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2.2.12

2.2.13

2.2.14

2.2.15

2.2.16

2.2.17

2.2.18

HE or HEX: Hollizontal extent.

VE or VEX: Ver

PE or PEX: Pat

LWC: Liquid watter content (mass of water per unit volume of air).

MVD: Median v

MXD: Maximum

MND: Minimum

nmi: Nautical m

kt: Knots.

RWI: Rate of water interception:

TWP: Total wat

OAT: Outside a
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ical extent.

N extent.

blume diameter.
volume diameter.
volume diameter.

les.

br exposure) or total water path.

r temperature.

CAT: Cloud air
FAT: Free air te

IPS: Ice protecti

gmperature.
mperature.

on system(s).

FAA: Federal Aviation Administration.

NGM: Nested grid model.

ROP: Relative occurrence probability.
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2.2.19
2.2.20
2.2.21 GIS: Graphical i

2.2.22

RDR: Real dispersion ratio.

SOF: Safety of flight.

nformation system.

PIREPS: Pilot reports.

3. AEROSPACE INFORMATION REPORT MAIN BODY

3.1

3.1.1 Introduction
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Currently Accepted Civil Design Envelopes ("FAR-25, Appendix C")
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flights in the process of
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3.1.2 Applications of

CAR.25 Annendix C
=L —APPERGH

The envelopes are typically used to select design values of temperature and maximum probable LWC for computing the
maximum amount of ice expected to accumulate on unprotected components, or for computing the maximum heat
requirements for anti-icing the forward surfaces of wings, tailplanes or engine inlets. For all of these applications, a
combination of temperature and LWC would be selected for various operational altitudes (below 22,000 feet) for the
aircraft in question. Any "critical" flight condition, such as idle descent for jet aircraft where hot bleed air is at a minimum,
may require another set of temperatures and LWCs. Examples of these kinds of applications are given in

Reference 2.1.14.
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For airplanes with deicing equipment, such as expandable rubber boots on the leading edges of the wings, FAR-25,
Appendix C is also used to determine critical ice accretions. Intercycle ice, residual ice, and runback ice are dependent on
LWC, OAT, and MVD, as well as flight condition. Additionally, a maximum drop size of 40 um or 50 um diameter is used
to design chordwise extent of the wing or tail ice protection. Ice accretion aft of protected areas must be accounted for
when demonstrating safe flight in icing conditions. The envelopes are also needed for estimating the accumulation of ice
on unprotected surfaces. Typically a maximum drop size of 40 um or 50 pm diameter is used to compute the chordwise
extent of the wing or tail that must be covered by the active portion of the boot. Nothing else seems to be needed from
FAR-25, Appendix C, except to demonstrate by flight tests that the boots operate properly in the expected extreme
temperatures and in the available LWCs, and that they efficiently shed ice accretions that may accrete in. FAR-25,
Appendix C icing conditions. The envelopes may still be needed as before for estimating the accumulation of ice on
unprotected components, however.

3.1.3 Limitations of FAR-25, Appendix C

Although the FAR-25, Appenth ehvelopes-are-stitable-forselectingextrerme-vald Ay various combinations of
air temperature, MVD, and exposure distance, they do not contain all the information about the’iting environment that is
often desired. For exanpple, they do not give the probability that particular values of LWC ©r-M\{D will be found in icing
clouds. Designers of military aircraft may want to have a reduced ice protection capability.iy ordef to save power, weight,
and payload. In this cage it would be useful to have information on the probable occurtence of various values of LWC in
icing conditions. It may pe acceptable to design for lesser LWCs that will be exceeded10% of the time, for example. The
FAR-25, Appendix C enpelopes give only larger LWCs, those that may be exceeded 1% of the timp.

As another example, ngtice that the LWC versus MVD envelopes (Figures/1'and 4 of FAR-25, Appendix C [Figures Al
and A4 in this report]) are arbitrarily cut off at an MVD of 15 pm. This isthecause the envelopes are simply a graphical
representation of a colléction of recommended design points proposed:in*NACA TN-1855 (Reference 2.1.4). An MVD of
15 pm was apparently thought to be the minimum MVD worth considering for the size of the wingg and tail sections in use
at the time (1940). But today there are concerns that rotor blades and thin, natural laminar flow (NLF) airfoils have
significant collection efficiency for droplets smaller than 15 um in‘diameter.

Finally, Reference 2.1.1j1 shows that maximum expected |\WCs are altitude dependent, but this fact is not reflected in the
Appendix C envelopes.

Thus, the envelopes arg really only design envelopes and are not complete descriptions of the|icing atmosphere in all
aspects.

3.1.4 New Approachgs

In the late 1970s, the helicopter community began calling for relief from the large design values of LWC by requesting new
envelopes tailored to the lower altituides where helicopters operate. There was also a general intgrest in re-evaluating the
FAR-25, Appendix C envelopes against new data being obtained from modern, electro-optical, clpud probing instruments
coming into use on aircfaft in§trumented for cloud physics research. As a result, a new data gathgring and analyses effort
was begun under FAA [sponrSorship. About 28,000 nmi of measurements, both old and new havye been collected into a
computerized database |(Reference 2.1.24) in order to answer these issues

It is with this expanded database that several icing practitioners have experimented with different ways of analyzing and
displaying the data for their particular applications. Three different sets of examples have been contributed to this
Aerospace Information Report. They are intended to familiarize the interested reader with some of the possibilities,
stimulate new ideas, and to otherwise provide data displays that may be useful to diverse practitioners. Two of these
contributions resulted from particular military needs. The other resulted from attempts to overcome the difficulties of
comparing icing flight test data (which are averaged over variable flight distances) to the FAR-25, Appendix C envelopes.
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3.2 U.S. Air Force Trial Design Envelopes (contributed by Henry E. Bertolini)

3.2.1 Introduction

The United States Air Force has pioneered the concept of Integrity Programs as a primary tool for weapon system
development. This began with the structural integrity programs: ASIP and ENSIP for airframes and engine structures
respectively. The success of these programs led to the desire to implement the integrity philosophy to systems and their
software. Under the Integrity Program tasking entitled Characterizations and Analyses lies the Environment
Characterization, of which the Flight Icing Environment is a subset. An accurate environmental definition is required, as
design stress environmental spectra, design duty cycle and usage characterizations are performed utilizing these data. It
has been determined that current Mil-Standard definitions of the icing environment are not sufficient for use in the Integrity
Program approach to weapon system development. Ongoing development programs within Aeronautical Systems
Division at Wright-Patterson AFB also found the current definitions cumbersome and not indicative of reality. The search

for data that reflects the actual icing environment has resulted in the characterization contained herein.

3.2.2 Data

Some early icing data a
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not define the limits of t
Our goal is to define th{
current envelopes are r
appear in nature. Thesg
Administration had con
Standard curves) were
create an icing data bag
physics instruments" (
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conditions, that is, theg

nd collection methods were reviewed (References 2.1.1 to 2.1.6)¢Itis app
cted in the current MIL-Standard. Although a large spectrum of icing condi
al Notes, it appears that the current curves were based on<a “critical dro

dies utilizing thick wing sections at moderate speeds~Whatever the cas
ne icing environment but rather are design envelopeSte’be used for ice p
b environment for usage in the heretofore mentioned integrity programs. ]

attempts are futile and do not serve the purp@ses of environment definitig
cerns that the current FAR-25, Appendix €. envelopes (Reference 2.1.7)
pverly conservative for some types of air¢raft and the FAA Technical Centg
e "of recent measurements of icing parameters recorded by research airg
eference 2.1.8). It is this data base, developed and managed by Dr. Ric
oratory, upon which the characterizations contained herein were constru

ronment Envelopes

these envelopes are for supercooled clouds only. Two sets of envelopes
ds (Figures B1A-and B4A) and one set for convective clouds (Figures E
Temperaturetversus Altitude, Liquid Water Content versus Temperaturg
brizontal Extent versus Liquid Water Content. The envelopes given re
e data_are-the result of a 0.001 probability analysis (Reference 2.1.1).

compromise between environment definition and utility for engineers and designers. Note that thes

and input from all inter|

bsted™parties is highly encouraged. The shortcomings and possible add

later. Our hope is to co

arent that the limitations
lions are documented in
b size” and hence some

nsider important) were not included in the final curves., This decision may have been based on

b, the current curves do
otection system design.
'he shortcomings of the

bvealed when an attempt is made to find an intersection of drop size, temperature and LWC that

n. The Federal Aviation
(the source of the MIL-
br undertook a project to
raft using modern cloud
nard Jeck, formerly with
cted. (References 2.1.9,

have been constructed;
1B and B4B). The four
, Liquid Water Content
present 99.9% of icing
These envelopes are a
e charts are preliminary
itions will be discussed

rdinate the final version of these charts with all of the DOD and with the f

ture FAA envelopes so

that, as much as possible, they are the same. We wish to alleviate the burden that two sets of criteria place on the
manufacturers.

3.2.4 Using the Charts

Figure B1A, Temperature versus Altitude encompasses 99.9% of icing conditions in layered clouds. Figures B2, Liquid
Water Content versus Temperature and Figure B3A, Liquid Water Content versus Altitude define limits of liquid water
content in layered clouds based on temperature and altitude respectively. Figure B4A, Horizontal Extent versus Liquid
Water Content defines a LWC factor based on the length (in nmi) of the icing encounter in layered clouds. Figures B1B to
B4B contain the same information for convective clouds.
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Figure B1A presents the temperature/altitude envelope in which icing conditions in layered clouds may be encountered by
aircraft in normal flight operations. It does not indicate the severity of those conditions. Figure B2A presents the range of
LWCs that can be found at the temperature of interest. Figure B3A presents the range of LWCs possible at the altitude of
interest. The curves on Figures B2A and B3A define the limits of LWC based on temperature and altitude respectively. As
the data of Figures B2A and B3A are normalized to a 17.4 nmi cloud, Figure B4A further factors the LWC for horizontal
extent. The convective cloud information is presented in the same manner on Figures B1B to B4B.

3.24.1 Examples of Chart Usage

3.24.11

3.24.111

3.24.11.2

3.24.1.13

324114

3.24.1.15

3.24.1.16

3.24.1.1.7

3.24.1.2

3.24.121

3.24.1.2.2

3.24.1.23

3.24.1.24

3.24.1.25

3.24.1.2.6

3.24.1.27

3.24.13

324131

3.24.1.32

3.24.1.33

3.24.1.34

3.24.1.35

Layered Clouds Example No.1

Choose an altitude/temperature combination. 10k feet at -20 °C (Figure B1A).

Check LWC range based on temperature choice. 0.0 to 0.7 g/m?® (Figure B2A).

Check LV
Determin

Choose L
LWCup't

Choose €
Result: 5(
Layered Clg
Choose 4
Check LV
Check LV
Determin

Choose L
LWC up t

Choose €

C range based on altitude choice. 0.0 to 0.9 g/m? (Figure B3A).
b limiting factor. Temperature limits LWC at 0.7 g/m3.

\WC from range based on limiting factor. Choose maximum for ‘this examp
D the maximum value is a valid choice.

xtent and determine LWC factor. Choose 50 nmi. Yields factor of 0.66 (Fig
nmi icing encounter at 10k feet at -20 °C with BWC of 0.46 g/m?.

uds Example No.2

n altitude/temperature combination. 10K feet at -10 °C (Figure B1A).

C range based on temperature(choice. 0.0 to 1.0 g/m? (Figure B2A).

C range based on altitudé.choice. 0.0 to 0.9 g/m? (Figure B3A).

e limiting factor. Altitude limits LWC at 0.9 g/md.

\WC from rangesbased on limiting factor. Choose maximum for this examp
D the maximam value is a valid choice.

xtent and*determine LWC factor. Choose 50 nmi. Yields factor of 0.66 (Fig

Result: 5

D i icing encounter at 10k feet at -10 °C with LWC of 0.59 g/m3. [A

e: 0.7 g/m3. NOTE: Any

ure B4A).

e: 0.9 g/m3. NOTE: Any

ure B4A).

s expected the warmer

temperat

Te Supports a higher Tmaximunm tWe—and—imbothtases the—toriz

normalized cloud to a lower LWC.]

Convective

Clouds Example No.1

Choose an altitude/temperature combination. 20k feet at -25 °C (Figure B1B).

Check LWC range based on temperature choice. 0.0 to 1.3 g/m?® (Figure B2B).

Check LWC range based on altitude choice. 0.0 to 3.5 g/m? (Figure B3B).

Determine limiting factor. Temperature limits LWC at 1.3 g/m?.

ntal extent factors the

Choose LWC from range based on limiting factor. Choose maximum for this example: 1.3 g/m3. NOTE: Any
LWC in this range is a valid choice.
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3.2.4.1.3.6  Choose extent and determine LWC factor. Choose 1.0 nmi. Yields factor of 1.19. (Figure B4B).
3.2.4.1.3.7 Result: 1.0 nmi icing encounter at 20k feet at -25 °C with LWC of 1.55 g/m?.

3.2.4.1.4  Convective Clouds Example No.2

3.24.1.4.1 Choose an altitude/temperature combination. 20k feet at -15 °C (Figure B1B).

3.24.1.42 Check LWC range based on temperature choice. 0.0 to 3.4 g/m? (Figure B2B).

3.2.4.1.43 Check LWC range based on altitude choice. 0.0 to 3.5 g/m? (Figure B3B).

3.2.4.1.4.4 Determine limiting factor. Temperature limits LWC at 3.4 g/m?.

3.2.4.1.45 Choose UWCTfrom range based on iimiting factor. Choose maximum for this example: 3.4 g/m3. NOTE: Any
LWC in this range is a valid choice.

3.2.4.1.4.6  Choose gxtent and determine LWC factor. Choose 1.0 nmi. Yields factor of/4:19 (Figure B4B).

3.2.4.1.4.7 Result: 10 nmi icing encounter at 20k feet at -15 °C with LWC of 4.0%g/m3. [Again the warmer temperature
supports |a higher LWC and the horizontal extent factors the LWC-of the normglized cloud to a higher
value.]

3.2.4.1.5 Convective [Clouds Example No. 3

3.24.1.5.1 Choose an altitude/temperature combination. 20k feet-at*-30 °C (Figure B1B).

3.24.1.5.2 Check LWC range based on temperature choice:0:0 to 0.5 g/m? (Figure B2B).

3.24.1.53 Check LWC range based on altitude choice(0.0 to 3.5 g/m? (Figure B3B).

3.2.4.1.5.4 Determing limiting factor. Temperature limits LWC at 0.5 g/m3.

3.24.155 Choose LWC from range basedon-limiting factor. Choose maximum for this examp|e: 0.5 g/m3. NOTE: Any
LWC in this range is a valid choice.

3.2.4.1.5.6 Choose gxtent and detefmine LWC factor. Choose 1.0 nmi. Yields factor of 1.19 (Figure B4B).
3.2.4.1.5.7 Result: 1.0 nmi icing ehcounter at 20k feet at -30 °C with LWC of 0.6 g/m3.

3.2.4.2 Application off{the:New Characterization

What impact would thiS hew environment nave on current Uses of the MILC-Standard envelopes? To examine the
implications we have chosen an icing condition suggested by JSSG-2007 (Reference 2.1.12); Low Altitude Loiter. The
changes to LWC dictated by the new characterization are shown in the accompanying charts. In this case the pressure
altitude, flight speed, and ambient temperature were used to determine the values necessary to utilize the charts as in the
previous examples. The duration values were used to determine the required horizontal extent. Using the Layered Cloud
Charts we see that the LWC is limited by altitude and it is further modified by the horizontal extents (HE). Notice that the
LWCs are most severe for the short durations and least severe for the longest exposure (11 minutes or 35.2 nmi). For the
short durations the new envelopes yield less severe LWCs but for the longer durations the LWCs become more severe.
Interestingly, if the Convective Cloud Charts are used for the short duration exposures (2 minutes or 6.4 nmi) the results
are the same for this particular example. This example demonstrates but one possible implication. Actually we would
expect the new envelopes to be used in a broader sense that is to determine all of the test condition parameters. And
possibly the new envelopes would indicate a vastly different combination of temperature and altitude, not just LWC, as the
critical case(s).
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3.2.4.3 Questions about the New Envelopes

Is this method of presentation acceptable? Is presentation of the "limits" all that is required? Is more information needed:
probability of occurrence, duration versus altitude, droplet size (MVD) versus altitude or some relevant parameter (if one
can be found)? All of these questions (and likely many more) must be addressed before consideration for incorporation
into a MIL-PRIME can occur.

This characterization has been adopted as the specified icing environment in a current USAF program. We anticipate that
the lessons learned during this program will be extremely valuable in the effort toward a new and universal icing
environment definition.

3.3 Distance-Based Envelopes (Contributed by Richard K. Jeck) (Reference 2.1.22)

3.3.1 Introduction
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NACA researchers simply recommended fixed distances of one-half mile, 3 miles, or “continuous”, depending on the
cloud type. Somewhere along the way, the discrete tabular combinations were converted to a graphical format (Figure Al,
for example), as they appear today in FAR-25 and FAR-29. LWC and MVD were selected as primary variables, with
temperature serving as a governing parameter. But the maximum probable LWC also varies (inversely) with averaging
distance, so the magnitude of the LWC versus MVD characterization will change for different averaging distances. This
complication was managed by establishing the characterization in Figure Al for a fixed averaging distance (20 statute
miles) and then providing a correction factor for adjusting the LWC limits for other distances. The correction factor was
supplied as an experimentally derived curve (Figure A3).

There are several problems with this arrangement. One is that it is difficult to plot test points on Figure Al because the
test exposures are usually different from the fixed reference distance for which the envelopes are drawn. There is usually
no valid way of converting the actual LWC to what it may have been if the exposure had been equal to the reference
distance. The only dependable way is to shrink or stretch the envelopes along the LWC dimension (by applying the LWC
adjustment factor curve) to conform to the actual exposure distances each time. A similar problem arises when trying to
compare various points on the envelopes to each other when, as usual, the exposure distances are different. In other
words, the present arrangement does not easily accommodate the fact that exposure distances are really variable.
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3.3.3 The LWC versus HE Characterization

One way to overcome this problem is to bring exposure distance right up front as a primary variable. MVD can be treated
as a controlling parameter, like temperature. Figure C1 shows all the available LWC averages from the database for
stratiform clouds, plotted in the LWC versus HE format. In order to plot these points on Figure Al, they would all have to
be converted somehow to an averaging distance of 20 statute miles (17.4 nmi). There are major uncertainties in trying to
do that legitimately. Alternately, Figure A1 would have to be re-scaled (using Figure A3) for each of the averaging
distances used in Figure C1. This would result in a large number of graphs like Figure Al, one for each averaging
distance, and the situation would be unwieldy at best. In Figure C1 the data points all fall naturally in place on a single
graph, no matter what their averaging distance.

3.3.4 Sample Overlays
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3.3.7

The RWI versus HE Characterization

Figure C5 shows a similar graph with the ordinate converted to rate of water interception (RWI). This is done by simply
multiplying LWC by a fixed value of airspeed (200 kt in this case). RWI is of importance in anti-icing applications, for
example. The RWI characterization shows how long a given RWI can be expected to last in natural icing conditions, and it
can be used to plot RWI test points (and RWI histories) as before.
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3.3.8 “Protection” Zones

Figure C6 shows one way to compare test points with design points. If an ice protection system is designed to withstand
0.5 g/m® of LWC over the standard distance of 17.4 nmi, then a “design protection zone” has been established which
includes all lesser LWCs and all lesser HEs (for a specified range of temperatures). This zone can be depicted on the HE-
based graphs as shown by the larger shaded area in Figure C6. If a subsequent test flight demonstrates that the ice
protection system can withstand a certain LWC over a given distance, then a similar “demonstrated protection zone” has
been established. The smaller shaded area in Figure C6 illustrates the demonstrated zone for a hypothetical test flight
which found 0.3 g/m? over a distance of 30 nmi and was able to demonstrate that the ice protection equipment worked
properly for the exposure. This scheme permits a direct comparison between design and test points, in terms of the
relative size and coverage of their protection zones. Similar protection zones can also be drawn on the RWI versus HE

plots, if one wants to work in terms of RWI instead of LWC.

3.3.9 The TWP versus HE Characterization
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applies only to the variables (TWP and RWI) themselves, and not necessarily to their effects (such as ice shapes or the
performance of ice protection systems). It simply means that the aircraft has been exposed to the same total amount of
water or the same rate of water interception. But in most cases, TWP and/or RWI could be used as a basis for comparing
exposures or gauging their adequacy. In some cases, equivalent TWPs and/or RWIs may result in equivalent effects as
well, at least to a first approximation.

TWPs also have the property of being additive. This is useful in natural icing flight tests. It may provide a practical way of
specifying a required minimum exposure. The aircraft can accumulate icing exposures until some minimum TWP has
been met.
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3.3.11 Summary

This methodology demonstrates some new insights and possibilities that come to light when LWC, RWI, or TWP are
plotted against horizontal extent (HE) as a way to characterize icing conditions. The characterizations are usable for
selecting realistic values of icing-related variables for a variety of purposes, including icing wind tunnel settings, computer
modeling, and predicting the intensity of icing conditions aloft. The HE-based format can simplify the plotting of test points,
and the equivalency properties of RWI and TWP, as well as the notion of protection zones, suggest new ways of
comparing exposures and evaluating test flights. The examples and conjectures described herein are given simply to
illustrate the possibilities and are not to be considered as approved procedures.

3.4 A Nomogram and Statistical Approach (Contributed by David J. Yurkanin)

3.4.1 Introduction
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3.4.2 Presentation Formats

In order to efficiently formulate this new data presentation, many chart formats currently being used needed evaluation.
This includes local formulations such as the common LWC-Mean Volumetric Diameter (MVD)-Outside Air Temperature
(OAT) format as shown in Figure Al, the preferred Altitude-OAT icing envelope as shown in Figure D1, and the often
overlooked LWC-Horizontal Extent (HEX) format as shown in Figure D2. Figure Al shows the current FAA standard as a
function of ambient temperature for layer clouds. Figure D1 shows both old and new icing envelopes, with a scattergraph
of the FAA icing database, along with composite temperature and altitude histograms showing the statistical variation in
the data. Figure D2 shows the horizontal extent of icing encounters, using a pre-defined set of conditions for both English
and metric units, along with a scattergraph of symbols representing the institutional source of the data.


https://saenorm.com/api/?name=4fec9fef0adbb9d0537ee846f17cec0a

SAE INTERNATIONAL AIR5396™A Page 13 of 47

A historical review of the literature concerning icing environment data presentation in the past was also required.
References 2.1.13 to 2.1.14 give an excellent summary of methods of presentation of icing variables that have been used
over the years with an extensive bibliography of icing related research. References 2.1.15 to 2.1.25 are some additional
works related to this subject not listed in the associated section and/or the main bibliography.

The current, widely accepted standard has its origins in a series of NACA Technical Notes based on data obtained in the
late forties and early fifties and is presented in many different combinational and statistical formats. In the late sixties and
early seventies much work was done with climatology and forecasting of icing conditions where that data was displayed
relative to a global map or a standard weather chart. From the late seventies to date the greatest advancement of
characterization methodology and philosophy has been produced.

As stated by Newton (Reference 2.1.19), there needs to be a delineation between environment characterization
(forecasting or climatology) and engineering standardization (design, certification, or qualification) mainly because the
character and usage of the information is for such different purposes. Even so, a common baseline data format would be
beneficial to all those i i Hot over the years seem to
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The factors affecting aviation systems are constituted in two aircraft-relative scales; local and global. The proposed local
nomogram must be capable of interfacing to a global format that considers climatological variables such as seasonal,
topographic, orographic, and airmass dependencies. This can be done by simply having multiple chart sets or ultimately a
Geographical Information System (GIS) on CD-ROM with a global map display, that when a particular location or region is
picked, the desired chart is displayed. By using Altitude as a vertical axis the potential for a 3-D representation of the
proposed chart referenced to a globe or map is valuable and highly desirable.

With aviation systems, for the inflight phase of operation, any chart format should include Airspeed and Altitude, which is
the Flight Envelope, simply because it describes the local spatial and temporal environment in which operations occur. A
low altitude version of the chart could be generated for approach/climb-out, ground, and ship aviation operational
environments.

Since the particular issue with aircraft icing is the phase change from water to ice, which is a strong function of
temperature and pressure that varies primarily with atmospheric level, then Altitude and Temperature, which is the Icing
Envelope, should also be included. It is also true that in-Cloud and precipitation icing environments are a strong function
of atmospheric level.
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When designing an air vehicle or determining its specified performance, the maximum operational radius or distance
(Range, Specific Range, or Climb Distance) and the maximum time-on-station or total flight time (Endurance, Time-to-
Climb, or Marshal Time) as a function of Gross or Payload Weight are primary variables. These are typically charted as a
function of Altitude or Airspeed as well. Other important parameters affected by icing, such as Rate of Climb, could be
easily adapted to a chart using Altitude and Airspeed. For other components, such as the airframe integration of the
propulsion inlet, duct, and engine, variables such as Thrust and Air/Fuel Mass Flow Rate would also adapt well to such a
chart.

For forecasting purposes, it is desirable to have a chart format that allows for resolution of concerns regarding icing
severity definition, which may require a link back to the qualification/certification and design engineering standard charts.
In Figure D5, Trace, Light, Moderate, and Severe Icing are defined there as historically used by weather forecasters.
Recent research says that these icing severity degrees are actually airframe configuration dependent, not just indicative of
the presence and intensity of supercooled droplet regions in clouds. Notice that the overlay of Figure D5 and its parent
chart (Skew T-Log P) are actually based on Altitude (pressure level) versus Temperature like the nomogram in Figure D9.
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Build-up, B and the Total Water Path TWP are defined by the following eguations:

R = LWCxV_xA;xn x(MVD) =(FWP)/t x A; x n x (MVD)
B = TWP x A, x 1 x (MVD)
TWP = LWC x PEX (Eq. 1)
where:

V = Airspeed
Ar = Component Frpntal Area
t© = Exposure Durgtion
n = Total Collectiop Efficiency

Note that the variable TWP, or the Total Water Path developed by Jeck (Reference 2.1.22), can also be used within this
nomogram format as long as PEX, HEX, or VEX are used appropriately. From this information and the Temperature and
Altitude the amount and type of ice accretion could be determined along with associated component degradation
(Aerodynamic, Weight, Impact, Electromagnetic). This nomogram would also allow for the differences in displayed
variables for an unprotected, deiced, or anti-iced component. The corresponding degradation of Range, Endurance,
Payload Weight, Rate-of-Climb, or any other component specific variables could be calculated via simulation or measured
through testing and displayed on the left or right side of the nhomogram. In so doing the chart would allow for design
assessments and trade-offs since Temperature and Altitude are compromised to gain benefits in required electrical
power, bleed air, or weight (shown as dashed lines in Figure D9). Once the desired performance curves are determined
on the left, a set of statistical contours could be plotted on the right. This would allow determination of what kinds of
degradation are the most probable, such that some sort of protection should be applied, or aid in determining where the
specification could be relaxed while incurring the lowest risk.
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3.4.4 Data Sources, Models, and Trends

The origins of such a nomogram evolved out of efforts to present a more accurate icing environment characterization for
particular military program issues. This involved gathering a wealth of reduced icing meteorological data and interpretive
models now available from various sources around the world to be used for cross-verification of trends in the data. The
data sources currently being used are the FAA icing database, the NOAA/FSL icing Pilot Reports (PIREP) database, the
NOCD/NCDC Global Upper Air Climatic Atlas (GUACA) database, and NCAR/ARL WISP icing forecasting correlations.

As the data were processed it was realized that the FAA charts (Reference 2.1.7) did not give a complete and accurate
picture of the icing environment and icing potential as well as being in a format inefficient for design purposes. An issue in
particular was the need for a "scenario extent" or distance that represented the typical exposure of an aircraft during a
mission or phase of flight, not just when flying through a particular cloud type. An example chart from the analysis,

presenting the icing envelope with isolines of scenario horizontal extent is shown in Figure D10.
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ther requirement was information that gives the VEX of icing conditions’f

abase using a detailed filter algorithm is shown in Figure D14. This ¢
bf vertical extent. Note that the large depths of icing conditions -are ass

| data there was a need to cross-verify the trends shown within the FAA
ts (PIREPS) of icing conditions was employed. This database contains cq

f the PIREP. This data was used to generate therchart set in Figure D12
ines of ROP for each database. Note the reference curves on each c
and Russian data, and a NACA estimate*of most probable icing tempe
e chart show striking agreement with edch other as well as with the NAQ

data variables and chart formats i Figures D10 to D12 is that they utilize

hy. This versatility is what provided the realization that this type of format
ch most of the required variables could be plotted and compared. This for
htion as well as airplane performance charts.

mple
a combinatiofief a Pressure Altitude-OAT-Airspeed presentation, which ig
flight limit-extremes and the exposure extents of icing. In actuality any p

tion of7Altitude or Airspeed, can be placed on this nomogram. An examp
data’might be displayed.

found in the FAA LWC
br assessment of climb-

and ascent flight patterns. An example of a VEX chart generated by’ employing data extracted

hart presents the icing
ociated with convective

cing database. Another
des that represent type

bng with Nested Grid Model (NGM) computer simulation estimations of fneteorological variables

. Each chart shows the
nart show the standard
ature. The trend of the
A curve (seems to be a

the Altitude versus CAT
would be efficient as a
mat also could be linked

actually a joining of the
llows direct comparison
erformance variables of
le nomogram, shown in

Although very busy for display purposes, this particular nomogram could be used as an example as follows:

The flight envelope is plotted on the right chart.

HEX isolines are plotted on the right chart for layer/convective clouds.

3451
3452

on the right chart.
3.45.3 The scenario
3454

boundary reductions on the right chart.

The particular icing flight boundaries from the detail specification, and reductions being considered, are placed

Airspeed/HEX comparisons can then be made at various altitudes along with evaluation of specification
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3.455

measured or simulated and plotted on the left chart.

3.45.6

3.4.6

Given critical altitudes and airspeed/HEX combinations, degradation of the aircraft performance could be

In this case Payload-Range curves are shown with/without ice and also Altitude versus Specific Range with ice.

Another example of the use of the nomogram would be if isolines of flight hour density and icing exposure PEX

were plotted on the right chart then a more concise assessment or trade can be performed regarding the value of
protecting or not-protecting a particular aircraft or component. If isolines of icing exposure ROP are plotted
instead of PEX then the importance of that protection can be evaluated. On the left chart, for example, if Payload
Gross Weight lines are drawn for the clean and iced aircraft (derived from analytical and/or test results) the true
cost of icing degradation effects can be presented. The nomogram can also be used for presenting individual
component degradation comparisons such as ice accretion stall behavior of flight surfaces, air inlet blockage and
shed ice ingestion size/potential, rotor torque rise and vibration from asymmetrical shedding, and antenna/radome
performance degradation; while relating all the effects to the required flight phase/mission profile (see Note 4.4).

4. NOTES
4.1 Cloud Air Tempe|
defines the partid
hydrometeors, ng
"wet bulb" tempe
In some accretion

Outside Air Tem

decrease around

measurement dey

Air Temperature

delta temperature
4.2 Horizontal Extent
environment, for ¢
is Duration, which
in icing is a functi
what would be th{
it be for a marsha|
desired.

4.3
particular accretiq
Added variables
Droplet Diameter
LWC of an ideal

rature (CAT) is the preferred thermodynamic state variable for the no
ular accretion environment ambient temperature. The term
t only of meteorological clouds, but precipitation and sea spray, for exa
ature of the ambient air, not a Free Air Temperature (FAT){-Which infers a
environments CAT and FAT are the same, and in most.the difference may

berature (OAT), however, accounts for the static\temperature drop due

airframe components in "real fluid" flow-fields. Many researchers
ices protrude near the aircraft fuselage surface;where these aerodynamic
s just the CAT plus the delta temperature<gained from the flow coming
due to heat losses from the device.

(HEX) and Vertical Extent (VEX)-are estimates of the dimensions of th
pxample, supercooled droplets, The important variable for evaluating a pa

gram because it best

o
“cloud" re%jrs to the dispersion of

ple. CAT represents a
"dry bulb" temperature.
be inconsequential.

to the static pressure
use OAT since their
effects take place. Total
0 rest minus any "real"

e cloud of an accretion
ticular aircraft exposure

can be obtained by dividing-the*flight path distance by the airspeed. The flight path distance while

bn of the particular mission or purpose of the flight phase, not only HEX ar
b exposure of an extended descent approach with one landing abort and

d/or VEX. For example,
jo-Around? What would

ing (orbiting) and deseent approach profile? It seems that ultimately a patl extent (PEX) is what is

The Mean Volunpetric Diameters (MVD) is a single variable that describes the dispers

n enviropment. It is useful for plotting on these characterization charts
hat fully~describe the droplet distribution; such as Maximum Droplet Dig
MNDB); and Real Dispersion Ratio (RDR); should be considered. RDR is t
Jistribution (say Langmuir "B") centered at the MVD, over the integrated

distribution. RDR

on characteristics of a

but it is not sufficient.
meter (MXD), Minimum
he ratio of the integrated
| WC of the entire "real"

gives an indication of how much L WC is present at the extremities of

the distribution. These

added variables are important for "installed" exposed components (such as an ice detector) where hydrometeor
trajectory effects (droplet boundary layer) are important.
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4.4

4.5

Some thoughts on why the current standards (FAA and Military) have been so successful for four decades of
aviation Ice Protection System (IPS) design and operation are in order. First, knowing that as of 1991-1992 there
are ~50,000 icing related PIREPS per year and only ~60 icing incidents per year, it might be thought that our
current standard and implementation process is acceptable. However, it must be realized that most of these icing
encounters were recorded because the pilots were requesting another altitude to exit from the conditions, before
any severe complications could occur. Also, most of the icing accidents over the years were on unprotected
airframes and by pilots with limited experience flying in icing conditions. In addition, forecast icing conditions are for
the most part avoided by prudent pilots. The result is that the standard has not been "tested" as intensely as it
seems. Second, the current standard is "statistically conservative," i.e., it specifies maximum conditions, such that if
an IPS is designed to protect components in most of the icing envelope, it would even perform in the most severe,
lowest probability conditions, such as in highly convective cells (i.e., thunderstorms). This may be called
conservative design while others would call it "over-design." This has caused a heavy burden on manufacturers for
certifying (qualifying) new technology, aerodynamically sensitive aircraft in icing conditions (especially helicopters)
such that many aircraft are not permitted to fly in icing.

Revision Indicatol

A change bar () located in the left margin is for the convenience of the user in locatingsareas where technical revisions,
not editorial changes, have been made to the previous issue of this document. An (R)'symbol to the left of the document
title indicates a complefe revision of the document, including technical revisions. Change bars and (R) are not used in

original publications nor|in documents that contain editorial changes only.

PREPARED BY SAE SUBCOMMITTEE AC-9C, AIRCRAFT ICING TECHNOLOGY OF
COMMITTEE AC-9, AIRCRAFT ENVIRONMENTAL SYSTEMS



https://saenorm.com/api/?name=4fec9fef0adbb9d0537ee846f17cec0a

SAE INTERNATIONAL AIR5396™A Page 18 of 47

APPENDIX A - FIGURES FOR CURRENTLY ACCEPTED CIVIL DESIGN ENVELOPES
(FAR 25 APPENDIX C)

Pressure altitude range, S.L. to 20,000 feet.
Maximum vertical extent 6,500 feet.
Horizontal extent, standard distance of 17.4 nautical miles.

Class llI-M continuous maximum.
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Pressure altitude range

4,000 to 22,000 feet.
Note: Dashed lines indicate Horizontal extent,
possible extent of limits. standard distance of 2.6 nmi.
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Note: Dashed lines indicate
possible extent of limits.

40

11t
4

$ 3
§44630

1

20 : e 2

il

rature - Deg. F
it

LT :

T

3

-20

i *-Hm* i ! M

s ”} Y%‘l’ﬁ--—

Ambient tem

I
ik

1
H
(@]
o
§gis’
%
R yigsh
Sgsfal
¥
.
$
o

Pressure altitude - 1,000 feet.

Figure A5} FAR Part 25 (Appendix C) intetmittent maximum atmospheric icing gonditions
(cumuliform clouds) - pressure altitude versus ambient temperature



https://saenorm.com/api/?name=4fec9fef0adbb9d0537ee846f17cec0a

SAE INTERNATIONAL AIR5396™A Page 23 of 47

[ ]
0
_— S S=—=S===cs=== =
= = <
PR L - : 1 l: ll m
——— = =
T T : - RE
- + += N .é
> r : = L]
> -, = —— T *
1 : T —t + t w
- bon t = 5
i T : [
— g
:;i; — I s
T t T 9 -
-]
=
o« L2
S (&)
<
[«
== ———rr T et =
= = = N
7 Tt o
= ey
't 1 1
e |
i
it L N
< 3o ~N - o o o X=
L] . L ] [ ] [] L[] L[ ]
- -4 -4 (] (] o o
ssajuoisuawiq - 4 ‘10joe4 Juajuoy Jajepp pinbi

Figure A6 - FAR Part 25 (Appendix C) intermittent maximum atmospheric icing conditions
(cumuliform clouds) - cloud horizontal extent versus liquid water content factor


https://saenorm.com/api/?name=4fec9fef0adbb9d0537ee846f17cec0a

SAE INTERNATIONAL AIR5396™A Page 24 of 47

APPENDIX B - FIGURES FOR U.S. AIR FORCE TRIAL DESIGN ENVELOPES
(CONTRIBUTED BY HENRY E. BERTOLINI)
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AIR5396™A
APPENDIX C - FIGURES FOR DISTANCE-BASED ENVELOPES

SAE INTERNATIONAL

(CONTRIBUTED BY RICHARD K. JECK)
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Figure C1 - The supercooled layer cloud database plotted in LWC versus HE format

plotting symbols indicate data source
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Figure C2 - Overlay of observed temperature limits to LWC and HE for layer clouds
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Figure C3 - Overlay of observed MVD limits to LWC and HE for layer clouds
percentages give the relative number of data miles recorded under each curve
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Figure C4 - Plotting LWC histories in addition to conventional test "points”
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Figure C5 - Example of converting the LWC axis to rate of water interception (RWI)
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Figure C7 - The supercooled layer cloud database plotted in the TWP versus HE format
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APPENDIX D - FIGURES FOR A NOMOGRAM AND STATISTICAL APPROACH
(CONTRIBUTED BY DAVID J. YURKANIN)
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graph showing data source symbols (from reference 2.1.27)
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