

AEROSPACE MATERIAL SPECIFICATION

SAE,

AMS 5409A

Issued Cancelled 1984-07 AUG 2002

Alloy Casting, Investment, Corrosion and Heat Resistant
61Ni - 16Cr - 8.5Co - 1.8Mo - 2.6W - 0.8Cb - 3.4Ti - 1.8Ta - 3.4A1 - 0.010B - 0.06Zr
(0.03 - 0.08C)

Vacuum Melted, Vacuum Cast
As Cast

CANCELLATION NOTICE

This specification has been declared "CANCELLED" by the Aerospace Materials Division, SAE, as of August 19, 2002 and has been superseded by AMS 5410. The requirements of the latest issue of AMS 5410 shall be fulfilled whenever reference is made to the cancelled AMS 5409. By this action, this document will remain listed in the Numerical Section of the Index of Aerospace Materials Specifications noting that it is superseded by AMS 5410.

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright 2002 Society of Automotive Engineers, Inc. All rights reserved.

Printed in U.S.A.

1. SCOPE:

1.1 Form:

This specification covers a corrosion and heat resistant nickel alloy in the form of investment castings.

1.2 Application:

Primarily for parts, such as turbine blades or vanes, requiring good strength and hot corrosion resistance up to 1800°F (980°C).

2. APPLICABLE DOCUMENTS:

The following publications form a part of this specification to the extent specified herein. The latest issue of Aerospace Material Specifications shall apply. The applicable issue of other documents shall be as specified in AMS 2350.

2.1 SAE Publications:

Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096.

2.1.1 Aerospace Material Specifications:

AMS 2268 - Chemical Check Analysis Limits, Cast Nickel and Nickel Alloys

AMS 2350 - Standards and Test Methods

AMS 2360 - Room Temperature Tensile Properties of Castings

AMS 2362 - Stress-Rupture Properties of castings

AMS 2635 - Radiographic Inspection

AMS 2645 - Fluorescent Penetrant Inspection

AMS 2804 - Identification, Castings

2.2 ASTM Publications:

Available from American Society for Testing and Materials, 1916 Race Street, Philadelphia, PA 19103.

ASTM E8 - Tension Testing of Metallic Materials

ASTM B139 - Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials

ASTM B192 - Reference Radiographs of Investment Steel Castings for Aerospace Applications

ASTM B354 - Chemical Analysis of High-Temperature, Electrical, Magnetic, and Other Similar Iron, Nickel, and Cobalt Alloys

2.3 U.S. Government Publications:

Available from Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

- 2.3.1 Federal Standards: Federal Test Method Standard No. 151 Metals; Test Methods
- 2.3.2 Military Standards: MIL-STD-794 Parts and Equipment, Procedures for Packaging and Packing of
- 3. TECHNICAL REQUIREMENTS:
- 3.1 Composition: Shall conform to the following percentages by weight, determined by wet chemical methods in accordance with ASTM E354, by spectrographic methods in accordance with Federal Test Method Standard No. 151, Method 112, or by other analytical methods approved by purchaser:

			0,0
	min	ma	ax NO3
Carbon	0.03	-	0.08 0.20 0.30
Manganese			0.20
Silicon			0.30
Sulfur			0.015
Chromium	15.70	-<	16.30
Cobalt	8.00	11	9.00
Molybdenum	1.50	_	2.00
Tungsten	1.50 2.40 0.60	-	2.80
Columbium	0.60	-	1.10
Titanium	3.20	-	3.70
Tantalum	1,50	-	2.00
Aluminum	3.20	-	3.70
Aluminum + Titanium	6.50	-	7.20
Boron	0.005	-	0.015
Zirconium	0.03	-	0.08
Iron			0.50
Lead			0.0005 (5 ppm)
Bismuth			0.00005 (0.5 ppm)
Nickel	remainder		

- 3.1.1 Check Analysis: Composition variations shall meet the requirements of AMS 2268.
- 3.2 Condition: As cast.
- 3.3 Casting:
- 3.3.1 The metal for castings shall be melted and poured under vacuum without loss of vacuum between melting and pouring.
- 3.3.2 Castings shall be poured either from remelted metal from a master heat or directly from a master heat. In either case, metal for casting shall be qualified as in 3.4.

- 3.3.2.1 A master heat is refined metal of a single furnace charge. Gates, sprues, risers, and rejected castings shall be used only in preparation of master heats; they shall not be remelted directly, without refining, for pouring of castings.
- 3.3.2.2 Blending of metal from more than one master heat is not permissible.
- 3.4 Master Heat Qualification:

Each master heat shall be qualified by evaluation of chemical analysis and tensile specimens conforming to 3.4.1 and 3.4.2, respectively. A master heat may be considered conditionally qualified if vendor's test results show conformance to all applicable requirements of this specification. However, except when purchaser waives confirmatory testing, final qualification shall be based on purchaser's test results. Conditional qualification of a master heat shall not be construed as a guarantee of acceptance of castings poured therefrom.

- 3.4.1 Chemical Analysis Specimens: Shall be of any convenient size shape, and form for vendor's tests. When chemical analysis specimens are required by purchaser, specimens shall be cast to a size, shape, and form agreed upon by purchaser and vendor.
- 3.4.2 Tensile Specimens: Shall be cast from remelted metal from each master heat except when castings are poured directly from a master heat, in which case the specimens shall also be poured directly from the master heat. Specimens shall be of standard proportions in accordance with ASTM E8 with 0.250 in. (6.25 mm) diameter at the reduced parallel gage section. They shall be cast to size or shall be cast oversize and subsequently machined to 0.250 in. (6.25 mm) diameter. Center gating may be used.
- 3.5 Properties:

Castings and representative tensile specimens produced in accordance with 3.4.2 shall conform to the following requirements:

- 3.5.1 As Cast: None applicable.
- 3.5.2 After solution and Precipitation Heat Treatment: Castings and representative tensile specimens shall have the following properties after being solution heat treated by heating to 2050°F ± 25 (1120°C ± 15) in a vacuum or suitable protective atmosphere, holding at heat for 2 hr ± 0.25, and cooling at a rate equivalent to air cool or faster and precipitation heat treated by heating to 1550°F ± 25 (845°C ± 15), holding at heat for 24 hr ± 0.25, and cooling to room Temperature:
- 3.5.2.1 Separately or Integrally Cast Specimens:
- 3.5.2.1.1 Tensile Properties: Shall be as follows, determined in accordance with ASTM E8:

Tensile Strength, min

Yield Strength at 0.2% Offset, min

The section in 4D min

120,000 psi (825 MPa)

110,000 psi (760 MPa)

Elongation in 4D, min 3% Reduction of Area, min 3%

- 3.5.2.1.2 Stress-Rupture Properties at 1800°F (980°C): specimens, maintained at 1800°F ± 3 (980°C ± 2) while a load sufficient to produce an initial axial stress of 22,000 psi (150 MPa) is applied continuously, shall not rupture in less than 30 hours. The test shall be continued to rupture without change of load. Elongation after rupture, measured at room temperature, shall be not less than 5% in 4D. Test shall be performed in accordance with ASTM E139.
- 3.5.2.1.2.1 The test of 3.5.2.1.2 may be conducted using a load higher than required to produce an initial axial stress of 22,000 psi (150 MPa) but load shall not be changed while test is in progress. Time to rupture and elongation requirements shall be as specified in 3.5.2.1.2.
- 3.5.2.1.2.2 When permitted by purchaser, the test of 3.5.2.1.2 may be conducted using incremental loading. in such case, the load required to produce an initial axial stress of 22,000 psi (150 MPa) shall be used to rupture or for 30 hr, whichever occurs first. After the 30 hr and at intervals of 8 16 hr, preferably 8 10 hr, thereafter, the stress shall be increased in increments of 2500 psi (17 MPa). Time to rupture and elongation requirements shall be as specified in 3.5.2.1.2.

3.5.2.2 Castings:

3.5.2.2.1 Tensile and Stress-Rupture Properties: When specified on the drawing or when agreed upon by purchaser and vendor, tensile specimens as in 4.3.4 conforming to ASTM E8 shall be machined, from locations indicated on the drawing, from castings selected at random from each lot and heat treat lot. Property requirements for such specimens shall be as specified on the drawing or as agreed upon by purchaser and vendor and may be defined as specified in AMS 2360 and AMS 2362.

3.6 Quality:

- 3.6.1 Castings, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from internal and external imperfections detrimental to usage of the castings.
- 3.6.1.1 Castings shall have smooth surfaces and shall be well cleaned. Metallic shot or grit shall not be used for final cleaning, unless otherwise permitted by purchaser.
- 3.6.2 Castings shall be produced under radiographic control. This control shall consist of radiographic examination of castings in accordance with AMS 2635 until proper foundry technique, which will produce castings free from harmful internal imperfections, is established for each part number and of production castings as necessary to ensure maintenance of satisfactory quality.
- 3.6.2 When specified, castings shall be subjected to fluorescent penetrant inspection in accordance with AMS 2645.
- 3.6.3 Radiographic, fluorescent penetrant, and other quality standards shall be as agreed upon by purchaser and vendor. ASTM E192 may be used to define radiographic acceptance standards.
- 3.6.4 Castings shall not be repaired by peening, plugging, welding, or other methods without written permission from purchaser.

4. QUALITY ASSURANCE PROVISIONS:

4.1 Responsibility for Inspection:

The vendor of castings shall supply all samples for vendor's tests and shall be responsible for performing all required tests. Results of such tests shall be reported to the purchaser as required by 4.5. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the castings conform to the requirements of this specification.

- 4.2 Classification of Tests:
- 4.2.1 Acceptance Tests: Except as specified in 4.2.1.1, tests to determine conformance to all technical requirements of this specification are classified as acceptance tests and shall be performed to represent each master heat or lot as applicable.
- 4.2.1.1 Tensile and stress-rupture properties of specimens cut from castings shall be determined only when specified by purchaser or when representative separately or integrally-cast specimens are not available. Tensile and stress-rupture properties of separately or integrally-cast specimens need not be determined when tensile and stress-rupture properties of specimens cut from castings are determined.
- 4.2.2 Preproduction Tests: Tests to determine conformance to all technical requirements of this specification are classified as preproduction tests and shall be performed prior to or on the first-article shipment of a casting to a purchaser, when a change in material or processing, or both, requires reapproval as in 4.4.2, and when purchaser deems confirmatory testing to be required.
- 4.2.2.1 For direct U.S. Military procurement, substantiating test data, and when requested, preproduction test material shall be submitted to the cognizant agency as directed by the procuring activity, the contracting officer, or the request for procurement.
- 4.3 Sampling:

Shall be in accordance with the following; a lot shall be all castings of the same part number poured from the same master heat within eight consecutive hours and presented for vendor's inspection at one time

- 4.3.1 Two chemical analysis specimens in accordance with 3.4.1 from each master heat or a casting from each lot.
- 4.3.2 Six tensile specimens in accordance with 3.4.2 or six integrally-cast specimens from each master heat, three specimens each for tensile testing and stress-rupture testing. Size and location of integrally-cast specimens shall be as agreed upon by purchaser and vendor.
- 4.3.3 Three preproduction castings in accordance with 4.4.1 of each part number.
- 4.3.3.1 Castings for preproduction evaluation may be produced as part of the initial run of castings.

4.3.4 One or more castings from each master heat when properties are required of specimens machined from castings. Size, location, and number of specimens machined from castings shall be as specified on the drawing or as agreed upon by purchaser and vendor. When size, location, and number of specimens are not specified, not less than four tensile specimens, two from the thickest section and two from the thinnest section, shall be cut from a casting or castings from each master heat.

4.4 Approval:

- 4.4.1 Sample castings from new or reworked master patterns and the casting procedure shall be approved by purchaser before castings for production use are supplied, unless such approval be waived by purchaser.
- 4.4.2 Vendor shall establish separately for separately or integrally-cast tensile specimens used for master heat qualification and for production of sample castings of each part number parameters for the process control factors which will produce tensile specimens meeting master heat qualification requirements and acceptable castings; these shall constitute the approved casting procedures and shall be used for producing subsequent master heat qualification specimens and production castings. If necessary to make any, change in parameters for the process control factors, vendor shall submit for reapproval a statement of the proposed changes in processing and, when requested, test specimens, sample castings, or both. Production castings incorporating the revised operations shall not be shipped prior to receipt of reapproval.
- 4.4.2.1 Control factors for producing test specimens and castings include, but are not limited to, the following:

Type of furnace and its capacity

Type and size of furnace charge

Vacuum level

Mold refractory formulation

Mold back-up material

Gating practices

Mold preheat and metal pouring temperatures (variations of ±25°F(+15°C) from established limits are permissible)

Solidification and cooling procedures.

Cleaning operations

Methods of inspection

4.4.2.1.1 Any of the above process control factors for which parameters are considered proprietary by the vendor may be assigned a code designation. Each variation in such parameters shall be assigned a modified code designation.