

AEROSPACE MATERIAL SPECIFICATION

AMS6312™

REV. J

Issued 1939-12
Revised 2015-12

Superseding AMS6312H

Steel Bars, forgings, and tubing
1.8Ni - 0.25Mo (0.38 - 0.43C) (4640)
(Composition similar to UNS K22440)

RATIONALE

AMS6312J results from a Five Year Review and update of this specification that revises macrostructure, grain size, decarburization testing methods and reporting.

1. SCOPE

1.1 Form

This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.

1.2 Application

These products have been used typically for parts 0.250 inch (6.35 mm) and under in nominal section thickness at time of heat treatment requiring a through-hardening steel capable of developing hardness as high as 50 HRC, and also parts of greater thickness requiring proportionately lower hardness, but usage is not limited to such applications.

2. APPLICABLE DOCUMENTS

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

2.1 SAE Publications

Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or +1 724-776-4970 (outside USA), www.sae.org.

AMS2251 Tolerances, Low-Alloy Steel Bars

AMS2253 Tolerances, Carbon and Alloy Steel Tubing

AMS2259 Chemical Check Analysis Limits, Wrought Low-Alloy and Carbon Steels

AMS2301 Steel Cleanliness, Aircraft Quality Magnetic Particle Inspection Procedure

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be revised, reaffirmed, stabilized, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2015 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: +1 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: CustomerService@sae.org

SAE WEB ADDRESS: <http://www.sae.org>

SAE values your input. To provide feedback
on this Technical Report, please visit
<http://www.sae.org/technical/standards/AMS6312J>

AMS2370	Quality Assurance Sampling and Testing, Carbon and Low-Alloy Steel Wrought Products and Forging Stock
AMS2372	Quality Assurance Sampling and Testing Carbon and Low-Alloy Steel forgings
AMS2806	Identification Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels and Corrosion and Heat-Resistant Steels and Alloys
AMS2808	Identification forgings
AMS-H-6875	Heat Treatment of Steel Raw Materials
AS1182	Standard Stock Removal Allowance Aircraft-Quality and Premium Aircraft-Quality Steel Bars and Mechanical Tubing

2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org.

ASTM A255	Determining Hardenability of Steel
ASTM A370	Mechanical Testing of Steel Products
ASTM E112	Determining Average Grain Size
ASTM E350	Chemical Analysis of Carbon Steel, Low-Alloy Steel, Silicon Electrical Steel, Ingot Iron, and Wrought Iron
ASTM E381	Macroetch Testing Steel Bars, Billets, Blooms, and forgings
ASTM E384	Knoop and Vickers Hardness of Materials

3. TECHNICAL REQUIREMENTS

3.1 Composition

Shall conform to the percentages by weight shown in Table 1, determined by wet chemical methods in accordance with ASTM E350, by spectrochemical methods, or by other analytical methods acceptable to purchaser.

Table 1 - Composition

Element	min	max
Carbon	0.38	0.43
Manganese	0.60	0.80
Silicon	0.15	0.35
Phosphorus	--	0.025
Sulfur	--	0.025
Nickel	1.65	2.00
Molybdenum	0.20	0.30
Chromium	--	0.20
Copper	--	0.35

3.1.1 Aluminum, vanadium and columbium are optional grain refining elements and need not be determined or reported unless used to satisfy the average grain size requirements of 3.3.2.2.

3.1.2 Check Analysis

Composition variations shall meet the applicable requirements of AMS2259.

3.2 Condition

The product shall be supplied in the following condition; hardness and tensile strength shall be determined in accordance with ASTM A370:

3.2.1 Bars

Bar shall not be cut from plate.

3.2.1.1 Bars 0.500 Inch (12.70 mm) and Under in Nominal Diameter or Least Distance Between Parallel Sides

Cold finished having tensile strength not higher than 130 ksi (896 MPa) or equivalent hardness (see 8.2).

3.2.1.2 Bars Over 0.500 Inch (12.70 mm) in Nominal Diameter or Least Distance Between Parallel Sides

Hot finished and annealed, unless otherwise ordered, having hardness not higher than 229 HB, or equivalent (see 8.3). Bars ordered cold finished may have hardness as high as 241 HB, or equivalent (see 8.3).

3.2.2 forgings

Normalized and tempered in accordance with AMS-H-6875.

3.2.3 Mechanical Tubing

Cold finished, unless otherwise ordered, having hardness not higher than 25 HRC, or equivalent (see 8.3). Tubing ordered hot finished and annealed shall have hardness not higher than 99 HRB, or equivalent (see 8.3).

3.2.4 Forging Stock

As ordered by the forging manufacturer.

3.3 Properties

The product shall conform to the following requirements; hardness testing shall be performed in accordance with ASTM A370:

3.3.1 Macrostructure

Visual examination of transverse full cross-sections from bars, billets, tube rounds, and forging stock, etched in hot hydrochloric acid in accordance with ASTM E381, shall not show pipe or cracks. Porosity, segregation, inclusions, and other imperfections shall not be worse than the macrographs of ASTM E381 shown in Table 2.

Table 2 - Macrostructure limits

Section Size Square Inches	Section Size Square Centimeters	Macrographs
Up to 36, incl	Up to 232, incl	S2 - R1 - C2
Over 36 to 133, incl	Over 232 to 858, incl	S2 - R2 - C3
Over 133	Over 858	Note 1

Note 1 Limits for larger sizes shall be agreed upon by purchaser and producer. The purchaser shall have written approval of the agreement from the cognizant engineering organization.

3.3.1.1 If tubes are produced directly from ingots or large blooms, transverse sections may be taken from the tubes rather than tube rounds. Macroetch standards for such tubes shall be agreed upon by purchaser and producer.

3.3.2 Average Grain Size of Bars, forgings and Tubing

Average grain size shall be determined by either 3.3.2.1 or 3.3.2.2.

3.3.2.1 Shall be ASTM No. 5 or finer, determined in accordance with ASTM E112.

3.3.2.2 The product of a heat shall be considered to have an ASTM No. 5 or finer austenitic grain size if one or more of the following are determined by heat analysis (see 8.6):

3.3.2.2.1 A total aluminum content of 0.020 to 0.050%.

3.3.2.2.2 An acid soluble aluminum content of 0.015 to 0.050%.

3.3.2.2.3 A vanadium content of 0.02 to 0.08%.

3.3.2.2.4 A columbium content of 0.02 to 0.05%.

3.3.3 Hardenability of each Heat

Shall be J 3/16 inch (4.8 mm) = 50 HRC minimum and J 9/16 inch (14.3 mm) = 35 HRC minimum, determined on the standard end-quench test specimen in accordance with ASTM A255 except that the steel shall be normalized at 1550 °F ± 10 °F (843 °C ± 6 °C) and the test specimen austenitized at 1500 °F ± 10 °F (816 °C ± 6 °C).

3.3.4 Decarburization

3.3.4.1 Bars and tubing ordered ground, turned, or polished shall be free from decarburization on the ground, turned, or polished surfaces. Decarburization on tubing ID shall not exceed the maximum depth specified in Table 4.

3.3.4.2 Allowable decarburization of bars, billets, and tube rounds ordered for redrawing or forging or to specified microstructural requirements shall be as agreed upon by purchaser and producer.

3.3.4.3 Decarburization of bars that 3.3.4.1 or 3.3.4.2 is not applicable shall be not greater than shown in Table 3.

Table 3A - Maximum total depth of decarburization, inch/pound units

Nominal Diameter or Distance Between Parallel Sides Inches	Total Depth of Decarburization Inch
Up to 0.375, incl	0.010
Over 0.375 to 0.500, incl	0.012
Over 0.500 to 0.625, incl	0.014
Over 0.625 to 1.000, incl	0.017
Over 1.000 to 1.500, incl	0.020
Over 1.500 to 2.000, incl	0.025
Over 2.000 to 2.500, incl	0.030
Over 2.500 to 3.000, incl	0.035
Over 3.000 to 4.000, incl	0.045

Table 3B - Maximum total depth of decarburization, SI units

Nominal Diameter or Distance Between Parallel Sides Millimeters	Total Depth of Decarburization Millimeters
Up to 9.52, incl	0.25
Over 9.52 to 12.70, incl	0.30
Over 12.70 to 15.88, incl	0.36
Over 15.88 to 25.40, incl	0.43
Over 25.40 to 38.10, incl	0.51
Over 38.10 to 50.80, incl	0.64
Over 50.80 to 63.50, incl	0.76
Over 63.50 to 76.20, incl	0.89
Over 76.20 to 101.60, incl	1.14

3.3.4.4 Decarburization of tubing that 3.3.4.1 is not applicable shall be not greater than shown in Table 4.

Table 4A - Maximum total depth of decarburization, inch/pound units

Nominal Wall Thickness Inches	Total Depth of Decarburization Inch ID	Total Depth of Decarburization Inch OD
Up to 0.109, incl	0.008	0.015
Over 0.109 to 0.203, incl	0.010	0.020
Over 0.203 to 0.400, incl	0.012	0.025
Over 0.400 to 0.600, incl	0.015	0.030
Over 0.600 to 1.000, incl	0.017	0.035
Over 1.000	0.020	0.040

Table 4B - Maximum total depth of decarburization, SI units

Nominal Wall Thickness Millimeters	Total Depth of Decarburization Millimeter ID	Total Depth of Decarburization Millimeters OD
Up to 2.77, incl	0.20	0.38
Over 2.77 to 5.16, incl	0.25	0.51
Over 5.16 to 10.16, incl	0.30	0.64
Over 10.16 to 15.24, incl	0.38	0.76
Over 15.24 to 25.40, incl	0.43	0.89
Over 25.40	0.51	1.02

3.3.4.5 Decarburization shall be evaluated by one of the two methods of 3.3.4.5.1 or 3.3.4.5.2.

3.3.4.5.1 Metallographic Method

A cross section taken perpendicular to the surface shall be prepared, etched, and visually examined metallographically at a magnification not to exceed 100X. The product shall not show a layer of complete (ferrite) or partial decarburization exceeding the limits of Tables 3 and 4.

3.3.4.5.2 Hardness Traverse Method

The total depth of decarburization shall be determined by a traverse method using microhardness testing in accordance with ASTM E384, at a magnification not exceeding 100X, conducted on a hardened but untempered specimen protected during heat treatment to prevent changes in surface carbon content. Tempering is generally not recommended, but if tempered, the tempering temperature shall be not higher than 300 °F (149 °C). Depth of decarburization is defined as the perpendicular distance from the surface to the depth under that surface where there is not further increase in hardness. Such measurements shall be far enough away from any adjacent surface to be uninfluenced by any decarburization on the adjacent surface. Acceptance shall be as listed in Tables 3 and 4.

3.3.4.5.3 When determining the depth of decarburization, it is permissible to disregard local areas provided the decarburization of such areas does not exceed the above limits by more than 0.005 inch (0.13 mm) and the width is 0.065 inch (1.65 mm) or less.

3.3.4.5.4 In case of dispute, the total depth of decarburization determined using the microhardness traverse method shall govern.

3.4 Quality

The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product.

3.4.1 Steel shall be aircraft-quality conforming to AMS2301.

3.4.2 Bars and tubing ordered hot rolled or cold drawn, or ground, turned, or polished, shall, after removal of the standard stock removal allowance in accordance with AS1182, be free from seams, laps, tears, and cracks open to the machined, ground, turned, or polished surface.

3.4.3 Grain flow of die forgings, except in areas that contain flashline end grain, shall follow the general contour of the forgings, showing no evidence of reentrant grain flow.

3.5 Tolerances

3.5.1 Bars

In accordance with AMS2251.

3.5.2 Mechanical Tubing

In accordance with AMS2253.

4. QUALITY ASSURANCE PROVISIONS

4.1 Responsibility for Inspection

The producer of the product shall supply all samples for producer's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

4.2 Classification of Tests

4.2.1 Acceptance Tests

Composition (3.1), condition (3.2), macrostructure (3.3.1), average grain size (3.3.2), hardenability (3.3.3), decarburization (3.3.4), quality (3.4), frequency-severity cleanliness rating (3.4.1), and tolerances (3.5) are acceptance tests and shall be performed on each heat or lot, as applicable. If grain refining elements (3.3.2.2) are not present, the ASTM E112 grain size test (3.3.2.1) shall be conducted on each lot.

4.2.2 Periodic Tests

If grain refining elements (3.3.2.2) are present, the ASTM E112 grain size test (3.3.2.1) shall be conducted on a periodic basis and shall be performed at a frequency selected by the producer (not to exceed one year) unless frequency of testing is specified by purchaser. Grain flow of die forgings (3.4.3) is a periodic test and shall be performed at a frequency selected by the producer unless frequency of testing is specified by purchaser.

4.3 Sampling

4.3.1 Bars, Mechanical Tubing, and Forging Stock

In accordance with AMS2370.

4.3.2 forgings

In accordance with AMS2372.

4.4 Reports

4.4.1 The producer of bars, forgings, and tubing shall furnish with each shipment a report showing producer identity, country where the metal was melted (e.g., final melt in the case of metal processed by multiple melting operations) and the results of tests for composition, macrostructure, hardenability, and frequency-severity cleanliness rating of each heat and for condition and, if measured, average grain size for each lot, and stating that the product conforms to the other technical requirements. This report shall include the purchase order number, heat and lot numbers, AMS6312J, product form and size (and/or part number, if applicable) and quantity. If forgings are supplied, the size and melt source of stock used to make the forgings shall also be included. If the grain size requirement of 3.3.2.2 is met by the aluminum, vanadium and/or columbium content the aluminum, vanadium and/or columbium content shall be reported and a statement that the chemistry satisfies the grain size requirement shall be included.

4.4.2 Report the nominal metallurgically worked cross sectional size and the cut size, if different (see 3.2.1).

4.4.3 The producer of forging stock shall furnish with each shipment a report showing producer identity, country where the metal was melted (e.g., final melt in the case of metal processed by multiple melting operations) and the results of tests for composition, macrostructure, hardenability and frequency-severity cleanliness rating of each heat and the results of any additional property requirements imposed by 8.7. This report shall include the purchase order number, heat number, AMS6312J, size and quantity.

4.4.4 Resampling and Retesting

4.4.5 Bars, Mechanical Tubing, and Forging Stock

In accordance with AMS2370.

4.4.6 forgings

In accordance with AMS2372.

5. PREPARATION FOR DELIVERY

5.1 Sizes

Except when exact lengths or multiples of exact lengths are ordered, straight bars and tubing will be acceptable in mill lengths of 6 to 20 feet (1.8 to 6.1 m) but not more than 10% of any shipment shall be supplied in lengths shorter than 10 feet (3 m).