

400 Commonwealth Drive, Warrendale, PA 15096-0001

AEROSPACE RECOMMENDED PRACTICE

SAE ARP1110

REV.
A

Issued 1969-11
Revised 1994-05
Reaffirmed 2000-10

Minimizing Stress Corrosion Cracking in Wrought Forms of Steels and Corrosion Resistant Steels and Alloys

1. SCOPE:

The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide the aerospace industry with recommendations concerning the minimization of stress corrosion cracking in wrought heat treatable carbon and low alloy steels and in austenitic, precipitation hardenable, and martensitic corrosion resistant steels and alloys.

The detailed recommendations are based on laboratory and field experience and reflect those design practices and fabrication procedures which should avoid in-service stress corrosion cracking.

2. REFERENCES:

2.1 Applicable Documents:

The following publications form a part of this specification to the extent specified herein. The latest issue of SAE publications shall apply.

2.1.1 SAE Publications: Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096-0001.

AMS 2430 Shot Peening
AMS 2431 Peening Media, General Requirements
AMS 2432 Shot Peening, Computer Monitored

2.1.2 ASTM Publications: Available from ASTM, 1916 Race Street, Philadelphia, PA 19103-1187.

ASTM G 49 Standard Recommended Practice for Preparation and Use of Direct Tension Stress-Corrosion Test Specimens
ASTM G 58 Standard Practice for the Preparation of Stress Corrosion Test Specimens for Weldments

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright 2000 Society of Automotive Engineers, Inc.
All rights reserved.

Printed in U.S.A.

TO PLACE A DOCUMENT ORDER:
SAE WEB ADDRESS:

(724) 776-4970
<http://www.sae.org>

FAX: (724) 776-0790

SAE ARP1110 Revision A

2.1.3 Other Publications:

Damage Tolerant Handbook, MCIC-HB-01

Aerospace Structural Metals Handbook (formerly AFML-TR-68-115)

Deformation and Fracture Mechanics of Engineering Materials, Richard W. Hertzberg, 15BN-0-471-37385

Corrosion Engineering, Fontana and Greene

2.2 Definitions:

2.2.1 Stress corrosion cracking may be defined as the combined action of sustained tensile stresses and corrosion to cause premature failure (see 5.2).

3. GENERAL:

3.1 The following three conditions must always be present for stress corrosion cracking to occur.

- a. An alloy/condition which is susceptible to stress corrosion cracking.
- b. A sustained or residual tensile stress which, especially if associated with geometric features such as notches or corners, generate a stress intensity which exceeds the threshold for the specific alloy/condition/environment combination.
- c. A specific corrosive environment to which the alloy/condition is susceptible.

3.2 Stress corrosion cracking growth rates are accelerated by increasing stress, temperature, and concentration of the contaminating environment.

3.3 Carbon and low alloy steels with an ultimate tensile strength below 180 ksi (1241 MPa) are generally resistant to stress corrosion. At ultimate tensile strengths above 180 ksi (1241 MPa) and below 200 ksi (1379 MPa), these steels generally have moderate resistance to stress corrosion. Above 200 ksi (1379 MPa) ultimate tensile strength, these steels generally have poor resistance to stress corrosion except for AISI 1095 and music wire, both of which have high resistance to stress corrosion. Surface treatments such as carburizing, carbonitriding, and induction hardening will increase the susceptibility to stress corrosion cracking.

3.4 The relative stress corrosion resistance of various stainless steels and corrosion resistant alloys when exposed to saltwater, seacoast environment, or mild industrial environments at ambient temperature are shown in Table 1.

SAE ARP1110 Revision A

TABLE 1 - Relative Resistance of Wrought Austenitic, Precipitation Hardenable, and Martensitic Corrosion Resistant Steels to Stress Corrosion Cracking

Alloy	UNS	Condition for High Resistance	Condition for Moderate Resistance	Condition for Low Resistance
300 Series Stainless Steel (2)		All	---	--
A286 Stainless Steel	S66286	All	---	--
Almar 362 Stainless Steel	S36200	H1000 and above	---	--
Custom 450, 4557 Stainless Steel	S4500, S45500	H1000 and above	Below H1000	
15-5PH Stainless Steel	S15500	H1000 and above	Below H1000	--
PH15-7Mo Stainless Steel	S15700	CH900	--	All Except CH900
403, 410, 431 Stainless Steel	S40300, S41000, S43100	--	(1)	--
PH13-8Mo Stainless Steel	S13800	--	All	--
17-4PH Stainless Steel	S17400	--	All	--
Nitronic7 32	S24100	Annealed	--	--
440C Stainless Steel	S44004	--	--	All
Nitronic7 60	S21800	--	Annealed	--
17-7PH Stainless Steel	S17700	CH900	--	All Except CH900
AM350, 355 Stainless Steel	S35000, S35500	SCT1000 & above	--	Below SCT1000
21-6-9 Stainless Steel	S21904	Annealed	--	--
20Cb-37 Stainless Steel	N08020	All	--	--
Nitronic7 33 (3)	S24000	All	--	--

(1) Tempering between 700 and 1100 °F (371 and 593 °C) reduces general corrosion and stress corrosion resistance.

(2) Nonfree machining grades which are unsensitized, including weldments of 304L, 316L, 321, and 347.

(3) Including weldments.

Custom 455 and 20Cb-3 are registered trade names of Carpenter Technology Corp.

Nitronic is a registered trademark of Armco.

15-5PH, PH15-7 Mo, PH13-8 Mo, 17-4PH are registered trademarks of Armco.

Almar is a registered trademark of Allegheny Ludlum.

3.5 The levels of stress intensity necessary to produce stress corrosion crack growth in susceptible alloys/conditions can be found in a number of references such as (see 5.3 and 5.4):

Damage Tolerant Handbook, MCIC-HB-01

Aerospace Structural Metals Handbook (formerly AFML-TR-68-115)

Deformation and Fracture Mechanics of Engineering Materials, Richard W. Hertzberg, 15BN-0-471-37385

Corrosion Engineering, Fontana and Greene

4. PREVENTION:

Prevention of stress corrosion cracking is best achieved by eliminating one or more of the necessary conditions specified in 3.1. This can be accomplished by applying practices such as the following for selecting and processing materials for aerospace applications:

SAE ARP1110 Revision A

4.1 Alloy/Condition/Optimization (see 5.8):

- 4.1.1 Use alloys/conditions with inherently high stress corrosion cracking resistance as shown in 3.3 or Table 1.
- 4.1.2 Steels that include elements such as titanium, columbium, vanadium, molybdenum, and tungsten, permitting tempering or precipitation hardening at relatively high temperatures without losing strength, tend to display improved stress corrosion resistance.
- 4.1.3 Vacuum melted high purity steels appear to be more resistant to stress corrosion than air melted steels and those where nonessential residual elements are not restricted. A general correlation exists between improved fracture toughness, improved impact strength, and improved stress corrosion resistance.
- 4.1.4 Avoid exposure of austenitic stainless steels to the range of 900 to 1500 °F (482 to 816 °C) to prevent formation of grain boundary carbide precipitation.

4.2 Sustained Tensile Stress Minimization (see 5.9):

- 4.2.1 Exercise care in quenching, machining, welding, and assembly to avoid generating residual tensile stresses (see 5.1).
- 4.2.2 Relieve any residual tensile stresses generated during manufacture. Stress relieving, tempering, and precipitation hardening should follow machining and welding operations wherever practical.
- 4.2.3 Avoid sharp notches, crevices, and rough finishes.
- 4.2.4 Avoid situations in which tensile stresses due to assembly have been applied in the short transverse direction.
- 4.2.5 Shot peen or surface burnish to produce surface compressive stresses to assist in preventing stress corrosion (see AMS 2430 or AMS 2432). Do not straighten or thermally stress relieve after peening.
- 4.2.6 Use glass beads, ceramic beads, or corrosion resistant stainless steel shot when peening stainless steel to avoid anodic corrosion of the surface from shot residue. Where it is necessary to peen using cast steel or cut carbon steel wire shot, passivate after peening to avoid anodic corrosion (see AMS 2431).
- 4.2.7 Whenever possible for steels with an ultimate tensile strength of 200 ksi (1379 MPa) or greater, limit sustained tensile stresses to 50% of the longitudinal 0.2% offset yield strength, 35% of the long-transverse yield strength, and 25% of the short-transverse yield strength.