

AEROSPACE STANDARD

SAE AS85560

Issued

2004-11

Bearings, Fiber Reinforced Plastic, Sleeve, Plain and Flanged, Self-Lubricating; General Specification For

NOTICE

This document has been taken directly from U.S. Military Specification MIb-B-85560, Amendment 1, Notice 1 and contains only minor editorial and format changes required to bring it into conformance with the publishing requirements of SAE technical standards. The initial release of this document is intended to replace MIL-B-85560, Amendment 1, Notice 1. Any part numbers established by the original specification remain unchanged.

The original Military Specification was adopted as an SAE standard under the provisions of the SAE Technical Standards Board (TSB) Rules and Regulations (TSB 001) pertaining to accelerated adoption of government specifications and standards. TSB rules provide for (a) the publication of portions of unrevised government specifications and standards without consensus voting at the SAE Committee level, and (b) the use of the existing government specification or standard format.

Under Department of Defense policies and procedures, any qualification requirements and associated qualified products lists are mandatory for DOD contracts. Any requirement relating to qualified products lists (QPL's) has not been adopted by SAE and is not part of this SAE technical document.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2004 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)

Tel: 724-776-4970 (outside USA)

Fax: 724-776-0790 Email: custsvc@sae.org

1. SCOPE:

1.1 Scope:

This specification defines the requirements for fiber reinforced plastic (FRP) composition plain and flanged sleeve bearings that are self-lubricating and which are compatible with graphite-epoxy composites.

- 2. APPLICABLE DOCUMENTS:
- 2.1 Government documents:
- 2.1.1 Specifications and standards: Unless otherwise specified, the following specifications and standards of the issue listed in the Department of Defense Index of Specifications and Standards (DoDISS) specified in the solicitation, form a part of this specification to the extent specified herein.

SPECIFICATIONS

MILITARY

MIL-P-116 Preservation, Methods of

MIL-B-197 Bearings, Antifriction, Associated Parts and Subassemblies,

Preparation for Delivery of

MIL-H-5606 Hydraulic Fluid, Petroleum Base, Aircraft, Missile and Ordnance

MIL-L-7808 Lubricating Oil, Aircraft Turbine Engine, Synthetic Base

MIL-H-83282 Aydraulic Fluid, Fire Resistant Synthetic Hydrocarbon Base, Aircraft

MIL-B-85560 Bearing, Fiber Reinforced Plastic, Sleeve, Plain, Self-Lubricating,

+250°F

MIL-B-85560/2 Bearing, Fiber Reinforced Plastic, Sleeve, Flanged, Self-Lubricating,

+250°F

2.1.1 (Continued):

STANDARDS

MILITARY

MIL-STD-105 Sampling Procedures and Tables for Inspection by Attributes

MIL-STD-129 Marking for Shipment and Storage

MIL-STD-130 Identification Marking of U. S. Military Property

MIL-STD-1599 Bearings, Control System Components, and Associated Hardware

Used in the Design and Construction of Aerospace Mechanical

Systems and Subsystems

(Copies of specifications, standards, drawings and publications required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting officer.)

2.1.2 Other publications: The following documents form a part of this specification to the extent specified herein. The issues of the documents which are indicated as DoD adopted shall be the issue listed in the current DoDISS and the supplement thereto, if applicable.

AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)

ANSI B46.1 Surface Texture, Surface Roughness, Waviness and Lay

(Application for copies should be addressed to the American National Standards Institute, 1430 Broadway, New York, NY 10018.)

UNIFORM CLASSIFICATION COMMITTEE

Uniform Freight Classification Rules

(Application for copies of the above publication should be addressed to the Uniform Classification Committee, Room 1106, 222 South Riverside Plaza, Chicago, IL 60606.)

- 2.1.3 Order of precedence: In the event of a conflict between the text of this document and the references cited, the order of precedence shall be as follows:
 - 1. MIL-B-85560/1 or /2.
 - 2. MIL-B-85560.
 - 3. All other references cited herein.
- 3. REQUIREMENTS:
- 3.1 Specification sheets:

The individual item requirements shall be as specified herein and in accordance with the applicable specification sheets. In the event of any conflict between requirements of this specification and the specification sheet, the latter shall govern.

3.2 Qualification:

The bearings furnished under this specification shall be products which are qualified for listing on the applicable Qualified Products List (QPL) at the time set for opening of bids (see 4.3 and 6.3).

- 3.2.1 Retention of qualification: To maintain status on a Qualified Products List (QPL), certification shall be submitted to indicate continued compliance with the requirements of this specification (see 4.3.3).
- 3.2.2 Product change: Any change in product design, description, materials or processing procedures (see 6.4) shall require requalification of the product to the extent determined by the qualifying activity.
- 3.2.3 Product Manufacture: Except for the winding, bonding and curing operations, the manufacturer is permitted to sub-contract manufacturing operations without violating the requirements of 3.2.2. The winding, bonding and curing operations shall be performed in the plant listed on the Qualified Products List. The manufacturer may subcontract the winding process provided that (1) Process Specifications to control the winding process are established by the manufacturer and are imposed upon the subcontractor; and (2) the qualifying activity is notified during the qualification process of the subcontractor performing the winding process. Manufacture of the self-lubricating liner material may also be subcontracted. Any change in (1) the liner manufacturer, (2) the liner manufacturing procedures, or (3) the materials used in manufacture of the liner will require requalification to an extent determined by the qualifying activity.

3.3 Materials:

Unless otherwise specified in the specification sheet, the materials used in the base composite shall be at the option of the bearing manufacturer. The materials shall be compatible with graphite-epoxy composite and meet the requirements of this specification. The materials shall be recorded in the certified test report (see 4.3.2). The self-lubricating portion of the bearing shall be incorporated in the bore of the bearing and, in flanged bearings, at the outer flange face in accordance with the applicable specification sheet. The self-lubricating material shall contain tetrafluoroethylene (TFE) and may be in the form of a liner bonded to a composite substrate or be an integral part of the composite.

3.4 Design:

Bearing design shall conform to that shown in specification sheets MIL-B-85560/1 and MIL-B-85560/2.

3.5 Construction:

The bearings shall be constructed in accordance with the manufacturer's process specifications and quality control documents. The manufacturing specifications shall be recorded by name and date in the certified test report (see 4.3.2). Except as otherwise specified on the applicable specification sheet, the details of the construction shall be optional.

- 3.5.1 Dimensions and tolerances: Dimensions and tolerances shall be as specified on the applicable specification sheet. Dimensions not shown shall be at the option of the manufacturer.
- 3.5.2 Surface texture: The surface texture shall be in accordance with the applicable specification sheet. Bearings shall be free of any surface defects that may be detrimental to satisfactory installation, performance, or bearing life.
- 3.5.3 Lubrication: Lubrication with grease or oil shall not be permitted.
- 3.5.4 Liner condition and bond integrity:
- 3.5.4.1 Visual examination: The visual appearance of the exposed surface of the self-lubricating portion of the sleeve shall be uniform in texture and shall contain no imbedded contaminants. If a liner is used, it shall be positioned uniformly within the bore and on the flange face and shall be free of folds.

- 3.5.4.2 Bond integrity: The liner condition shall exhibit a degree of workmanship consistent with proper manufacturing process controls (see 4.6.6). The liner edge condition and setback shall meet the applicable drawing requirements. The liner shall be tightly adherent to the substrate over at least 90 percent of the contact area and shall exhibit a peel strength of 1.5 pounds per inch minimum. No void shall be allowed which cannot be fully included within a circumscribing circle with a diameter equal to 25 percent of the race width or 0.25-inch, whichever is smaller.
- 3.6 Performance:
- 3.6.1 Radial static loads:
- 3.6.1.1 Limit load: When the radical static load listed in Table 1 has been applied in accordance with 4.6.1 and 4.6.1.1 the deflection shall not be greater than 0.0100 inch. The permanent set after application of the radial static load shall not exceed 0.0030 inch for M85560/1 or /2-04 through -22 sizes and shall not exceed 0.0045 inch for M85560/1 or /2-24 through -32 sizes.
- 3.6.1.2 Ultimate load: There shall be no crushing of the composite material when 1-1/2 times the radial static limit load listed in table I has been applied at room temperature (see 4.6.1 and 4.6.1.2).

TABLE I. Load values.

	Static limit	Dynamic
Bearing size	load (lb)	load (lb)
(0.500" bore, 0.375" L)	6,875	3,440
(1.000" bore, 0.500" L)	20,000	10,000
(1.500" bore, 0.500" L)	30,000	15,000

3.6.1.3 Creep load: After 2/3 of the radial static load listed in table I has been applied and held for 336 hours at room temperature, the amount of creep (see 6.4) shall be not greater than 0.003-inch and there shall be no crushing of the composite (see 4.6.1 and 4.6.1.3).

- 3.6.2 Oscillation under radial load: When tested under the dynamic load specified in table I, the total wear of the bearing shall not be greater than 0.0045-inch after 25,000 cycles and there shall be no crushing of the composite portion of the sleeve. If a bonded liner is used in the bore, there shall be no separation of the liner from the composite substrate. The bond integrity shall be as specified in 3.5.4.2. The measured loaded breakaway torque shall be measured and recorded before and upon completion of the oscillation test (see 4.6.2).
- 3.6.3 Fluid compatibility: When tested under the dynamic load specified in table I, the bearings shall be compatible with the fluids listed in 4.6.3. The total bearing wear shall not be greater than 0.0045-inch after 25,000 cycles and there shall be no crushing of the composite portion of the sleeve. If a bonded liner is used in the bore, there shall be no separation of the liner from the composite substrate. The bond integrity shall be as specified in 3.5.4.2.
- 3.6.4 High temperature: When tested under the dynamic load specified in table I at +250°F, the total bearing wear shall not be greater than 0.0045 inch after 25,000 cycles and there shall be no crushing of the composite portion of the sleeve (see 4.6.4). If a bonded liner is used in the bore, there shall be no separation of the liner from the composite substrate. The bond integrity shall be as specified in 3.5.4.2.
- 3.6.5 Subzero temperature: When tested under the dynamic load specified in table I at -10°F, the total bearing wear shall not be greater than 0.006-inch after 25,000 cycles and there shall be no crushing of the composite portion of the bearing (see 4.6.5). If a bonded liner is used in the bore, there shall be no separation of the liner from the composite substrate. The bond integrity shall be as specified in 3.5.4.2.
- 3.7 Interchangeability:

All parts having the same part marking shall be interchangeable with each other with respect to installation and performance.

3.8 Identification of product:

Each bearing shall be permanently and legibly marked with the manufacturer's identification. Where space permits, other information as specified on the specification sheet shall be marked on the bearing. Metal impression stamping shall not be allowed.

3.9 Workmanship:

The bearings shall be free of tool marks, chatter waves, grinding scratches, interlayer fracture and other defects that may adversely affect the serviceability of the bearing.

- 4. QUALITY ASSURANCE PROVISIONS:
- 4.1 Responsibility for inspection:

Unless otherwise specified in the contract or purchase order, the contractor is responsible for the performance of all inspection requirements as specified herein. Except as otherwise specified in the contract or purchase order, the contractor may use his own or any other facilities suitable for the performance of the inspection requirements specified herein, unless disapproved by the Government. The Government reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to ensure supplies and services conform to prescribed requirements.

- 4.1.1 Qualification test records: The manufacturer shall maintain a record showing quantitative results for all tests required by this specification. The record shall be available to the purchaser and shall be signed by an authorized representative of the manufacturer or the testing laboratory, as applicable.
- 4.2 Classification of inspections:

The inspection requirements specified herein are classified as:

- 1. Qualification inspection (see 4.3).
- 2. Quality conformance inspection (see4.4).
- 4.3 Qualification inspection:

Qualification inspection shall be as specified in table II.

4.3.1 Sampling instructions: Qualification inspection samples shall consist of 35 bearings with 1.000-inch bore, 0.500-inch length and 15 bearings of each of the additional bore diameters and widths specified below for which qualification is desired. Bearings necessary for tests specified herein shall be furnished by the manufacturer. Samples shall be identified as required (see 3.8) and forwarded to the activity designated in the letter of authorization (see 6.3 and 6.3.1). Because of the preponderance of tests performed on the 1.000 inch bore, 0.500-inch length bearing, this size must be approved before any other sizes may be approved.

Approval of bearings with 0.500-inch bore, 0.375-inch length will qualify bearings on MIL-B-85560/1 and MIL-B-85560/2 with dash numbers 04 to 09, inclusive.

Approval of bearings with 1.000-inch bore, 0.500-inch length will qualify bearings on MIL-B-85560/1 and MIL-B-85560/2 with dash numbers 10 to 18, inclusive.

Approval of bearings with 1.500-inch bore, 0.500-inch length will qualify bearings on MIL-B-85560/1 and MIL-B-85560/2 with dash numbers 20 to 32, inclusive.

TABLE II. Qualification inspection.

	Requirement	Test method	
Inspection	paragraph	paragraph	Samples to be inspected
Examination of product	3.5.4.1	4.5.1	5
Bond integrity	3.5.4.2	4.6.6	3
Radial static limit	3.6.1.1	4.6.1.1	6
Radial static ultimate			
load	3.6.1.2	4.6.1.2	6
Radial static creep			
load	3.6.1.3	4.6.1.3	3 (1.000" bore, 9.500" L)
Oscillation under			
radial load	3.6.2	4.6.2	3
Fluid compatibility	3.6.3	4.6.3	18 (1.000 bore, 0.500 L)
High temperature	3.6.4	4.6.4	3 (1.000" bore, 0.500" L)
Subzero temperature	3.6.5	4.6.5	3 (1.000" bore, 0.500" L)

- 4.3.2 Certified test report: The manufacturer shall furnish a certified test report showing that the manufacturer's product satisfactorily conforms to this specification (see 6.3.1). The test report shall include, as a minimum, actual results of tests specified herein, materials (see 3.3), and a list of the manufacturing process specifications used in the manufacture of the bearing (see 3.5). When the report is submitted, it shall be accompanied by a dated drawing that completely describes the manufacturer's product by specifying all dimensions, tolerances and materials. The manufacturer's part number for each size shall be included on the drawing.
- 4.3.3 Retention of qualification: The continued listing of a product on the Qualified Products List is dependent upon a periodic verification of the manufacturer's continued compliance with the requirements of this specification and with standardization regulations. As part of that verification process, each manufacturer must compete DD Form 1718 during October of each odd numbered year. This form, supplied by the qualifying activity, is to be signed by a responsible official of management and sent to the Naval Air Engineering Center, ESSD Code 9311, Lakehurst, NJ 08733.
- 4.4 Quality conformance inspections:

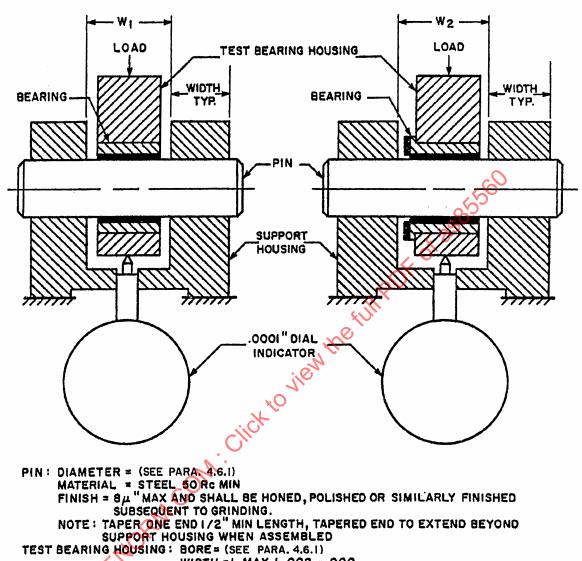
The quality conformance inspections shall be as specified in table III.

TABLE III. Quality conformance inspections.

	Requirement	Test method	
Inspection	paragraph	paragraph	AQL
(a) Dimensions	3.5.1	4.5.1	4.0
(b) Identification of product	3.8	4.5.1	1.0
(c) Workmanship	3.5.4.1, 3.9	4.5.1	1.0
(d) Inspection for packaging		4.6.7	1.0
(e) Liner condition	3.5.4.1	N/A	10.0
(f) Bond integrity	3.5.4.2	4.6.6	2.5

- 4.4.1 Inspection lot: The inspection lot shall consist of finished bearings having a single part number, manufactured according to the same procedures as the parts originally qualified and produced as one continuous run or order or portion thereof.
- 4.4.2 Sampling:
- 4.4.2.1 Sample for quality conformance tests (a) through (e): The sample bearings shall be selected from each inspection lot in accordance with MIL-STD-105, inspection level II.
- 4.4.2.2 Sample for quality conformance test (f): The sample bearings shall be selected from each inspection lot in accordance with MtL-STD-105, inspection level S-2.
- 4.4.3 Quality assurance certification: For each inspection lot, the manufacturer shall maintain for seven years and supply to the purchaser upon demand:
 - a. Certified copies of all records of quality conformance inspections specified in 4.4 and the purchase order.
 - b. Certification that the materials, manufacturing procedures, and processes used in producing the bearings are the same as those of the bearings originally qualified.

These records and certifications shall identify the manufacturer of the bearings, the address of the plant where they were manufactured, the purchaser, and the purchase order number.


4.5 Examinations:

4.5.1 Examination of product: The bearings shall be examined to determine conformance to this specification and the applicable specification sheet for material, dimensions, finish, identification of product, workmanship and requirements not covered by tests.

4.6 Test methods:

Unless otherwise specified, all tests shall be conducted at room temperature.

- 4.6.1 Radial static loads: The bearings shall be exposed to 95 percent relative humidity at 120° ±5°F for not less than ten days and not more than fourteen days before limit load and ultimate load testing. Humidity exposure is to verify that the bearing composite is not excessively affected by high humidity conditions. The test shall be initiated within one hour after removal of the bearing from the humidity chamber. The bearings shall be installed in a test fixture as shown in figure 1 using a 0.0001- to 0.0016-inch interference fit with the housing and a 0.0005- to 0.0030-inch loose fit with the pin.
- 4.6.1.1 Limit load: A preload of four percent to six percent of the radial static limit load shall be applied to the bearing for three minutes, and the measuring device set at zero. The load shall then be increased at the rate of one percent of the specified radial static limit load per second until it equals the specified radial static limit load value. The limit load shall be maintained for three minutes. The bearing deflection shall then be recorded. The load shall then be reduced at the same rate to the preload value. The permanent set shall be the measuring device reading at the preload value. The true bearing deflection shall be defined as the difference between the measuring device reading after three minutes at the limit load and the measuring device reading from the control test on a metallic bushing of the same size at the same load (see 4.6.1). Upon completion of the limit load test, the ultimate load test shall be conducted on the same test sample.
- 4.6.1.2 Ultimate load: The ultimate radial load shall be applied at the rate of one percent of the specified load per second and the load then removed at the same rate.
- 4.6.1.3 Creep load: Using a new test sample bearing that has had the specified humidity exposure, the radial creep load shall be applied at the rate of one percent of the specified load per second. When the specific load has been obtained, the indicator shall be set at zero. This load shall be maintained for 336 hours at room temperature with periodic indicator readings taken to make a plot of time versus deflection.

WIDTH = L MAX + .002 -.000

LENGTH = 20 MIN

SUPPORT HOUSING: BORE = PIN DIA MAX + (.0002 TO.0027)

MIN SUPPORT WIDTH = L NOMINAL LENGTH = (2) (PIN DIA MIN) $W_1 = L + . (.025 TO.030)$ W2 = L+F+(.025 TO. 030)

FIGURE 1. Radial load test fixture.

4.6.2 Oscillation under radial load: The bearing shall be installed in a steel housing, using a 0.0001- to 0.0016-inch interference fit with the housing and a 0.0005- to 0.003-inch loose fit with the pin. The bearing shall be so installed as to place the pin in double shear. A dial indicator or electronic pickup shall be so mounted that any radial movement of the pin or the bore of the bearing with respect to the bearing outside diameter can be measured. The dynamic load specified in table I shall be applied and held statically for 15 minutes. At the end of this time the indicating device shall be set at zero and the oscillating test shall be started. Wear readings shall include the wear from the fifth cycle on. The test shall be run in such a manner that the pin is oscillating +25 degrees, return through zero degrees to -25 degrees, and return to zero degrees at 20 cpm for 25,000 cycles. Sufficient readings during the test shall be recorded to plot a graph of wear (thousandths of an inch) versus life (cycles). The loaded breakaway torque shall be measured and recorded as specified in 3.6.2. Before and after measurements of the bushing bore with the bearing installed in the housing shall be made with tapered parallels for measuring bores or a similar type of tool. Where there is conflict between the dial indicator wear readings and the measured wear readings, the measured wear readings shall prevail.

The pin shall have a hardness of not less than Rc 45 and shall have a surface finish of not more than R_a 8. The surface shall be buffed moned, polished, or similarly finished after grinding.

- 4.6.3 Fluid compatibility: Eighteen bearings with a 1.000-inch bore and 0.500-inch length (three for each fluid) shall be immersed for 24 hours in each of the following fluids at 160° ±5°F, except for (a) which shall be at 110° ±5°F:
 - a. JP-4 jet fuel.
 - b. MIL-L-7808 lubricating oil.
 - c. MIL-H-5606 hydraulic oil.
 - d. MIL-A-8243 anti-icing fluid.
 - e. MIL-H-83282 hydraulic fluid.
 - f. Distilled water.

Within one-half hour after removal from the test fluid and without removing the fluid from the bore surface, the bearing shall be tested in accordance with 3.6.3 and 4.6.2.

4.6.4 High temperature: Three bearings with a 1.000-inch bore and 0.500-inch length shall be subjected to the tests of 4.6.2, except that the bearing shall be heated in such a way that the pin sleeve interface is maintained at a temperature of not less than +250°F.