm³ (12 in³).

^b Sheet steel for an enclosure intended for outdoor use (rain-tight) is required to be not less than 0.91 mm (0.036ig) in thickness if zinc coated and not less than 0.81 mm (0.032 in) in thickness if uncoated.

^c Sheet copper, brass, or aluminum for an enclosure intended for outdoor use (rain-tight) is required to be not less than 0.74 mm (0.029 in) in thickness.

^d For a cover in Group B or C having a supporting frame or equivalent reinforcing and not intended for outdoor use, the thickness of sheet steel may be less than that specified in the table but shall be not less than 0.53 mm (0.021 in) [00.64 mm (0.025 in) if zinc coated], and the thickness of copper, brass, or aluminum may be less than that specified in the table but shall be not less than 0.74 mm (0.029 in).

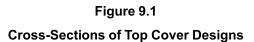
9.4 Nonmetallic enclosures

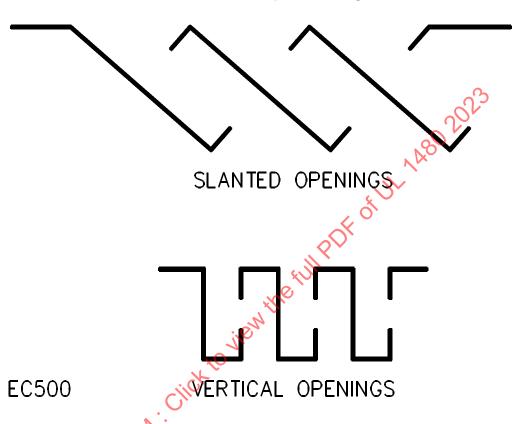
- 9.4.1 An enclosure or parts of an enclosure of nonmetallic material shall have the mechanical strength and durability and be so formed that operating parts will be protected against damage. The mechanical strength of the enclosure shall be at least equivalent to a sheet metal enclosure of the minimum thickness specified in Table 9.2. Refer to Section 38, Mechanical Strength Tests for Enclosures.
- 9.4.2 The continuity of any grounding system to which an appliance is capable of being connected shall not rely on the dimensional integrity of the nonmetallic material.
- 9.4.3 Among the factors taken into consideration when judging the acceptability of a nonmetallic enclosure are the following:
 - a) The mechanical strength;
 - b) Resistance to impact;
 - c) Moisture-absorptive properties;
 - d) Flammability and resistance to ignition from electrical sources;
 - e) Dielectric strength, insulation resistance, and resistance to arc tracking; and
 - f) Resistance to distortion and creeping at temperatures to which the material may be subjected.

NOTE: All these factors are considered with respect to aging in accordance with Section 37, Tests on Polymeric (Plastic) Materials.

9.5 Outdoor use enclosures

- 9.5.1 The enclosure of a speaker intended for outdoor use shall incorporate the following:
 - a) Means for mounting designed to prevent water spray from entering the enclosure. See Section 34, Water Spray; and
 - b) Holes for conduit that shall be threaded unless they are located below the lowest termination point or other live part within the enclosure. If knockouts or unthreaded holes are provided, there shall be provision for drainage of the enclosure.
- 9.5.2 A surface mount enclosure intended for outdoor use shall be provided with external means for mounting.


Exception: Internal means for mounting may be employed if constructed so as to prevent water from entering the enclosure.


9.5.3 For outdoor use, an enclosure of sheet steel less than 3.04 mm (0.12 in) in thickness, 3.18 mm (0.125 in) or less if zinc coated, shall be galvanized by the hot-dip process after forming and assembly, or shall be made from hot-dipped sheets, or shall be provided with a coating which is at least the equivalent, with respect to corrosion protection, of zinc applied by the hot-dip process.

9.6 Openings

9.6.1 Openings in the top of the enclosure shall be so constructed and shall be of such size that the entry of foreign objects is prevented.

9.6.2 To ensure compliance with <u>9.6.1</u>, openings directly over uninsulated live parts or operating parts shall not exceed 5 mm (0.20 in) in any dimension unless the configuration of the opening prevents entry of foreign objects. See <u>Figure 9.1</u> for examples of acceptable top cover designs.

9.6.3 Openings in the sides of the enclosure shall be so constructed and shall be of such size that entry of foreign objects, or contact by service personnel, is prevented. Louvers are acceptable if shaped to deflect external falling objects outward. See Figure 9.2 for examples of acceptable louver designs.

OUTWARD PROJECTION

Su1626

Cross-Sections of Louver Designs

OUTSIDE

INSIDE

INSIDE

INSIDE

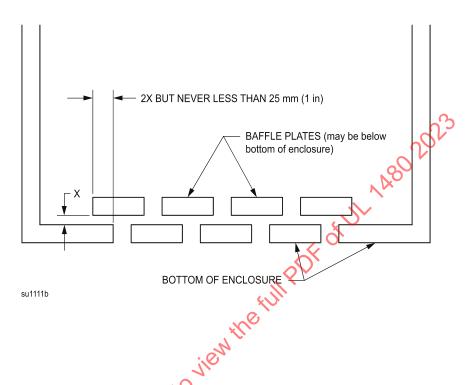
INSIDE

INSIDE

INWARD PROJECTION

Figure 9.2

Cross-Sections of Louver Designs


9.6.4 Openings in the bottom of enclosures under materials that do not have a flammability rating of V-1 or better, may be permitted if constructed so that dropping through of material from the enclosure would be prevented.

The flammability rating shall be determined by the Flammability Classification Test:

- a) In Canada only: CSA C22.2 No. 0.17.
- b) In the United States only: UL 746C.

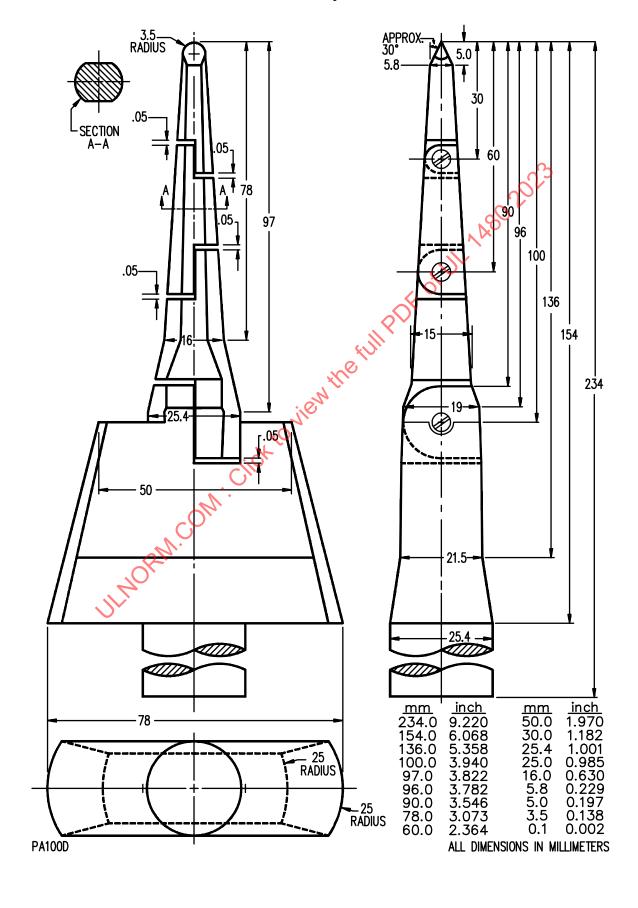

<u>Figure 9.3</u> illustrates a type of baffle that meets this requirement. A second acceptable construction is a nominal 1 mm (0.039 in) thick sheet steel bottom panel in which 2 mm (0.078 in) diameter round holes are spaced no closer than 1.5 times the hole diameter, center to center. Other constructions are acceptable if the speaker complies with Section 28, Abnormal Operation and Burnout Test.

Figure 9.3
Cross-Sections of Baffle Design

- 9.6.5 The bottom of an enclosure under materials that have a flammability rating of V-1 or better, may have openings providing they are not larger in area than 40 mm² (0.062 in²).
- 9.6.6 An enclosure intended for recessed or semi-recessed mounting and having a front panel intended to be flush with the surface of the wall shall have no openings that vent into concealed spaces of a building structure, such as into hollow spaces in the wall, when the product is mounted as intended.
- 9.6.7 The requirement in <u>9.6.6</u> does not apply to an opening for a mounting screw or nail or for a manufacturing operation (such as paint drainage) if:
 - a) No non-mounting purpose opening has dimension greater than 7 mm (0.275 in) or an area greater than 36 mm² (0.056 in²);
 - b) There is no more than one unused mounting screw hole for each 300 mm (11.8 in) of length of mounting surface, or fraction thereof; and
 - c) An opening for mounting does not have a dimension of greater than 19 mm (3/4 in or an area greater than 430 mm² (0.667 in²) or there are no more holes than needed for mounting of the product.
- 9.6.8 Enclosure openings which are exposed after installation shall not permit entrance of a 19 mm (3/4 in) diameter rod and shall be of such size and so arranged that a probe, as illustrated in <u>Figure 9.4</u> cannot be made to contact any uninsulated live electrical part, when inserted through the opening in a straight or articulated position.

Figure 9.4
Accessibility Probe

- 9.6.9 In addition to the requirement of <u>9.6.8</u>, enclosure openings which are exposed after installation shall be sized and so arranged that a straight rod of circular cross-section 6.4 mm (0.25 in) diameter with a hemispherical end cannot be made to contact any uninsulated live part and cannot damage any part of the speaker by a push force of 4.5 N (1 lb-f) so as to impair operation, reduce electrical spacings or otherwise reduce the reliability of the speaker.
- 9.6.10 Acoustical openings for a vandal-resistant speaker (see also Markings, Section $\underline{46}$) shall not provide direct access to any sound-producing element: for example, a cone or diaphragm by a rigid rod 0.8 mm (0.03 in) in diameter.
- 9.6.11 Openings in an enclosure, that are required for the proper acoustic performance of an appliance (including perforated holes, louvers, and openings protected by means of wire screening, expanded metal, or perforated covers) and provide access to the sound-producing element, shall be of such size or shape that no opening will permit passage of a rod having a diameter of 6.7 mm (17/64 in).
- 9.6.12 With reference to <u>9.6.12</u>, the wires of a screen shall be not less than 16 AWG (1.3 mm²). Except as noted in <u>9.6.13</u>, perforated sheet steel and sheet steel employed for expanded-metal mesh shall be not less than 1.07 mm (0.042 in) in average thickness, 1.17 mm (0.046 in) if zinc coated.
- 9.6.13 Expanded-metal mesh, 0.53 mm (0.021 in) thick or 0.61 mm (0.024 in) thick if zinc-coated, may be used when all of the following conditions are met:
 - a) The mesh openings are not more than 1.6 cm² (1/4 in²) in area;
 - b) The maximum dimension of the overall opening so protected is not greater than 76.2 mm (3 in); and
 - c) Indentation of the guard or enclosure does not impair performance or reduce spacings below the required values specified in Section 15. Spacings, between uninsulated live parts, or between uninsulated movable parts.

9.7 Gaskets

- 9.7.1 A gasket used to seal an opening between two parts that are intended to be separated in the field for installation or maintenance shall comply with the Air-Oven Aging Test, <u>37.2</u>. The gasket shall be secured with adhesive or a mechanical means to one of the mating surfaces. The gasket and the securing means shall not be damaged when the joint is opened following the exposure in <u>37.2</u>.
- 9.7.2 A gasket used as an environmental seal shall be of a material that is suitable for its application by complying with the Air-Oven Aging test, 37.2, and the requirements in Gaskets, 9.7. A gasket used exclusively as an acoustical seal is not required to be subjected to the requirements in 9.7.

9.8 Covers

- 9.8.1 An enclosure cover shall be secured against opening or removal by means requiring the use of a common or special tool. A decorative cover or trim that, if removed, does not expose live electrical or mechanical parts is exempt from this requirement.
- 9.8.2 Glass covering an observation opening shall:
 - a) Be tempered or similarly treated material to minimize potential injuries;
 - b) Be secured in place so that it cannot be displaced in service; and
 - c) Provide mechanical protection for the enclosed parts.

9.8.3 The thickness of a glass cover shall not be less than that indicated in Table 9.3.

Thickness of Glass Covers	
Maximum size of opening,	

	Maximun	Minimum	thickness				
Length or width,		Area,		Minimum thickness,			
mm	(in)	cm²	(in²)	mm	(in)		
102	(4)	103	(16)	1.6	(1/16)		
305	(12)	929	(144)	3.2	(1/8)		
Over 305 (Over 12) Over 929 (Over 144) See footnote a							
^a The minimum thickness shall be 3.2 mm (1/8 in) or more, depending upon the size, shape, and mounting of the glass panel.							

Table 9.3

- 9.8.4 A glass panel for an opening having an area of more than 929 cm² (144 in²), or having any dimension greater than 305 mm (1 ft), shall be supported by a continuous groove not less than 4.8 mm (0.19 in) deep along all four edges of the panel, or by an arrangement that has been determined to be equivalent.
- 9.8.5 A transparent material other than glass shall not be used for the cover of an observation opening unless the material does not introduce a risk of fire, distort, or become less transparent when subjected to varying temperatures under either normal or abnormal service conditions.

10 Corrosion Protection

10.1 Ferrous metal, iron and steel parts other than bearings and similar parts where such protection is impractical, shall be protected against corrosion by enameling, galvanizing, plating, or other equivalent means. Refer to Section 33, Corrosion Tests

Exception No. 1: This requirement does not apply to parts such as washers, screws, bolts, and the like, if failure of such unprotected parts would not be likely to result in a risk of fire or electrical shock or affect the performance of the speaker.

Exception No. 2: Parts made of stainless steel, polished or treated, do not require additional protection against corrosion.

- 10.2 The requirement of 10.1 applies to all enclosures of sheet steel or cast iron, and to all springs and other parts upon which intended mechanical operation may depend.
- 10.3 Bearing surfaces shall be of such materials and design as to resist binding due to corrosion.
- 10.4 Metal shall not be used in combinations such as to cause galvanic action.
- 10.5 Cabinets and enclosures of corrosion-resistant material may be employed without special corrosion protection.

11 Field Wiring Connection

11.1 General

11.1.1 Wiring terminals or leads corresponding to the rating of the device shall be provided for connection of conductors of at least the size required by:

- a) In Canada only: CSA C22.1, Section 32, Fire alarm systems, smoke alarms, carbon monoxide alarms, and fire pumps.
- b) In the United States only: NFPA 70.
- 11.1.2 Wiring terminals shall be prevented from turning.
- 11.1.3 The terminals to which wiring connections are made shall consist of binding screws with terminal plates having upturned lugs or the equivalent to hold the wires in position. Other terminal connections may be provided if found to be equivalent.
- 11.1.4 Dual terminals, dual leads, or equivalent means to achieve electrical supervision, shall be provided for each incoming and each outgoing circuit connection. A common terminal may be used for connection of both incoming and outgoing wires, provided that the construction of the terminal does not permit an uninsulated section of a single conductor to be looped around the terminal and serve as two separate connections, thereby precluding supervision of the connection in the event that the wire becomes dislodged from under the terminal. A notched clamping plate under a single securing screw, where separate conductors of a notification appliance (signaling device) circuit are intended to be inserted in each notch, is acceptable, but this arrangement shall be supplemented by additional marking in the wiring area or on the installation wiring diagram specifying the intended connections to the terminals.

11.2 Field wiring compartment

- 11.2.1 The field wiring compartment in which connections are made shall be of sufficient size for accommodating all wiring connections specified by the installation wiring drawing without damage to wire insulation or to internal components. There shall be space within the compartment to permit the use of a standard conduit bushing on conduit connected to the compartment when a bushing is required.
- 11.2.2 The device wiring and internal components in the wiring area of a speaker designed for mounting to an outlet box shall be so located or protected so that, they and the field wiring in the outlet box are not forced against sharp edges to prevent damage.
- 11.2.3 An outlet box or compartment in which field wiring connections are to be made shall be located such that the connections may be inspected after the speaker is installed as intended. The removal of only field installed fasteners, or equivalent arrangement and dismounting of an assembly, of not more than 4.5 kg (10 lb) mass to view the field wiring connections, is deemed to comply with this requirement.
- 11.2.4 A speaker without a field wiring compartment shall be constructed so that the following requirements are met:
 - a) Field wiring and leads shall be prevented from contacting moving parts of the speaker when such contact would result in damage to the wire insulation or interfere with the operation of the device;
 - b) Field wiring and leads shall be prevented from contacting parts of the speaker, which under any condition of operation may achieve a temperature exceeding the temperature rating of the wire or lead insulation. See Section 22, Temperature Rise; and
 - c) Field wiring and leads shall be prevented from contacting uninsulated live parts which under any condition of operation may be at a potential exceeding the voltage rating of the wire or lead insulation. Refer to Separation of Circuits, <u>12.2</u>, and Section <u>15</u>, Spacings.

11.3 Field wiring terminals and leads

11.3.1 Types and sizes

- 11.3.1.1 Terminals for field connection of conductors larger than 10 AWG (5.3 mm²) shall consist of nonferrous soldering lugs or nonferrous solderless (pressure) wire connectors.
- 11.3.1.2 Terminals for field connection of conductors 10 AWG (5.3 mm²) or smaller may consist of means for clamping the conductor if such means are constructed so that:
 - a) They will firmly grip the conductors and securely hold them in place; and
 - b) Solid conductors cannot come out from under the clamping means even though the latter is loosened sufficiently to allow lateral movement of the conductors with respect to the means.

11.3.2 Size of screws

- 11.3.2.1 If binding head screws or machine screws and washers are used as clamping means for conductors, the size of screw shall be not less than:
 - a) No. 8 or M4 if for use with conductors 14 AWG (2.1 mm²) or larger;
 - b) No. 6 or M3.5 if for use with conductors 14 AWG (2.1 mm²) or smaller and 18 AWG (0.82 mm²) or larger; or
 - c) No. 4 or M3 if for use with conductors 18 AWG (0.82 mm²).

11.3.3 Material for terminal parts

- 11.3.3.1 Binding head screws, bolts, studs, nuts and washers shall be of nonferrous metal except that in sizes 10 AWG (5.3 mm²), M5 or larger, iron or steel may be used if:
 - a) Such parts are suitably protected with a plating of cadmium, zinc, or equivalent material; and
 - b) The conductor or terminal to be secured is clamped against a surface of nonferrous metal which will carry the greater part of the current.

11.3.4 Terminal plates and threading

- 11.3.4.1 Wiring terminal screws shall thread into metal.
- 11.3.4.2 The threading of binding head screws and machine screws, other than wiring terminal screws, into material other than metal are not prohibited from being used when determined to be equivalent in terms of mechanical secureness and conductivity.
- 11.3.4.3 Terminal plates through which binding head screws or machine screws are threaded shall have a thickness at least equal to twice the pitch of the thread of the screw, but not less than 0.762 mm (0.03 in), and shall have at least 2 complete clean-cut full threads.
- 11.3.4.4 Terminal plates for solderless connectors or solderless lugs shall:
 - a) Have a thickness of not less than 1.27 mm (0.050 in) for a No. 8, M4 or larger screw, and not less than 0.76 mm (0.030 in) thick for a No. 6 or M3.5 screw;

- b) Have at least 2 complete full threads, if threaded; and may have the metal extruded at the tapped hole for the binding screw so as to provide two full threads; and
- c) Provide contact areas, such that the full contact area of the tongue of the largest lug which would normally be used will be properly utilized.
- 11.3.4.5 Screws engaging threaded holes in plates shall have not less than two full threads engaging under any condition of service.
- 11.3.4.6 If terminal screws do not pass entirely through threaded holes, they shall engage clean-cut full threads for a distance not less than the major diameter of the screw.

11.3.5 Grounding terminals and leads

- 11.3.5.1 For a speaker intended for connection to an AC Mains source of supply, only by means of other than a metal-enclosed wiring system such as nonmetallic-sheathed cable, all of the following shall be provided:
 - a) An equipment grounding terminal or lead, the size of which shall be the same as that of the supply terminal or lead, but in no case less than 18 AWG (0.82 mm²);
 - b) A marking to indicate the system or systems for which it is intended; and
 - c) Reliable connection of the grounding means to all exposed dead metal parts that are likely to become energized, and all dead metal parts within the enclosure that are exposed to contact during servicing and maintenance.
- 11.3.5.2 The surface of an insulated lead intended solely for the connection of an equipment grounding conductor shall be green, with or without one or more yellow stripes. No other leads visible to the installer, other than the grounding conductors, shall be so identified.
- 11.3.5.3 A field wiring terminal intended for connection of an equipment grounding conductor shall be plainly identified, with the marking "G", "GR", "GROUND", "GROUNDING", or by the graphic symbol 5019 from IEC publication 60417-1, or the equivalent, or by a marking on a wiring diagram provided on the appliance. The field wiring terminal shall be located so that it is unlikely to be removed during servicing of the appliance.

11.3.6 Grounded supply terminals and leads

- 11.3.6.1 A field wiring terminal for the connection of the grounded supply conductor of a AC Mains supply circuit shall be identified by means of a white metallic-plated coating and shall be distinguishable from the other terminals. Otherwise, identification of the terminal for the connection of the grounded conductor shall be shown in some other manner, such as on an attached connection diagram.
- 11.3.6.2 A field wiring lead provided for connection of the grounded supply conductor of a AC Mains supply circuit shall be finished white or gray and shall be distinguishable from other leads. No other leads visible to the installer, other than grounded conductors, shall be so identified.
- 11.3.6.3 A terminal or lead identified for the connection of the grounded supply conductor shall not be electrically connected either to a single-pole manual switching device that has an "off" position or to a single-pole overcurrent (not thermal) protective device.

11.3.6.4 Terminals which are intended for direct connection to either a grounded conductor or a neutral conductor of a supply circuit shall be identified. They shall be substantially white in color if color coded, or be marked "N" or "Neutral", or "W" or "White", either on or adjacent to the terminal.

11.3.7 Field wiring leads

- 11.3.7.1 Leads provided for field connections shall be:
 - a) Stranded copper bunch tinned in accordance with:
 - 1) In Canada only: CSA C22.1, Rule 32-100;
 - 2) In the United States only: NFPA 70;
 - b) Not less than 150 mm (6 in) in length;
 - c) Not smaller than 18 AWG (0.82 mm²);
 - d) The insulation, if of rubber or plastic, not less than 0.8 mm (0.032 in) in thickness; and
 - e) Provided with strain relief. See Section 32, Strain Relief.
- 11.3.7.2 Leads which are intended for direct connection to either a grounded conductor or a neutral conductor of a supply circuit shall be identified at the point of supply connection. Identification shall be a white or natural grey covering readily distinguishable from the finish on other leads and no other lead shall be so identified.

12 Internal Wiring

12.1 General

- 12.1.1 Wiring shall have insulation rated for the potential involved and the temperatures to which it may be subjected, and shall have adequate mechanical strength and current-carrying capacity for all conditions of service. The wiring shall be routed away from moving parts and sharp projections and held in place with clamps, string, ties, or the equivalent, unless the wiring is capable of retaining a shaped form.
- 12.1.2 Leads or a cable assembly connected to parts mounted on a hinged cover shall be of sufficient length to permit the full opening of the cover without applying stress to the leads or their connections. The leads shall be secured or arranged to prevent abrasion of insulation and jamming between parts of the enclosure.
- 12.1.3 If the use of an insulated conductor is not feasible (for example a coil lead), electrical insulating tubing complying with CSA 22.2 No. 198.1, or UL 224, Extruded Insulating Tubing, may be employed. The tubing shall not be subjected to sharp bends, tension, compression, or repeated flexing, and shall not contact sharp edges, projections, or corners.
- 12.1.4 Insulation, such as coated fabric and extruded tubing, shall not be affected physically or electrically by the temperature or other environmental conditions to which the insulation may be subjected to during the intended use of the speaker.
- 12.1.5 Wireways shall be smooth and entirely free from sharp edges, burrs, fins, moving parts, and the like, which may cause abrasion of the conductor insulation.
- 12.1.6 All splices and connections shall be mechanically secure and bonded electrically.

- 12.1.7 Stranded conductors clamped under wire-binding screws or similar parts shall have the individual strands bunch-tinned or equivalently arranged.
- 12.1.8 A splice shall be provided with insulation equivalent to that of the wires involved.
- 12.1.9 A splice shall be located, enclosed, and supported so that it is not subject to damage from flexing, motion, or vibration.

12.2 Separation of circuits

12.2.1 Internal wiring of circuits which operate at different potentials shall be separated by barriers, clamps, routing, spacing (refer to <u>Table 12.1</u>), or other equivalent means, unless all conductors are provided with insulation rated for the highest potential involved.

Table 12.1 Minimum Spacings

	Minimum spacings						
Point of application	Voltage range,	Throug	h air,	Over surface,			
	v	mm	(in)	mm	(in)		
To walls of enclosure ^a :		$\langle Q \rangle$					
Cast metal enclosures	0 – 300	6.4	(1/4)	6.4	(1/4)		
Sheet metal enclosures	Power or non-power limited 0 – 50	6.4	(1/4)	6.4	(1/4)		
	Power limited 51-300	6.4	(1/4)	6.4	(1/4)		
	Non-power limited 51-150	12.7	(1/2)	12.7	(1/2)		
	Non-power limited 300 – 600	12.7	(1/2)	12.7	(1/2)		
Installation wiring terminals:	1,10						
With barriers	- 30	3.2	(1/8)	4.8	(3/16)		
	31 – 150	3.2	(1/8)	6.4	(1/4)		
	151 – 300	6.4	(1/4)	9.5	(3/8)		
Without barriers	0 – 30	4.8	(3/16)	4.8	(3/16)		
	31 – 150	6.4	(1/4)	6.4	(1/4)		
-RM	151 – 300	6.4	(1/4)	9.5	(3/8)		
Rigidly clamped assemblies:b							
Class 2, Power Limited	0 – 30	_	_	_	_		
Non Class 2, Power Limited	0 – 30	1.2	(3/64)	1.2	(3/64)		
	31 – 150	1.6	(1/16)	1.6	(1/16)		
	151 – 300	2.4	(3/32)	2.4	(3/32)		
	300 – 600	9.5	(3/8)	12.7	(1/2)		
Other parts							
	0 – 30	1.6	(1/16)	3.2	(1/8)		
	31 – 150	3.2	(1/8)	6.4	(1/4)		
	151 – 300	6.4	(1/4)	9.5	(3/8)		
	300 – 600	9.5	(3/8)	12.7	(1/2)		

^a Measurements are to be made with solid wire of adequate ampacity for the applied load connected to each terminal. In no case shall the wire be smaller than 18 AWG (0.82 mm²).

^b Rigidly clamped assemblies include such parts as contact springs on relays or cam switches, printed wiring boards, and the like.

12.2.2 A metal barrier used to provide separation between the wiring of different circuits shall have a thickness at least equal to that required by <u>Table 9.2</u> as determined by the size (width and length) of the barrier. A barrier of insulation material shall be not less than 0.71 mm (0.028 in) in thickness and shall be of greater thickness if its deformation may be readily accomplished so as to defeat its purpose. Any clearance between the edge of a barrier and a compartment wall shall be not more than 1.6 mm (0.063 in).

13 Bonding for Grounding

13.1 An exposed dead metal part that could become energized shall be bonded to the point of connection of the equipment grounding terminal or lead and to the metal surrounding the knockout, hole, or bushing provided for field power-supply connections.

Exception No. 1: An adhesive-attached metal-foil marking, screw, handle, or similar material is not required to be bonded when located on the outside of an enclosure or cabinet and isolated from electrical components or wiring by grounded metal parts so that it is not likely to become energized.

Exception No. 2: An isolated metal part, such as a motor-controller magnet frame or armature or a small assembly screw, is not required to be bonded when positively separated from wiring and uninsulated live parts.

Exception No. 3: A panel or cover that does not enclose uninsulated live parts is not required to be bonded when wiring is separated from the panel or cover so that it will not become energized.

Exception No. 4: A panel or cover is not required to be bonded when it is insulated from electrical components and wiring by an insulating barrier of vulcanized fiber, varnished cloth, phenolic composition, or similar material not less than 0.8 mm (1/32 in) thick and secured in place.

- 13.2 An uninsulated dead metal part of a cabinet, electrical enclosure, motor-frame or mounting bracket, controller mounting bracket, capacitor or other electrical components, shall be bonded for grounding if it may be contacted by the user or by service personnel servicing the equipment.
- 13.3 A bonding means shall be an acceptable electrical conductor. If of ferrous metal, it shall be protected against corrosion by painting, plating, or the equivalent. The conductor shall be of acceptable size. A separate bonding conductor shall be installed so that it is protected from mechanical damage.
- 13.4 The bonding shall be by a positive means, such as by clamping, riveting, bolted or screwed connection, brazing, or welding. The bonding connection shall penetrate nonconductive coatings, such as paint. Bonding around a resilient mount shall not depend on the clamping action of rubber or similar material.
- 13.5 A bolted or screwed connection that incorporates a star washer or serrations under the screwhead is acceptable for penetrating nonconductive coatings where required for compliance with 13.1.
- 13.6 When the bonding means depends upon screw threads, the use of two or more screws or two full threads of a single screw engaging metal complies with 13.1.
- 13.7 A metal-to-metal hinge-bearing member of a door or cover is acceptable as a means for bonding the door or cover for grounding, provided that a multiple bearing-pin type (piano-type) hinge is employed.
- 13.8 The size of a copper or aluminum conductor employed to bond an electrical enclosure or motor frame shall be based on the rating of the branch-circuit overcurrent device by which the appliance will be protected. The size of the conductor shall be in accordance with Table 13.1.

Size of bonding conductor ^a				
Сорре	· wire,	Aluminum wire,		
AWG	(mm²)	AWG	(mm²)	
14	(2.1)	12	(3.3)	
12	(3.3)	10	(5.3)	
10	(5.3)	8	(8.4)	
8	(8.4)	6	(13.3)	
6	(13.3)	4	(21.2)	
	14 12 10 8	Copper wire, AWG (mm²) 14 (2.1) 12 (3.3) 10 (5.3) 8 (8.4)	Copper wire, Aluminum AWG (mm²) AWG 14 (2.1) 12 12 (3.3) 10 10 (5.3) 8 8 (8.4) 6	

Table 13.1
Bonding Wire Conductor Size

- 13.9 A conductor, such as a clamp or strap, may be used in place of a separate wire conductor, provided that the minimum cross-sectional conducting area of the bonding means is not less than that of the wire indicated in Table 13.1.
- 13.10 A splice shall not be employed in a wire conductor used for bonding
- 13.11 The grounding means shall be used for no other purpose

14 Electrical Components

14.1 Mounting

- 14.1.1 All stationary parts of a speaker that support moving components shall be securely mounted in position and prevented from loosening or turning.
- 14.1.2 Uninsulated live parts shall be so secured to the base or mounting surface that they will be prevented from turning or shifting in position, if such motion may result in a reduction of spacings below the minimum values required. Refer to Section 15, Spacings.
- 14.1.3 Friction between surfaces is not acceptable as a means to prevent turning, loosening, or shifting of a part as required in 14.1.1 and 14.1.2, but a toothed lock washer that provides both spring take-up and an interference lock or equivalent means is acceptable.
- 14.1.4 An uninsulated live part, such as a field wiring terminal, shall be secured to its supporting surface or surfaces by methods other than friction between surfaces if turning or shifting in position may result in a reduction of spacings below the minimum values required. The part shall be secured by two screws or rivets; by square shoulders or mortices; by a dowel pin, lug, or offset; by a connecting strap or clip fitted into an adjacent part; or by some other equivalent method.
- 14.1.5 A plunger contact, diaphragm assembly, or other part intended to be non-moving while supporting components shall be mounted in position and prevented from loosening or turning by means other than friction between surfaces.

14.2 Insulating materials

14.2.1 Materials used for the support of current-carrying parts shall be non-flammable, moisture-resistant insulating material, such as porcelain, phenolic or cold-molded composition, or the equivalent.

- 14.2.2 Among the factors to be considered in judging electrical insulation are mechanical and electrical strength, resistance to burning, moisture, arcing, creep (flow due to stress), thermal endurance and resistance to temperatures encountered in intended use.
- 14.2.3 A terminal block mounted on a metal surface that may be grounded shall be provided with an insulating barrier between the mounting surface and all live parts on the underside of the base, unless the parts are staked, upset, sealed, or equivalently secured to prevent movement of the parts at the ends of replaceable terminal screws from reducing spacings below the minimum values required.
- 14.2.4 Ordinary vulcanized fiber may be used for insulating bushings, washers, separators, and barriers, but not for the sole support of live parts where shrinkage, current leakage, or warping of the fiber may introduce a risk of fire or electric shock.
- 14.2.5 Polymeric materials may be used for the sole support of uninsulated live parts if found to be equivalent to the materials indicated in 14.2.4.
- 14.2.6 A countersunk sealed live part shall be covered with a waterproof insulating compound which will not melt at a temperature 15 °C (27 °F) higher than the maximum normal operating temperature of the assembly, and at not less than 65 °C (149 °F) in any case. The depth or thickness of sealing compound shall be not less than 3.2 mm (1/8 in).
- 14.2.7 The thickness of a flat sheet of insulating material, such as impregnated asbestos-cement composition or phenolic composition employed for panel mounting of parts shall be not less than that specified in Table 14.1.

Table 14.1
Thickness of Flat Sheets of Insulating Material

	Maxir	Minima	4hiolmana		
Length	Length or width,		Area,	wiinimum	thickness,
mm	(in)	cm ²	(in²)	mm	(in)
610	(24)	2323	(360)	9.5ª	(3/8°)
1219	(48)	7432	(1152)	12.7	(1/2)
1219	(48)	11,148	(1728)	15.9	(5/8)
1219	(Over 48)	11,148	(Over 1728)	19.1	(3/4)

^a Material less than 9.5 mm (3/8 in) but not less than 3.2 mm (1/8 in) thick may be used for a panel if the panel is supported or reinforced to provide rigidity not less than that of a 9.5 mm (3/8 in) sheet. Material less than 3.2 mm (1/8 in) may be employed for subassemblies, such as supports for terminals for internal wiring, resistors, and other components.

14.3 Current-carrying parts

- 14.3.1 A current-carrying part shall be of silver, copper, a copper alloy, or the equivalent.
- 14.3.2 Bearings, hinges, or similar parts are not acceptable for carrying current between interrelated fixed and moving parts.
- 14.3.3 Plated steel shall not be used for secondary-circuit parts nor for primary-circuit parts, such as capacitor terminals, unless a glass-to-metal seal is necessary, nor for leads or threaded studs of semiconductor devices. Blued steel or steel with corrosion resistance that has been determined to be equivalent is acceptable for the following:
 - a) The current-carrying arms of mechanically- or magnetically-operated leaf switches;

- b) Within a motor and motor governor, including the motor terminals; or
- c) When the temperatures exceed 100 °C (212 °F) during the intended operation.

14.4 Bushings

- 14.4.1 Where a lead or wire harness passes through an opening in a wall, barrier, or enclosing case, there shall be a metal or insulating bushing, or the equivalent, that shall be secured in place and have a smooth rounded surface against which the wire may bear.
- 14.4.2 If the opening is located in a phenolic composition or other equivalent nonconducting material or in metal of thickness greater than 1.07 mm (0.042 in), a smooth rounded surface having rounded edges is deemed to be the equivalent of a bushing.
- 14.4.3 Ceramic materials and some molded compositions are permitted for insulating bushings, but separate bushings of wood and of hot-molded shellac are not permitted.
- 14.4.4 A fiber bushing may be used if:
 - a) It will not be subjected to a temperature higher than 90 °C (194 °F) under intended operating conditions:
 - b) The bushing is not less than 1.2 mm (3/64 in) thick; and
 - c) The fiber will not be exposed to moisture.
- 14.4.5 Ordinary vulcanized fiber may be employed where it will not be subjected to a temperature higher than 90 °C (194 °F) under intended operating conditions if the bushing is not less than 1.2 mm (3/64 in) in thickness and if it will not be exposed to moisture.
- 14.4.6 A soft rubber bushing may be employed in the frame of a motor if the bushing is not less than 1.2 mm (3/64 in) in thickness and if the bushing is so located that it will not be exposed to oil, grease, oily vapor, or other substances which may have a deleterious effect on rubber. If a soft rubber bushing is employed in a hole in metal, the hole shall be free from sharp edges, burrs, projections, and the like, which could cut into the rubber.
- 14.4.7 An insulating-metal grommet is acceptable in lieu of an insulating bushing, provided that the insulating material used is not less than 0.8 mm (0.032 in) in thickness and completely fills the space between the grommet and the metal in which it is mounted.

14.5 Semiconductors

14.5.1 Semiconductors shall be rated for the intended application under all environmental conditions to which they may be exposed in service. Refer to Section <u>17</u>, Performance Tests – General.

14.6 Transformers, relays, and coils

- 14.6.1 Coils shall be treated with an insulating varnish, and baked or otherwise impregnated to exclude moisture.
- 14.6.2 Film coated, or equivalently coated wire is not required to be given additional treatment to prevent moisture absorption.

14.7 Capacitors

- 14.7.1 Capacitors shall be rated for the intended application under all environmental conditions to which they may be exposed in service.
- 14.7.2 Capacitors shall be suitable for the purpose. There shall be no failure of the capacitors when the product is subjected to Section 22, Temperature Rise, and Section 25, Endurance. The measured peak voltage across the capacitor shall not exceed the voltage stress level as specified in Section 29, Component Stress.
- 14.7.3 Supervisory capacitors shall be of the non-polarized type (or back-to-back common cathode connection if two polarized types are used) and found suitable for the purpose. The measured peak-to-peak voltage across the supervisory capacitor shall not exceed the rated voltage when tested over the speaker rated bandwidth at rated input voltage.

14.8 Operating parts

- 14.8.1 Operating parts of an appliance shall be located or protected so that their function is not impaired by any wiring operation within the enclosure.
- 14.8.2 A cam or similar part shall be mechanically fastened so that independent turning or loosening is prevented.
- 14.8.3 An operating component or assembly, such as a switch or relay, shall be protected by an individual cover or dust-tight cabinet against fouling by dust or by other material that may impair its operation. A relay using contacts having a wiping action does not require any special protection against fouling by dust.
- 14.8.4 A moving part shall have sufficient play at bearing surfaces to prevent binding.
- 14.8.5 An adjusting screw or similar adjustable part shall be prevented from loosening under the conditions of actual use.
- 14.8.6 A manually-operated part shall withstand the stresses to which it is subjected to in operation.
- 14.8.7 Interrelated operating parts shall be formed and assembled so that their alignment is maintained.
- 14.8.8 Gears shall have uniformly formed teeth with smooth engaging surfaces, and shall be reliably secured in place.
- 14.8.9 The assembly of an operating mechanism included as a part of a product shall be such that it will not be adversely affected by any condition of intended operation.

14.9 Connectors and receptacles

14.9.1 A receptacle or connector shall be rated for the current and voltage to which it is subjected.

14.10 Printed wiring boards

14.10.1 Printed wiring boards shall comply with the UL 796 and CAN/CSA-C22.2 No. 0.17. The components of a printed wiring board shall be attached securely and the spacings between circuits shall comply with the spacing requirements for rigidly clamped assemblies (see <u>Table 12.1</u>). The board shall be mounted so that deflection of the board during servicing shall not result in damage to the board or in a

reduction of electrical spacings to less than those required in this standard. A printed-wiring board shall have a minimum flammability rating of V-2, be rated for direct support of current-carrying parts, and be suitable for the soldering process used.

14.11 **Motors**

- 14.11.1 A motor shall be protected against overheating under normal and abnormal operating conditions.
- 14.11.2 A motor shall be protected by thermal or overcurrent protective devices or shall be of the impedance-protected type. See Section <u>41</u>, Locked Rotor Test. A thermal or overcurrent protective device shall not open the circuit during the Section <u>22</u>, Temperature Rise.
- 14.11.3 A motor having openings in the enclosure or frame shall be arranged so that flaming or glowing particles dropping out of the motor will not fall onto flammable material within or under the appliance.

14.12 Batteries

14.12.1 General

- 14.12.1.1 A battery or batteries used as primary or backup power shall comply with the applicable requirements in 14.12 and 42.1 42.6.
- 14.12.1.2 Batteries shall be located and mounted so that terminals meet the spacing requirements in 12.2, Separation of Circuits.
- 14.12.1.3 A notification appliance powered by replaceable batteries shall provide access to the battery compartment without disassembly of any part of the product except for a cover or similar parts as specified in the manufacturer's published instructions.
- 14.12.1.4 A notification device with replaceable batteries shall comply with <u>42.6</u>, Battery Replacement Test and:
 - a) Be designed to prevent misalignment, reverse polarity, damage upon connection, and accessibility of uninsulated parts during use and replacement;
 - b) Provide a battery securement means to prevent inadvertent disconnection or damage that impedes operation of the unit during use; and
 - c) Be prevented from coming into contact with terminals of adjacent batteries or with metal parts of the enclosure as a result of shifting of the batteries.
- 14.12.1.5 Removal of the speaker from a mounting support or bracket to replace a battery shall only be permitted when the mounting of the product is supervised. Wiring that is subjected to flexing or stress during the removal of a notification appliance shall comply with the requirements in Section 32, Strain Relief.
- 14.12.1.6 Leads or terminal connections to batteries shall be identified with the proper polarity (plus or minus signs) and strain relief provided for any leads. The polarity shall be indicated on the product adjacent to the battery terminals or leads.
- 14.12.1.7 Connections to battery terminals shall be either by a lead terminating in a positive snap-action type clip, or a fixed butt-type connection which applies a minimum 6.6 N (1.5 lb) force to each battery contact, or another connection means that has been determined to be equivalent.

14.12.1.8 Each lead of a clip lead assembly used as part of a battery-operated product shall be suited for the intended application and shall be a minimum 26 AWG (0.21 mm²) stranded wire size with a minimum 0.4 mm (1/64 in) insulation.

14.12.2 Primary batteries

- 14.12.2.1 A primary battery used to power a notification appliance shall meet the requirements of this section as well as the requirements for <u>42.1</u>, Primary Battery Compatibility Tests, and <u>42.3</u>, Battery Capacity test.
- 14.12.2.2 Lithium batteries used as the primary source shall be protected from being charged and comply with the requirements in CSA C22.2 No. 60086-4, UL 60086-4, or UL 1642.

14.12.3 Secondary batteries used as standby power source

- 14.12.3.1 Non-rechargeable batteries shall be protected from being charged.
- 14.12.3.2 A rechargeable secondary battery used as standby power source for a notification appliance shall meet the requirements in this section as well as the requirement in Compatibility of rechargeable batteries used as a standby power source, <u>42.4</u>.
- 14.12.3.3 A rechargeable secondary battery shall be sealed or vented so that it does not adversely affect any part of the product.
- 14.12.3.4 The maximum charge rate as well as the maximum trickle charging current of a rechargeable secondary battery shall be limited so that it does not exceed the battery manufacturer's recommended rates.
- 14.12.3.5 The rechargeable secondary battery shall be protected against excessive loading or charging current by a fuse or other overcurrent protective device.
- 14.12.3.6 The mounting arrangement for the batteries shall:
 - a) Permit access to the batteries for testing and maintenance;
 - b) Be provided with an integral meter; or
 - c) Be provided with readily accessible terminals to facilitate the connection of meters for determining battery voltage.
- 14.12.3.7 A notification appliance with a rechargeable secondary battery shall automatically test the condition of the battery at least once every 24 h. The test shall be conducted under a load sufficient to determine if the battery requires service or has been removed or disconnected. A battery requiring service is defined as a battery which is not capable of providing 5 min of alarm signaling at the level required to meet <u>42.4.4</u>. A notification appliance with a battery requiring servicing or replacement shall send a trouble signal.

14.12.4 Rechargeable lithium-ion batteries

- 14.12.4.1 In addition to the requirements in $\underline{14.12.3.1} \underline{14.12.3.7}$, rechargeable lithium-ion batteries and battery packs shall also comply with the requirements for secondary lithium-ion batteries specified in the standards shown below:
 - a) UL 1642;

- b) UL 2054;
- c) UL 60086-4;
- d) CSA C22.2 No. 60086-4.
- 14.12.4.2 A lithium-ion battery pack intended for installation and replacement by other than trained qualified personnel shall employ a rigid mechanical enclosure that complies with the enclosure construction and test requirements of UL 2054.
- 14.12.4.3 Lithium-ion batteries shall be specified only for installation and replacement by trained qualified personnel. Lithium-ion batteries shall not be accessible to the user.
- 14.12.4.4 Compatibility between lithium-ion batteries or battery packs, and the equipment including the charging system(s), shall be verified and documented in the manufacturer's published instructions. Verification documentation shall include:
 - a) The battery manufacturer's specifications noted in 14.12.4.5; and
 - b) A failure mode and effects analysis demonstrating that the battery manufacturer's specifications noted in 14.12.4.5 are not exceeded.
- 14.12.4.5 The following specifications from the lithium-ion battery manufacturer shall not be exceeded in the notification appliance:
 - a) Rated charging current, charging voltage and cutoff current, with compliance verified under normal and single fault conditions within the system;
 - b) Rated discharge current/rate and endpoint voltage, with compliance verified under normal and single fault conditions within the system:
 - c) Maximum charging current and charging voltage limit (established as part of the battery abnormal charging test of UL 2054, with compliance verified under fault conditions within the system; and
 - d) The upper and lower ambient temperature ranges for charging and discharging.
- 14.12.4.6 Equipment with a rechargeable lithium-ion battery pack, intended for installation and replacement by other than trained qualified personnel, shall:
 - a) Be designed to prevent misalignment, reverse polarity, damage upon connection, and accessibility of uninsulated parts during use; and
 - b) Provide a battery securement means to prevent inadvertent disconnection or damage during use.
- 14.12.4.7 Lithium-ion batteries required to provide a limited power source shall comply with the limited power test requirements of UL 2054.

15 Spacings

15.1 Spacings between uninsulated live parts, between uninsulated live parts and dead metal parts, and between uninsulated live parts of opposite polarity shall be not less than those indicated in Table 12.1.

- 15.2 The spacings between an uninsulated live part and a wall or cover of a metal enclosure, a fitting for conduit or metal-clad cable, and a metal piece attached to a metal enclosure where deformation of the enclosure is liable to reduce spacings, shall be not less than those indicated in Table 12.1.
- 15.3 The "Through Air" and "Over Surface" spacings at an individual component part are to be judged on the basis of the apparent power (VA) available to the individual component.
- 15.4 The spacing from any component to the enclosure or to other uninsulated dead metal parts excluding the component mounting surface, shall be judged on the basis of the maximum voltage and total VA available to the entire assembly.
- 15.5 Film coated wire is considered an uninsulated live part in determining compliance with spacing requirements but is acceptable as turn-to-turn insulation in coils.
- 15.6 An insulating liner or barrier of vulcanized or impregnated fiber, varnished cloth, mica, phenolic composition, or similar material employed where spacings would otherwise be insufficient, shall be not less than 0.7 mm (0.028 in) in thickness, except that a liner or barrier not less than 0.3 mm (0.012 in) in thickness may be used in conjunction with an air spacing of not less than 50 % of the "Through-Air" spacing required. The liner shall be located so that it will not be subjected to the direct effects of arcing.
- 15.7 Insulating material having a thickness less than that specified in 15.5 may be used if it has equivalent mechanical and electrical properties.
- 15.8 When a short-circuit between uninsulated live parts of the same polarity would prevent the intended signaling operation of the product without simultaneously producing a trouble or abnormal signal, the spacings between such parts shall be at least the minimum applicable value specified for "Other parts" in Table 12.1.

16 Firmware Update (If Provided)

16.1 General

- 16.1.1 A firmware release level shall identify the firmware of a product. A new release level shall be assigned due to any changes in the firmware.
- 16.1.2 Program firmware and code shall not be accessible for unauthorized modification.

16.2 Firmware update

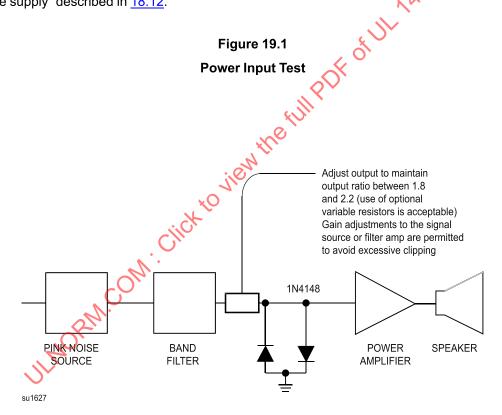
- 16.2.1 Products capable of receiving a firmware update shall provide a means of indicating the current firmware version of the unit.
- 16.2.2 The manufacturer shall provide documentation which details the differences:
 - a) From the original to each subsequent firmware version; and
 - b) Between subsequent versions (if applicable).
- 16.2.3 Firmware updates for notification appliances shall not occur when the battery (primary or secondary) supply associated with the device has been depleted to the trouble point (refer to 42.2, Battery trouble voltage determination).

- 16.2.4 Products capable of receiving a firmware update shall be tested and evaluated for the following type of applicable firmware updates when the alarm device or accessory is subjected to the specified operating conditions:
 - a) Authentic firmware update:
 - 1) Normal standby condition notification appliance shall operate as intended after receiving an authentic firmware update.
 - 2) Alarm condition a firmware update shall not interfere with alarm signaling.
 - 3) Loss of power notification appliance shall comply with <u>16.2.6</u>.
 - 4) Firmware transmission (data) interruption notification appliance shall comply with 16.2.6.
 - b) Duplicate firmware version update:
 - 1) Normal standby condition notification appliance shall operate as intended after receiving a duplicate firmware update.
 - c) Corrupt firmware update:
 - 1) Normal standby condition notification appliance shall comply with <u>16.2.6</u>.
 - d) Unsigned manufacturer firmware update:
 - 1) Normal standby condition notification appliance shall comply with <u>16.2.6</u>.
- 16.2.5 Successful firmware updates shall result in the notification appliance or accessory operating as intended following the update and comply with all applicable requirements as defined within this standard.
- 16.2.6 For products capable of receiving an automatic or user-initiated firmware update, failure to successfully update the firmware shall result in the notification appliance and accessory if provided, reverting to the previous firmware version and the notification appliance and accessory if provided shall operate as originally intended. Failure to update or revert to the previous firmware revision shall result in a trouble signal.
- 16.2.7 For products that are capable of receiving firmware updates, manufacturers shall provide a means for the user to obtain the manual for the updated firmware if any user discernible functionality has changed.
- 16.2.8 When firmware is received from an external source to the notification appliance, that firmware and the compatibility of the firmware shall also be controlled and evaluated to the requirement of this Standard and/or the control unit Standard as it relates to the performance of the notification appliance. Software used for programming a notification appliance's firmware shall be identified and controlled.

PERFORMANCE

17 General

17.1 Unless otherwise specified, the performance of a speaker is to be investigated by subjecting samples of each rating that is representative of production to the tests specified in Performance Tests, Sections $\underline{17} - \underline{42}$, as far as applicable and in the sequence presented. Refer to Annex \underline{D} for illustration of test sequence.

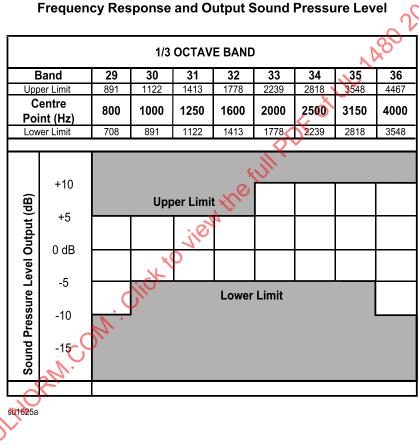

18 Samples

- 18.1 The quantity of samples required for testing is as follows:
 - a) Devices intended for indoor-use only: 10 samples; and
 - b) Devices intended for outdoor-use: 12 samples.
- 18.2 Additional samples may be required for Section <u>37</u>, Tests on Polymeric (Plastic) Materials, or Section <u>28</u>, Abnormal Operation and Burnout Test.
- 18.3 Additional samples of speakers utilizing encapsulated or sealed assemblies will be required. These additional samples shall be submitted without being encapsulated or sealed.
- 18.4 Additional samples of speakers utilizing multiple voltage inputs, may be required for testing.
- 18.5 To reduce the number of samples required, the same samples may be used for multiple tests, other than as indicated in the test sequences shown in Annex \underline{D} , when agreed upon between the testing organization and the manufacturer before testing starts. Reducing the number of samples may increase the length of time for an investigation.
- 18.6 If a product must be mounted in a specified position in order to function as intended, it is to be tested in that position.
- 18.7 For multiple input voltage speakers each input voltage shall be tested.
- 18.8 The input circuit of an speaker assembly is considered to be the terminals or the field wiring leads that get connected to the control unit.
- 18.9 The following information is required for a speaker that employs electronic components:
 - a) Vendor's rating for each component;
 - b) Maximum operating values for each component; and
 - c) General description of the circuit operation.
- 18.10 A speaker not specifically marked for tone reproduction shall be tested to the requirements for voice reproduction. The minimum rated frequency bandwidth for a speaker for voice reproduction shall be between 1/3 octave bands 29 to 36 (inclusive) whose center frequencies are 800 4000 Hz. When a manufacturer specifies a bandwidth greater than 1/3 octave bands 29 to 36 (800 4000 Hz), tests shall be conducted at the bandwidth specified by the manufacturer.
- 18.11 The "rated frequency bandwidth" is that frequency range of a speaker which meets or exceeds the minimum requirements in Section <u>20</u>, Frequency Response and Output Sound Pressure Level.
- 18.12 The "pink noise" supply to speakers specified in Section 19, Input Test, Section 20, Frequency Response and Output Sound Pressure level, Section 21, Directional Characteristic, Section 22, Temperature Rise, Section 25, Endurance, Section 26, Variable Ambient Temperature, Section 27, Humidity, 28.3, Speakers with Multiple Input Voltages, Section 30, Jarring, Section 33, Corrosion Tests, and Section 34, Water Spray, shall be a random frequency of uniform spectral density weighted -3 dB/octave. The frequency range of the input signal shall be limited to the frequency bandwidth specified by the manufacturer or 400 4000 Hz, whichever is greater. The slope of the bandpass filter shall be at least 24 dB/octave. The ratio of the peak to RMS signal should be between 1.8 and 2.2 or an average crest

factor of 2. The amplitude of the amplifier is to be adjusted to produce the rated RMS voltage at the speaker terminals.

19 Input Test

- 19.1 The measured electrical input power to each input of a multi-tap speaker shall not exceed 100 % of the manufacturer's rated power of the speaker when powered by pink noise. The rated power of the speaker shall be based on operation over the manufacturer's specified frequency range or 400 4000 Hz, whichever is greater.
- 19.2 In addition to 19.1, the input power to the speaker shall not exceed 130 % of rated power when powered by pink noise over the frequency range of 125 400 Hz. Gain adjustments to the signal source or filter amp are permitted to avoid excessive clipping.
- 19.3 The measurement shall be made with the speaker mounted and located as described in 20.3.3. The speaker then is to be connected as shown in Figure 19.1 to an amplifier whose input is connected to a "pink noise supply" described in 18.12.


19.4 Input power (Watts) is the product of the rated voltage and the true RMS current to the speaker over the frequency specified in 19.1.

20 Frequency Response and Output Sound Pressure Level

20.1 Frequency response

20.1.1 The frequency response of a speaker shall lie between the areas marked "Upper Limit" and "Lower Limit" as shown in <u>Figure 20.1</u> when powered by pink noise as specified in <u>18.12</u>. Excursions beyond these limits that are less than or equal to 1/6 octave in width are acceptable. Sound pressure levels shall be integrated over a minimum 30 s period. In determining acceptability, the zero-decibel reference line may be shifted vertically to determine whether one-third octave response of the speaker will fit between the upper and lower limits.

Figure 20.1

20.1.2 Speakers shall be tested in an environment where there are no reflective surfaces within the frequency region of interest, such as a free field or anechoic chamber and with the measuring microphone on the reference axis 3.05 m (10 ft) from the reference point.

20.2 Output sound pressure level – determination of rating

- 20.2.1 A speaker shall produce a sound pressure output not less than its marked rated sound pressure level for one of the following modes of intended use specified below.
 - a) In Canada only: a speaker shall have a at least one wattage tap with a sound level of not less than 75 dBA at 3.05 m (10 ft). When a device has multiple tone or volume settings, at least one tone or volume setting shall produce a minimum of 75 dBA.
 - b) In the United States only:

- 1) A speaker intended for use in the Public Mode shall have at least one wattage tap with a sound level of not less than 75 dBA at 3.05 m (10 ft). When a device has multiple tone or volume settings, at least one tone or volume setting shall produce a minimum of 75 dBA; and
- 2) A speaker intended for use in the Private Mode shall have at least one wattage tap with a sound level of not less than 45 dBA at 3.05 m (10 ft). When a device has multiple tone or volume settings, at least one tone or volume setting shall produce a minimum of 45 dBA.

The sound level is to be determined from the measured sound power in 20.2.2.

20.2.2 The sound power output of a speaker is to be measured in a reverberant room qualified to the requirements of ASA S12.51/ISO 3741. The sound power in each 1/3-octave band is to be determined using the comparison method. The A-weighting factor is to be added to each 1/3-octave band. The total power is to be determined on the basis of actual power. The total power then is to be converted to an equivalent sound pressure level for a radius of 3.05 m (10 ft) using the following formula:

$$L_{\rm p} = L_{\rm w} - 20\log_{10}R - 0.6$$

in which:

 $L_{\rm p}$ is converted sound pressure level,

L_w is the sound power level measured in the reverberation room

R is the radius for the converted sound pressure level 3.05 m (10 ft)

20.2.3 An additional 6 dB is added to the above sound pressure level to adjust for the sound radiation into quarter space (two reflecting planes).

20.3 Determination of sound reduction

20.3.1 The sound level of speaker shall not be reduced by more than 3 dB after being subjected to the tests listed in Table 20.1.

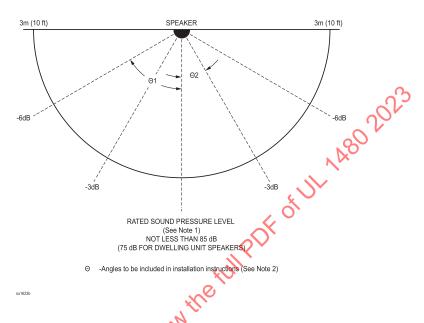
Table 20.1
Tests Requiring Audibility Measurements

Test	Section reference
Endurance	<u>25</u>
Variable Ambient Temperature	<u>26</u>
Humidity	<u>27</u>
Vibration	<u>31</u>
Corrosion	<u>33</u>
Water Spray	<u>34</u>
Polarity Reversal	<u>35</u>
Polymeric Materials Tests (Temperature Test)	<u>37</u>
Mechanical Strength Tests for Enclosures	<u>38</u>
Transient	<u>39</u>
Battery-Powered Units	<u>42</u>

- 20.3.2 The sound pressure level is to be measured at a distance of 0.305 m (1 ft) from a device that is energized from a nominal rated voltage source of supply. Sound pressure level measurements shall be made with a sound level meter or equivalent calibrated measuring system meeting the requirements of IEC 61672-1. The measurement shall be expressed in decibels A-weighted (dBA) referred to 20 μ Pa. The measurement is to be made with the device in a room temperature ambient of not more than 25 °C (77 °F), and then immediately after each of the test conditions listed in Table 20.1.
- 20.3.3 Unless otherwise specified, speakers shall be tested in an environment where there are no reflective surfaces within the frequency region of interest, such as a free field, semi-anechoic or anechoic chamber. The audible signaling device shall be mounted as intended, on a plywood panel 1 m^2 (10-3/4 ft^2) and 19 mm (3/4 in) thick. The center of the speaker shall be approximately centered between the floor and the ceiling of the chamber.
- 20.3.4 It is not prohibited from making the before and after measurements in an apechoic or semi-anechoic room at a distance of 3.05 m (10 ft) on axis or in a reverberation room in accordance with 20.2.2.

20.4 Harmonic distortion

- 20.4.1 The total harmonic distortion plus noise (THD + N) of a speaker intended for voice reproduction shall be 20 % or less over the bandwidth between 708 to 4467 Hz (end frequencies of bands 29 and 36). The speaker shall be driven at rated voltage by a sinusoidal waveform having a THD of less than 0.2 %. Distortion excursions (or spikes) greater than 20 % are permitted when they are less than 1/6 octave in width.
- 20.4.2 The measurement shall be made with the speaker mounted and located as described in 20.3.3. On a single-speaker system where the largest sound source dimension is less than 254 mm (10 in), the measurement microphone is to be located on the reference axis 1000 mm (39 in) from the reference point. On a single speaker system where the largest sound source is 254 mm (10 in) or greater, the measurement microphone is to be located on the reference axis 2 m (7 ft) from the reference point. On multiple-driver speaker systems, the measurement microphone is to be located on a reference axis defined by the manufacturer and 2 m (7 ft) from the reference point.
- 20.4.3 Following the Harmonic Distortion test at rated voltage, the RMS input voltage to the speaker is to be increased to 130 % of the rated voltage, and the harmonic distortion test repeated. The test is to be repeated with the input voltage reduced to 80 % of rated voltage. At each voltage extreme the Harmonic Distortion shall not exceed 20 %. Distortion excursions (or spikes) greater than 20 % are permitted when they are less than 1/6 octave in width.


21 Directional Characteristic

- 21.1 The directional characteristics of an speaker shall be determined by mounting the speaker, as in normal service, to the center of a 1 $\rm m^2$ (10-3/4 $\rm ft^2$) by 19 mm (3/4 in) thick fir plywood sheet and located and oriented as described in 20.3.3. Where multiple mounting arrangements are available, the speaker shall be flush mounted. The effect of sound radiated from the rear shall be eliminated. The speaker shall be driven at rated voltage input. The sound pressure level shall be measured in the forward horizontal and vertical planes of the reference axis.
- 21.2 The sound pressure level of the 1/3 octave spectrum centered at 2000 Hz shall be measured A-weighted in the forward horizontal plane of the reference axis and vertical plane if the speaker output is not concentric.
- 21.3 The directional characteristic shall be identified by the angles at which the sound pressure level decreases by 3 dB and 6 dB from the device's rated output when measured at a radius of 3.05 m (10 ft) in

the forward horizontal and vertical planes of the reference axis. If the 6 dB decrease is realized before 90° from the reference axis, the decrease at 90° shall be recorded. Refer to Figure 21.1.

Figure 21.1

Dispersion Characteristics for Speakers

NOTE 1: Rated sound pressure level as measured in 21.2.

NOTE 2: Reference 48.4(b).

22 Temperature Rise

22.1 The materials and components employed in the construction of a speaker shall not be impaired and shall not attain temperature rises greater than those indicated in <u>Table 22.1</u> under any condition of intended operation.

Table 22.1 Maximum Temperature Rises

Material	Normal standby		Operating (Alarm) condition	
	°C	(°F)	°C	(°F)
A. COMPONENTS				
1. Capacitors ^a	25	(45)	40	(72)
2. Fuses	25	(45)	40	(72)
3. Relays, transformers, and other coils with:				
a) Class 105 insulated windings				
Thermocouple method	65	(117)	65	(117)
Resistance method	75	(135)	75	(135)
b) Class 130 insulated windings				

Table 22.1 Continued on Next Page

Table 22.1 Continued

Material	Normal standby		Operating (Alarm) condition	
	°C	(°F)	°C	(°F)
Thermocouple method	85	(153)	85	(153)
Resistance method	95	(171)	95	(171)
4. Resistors ^b				
a) Carbon	25	(45)	25	(45)
b) Wire wound	50	(90)	325	(585)
5. Sealing compounds	See foo	otnote c	See foo	otnote c
6. Solid-state devices	See footn	ote a or d	See footr	ote a or d
B. INSULATED CONDUCTORS ^e			Or	
Appliance wiring material	than the e	5 °F) less stablished re rating of wire	than the e temperatu	5 °F) less established re rating of wire
2. Flexible cord – Types SJO, SJT	35	/ (63)	35	(63)
C. ELECTRICAL INSULATION – GENERAL	8			
Fiber used as electrical insulation or cord bushings	25	(45)	125	(225)
Phenolic composition used as electrical insulation or as parts where failure will result in a hazardous condition	25	(45)	65	(117)
2. Phenolic composition used as electrical insulation or as parts where failure will result in a hazardous condition 3. Printed wiring boards D. GENERAL 1. Mounting surface 2. Wood or other combustible material 3. Enclosure surfaces: a) Metal b) Plastic c) Glass			use tem rating of	maximum perature f printed- rd material
D. GENERAL				
1. Mounting surface	25	(45)	65	(117)
Wood or other combustible material	25	(45)	65	(117)
3. Enclosure surfaces:				
a) Metal	40	(72)	40	(72)
b) Plastic	60	(108)	60	(108)
c) Glass	50	(90)	50	(90)

^a These components are not required to comply with these temperature limits when they have been evaluated in accordance with the appropriate sections in the Reliability Toolkit: Commercial Practices Edition, published by Reliability Information Analysis Center, US Department of Defense Information Analysis Center.

^b A resistor is not required to comply with these temperature limits if it dissipates not more than one-half of its maximum power rating under the test conditions specified.

[°] Unless a thermosetting material, the maximum sealing compound temperature, when corrected to a 25 °C (77 °F) ambient temperature, is 15 °C (27 °F) less than the softening point of the compound as determined by ASTM E28.

^d The temperature of a solid-state device (for example, transistor, SCR, integrated circuits) shall not exceed 50 % of its rating during the normal standby condition. The temperature of a solid-state device shall not exceed 75 % of its rated temperature under the alarm condition or any other condition of operation that produces the maximum temperature dissipation of its components. For reference purposes, 0 °C (32 °F) is to be considered as 0 %. For integrated circuits, the loading factor shall not exceed 50 % of its rating under the normal standby condition and 75 % under any other condition of operation. Both solid-state devices and integrated circuits may be operated up to the maximum ratings under any one of the following conditions:

a) The component complies with the requirements in US Department of Defense, MIL STD 883E, Test Method Standard – Microcircuits.

b) A quality control program is established by the manufacturer consisting of inspection and test of 100 % of all components, either on an individual basis, as part of a subassembly, or equivalent.

Table 22.1 Continued

Material	Normal standby Operating (Al condition			
	°C	(°F)	°C	(°F)

c) Each assembled production unit is subjected to a burn-in test, under the condition that results in the maximum temperatures, for 24 h while connected to a source of rated voltage and frequency in an ambient of at least 49 °C (120 °F) followed by an operation test for normal signaling performance.

^e For standard insulated conductors other than those mentioned, reference shall be made to the National Electrical Code, NFPA 70, in the United States, or the Canadian Electrical Code, CSA C22.1, in Canada. The maximum allowable temperature rise in any case is 25 °C (45 °F) less than the temperature limit of the wire in question.

- 22.2 For this test the speaker shall be driven until constant temperatures (see <u>22.4</u>) are attained but not less than 1 h by pink noise at rated power input as described in <u>18.12</u>.
- 22.3 Temperature measurements on equipment intended for recessed mounting shall be made with the unit installed in an enclosure of nominal 19 mm (3/4 in) thick wood having clearances of 50 mm (2 in) on the top, sides and rear, and the front extended to be flush with the enclosure cover.
- 22.4 The values for temperature rises in <u>Table 22.1</u> are based on an assumed ambient temperature of not more than 25 °C (77 °F). Temperature is considered to be constant when three successive readings indicate no change when taken at intervals of 10 % of the previously elapsed duration of the test, but not less than at 5 min intervals.
- 22.5 If equipment is intended for use with a prevailing ambient temperature higher than 25 °C (77 °F), the test is to be conducted at the intended higher ambient temperature, and the allowable temperature rises specified in <u>Table 22.1</u> are to be reduced by the amount of the difference between that higher ambient temperature and 25 °C (77 °F).
- 22.6 Thermocouples used for temperature measurement shall consist of wires not larger than 24 AWG (0.21 mm²) and not smaller than 30 AWG (0.06 mm²). Temperature measurement may be by the resistance method or by the thermocouple method as appropriate. When supplementary thermal insulation or wrapping is employed, the temperature measurement point shall be under such material when measurement is by the thermocouple method.
- 22.7 The temperature rise of a coil winding may be determined by the resistance method by comparing the resistance of the winding at the temperature to be determined with the resistance at a known temperature by means of the formula:

$$t = \frac{R}{r}(k + t_1) - (k + t_2)$$

in which:

t = Temperature rise in °C

 t_1 = Room temperature at beginning of test in °C

 t_2 = Room temperature at end of test in °C

R = Resistance at the end of the test in Ω

r = Resistance at the beginning of the test in Ω

k = 234.5 for copper, or 225.0 for electrical conductor grade aluminum

NOTE: As it is usually necessary to de-energize the winding before measuring R, the value of R at shutdown may be determined by taking several resistance measurements at short intervals, beginning as quickly as possible after the instant of shutdown. A curve of the resistance values and the time may be plotted and extrapolated to give the value of R at shutdown.

- 22.8 The circuit of a current regulating resistor or reactor shall be adjusted for the maximum heating effect condition which may occur in service. Current, voltage and power regulating components shall be set for the worst case heating effect service condition.
- 22.9 Speaker voice coils are not required to be subjected to these temperature test requirements. Compliance of the voice coil assembly is determined with Section <u>28</u>, Abnormal Operation and Burnout Test.

23 Dielectric Voltage-Withstand

- 23.1 A product shall withstand for 1 min without breakdown, the application of an essentially sinusoidal AC potential of a frequency within the range of 40 70 Hz, or a DC potential, between live parts and the enclosure, between live parts and exposed dead-metal parts (see Note 1), and between live parts of circuits operating at different potentials or frequencies. The test potential is to be:
 - a) For circuits rated 30 V AC rms (42.4 V DC or AC peak) or less 500 V AC (707 V, when a DC potential is used);
 - b) For circuits rated greater than 30 and equal to or less than 150 V AC rms (42.4 and 212 V DC) 1000 V AC (1414 V, when a DC potential is used); and
 - c) For circuits rated more than 150 V AC rms (212 \vee DC) 1000 V AC plus twice the rated voltage (1414 V plus 2.828 times the rated AC rms voltage, when a DC potential is used). See $\frac{23.3}{23.5}$.
- NOTE 1: Exposed dead-metal parts are non-current-carrying metal parts that are capable of becoming energized and are accessible from outside of the enclosure of a product.
- NOTE 2: A reference or component ground is to be disconnected prior to the test applications.
- 23.2 For the application of a potential between live parts of circuits operating at different potentials or frequencies, the voltage is to be the applicable value specified in 23.1 (a), (b) or (c), based on the highest voltage of the circuits under test. Electrical connections between the circuits are to be disconnected before the test potential is applied.
- 23.3 Where the charging current through a capacitor or capacitor-type filter connected across-the-line, or from line-to-earth ground is sufficient to prevent maintenance of the specified AC test potential, the capacitor or filter is to be tested using a DC test potential in accordance with 23.1.
- 23.4 The test potential shall be obtained from any convenient source having sufficient capacity to maintain the specified voltage. The output voltage of the test apparatus is to be monitored. The method of applying the test voltage is to be such that there are no transient voltages that result in instantaneous voltage being applied to the circuit exceeding 105 % of the peak value of the specified test voltage. The applied potential is to be:
 - a) Increased from 0 at a uniform rate so as to arrive at the specified test potential in approximately 5 s; and then
 - b) Maintained at the test potential for 1 min without an indication of a breakdown or leakage of greater than 0.5 mA. Manual or automatic control of the rate of rise is not prohibited.
- 23.5 A printed-wiring assembly or other electronic circuit component that is capable of short-circuiting (or being damaged by) the test potential, is to be removed, disconnected, or otherwise rendered inoperative

before the test. A representative subassembly is then to be tested instead of an entire unit. Rectifier diodes in the power supply may be individually shunted before the test to avoid destroying them in the case of a malfunction elsewhere in the secondary circuits.

23.6 If an autotransformer is in the circuit, the primary of the transformer is to be disconnected and an AC test potential in accordance with $\underline{23.1}(c)$ is to be applied directly to all wiring involving more than 250 V.

24 Evaluation of Reduced Spacings on Printed-Wiring Boards

- 24.1 In accordance with the Exception of <u>15.1</u>, printed-wiring board traces of different potential having reduced spacings shall comply with:
 - a) The dielectric voltage-withstand test described in 24.2 and 24.3; or
 - b) The shorted trace test described in 24.4 and 24.5.
- 24.2 A printed-wiring board, as specified in <u>24.1(a)</u> shall withstand for 1 min without breakdown the application of a dielectric withstand potential between the traces having reduced spacings, in accordance with Section <u>23</u>, Dielectric Voltage-Withstand, as appropriate.
- 24.3 Power-dissipating component parts, electronic devices, and capacitors connected between traces having reduced spacings, are to be removed or disconnected so that the spacings and insulations, rather than these component parts, are subjected to the full dielectric voltage-withstand test potential.
- 24.4 Printed-wiring board traces, as specified in 24.1(b) are to be short-circuited, one location at a time, and the test is to be conducted as described in 28.1 (Abnormal Operation and Burnout General). As a result of this test:
 - a) The overcurrent protection associated with the branch circuit to the unit shall not open; and
 - b) A wire shall not open.

When the circuit is interrupted by opening of a component, the test is to be repeated twice, using new components when required. When a printed wiring board trace opens, the gap is to be electrically shorted and the test continued until ultimate results occur, and the procedure is to be repeated for each occurrence of a trace opening.

Exception: After opening of an internal overcurrent protective device, the test is not required to be repeated.

- 24.5 The test of 24.4 is to be continued for 1 h or until one of the conditions described below occurs. When, at the end of 1 h, no condition described below has occurred, and it is indicated that such a condition is imminent, the test is to be continued until ultimate results are obtained (usually 7 h).
 - a) Ignition of the cheesecloth; or
 - b) Fuse from the enclosure to ground does opens.
- 24.6 Immediately following each fault described in <u>24.4</u>, within one min of the conclusion of the test, the product shall be subjected to Section <u>23</u>, Dielectric Voltage-Withstand Test.

25 Endurance

25.1 The speaker output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level before the endurance test.

- 25.2 The speaker is to be mounted as described in 20.3.3 and subjected to 30 min of variable-frequency square wave, followed by 1 h of pink noise at 1/16 rated power for a total of 76 cycles. The variable-frequency square wave voltage shall have an rms value equal to the rated voltage of the speaker and the frequency shall be continuously varied from either 800 Hz or the lowest frequency rating of the speaker (whichever is lower) to 2800 Hz, or the highest frequency rating of the speaker (whichever is higher), then returned to the lower value. During this test, the frequency is to be varied from the lower to the higher value 12 times /min. The pink noise shall be as described in 18.12. The pink noise shall be band limited from either 800 Hz, or the lowest frequency rating of the speaker (whichever is lower) to 2800 Hz, or the highest rating of the speaker (whichever is higher).
- 25.3 In lieu of <u>25.2</u>, the speaker shall be continuously operated using pink noise as described in <u>18.12</u> for 24 h at 130 % of the rated input power determined in 19.2.
- 25.4 For the tests described in <u>25.2</u> and <u>25.3</u>, multiple tap speakers and/or multiple voltage speakers shall be tested at the highest power tap for each voltage rating.
- 25.5 Overcurrent protection devices shall remain inactivated as a result of these tests.
- 25.6 Following the endurance tests in <u>25.2</u> or <u>25.3</u>, the speaker shall be allowed to stabilize to room temperature before being subjected to the Output Sound Pressure Level test in <u>25.2</u> or <u>25.3</u>. The speaker output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to endurance testing.

26 Variable Ambient Temperature

26.1 General

- 26.1.1 As a result of the exposure to <u>26.2</u>, Effect of Shipping and Storage Temperature, <u>26.3</u>, High and Low Ambient Temperature, and Section <u>27</u>, Humidity:
 - a) Speakers shall not present a risk of shock;
 - b) The speaker output sound pressure level shall not be reduced more than 3 dB from the sound output pressure level prior to the variable ambient test; and
 - c) A wireless notification appliance shall send and receive alarm and trouble signals while in <u>26.3</u>, High and Low Ambient Temperature, and <u>28.1.6</u>, Humidity. The trouble signal must individually identify the affected device as required in Section 6, Control Unit Interface.

26.2 Effect of shipping/storage temperature

- 26.2.1 The performance of a speaker shall not be adversely affected by exposure to temperatures anticipated during shipping and storage. The exposure shall not result in warping, cracking, discoloration or any other damage that would impair its operation in any way or its suitability for the intended use.
- 26.2.2 A sample, as normally shipped, shall be subjected to a temperature of 70 \pm 5 °C (158 \pm 9 °F) for a period of 24 h, allowed to stabilize to room temperature, subjected to a temperature of -40 \pm 5 °C (-40 \pm 9 °F) for 3 h, and then allowed to stabilize to room temperature.
- 26.2.3 Following the exposures of <u>26.2.2</u>, the speaker shall be examined for damage, and then subjected to the tests in <u>26.3</u>, High and Low Ambient Temperature.

26.3 High and low ambient temperature

26.3.1 Low temperature test

- 26.3.1.1 A speaker shall be operational during and following the exposure to the low temperature test.
- 26.3.1.2 A speaker intended for indoor use in dry locations, is to be placed in a position of intended use in an air circulating environmental chamber and then momentarily energized to verify operation. The environmental chamber shall then be turned on and adjusted to the lower of the following temperatures:
 - a) 0 ±5 °C (32 ±9 °F); or
 - b) The lowest ambient operating temperature specified in the product's installation instructions or on its marking.

During the exposure, the speaker shall not be energized except as noted in between exposures. The exposure time is to be 3 h or longer if required to achieve thermal equilibrium.

- 26.3.1.3 A speaker intended for indoor use in damp locations is to be placed in a position of intended use in an air circulating environmental chamber and then momentarily energized to verify that it is operational before being and subjected to 20 cycles of temperature and humidity cycling. A temperature cycle consists of a change from a temperature of 25 ±5 °C (77 ±9 °F) at a humidity of 95 ±5 % R.H. to the lower temperature indicated in $\frac{26.3.1.2}{1.2}$ for a period of 30 min, and back to a temperature of 25 ±5 °C (77 ±9 °F) at a humidity of 95 ±5 % R.H. The rate of change is to be 2 ±1 °C (3.6 ±1.8 °F) per min. During the exposure the speaker shall not be energized except as noted between exposures.
- 26.3.1.4 A speaker intended for outdoor use in damp or wet locations is to be placed in a position of intended use in an air circulating environmental chamber and then momentarily energized to verify that it is operational before being subjected to 20 cycles of temperature and humidity cycling. A temperature cycle consists of a change from a temperature of 25 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 % R.H. The rate of change is to be 2 \pm 1 °C (3.6 \pm 1.8 °F) per min. During the exposure the speaker shall not be energized, except as noted between exposures.
 - a) -40 ±5 °C (-40 ±9 °F); or
 - b) The lowest ambient operating temperature specified in the product's marking installation instructions or on its marking.
- 26.3.1.5 At the completion of the appropriate low temperature exposure, and while at the low temperature, the environmental chamber is to be de-energized and the speaker momentarily energized to verify that it is operational.
- 26.3.1.6 Following the low temperature exposures, the samples shall be allowed to stabilize to room temperature and then examined for damage before being subjected to the tests in High Temperature, 26.3.2.

26.3.2 High temperature test

- 26.3.2.1 A speaker shall operate as intended during and following exposure to the high temperature test.
- 26.3.2.2 A speaker intended for indoor use in dry locations is to be placed in a position of intended use in an air circulating environmental chamber and momentarily energized to verify that it is operational. The environmental chamber is then turned on and adjusted to maintain the higher of the following temperatures:

- a) 50 ±5 °C (122 ±9 °F); or
- b) The highest ambient operating temperature specified in the product's installation instructions or on its marking.

During the exposure the speaker is not to be energized except as noted in between exposures. The exposure time is to be 3 h or longer if required to achieve thermal equilibrium.

- 26.3.2.3 An speaker intended for indoor use in damp or wet locations is to be placed in a position of intended use in an air circulating environmental chamber and momentarily energized to verify that it is operational before being subjected to 20 cycles of temperature and humidity cycling. A cycle consists of a change from a temperature of 25 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 % R.H. to the higher temperature indicated in 26.3.2.2 for a period of 30 min, and back to a temperature of 25 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 % R.H. The rate of change is to be 2 \pm 1 °C (3.6 \pm 1.8 °F) per min. During exposure the speaker is not energized except as noted between exposures.
- 26.3.2.4 An speaker intended for outdoor use in damp or wet locations is to be placed in a position of intended use in an air circulating environmental chamber and momentarily energized to verify that it is operational before being subjected to 20 cycles of temperature and humidity cycling. A cycle consists of a change from a temperature of 25 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 % R.H. to the higher temperature indicated below for a period of 30 min, and back to a temperature of 25 \pm 5 °C (77 \pm 9 °F) at a humidity of 95 \pm 5 % R.H. The rate of change is to be 2 \pm 1 °C (3.6 \pm 1.8 °F) per min. During exposure the signaling device is not energized except as noted between exposures.
 - a) 66 ±5 °C (151 ±9 °F), 95 ±5 % R.H.; or
 - b) The highest ambient operating temperature specified in the products marking installation instructions or on its marking.
- 26.3.2.5 At the completion of the appropriate high temperature exposure, while at the high temperature, the environmental chamber is to be de-energized and the signaling device is to be momentarily energized to verify that it is operational.
- 26.3.2.6 Following the high temperature exposures the samples shall be allowed to stabilize to room temperature before being examined for damage and then subjected to the tests in Section 27, Humidity.

27 Humidity Test

- 27.1 Following the exposures in Section <u>26</u>, Variable Ambient Temperature, a speaker shall operate as intended during and following exposure to high humidity without risk of fire or electric shock.
- 27.2 A speaker intended for indoor use in dry locations only is to be to be placed in a position of intended use in an air circulating environmental chamber and momentarily energized to verify that it is operational before being subjected to a relative humidity of 93 ±2 % and a temperature of 32 ±2 °C (90 ±4 °F) for a period of 24 h. During the exposure the signaling is not energized except as noted between exposures.
- 27.3 A speaker intended for indoor or outdoor use in damp or wet locations is to be placed in a position of intended use in an air circulating environment chamber and momentarily energized to verity that it is operational before being subjected to a relative humidity of 95 \pm 5 % and a temperature of 60 \pm 5 °C (140 \pm 9 °F) and maintained for 240 h. During the exposure the signaling devices is not energized except as noted between exposures.
- 27.4 At the completion of the humidity exposure, the environmental chamber is to be de-energized and signaling devices is to be momentarily energized to verify that it is operational.

- 27.5 Following the operational check in the humidity environment, the speaker shall be removed from the humidity chamber and within 5 min be subjected to and meet the requirements of Section 23, Dielectric Voltage-Withstand.
- 27.6 Following the dielectric voltage-withstand test, the speaker shall be allowed to stabilize to room ambient conditions for at least 1 h after which the speaker shall be tested per 20.2, Output Sound Pressure Level Test. The speaker's output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to the exposures of 26.3.1 and 26.3.2.

28 Abnormal Operation and Burnout

28.1 General

- 28.1.1 A speaker shall not present a fire hazard or an electrical shock hazard as a consequence of an electrical fault or overload.
- 28.1.2 The devices under test shall be mounted as in normal service and oriented so as to represent the worst case with respect to the emission of glowing particles, flame or molten metal. Five layers of bleached cheesecloth, having an area of 26 to $28 \text{ m}^2/\text{kg}$ (14 15 square yards to the pound) and a count of 32 by 28, are to be located as close as possible below the sample under test.
- 28.1.3 Additionally, all openings of the unit enclosure are to be covered with a single layer of bleached cheesecloth as described in <u>28.1.2</u>.
- 28.1.4 For each of the test conditions described in the following sections, the test voltage is to be applied and maintained until constant device temperature is attained, or burnout, or until a catastrophic failure occurs.
- 28.1.5 When the unit provides for selection of several operating modes, during the tests the unit shall be set for the operation mode that normally would require the maximum current consumption.
- 28.1.6 In the case where a device under test employs field-renewable fuses, for the purpose of this test these fuses are to be replaced with a fuse of the size fitting the fuseholder but having the highest available current rating.

28.2 Components test

- 28.2.1 Components within a speaker assembly shall withstand shorting of the voice coil without evidence of flame or molten metal. During and following this test, there shall be no ignition of the cheesecloth. Following this test, and within one min after the abnormal fault has been removed, the speaker shall comply with requirements in Section 23, Dielectric Voltage-Withstand Test.
- 28.2.2 During this test, the input to the speaker assembly shall be connected as shown in Figure 19.1. The pink noise source is to be bandpass filtered as specified by the manufacturer or between 400 4000 Hz, whichever is greater, at 24 decibels per octave with Butterworth filter response characteristics, and having a peak to RMS voltage ratio between 1.8 2.2. The RMS voltage to the speaker assembly is to be increased to 130 % of the rated voltage value. The speaker is to be covered with a single layer of cheesecloth and then operated continuously with the voice coil shorted until constant temperatures are attained or until burnout occurs. Circuit-protection devices are permitted to operate during this test.
- 28.2.3 During this test, when any component exceeds its temperature rating (see <u>Table 22.1</u>), the short across the speaker voice coil is to be removed and the AC Abnormal Operation Test contained in Recommended Loudspeaker Safety Practices, CTA-CEB19, is to be conducted. During and following the AC Abnormal Operation Test, there shall be no ignition of the cheesecloth.

28.2.4 Compliance of the speaker transducer shall be determined with the DC Overload Abnormal Test requirements in CTA-CEB 19. There shall be no ignition of the cheesecloth.

28.3 Speakers with multiple input voltages

- 28.3.1 Speakers with multiple input voltages shall withstand the misapplication of a higher voltage on a lower voltage tap without risk of fire or shock.
- 28.3.2 To determine compliance with $\underline{28.3.1}$, the speaker is to be mounted as described in $\underline{28.1.2}$ $\underline{28.1.5}$. For each input voltage, the highest voltage rating shall be applied to each of the other lower voltage taps. The signal applied shall be band limited pink noise as described in $\underline{18.12}$. When supplied with multiple output wattage taps, the maximum wattage tap shall be selected.

28.4 Compliance

- 28.4.1 The speaker shall be considered in compliance with the tests described in this section when the following requirements are met:
 - a) No emission of flame or molten metal shall result from the ignition of the cheesecloth;
 - b) The maximum external enclosure temperature shall not exceed 90 °C (194 °F);
 - c) No exposure of energized uninsulated parts at potential above 30 V after the input to the speaker has been reduced to rated voltage; and
 - d) The requirements of Section 23, Dielectric Voltage-Withstand.

29 Component Stress

- 29.1 The stress level of a component shall not exceed 90 % of its rated voltage. The voltage drop developed across each component is to be measured, and the stress level is to be obtained by dividing measured voltage by the rated voltage of the component.
- 29.2 If the stress level of the component exceeds 90 % of its rated voltage, the component shall be examined to determine whether open-circuit or short-circuit conditions introduce a risk of fire or electric shock.
- 29.3 To determine compliance with <u>29.2</u> the product is to be conditioned as follows:
 - a) Energized from maximum rated voltage;
 - b) Any interchangeable fuse replaced with a fuse of the highest available current rating which fits the fuseholder;
 - c) The appliance covered with a single layer of bleached cheesecloth fabricated at $26 28 \text{ m}^2/\text{kg}$ (14 15 sq yd/lb) and having a thread count of 32 by 28, loosely draped over the product; and
 - d) The enclosure, when of metal, connected to ground through a fuse rated to correspond to the input rating of the appliance.

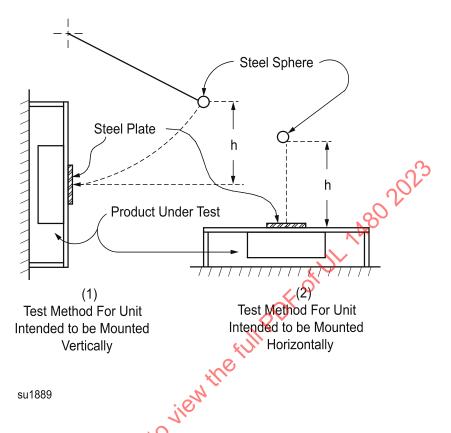
First, an open, and then a short-circuit, are to be individually applied to the component. Each fault condition is to be maintained until ultimate conditions are reached as determined by constant temperatures or burnout.

29.4 A product complies with 29.2 if, immediately following the test:

- a) There is no burning of the cheesecloth;
- b) The fuse from the enclosure to ground does not open;
- c) The speaker complies with Section 23, Dielectric Voltage-Withstand Test.
- 29.5 The supervisory component of a speaker intended for fire alarm or emergency warning systems (such as a DC blocking capacitor or solid-state device) capable of being affected by aging, shall operate as intended following the test described in 29.6 below.
- 29.6 The combination supervisory component/speaker assembly is to be connected to the rated supervisory voltage and frequency as specified by the manufacturer, and placed in a circulating air oven adjusted to 77 °C (170 °F) for 7 days. Upon completion of the exposure, the samples shall be subjected to the output sound pressure level test specified in 20.2, and shall not be reduced more than 3 dB from the output sound pressure level before testing.

Exception: Supervisory Components rated for temperatures equal to or higher than 77 °C (170 °F) are not required to be subjected to the tests above.

30 Jarring


- 30.1 A speaker shall withstand jarring resulting from impact anticipated in the intended application without dislodgement of any parts, including covers or grills, and without impairing its subsequent intended operation. The device shall be mounted in the position of intended use. A speaker intended for wall or ceiling mounting shall be tested in the wall-mounted position.
- 30.2 One impact is to be applied with the speaker de-energized and one impact is to be applied with the device driven at rated voltage. The impacts shall not result in:
 - a) Unintended operation;
 - b) Inhibition of intended operation; and
 - c) Damage that exposes high-voltage un-insulated current carrying parts.

NOTE: Falling off of the sample's cover shall be permitted only when parts operating at a potential greater than 30 Vac or 42.4 Vdc are not exposed, operation is not affected, and the cover can be replaced as intended.

- 30.3 The speaker shall be mounted in the position of intended use to the center of a 1800 mm by 1200 mm (72 in by 48 in), 19 mm (3/4 in) thick plywood board which is secured in place at the four corners. See Figure 30.1. A 105 mm (4 in) square steel plate, 3.2 mm (1/8 in) thick, shall be rigidly secured to the center of the reverse side of the board. A 4.08 J impact is to be applied to the center of the steel plate by means of a 540 g (19 oz), 50 mm (2 in) diameter steel sphere which is either:
 - a) Swung through a pendulum arc from a height (h) of 775 mm (30.5 in) in order to apply 4.08 J (3 ft-lb) of energy; or
 - b) Dropped from a height (h) of 775 mm (30.5 in) to apply 4.08 J (3 ft-lb) energy depending upon the mounting of the equipment.

Figure 30.1

Jarring Test

30.4 Following the jarring, the speaker shall be examined for dislodgement of parts and then subjected to Section 31, Vibration Test.

31 Vibration

- 31.1 A speaker shall withstand vibration without breakage or damage to parts, and without development of any condition, which would impair its intended operation.
- 31.2 The sample used in the jarring test, in the de-energized state, shall be mounted as in normal service to a 19 mm (3/4 in) thick fir plywood sheet, 460 mm by 460 mm (18.1 by 18.1 in), which, in turn, shall be securely fastened to a variable speed vibration machine having an amplitude of 0.25 mm (0.009 in). A speaker intended for wall or ceiling mounting shall be tested in the wall-mounted position. The frequency of vibration shall be varied from 10 Hz to 35 Hz until resonance is obtained. The sample shall then be vibrated at the resonant frequency for 15 min. If no resonance is obtained, the sample shall be vibrated at 35 Hz for 4 h.
- 31.3 For these tests, amplitude is defined as the maximum displacement for sinusoidal motion from a position of rest, or 50 % of the total table displacement. Resonant frequency is defined as the maximum magnification of the applied vibration.
- 31.4 Following vibration, the sample shall be examined for dislodgment of parts and shall comply with the following without replacement of parts:
 - a) The speaker sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to the test in 31.2; and

b) Dielectric withstand test in accordance with Section 23, Dielectric Voltage-Withstand.

32 Strain Relief

- 32.1 Each lead used for field connections or an internal lead subjected to movement or handling during installation and servicing shall be capable of withstanding for 1 min. a pull of 44.5 N (10 lb-f) without any evidence of damage or of transmitting the stress to internal connections.
- 32.2 A cord provided for field wiring shall withstand for 1 min a 156 N (35 lb-f) without any evidence of damage, or transmittal of the stress, to internal connections.
- 32.3 The cord shall also be provided with means to prevent the cord from being pushed inside the enclosure if, when pushed inside, the following is capable of occurring:
 - a) The insulation of the cord being subjected to temperatures or voltages above the assigned ratings;
 - b) The cord coming into contact with sharp or moving parts capable of damaging the insulation of the cord or affecting the performance of a fire or emergency warning speaker; or
 - c) The cord displacing a part, resulting in a reduction of spacing.
- 32.4 To determine compliance with 32.3, the supply cord or lead is to be held 25.4 mm (1 in) from the point where the cord or lead emerges from the product and then pushed back into the product. When a removable bushing which extends further than 25.4 mm (1 in) is present, it is to be removed prior to the test. When the bushing is an integral part of the cord, the test is to be carried out by holding the bushing. The cord or lead is to be pushed back into the product in 25.4 mm (1 in) increments until the cord buckles or the force to push the cord into the product exceeds 26.7 N (6 lb-f).

33 Corrosion Tests

33.1 General

- 33.1.1 The performance of a speaker shall not be adversely affected following exposure to the tests specified in 33.2, Hydrogen Sulphide, and 33.3, Sulphur Dioxide Carbon Dioxide, or 33.5, Alternative Indoor Corrosion Test (21 day). Speakers intended for outdoor-use shall also not be adversely affected following exposure to the test specified in Salt Spray, 33.4.
- 33.1.2 Four as-received samples are to be tested for indoor-use and six as-received samples are to be tested for outdoor-use. Two samples are to be subjected to the corrosion conditions specified in Hydrogen Sulphide, 33.2, and the other two samples are to be subjected to the conditions specified in Sulphur Dioxide Carbon Dioxide, 33.3. Two speakers intended for outdoor-use shall also be subjected to a salt spray specified in Salt Spray, 33.4. The exposures shall be with the sample in the de-energized state.
- 33.1.3 Following exposure to the environment, the sample shall be allowed to stabilize to room conditions and then shall comply with the following:
 - a) Section 23, Dielectric Voltage-Withstand;
 - b) The speaker output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to the exposure of 33.1.1; and
 - c) A wireless notification appliance shall not be reduced in performance when tested in accordance with 50.3 (wireless systems) following each exposure.

33.2 Hydrogen sulphide

- 33.2.1 The test samples are to be supported vertically for 10 d in a closed chamber having openings for gas inlet and outlet. The chamber is to be maintained at room temperature during the test.
- 33.2.2 For an indoor-use speaker, two samples are to be exposed to a moist hydrogen sulphide-air mixture in a closed glass chamber as described in 33.2.1. The hydrogen sulphide is to be supplied to the test chamber from a commercial cylinder containing this gas under pressure. On the first through fourth, and seventh through tenth days, an amount of hydrogen sulphide equivalent to 0.1 % of the volume of the chamber is to be introduced into the chamber from a commercial gas cylinder, and the volume required is to be measured with a flow meter and stopwatch. Prior to each introduction of gas, the remaining gas-air mixture from the previous day is to be thoroughly purged from the chamber. On the fifth and sixth day of the exposure, the chamber is to remain closed and no purging or introduction of gas is to be conducted. During the exposure, the gas-air mixture is to be gently stirred by means of a small motor-driven fan located in the upper-middle portion of the chamber. A small amount of water (10ml/0.003 m³ of chamber volume) is to be maintained at the bottom of the chamber for humidity.
- 33.2.3 For an outdoor-use speaker, two samples are to be exposed to a moist hydrogen sulphide-air mixture in a closed glass chamber as described in 33.2.1. The hydrogen sulphide is to be supplied to the test chamber from a commercial cylinder containing this gas under pressure. On the first through fourth, and seventh through tenth days, an amount of hydrogen sulphide equivalent to 1.0 % of the volume of the chamber is to be introduced into the chamber from a commercial gas cylinder, and the volume required is to be measured with a flow meter and stopwatch. Prior to each introduction of gas, the remaining gas-air mixture from the previous day is to be thoroughly purged from the chamber. On the fifth and sixth day of the exposure, the chamber is to remain closed and no purging or introduction of gas is to be conducted. During the exposure, the gas-air mixture is to be gently stirred by means of a small motor-driven fan located in the upper-middle portion of the chamber. A small amount of water (10ml/0.003 m³ of chamber volume) to be maintained at the bottom of the chamber for humidity.

33.3 Sulphur dioxide – carbon dioxide

- 33.3.1 The test samples are to be supported vertically for 10 d in a closed chamber having openings for gas inlet and outlet. The chamber is to be maintained at room temperature during the test.
- 33.3.2 For an indoor-use speaker, two samples are to be exposed to a moist carbon dioxide-sulphur dioxide-air mixture in a closed glass chamber as described in 33.3.1. The sulphur dioxide and carbon dioxide are to be supplied to the test chamber from commercial cylinders containing these gases under pressure. On the first through fourth, and seventh through tenth days, an amount of carbon dioxide equivalent to 1.0 % of the volume of the chamber, plus an amount of sulphur dioxide equivalent to 0.5 % of the volume of the chamber, is to be introduced. On the fifth and sixth day of the exposure period, the chamber is to remain closed and no purging or introduction of gas is to be conducted. A small amount of water (10 ml/0.003 m³ of chamber volume) is to be maintained at the bottom of the chamber for humidity.
- 33.3.3 For an outdoor-use speaker, two samples are to be exposed to a moist carbon dioxide-sulphur dioxide-air mixture in a closed glass chamber as described in 33.3.1. The sulphur dioxide and carbon dioxide are to be supplied to the test chamber from commercial cylinders containing these gases under pressure. On the first through fourth, and seventh through tenth days, an amount of carbon dioxide equivalent to 1.0 % of the volume of the chamber, plus an amount of sulphur dioxide equivalent to 1.0 % of the volume of the chamber, is to be introduced. On the fifth and sixth day of the exposure period, the chamber is to remain closed and no purging or introduction of gas is to be conducted. A small amount of water (10 ml/0.003 m³ of chamber volume) is to be maintained at the bottom of the chamber for humidity.

33.4 Salt spray

33.4.1 For an outdoor-use speaker, each sample is to be subjected to salt-spray (fog) for 240 h in accordance with ASTM B117, except that the salt solution is to consist of 5 % by weight of common salt (sodium chloride) and distilled water. The pH of the collected solution is to be between 6.7 - 7.2, with a specific gravity between 1.0255 and 1.0400 at 25 °C (77 °F).

33.5 Alternative indoor corrosion test (21-day)

- 33.5.1 The 21-day corrosion test outlined in 33.5.2 33.5.4 may be conducted in lieu of the Corrosion Test in 33.2 and 33.3.
- 33.5.2 Two samples are to be placed in a 200 L or larger test chamber on a platform approximately 50.8 mm (2 in) above the bottom of the chamber. The temperature in the chamber shall be maintained at 30 ± 2 °C (86 ± 3 °F) and the relative humidity at 70 ± 2 % (measured directly in the chamber). The temperature and humidity are to be checked daily. Because of the corrosive atmosphere a set of wet and dry bulb thermometers shall be used for measurement of relative humidity.
- 33.5.3 The following gas mixture in air is to be supplied to the chamber at a rate sufficient to achieve an air exchange in the chamber of about five times/h, for a period of 3 weeks: 100 ± 10 parts per billion (ppb) (parts per billion = parts per 109 by volume) hydrogen sulfide (H₂S) plus 20 ±5 ppb chlorine (Cl₂) plus 200 ±50 ppb nitrogen dioxide (NO₂). The air inside the chamber is to be circulated by a single fan, with flow upwards from the bottom.
- 33.5.4 Following exposure to the environment, the sample shall be allowed to stabilize to room conditions and then shall comply with 33.1.3.

34 Water Spray

- 34.1 A speaker intended for outdoor-use or use in a wet environment shall operate as intended and shall be free from shock exposure during and after exposure to water spray for 1 h. An outdoor-use speaker intended for mounting in such a manner and location that it would not be exposed to rain or water seepage, need not be subjected to this test providing the speaker is appropriately marked and the exception detailed in the manufacturer's published instructions.
- 34.2 An enclosure constructed from a polymeric material shall be conditioned for 7 h at 70 °C (158 °F) before the application of water spray.
- 34.3 An A-weighted sound output shall be conducted, following conditioning (if applicable), prior to the application of water spray. The measurement shall be conducted in a sound room or other controlled environment.
- 34.4 The speaker shall be mounted in accordance with the manufacturer's published instructions to simulate an installation as in normal service and shall be complete with external wiring and conduit connection. The orientation of the assembly shall be one permitted by the manufacturer's published instructions which would most likely result in the entrance of water into the enclosure or affect the operation of the speaker.
- 34.5 The water test apparatus is to consist of three spray heads mounted in a water supply rack as shown in <u>Figure 34.1</u>. Spray heads are to be constructed in accordance with <u>Figure 34.2</u>. The water pressure for all tests is to be maintained at 35 kPa at each spray head. The distance between the center nozzle and the speaker is to be approximately 1 m. The speaker is to be brought into the focal area of the three spray heads in such position and under such conditions that the greatest quantity of water will enter the speaker enclosure or other parts of the assembly where the presence of water would impair the

speaker operation. The spray is to be directed at an angle of 45° to the vertical toward openings closest to live and operational parts.

Figure 34.1
Water Spray-Head Piping

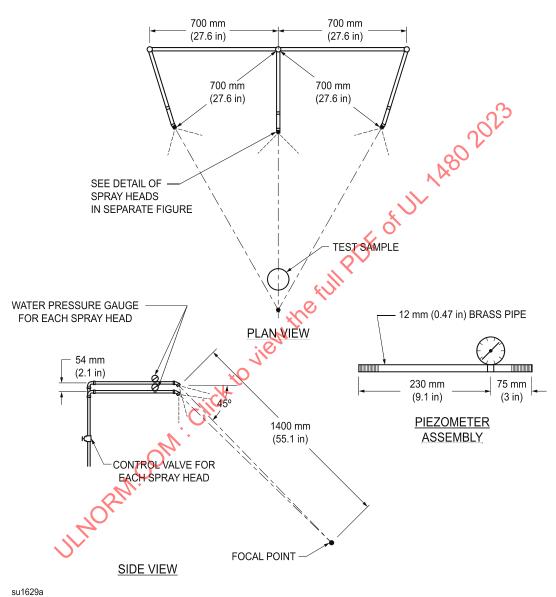
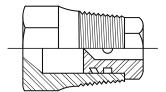
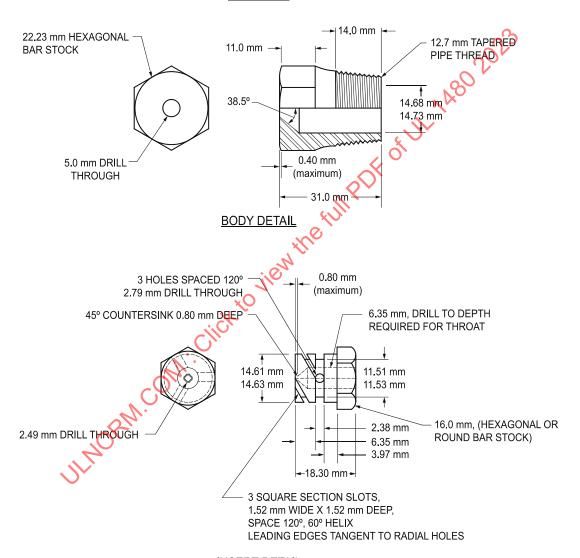




Figure 34.2 Water Spray Head

ASSEMBLY

INSERT DETAIL

su1628

mm	(in)	mm	(in)	mm	(in)	mm	(in)
152	(6)	31	(1.22)	22.23	(0.87)	16	(0.63)
14.73	(0.580)	14.68	(0.578)	14.63	(0.576)	14.61	(0.575)
14	(9/16)	11.53	(0.454)	11.51	(0.453)	11	(7/16)
6.35	(1/4)	5	(0.20)	3.97	(5/32)	2.79	(0.11)
2.49	(0.098)	2.38	(3/32)	0.80	(1/32)	0.40	(0.015)

- 34.6 The test set-up shall be arranged so that the speaker shall be driven at maximum input power before the application of the water spray.
- 34.7 The speaker shall be driven at maximum input power for 5 min immediately before the water spray application.
- 34.8 The speaker shall be subjected for 1 h of water spray. The speaker shall not be powered during the test.
- 34.9 The speaker shall be removed from test set-up and subjected to a dielectric voltage-withstand test in accordance with Section 23, Dielectric Voltage-Withstand, within 5 min following the water spray application.
- 34.10 Immediately following the Dielectric Voltage-Withstand the speaker shall be driven at the maximum input power for 5 min, and then the A-weighted sound pressure level shall be measured in accordance with 34.3.
- 34.11 The speaker shall be considered in compliance with this test when the following requirements are met:
 - a) The device output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to the water spray application;
 - b) No dielectric breakdown as tested per 34.9; and
 - c) There shall be no signs of water in the enclosure capable of wetting uninsulated electrical components.

35 Polarity Reversal

- 35.1 A speaker with a circuit intended to be connected in a specific polarity, such as a battery, shall operate as intended after being connected to each polarity of the supply source at the voltage indicated. The reversed polarity is to be applied for at least 1 h, and then the signal silence mechanism is to be connected to a source of supply having the correct polarity.
- 35.2 The test shall not:
 - a) Cause unintended operation;
 - b) Inhibit intended operation;
 - c) Damage any part; and
 - d) Adversely affect subsequent normal operation.
- 35.3 Before and at the end of the test, the speaker is to be subjected to the output sound pressure level requirements in <u>20.2</u>.

36 Electric Shock Current

36.1 Any part that is exposed only during operator servicing shall not present a risk of electric shock. A shock hazard from contact with a live part is considered to exist if the open circuit potential of the part to earth ground or any other exposed accessible part exceeds 42.4 V (peak) and the available current or stored energy exceeds the values specified in 36.2, 36.3 and 36.5.

36.2 The continuous current flow through a 500 Ω resistor connected between the part and earth ground or any other exposed accessible part shall not exceed the values specified in Table 36.1.

Table 36.1

Maximum Acceptable Continuous Current

Frequency	Maximum acceptable current through a 500 Ω resistor
(Hz) ^a	(mA) Peak
0 – 100	7.1
500	9.4
1000	11.0
2000	14.1
3000	17.3
4000	19.6
5000	22.00
6000	25.1
7000 or more	27.5

^a Linear interpolation between adjacent values may be used to determine the maximum acceptable current corresponding to frequencies not shown. The Table applies to repetitive nonsinusoidal or sinusoidal waveforms.

- 36.3 The duration of a transient current flowing through a 500 Ω resistor connected between the part and earth ground or other exposed accessible part shall not exceed the following:
 - a) The value determined by the following equation:

$$T \leq \left(\frac{20\sqrt{2}}{I}\right)^{1.43}$$

where:

I = The peak current in milliamperes; and

T = The interval, in seconds, between the time that the instantaneous value of the current first exceeds 7.1 mA and the time that the current falls below 7.1 mA for the last time; or

b) 809 mA, regardless of duration.

36.4 The interval between occurrences shall be equal to or greater than 60 s if the current is repetitive. Typical calculated values are shown in Table 36.2.

Table 36.2

Maximum Acceptable Transient Current Duration

Maximum peak current (I) through 500-ohm resistor, amperes	Maximum duration (T) of waveform containing excursions greater than 7.1 milliamperes peak
7.1	7.22 s
8.5	5.58
10.0	4.42
12.5	3.21

Table 36.2 Continued

Maximum peak current (I) through 500-ohm resistor, amperes	Maximum duration (T) of waveform containing excursions greater than 7.1 milliamperes peak
15.0	2.48
17.5	1.99
20.0	1.64
22.5	1.39
25.0	1.19
30.0	919 milliseconds
40.0	609
50.0	443
60.0	341
70.0	274
80.0	226
90.0	191
100.0	164
150.0	92
200.0	61
250.0	44
300.0	34
350.0	27
400.0	23
450.0	19
500.0	194 92 61 44 34 27 23 19 16 13 10 8.3
600.0	13
700.0	10
809.0	8.3

36.5 The maximum capacitance between the accessible terminals of the capacitor shall not exceed the values given by the following equations:

$$= \frac{88,400}{E^{1.43} (LnE - 1.26)} for \ 42.4 \le E \le 400$$

or

$$C = 35,288 E^{-1.5364}$$
 for $400 \le E \le 1000$

where:

C = The maximum capacitance of the capacitor in microfarads, and

E = The potential in volts across the capacitor prior to discharge. E is to be measured 5 s after the capacitor terminals are made accessible, such as by the removal or opening of an interlocked cover, or the like.

36.6 Typical calculated values of maximum capacitance are shown in <u>Table 36.3</u>.

Table 36.3 Electric Shock – Stored Energy

Potential in volts, across capacitance prior to discharge	Maximum capacitance in microfarads
1000	0.868
900	1.02
800	1.22
700	1.50
600	1.90
500	2.52
400	3.55
380	3.86
360	4.22
340	4.64
320	5.13
300	5.7x
280	6.40
260	7.24
240	8.27
220	9.56 11.2 13.4 16.3 20.5
200	11.2
180	13.4
160	16.3
140	20.5
120	26.7
100	36.5
90	43.8
80	53.8
120 100 90 80 70	68.0
60	89.4
50	124
45	150
42.4	169

- 36.7 With reference to the requirements of $\underline{36.2}$ and $\underline{36.3}$, the current is to be measured while the resistor is connected between ground and each accessible part individually, and all accessible parts collectively, if the parts are simultaneously accessible. The current also is to be measured while the resistor is connected between one part or group of parts and another part or group of parts, if the parts are simultaneously accessible.
- 36.8 With reference to the requirements of <u>36.7</u>, parts are considered to be simultaneously accessible if they can be contacted by one or both hands of a person at the same time. For the purpose of these requirements, one hand is considered to be able to contact parts simultaneously if the parts are within a 100 by 200 mm (4 by 8 in) rectangle; and two hands of a person are considered to be able to contact parts simultaneously if the parts are not more than 1800 mm (71 in) apart.
- 36.9 Electric shock current refers to all currents, including capacitively coupled currents.
- 36.10 If the speaker has a direct-current rating, measurements are to be made with the audible signaling device connected in turn to each side of a 3-wire, direct current supply circuit.

- 36.11 Current measurements are to be made with any operating control, or adjustable control that is subject to user operation, in all operating positions, and either with or without a plug-in device, separable connector, or similar component in place. These measurements are to be made with controls placed in the position that causes maximum current flow.
- 36.12 Each terminal provided for the connection of an external antenna shall be conductively connected to the supply circuit grounded conductor. The conductive connection shall have a maximum resistance of 5.2 M Ω , a minimum wattage rating of 1/2 W, and shall be effective with the power switch in either the on or off position.

Exception: The conductive connection is not required to be provided if such a connection is established in the event of electrical breakdown of the antenna isolating means, the breakdown does not result in a risk of electric shock and, in a construction employing an isolating power transformer, the resistance of the conductive connection between the supply circuit and chassis does not exceed 5.2 MΩ.

36.13 The maximum value of 5.2 M Ω specified in 36.12 is to include the maximum tolerance of the resistor value used; that is, a resistor rated 4.2 M Ω with 20 % tolerance or a resistor rated 4.7 M Ω with a 10 % tolerance is acceptable. A component comprised of a capacitor with a built-in shunt resistor that complies with the requirements of CSA C22.2 No. 1 or UL 60384, may be rated a minimum of 1/4 W.

37 Tests on Polymeric (Plastic) Materials

37.1 General

- 37.1.1 Polymeric materials used for the sole support of current-carrying parts, or for all or part of an enclosure of a speaker, shall be subjected to the tests in 37.2, Air-Oven Aging (Temperature) and Flame, 37.3 and 37.4. Where possible, a complete speaker shall be used.
- 37.1.2 A speaker molded from polymeric material rated Flammability class 5VA in accordance with:
 - a) In Canada only: CSA C22.2 No 0.17.
 - b) In the United States only: UL 94.

is considered to comply with the requirements of <u>37.3</u> and <u>37.4</u> without the necessity of further tests.

37.2 Air-oven aging test (temperature)

- 37.2.1 There shall not be warping that impairs intended operation; exposes high-voltage uninsulated current carrying parts or affect the enclosures environmental integrity when representative samples of a polymeric material are aged as described in <u>37.2.2</u>.
- 37.2.2 At least three representative samples shall be mounted on supports in an air circulating oven maintained at 90 ± 2 °C (194 °F) for 7 d or at 70 ± 2 °C (158 °F) for 28 d. Following the aging period, the sample shall then be removed from the oven and permitted to cool to room temperature before being examined as described in 9.6.7 for any distortion which exposes high-voltage uninsulated current carrying parts. Falling off of the sample's cover shall be permitted only when parts operating at a potential greater than 30 Vac or 42.4 Vdc are not exposed, operation is not affected, and the cover can be replaced as intended. Gaskets on samples intended for outdoor use shall be visually examined for evidence of deterioration such as cracking, shrinkage, distortion, or similar deterioration to an extent that it affects the integrity of the seal. If visual evidence exists, a sample shall be subjected to Section 34, Water Spray Test following the sound level measurements in 20.2. Where the conditioning process has damaged electronic components, it is permissible to replace them.

37.2.3 The output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to the test above.

37.3 Flame test – 19 mm (3/4 in)

- 37.3.1 When tested in accordance with 37.3.2 37.3.6, a polymeric (plastic) material employed as part of an speaker rated 30 Vac (42.4 V DC or AC peak) or less and used for the sole support of current-carrying parts or as an enclosure shall not flame for more than 1 min after two 30 s applications of a test flame, with an interval of 1 min between applications of the flame. The sample shall not be completely consumed.
- 37.3.2 Three samples of the equipment are to be conditioned by placing them in a forced draft circulating air oven maintained at a uniform temperature not less than 10 °C (18 °F) higher than the maximum temperature of the material measured under normal operating conditions, and not less than 70 °C (158 °F) in any case. The samples are to remain in the oven for 7 days. After cooling to room temperature for a minimum of 4 h, the samples are to be tested as described in 37.3.3 37.3.6.

Exception: Unconditioned test samples may be used when both of the following conditions are met:

- a) The material does not exhibit a reduction in its flame-resistance properties as a result of long-term thermal aging; and
- b) The thermal-aging program used for such determination included specimens having a thickness equal to or less than the wall thickness of the polymeric part.
- 37.3.3 Three samples of the part are to be subjected to the Flame Test described in 37.3.5. In the performance of the test, the equipment is to be supported in its normal operating position in a draft free location. Nonpolymeric portions are not to be removed and insofar as possible, the internal mechanism of the equipment is to be in place. The flame is to be applied to an inside surface of the sample at a location judged as capable of becoming ignited because of its proximity to a source of ignition. Each sample is to be tested with the flame applied to a different location.

Exception: Unconditioned test samples may be used when both of the following conditions are met:

- a) The material does not exhibit a reduction in its flame-resistance properties as a result of long-term thermal aging; and
- b) The thermal aging program used for such determination included specimens having a thickness equal to or less than the wall thickness of the polymeric part.
- 37.3.4 With reference to <u>37.3.3</u>, the sections judged capable of becoming ignited are to be those adjacent to coil windings, splices, open-type switches, or arcing parts.
- 37.3.5 The flame of a Bunsen or Tirrill burner having a tube with a length of 100 ± 10 mm (3.94 ± 0.39 in) and an inside diameter of 9.5 ± 0.3 mm (0.374 ± 0.12 in) is to be adjusted to have a 19 mm (3/4 in) height of yellow flame with no blue cone. Two 30 second applications of the tip of the flame are to be made to each section of the equipment specified as indicated above, with 1 min intervals between the applications. A supply of technical-grade methane gas (minimum 98 % pure) is to be used with a regulator and meter for uniform gas flow.

Exception: Natural gas having a heat content of 37 MJ/m³ (1000 Btu/ft³) at 23 °C (73 °F) has been found to provide similar results and is appropriate for use.

37.3.6 When one sample from a set of three does not comply with <u>37.3.1</u>, an additional set of three samples shall be tested. All samples from the second set shall comply with <u>37.3.1</u>.

37.4 Flame test – 127 mm (5 in)

- 37.4.1 When tested in accordance with 37.4.2 37.4.6, a plastic material employed as part of an speaker rated greater than 30 Vac (42.4 V DC or AC peak) and used for the sole support of current-carrying parts or as an enclosure all of the following results shall be obtained:
 - a) The material shall not continue to burn for more than 1 min after the fifth 5 s application of the test flame, with an interval of 5 s between applications of the flame;
 - b) Flaming drops or flaming or glowing particles that ignite surgical cotton 305 mm (12 in) below the test specimen shall not be emitted by the test sample at any time during the test; and
 - c) The material shall not be destroyed in the area of the test flame to such an extent that the integrity of the part is affected with regard to containment of fire or exposure of high voltage parts.
- 37.4.2 Three samples of the complete equipment or three test specimens of the molded part shall be subjected to this test. Consideration is to be given to leaving in place components and other parts that influence the performance. The test samples are to be conditioned in a full draft circulating air oven for 7 days at 10 °C (18 °F) greater than the maximum use temperature and not less than 70 °C (158 °F) in any case. Prior to testing, the samples are to be conditioned for a minimum of 40 h at 23.0 \pm 2.0 °C (73.4 \pm 3.6 °F) and 50 \pm 5 % relative humidity. The flame is to be applied to an inside surface of the sample at a location judged as capable of becoming ignited because of its proximity to a source of ignition. When more than one part is near a source of ignition, each sample is to be tested with the flame applied to a different location.

Exception: Unconditioned test samples may be used when both of the following conditions are met:

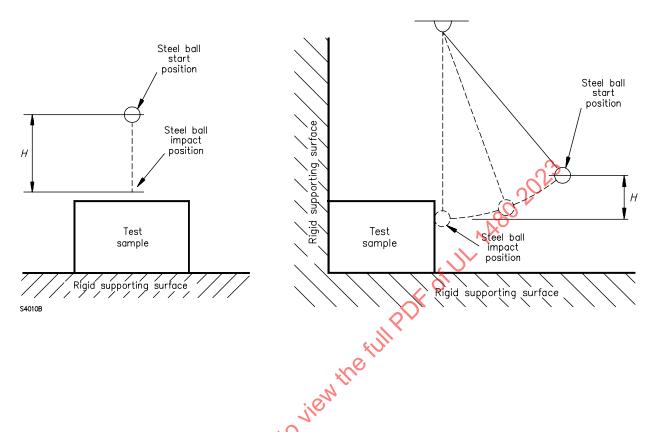
- a) The material does not exhibit a reduction in its flame-resistance properties as a result of long-term thermal aging; and
- b) The thermal-aging program used for such determination included specimens having a thickness equal to or less than the wall thickness of the polymeric part.
- 37.4.3 The three samples shall perform as described in <u>37.4.1</u>. When one sample does not comply, the test is to be repeated on a set of three new samples with the flame applied under the same conditions as for the unsuccessful sample. All the new specimens shall comply with <u>37.4.1</u>.
- 37.4.4 The Bunsen of Tirrill burner with a tube length of 100 \pm 10 mm (3.94 \pm 0.39 in), and an inside diameter of 9.5 \pm 0.3 mm (0.374 \pm 0.12 in), is to be placed remote from the specimen, ignited, and adjusted so that when the burner flame is 127 mm (5 in), the height of the inner blue cone is 38 mm (1-1/2 in). The tube is not to be equipped with end attachments, such as stabilizers.
- 37.4.5 When a complete enclosure is used to conduct the flame test, the sample is to be mounted as intended in service, as long as it does not impair the flame testing, in a draft-free test chamber, enclosure, or laboratory hood. A layer of surgical cotton is to be located 305 mm (12 in) below the point of application of the test flame. The 127 mm (5 in) flame is to be applied to any portion of the interior of the part judged as capable of being ignited (by its proximity to live or arcing parts, coils, wiring, or other possible sources of ignition) at an angle of 20° from the vertical so that the tip of the blue cone touches the specimen. The test flame is to be applied to three different locations on each of the three samples tested. A supply of technical-grade methane gas (minimum 98 % pure) is to be used with a regulator and meter for uniform gas flow.

Exception No. 1: The flame shall be applied to the outside of an enclosure when the equipment is of the encapsulated type, or of a size that prohibits the flame being applied inside.

Exception No. 2: Natural gas having a heat content of 37 MJ/m³ (1000 Btu/ft³) at 23 °C (73 °F) has been found to provide similar results and is appropriate for use.

37.4.6 The flame is to be applied for 5 s and removed for 5 s. The operation is to be repeated until the specimen has been subjected to five applications of the test flame.

37.5 Ultraviolet light and water exposure test


- 37.5.1 The polymeric enclosure of a high-voltage speaker intended for outdoor use shall not show visible signs of deterioration, such as crazing, cracking, or dimensional change after being subjected to the Ultraviolet Light Exposure Test and Water Exposure and Immersion Test in accordance with the following standards:
 - a) In Canada only: CSA C22.2 No. 0.17.
 - b) In the United States only: UL 746C.
- 37.5.2 An outdoor-use speaker molded from polymeric material rated class f1 or f2, in accordance with CSA C22.2 No. 0.17 and UL 746C is considered to comply with the requirements of this section without the necessity of further tests.
- 37.5.3 Samples that show visible signs of deterioration, such as crazing, cracking, or dimensional change shall be subjected to the tests described in Section 34, Water Spray.

38 Mechanical Strength Tests for Enclosures

- 38.1 A speaker enclosure assembly, including a grille and/or exposed horn, as applicable, shall be of sufficient mechanical strength to withstand abuse anticipated in shipping, installation and service.
- 38.2 A sample shall be mounted in accordance with the installation instructions. A push force of 110 N shall be gradually applied and maintained for 1 min by means of a 12.7 mm (1/2 in) diameter steel hemisphere to the external surface most likely to impair the operation of the device or create a risk of fire or electric shock.
- 38.3 A sample shall be mounted in accordance with the installation instructions and <u>Figure 38.1</u>. Three impacts of 7 J (5 foot pounds) shall be applied by means of a solid, smooth, steel sphere 50 mm (2 in) in diameter, with a mass of 540 g (1.19 lbs). The sphere shall either be dropped from a sufficient height (usually 1300 mm from the bottom of the ball to the surface to be impacted) or swung through a pendulum arc from a sufficient height to apply an impact force of 7 J of energy to the external surface most likely to impair the operation of the device, or create a risk of fire or electric shock.

Figure 38.1

Mechanical Strength Tests for Enclosures

38.4 When the speaker is intended for indoor use, the impacts specified in $\frac{38.3}{2}$ are to be conducted at room temperature. When the device is intended for outdoor use, the impacts are to be conducted after the units have been conditioned at -40 °C (-40 °F) for 3 h.

Note: For <u>38.2</u> through <u>38.4</u>, unless specified, the same sample may be reused for each of the above applied forces. It is not prohibited to use a different sample for the application of each force in <u>38.2</u> and <u>38.3</u>.

- 38.5 As a result of the tests specified in <u>38.2</u> through <u>38.4</u>, there shall be no exposure of live parts, impairment of the operation of the speaker, or creation of a risk of electric shock.
- 38.6 A bending force created by a 3.0 m (118-7/64 in) minimum length of conduit of the intended size shall be installed:
 - a) In a hub or an opening if provided as part of the enclosure; or
 - b) If a hub or opening is not provided, in the center of the largest unreinforced surface intended for the connection of conduit.
- 38.7 The enclosure shall be securely mounted as intended in service, but positioned so that the installed conduit extends in a horizontal plane. The test shall be terminated once the deflection of the conduit end exceeds 255 mm (10 in). If a weight is necessary to cause the conduit end to deflect, the test shall be terminated once the deflection of the conduit end exceeds 255 mm (10 in) or once a bending moment of 33.9 N-m (300 lb-in) is achieved. The magnitude of the weight shall be determined from the equation:

$$W = \frac{(0.1 \, M - 0.5 \, CL)}{L}$$

in which:

W is the weight to be hung at the end of the conduit;

L is the length of the conduit from the wall of the enclosure to the point at which the weight is suspended;

C is the weight of the conduit; and

M is the bending moment required.

For the SI system of units:

W is measured in kilograms;

L is measured in meters;

C is measured in kilograms; and

M is in Newton-meters.

For the inch-pound system of units:

W is measured in pounds;

L is measured in inches:

C is measured in pounds; and

M is in pound-inches.

ilenthe full PDF of UL 1480 2022 38.8 Following the application of each force, the speaker is to be examined for damage and energized from a source of rated voltage and frequency to check for intended operation. Cracking of the enclosure is permitted if it does not impair intended operation, but is not when a dust- or moisture-tight enclosure is used.

38.9 There shall be no reduction in electrical spacings, no exposure of uninsulated energized parts at potential above 30 Vac (42.4 volts DC or AC peak), and no impairment of performance during and after the application of the forces and impacts of 38.2. The integrity of the conduit termination shall not be reduced as a consequence of the test of 38.2. Falling off of the sample's cover shall be permitted only when circuits operating at greater than 30 Vac (42.4 volts DC or AC peak) are not exposed, operation is not affected, and the cover can be replaced as intended. A dielectric withstand test of the sample shall be conducted in accordance with Section 23, Dielectric Voltage-Withstand. The output sound pressure level shall not be reduced more than 3 dB from the output sound pressure level prior to the test above.

39 Interference from Radio Frequency and Electromagnetic Radiation

39.1 General

- 39.1.1 Prior to the tests specified below, the device is to be subjected to the test specified in Section 20, Frequency Response and Output Sound Pressure Level.
- 39.1.2 Speakers shall not be adversely affected and shall operate as intended after being subjected to the tests specified in:
 - a) 39.2, Extraneous Radio Frequency Transients;

- b) 39.3, Supply-Line Transients;
- c) 39.4, Internally Induced Transients; and
- d) 39.5, Signal-Line Transients.

39.2 Extraneous radio frequency transients

- 39.2.1 Speakers incorporating circuitry for functional interfacing with a control unit for purposes such as supervision, point addressing, multiplexing, etc., shall be capable of withstanding extraneous transients generated by the equipment described in 39.2.2 and 39.2.3 without:
 - a) Causing unintended operation;
 - b) Inhibiting intended operation;
 - c) Damaging any part; or
 - d) Adversely affecting its subsequent normal operation.
- 39.2.2 Two speakers shall be energized from a source of rated voltage and frequency and subjected to transients generated from transmitters located 300 mm (11.8 in) from the speaker. The 300 mm (11.8 in) distance is to be measured from the transmitter antenna to the nearest edge of the speaker under test.
- 39.2.3 Five separate transmitter units shall be energized in turn, each having a 5 W output using random voice messages and operating at the nominal frequencies (±2 %) of 27 MHz, 150 MHz, 450 MHz, 866 MHz, and 910 MHz. A total of six energizations are to be applied from each transmitter, five to consist of 5 s 'on' and 5 s 'off', followed by one consisting of a single 15 s energization. For this test, the transmitter is to be in the same room as the speaker under test. The tests are to be performed with the:
 - a) Antenna tip pointed directly at the speaker; and
 - b) Antenna at right angles to the direction (a) and centered on the signaling device. Refer to Figure 39.1.

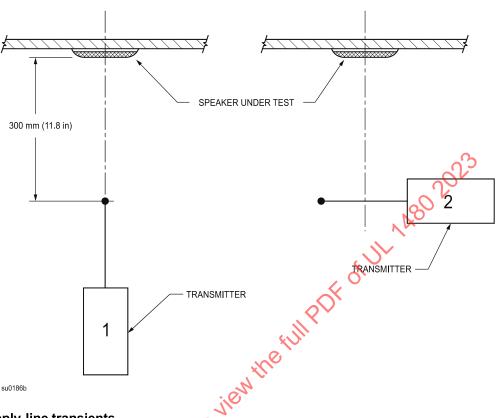


Figure 39.1
Extraneous Radio Frequency Transients

- 39.3 Supply-line transients
- 39.3.1 An ac-operated speaker rated at greater than 30 Vac shall operate as intended after being subjected to transients induced directly into the power supply circuit.
- 39.3.2 For this test, the speaker is to be connected to a transient generator capable of producing the transients described in 39.3 The output impedance of the transient generator is to be 50 Ω .
- 39.3.3 The transients produced are to be oscillatory at 100 kHz and are to have an initial peak voltage of 6000 V. The rise time is to be less than 0.5 µs. Successive peaks of the transient are to decay to a value of not more than 60 % of the value of the preceding peak.
- 39.3.4 The speaker is to be subjected to 500 transient pulses induced at a rate of 6 transients per min. Each transient pulse is to be included 90° into the positive half of the 60 Hz cycle. A total of 250 pulses are to be applied so that the polarity of the transients is positive with reference to earth ground, and the remaining 250 pulses are to be negative with respect to earth ground.

39.4 Internally induced transients

39.4.1 The speaker is to be energized while connected to a rated source of supply, which is to be interrupted for approximately 1 s at a rate of not more than 6 cycles/min for a total of 500 cycles.

39.5 Signal-line transients

- 39.5.1 Speakers rated at less than 30 Vac (42.4 V DC or AC peak) intended to be connected to Signal-line circuits of control units shall operate as intended after being subjected to transients induced into the speaker.
- 39.5.2 For this test, each circuit is to be subjected to five different transient waveforms having peak voltage levels in the range of 100 to 2400 V, as delivered into a 200 Ω load. A transient waveform at 2400 V shall have a pulse rise time of 100 V/ μ s, a pulse duration of approximately 80 μ s, and an energy level of approximately 1.2 J. Other applied transients shall have peak voltages representative of the entire range of 100 to 2400 V, with pulse durations from 80 to 110 μ s, and energy levels not less than 0.3 J or greater than 1.2 J.
- 39.5.3 The speaker is to be subjected to 60 transient pulses induced at the rate of six pulses/min as follows:
 - a) Twenty pulses (two at each transient voltage level specified in 39.5.2) between each circuit lead or terminal and earth ground, consisting of ten pulses of one polarity; and ten of the opposite polarity (total of 40 pulses); and
 - b) Twenty pulses (two at each transient voltage level specified in 39.5.2) between any two circuit leads or terminals consisting of ten pulses of one polarity and ten of the opposite polarity.
- 39.5.4 Following the test in <u>39.5.3</u>, the output sound pressure level shall not be reduced more than 3 dB from the sound output pressure level prior to the test.

40 Evaluation of Conformal Coatings on Printed Wiring Boards

- 40.1 Evaluation of conformal coatings shall be in compliance with UL 746E, and/or CSA C22.2 No. 0.17, and the combination of the conformal coating and the printed wiring board shall be investigated for flammability in accordance with UL 94, and/or CSA C22.2 No. 0.17. The coating shall not be less than 0.2 mm (0.008 in) thick.
- 40.2 Three samples of the printed wiring board without electrical components installed, and coated with the conformal coating, shall be subjected to Section 23, Dielectric Voltage-Withstand.
- 40.3 There shall not be peeling, crazing, chipping, or other visual evidence of deterioration or separation of the coating from the board as a result of the conditioning. There shall be no indication of a dielectric breakdown.

41 Locked Rotor Test

41.1 General

- 41.1.1 This test shall be applied only to those devices having electrical motors. A motor provided with thermal or impedance protection complying with the standards referenced below is considered to comply without the necessity of further tests:
 - a) In Canada only: CSA C22.2 No. 77.
 - b) In the United States only: UL 1004-1, UL 1004-2, or UL 1004-3.
- 41.1.2 The rotor of the motor is to be locked in a stationary position. The motor is to be mounted on wood or other relatively effective thermal insulating material. Blades or other motor attachments are to be

removed from the motor, but integral mounting brackets are to be left in place. The frame of the motor is to be connected to ground by means of a solid conductor (that is, with no fuse in the grounding conductor). A 30 A time-delay fuse is to be connected in each ungrounded conductor of the supply cord.

- 41.1.3 At the conclusion of the first 72 h of the Locked Rotor Test, the motor shall comply with the requirements of Section 23, Dielectric Voltage-Withstand.
- 41.1.4 At the conclusion of the 15 day test, a potential of twice the marked rated voltage of the motor is to be applied between the windings and the frame to determine whether or not the winding has become grounded.
- 41.1.5 During the test, a motor in an appliance having a nominal rating of 115 V is to be connected to a circuit having a voltage of 120 V, and a motor in an appliance having a nominal rating of 230 V is to be connected to a circuit having a voltage of 240 V. A motor having any other voltage rating is to be connected to a circuit having a voltage of 100 105 % of the voltage rating of the motor.
- 41.1.6 To determine if a motor complies with the requirements in this section temperature readings are to be taken as follows:
 - a) For a totally enclosed motor a motor whose outer metal enclosure is complete the temperature is to be measured by means of a thermocouple on the enclosure;
 - b) For any other motor, the temperature is to be measured by means of a thermocouple on the integrally applied insulation of the winding under the coil wrap, if such is present; and
 - c) If the coil is encapsulated, the winding temperature is to be determined by the change-inresistance method.

41.2 Thermal or overcurrent protection

41.2.1 When the rotor of the motor is locked, the maximum temperature on a motor winding shall not exceed the temperature limits specified in Table 41.1.

Table 41.1

Maximum Temperatures Locked Rotor Temperature Test for Motor with Thermal or Overcurrent

Protection

	Motor insulation class													
Protector type	1	Α		E		В		F		Н		N		R
	°C	(°F)	ç	(°F)	ç	(°F)	ŷÇ	(°F)	°C	(°F)	ŷ	(°F)	°C	(°F)
1. Automatically reset:														
a) During 1st hour ⁱ⁾	200	(392)	215	(419)	225	(437)	250	(482)	275	(527)	295	(563)	315	(599)
b) After 1st hour	175	(347)	190	(374)	200	(392)	225	(437)	250	(482)	270	(518)	290	(554)
c) Average ⁱⁱ⁾	150	(302)	165	(302)	175	(347)	200	(392)	225	(437)	248	(473)	265	(509)
2. Manually reset, single operation, Self- holding;	200	(392)	215	(419)	225	(437)	250	(482)	275	(527)	295	(563)	315	(599)
3. Thermal cutoff:														
a) During 1st hour	200	(392)	215	(419)	225	(437)	250	(482)	275	(527)	295	(563)	315	(599)
b) After 1st hour	150	(302)	165	(302)	175	(347)	200	(392)	225	(437)	245	(473)	265	(509)

Table 41.1 Continued on Next Page

Table 41.1 Continued

	Motor insulation class													
Protector type	Α		E		В		F		Н		N		R	
	°C	(°F)	°C	(°F)	°C	(°F)	°C	(°F)	°C	(°F)	°C	(°F)	°C	(°F)

- i) The temperatures are to be recorded for:
- a) The second hour of operation or until the temperatures stabilize, whichever is longer; and
- b) The seventy-second hour of the test.

Stabilized temperatures are obtained when the maximum temperatures readings of three successive cycles are within 2 °C (3.6 °F) of each other and are not showing a successive increase or a successive decrease in temperature.

ii) The average temperature referenced in <u>Table 22.1</u> is to be determined for both the second and seventy-second hour. For each of these periods, the average temperature is to be determined by taking the arithmetic mean of the trip temperature and reset temperature. The temperatures of the hottest thermocouple are to be used.

41.2.2 Temperatures are to be measured by thermocouples on the surface of coils of the motor. The test on a manually reset protective device is to be continued for four operations of the device, with the device being reset as quickly as possible after it has opened. For an automatically reset device, the locked-rotor test is to be continued for 72 h unless the speaker includes another control such as a timer) that will limit the duration of the operation to a shorter interval. During the test, the motor is to be connected to a source of supply as specified in Table 41.2.

Table 41.2
Test Voltages

Voltage designation marked on	Voltage type	Operating limits	Maximum operating current	Test limits	
unit	116	(V)	(A)	(V)	
Regulated ^a 12	DC VO	8 – 17.5	Rated	8 – 17.5	
Regulated ^a 24	.DC	16 – 33	Rated	16 – 33	
12 FWR ^c	FWR ^c	8 – 17.5	Rated	8 – 17.5	
24 FWR ^c	FWR ^c	16 – 33	Rated	16 – 33	
Regulated ^a 120	AC	96 – 132	Rated	96 – 132	
Regulated ^a 240	AC	192 – 264	Rated	192 – 264	
Special application ^b	Any type	Rated	Rated	Rated	

a Regulated performance such that normal operation of the product has been verified to the limits in this table

- 41.2.3 An automatic-reset thermal protector of a motor shall perform as intended when operated for 15 d with the rotor of the motor locked, and with the motor connected to a supply circuit having a voltage of 100 110 % of the rated voltage of the motor. There shall not be any permanent damage to the motor (including excessive deterioration of the insulation). Reset thermal protector that permanently opens the circuit prior to the end of 15 d is not required to be tested for the full 15 d test period.
- 41.2.4 There shall not be any ignition of cotton surrounding the enclosure of a thermal protector of a motor when three samples of the device are subjected to limited short-circuit currents. For a motor rated at 373 W output (0.5 hp), or less, and 250 V or less, the current is to be 200 A. For a motor having other ratings, but not more than 746 W output (1 hp), the current is to be 1000 A. The power factor of the test circuit is to be between 0.9 1.0, and the circuit capacity is to be measured without the device in the circuit. A non-renewable cartridge fuse is to be connected in series with the device under test. The fuse

^b Special application represents a product which does not meet regulated requirements but has been investigated to limits as described in the manufacturer's published instructions or marked on the device.

^c Full wave rectified

rating is to be not less than four times the rated current of the signal appliance except that the fuse rating is not to be less than 20 A for a signaling device rated 150 V or more but not more than 600 V. The test on one sample is to be made by closing the device on the short circuit, and, if the device permanently opens the circuit, it shall do so without grounding to the motor frame, damage to the motor, or resulting in a risk of fire. A manual-reset thermal protector of a motor shall interrupt for 50 operations, without damage to itself, the locked-rotor current of the motor.

Exception: A speaker that includes another control, such as a timer, which will positively and reliably limit the operation to a shorter interval, or an automatic-reset thermal protector that permanently opens the circuit prior to the end of 15 d, is not required to be tested for the full 15 d test period.

41.3 Impedance protection

- 41.3.1 When operated under locked-rotor conditions for 15 days:
 - a) A motor shall not exceed the temperature limits specified in <u>Table 41.3 during</u> the first 72 h of operation;
 - b) The motor winding shall not burn out or become grounded to the frame, nor shall there be any evidence of excessive deterioration of insulation; and
 - c) The supply-circuit fuses shall not open.

Exception: The test is not required to be continued longer than necessary for the windings of the motor (of either the open or totally enclosed type) to reach constant temperature, if this constant temperature is not more than 100 °C (212 °F).

Table 41.3

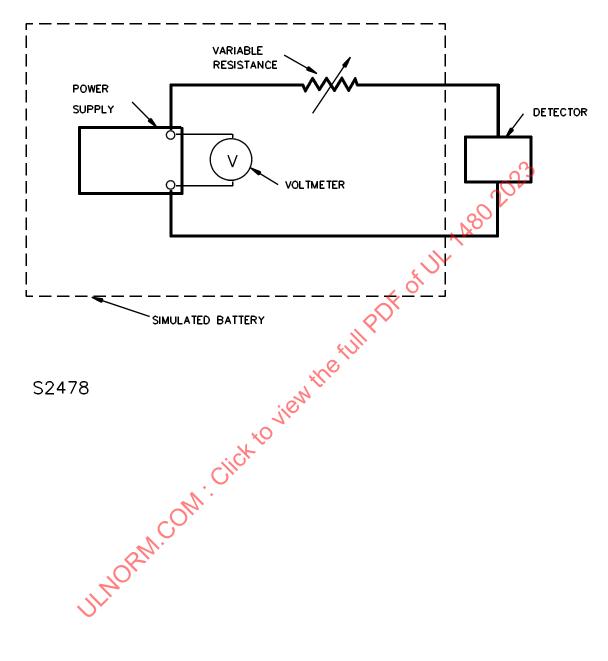
Maximum Temperatures – Locked Rotor Temperature Test for Impedance Protected Motors

Mater insulation system Cilia	Maximum temperature				
Motor insulation system	°C	(°F)			
Class A	150	(302)			
Class E	165	(329)			
Class B	175	(347)			
Class F	200	(392)			
Class H	225	(437)			
Class N	245	(473)			

42 Battery-Powered Units

42.1 General

- 42.1.1 A notification appliance that uses a battery as the main source of supply shall be capable of producing an alarm signal for at least 5 min at the battery voltage at which a trouble signal is obtained, followed by a minimum of 7 days of trouble signal indication.
- 42.1.2 To determine compliance with <u>42.1.1</u>, two samples of a notification appliance shall be equipped with batteries that have been depleted and stabilized at a level just at the trouble signal level. The samples are then to be placed in alarm and the sound level monitored over time following the method described in <u>20.2</u>, Determination of Sound Reduction with no more than a 3 dB drop from the initial measurement. At


the end of the 5 min of alarm, the alarm shall be reset and the samples monitored for the presence of a trouble signal for a minimum of seven days.

- 42.1.3 It is possible to deplete a fresh battery by applying a 1 % or smaller loading factor based on the ampere hour rating of the battery. For example, to deplete a 1000 milliampere-hour rated battery, allow a 10 milliampere (1 % load) or less drain, continuously, until the battery voltage reaches the predetermined test level. It is permitted to add an electronic load set for a constant voltage to be applied to the battery should the battery voltage creep up above the trouble level detection after the removal of the 1 % load.
- 42.1.4 A decrease in the battery capacity of a notification appliance to a level where at least a 5 min alarm signal is not obtainable shall result in a trouble signal. The trouble signal shall be produced at least once each min for seven consecutive days.

42.2 Battery trouble voltage determination

- 42.2.1 An increase in the internal resistance, or a decrease in terminal voltage, of a battery employed as the primary source of power to a notification appliance shall not impair operation for an alarm signal before a trouble signal is obtained. Any combination of voltage and series resistance at which a trouble signal is obtained shall be greater than the battery voltage and resistance combination measured over a 1 year period in the room ambient condition of 42.3, Primary Battery Tests.
- 42.2.2 The trouble level of a battery operated notification appliance shall be determined, using the test circuit in <u>Figure 42.1</u> and the voltage-resistance curves of <u>Figure 42.2</u>, for each of the following voltages:
 - a) Rated battery voltage;
 - b) Trouble level voltage (assuming minimal or no series resistance); and
 - c) Voltages between rated and trouble level voltage.

Figure 42.1 **Test Circuit for Trouble Level Determination**

S2478

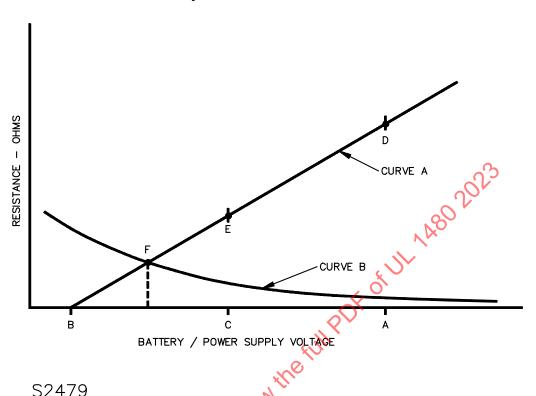


Figure 42.2

Battery Trouble Level Determination

- 42.2.3 To determine compliance with 42.2.1 each of two notification appliances are to be connected in series with a variable regulated direct current power supply and a variable resistor as illustrated in <u>Figure 42.1</u>. The trouble level is to be determined by the following steps:
 - a) Rated Battery Voltage The voltage of the power supply is to be set at the rated battery voltage and the series resistor at 0 ohm. The resistor is to be increased in increments of 0.1 10 ohms, at a rate of not more than one increment /min, until a trouble signal is obtained. The notification appliance is to be tested for alarm operation at each resistance level and at the trouble level.
 - b) Trouble Level Voltage With the variable resistor set at 0 ohm, the voltage of the power supply connected to the notification appliance is to be reduced in increments of 1/10 volt, at a rate of not more than one increment /min, to the level where the trouble signal is obtained. The notification appliance is to be tested for alarm operation at each voltage level and at the trouble signal level.
 - c) Voltage Values Between Rated and Trouble Level Voltages The voltage of the power supply is to be set at pre-specified voltages between the rated battery voltage and the trouble level voltage. The series resistor is then to be increased in increments of 0.1 10 ohms, at a rate of not more than one increment /min, until a trouble signal is obtained. The notification appliance is to be tested for alarm operation at each resistance and voltage level and at the trouble voltage level. A number of voltage values shall be used to determine the shape of the trouble level curve.
 - d) Internal Resistance Increase with Constant Terminal Voltage The voltage of the power supply is to be set at the battery rated voltage (terminal voltage of new battery under normal standby current drain) and the resistance increased from zero ohms until the notification appliance trouble signal is obtained. The rate of resistance change prior to the trouble point shall be reduced to a value required to eliminate any error due to any time lag in the trouble circuit of the notification appliance.

- e) Terminal Voltage Decrease with Constant Internal Resistance With the variable resistance set at zero ohms, the power supply voltage is to be decreased until the notification appliance trouble signal is obtained. The rate of voltage change prior to the trouble point shall be reduced to a value required to eliminate any error due to any time lag in the trouble circuit of the notification appliance.
- f) Variable Internal Resistance with Variable Terminal Voltage This is the intersection of the battery curve (Curve B) and notification appliance trouble level curve (Curve A) of Figure 42.2.
- 42.2.4 To determine that a battery is capable of supplying alarm and trouble signal power to the notification appliance for at least 1 year under the room ambient condition described in 42.3, Primary Battery Tests, Curve A of Figure 42.2 is to be plotted from the data obtained in the measurements described in 42.2.3 and compared to Curve B of Figure 42.2, which is plotted from data generated in the 1 year battery test. The intersection of Curves A and B shall not occur before 1 year and all points of Curve B to the right of point F (extended to the base line), shall be below Curve A.

42.3 Primary battery tests

- 42.3.1 When a battery is employed as the main source of power for a notification appliance, it shall provide power to the unit under intended ambient conditions for at least 1 year in the standby condition including applicable requirements in Section 6, Control Unit Interface, and operate the notification appliance for a minimum of 5 min of alarm followed by 7 days of trouble signal. See 42.2.
- 42.3.2 For each of the following ambient conditions, six samples of the battery, or sets of batteries, shall be tested for a minimum of 1 year while connected to a simulated load to which the battery is to supply power:
 - a) A room ambient temperature of 23 ±2 °C (73.4 ±3.6 °F) and 30 50 % relative humidity;
 - b) Applicable high temperature as defined in High Temperature Test, 26.3.2;
 - c) Applicable low temperature as defined in Low Temperature Test, 26.3.1; and
 - d) Applicable humidity as defined in Section 27, Humidity.
- 42.3.3 For the test, loads simulating a maximum standby current drain shall be employed. The alarm load is to be the signaling appliance intended to be used in the notification appliance or a load simulating maximum alarm conditions. The batteries shall be tested in the mounting clips employed in the notification appliance.
- 42.3.4 Terminals or jacks shall be provided on each test means to facilitate measurement of battery voltage, standby, and alarm currents. The measuring means is to be separated from the battery test means by a wiring harness or equivalent at least 0.9 m (3 feet) long.
- 42.3.5 Prior to placing the battery test setups in the various ambient conditions, each battery is to be subjected to 25 one-second cycles of alarm at a rate of one alarm/min.
- 42.3.6 During the course of the test, the battery voltage and current in standby and alarm condition shall be recorded periodically. The alarm voltage is to be recorded 3 s after energization. The standby voltage and current shall be recorded prior to the alarm measurements. The notification appliance is to be placed into an alarm condition monthly. The duration of the monthly alarm test signal is to be 3 s.
- 42.3.7 At the end of the year all batteries shall have the capacity to operate the alarm signal for a minimum of 5 min followed by 7 days of trouble signal. It is possible that to obtain the trouble signal level the test shall have to be continued with the standby current drain for longer than 1 year. If the length of time to obtain a trouble signal is less than one year and not less than 6 months, while subjecting the