

AEROSPACE STANDARD

AS4108™

REV. A

Issued 1991-07 Reaffirmed 2015-06 Revised 2015-12

Superseding AS4108

(R) T-Bolt and Eye Bolt, A-286 CRES, 1,000 °F Fatigue Rated

RATIONALE

The revision is to delete cancelled specifications, add new and relevant specifications, add the QML/QPL requirements, correct some of the measurement values, add measurement values for a new size eye-bolt, re-evaluate some tests and improve general readability.

1. SCOPE

This specification defines the requirements for A-286 cres T-bolts and eye bolts, with room temperature tensile strength of a minimum of 160,000 psi, for use with clamps and V-band couplings at 1,000 °F maximum ambient temperature.

2. REFERENCES

2.1 Applicable Documents

The following publications form a part of this document to the extent specified herein. The latest issue of SAE publications shall apply. The applicable issue of other publications shall be the issue in effect on the date of the purchase order. In the event of conflict between the text of this document and references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

2.1.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

AMS-QQ-P-35 Passivation Treatments for Corrosion Resisting Steel

AMS-STD-753 Corrosion-Resistant Steel Parts: Sampling, Inspection and Testing for Surface Passivation

AMS2700 Passivation Treatments for Corrosion Resisting Steels

AMS5731 Steel Bars, Forgings, Tubing and Rings, Corrosion and Heat Resistant

AMS5732 Steel Bars, Forgings, Tubing, and Rings, Corrosion and Heat Resistant

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2015 SAE International

SAE WEB ADDRESS:

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)

Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790

Email: CustomerService@sae.org

http://www.sae.org

SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/AS4108A

AMS5737	Steel Bars, Forging, and Tubing, Corrosion and Heat Resistant
AMS5853	Steel Bars, Corrosion and Heat Resistant
AS7003	National Aerospace and Defense Contractors Accreditation Program (NADCAP) Program Requirements
AS7112	National Aerospace and Defense Contractors Accreditation Program Requirements for Fluid System Components
AS7479	Bolts and Screws, Steel, UNS S66286 1650°F Solution Heat Treated Precipitation Heat Treated Before Roll Threaded
AS8879	Screw Threads - UNJ Profile, Inch Controlled Radius Root with Increased Minor Diameter

2.1.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM F606 Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners

ASTM A967 Chemical Passivation Treatments for Stainless Steel Parts

ASTM E1417 Standard Practice for Liquid Penetrant Testing

2.1.3 ASME Publications

Available from ASME, P.O. Box 2900, 22 Law Drive, Fairfield NJ 07007-2900, Tel: 800-843-2763 (U.S./Canada), 001-800-843-2763 (Mexico), 973-882-1170 (outside North America), www.asme.org.

ASME B46.1 Surface Texture, Surface Roughness, Waviness, and Lay)

2.1.4 U.S. Government Publications

Copies of these documents are available online at http://quicksearch.dla.mil.

MIL-STD-2073-1 Standard Practice for Military Packaging

2.1.5 NAS Publications

Available from Aerospace Industries Association, 1000 Wilson Boulevard, Suite 1700, Arlington, VA 22209-3928, Tel: 703-358-1000, www.aia-aerospace.org.

NASM1312-10 Fastener Test Methods, Method 10, Stress Rupture

NASM1312-11 Fastener Test Methods, Method 11, Tension Fatigue

2.1.6 PRI Publications

Available from Performance Review Institute, 161 Thorn Hill Road, Warrendale, PA 15086-7527, Tel: 724-772-1616, www.pri-network.org.

PD2001 Qualified Product Management Council Procedures for Qualified Products Group

PD2101 Aerospace Quality Assurance, Product Standard, Qualification Procedures, Fluid Systems

2.2 Definitions

2.2.1 SUPPLIER

Manufacturing activity supplying or quoting on the bolts described in this specification.

2.2.2 CLAMP SUPPLIER

Manufacturing activity supplying or quoting the clamp or coupling that contains the bolts described in the specification.

2.2.3 CONTRACT

The purchase order between the user and the clamp supplier.

2.2.4 USER

The procuring activity purchasing the clamp or coupling. Also, could be the clamp or coupling manufacturer.

3. REQUIREMENTS

3.1 Qualification

The bolts furnished under this specification shall be products that are in accordance with the applicable standards, and have been tested and have passed the qualification tests specified herein.

All products shall conform to the requirements of this procurement specification and shall be approved in accordance with the requirements of PD2001 and PD2101, for listing in a Performance Review Institute (PRI) Qualified Parts List (QPL). When this procurement specification is specified on design activity controlled drawings, the approved source(s) of supply shall be defined by the design activity.

3.2 Material

The bolt shall be made from A-286 corrosion resistant steel conforming to specifications AMS5731, AMS5732, AMS5737, or AMS5853 then cold worked and precipitation heat treated to a minimum tensile strength of 160,000 psi. The material shall be capable of being cold headed without the formation of discontinuities or defects.

3.3 Heat Treatment

Heat treatment of the bolts shall be in conformance with 3.2, as applicable, to develop the mechanical properties as defined in 3.11.

3.4 Design and Construction

The dimensions of the finished bolt shall conform to the applicable AS standard drawing and this specification.

3.5 Head Forming

The heads shall be warm or cold forged. A fillet of not less than 0.030 inch radius for T-bolts (Figure 1A) and 0.100 inch radius (Figure 1B) for eye-bolts, shall be provided between head and shank surfaces.

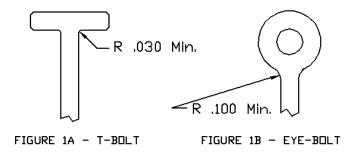


Figure 1

3.6 Surface Treatment and Cleanliness

3.6.1 Surface Treatment

Surface treatments on the bolts such as vapor honing, glass bead liquid honing, grit blasting, or other treatments if performed, shall be done before the final forming of the thread area. No lubricant, coating, or other foreign substance shall be applied to the bolt other than required by the AS part standard drawings.

3.6.2 Surface Contaminants

The hardened blanks shall be free from surface contamination or other undesirable elements prior to thread rolling. The processes employed to avoid or remove surface oxides or other contaminants shall not affect the resistance to corrosion, stress corrosion, or fatigue.

3.7 Shank Form and Surface

3.7.1 Squareness and Straightness of Shank and Thread Area with Head

The bearing surfaces of the bolt heads shall be as specified on the AS part standard. The straightness of the shank shall be as specified on the AS part standard and the straightness of the thread area shall be within the tolerance of the pitch diameter or the major diameter.

NOTE: If the bolt requires a bent shank, the bend can be performed after the bolt is threaded ensuring that there is no damage to the threads.

3.7.2 Surfaces of Head and Shank

Surfaces of head and shank shall be smooth, with a roughness average (Ra) value less than 125 µin as measured per ASME B46.1. Surfaces shall be free from longitudinally oriented scratches, notches, folds, scale, or other discontinuities of a depth greater than 1% of the shank diameter; and shall be free from all discontinuities having transverse orientation with regard to the centerline of the shank or head, respectively, or extending across the thread area. Bolts with discontinuities exceeding 0.50 inch in length are rejectable.

3.8 Threads

The threads shall be right hand. Thread dimensions, form, and contour shall conform to specification AS8879.

3.8.1 Forming

Threads shall be fully formed by a single rolling process after hardening by heat treatment. Before rolling the threads, the precipitation heat treated blanks shall be clean in accordance with 3.6.

3.8.2 Incomplete Threads

The incomplete threads shall comply with the paragraphs concerning "Incomplete Threads" in AS8879.

3.8.3 Thread Surfaces

Surfaces of threads shall be smooth and free from notches, slivers, folds, laps, cracks and scale, as addressed in AS7479 in the sub-paragraph labeled "Threads" under "Quality". The threaded portion of the bolts shall be sectioned such that a cross-section of the threads can be viewed. This section shall be mounted, ground and polished to look for imperfections (mentioned above) in the surface of the thread flanks.

3.9 Finish

All surfaces shall be passivated per AMS2700, Method 1, Type 2 unless Method 2 is authorized by the purchaser or per AMS-QQ-P-35. Verify passivation with the copper sulfate test per ASTM A967 or AMS-STD-753.

3.9.1 Surface Treatment and Cleanliness

Surface treatments on the bolts such as vapor honing, glass bead liquid honing, grit blastings, platings, or other treatments if performed, shall be done before the final forming of the thread area. No lubricant, coating of other foreign substance shall be applied to the bolt other than required by the AS standards drawing.

3.9.2 Surface Contaminants

The bolts shall be free from surface contamination or penetration by oxygen, nitrogen, or other undesirable elements prior to thread forming. The processes employed to avoid or remove surface oxides or other contaminants shall not affect the resistance to corrosion, stress corrosion, or fatigue.

3.10 Mechanical Properties

3.10.1 Ultimate Tensile Load

The finished bolt shall withstand the ultimate tensile loads shown in Table 1.

Bolt Size T-Bolt Minimum Ultimate Thds Tensile Area Eye Bolt Minimum Ultimate inch per inch in² Tensile Load lb Tensile Load lb 0.190 32 0.0226 3,610 3,600 0.250 28 0.0404 4,730 6,460 0.312 24 0.0640 10,240 7,200 0.0951 15,210 0.375 0.1288 20,600 0.4370.500 0.1717 27,470

Table 1 - Minimum ultimate tensile load

NOTES:

- 1. Tensile Area = Cross-Sectional Area Based on Maximum Pitch Diameter per AS8879.
- 2. T-Bolt Ultimate Tensile Load = Tensile Area x 160,000.
- 3. Eye Bolt Ultimate Tensile Load = Based on Application Requirements.

3.10.2 Fatigue Strength

The finished bolts shall withstand an average of 65,000 fatigue cycles when loaded in accordance with Table 2. No individual bolt tested shall fail at less than 45,000 fatigue cycles. The bolts need not be fatigue tested in excess of 130,000 cycles if failure has not occurred before that time. The fatigue test is a Tension-Tension test.

Table 2 - Fatigue strength

-			T-Bolt	T-Bolt	Evo Polt	Evo Polt
					Eye Bolt	Eye Bolt
			Fatigue	Fatigue	Fatigue	Fatigue
			Load	Load	Load	Load
Bolt Size	Thds	Root Area	Minimum	Maximum	Minimum	Maximum
inch	per inch	in ²	lb	lb	lb	lb
0.190	32	0.0186	135	1,350	90	900
0.250	28	0.0342	248	2,480	167	1,670
0.312	24	0.0549	398	3,980	254	2,540
					,0	
0.375	24	0.0839	608	6,080	- 1	-
0.437	20	0.1132	821	8,210	S	-
0.500	20	0.1536	1,110	11,100	£ .0	-
					() .	

NOTES:

- 1. Root Area = Cross-Sectional Area Based on the maximum Minor Diameter per AS8879.
- 2. T-Bolt Maximum Tension Fatigue Load = Root Area x 72,000 psi T-Bolt Minimum. Tension Fatigue Load = 0.1 x Maximum Tension Fatigue Load.
- 3. Eye Bolt Maximum Fatigue Load = Based on Application Requirements of Eye Bolt Minimum Tension Fatigue Load = 0.1 x Maximum Tension Fatigue Load.

3.10.3 Stress Rupture

The finished bolts shall withstand the stress rupture test of 4.6.3 when tested at the loads specified in Table 3.

Table 3 - Minimum required stress rupture load

	ب		T-Bolts	Eye Bolts
Bolt Size	Thds	Root Area	Stress Rupture	Stress Rupture
inch	per inch	in ²	lb	lb
0.190	32	0.0186	1,300	1,200
0.250	28	0.0342	2,390	2,070
0.312	24	0.0549	3,840	3,150
Sh				
0.375	24	0.0839	5,870	-
0.437	20	0.1132	7,920	-
0.500	20	0.1536	10,800	-

NOTES:

- Root Area = Cross-Sectional Area Based on the maximum Minor Diameter per AS8879.
- 2. T-Bolt Stress Rupture Load = Root Area x 70,000.
- 3. Eye bolt Stress Rupture Load = Based on Application Requirements.

3.10.4 Bend Test

The unthreaded shank of the finished bolts shall withstand being bent over a mandrel or other suitable bending device per Table 4 and per Figure 4 with no evidence of cracks. The bolt shall be bent at least 90 degrees from straight so that the internal angle is 90 degrees or less.

Bolt	Thds	Mandrel Diameter Max	
Size	per inch	2D per Figure 4	
0.190-	32	0.380	
0.250-	28	0.500	
0.312-	24	0.625	
0.375-	24	0.750	
0.437-	20	0.875	
0.500-	20	1.000	'6

Table 4 - Bend mandrel size

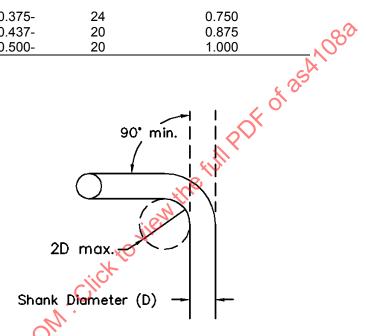


Figure 4 - Bolt bend test

3.11 Discontinuities and Surface Contamination - (FPI)

3.11.1 Discontinuities

The bolts shall not contain discontinuities that equal or exceed the values specified herein.

3.11.2 Cracks

The bolts shall be free from cracks in any direction or location. A crack is defined as a clean crystalline break passing through a grain or grain boundary and appearing on a surface. The bolts will be Fluorescent Penetrant Inspected (FPI) as specified in 4.6.5 if needed.

3.11.3 Laps and Seams

The bolts shall not possess laps or seams less than 0.062 inch apart in any direction. The number of laps or seams, locations, depths, and lengths shall conform to the following requirements unless otherwise specified on the AS part standard:

3.11.4 Crossbar or Head

Laps or seams are permitted in the top, sides, or ends of the head that are not greater than 0.032 inch in length and that do not exceed twice the depth limits of Table 7. Laps or seams in the underside or bearing surface of the head shall be permitted providing they do not exceed 0.032 inch in length and are not greater in depth than the depth limits of Table 5. There shall be a maximum of three laps or seams per head.

Table 5 - Limits for seam depth

Bolt Size	0.1900 through 0.3125	0.3750	0.4375	0.5000
Depth	0.005	0.006	0.007	0.008

3.11.5 Head-to-Shank Junction

There shall be no laps in the head-to-shank junction.

3.11.6 Shank

The shank may possess longitudinal laps or seams provided the depth does not exceed the depth limits of Table 7. Any one of the laps or seams may extend the total length of the shank so long as the total of all the laps or seams does not exceed twice the length of the shank. There shall be a maximum of four laps or seams on any one bolt.

3.11.7 Other Discontinuities

Discontinuities not covered above and all discontinuities transverse to the grain flow such as pipes, grinding checks, and quench cracks shall not be allowed.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

Unless otherwise specified in the contract, the Supplier or Clamp Supplier is responsible for the performance of all inspection and testing requirements as specified herein. Except as otherwise specified, the Supplier or the Clamp Supplier may utilize his own facilities or any acceptable commercial laboratory. The user reserves the right to perform any of the inspections set forth in the specification where such inspections are deemed necessary to assure the parts conform to prescribed requirements.

4.2 Classification of Tests

The inspection and testing shall be classified as:

- a. Qualification tests (4.3)
- b. Quality conformance test and verification (4.4)

4.3 Qualification Tests

The following sequence of tests and samples noted in Table 6 shall constitute the qualification test specified herein.