NFPA 80 Fire Doors and Fire Windows 1992 Edition

NOTICE

All questions or other communications relating to this document should be sent only to NFPA Head-quarters, addressed to the attention of the Committee responsible for the document.

For information on the procedures for requesting Technical Committees to issue Formal Interpretations, proposing Tentative Interim Amendments, proposing amendments for Committee consideration, and appeals on matters relating to the content of the document, write to the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

A statement, written or oral, that is not processed in accordance with Section 16 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Users of this document should consult applicable Federal, State and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action which is not in compliance with applicable laws and this document may not be construed as doing so.

Policy Adopted by NFPA Board of Directors on December 3, 1982

The Board of Directors reaffirms that the National Fire Protection Association recognizes that the toxicity of the products of combustion is an important factor in the loss of life from fire. NFPA has dealt with that subject in its technical committee documents for many years.

There is a concern that the growing use of synthetic materials may produce more or additional toxic products of combustion in a fire environment. The Board has, therefore, asked all NFPA technical committees to review the documents for which they are responsible to be sure that the documents respond to this current concern. To assist the committees in meeting this request, the Board has appointed an advisory committee to provide specific guidance to the technical committees on questions relating to assessing the hazards of the products of combustion.

Licensing Provision — This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rulemaking process. B. Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rulemaking powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rulemaking powers may apply for and may receive a special royalty when the public interest will be served thereby.
- 3. Scope of License Grant The terms and conditions set forth above do not extend to the index to this document.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

NFPA 80

Fire Doors and Fire Windows

1992 Edition

Reference: 2-7.3, 8-2.3.1, 13-1.1, 13-3.1.3

The Committee on Fire Doors and Windows notes the following errors in the 1992 edition of NFPA 80, Standard for Fire Doors and Fire Windows.

- 1. Change the word "protect" in 2-7.3 to "project".
- 2. The Exception in 8-2.3.1 should be moved to 8-2.3.2.
- 3. Revise 13-1.1 to reference NFPA 258, Standard Research Test Method for Determining Smoke Generation of Solid Materials, not NFPA 257, Standard for Fire Tests of Window Assemblies.
- 4. Correct 13-3.1.3 to reference Table 13-2.2. There is no Table 13-3.2.2.

Issue Date: October 6, 1992

Copyright © 1992 All Rights Reserved NATIONAL FIRE PROTECTION ASSOCIATION

Copyright © 1992 NFPA, All Rights Reserved

NFPA 80

Standard for

Fire Doors and Fire Windows

1992 Edition

This edition of NFPA 80, Standard for Fire Doors and Fire Windows, was prepared by the Technical Committee on Fire Doors and Windows, released by the Correlating Committee on Building Construction, and acted on by the National Fire Protection Association, Inc. at its Annual Meeting held May 18-21, 1992 in New Orleans, LA. It was issued by the Standards Council on July 17, 1992, with an effective date of August 14, 1992, and supersedes all previous editions.

The 1992 edition of this document has been approved by the American National Standards Institute.

Changes other than editorial are indicated by a vertical rule in the margin of the pages on which they appear. These lines are included as an aid to the user in identifying changes from the previous edition.

Origin and Development of NFPA 80

The Standard for the Protection of Openings in Walls and Partitions can be traced to the early days of the Association. Reports covering various phases of the problems of protectives for openings were submitted to the Association by several committees concerned and adopted in 1897, 1898, 1899, 1900, 1901, 1902, and 1908. In 1911 a standard on Door Openings was presented and adopted, and Rules for Fire Protection Coverings for Openings in Walls and Partitions on the Interior Buildings were adopted in 1912. In 1915 the existing rules were recodified and rearranged. A new name for the Committee in charge of this document, the Committee on Protection of Openings in Walls and Partitions, was chosen in 1916. Revisions recommended by the Committee were adopted by the NFPA in 1916, 1917, 1918, 1926, 1927, 1928, 1931, 1937, and 1941

In 1955 the name of the Committee was changed to the Committee on Fire Doors and Windows. In 1959 a complete revision of the 1941 edition was adopted including a change in name to correspond with the name of the Committee. The 1959 edition was revised in 1961, 1962, 1965, 1966, 1967, 1968, 1970, 1973, 1974, 1975, 1977, 1979, 1981, 1983, 1986, and 1990.

For 1992 the Committee changed the name of the document to Standard for Fire Doors and Fire Windows. Major changes for 1992 are additions to the standard that recognize the technological changes in glazing materials for fire barrier openings and appendix material on radiant heat transfer. Radiant heat transfer, while not included in the performance requirements for fire doors and fire windows, is a consideration in the design of fire barriers.

Committee on Building Construction

Correlating Committee

Donald W. Belles, Chairman Donald W. Belles & Assoc., Inc., TN

Gregory J. Cahanin, Secretary
National Fire Protection Association, MA
(Nonvoting)

John G. Degenkolb, Carson City, NV Kenneth A. Kander, K. A. Kander & Assoc., WA Jack L. Kerin, State of California, CA Harold E. Nelson, Nat'l Institute of Standards & Technology, MD
Chester W. Schirmer, Schirmer Engineering Corp., NC
William A. Schmidt, Bowie, MD

Nonvoting

Jonas L. Morehart, Nat'l Institutes of Health, MD

Technical Committee on Fire Doors and Windows

John G. Degenkolb, Chairman Carson City, NV

Michael W. Argo, Contra Costa County Fire Protection District, CA Robert L. Broderick, IRM Insurance, OK Robert A. Bullard, Bullard Assoc., Inc., MA Rep. Door & Hardware Institute Warde P. Comeaux, Schirmer Engineering Corp. CA Edward A. Donoghue, Edward A. Donoghue Assoc., Inc., Rep. Nat'l Elevator Industry, Inc. (Vote Limited to Elevator Issues) Simon Fridlyand, Underwriters Labs of Canada Joe C. Goldman, Kemper Nat'l Insurance Cos., CA Rep. The Alliance of American Insurers Richard A. Hudnut, Builders Hardware Mfrs. Assn., NY Thomas R. Janicak, The Ceco Corp., IL Rep. Steel Door Institute William A. Kennedy, Palm Beach County Fire/Rescue, FL Rep. Fire Marshals Assn. of North America Donald L. King, Steelcraft Mfr. Co., OH Rep. Insulated Steel Door Systems Institute Bernard E. Kinsock, Tucson Medical Ctr., AZ

Robert D. Lichfield, Westinghouse Hanford, WA George E. Meyer, Warnock Hersey Int'l Inc., CA David G. Mosby, Impell Corp., TX Edwin N. Naslund, Weyerhaeuser Co., CA Rep. Nat'l Wood Window & Door Assn. William T. "Bill" Pacchetti, W. T. "Bill" Pacchetti & Assoc., Ronald Rispoli, Arkansas Power & Light Co., AR Edward L. Rohrbach, The William Bayley Co., OH Rep. Steel Window Institute Joseph N. Saino, F. L. Saino Manufacturing Co., TN Rep. NAAMM William F. Shield, Factory Mutual Research Corp., MA Richard P. Thornberry, The Code Consortium, Inc., CA Craig Timmerman, EMCO Millwork Inc., MI Rep. Architectural Woodwork Institute James J. Urban, Underwriters Laboratories Inc., IL Ronald C. Walling, R & R Walling Assoc., GA Russell Wardlaw, San Rafael, CA

William E. Koffel, Koffel Associates Inc., MD

Alternates

Calvin A. Banning, ABB Impell Corp., TX (Alternate to D. G. Mosby)

David M. Birk, Koffel Associates, Inc., MD (Alternate to W. E. Koffel)

David C. Bredendick, Eggers Industries Inc., WI (Alternate to E. N. Naslund)

Rodney G. Clarke, Baptist Med Ctr. - Princeton, AL (Alternate to B. E. Kinsock)
Richard Cookson, Cookson & Co., AZ (Alternate to R. Wardlaw)
Richard J. Davis, Factory Mutual Research, MA (Alternate to W. F. Shield)

Stan Horsfall, Curries Co., IA (Alternate to T. R. Janicak) James J. Husom, Wamock Hersey Int'l Inc., WI (Alternate to G. E. Meyer) Michael L. Jorgenson, Underwriters Laboratories Inc., IL (Alternate to J. J. Urban) Joseph G. Lesniak, Door & Hardware Institute, VA

(Alternate to R. A. Bullard) John A. McCann, Kemper Nat'l Insurance Co., MA

(Alternate to J. C. Goldman)

Reginald A. Penney, Palm Beach County Fire/Rescue, FL (Alternate to W. A. Kennedy) Charles E. Randall, Schindler Elevator Corp., PA (Alternate to E. A. Donoghue) (Vote Limited to Elevator Issues) Isaac Siskind, IRM Insurance, NC (Alternate to R. L. Broderick) Douglas R. Wrobiewski, Fenestra Corp., PA (Alternate to D. L. King)

Gregory J. Cahanin, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

NOTE: Membership on a Committee shall not in and of itself constitute an endorsement of the Association or any document developed by the Committee on which the member serves.

Contents

Introdu	ction	80- 7
Chapter	r 1 General	80 ~ 9
1-1	Scope	80 ~ 9
1-2	New Developments	
1-3	General Limitations	
1-4	Definitions	
1-5	Listed and Labeled Products	80-14
1-6	Classifications and Types of Doors	
1-7	Glazing Material in Fire Doors	
1-8	Classification of Hardware for Fire Doors	
1-9	Placement of Detectors	
1-10	Operational Test	
CI		00 15
Chapter		
2-1	Doors	
2-2	Sills	
2-3	Wall Openings	
2-4	Lintels	
2-5	Frames	
2-6	Frames for Lights or Panels	
2-7	Astragals	
2-8	Builders Hardware	
2-9	Gasketing	80 ~19
Chapter	3 Installation of Swinging Doors with Fire Door Hardware	80 ~20
3-1	Mounting of Doors	
3-2	Vents	
3-3	Sills	
3-4	Walls	
3-5	Frames	
3-6	Clearances	
3-7	Coordinating Devices	
3-8	Fire Door Hardware	
3-9	Operation of Doors	
3-10	Closing Devices for Swinging Tinclad and Sheet Metal Fire Doors	
3-10	Automatic Fire Detectors	
0 11	Tationality and Detectors ,	00 21
Chapter	4 Installation of Horizontally Sliding Doors	80 -22
4-1	Mounting of Doors	
4-2	Sills	80 -22
4-3	Walls	80 -22
4-4	Lintels	80 -23
4-5	Hardware	80 -23
4-6	Closing Devices	80 -23
4-7	Closing Speed	80 -23
4-8	Automatic Fire Detectors	80 -23
C 1 .	K T . H . CTV . H . OU N . TV . TV	
Chapter	, ,	
5-1	Doors	
5-2	Vents	
5-3	Clearances	
5-4	Sills	
5-5	Walls	
5-6	Lintels	
5-7	Fire Door Hardware for Tinclad and Sheet Metal Doors	80-24

5-8	Fire Door Hardware for Steel Sectional Doors	80 -25
5-9	Closing Devices for Vertically Sliding Tinclad, Sheet Metal, and	
	Steel Sectional Fire Doors	80-25
Chapter	6 Installation of Rolling Steel Doors	80 -25
6-1	Doors	80-25
6-2	Sills	
6-3	Walls	
6-4	Assembly of Rolling Doors	
6-5	Closing Devices	
6-6	Automatic Fire Detectors	
6-7	Power Operated Fire Doors	
0-7	Tower Operated the Boots	00-47
Chapter	7 Installation of Special Purpose Horizontally Sliding Accordion	
Chapter	or Folding Doors	80-97
7-1	Mounting of Doors	
7-1 7-2		
	Walls	
7-3	Lintels	
7-4	Hardware	
7-5	Closing Devices	
7-6	Closing Speed	
7-7	Automatic Fire Detectors	80 -28
Chapter		
8-1	Scope	
8-2	General Requirements	
8-3	Types of Doors	80 -29
Chapter	9 Installation of Chute Doors	80 -30
9-1	General	80 -30
9-2	Sills	80 -30
9-3	Walls	80 -30
9-4	Lintels	80 -30
9-5	Closing Device	
Chapter	10 Installation of Fire Shutters	80 -30
10-1	General	80 -30
10-2	Installation	80 -30
10-3	Operation of Shutters	
10-4	Location of Detection Device	
10-1	Location of Detection Device	00-50
Chapter	11 Installation of Access Doors	80 _30
11-1	Scope	
11-1	General	
11-2	Horizontal Access Doors	
11-4	Vertical Access Doors	
11-5	Installation	80 –31
Ch	19 Installation of Coming Courter D	00 01
Chapter		
12-1	Door Construction	
12-2	Installation	
12-3	Automatic Closers	
12-4	Automatic Fire Detectors	80 -31

Chapter 13 Installation of Fire Windows	80 -32
13-1 Classification	80 -32
13-2 Glazing Material	80 -32
13-3 Types of Windows	80 -32
13-4 Installation	80 -33
13-5 Closing Devices	80 –33
Chapter 14 Installation of Glass Block	
14-1 Classification	
14-2 Installation	80 –33
Chanton 15 Care and Waintenance	00 99
Chapter 15 Care and Maintenance	
15-1 General	
15-2 Specific Requirements	80 –33
Chapter 16 Referenced Publications	80 3 <i>4</i>
chapter to Referenced Fabrications	00-31
Appendix A	80 –34
Appendix B Drawings of Fire Door Assemblies and Components	80 -36
Appendix C Fire Door: Protection of Conveyor Openings	80 –64
Appendix D Types of Fire Window Components	80 –68
Appendix E Fire Door and Fire Window Classifications	80 –69
••	
Appendix F Surface Attachments to Swinging Door Faces	80 -69
Appendix G	80 -70
Appendix H Types of Door Construction	80 -71
••	
Appendix I Special Purpose Doors	80 -71
Appendix J Radiant Heat Transfer	80 -72
Appendix K Referenced Publications	80 –72
Index	80_73

80-7

Introduction

- 0-1 Each class of device (doors, shutters, windows, etc.) has certain advantages and limitations, and the importance of each of these characteristics must be considered for the specific opening under consideration. A device cannot be expected to perform properly except for the condition for which it was designed. Assemblies incorporating fire resistant glazing materials have also been developed that have been tested and evaluated as components of fire doors or fire resistive walls rather than as glasslights or fire windows. Prospective users should first ascertain from the authority having jurisdiction which type of device or material, if any, will be accepted in the location proposed and should make contract subject to the approval of the authority having jurisdiction.
- **0-2** Fire door assemblies for the protection of openings depend on the use of labeled fire doors and frames, listed or labeled latching devices, listed swinging and sliding hardware, and closing devices having the required fire protection ratings that will close or be closed at the time of fire. The effectiveness of the entire assembly as a fire barrier may be destroyed if any component is omitted or one of substandard quality is used. Except when restricted by individual published listings, it is permissible for a fire door assembly to consist of the labeled, listed, or classified components of different organizations that are acceptable to the authority having jurisdiction.
- **0-3** Where fire doors are used in a means of egress, NFPA 101®, Life Safety Code®, specifies that they must swing with the exit travel except for doors on individual small rooms, which may swing in; and that on horizontal exits, where fire doors are required on both sides of the wall, one may be an automatic horizontally sliding door, normally open, and the other a self-closing door swinging with the exit travel, normally closed. This excludes the following types of doors from use on exits: rolling steel doors or shutters, vertical sliding doors, jackknife doors.
- **0-4** Labeled fire exit hardware that meets the requirements for safety to life and for fire protection is available for use on labeled fire doors. Fire doors for use with this hardware bear the marking "Fire Door to Be Equipped with Fire Exit Hardware" on the label.
- **0-5** Reference is directed to NFPA 80A, Recommended Practice for Protection of Buildings from Exterior Fire Exposures, for detailed guidance in determination of fire exposure severity and corresponding degree of protection of opening that may be warranted.
- **0-6** Fusible link or similar door-closing arrangements are of limited value for exit purposes because quantities of smoke may pass through the door opening before there is sufficient heat to fuse the link.
- **0-7** Doors of small to moderate size are more suitable for exit purposes than very large doors, owing to the relative ease of operation of the smaller doors.
- **0-8** Horizontally sliding doors for exit purposes are objectionable in that they are difficult to reopen once they are closed in case of fire. Swinging doors, integral with the

sliding fire doors, can overcome this objection if they are tested and listed and if they are furnished without any obstruction to clear passage.

- **0-9** Doors swinging in pairs can be arranged satisfactorily for exit purposes, but single doors are preferable. Two single doors installed in a frame with a mullion can be arranged to provide satisfactory exit facilities.
- **0-10** Structural requirements specified in this standard generally refer to materials and assemblies that, through field experience, have been found acceptable for such application. Walls and lintels, providing they are of firerated construction, should provide the support required for the type of door to be installed. Materials and structural designs other than those specifically covered herein may be employed if judged equivalent by the authority having jurisdiction.
- **0-11** Despite the provision of protection specified in this standard, walls with openings have a lesser fire resistance than unpierced walls. Fire doors, shutters, and fire windows are designed to protect the opening under normal conditions of use, with a clear space on both sides of the opening. When the opening is not used and combustible material is piled against the door, window, or shutter, the designed protection cannot be expected. For this reason, combustible material should be kept well away from openings. When a door or window opening is no longer to be used, the opening should be closed with construction equivalent to that of the wall.
- **0-12*** Any assembly provided in accordance with the provisions of this standard does not necessarily provide the same degree of protection against the spread of fire that is provided by the wall in which the assembly is installed, assuming that the wall has fire resistance established in accordance with NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials. Therefore, the size and number of openings in any wall required to have fire resistance should be held to the minimum necessary to the normal or to emergency operation of the occupancy. The use of assemblies covered in this standard only for decorative, aesthetic, and similar purposes in fire-resistive walls is not recommended. However, there are glazing systems using fire resistant glazing materials as defined in this standard that are actually fire resistive walls, having been tested in accordance with NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials. Such systems are permitted to be used as fire resistive walls and are not within the scope of this standard.
- **0-13** Access doors installed in a horizontal plane (horizontal access doors) for use in fire rated floors, floorceiling, or roof-ceiling assemblies are designed to maintain the fire resistance rating of the assembly based on tests performed in accordance with NFPA 251, *Standard Methods of Fire Tests of Building Construction and Materials*. The size and number of such door openings should be limited in accordance with the listing for the fire rated assembly.

Horizontal access doors differ from access doors installed in the vertical plane (vertical access doors) because they are tested to perform as an essential component of the fire rated assembly in which they are installed so that the

rating of the entire assembly is maintained by the installation of the horizontal access door. Therefore, these doors do not have a fire protection rating. Vertical access doors, however, are tested in accordance with the same test used to measure the fire performance of standard size doors using NFPA 252, Standard Methods of Fire Tests of Door Assemblies, to obtain a fire protection rating. (See Sections 0-11 and 0-12 and Appendix E.)

0-14 Fire doors, shutters, or fire windows are of value only if properly maintained so that they will close or be

closed at the time of fire. Periodic inspection of doors, shutters, and fire windows, with immediate attention to any necessary repairs and correction of any defects that may interfere with operation, is a very important responsibility of the management of the property. (See Chapter 15.)

0-15 The use of swinging non-rated doors mounted in openings in fire walls, which could possibly interfere with the closing of the fire doors, should not be permitted.

NFPA 80

Standard for

Fire Doors and Fire Windows

1992 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates explanatory material on that paragraph in Appendix A.

Information on referenced publications can be found in Chapter 16 and Appendix K.

Chapter 1 General

1-1 Scope.

1-1.1* This standard shall regulate the installation and maintenance of assemblies and devices used to protect openings in walls, floors, and ceilings against the spread of fire and smoke within, into, or out of buildings. The fire performance of these assemblies is evaluated by NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials, for horizontal access doors; NFPA 252, Standard Methods of Fire Tests of Door Assemblies, for fire doors and shutters; and NFPA 257, Standard for Fire Tests of Window Assemblies, for fire windows and glass block.

It is not intended to establish the degree of protection required or to constitute the approval of any product. These are determined by the authority having jurisdiction.

This standard is based on product and engineering practices recognized as being acceptable at the date of issue. Therefore, provisions of this standard are not intended to be applied retroactively to installations that were in compliance at the time of installation.

- 1-1.2 Incinerator doors, record room doors, and vault doors are not covered in this standard. For their installation, see NFPA 82, Standard on Incinerators, Waste, and Linen Handling Systems and Equipment; NFPA 232, Standard for the Protection of Records; and NFPA 81, Standard for Fur Storage, Funigation and Cleaning.
- **1-1.3** For standards on the installation of hoistway doors for elevators and dumbwaiters see the applicable section of ASME/ANSI A17.1, Safety Code for Elevators and Escalators, or CAN 3-B44, Safety Code for Elevators.
- 1-1.4 Fire resistant glazing materials and horizontally sliding accordion or folding assemblies fabricated for use as walls and tested as wall assemblies in accordance with NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials, to determine a fire resistance rating are not regulated by this standard. For their design and installation, consult the authority having jurisdiction.

1-2 New Developments.

1-2.1* This standard shall not act as an obstruction to the development of new, modified, or improved devices that meet the intent of these requirements. It shall be the

responsibility of the manufacturer to furnish the necessary information to effect the updating of the requirements pertaining to such new and improved devices.

1-2.2 For devices not described in this standard, the authority having jurisdiction shall request from manufacturers descriptive information provided by a testing laboratory concerning acceptable methods for satisfactory field installation based on fire tests and engineering studies for operation and maintenance considerations, where applicable.

1-3 General Limitations.

- **1-3.1** Fire doors and windows are classified by the authority having jurisdiction by designating a required fire protection rating expressed in hours or fractions thereof, an alphabetical letter designation, or combination of the former with an additional letter suffix. (*See Appendix E.*)
- 1-3.2 Fire doors equipped with automatic louvers or special closures for conveying systems shall be used only for protecting openings in required enclosures where the opening is not in a means of egress or otherwise located so that products of combustion flowing through the opening could jeopardize the use of exits prior to operation of the louver.
- 1-3.3 Fusible links are available in temperature ratings from 125°F to 500°F (51.6°C to 260°C) and in varying load ratings. The particular fusible link used shall depend on the temperature and load requirements of the application.

 | Multiple links shall be permitted to be used to meet the load rating requirements when the load rating of a single link is exceeded.
- **1-3.4 Plant-ons.** Plant-ons shall not be applied to fire doors except when specifically provided for in the published listings. (See Appendix F.)
- **1-3.5 Preparation.** Preparation of fire door assemblies for locks, latches, hinges, remotely operated or monitored hardware, concealed closers, glass lights, vision panels, louvers, astragals, and laminated overlays shall be performed in conformance with the manufacturer's inspection service procedure and under Label Service. (See Appendix G.)
- | Exception: Job site preparation for surface applied hardware, function holes for mortise locks, holes for labeled viewers, a maximum ¾,-in. (19-mm) wood and composite door undercutting, and protection plates (see 2-8.3) shall be permitted. Surface applied hardware is applied to the face of a door without removing material from the door other than round holes drilled through the face of the door to receive cylinders, spindles, similar operational elements, and through bolts. The holes shall not exceed a diameter of 1 in. (25.4 mm) with the exception of cylinders.

1-3.6 Sliding Doors.

- 1-3.6.1 Sliding doors shall not be used on access openings to exit stairways, fire escapes, or exit ramps, nor on exits to the exterior of the building unless the sliding door has an integral swinging door.
- **1-3.6.2** The combination unit shall be tested and listed, and the swinging door shall be furnished without any obstruction to clear passage.

1-4 Definitions.

Access Door. A door assembly, for installation in fire rated walls or having a specific listing for installation in fire rated floors or ceilings of floor-ceiling or roof-ceiling assemblies, that is used to provide access to shafts, chases, attics, spaces above ceilings, or other concealed spaces.

Access Door, Horizontal. An access door installed in the horizontal plane used to protect openings in fire rated floors or ceilings of floor-ceiling or roof-ceiling assemblies.

Access Door, Vertical. An access door installed in the vertical plane used to protect openings in fire rated walls.

Active Leaf. The first operating door of a pair; usually that one in which a lock is installed.

Ambient. The temperature of the room in which the test is being conducted.

Anchor. A device for attaching frames to the surrounding structure.

Approved. Acceptable to the "authority having jurisdiction."

NOTE: The National Fire Protection Association does not approve, inspect or certify any installations, procedures, equipment, or materials nor does it approve or evaluate testing laboratories. In determining the acceptability of installations or procedures, equipment or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization concerned with product evaluations which is in a position to determine compliance with appropriate standards for the current production of listed items.

Astragal (Overlapping or Wrap-Around). A horizontal or vertical molding attached to the meeting edge of one leaf of a pair of doors to protect against weather conditions, to minimize the passage of light between the doors, or to retard the passage of smoke, flame, or gases during a fire, and, in the case of a Dutch door, also to ensure that the lower leaf of the door closes in conjunction with the upper leaf.

Astragal (Split). A vertical molding attached to both leaves of a pair of doors at the meeting edges for protection against weather conditions. Astragals are permitted to be used when both leaves are active.

Authority Having Jurisdiction. The "authority having jurisdiction" is the organization, office or individual responsible for "approving" equipment, an installation or a procedure.

NOTE: The phrase "authority having jurisdiction" is used in NFPA documents in a broad manner since jurisdictions and "approval" agencies vary as do their responsibilities. Where public safety is primary, the "authority having jurisdiction" may be a federal, state, local or other regional department or individual such as a fire chief, fire marshal,

chief of a fire prevention bureau, labor department, health department, building official, electrical inspector, or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the "authority having jurisdiction." In many circumstances the property owner or his designated agent assumes the role of the "authority having jurisdiction"; at government installations, the commanding officer or departmental official may be the "authority having jurisdiction."

Automatic Closing Device. A device, attached to a door or window frame, that causes the door or window to close when activated as a result of a predetermined temperature, rate of temperature rise, smoke, or other product of combustion detector.

Automatic Closing Door. Doors that are normally open but close when the automatic closing device is activated.

Automatic Fire Detectors. Either individual devices or prescribed combinations of devices designed to detect flame, heat, smoke, or combustion gases resulting from fire.

Automatic Top and Bottom Bolt. (See Flush Bolts.)

Barrel (Rolling Steel Door). A cylindrical horizontal member at the head of the opening that supports the door curtain and contains the counter-balance springs.

Binders (Sliding Door, Horizontal and Vertical). Pieces of hardware used to hold a sliding door to the wall preventing lateral movement from the wall.

Biparting. Term describing a vertically sliding door in which one half of the door moves up and one half of the door moves down to open. Also, a horizontal sliding door in which one door moves to the right and one to the left to open.

Borrowed Lite. A stationary window unit that is installed in an interior partition and that permits the passage of natural or artificial light from one area into an adjoining space.

Bottom Bar (Rolling Steel Door). A structural reinforcing member at the lower edge of the door curtain assembly.

Box Track. A type of track used with sliding doors that is formed from a sheet of steel in the shape as shown:

Brackets (Sliding Door, Rolling Steel). Plates bolted to the wall or to extensions of the guide wall angles that serve to support the barrel and form end closers for the hood.

Builders Hardware. (See Section 1-8.)

Bumpers (Sliding Door). Stops to limit the closing or opening movement of a sliding door.

Center Latch. A latch used to hold the two halves of a centerparting or biparting fire door together; usually two pieces surface-applied to doors and interlocked in the closed position.

Chafing Strip (Sliding Door). Metal strip applied to the back surface of a sliding door to protect the door surface from damage from the wall.

Channel Frame. A frame that consists of head and jamb members of structural steel channels, either shop or field assembled, to be used with masonry walls.

Classified. Product or materials of a specific group category that are constructed, inspected, tested, and subsequently reinspected in accordance with an established set of requirements. The classification process is performed by an organization acceptable to the authority having jurisdiction.

Closing Device. A means of closing a door from the partially or fully opened position.

Concrete Lintel. A precast concrete horizontal member spanning and carrying the load above an opening.

Continuous Glazing Angles or Channels (Window). Continuous steel angles or channels used to hold glass in a window.

Coordinator. A device used on pairs of swinging doors that prevents the active leaf from closing before the inactive leaf closes.

Counterbalancing. A method by which the hanging weight of the door curtain is balanced by helical torsion springs or weights.

Cover Plate (Slide Door Vertical and Horizontal). A plate to cover the joint between the section of multiple panel doors, usually applied to front and back of door.

Crush Plates. Continuous steel-bearing plates provided when doors are mounted on concrete masonry unit walls with hollow cells to receive through-wall bolts to prevent crushing of the hollow concrete masonry unit.

Curtain (Rolling Steel). The door closure consisting of interlocked slats and bottom bar.

Curtain Slats (Rolling Steel). Formed sheet steel members that, when interlocked together, form the door curtain.

Detectors. (See Automatic Fire Detectors.)

Door, Access. (See Access Door.)

Door, Automatic Closing. (See Automatic Closing Door.)

Door Closer. A labeled device applied to a door and frame to cause the open door to close by mechanical force. The closing speed may be regulated by this device.

Door Holder/Release Device. A labeled, fail-safe device, controlled by a detection device, used on an automatic closing door to release the door at the time of fire.

Door, Power Operated. (See Power Operated Fire Doors.)

Door Protection Plate. Protective material applied to the face of a door and generally made of approximately 0.050 in. (1.2 mm) thick brass, bronze, aluminum, or stainless steel or ½ in. (3.2 mm) thick laminated plastic. (See 2-8.3 for size limitations.)

Door, Self-Closing. (See Self-Closing Doors.)

Door, Service Counter. (See Service Counter Door.)

Double Egress Doors. A pair of swinging doors, each leaf of which swings in the opposite direction of the other. (See Appendix B, Figure B-25.)

Dutch Door. A door divided horizontally so that the lower part can be shut while the upper part remains open.

Egress Side. The side of an opening from which traffic exits.

Finish Frame. A subframe attached to a rough buck to which the door is attached.

Fire Door.* The door component of a fire door assembly.

Fire Door Assembly. Any combination of a fire door, frame, hardware, and other accessories that together provide a specific degree of fire protection to the opening.

Fire Door Frame for Lights. A frame that in addition to a door opening contains an opening(s) for use with glazing materials. Various types include transom light, side light, and transom and side light frames. (See Appendix B, Figures B-67, B-68, and B-69 for elevations.)

Fire Door Frame for Panels. A frame that in addition to a door opening contains an opening(s) for use with solid metal or wood fixed panels. Various types include transom panel, side panel, and transom and side panel frames. (See Appendix B, Figures B-70, B-71, B-72, and B-73 for elevations.)

Fire Door Hardware. Fire door hardware is applied to both swinging and sliding doors and consists of the items referred to in Tables 3-8(a), 3-8(b), and 3-8(c). (See also Figures B-29, B-31, B-34, B-37, and B-41 through B-45 in Appendix B.)

Fire Exit Hardware. Labeled devices for swinging fire doors installed to facilitate safe egress of persons and generally consisting of a cross bar and various types of latch mechanisms that cannot hold the latch in a retracted locked position.

Fire Lock Angles (Sliding Door, Horizontal). A sheet metal angle designed to hold the assembly in position during a fire test.

Fire Protection Rating. The designation indicating the duration of the fire test exposure to which a fire door assembly or fire window assembly was exposed and successfully met all the acceptance criteria as determined in accordance with NFPA 252, Standard Methods of Fire Tests of Door Assemblies, or NFPA 257, Standard for Fire Tests of Window Assemblies, respectively. (See Appendix E.)

Fire Resistant Glazing Material. A glazing material designed to resist heat transfer in accordance with NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials, and tested as a component of a fire door assembly or fire resistive wall. (See Glazing Material.)

Fire Resistance Rating. The time, in minutes or hours, that materials or assemblies have withstood a fire exposure as established in accordance with the test procedures of NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials. (See NFPA 220, Standard on Types of Building Construction.)

Fire Shutter. A labeled door assembly used for the protection of a window opening in an exterior wall. (*See Shutter.*)

Fire Window Assembly. A window or glass block assembly having a fire protection rating.

Flame Baffle. A hinged sheet metal piece within the hood that, when released, closes the space between the top of the curtain and the hood of a rolling door.

Flush Bolts, Automatic. A mortised bolt installed near the top or bottom of the inactive leaf of a pair of doors. The bolt holds the inactive leaf in a closed position until the active leaf is opened.

Flush Bolts, Manual. A mortised bolt installed near the top or bottom of the inactive leaf of a pair of doors. The bolts are manually extended or retracted into or out of the header or sill by means of a lever.

Frame (Window). A window frame is the perimeter section of a window.

Fusible Link. Two pieces of metal held together by low-melting-point solder.

Glazing Angle Clips. Steel angle clips used to hold glass in place in windows glazed only with glazing compound. Glazing angles are attached to window members with screws and are completely covered by the glazing compound.

Glazing Material.* A transparent or translucent material used in fire door assemblies and fire windows. (See Fire Resistant Glazing Material.)

Governor (Sliding, Vertical, and Rolling Steel Doors). A mechanical device that limits the speed of descent of the door during automatic closure.

Guides (Sliding, Vertical, and Rolling Steel Doors). Vertical assemblies in which the curtain travels and that are fastened to the jamb. The guides retain the edges of the door curtain and close the space between the curtain edges and the jamb.

Guide Rail (Sliding Door, Vertical). A steel member attached to wall or frame, used with vertical sliding doors to guide the door.

Guide Shoe (Sliding Door, Vertical). A member attached to vertical sliding doors used to guide and retain door on guide rail.

Guide Wall Angle (Sliding, Vertical, and Rolling Steel Doors). That component of the guide assembly that is fastened to the jamb.

Hanger (Sliding Door, Horizontal). A member used to attach horizontally sliding door to track and to cause door to roll on or in track.

Heat Actuated Device. Heat actuated devices include fixed temperature releases, rate-of-temperature-rise releases, and door closers with hold-open arms embodying a fusible link.

Hollow Metal Frame. A frame formed from sheet metal.

Hood (Rolling Steel Door). A sheet metal housing that mounts horizontally between the brackets. It serves as an enclosure for the coiled curtain and closes the space between the door coil and the lintel.

Impact Switch. A device that may be attached to a power operated fire door that stops or reverses the closing motion of a power operated door upon meeting an obstruction.

Inactive Leaf. The one of a pair of doors that is ordinarily latched closed. The second operating door of a pair.

Jackknife Door. A door that folds and unfolds like a jackknife while opening and closing.

Keeper. A guide and a restraint used on latching devices.

Labeled. Equipment or materials to which has been attached a label, symbol or other identifying mark of an organization acceptable to the "authority having jurisdiction" and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.

Lap Mounted (Sliding Door, Vertical, Horizontal, Rolling Steel, Swing Door). Refers to doors mounted on the face of a wall and overlapping the opening by a prescribed dimension.

Latching Device. A spring-loaded latch bolt or a gravity operated steel bar that after release by physical action returns to its operating position and automatically engages the strike plate when it is returned to the closed position.

Lintel. A horizontal member spanning and carrying the load above an opening.

Listed. Equipment or materials included in a list published by an organization acceptable to the "authority having jurisdiction" and concerned with product evaluation, that maintains periodic inspection of production of listed equipment or materials and whose listing states either that the equipment or material meets appropriate standards or has been tested and found suitable for use in a specified manner.

NOTE: The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. The "authority having jurisdiction" should utilize the system employed by the listing organization to identify a listed product.

Louver, Automatic. An opening in a door with a series of slats or blades to allow passage of air, designed to close automatically in the event of fire.

Meeting Edge (Elevator Doors). A resilient member used on the leading edges of elevator doors to prevent crushing or shearing edges.

Mullion. Vertical member set in a double door opening that will allow both leaves to be active. May be fixed or removable. A mullion may also occur between a door and a sidelight or a separate, framed, glazed area.

Mullion, Window. The separate steel member or members used to join windows in a multiple window opening, either horizontally or vertically.

Muntin. A bar member supporting and separating panes of glass within a sash, door, or glazing frame.

Muntin, Window. A tee-shaped bar in a frame or ventilator, dividing the glass.

Noncombustible. (See NFPA 220, Standard on Types of Building Construction.)

Plant-on. A decorative trim applied to the surface of a door. (See Appendix F.)

Power Operated Fire Doors. Doors that are normally opened and closed electrically, pneumatically, or mechanically.

Rolling Steel Door. A closure consisting of an interlocking steel slat curtain, bottom bar, wall guides, and an automatic release device that, on release, will cause the curtain to close.

Rough Buck. A subframe, usually channel shaped, attached to an existing wall to which the finish frame is attached

Round Track. A circular roll formed steel track used for supporting and guiding horizontal or vertical sliding doors.

Sash, Window. A sash is the horizontal or vertical sliding component of a window.

Self-Closing Doors. Doors that, when opened and released, return to the closed position.

Self-Latching Bolt. An automatic latching device that engages in a keeper to hold a door leaf in a closed position and that requires manual release.

Service Counter Door. A labeled fire door assembly used for the protection of openings in walls where the primary purpose of the opening is for nonpedestrian use,

such as counter service for food, pharmaceutical dispensary, package and baggage transfer, or observation ports.

Shall. Indicates a mandatory requirement.

Should. Indicates a recommendation or that which is advised but not required.

Shutter. A labeled door assembly that is used for the protection of a window opening in an exterior wall. (*See Fire Shutter.*)

Side Light. A frame, prepared for glass installation in the field, attached to the door frame.

Side Light Frame. A fire door frame prepared to receive a glazing material alongside the door opening. (See Appendix B, Figure B-68.)

Side Panel Frame. A door frame prepared to receive a fixed solid metal or wood panel alongside the door opening. (See Appendix B, Figure B-72.)

Single Point Latch. A latch located in the edge of a door to engage either in the frame or in the edge of the inactive leaf of a pair.

Sliding Hardware. A system of rails, hangers, rollers, guides, binders, and closing devices that are self-closing by gravity, weights, and pulleys or spring-actuated devices.

Smoke Detector. A device that senses visible or invisible particles of combustion.

Snub Rollers. (See Stay Rollers.)

Solid Section Frame. (See Channel Frame.)

Spring Hinge. A closing device in the form of a hinge with a built-in spring used to hang and close the door.

Spring Release Device (Sliding Door, Vertical, Horizontal, Rolling Steel Door). A device that, when activated, releases part of the spring counterbalancing force and causes the door to close.

Stay Rollers (Sliding Door, Horizontal). A device used on horizontally sliding doors at the back lower corner to guide the door and prevent the door from moving away from the wall under fire conditions.

Strike, Electric. A strike that, when activated, either releases or retains a projected latch or dead bolt.

Strike, Open Back. Strike applied to the inactive leaf of a pair of doors and cut away at the back to permit either leaf to open or close independently.

Strike Plate. A wear plate for projecting hardware or a wear plate and keeper for a latchbolt.

Struts. Adjustable, vertical members that extend from the head of the hollow metal frame to the ceiling to hold the frame rigidly in place.

Swing-In. A door that swings into a room or building.

Swing-Out. A door that swings out of a room or building.

Three Point Latch. A self-latching device designed to latch a door at the top, bottom, and edge by an interconnected mechanism so that all latches operate simultaneously.

Track Binders (Sliding Doors, Sheet Metal). A device mounted on a sheet metal sliding door and projecting behind the track to prevent the door from moving away from the wall under fire conditions.

Transom. An opening in a fire door frame above the door opening that is filled with a solid panel or glazing material.

Transom and Side Light Frame. A fire door frame prepared to receive a glazing material above and alongside the door opening. (See Appendix B, Figure B-69.)

Transom and Side Panel Frame. A fire door frame prepared to receive solid metal or wood panels above and alongside the door opening. (See Appendix B, Figure B-73.)

Transom Light Frame. A fire door frame prepared to receive a glazing material directly above the door opening. A horizontal member is used to separate the glazed opening from the door opening. (See Appendix B, Figure B-67.)

Transom Panel. A panel installed in a frame above the door opening.

Transom Panel Frame. A fire door frame prepared to receive a solid metal or wood transom panel directly above the door opening. Transom panels are either fixed or removable. Horizontal members can be used to separate the panel from the door opening. In lieu of a horizontal member, the bottom of panel and top of door is rabbeted. (See Appendix B, Figures B-70 and B-71.)

Trim, Vision Panel. Perforated plates, wire mesh, or metal bars permanently attached to the door structure or vision panel frame to reduce the exposed glass area.

Vent (Sliding Door, Horizontal Tinclad Only). A hole cut in a fire door to allow for venting of the products of combustion.

Ventilator, Window. A ventilator is that part of a projected, casement, or pivoted window that opens.

Vertical Sliding Door. Labeled single piece and section doors operating in a vertical direction.

Viewer. A viewing device installed in a door to permit observation of persons opposite the security side of the door without having to open the door.

Wedge (Sliding Door, Horizontal Tinclad, and Flush Sheet Metal). A plate mounted on the face of a sliding door designed to force the door against the wall.

Window. Integral fabricated units, placed in an opening in a wall, primarily intended for the admission of light, or light and air and not primarily intended for human entrance or exit.

Wired Glass. A glazing material with embedded wire mesh.

Wire Glazing Clips. Small spring wire clips used to hold glass in place when windows are glazed with only glazing compound.

- 1-5 Listed and Labeled Products. (See definitions, Section 1-4.)
- 1-5.1* Listed items shall be identified by a label, a listing, or a classification mark. Labels shall be applied in locations that are readily visible and convenient for identification by the authority having jurisdiction after installation of the assembly.
- 1-5.2 The label, the listing, or the classification mark shall be considered evidence that samplings of such devices or materials have been evaluated by test and that these devices or materials are produced under an in-plant of follow-up inspection program.
- **1-5.3** Specification of items of a generic nature, such as hinges, that are not labeled shall comply with the specifications contained herein.

1-6 Classifications and Types of Doors.

- 1-6.1* Only labeled or listed doors shall be used.
- 1-6.2 The label on doors covers only the design and construction of the door.

Exception No. 1: On fire doors bearing the "Fire Door to Be Equipped with Fire Exit Hardware" label, the label shall cover the reinforcements or construction features necessary for the exit devices that shall bear the "Fire Exit Hardware" label.

Exception No. 2: On doors bearing the "Fire Door" label, the label shall include:

- (a) On rolling steel doors wall guides, counterbalancing, and automatic mechanisms.
- (b) On steel sectional (overhead) doors hinged steel panels, wall guides, interlock at top edge, vertical and horizontal tracks, roller wheels, counterbalancing, automatic closing mechanisms, and governors.
 - (c) On elevator doors see Section 8-3.

Exception No. 3: On doors bearing the "Frame and Fire Door" assembly label, the label also shall include:

- (a) On access doors the frame, hinging, and latching mechanism.
 - (b) On acoustical doors the frame, sill, and latching mechanism.
- (c) On chute doors the frame, hinging, latching, and closing mechanism.

- (d) On dumbwaiter doors see 8-3.3.
- (e) On service counter doors frames, counters, wall guides, counterbalancing, and automatic closing mechanisms.
- (f) On material conveying systems the frame, sill guides, and automatic closing systems (refer to Appendix C for guidelines).
- 1-6.3* Authorities having jurisdiction shall be consulted as to the size of oversize doors that are permitted in a given location.

1-7 Glazing Material in Fire Doors.

- 1-7.1 Only labeled fire protection rated glazing material meeting applicable safety standards, unless exempt from the safety standards, shall be used in fire door assemblies (see Appendix A-1-4 Glazing Material).
- 1-7.2 Glazing materials shall be installed in approved steel or other listed and approved frames in accordance with their individual listing.
- 1-7.3 Glazing material shall not be used in fire doors having a 3-hour fire protection rating or fire doors having a $1\frac{1}{2}$ -hour fire protection rating for use in severe exterior fire exposure locations.
- Exception*: Glazing material not exceeding 100 sq in. (0.065 m²) shall be permitted when tested in accordance with NFPA 252, Standard Methods of Fire Tests of Door Assemblies, as a component of a door assembly, and not as a glass light, for the desired rating period.
- 1-7.4* Glazing material shall be permitted in fire doors having the following fire protection ratings, when so tested, and shall be limited in size and area in accordance with Table 1-7.4.

Table 1-7.4 Fire Door Rating

Fire Door Rating	Maximum Area of Glazing
(Hr)	Material per Door Leaf ^{2,3}
1/2 & 1/3	Limited to the maximum area tested
3/4	Limited to the maximum area tested ¹
1 ⁴ & 1 ¹ / ₂ ^{2,4} , 3 ²	100 sq in. (0.065 m ²)

¹Maximum area of individual exposed lights shall be 1296 sq in. (0.84 m²) with no dimension exceeding 54 in. (1.37 m) unless otherwise tested.

- 1-7.5 Each individual glazing unit shall be identified with a listing mark. The listing mark shall be visible after installation.
- 1-7.6 Devices used to view through fire doors shall be installed in accordance with their listing.

1-8 Classification of Hardware for Fire Doors.

- 1-8.1 Hardware required for the installation of all types of fire doors appears in this standard as:
 - (a) Described in those sections covering installation.

- (b) Listed in Tables 2-8(a), 2-8(b), 3-8(a), 3-8(b), and 3-8(c). (See illustrations of typical applications in Appendix B.)
- 1-8.2 Hardware for fire doors shall be referred to as "builders hardware" and "fire door hardware." Within the category of "builders hardware" is "fire exit hardware."
- 1-8.3 In this standard, builders hardware is applied only to swinging doors and consists of the items referred to in Tables 2-8(a) and 2-8(b). (See illustrations in Figures B-20 through B-28.) These include hinges (full mortise, half mortise, half surface, full surface, olive knuckle, paumelle, or spring); single-, two-, or three-point locks and latches; top and bottom bolts (flush, surface, or concealed); and door closers. This type of hardware is not required to be shipped from the factory with the fire doors.

Fire exit hardware consists of exit devices that have been labeled both for fire and panic protection. (See fire exit hardware as illustrated in Figures B-24 and B-25.)

1-8.4 Fire door hardware is applied to both swinging and sliding doors and consists of the items referred to in Tables 3-8(a), 3-8(b), and 3-8(c). (See illustration in Figures B-29, B-31, B-34, B-37, and B-41 through B-45.) Fire door hardware that is applied to swinging doors consists of surface mounted strap hinges, surface applied latches, and closing devices. In this standard, all hardware for sliding doors is fire door hardware. This type of hardware is normally shipped from the factory with the fire doors.

1-9 Placement of Detectors.

- **1-9.1** All detectors, including fusible links, shall not be placed in the so-called dead air space developed at the intersection of the wall and ceiling directly above the fire door. (See Figures B-59 and B-60.)
- 1-9.2 Detectors for the release of fire doors shall be permitted to be part of an overall system, such as a fire alarm, water flow alarm, or carbon dioxide release system, that releases the door.
- 1-10* Operational Test. After the installation of a fire door, shutter, or fire window is completed, an operational test shall be conducted. These tests shall be adequate to determine that the system has been installed and will function as intended.

Chapter 2 Installation of Swinging Doors with Builders Hardware

2-1 Doors. Swinging composite, hollow metal, flush sheet metal, metal clad (Kalamein), and wood core doors with builders hardware shall be flush mounted in labeled door frames.

2-2 Sills.

2-2.1 In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.

²See also requirements in 1-7.3.

See also requirements in 8-2.3.

⁴In doors not used in severe exterior fire exposure locations glazing materials tested as components of door assemblies, and not as glass lights, may exceed 100 sq in. (0.065 m²) provided they are limited to the maximum area tested.

2-2.2 In buildings with combustible floors, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.

Exception: Door openings required to be protected by ½- or ⅓-hour fire protection rated door assemblies.

- **2-2.3** Sills shall be constructed of noncombustible materials. For frames having a jamb depth of 4 in. (102 mm) or less, the sill width shall be equal to the jamb depth. Where frames have a greater jamb depth, the sills shall have a minimum width of 4 in. (102 mm) and shall be installed so that the sill extends from the face of the frame on the door side into the frame. (See Figure B-2.)
- **2-2.4** Flush concrete sills shall extend to the wall opening on both sides.
- **2-2.5** Raised noncombustible sills or thresholds shall be acceptable wherever combustible floor coverings are contemplated or are in use on one or both sides of the door openings. (See Figure B-2.)
- **2-2.6** Combustible floor covering shall not extend through openings required to be protected by 3-hour fire protection rated door assemblies.
- **2-2.7** Combustible floor coverings may extend through openings required to be protected by $1\frac{1}{2}$, 1-, or $\frac{3}{4}$ -hour fire protection rated fire door assemblies and shall have a minimum critical radiant flux of 0.22 watts/sq cm in accordance with testing per NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source.
- **2-3 Wall Openings.** Wall openings shall be constructed to readily accept the fire door frame. The frame shall be considered to be non-load-bearing except when specifically designed to carry loads. Frames shall be securely anchored to the wall construction.
- **2-4 Lintels.** Separate reinforcing units shall be provided for pressed steel door frames, where necessary, to support overhead wall loads over door openings. Reinforcements of head members of pressed steel door frames shall not be permitted. (See Figures B-5 through B-8.)

2.5 Frames.

- 2-5.1* Only labeled door frames shall be used.
- 2-5.2* Methods of anchoring shall be as shown in the listing.
- 2-5.2.1* Door frames intended for drywall installation shall be of the wrap-around type. Anchors shall be appropriately secured to vertical wall studs and floor.
- **2-5.2.2** Proprietary type slip-on door frames (i.e., those for use on pre-prepared openings in drywall construction) shall be installed in accordance with the manufacturer's installation instructions.
- **2-5.2.3** Door frames provided with expansion bolt-type anchors are intended to be installed in masonry walls only.

- **2-5.3** Wood or plastic-faced composite or wood core doors shall be installed in labeled door frames of the single unit type. Steel-faced composite, hollow metal, metal clad (Kalamein), and flush sheet metal doors shall be installed in pressed steel or steel channel frames.
- **2-5.4** The clearance between the door and the frame and between the meeting edges of doors swinging in pairs shall be $\frac{1}{8}$ in. + $\frac{1}{16}$ in. (3.18 mm + 1.59 mm) for steel doors and shall not exceed $\frac{1}{8}$ in. (3.18 mm) for wood doors.
- **2-5.5** The clearance under the bottom of the door shall be as follows:
- (a) The clearance between the bottom of the door and a raised noncombustible sill shall not exceed $\frac{3}{8}$ in. (9.53 mm).
- (b) Where there is no sill, the clearance between the bottom of the door and the floor shall not exceed $\frac{3}{4}$ in. (19.1 mm).
- (c) The clearance between the bottom of the door and the rigid floor tile shall not exceed $\frac{5}{8}$ in. (15.9 mm).

2-6 Frames for Lights or Panels.

- **2-6.1** Where a frame assembly consists of both solid panels and glazed lights, the fire protection rating shall be based on the glazed area.
- 2-6.2 Frames for Transom Lights, Side Lights, or Both.
- 2-6.2.1 Transom or side lights shall be fixed.
- **2-6.2.2** Frames with transom or side lights or both shall be permitted in situations where ³/₄-hour fire protection or less is required.
- **2-6.2.3** Only approved glazing material shall be used to glaze the light openings.

2-6.3 Frames for Transom or Side Panels.

- **2-6.3.1** Side or transom panels or both shall be fixed. Removable transom panels shall be permitted to allow for movement of material or equipment through the opening.
- **2-6.3.2** Frames with transom panels shall be permitted in situations where fire protection ratings up to and including 3 hours are required.
- **2-6.3.3** Louvers shall not be installed in either transom or side panels.

2-7 Astragals.

- **2-7.1** Doors swinging in pairs and having a fire protection rating of more than $1\frac{1}{2}$ hours shall have an overlapping astragal.
- 2-7.2 Doors swinging in pairs, where located within a means of egress, shall not be equipped with astragals that inhibit the free use of either leaf. The free use shall mean that the forces required to fully open any door manually in a means of egress shall not exceed 15 lbf (67 N) to release the latch, a 30 lbf (133 N) to set the door in motion, and a 15 lbf (67 N) to open the door to the minimum required width. These forces shall be applied at the latch stile to the minimum required width.
- **2-7.3** Pairs of doors that require astragals shall have at least one attached in place so as to protect approximately $\frac{3}{4}$ in. (19.1 mm) or as may be otherwise indicated in the individual published listings. (See Figures B-21, B-23, and B-31; also see 2-8.2.4.)

2-8* Builders Hardware. (See Figures B-20 through B-28.)

2-8.1 Hinges.

2-8.1.1 Hinges shall be as required in Table 2-8(a).

2-8.1.2 Attaching Hinges to Doors. Mortise hinges shall be secured to reinforcements in the doors with steel machine screws, and surface hinges shall be attached with steel through-bolts.

Exception: Mortise hinges shall be secured to wood and plastic covered composite or wood core doors with No. 12 by 11/4-in. (31.75-mm) flat, threaded-to-the-head, steel wood screws.

2-8.1.3 Attaching Hinges to Frame. Hinges shall be secured to frames with steel screws. Types of screws vary depending on material used for the manufacture of labeled door frames. Refer to labeled door frame manufacturers' instructions and published listings for specific screw requirements.

2-8.2 Locks or Latches.

2-8.2.1 Only labeled locks and latches or labeled fire exit hardware (panic devices) meeting both life safety requirements and fire protection requirements shall be used. (See Sections 0-3 and 0-4, Introduction.)

2-8.2.2 Fire exit hardware shall be installed only on fire doors bearing the marking, "Fire Door to Be Equipped with Fire Exit Hardware." Fire exit hardware shall be labeled for both fire and panic. Fire exit hardware shall have a permanently attached metal label that is serially numbered and shows the manufacturer's name and type of approval. The label shall be extended to differentiate between panic hardware, which is not acceptable for use on fire doors, and fire exit hardware.

2-8.2.3 All single doors and active leaves of pairs of doors shall be provided with an active latch bolt (one that cannot be held in a retracted position), as specified in Table 2-8(b).

Exception No. 1: Doors other than those used in means of egress I shall be permitted to be provided with dead bolts in addition to the active latch bolts or as otherwise permitted by the authority having jurisdiction.

Exception No. 2: Locks with dead bolts that are interconnected with latch bolts and retract when the latch bolt is retracted shall be permitted for use on fire doors within a means of egress.

Exception No. 3: Latching arrangements that do not provide positive latching in the normal mode shall be permitted to be used provided that, in a fire emergency, the door becomes positively latched by means of an automatic fail-safe device that is activated by an automatic fire detector (see 2-8.7).

Table 2-8(a) Builders Hardware

Mortise and Surface Hinges, Pivots, or Spring Hinges for Swinging Doors

Doors up to 60 in. (1.52 m) in height shall be provided with two hinges and an additional hinge for each additional 30 in. (0.76 m) of door height or fraction thereof. The distance between hinges shall be permitted to exceed 30 in. (0.76 m). When spring hinges are used, at least two shall be provided.

				_		Maximum De	oor Size	Minimum	Hinge Size	
	Door Rating, hr			Width, ft (m)	Height, ft (m)	Height, in. (mm)	Thickness, in. (mm)	Type Hinge		
	<u></u>		-			For 1 ³ / ₄ -i	n. (44.5-mm)	or Thicker Do	ors	
3,	1 1/2,	1,	3/4,	1/2,	1/3	4 (1.22)	10 (3.05)	41/2 (114.3)	0.180 (4.57)	Steel, Mortise or Surface
3,	$1^{1/2}$,	1,	3/4,	1/2	1/3	4 (1.22)	8 (2.44)	$4\frac{1}{2}$ (114.3)	0.134 (3.40)	Steel, Mortise or Surface
	$1^{1/2}$,	3/4,		1/2,	1/3	3 ft 2 in. (0.96)	8 (2.44)	6 (152.4)	0.225 (5.72)	Steel-Olive Knuckle or Paumelle
3,	$1^{1/2}$,	3/4,		1/2,	1/3	4 (1.22)	10 (3.05)	4 (101.6)	0.225 (5.72)	Steel Pivots (including top, bottom, and intermediate)
	$1^{1/2}$,	1,	3/4,	1/2	1/3	3 (0.91)	5 (1.52)	4 (101.6)	0.130 (3.30)	Steel, Mortise or Surface
	$1^{1/2}$,	1,	3/4,	l/2,	$1/_{3}$	2 (0.61)	3 (0.91)	3 (76.2)	0.092(2.34)	Steel, Mortise or Surface
3,	$1^{1/2}$,	1,	3/4,	1/2,	1/3	3 (0.91)	7 (2.13)	41/2 (114.3)	0.134 (3.40)	Steel, Mortise or Surface (labeled self-closing spring type)
3,	$1^{1/2}$,	1,	3/4,	1/2,	1/3	3 (0.91)	7 (2.13)	4 (101.6)	0.105 (2.67)	Steel, Mortise or Surface (labeled self-closing spring type)
						For	13/8-in. (34.9	3-mm) Doors		
3,	$1^{1/2}$,		3/4,	$^{1/}2,$	$^{1}/_{3}$	3 (0.91)	7 (2.13)	$3\frac{1}{2}$ (88.9)	0.123 (3.12)	Steel, Mortise or Surface
3,	$1^{1/2}$,	1,	3/4,	1/2,	1/3	2 ft 8 in. (0.81)	7 (2.13)	31/2 (88.9)	0.105 (2.67)	Steel, Mortise or Surface (labeled self-closing spring type)

NOTE 1: All hinges or pivots, except spring hinges, shall be of the ball bearing type. Hinges or pivots employing other antifriction bearing surfaces are permitted if they meet the test requirements of Standard for Butts and Hinges (ANSI A156.1). Spring hinges shall be labeled.

NOTE 2: 4½-in. (114-mm) high, 0.180-in. (4.57-mm) thick hinges shall be permitted for use on wide and heavy doors or doors that will receive high fre-

quency use or unusual stress.

NOTE 3: Some manufacturers may provide fire doors with hinges of lighter weight that are not ball bearing when they are part of a listed assembly and meet the test requirements of ANSI Al56.1 and have been tested to a minimum of 350,000 cycles.

NOTE 4: Pivot sets made up of components smaller or of a lighter gage than shown in Table 2-8(a) shall be permitted to be used provided they meet the requirements of ANSI A156.4, Door Controls (Closers), and are in accordance with the manufacturers' label service procedures.

Table 2-8(b) Builders Hardware

Latching Devices for Swinging Doors
For alternate assemblies and exceptions, see Section 2-8

		Single Swing	Doors	Doors in Pairs				
	Door Rating, hr	Maximum Opening Height	Minimum Latch Throw	Maximum Opening Height	Active Leaf Minimum Latch Throw	Inactive Leaf		
Composite Wood (flush)	11/2	10 ft (3.05 m)	1/2 in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
•	1	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
	3/4	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
Composite Plastic (flush)	11/2	9 ft (2.44 m)	$\frac{1}{2}$ in. (12.7 mm)	7 ft (2.13 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
• , ,	1	9 ft (2.44 m)	$\frac{1}{2}$ in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
	3/4	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
Composite Steel (flush)	3	8 ft (2.44 m)	3 Pt.	, ,	,	•		
1 , ,		, ,	Surface					
	3	8 ft (2.44 m)	5/8 in. (15.88 mm)	7 ft 6 in. (2.29 m)	⁵ / ₈ in. (15.88 mm)	Top & Bottom Bolts		
	1 ½	8 ft (2.44 m)	$\frac{1}{2}$ in. (12.7 mm)	7 ft 6 in. (2.29 m)	⁵ / ₈ in. 15.88 mm)	Top & Bottom Bolts		
	3/4	8 ft (2.44 m)	$\frac{1}{2}$ in. (12.7 mm)	7 ft 6 in. (2.29 m)	⁵ / ₈ in. (15.88 mm)	Top & Bottom Bolts		
Hollow Metal (flush)	3	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	8 ft (2.44 m)	$\frac{3}{4}$ in. (19.05 mm)	Top & Bottom Bolts		
,	$1\frac{1}{2}$	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	9 ft (2.74 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
	3/4	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	9 ft (2.74 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
Hollow Metal	3 or	10 ft (3.05 m)	3 Pt.	10 ft (3.05 m)	3 Pt.	2 Pt.		
(Panelled or flush)	11/2	, ,	Concealed	,	Concealed	Concealed		
Metal Clad (Panelled or flush)	or ¾ 1½ or ¾	8 ft (2.44 m)	√2 in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
Sheet Metal (Panelled or flush)	1½ or 3/4	8 ft (2.44 m)	1/2 in. (12.7 mm)	8 ft. (2.44 m)	³ / ₄ in. (19.05 mm)	Top & Bottom Bolts		
Wood Core	1/3	10 ft (3.05 m)	$\frac{1}{2}$ in. (12.7 mm)	8 ft (2.44 m)	3/4 in. (19.05 mm)	Top & Bottom Bolts		
Wood Core	1/2	9 ft (2.74 m)	$\frac{1}{2}$ in. (12.7 mm)	, ,	- , ,	•		

2-8.2.4 Where both leaves are required for exit purposes, they shall be provided with labeled fire exit hardware.

| Exception: Where permitted by the authority having jurisdiction, pairs of doors not provided with an astragal are permitted to have labeled fire exit hardware and an open back strike installed on the inactive leaf, and either labeled fire exit hardware or any labeled latch capable of being opened by one obvious operation from the egress side on the active leaf.

2-8.2.5 Where a pair of doors is needed for the movement of equipment and where the inactive leaf of the pair of doors is not required for exit purposes, labeled top and bottom self-latching or automatic flush bolt or labeled two point latches are permitted.

Exception: Manually operated, labeled top and bottom flush or surface bolts on the inactive leaf of a pair of doors shall be permitted to be used where acceptable to the authority having jurisdiction, provided they do not pose a hazard to safety to life. This provision limits their use to rooms not normally occupied by humans (e.g., transformer vaults, storage rooms). The inactive leaf shall not require a closer.

2-8.2.6 The throw of single point latchbolts shall not be less than the minimum shown on the fire door label. If the minimum throw is not shown or the door does not bear a label, the minimum throw shall be as required in Table 2-8(b).

2-8.2.7 Attaching Locks, Latches, Top and Bottom Bolts, and Fire Exit Hardware. Locks, latches, surface mounted

top and bottom bolts, and fire exit hardware shall be secured to reinforcements in the doors with machine screws or be attached with through-bolts. Flush mounted top and bottom bolts shall be secured to reinforcements in the doors with machine screws.

Exception: Locks and latches shall be attached to wood and plastic covered composite or wood core doors with not less than No. 8 flat, threaded-to-the-head, wood screws or be attached with through-bolts. Fire exit hardware and surface mounted top and bottom bolts shall be attached to wood and plastic covered composite doors with throughbolts or with steel screws at locations, indicated in the door manufacturer's installation instructions.

2-8.2.8 Attaching Strike Plates to Frame. Strike plates shall be secured to the frame with steel screws. Types of screws vary depending on material used for the manufacture of labeled door frames. Refer to labeled door frame manufacturers' instructions and published listings for specific screw requirements.

Exception: Channel frames shall be provided with holes to receive latch bolts and top bolts.

2-8.2.9 Strike plates for doors swinging in pairs shall be secured to reinforcements in the inactive leaf with machine screws.

Exception: Strike plates for wood and plastic covered composite doors swinging in pairs shall be attached to the inactive leaf with not less than No. 8 flat, threaded-to-the-head, wood screws.

- **2-8.2.10** Open back strikes shall be permitted to be used in lieu of conventional strikes only where specifically provided for in the published listings. (See Figure B-28.)
- **2-8.2.11** Electric strikes shall be permitted to be used in lieu of conventional strikes in single swing doors and pairs of doors where provided for in the published listings. (See Figure B-65.)
- **2-8.3 Protection Plates.** The top of the plate shall be a maximum of 16 in. (406 mm) above the bottom of the door. Such plates shall be permitted on both door faces. No other plates shall be installed. (*See Appendix F.*)

Exception*: Where otherwise tested and approved.

2-8.4 Automatic Louvers. Only labeled fire door louvers shall be used in fire doors. (*See 1-3.2.*)

2-8.5 Closing Devices.

- 2-8.5.1 Where there is an astragal or projecting latch bolt that prevents the inactive door from closing and latching before the active door closes and latches, a coordinating device shall be used. A coordinating device shall not be required where each door closes and latches independently of the other.
- **2-8.5.2** A closing device shall be installed on every fire door.

Exception: Where pairs of doors are provided for mechanical equipment rooms to permit movement of equipment, the closing device shall be permitted to be omitted on the inactive leaf.

- **2-8.5.3 Attachment.** All components of closing devices used shall be securely attached to doors and frames by steel screws or through-bolts.
- **2-8.5.4* Adjustment.** All closing mechanisms shall be adjusted to overcome the resistance of the latch mechanism so that positive latching is achieved on each door operation.
- **2-8.6 Door Holder/Release Devices.** Holder/release devices shall be permitted in conjunction with doors illustrated in Figures B-20 through B-28 and as shown in Figure B-51 when acceptable to the authority having jurisdiction.

2-8.7 Automatic Fire Detectors.

- **2-8.7.1** Detectors for the release of fire doors shall be permitted to be part of an overall system, such as a fire alarm, water flow alarm, or carbon dioxide release system, which shall release the door.
- **2-8.7.2** When smoke detectors are used they shall be located as shown in Figure B-51.
- **2-8.7.3 Installation.** Detectors and their components shall be installed in accordance with the manufacturer's instructions.
- **2-8.8 Operation of Doors.** All swinging doors shall be closed and latched at the time of fire. For the purposes of this section the operation of doors is divided into three categories.
- **2-8.8.1 Self-Closing Doors.** The door shall swing easily and freely and shall be equipped with a closing device to cause the door to close and latch each time it is opened. The closing mechanism shall not have a hold-open feature.

- **2-8.8.2 Automatic Closing Doors.** A door shall be permitted to be made automatic closing by the installation of a closing device and a separate, labeled, fail-safe door holder/release device or a hold-open mechanism that shall be permitted to be an integral part of the basic closing device or an integral closing device that permits free swinging of the door during normal operation and automatically closes the door during an alarm condition, provided the hold-open mechanisms are released by one or a combination of automatic fire detectors acceptable to the authority having jurisdiction.
- **2-8.8.3 Power Operated Fire Doors.** Power operated fire I doors shall be equipped with a releasing device that shall automatically disconnect the power operator at the time of fire, allowing a self-closing or automatic device to close the door irrespective of power failure or manual operation.

2-8.9 Application of Door Holder/Release Devices.

- **2-8.9.1*** Door holder/release devices shall be installed in accordance with the manufacturer's instructions and only in conformance with the individual manufacturer's published listings.
- **2-8.9.2** Location of smoke detectors used to control door holder/release devices shall be as shown in Figure B-51.

Exception: A detector shall not be required on the exterior (outside) wall.

2-8.10 Application, Installation, and Adjustment.

- **2-8.10.1** The installation of all components of a fire door assembly shall be in accordance with the specific listing of each component.
- **2-8.10.2** All components shall be installed in accordance with the manufacturer's installation instructions and shall be adjusted to function as described in the listing.
- **2-8.10.3** All components of a fire door assembly shall be firmly attached to walls, doors, and frames in a manner acceptable to the authority having jurisdiction.
- **2-8.10.4** Mounting to masonry walls shall be by means of through-bolts except where steel shells are permitted elsewhere herein.
- **2-8.10.5** All mounting screws, bolts, or shields shall be steel except where permitted elsewhere herein.
- **2-8.10.6** Attachment to doors with composite cores shall provide firm anchorage for anticipated use.
- **2-9 Gasketing.** Gasketing on fire doors or frames shall be furnished only in accordance with the published listings of the door, frame, or gasketing material manufacturer.

Exception: Where acceptable to the authority having jurisdiction, gasketing of noncombustible or limited combustible material (see NFPA 220) shall be permitted to be applied to the frame, provided closing and latching of the door is not thereby inhibited.

Chapter 3 Installation of Swinging Doors with Fire Door Hardware

3-1 Mounting of Doors.

- **3-1.1** Swinging tinclad doors and flush- or corrugated-type sheet metal doors with fire door hardware shall be flush or lap mounted.
- **3-1.2** Flush mounted doors shall be hung in steel channel frames securely anchored to the wall construction.
- **3-1.3** Lap mounted doors shall be hung on the surface of the wall and shall lap the opening at least 4 in. (102 mm) at the top and on each side.

3-2 Vents.

- **3-2.1** Each tinclad door formed of 14-in. by 20-in. (0.36-m by 0.51-m) sheets shall be provided with 3-in. [(76.2-mm) diameter vent holes. (See Figure B-33.)
- **3-2.2** The vent holes shall be cut through the sheets on the face of the door to be provided with the fire door hardware, care being taken so as not to interfere with the hardware or to injure the wood core when cutting the holes in the sheets. The metal covering around the opening shall be secured with small nails spaced about 1 in. (25.4 mm) apart and the exposed wood thoroughly painted.

3-3 Sills.

- **3-3.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- **3-3.2** In buildings with combustible floors or combustible floor coverings, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.

Exception: Door openings required to be protected by $\frac{1}{2}$ or $\frac{1}{3}$ -hour fire protection rated door assemblies.

- **3-3.3** Sills shall be constructed of noncombustible materials.
- **3-3.4** Sills shall extend at least the depth of the door frame for flush mounted doors. For lap mounted doors, sills shall extend beyond the opening by an amount equal to the projection of the installed door or doors. (See Figures B-1, B-3, and B-4 for recommended construction.)
- **3-3.5** Combustible floor coverings shall not extend through openings protected by 3-hour fire protection rated door assemblies.
- **3-3.6** Combustible floor coverings that extend through openings protected by $1\frac{1}{2}$ -, 1-, or $\frac{3}{4}$ -hour fire protections rated fire door assemblies shall have a minimum critical radiant flux of 0.22 watts/sq cm in accordance with testing per NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Source.

3-4 Walls.

- **3-4.1** Walls shall be plumb and true and present smooth surfaces. They shall be of brick, concrete, or concrete masonry unit construction except that where hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for door mounting hardware equal to that of brick or concrete (see Figure B-16). In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates) $^{3}/_{16}$ in. by 3 in. (4.76 mm by 76.2 mm) minimum may be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks (see Figure B-17). Door assemblies shall be used on walls of other construction only if listed for such installation.
- **3-4.2** Attachment of the door assembly to the wall shall be by through-wall bolts. As an alternate, expansion anchors may be used in concrete, brick, or filled concrete masonry unit walls if the following conditions are met. (See Figures B-9 and B-10.)
- (a) They shall be manufactured from steel and shall be zinc or cadmium coated.
- (b) They shall conform to Federal Specification FF-S-325 (Sept. 10, 1957, and Interim Amendment 3, July, 1965).
- (c) They shall be of the following types as shown in Federal Specification FF-S-325.
 - 1. Group III, Types 1 and 2
 - 2. Group II, Type 4, Classes 1 and 2
 - 3. Group VIII, Types 1 and 2
 - 4. Group II, Type 3, Class 3
- (d) The expansion anchors shall be set in accordance with Federal Specification FF-S-325 in holes that shall be true and clean.
- (e) The compressive strength of the concrete shall not be less than 2000 psi (1378 kPa), and the bolt load shall not exceed 1/4 of the proof test load.
- (f) When used in brick or filled concrete masonry unit walls, the bolt load shall not exceed 1/12 of the proof test load.
- (g) No expansion anchor shall be set closer to the edge of the wall opening than 6 times the diameter of the anchor or closer to each other than 8 times the diameter of the anchor.

3-5 Frames.

- **3-5.1** Frames shall not be required for lap mounted doors.
- **3-5.2*** Only labeled frames of the structural steel type shall be used for flush mounted doors. The frames shall be erected before the wall is built.

3-6 Clearances.

3-6.1 Flush Mounted. The noncombustible clearance between the bottom of flush mounted doors and a raised noncombustible sill shall not exceed $\frac{3}{8}$ in. (9.53 mm). Where there is no sill, the maximum clearance between the bottom of the door and the floor shall not exceed $\frac{3}{4}$ in. (19.05 mm). Clearances at the meeting edges of doors in pairs shall not exceed $\frac{1}{4}$ in. (6.35 mm) for 3-ply tinclad doors or $\frac{1}{8}$ in. (3.18 mm) for other doors.

- **3-6.2 Lap Mounted.** The clearance between the bottom of lap mounted doors and a raised noncombustible sill shall not exceed $\frac{3}{8}$ in. (9.53 mm). Where there is no sill, the maximum clearance between the bottom of the door and the floor shall not exceed $\frac{3}{4}$ in. (19.05 mm). The clearance between the door and the wall when the door is in the closed position shall not exceed $\frac{3}{8}$ in. (9.53 mm).
- **3-7 Coordinating Devices.** Where there is an astragal or projecting latch bolt that prevents the inactive door of a pair of doors from closing and latching before the active door closes and latches, a coordinating device shall be used. A coordinating device shall not be required where each door closes and latches independent of the other door.
- **3-8 Fire Door Hardware.** (See Figures B-29 and B-31.)
- **3-8.1** Only labeled fire door hardware shall be used. The design and construction of typical fire door hardware for swinging fire doors is illustrated in *Swinging Hardware for Standard Tin-Clad Fire Doors Mounted Singly and in Pairs*, ANSI A133.1.
- **3-8.2** Fire door hardware includes hinge brackets, hinges, latches, latch keepers, and operating handle mechanism; for the inactive door or pairs of doors, top and bottom bolts and keepers.
- **3-8.3** Hinges and Latches, Number and Length. [See Tables 3-8(a), 3-8(b), and 3-8(c).]
- **3-8.4** Attaching Fire Door Hardware to Doors. Upper and lower hinges and latches shall be spaced not less than 8 in. (203 mm) or more than 11 in. (279 mm) from the top and bottom of the door.
- 3-8.5 Attaching Fire Door Hardware to Frames for Flush Mounted Doors. Hinges and latch keepers shall be bolted, riveted, or welded to the frame.
- 3-8.6 Attachment of Wall Strips for Lap Mounted Doors. Hinges and latch keepers shall be mounted on wall strips bolted to or through the wall. (See 3-4.2.) Not less than $\frac{3}{4}$ -in. (19.05-mm) bolts shall be used for attaching hinge wall strips and not less than $\frac{1}{2}$ -in. (12.7-mm) bolts for latch keeper wall strips. (See Figure B-31.)
- **3-9 Operation of Doors.** The doors shall swing easily and freely on their hinges. The latches shall operate freely.
- 3-10* Closing Devices for Swinging Tinclad and Sheet Metal Fire Doors. Swinging tinclad and sheet metal fire doors shall be equipped with self-closing or automatic closing devices to ensure that they will be closed and latched at the time of fire. Other arrangements acceptable to the authority having jurisdiction shall be permitted.

3-11 Automatic Fire Detectors.

3-11.1 Detectors or fusible links shall be installed on both sides of the wall, interconnected so that the operation of any single detector or fusible link will permit the door to close and latch. (See Figures B-30 and B-32.)

Exception: A detector or fusible link shall not be required on the exterior (outside) wall.

Table 3-8(a) Fire Door Hardware

Table Giving Hinges and Latches for Different Size Doors of Tinclad Construction

Width of Door					3 ft 0 in 4 ft 0 in.		
Height of Door	1			No. of Hinges	No. of Hinges	No. of Hinges	No. of Hinges
0 ft to	5 ft 0 in	. 2	2	2	2	2	2
5 ft 0 in. to	6 ft 6 ir	ı. 2	2	2	2	3	3
6 ft 6 in. to	8 ft 6 in	ı. 3	2	2	3	3	4
8 ft 6 in. to	10 ft 6 in	. 4	3	3	3	4	4
10 ft 6 in. to	12 ft 0 in	ı. 5	4	4	4	4	4

For SI Units: 1 ft = 0.3048 m.

Table 3-8(b) Fire Door Hardware

Table Giving Length of Hinges and Latches for Different Widths of Doors of Tinclad Construction

Width of Door	*Length of Hinges	No. of Holes in Hinge	Length of Latches				
1 ft 6 in. to 1 ft 9 in. (incl.)	16 in.	2	Not	less	than	14%	in.
1 ft 9 in. to 2 ft 0 in.	19 in.	2	"	"	"	"	"
2 ft 0 in. to 2 ft 4 in.	22 in.	3	"	*	,,	#	#
2 ft 4 in. to 2 ft 8 in.	25 in.	3	"	"	"	"	*
2 ft 8 in. to 3 ft 0 in.	28 in.	3	"	"	"	"	,,
3 ft 0 in. to 3 ft 4 in.	31 in.	3	"	"	"	"	#
3 ft 4 in. to 3 ft 8 in.	34 in.	4	"	•	"	77	#
3 ft 8 in. to 4 ft 0 in.	37 ın.	4	*	"	"	"	**
4 ft 0 in. to 4 ft 4 in.	40 in.	4	"	#	*	"	n
4 ft 4 in. to 4 ft 8 in.	43 in.	4	"	,,	"	"	*
4 ft 8 in. to 5 ft 0 in.	46 in.	5	"	n	*	"	"
5 ft 0 in. to 5 ft 4 in.	49 in.	5	"	#	"	"	"
5 ft 4 in. to 5 ft 8 in.	52 in.	5	"	#	"	"	"
5 ft 8 in. to 6 ft 0 in.	55 in.	5	"	"	"	"	H

*The intermediate hinge straps (where three or more are used) may be not more than 8 in. shorter than is indicated.

For SI Units: 1 ft = 0.3048 m; 1 in. = 25.4 mm.

Table 3-8(c) Fire Door Hardware

Table Giving Numbers of Latches and Hinges for Sheet Metal Doors

Height of Door	No. of Latches	No. of Hinges
0 ft to 5 ft 3 in.	2	2
5 ft 4 in. to 8 ft 3 in.	3	3
8 ft 4 in. to 10 ft 3 in.	4	4
10 ft 4 in. to 12 ft 4 in.	5	4

NOTE: For heights in fractional inches, use next higher full inch.

For SI Units: 1 ft = 0.3048 m; 1 in. = 25.4 mm.

- **3-11.1.1** Where fusible links are used, one fusible link shall be located near the top of the opening and additional links shall be located at or near the ceiling on each side of the wall.
- **3-11.1.2** Where smoke detectors are used, they shall be located using Figure B-51.
- **3-11.2 Installation.** Detectors and their components shall be installed in accordance with the manufacturer's instructions.

Chapter 4 Installation of Horizontally Sliding Doors

4-1 Mounting of Doors.

- **4-1.1** Horizontally sliding doors shall be wall mounted in a track attached to a wall in accordance with the manufacturer's instructions and individual published listing. (See Figures B-34, B-37, B-41, B-42, B-43, and B-44.)
- **4-1.1.1** Unless tested otherwise, doors shall lap openings at least 4 in. (102 mm) at the sides and top. Where doors provide protection of openings located in walls above floor level and no projection sill is provided, the doors shall lap the bottom of the opening at least 4 in. (102 mm).
- **4-1.2 Biparting Doors.** Biparting doors shall have an astragal securely attached in place so as to project a minimum of $\frac{3}{4}$ in. (19.05 mm) unless otherwise required or allowed in the individual manufacturer's published listing. [See Figures B-37, B-37(a), and B-37(b).]

4-1.3 Vents.

- **4-1.3.1** Each tinclad door formed of 14-in. by 20-in. (0.36-m by 0.51-m) sheets shall be provided with 3-in. (76.2-mm) diameter vent holes that may be field or factory cut and shall be located as shown in Figure B-40. Each section of spliced single doors and each leaf of center parting doors shall be vented as provided for two-hanger doors in Figure B-40. Other types of doors containing combustible core material shall be vented as provided for by the manufacturer's procedure under label service.
- **4-1.3.2** The vent holes shall be cut through the sheets on the face of the door opposite the rear binder pockets, care being taken so as not to injure the wood core when cutting the holes in the sheets. The metal covering around the opening shall be secured with small nails spaced about 1 in. (25.4 mm) apart, and the exposed wood thoroughly painted.
- **4-1.4 Clearances.** When in the closed position, the clearance between the wall and the door or the frame and the door shall not be more than $\frac{3}{4}$ in. (19.05 mm) [see Figures B-37(c), B-37(d), and B-37(e)]. The clearance under the bottom of the door shall be as follows:
- (a) The clearance between the bottom of the door and a raised noncombustible sill shall not exceed \% in. (9.53 mm).
- (b) Where there is no sill, the clearance between the bottom of the door and the floor shall not exceed $\frac{3}{4}$ in. (19.1 mm).
- (c) The clearance between the bottom of the door and the nominal surface of floor coverings as provided in 4-2.7 shall not exceed $\frac{1}{2}$ in. (12.7 mm).
- **4-1.5 Doors.** Door panels shall be permitted to be single section or multiple section. Connection between the panels shall be in accordance with the manufacturer's instructions and the individual published listing. Tinclad and metal clad (Kalamein) doors shall not be furnished in more than two sections. Hollow metal or composite doors shall be furnished in not more than five panels, constructed for either field or factory assembly. For biparting doors, not more than four panels shall comprise a single leaf. Personnel

swinging type pass doors may be provided if tested with the sliding door and listed in the manufacturer's individual published listing. The pass door shall be provided with hinges, latchset, spring hinges, or closer. (See Figure B-66.)

4-2 Sills.

- **4-2.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the opening.
- 4-2.2 In buildings with combustible floors or combustible floor coverings, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening. Sills shall be constructed of noncombustible material and extend 6 in. (152 mm) past the edge of the opening on each side and at least 4 in. (102 mm) out from the face of the wall. (Figures B-1, B-3, and B-4 show constructions that are acceptable.)

Exception: Door openings required to be protected by 1/2- or 1/3-hour fire protection rated door assemblies.

- 4-2.3* Sills shall be constructed of noncombustible materials. For frames having a jamb depth of 4 in. (102 mm) or less, the sill width shall be equal to the jamb depth. Where frames have a greater jamb depth, the sills shall have a minimum width of 4 in. (102 mm) and shall be installed so that the sill extends from the face of the frame on the door side into the frame. (See Figure B-2.)
- **4-2.4** Flush concrete sills shall extend to the wall opening on both sides.
- **4-2.5** Raised noncombustible sills or thresholds shall be acceptable wherever combustible floor coverings are contemplated or are in use on one or both sides of the door openings. (See Figure B-2.)
- **4-2.6** Combustible floor covering shall not extend through openings required to be protected by 3-hour fire protection rated door assemblies.
- **4-2.7** Combustible floor coverings shall be permitted to extend through openings protected by $1\frac{1}{2}$ -, 1-, $\frac{3}{4}$ -, $\frac{1}{2}$ -, or $\frac{1}{3}$ -hour fire protection rated fire door assemblies and shall have a minimum critical radiant flux of 0.22 watts/sq cm in accordance with testing per NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Source.

4-3 Walls.

4-3.1 Walls shall be plumb and true and have a fire resistance rating as required by the authority having jurisdiction. They shall be of brick, concrete, or concrete masonry unit construction except that where hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for door-mounting hardware equal to that of brick or concrete as illustrated in Figure B-18. In lieu of filling the hollow concrete masonry units, continuous steel bearing plates (crush plates) may be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks. Door assemblies shall be used on walls of other construction only if listed for such installation. (See Figures B-18 and B-19.)

- **4-3.2** Attachment of the door assembly to the wall shall be by through-wall bolts. As an alternate, expansion anchors | shall be permitted to be used in concrete, brick, or filled concrete masonry unit walls if the following conditions are met. (See Figures B-9 and B-10.)
- (a) They shall be manufactured from steel and shall be zinc- or cadmium-coated.
- (b) They shall conform to Federal Specification FF-S-325 (Sept. 10 1957, and Interim Amendment 3, July 16, 1965).
- (c) They shall be of the following types as shown in the above specification:
 - 1. Group III, Types 1 and 2
 - 2. Group II, Type 4, Classes 1 and 2
 - 3. Group VII, Types 1 and 2
 - 4. Group II, Type 3, Class 3.
- (d) The expansion anchors shall be set in accordance with Federal Specification FF-S-325 in holes that shall be true and clean.
- (e) The compressive strength of the concrete shall not be less than 2000 psi (1378 kPa), and the bolt load shall not exceed ½ of the proof test load.
- (f) When used in brick or filled concrete masonry unit walls, the bolt load shall not exceed $\frac{1}{12}$ of the proof test load.
- (g) No expansion anchor shall be set closer to the edge of the wall opening than 6 times the diameter of the anchor or closer to each other than 8 times the diameter of the anchor.
- **4-4 Lintels.** Lintels shall be brick, concrete or masonry arches, steel, or reinforced concrete. If of steel or reinforced concrete, they shall be constructed as shown in Figures B-5, B-6, B-7, or B-8 or as acceptable to the authority having jurisdiction.
- **4-5 Hardware.** Only hardware listed for use with the door shall be used. Fire door hardware shall include tracks, hangers, track brackets, bumpers, binders, pull handles, stay rollers, center latch and center floor stop if required, astragal, and center binders. Tracks may be flat, box, angle, J section, or round. [See Figures B-40(a), B-40(b), B-40(c), B-40(d), B-40(e), and B-40(f).] Tracks shall be inclined or level, depending on the manufacturer's specific label service procedure.

The wall bolts shall not be less than \(^{5}\ext{8}\)-in. (15.8-mm) diameter unless so tested. The bolt spacing depends on the manufacturer's specific test and label service procedure. Not less than two hangers shall be provided for each door. Tinclad and sheet metal doors for openings in excess of 6 ft (1.83 m) shall have an additional hanger. Two hangers shall be provided on each section of vertically spliced tinclad doors. At least two binders are required on the vertical jambs and at least one at the head unless listed otherwise. [See Figures B-44(a) and B-44(b).] Biparting sliding doors shall be provided with the sill binders or center guides if required by the individual manufacturer's label service procedure. Stay rollers shall be installed in an approved manner. [See Figures B-11 through B-15(b).] Center parting doors requiring a center latch shall be provided

with a fusible link arrangement where doors are power operated that shall hold the latch in an unlatched position during day-to-day operation, but that shall cause the latch to operate and secure the door in the event of a fire. Handles shall be provided for opening the doors from either side. If flush pulls are used they shall not be back-to-back on tinclad doors.

- **4-6 Closing Devices.** Doors shall be equipped with self- closing or automatic closing devices to ensure that they shall close or be closed at the time of a fire. Closing devices shall be a system of weights or a listed closing device. Automatic closing doors shall not have a delay in the initiation of closing or reclosing of more than 10 seconds. [See Figures B-35, B-36, B-36(a), B-38, B-39, B-39(a), B-41, B-42, B-43, and B-44.]
- 4-6.1* Power operated doors not equipped with standby or emergency power shall be equipped with an integral or a separate listed releasing device that shall automatically disconnect the door from the control of the power operator at the time of a fire. The releasing device shall be activated at the time of the fire by detectors or fusible links installed on both sides of the wall and interconnected so I that the operation of the single detector or fusible link shall permit the door to be disconnected and closed. If closing is achieved by power operation, standby or emergency power shall be provided. The time delay from failure of normal power operation to emergency power operation shall not exceed 10 seconds. The standby or emergency power source shall be sufficient to operate a minimum of 50 closing cycles of the door. If door opening is also achieved by power operation, the standby or emergency power source shall be sufficient to operate a minimum of 50 opening and closing cycles of the door.
- **4-6.2** Power operation shall not permit opening if temperatures on either side of the door reach 500°F (260°C).
- **4-7 Closing Speed.** The average closing speed shall be not less than 6 in. (152 mm) per second not including any initial delay time. The average closing speed for doors used in buildings where access by the general public is not restricted shall be not more than 24 in. (610 mm) per second.

4-8 Automatic Fire Detectors.

4-8.1 Fusible links shall be installed on both sides of the wall and interconnected so that the operation of any single fusible link shall permit the door to close. [See Figures B-36, B-36(a), B-39, and B-39(a).]

One fusible link shall be installed just above the opening or on an arm projecting from the leading edge of the door, and a second and third fusible link at or near the ceiling on each side of the wall. (See Figures B-41 through B-44.)

- **4-8.2** Automatic closing doors shall be released from the open position by the actuation of smoke detectors, located as shown in Figure B-51, or by other means approved by the authority having jurisdiction.
- **4-8.3** Detectors used to activate the door closing device | shall be permitted to be a part of the overall building fire alarm system or individual detectors listed for releasing service installed in accordance with the manufacturer's instructions.

Chapter 5 Installation of Vertically Sliding Fire Doors

- **5-1 Doors.** Vertically sliding doors of the tinclad, sheet metal (flush and corrugated), and steel sectional (overhead) types shall be wall mounted.
- 5-1.1 The tinclad and sheet metal doors shall lap the opening at least 4 in. (102 mm) at the sides and top. The steel sectional doors shall lap the opening at least 2 in. (50.8 mm) at the sides and top. The sides of the sectional door shall be mounted within wall guides, and the top edge shall engage in an interlock along the lintel.
- **5-2 Vents.** Each tinclad door shall be provided with 3-in. (76.2-mm) diameter vent holes located as shown in Figure B-40. Doors up to 6 ft (1.83 m) wide shall be provided with three vents, and doors over 6 ft (1.83 m) wide shall be provided with four vents, as shown for two-hanger doors.
- 5-2.1 The vent holes shall be cut through the sheets on the face of the door to be provided with the guide shoes, care being taken not to interfere with the hardware or injure the wood core when cutting the holes in the sheet. The metal covering around the opening shall be secured with small nails spaced about 1 in. (25.4 mm) apart, and the exposed wood shall be painted.
- 5-3 Clearances. The clearances between the door and the wall when the door is in the closed position and between the door and sill shall not exceed \% in. (9.53 mm).

5-4 Sills.

- **5-4.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- **5-4.2** In buildings with combustible floors or combustible floor coverings, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.

Exception: Door openings required to be protected by $\frac{1}{2}$ or $\frac{1}{3}$ -hour fire protection rated door assemblies.

- **5-4.3** Sills shall be constructed of noncombustible material and shall extend 6 in. (152 mm) past the edge of the opening on each side and 4 in. (102 mm) out from the face of the wall. (See Figures B-1, B-3, and B-4.)
- **5-4.4** Combustible floor coverings shall not extend through openings required to be protected by 3-hour fire protection rated door assemblies.
- **5-4.5** Combustible floor coverings that extend through openings required to be protected by $1\frac{1}{2}$ -, 1-, or $\frac{3}{4}$ -hour fire protection rated fire door assemblies shall have a minimum critical radiant flux of 0.22 watts/sq cm in accordance with testing per NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Source.

5-5 Walls.

5-5.1 Walls shall be plumb and true and present smooth surfaces. They shall be of brick, concrete, or concrete masonry unit construction except that, when hollow con-

- crete masonry units are used, the wall opening shall be reinforced to provide anchorage for door-mounting hardware equal to that of brick or concrete (see Figure B-16) and shall include anchorage of the wall-mounted pulleys that carry the weight of the door and counterbalances. In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates), ϑ_{16} in. by 3 in. (4.76 mm by 76.2 mm) minimum, shall be permitted to be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks (see Figure B-17). Door assemblies shall be used on walls of other construction only if listed for such installation.
- **5-5.2** Attachment of the door assembly to the wall shall be by through-wall bolts. As an alternative, expansion anchors | shall be permitted to be used in concrete, brick, or filled concrete masonry unit walls if the following conditions are met. (See Figures B-9 and B-10.)
- (a) They shall be manufactured from steel and shall be zinc- or cadmium-coated.
- (b) They shall conform to Federal Specification FF-S-325 (Sept. 10, 1957, and Interim Amendment 3, July 16, 1965).
- (c) They shall be of the following types as shown in FF-S-325.
 - 1. Group III, Types 1 and 2
 - 2. Group II, Type 4, Classes 1 and 2
 - 3. Group VIII, Types 1 and 2
 - 4. Group II, Type 3, Class 3
- (d) The expansion anchors shall be set in accordance with FF-S-325 in holes that shall be true and clean.
- (e) The compressive strength of the concrete shall not be less than 2000 psi (1378 kPa), and the bolt load shall not exceed $\frac{1}{4}$ of the proof test load.
- (f) When used in brick or filled concrete masonry unit walls, the bolt load shall not exceed 1/12 of the proof test load.
- (g) No expansion anchor shall be set closer to the edge of the wall opening than 6 times the diameter of the anchor or closer to each other than 8 times the diameter of the anchor.
- **5-6 Lintels.** Lintels shall be brick, concrete, or masonry arches, steel, or reinforced concrete. If of steel or reinforced concrete, they shall be constructed as shown in Figures B-5, B-6, B-7, or B-8, or as acceptable to the authority having jurisdiction.
- 5-7 Fire Door Hardware for Tinclad and Sheet Metal Doors. (See Figure B-45.)
- 5-7.1 Only labeled fire door hardware shall be used.
- **5-7.2** Fire door hardware shall consist of tracks, brackets, guides, bumpers, and counterbalancing mechanisms.
- **5-7.3* Track.** Two tracks, each with a length equal to twice the height plus 9 in. (229 mm), shall be provided. The track shall be attached with track brackets at each bolt.

- **5-7.4 Guides.** Two track guides shall be provided for each track for openings 5 ft (1.52 m) or less in height. An additional guide for each track shall be provided for each $2\frac{1}{2}$ ft (0.76 m) or fraction thereof in excess of 5 ft (1.52 m) in height. Each of the track guides shall be bolted through the door.
- **5-7.5 Cables.** Cables shall be of sufficient strength to support the load. Cable brackets are required and shall be bolted through the door. Cable fasteners and thimbles are required. Cable pulleys with frames and sheaves shall be bolted through the wall with \(^3/_4\-\)-in. (19.05-mm) bolts.

5-7.6 Chafing Strips.

- 5-7.6.1 Tinclad and flush-type sheet metal doors shall be provided with two half-oval chafing strips for the back of doors not exceeding 8 ft (2.44 m) in width. The length shall be 2 in. (50.8 mm) less than the height of the door. The strips shall be held by \(^1/4\)-in. (6.35-mm) through-bolts with countersunk heads and with nuts bearing against washers. Where doors exceed the above dimension, three strips shall be required.
- **5-7.6.2** Chafing strips shall not be required for corrugated doors.

5-7.7 Bumpers and Bumper Shoes.

- **5-7.7.1** One bumper shall be bolted to the top of each track with wall bolts.
- **5-7.7.2** Four bumper shoes shall be installed; one bumper at each corner of the door. Each bumper shall be fastened to the faces and edges of the door by wood screws.
- **5-7.8 Rear Binders.** Doors shall be provided with one rear binder located at the center of the lintel and attached with \(^3\)₄-in. (19.05-mm) bolts. (See Figure B-45.)
- **5-7.9 Handles.** Flush pull handles on the wall side of the door shall be countersunk flush with the surface of the door. Bow shaped handles shall be bolted to the flush pull by through-bolts or otherwise securely attached.

5-8 Fire Door Hardware for Steel Sectional Doors.

- **5-8.1** The "Fire Door" label on a sectional door shall include the hinged steel panels, wall guides, interlock at the top edge, vertical and horizontal tracks, roller wheels, counterbalance, automatic closing mechanism, and governors.
- **5-8.2** The horizontal track section shall extend from the wall a distance of the wall opening height plus 3 ft (0.91 m) and shall be connected by a fusible track link to the vertical track section such that the track breaks away from the vertical track section if subjected to damage from falling materials at the time of fire.
- **5-8.3** The wall guides shall be plumb and bolted to or through the wall. The guides shall extend above the wall opening a distance of $2\frac{1}{2}$ in. (63.5 mm).
- **5-8.4** An angle-type interlock shall be bolted to the lintel and shall engage a matching pocket on the top edge of the door when in the closed position.

5-8.5 Counterbalancing Mechanism. The sectional door shall be counterbalanced by an overhead horizontal helical spring on a shaft. The shaft shall be attached to a reel with a steel cable attached to both sides of the door near the bottom edge.

5-9 Closing Devices for Vertically Sliding Tinclad, Sheet Metal, and Steel Sectional Fire Doors.

5-9.1 Vertically sliding tinclad, sheet metal, and sectional steel doors shall be equipped to close automatically at the time of fire.

5-9.2 Automatic Closers.

- **5-9.2.1** Automatic closing, vertically sliding doors shall be suspended by a system of weights and ropes, wire cables, or chains over pulleys. All weights shall be enclosed in a substantial metal enclosure for the entire length of travel. Pulleys over which the weight cable or chain passes shall be shielded to prevent the cable or chain from jumping off the pulley.
- **5-9.2.2** Vertically sliding doors shall have an average closing speed of not less than 6 in. per second nor more than 24 in. per second.
- **5-9.2.3** Vertically sliding sectional doors shall close automatically upon operation of a fusible link or detector that releases the overhead sectional door, and the governor shall control the rate of descent.

5-9.3 Automatic Fire Detectors.

5-9.3.1 Detectors or fusible links shall be installed on both sides of the wall and shall be interconnected so that the operation of any single detector or fusible link will cause the door to close.

Exception: A detector or fusible link is not required on the exterior (outside) wall.

- (a) For tinclad and sheet metal doors, one fusible link shall be located at the center near the bottom of the door, and additional links shall be located at or near the ceiling on each side of the wall. (See Figures B-45 and B-46.)
- (b) For steel sectional doors, one fusible link shall be located near the top of the opening near the automatic release mechanism on the door in an area where there is no obstruction to the circulation of air, and additional links shall be located at or near the ceiling on each side of the wall. (See Figure B-47.)
- (c) Where smoke detectors are used they shall be located as shown in Figure B-51.
- **5-9.3.2 Installation.** Detectors and their components shall be installed in accordance with the manufacturer's instructions.

Chapter 6 Installation of Rolling Steel Doors

6-1 Doors.

6-1.1 The mounting for rolling steel doors shall be either face-of-wall mounted (see Figure B-48) or between-the-jamb mounted. (See Figures B-49 and B-50.)

- **6-1.2** The opening shall be protected by either a single or double door installation, as determined by the authority having jurisdiction.
- **6-1.3** Doors mounted on the face of the wall and subject to damage from falling debris shall be protected by the building structure.

6-2 Sills.

- **6-2.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- **6-2.2** In buildings with combustible floors or combustible floor coverings, special sill construction shall be required if the floor structure is extended through the door opening, as combustible floor construction shall not extend through the door opening.

Exception: Door openings required to be protected by \(\frac{1}{2} \)- or \(\frac{1}{3} \)-hour fire protection rated door assemblies.

- **6-2.3** Sills shall be constructed of noncombustible material. They shall extend 6 in. (152 mm) past the edge of the opening on each side and at least 4 in. (102 mm) out from the face of the wall. (See Figures B-1, B-3, and B-4.)
- **6-2.4** Combustible floor coverings shall not extend through openings protected by 3-hour fire protection rated door assemblies.
- **6-2.5** Combustible floor coverings that extend through openings protected by $1\frac{1}{2}$, 1-, or $\frac{3}{4}$ -hour fire protection rated fire door assemblies shall have a minimum critical radiant flux of 0.22 watts/sq cm in accordance with testing per NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Source.

6-3 Walls.

- 6-3.1 Walls shall be plumb and true and present smooth surfaces. They shall be brick, concrete, or concrete masonry unit construction except that, where hollow concrete masonry units are used, the wall opening shall be reinforced to provide anchorage for door-mounting hardware equal to that of brick or concrete. (See Figure B-16.) In lieu of using brick or filling the hollow concrete masonry units, continuous steel bearing plates (crush plates) \$\frac{1}{16}\$ in. by 3 in. (4.76 mm by 76.2 mm) minimum mounted on the side of the wall opposite the door shall be used to bridge the cavities and to prevent the through-wall bolts from crushing the hollow blocks. (See Figure B-17.) Door assemblies shall be used on walls of other construction only if listed for such installation.
- **6-3.2 Lintels.** Heads of door frames shall be reinforced or suitable lintels shall be provided, depending on the type of wall construction and loads to be supported.
- **6-3.3 Frames.** Frames are not required for rolling steel door installations. When frames or jambs only are provided, only minimum $\frac{3}{16}$ in. (4.76 mm) nominal structural steel or formed steel plate shall be used.

6-4 Assembly of Rolling Doors.

6-4.1 Guides.

- **6-4.1.1** The guides shall be mounted plumb and with sufficient clearances allowed for vertical expansion when exposed to fire.
- **6-4.1.2** The guides for between jamb-mounted doors shall be either exposed or concealed in a pocket or wall reveal.
- **6-4.1.3** Attachment of the door assembly to the wall shall be by through-wall bolts. As an alternate, expansion anchors shall be permitted to be used in concrete, brick, or filled concrete masonry unit walls if the following conditions are met. (See Figures B-9 and B-10.)
- (a) They shall be manufactured from steel and shall be zinc- or cadmium-coated.
- (b) They shall conform to Federal Specification FF-S-325 (Sept. 10, 1957, and Interim Amendment 3, July 16, 1965).
- (c) They shall be of the following types as shown in Federal Specification FF-S-325.
 - 1. Group III, Types 1 and 2
 - 2. Group II, Type 4, Classes 1 and 2
 - 3. Group VIII, Types 1 and 2
 - 4. Group II, Type 3, Class 3
- (d) The expansion anchors shall be set in accordance with FF-S-325 in holes that shall be true and clean.
- (e) The compressive strength of the concrete shall not be less than 2000 psi (1378 kPa). The bolt load is the resultant of the shear and tensile load applied to the bolt and shall not exceed ½ of the proof test load.
- (f) Where used in brick or filled concrete masonry unit walls, the resultant of the shear and tensile load applied to the bolt shall not exceed $\frac{1}{12}$ of the proof test load.
- (g) No expansion anchor shall be set closer to the edge of the wall opening than 6 times the diameter of the anchor or closer to each other than 8 times the diameter of the anchor.
- **6-4.1.4** Where structural steel frames are used at jambs, guides shall be secured to the frame with machine bolts of not less than \Re_8 in. (9.5 mm) diameter.

6-4.2 Brackets.

- **6-4.2.1** Brackets mounted on the face of the wall shall be bolted either to the wall or to an extension of the guide wall angle with not less than two through-bolts or machine bolts, ½-in. (12.7-mm) diameter, to each bracket.
- **6-4.2.2** Brackets mounted between the jambs shall be secured to the lintel or to the side of the jambs by not less than two machine bolts of $\frac{1}{2}$ in. (12.7 mm) diameter.
- **6-4.3* Hoods and Housings.** When the door is mounted on the face of the wall or between jambs, the metal hood and housing shall be tightly secured to the brackets or wall.

6-5 Closing Devices.

- **6-5.1** An automatic closing device shall be installed on every rolling steel door.
- **6-5.2** Rolling steel doors shall be made automatic closing by the incorporation of an integral escapement system consisting of either a spring-releasing device or an auxiliary push-down spring that, when activated by release of a fusible link or detector, shall cause the door to close.
- **6-5.3** The automatic closing mechanism shall be enclosed in a metal housing to protect the mechanism from debris and ensure operation in the event of fire.
- **6-5.4** A governor, when employed on a door, shall be an integral mechanism working in coordination with the closing device and shall control the closing speed of the door.
- **6-5.5** Rolling steel fire doors shall have an average closing speed of not less than 6 in. per second nor more than 24 in. per second.

6-6* Automatic Fire Detectors.

6-6.1 Detectors or fusible links shall be installed on both sides of the wall and interconnected so that the operation of any single detector or fusible link shall permit the door to close.

Exception: A detector or fusible link is not required on the exterior (outside) wall.

- **6-6.2** Where fusible links are used, one fusible link shall be located near the top of the opening and additional links shall be located at or near the ceiling on each side of the wall. (See Figures B-48 through B-50.)
- **6-6.3** Where smoke detectors are used, they shall be located as shown in Figure B-51.
- **6-6.4** Detectors and their components shall be installed in accordance with the manufacturer's instructions.
- **6-7 Power Operated Fire Doors.** Power operated fire doors are those that normally are opened and closed by power. They shall be equipped with a releasing device that will automatically disconnect the power operator at the time of fire, allowing a self-closing or automatic closing device to close the door irrespective of power failure or manual operation.

Chapter 7 Installation of Special Purpose Horizontally Sliding Accordion or Folding Doors

7-1 Mounting of Doors.

7-1.1 Horizontally sliding accordion or folding doors shall be ceiling or wall mounted in track or tracks attached to a lintel or wall in accordance with the manufacturer's instructions and individual published listing. (*See Figures B-61 and B-62*.)

- **7-1.2** If lintels are not a part of the ceiling assembly, they shall not reduce the fire resistance rating of the door assembly.
- 7-1.3 Doors shall lap the opening if mounted completely on the surface of the wall or shall extend across the opening if ceiling mounted or surface mounted and shall completely close the opening. Where doors provide protection of openings located in walls above floor level and no projecting sill is provided, the doors shall extend below the bottom of the opening per the listing.
- **7-1.4** Single doors shall be affixed to a jamb at one wall and shall close against a strike jamb provided at the other wall in accordance with the individual manufacturer's published listings. (See Figures B-63 and B-64.)
- **7-1.5** Biparting doors shall each be affixed to a jamb at a wall and shall close together at the meeting stiles in accordance with the individual manufacturer's published listings.

7-1.6* Clearances.

- **7-1.6.1** Clearances at the lintel, jambs, and meeting stiles shall not exceed $\frac{1}{8}$ in. (3.18 mm).
- **7-1.6.2** The clearance under the bottom of the door shall be as follows:
- (a) The clearance between the bottom of the door and a raised noncombustible sill shall not exceed $\frac{4}{3}$ in. (9.53 mm).
- (b) Where there is no sill, the clearance between the bottom of the door and the floor shall not exceed $\frac{3}{4}$ in. (19.1 mm).
- (c) The clearance between the bottom of the door and the nominal surface of floor coverings as provided for in 7-1.7.7 shall not exceed $\frac{1}{2}$ in. (12.7 mm).

7-1.7 Sills.

- **7-1.7.1** In buildings with noncombustible floors, special sill construction shall not be required if the floor structure is extended through the door opening.
- **7-1.7.2** In buildings with combustible floors or combustible floor coverings, special sill construction shall be required if the floor structure is extended through door opening, as combustible floor construction shall not extend through the door opening.

Exception: Door openings required to be protected by ½- or ½-hour fire protection rated door assemblies.

- 7-1.7.3 Sills shall be constructed of noncombustible materials. For frames having a jamb depth of 4 in. (102 mm) or less, the sill width shall be equal to the jamb depth. Where frames have a greater jamb depth, the sills shall have a minimum width of 4 in. (102 mm) and shall be installed so that the sill extends from the face of the frame on the door side into the frame. (See Figure B-2.)
- **7-1.7.4** Flush concrete sills shall extend to the wall opening on both sides.

- **7-1.7.5** Raised noncombustible sills or thresholds shall be acceptable wherever combustible floor coverings are contemplated or are in use on one or both sides of the door openings. (See Figure B-2.)
- **7-1.7.6** Combustible floor covering shall not extend through openings required to be protected by 3-hour fire protection rated door assemblies.
- 7-1.7.7 Combustible floor coverings may extend through openings required to be protected by $1\frac{1}{2}$ -, 1-, or $\frac{3}{4}$ -hour fire protection rated fire door assemblies and shall have a minimum critical radiant flux of 0.22 watts/sq cm in accordance with testing per NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Source.

7-2 Walls.

- **7-2.1** Walls shall be plumb and true and have a fire resistance rating as required by the authority having jurisdiction.
- **7-2.2** Jambs attached to dry wall construction shall be installed in accordance with the manufacturer's installation instructions. Structural support shall be provided.
- **7-2.3** Attachment of jambs to masonry, concrete, or brick shall be by expansion bolt type anchors.

7-3 Lintels.

- **7-3.1** Lintels shall be applied to or be an integral part of the ceiling. (See Figures B-61 and B-62.)
- **7-3.2** Applied lintels (headers) shall be in accordance with the manufacturer's published listings.
- **7-3.3** Fasteners, if required, shall be in accordance with the manufacturer's installation instructions with spacing over the door stack area half that of normal spacing.
- **7-4 Hardware.** Only hardware listed for use with the door shall be used.

7-5 Closing Devices.

- **7-5.1** Closing devices shall be listed.
- **7-5.2** Doors shall be self- or automatic closing and shall not have a delay in the initiation of closing or reclosing of more than 10 seconds.
- **7-5.3** Only labeled power operators listed for use with the door shall be used.
- **7-5.4** If closing is achieved by power operation, standby or emergency power shall be provided. The time delay from failure of normal power operation to emergency power operation shall be not exceed 10 seconds. The standby or emergency power source shall be sufficient to operate a minimum of 50 closing cycles of the door. If door opening is also achieved by power operation, the standby or emergency power source shall be sufficient to operate a minimum of 50 opening and closing cycles of the door.

- **7-5.5** Power operation shall not occur if temperatures on either side of the door reach 500°F (260°C).
- **7-6 Closing Speed.** The average closing speed shall be not less than 6 in. (152 mm) per second nor more than 24 in. (610 mm) per second.

7-7 Automatic Fire Detectors.

- 7-7.1 Automatic closing doors shall be released from the open position by actuation of smoke detectors, located as shown in Figure B-51, or by other means approved by the authority having jurisdiction.
- **7-7.2** Detectors used to activate the door closing device may be a part of the overall building fire alarm system.

Chapter 8 Installation of Hoistway Doors for Elevators and Dumbwaiters

8-1 Scope. This section covers only fire door assemblies in hoistway entrances directly connected with closed elevator or dumbwaiter operation and used in the vertical hoistway enclosure for the purpose of preventing the passage of fire through such entrances. Fire door assemblies not connected with access to cars shall be installed as provided in other sections of this standard.

8-2 General Requirements.

- **8-2.1** Fire door entrances used in elevator hoistways shall also conform to the requirements of ASME/ANSI A17.1, Safety Code for Elevator and Escalators, or CAN 3-B44, Safety Code for Elevators (see 1-1.3). Fire door entrances may consist of fire door panels, frames, headers, track, hangers (some doors may be provided with integral hangers), pendant bolts, still, sill support plates, sill brackets, retaining angles, and closer assembly.
- **8-2.2** Fire door assemblies shall be $\frac{3}{4}$ -hour, 1-hour, $\frac{1-\frac{1}{2}}{2}$ hour, or 2-hour fire protection rated (2-hour Canada only).
- **8-2.2.1** Labeled hoistway door assemblies shall be installed in walls of approved fire resistance rated construction.
- **8-2.2.2** Hoistway door frame assemblies shall be installed in accordance with the listing and labeling procedures including the manufacturer's installation instructions.
- **8-2.2.3** Where horizontal sliding entrances without frames are used in masonry or concrete, the panels shall overlap the sides of the opening at least $\frac{5}{8}$ in. (16 mm) beyond the thickness of any facing used to finish the opening.
- **8-2.2.4** Where vertically sliding entrances without frames are used in masonry or concrete, the panels shall overlap the top and bottom of the opening by at least 2 in. (25 mm) beyond the thickness of any facing used to finish the opening.
- **8-2.2.5** Where the entrance is too large for the regularly available test facilities, the certifying organization may issue oversize certificates or oversize labels.

8-2.3 Hoistway Door Vision Panels.

- **8-2.3.1** Where required or used, vision panels shall conform to ASME, A17.1, Safety Code for Elevators and Escalators, or CAN 3-B44, Safety Code for Elevators (see 1-1.3), and to the following requirements:
- **8-2.3.1.1** Muntins, trim, and vision panel protection shall be of noncombustible material and of substantial construction.

Exception: Elevators under fire fighter emergency recall operation conforming the requirements of ASME/ANSI A17.1, Safety Code for Elevators and Escalators, Rule 211.3 through 211.8, or CAN 3-B44, Safety Code for Elevators, Clause 3.12.15.9.1 (see 1-1.3).

- **8-2.3.2** Horizontally sliding doors shall be closed when the car is at a landing except when the elevator is operated by a designated operator in the car, when loading or unloading, and when the elevator is being actively dispatched by an automatic system that controls the doors.
- **8-2.3.3** Where required by the authority having jurisdiction, doors serving elevators required to conform with 8-2.3.2 shall be automatically closed after a predetermined time interval.

8-3 Types of Doors.

- **8-3.1 Labeled Swing Hoistway Doors for Elevators and Dumbwaiters** Fire Rated Entrance. (See Figure B-52.) Each entrance shall be labeled or listed. Each label shall bear the name of the manufacturer. Labels shall be provided for elevator entrance in accordance with 8-3.1(a) or 8-3.1(b) and for dumbwaiters in accordance with 8-3.1(c).
- (a)(1) One label shall be provided for the door panels, located such that it will be visible after installation.
- (2) One label shall be provided for the frame, located such that it will be visible after installation.
- (3) Where entrance hardware components have not all been tested in complete assembly, individually labeled hardware components that are designed to be compatible with the entrance assembly shall be provided. One label shall be permitted to be provided for the entrance hardware where the entrance hardware components are equivalent to those tested in a complete assembly.

Exception: One label shall be permitted to be provided for the complete entrance assembly where the components are the same as those tested in a complete assembly.

- (b)(1) A master label indicating the name of the manufacturer shall be provided for the door panel and located in such a way that it will be visible after installation to the authority having jurisdiction for review.
- (2) The components of entrance assemblies such as frames, sill, and sill supports shall bear a component label.
- (3) Only labeled locks, latches, and closers shall be used.
- (4) Labeled entrance hardware components such as door frames, locks, latches, and closer assemblies, which

- were not tested in a complete assembly with the fire doors, shall be permitted to be provided if they are designed to be compatible with the entrance hardware components tested in a complete assembly.
- (c) A master label indicating the name of the manufacturer shall be provided for the door panel and located in such a way that is will be visible after installation to the authority having jurisdiction for review. The label covers the design and construction of the door, frame, and hardware.
- **8-3.2** Labeled Horizontally Sliding Hoistway Doors for Elevators and Dumbwaiters—Fire Rated Entrance. (See Figures B-53 and B-54.) Each entrance shall be labeled or listed. Each label shall bear the name of the manufacturer. Labels shall be provided for elevator entrance in accordance with 8-3.2(a) or 8-3.2(b) and for dumbwaiters in accordance with 8-3.2(c).
- (a)(1) One label shall be provided for the door panels, located such that it will be visible after installation.
- (2) One label shall be provided for the frame, located such that it will be visible after installation, except that no label is required where frames are installed in masonry or concrete and where the panel overlaps the opening by $\frac{5}{8}$ in. (9.5 mm) beyond the thickness of any facing used to finish the opening.
- (3) Where entrance hardware components have not all been tested in complete assembly, individually labeled hardware components that are designed to be compatible with the entrance assembly shall be provided. One label shall be permitted to be provided for the entrance hardware where the entrance hardware components are equivalent to those tested in a complete assembly.

Exception: One label shall be permitted to be provided for the complete entrance assembly where the components are the same as those tested in a complete assembly.

- (b)(1) A master label indicating the name of the manufacturer shall be provided for the door panel and located in such a way that it will be visible after installation to the authority having jurisdiction for review.
- (2) The components of entrance assemblies such as frames, sills, sill support plates, header, track, hangers, pendant bolts, retaining angles, closers assemblies, and interlock mechanism shall bear a component label.
- (3) Labeled entrance hardware components such as track, closers assembly, interlock mechanism, and sills that were not tested in a complete assembly with the fire doors shall be permitted to be provided if they are designed to be compatible with the entrance hardware components tested in a complete assembly.
- (c) A master label indicating the name of the manufacturer shall be provided for the door panel and located in such a way that it will be visible after installation to the authority having jurisdiction for review. The label covers the design and construction of the door, frame, and hardware.
- **8-3.3 Labeled Vertically Sliding Hoistway Doors for Elevators and Dumbwaiters—Fire Rated Entrance.** (See Figure B-55 and B-56.) Each entrance shall be labeled or listed. Each label shall bear the name of the manufacturer. Labels shall be provided for each entrance in accordance with 8-3.3(a) or 8-3.3(b).

- (a)(1) One label shall be provided for the door panels, located such that it will be visible after installation.
- (2) Where a frame is provided or required one label shall be provided for the frame, located such that it will be visible after installation, except that no label is required where frames are made from structural steel channel and are installed in masonry or concrete and where the panel overlaps beyond the thickness of any facing used to finish the opening by 2 in. (51 mm).
- (3) Where entrance hardware components have not all been tested in complete assembly, individually labeled hardware components that are designed to be compatible with the entrance assembly shall be provided. One label shall be permitted to be provided for the entrance hardware where the entrance hardware components are equivalent to those tested in a complete assembly.

Exception: One label shall be permitted to be provided for the complete entrance assembly where the components are the same as those tested in a complete assembly.

- (b)(1) A master label indicating the name of the manufacturer shall be provided for the door panel where installed in drywall and located in such a way that it will be visible after installation to the authority having jurisdiction for review.
- (2) The components of entrance assemblies such as frames, guides, shoes, and locking assemblies shall bear a component label.
- (3) Labeled entrance hardware components such as closer and latching assemblies, which were not tested in a complete assembly with the fire doors, may be provided if they are designed to be compatible with the entrance hardware components tested in a complete assembly.

Chapter 9 Installation of Chute Doors

9-1 General.

- **9-1.1** Chute doors shall be of the swinging type, hinged on side or bottom for intake and on side or top for discharge.
- **9-1.2*** Chute doors shall have a fire protection rating of 1 hour or 1½ hour.
- **9-2 Sills.** Chute door assemblies shall be installed on masonry sills and shall be securely fastened to the sill or the chute.
- **9-3 Walls.** Walls shall be plumb and true and shall be of brick, concrete, or concrete masonry unit construction. Door assemblies, when used on walls of other construction, shall be as listed. No part of the assembly shall project into the chute.
- **9-4 Lintels.** The lintel shall be constructed of noncombustible materials and adequate for the service.
- **9-5 Closing Device.** Doors shall be arranged for automatic closing operation as described in Section 3-10 for swinging doors.

Chapter 10 Installation of Fire Shutters

10-1 General.

- 10-1.1 Fire doors without glass lights shall be used as fire shutters.
- **10-1.2** Shutters shall be of three general types:
 - (a) Swinging door
 - (b) Horizontally or vertically sliding door
 - (c) Rolling steel door.

10-2 Installation.

- **10-2.1** The installation of shutters shall be in accordance with the requirements for installation of swinging, sliding, and rolling steel doors.
- **10-2.2*** Where shutters are installed on the outside of an opening, they shall be protected against the weather to ensure proper operation.

10-3 Operation of Shutters.

- **10-3.1** All shutters shall be equipped to close automatically in the event of fire.
- **10-3.2** The operation of shutters shall be in accordance with the requirements for operation of swinging, sliding, and rolling steel doors.
- **10-4** Location of Detection Device. Fusible links shall be located in the proximity of the shutter near the top of the opening and in an area where there is no obstruction to the circulation of air.

Chapter 11 Installation of Access Doors

11-1 Scope. This section covers the installation of both horizontal and vertical access doors in fire rated walls, floors, floor-ceiling or roof-ceiling assemblies.

11-2 General.

11-2.1 An access door shall be an integral unit including door, frame, hinges, latch, and closing device (where required) bearing the "Frame and Fire Door Assembly" label.

Exception: A vertical access door shall be permitted to have hinges that are not part of the labeled assembly provided they conform to Table 2-8(a).

- 11-2.2 Access doors shall be self-closing.
- 11-2.3 Access doors shall be self-latching.

Exception: A horizontal access door that does not open downward and that can remain in place when an upward force of 1 pound per square foot (48 N/m²) is applied over the entire exposed surface of the door shall not require latching.

11-2.4 Self-closing access doors that are intended to be used to allow a person to enter completely the concealed space behind the door shall be openable from the inside without the use of a key or tool.

11-3 Horizontal Access Doors.

- 11-3.1 Door assemblies used in fire rated floors, floor-ceiling or roof-ceiling assemblies shall be tested in the horizontal position in accordance with the procedures described in NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials, and shall bear the label required for horizontal access doors.
- **11-3.2** A horizontal access door shall bear a label that includes the additional wording "For Horizontal Installation."
- 11-3.3 A horizontal access door shall be used in a fire rated floor, floor-ceiling or roof-ceiling assembly only when it has been tested and listed for use as a component of the assembly.
- 11-3.4 Horizontal access doors shall not be required to be subject to the hose stream test.

11-4 Vertical Access Doors.

- **11-4.1** Vertical access doors shall have a fire protection rating of $\frac{3}{4}$ hour, 1 hour, or $\frac{1}{2}$ hour. (See Appendix F.)
- 11-4.2 Vertical access doors shall only be used in walls.
- 11-4.3 Walls shall be plumb and true.
- 11-4.4 Where the authority having jurisdiction determines that a vertical access door is located in proximity to combustibles such that in a fire condition the door is likely to transmit sufficient heat to ignite the combustibles, the door shall have a temperature rise on its unexposed face not to exceed 250°F (139°C) at the end of 30 minutes exposure to the standard fire test as described in NFPA 252, Standard Methods of Fire Tests of Door Assemblies. Such an access door shall bear a label indicating a maximum temperature rise of 250°F (139°C).
- **11-4.5** Gravity closing by top hinging vertical access doors shall be acceptable as meeting the requirements for self-closing.
- **11-4.6** A vertical access door shall bear a label that includes the additional wording "For Vertical Installation."
- **11-5 Installation.** Access doors shall be installed in accordance with their listing.

Chapter 12 Installation of Service Counter Doors

- **12-1 Door Construction.** Door construction shall be as follows:
- (a) Door panels of a single or multiple section vertical type, integrally mounted in a four-sided frame to form a labeled door and frame assembly; or

- (b) Door curtains of the interlocking slat type integrally mounted in a four-sided frame to form a labeled door and frame assembly; or
- (c) Door curtains of the interlocking slat type including guides, brackets, and hoods for mounting directly to masonry walls or noncombustible opening framing.

12-2 Installation.

- 12-2.1 Service counter doors shall be either factory or field assembled and shall be installed during construction of the wall or in a prepared wall opening.
- 12-2.2 When service counter doors are mounted in walls other than solid masonry, the frame or guides shall be anchored to structural members not less than $\sqrt[3]{16}$ in. (1.9 mm) thick running from floor to supporting members above or be installed in accordance with the manufacturer's listing.
- **12-2.3** Heads of integral door frame assemblies shall not support a wall above. Separate lintels shall be provided of a size based on the type of wall construction and loads to be supported.
- **12-2.4 Walls.** Walls shall be plumb and true and shall be of brick, concrete, or concrete masonry unit construction. Door assemblies shall be used on walls of other construction only if listed for such installation.
- **12-2.5 Counters.** Where counters are supplied separate from the balance of the door assemblies, they shall be labeled and installed in accordance with their listing.

12-3 Automatic Closers.

- **12-3.1** All service counter doors shall be equipped to close automatically in the event of fire.
- **12-3.2** A service counter door of the rolling type shall be made automatic closing by incorporation of an escapement system consisting of a spring-release device or an auxiliary push-down spring.
- 12-3.3 A service counter door of the swinging or sliding type shall be made automatic closing by a system of weights suspended by ropes, cables, or chains over pulleys that, when activated by release of an automatic fire detector, I shall cause the door to close.
- **12-3.4** A governor, when employed on a service counter door, shall work in coordination with the closing device and shall control the closing speed of the door.

12-4 Automatic Fire Detectors.

- 12-4.1 Detectors or fusible links shall be installed on both sides of the wall and interconnected so that the operation of any single detector or fusible link shall permit the fire door to close.
- 12-4.1.1 Where fusible links are used, one fusible link shall be located near the top of the opening and additional links shall be located at or near the ceiling on each side of the wall.
- **12-4.1.2** Where smoke detectors are used, they shall be located as shown in Figure B-51.
- **12-4.1.3** Detectors and their components shall be installed in accordance with the manufacturer's instructions.

Chapter 13 Installation of Fire Windows

13-1 Classification.

13-1.1 Fire windows shall be tested in accordance with NFPA 258, Standard for Fire Tests of Window Assemblies, for the required fire protection rating of the window opening. Fire windows shall be labeled.

13-1.2 Labels.

- 13-1.2.1 Fire window frames shall be labeled for such use.
- 13-1.2.2 The "Fire Window Frame" label shall include the design and construction of the frame, ventilator, glazing material retaining members, and hardware. (See Appendix D for types of fire window ventilators.)
- 13-1.2.3 The label on hot-rolled or extruded steel section fire window frames shall include hot-rolled or extruded steel mullions.
- **13-1.2.4** The label on hollow metal and hollow metal plate steel combination section fire windows shall include hollow metal mullions.
- 13-1.3 Bearing mullions shall be fire protected with materials acceptable to the authority having jurisdiction.

13-2 Glazing Material.

- **13-2.1** Only labeled fire protection rated glazing material shall be used in fire windows.
- 13-2.2* Glazing material installed in fire windows shall be limited to the size and area in accordance with Table 13-2.2.

Table 13-2.2 Fire Window Rating¹

Fire Window Rating (Hr)	Maximum Area of Glazing Material per Light
1/2 & 1/3 3/4	Limited to maximum area tested Limited to maximum area tested ²
1, $1\frac{1}{2}$, or 3	No rating available

 $^{^1}$ See also Appendix I on Radiant Heat Transfer for interior applications. 2 Individual glazing material exposed area shall not exceed 1296 sq in. (0.84 $\,\mathrm{m}^2)$ with no dimension exceeding 54 in. (1.37 m) unless otherwise tested.

- 13-2.3 Each individual glazing unit shall be identified with a listing mark. The listing mark shall be visible afterinstallation.
- 13-2.4 Glazing material installed in fire windows and borrowed lights that are subject to human impact shall meet applicable safety standards as determined by the authority having jurisdiction unless exempted. (See A-1-4 Glazing Material.)

13-3 Types of Windows.

13-3.1 Fire Window Applications.

13-3.1.1 Fire windows shall be used to protect openings in interior and exterior partitions required to be protected by the authority having jurisdiction. Borrowed lights shall be used to protect window openings in interior partitions.

- **13-3.1.2** Glass block assemblies shall be installed in accordance with Chapter 14.
- **13-3.1.3** In exterior walls the maximum size openings are limited to those specified in Table 13-3.2.2 and in paragraphs 13-3.3.5 and 13-3.4.2.

13-3.2 Hollow Metal Windows.

13-3.2.1 Hollow metal windows consist of formed steel sheet, reinforced as required, and are of the double hung, casement, pivoted, stationary, tilting, hinged, or projected types.

13-3.2.2 Maximum Size Openings.

- (a) Single window, other than casement: 5 ft 0 in. by 5 ft 0 in. (1.52 m by 1.52 m).
- (b) Multiple window, other than casement: 7 ft 0 in. by 10 ft 0 in. (2.13 m by 3.05 m).
- (c) Single casement window: 3 ft 6 in. by 10 ft 0 in. (1.07 m by 3.05 m).
- (d) Multiple casement window: 7 ft 0 in. by 10 ft 0 in. (2.13 m by 3.05 m).

13-3.3 Hot-Rolled or Extruded Steel Section Window.

- 13-3.3.1 The heavy intermediate window frame and ventilator sections shall be a minimum depth of $1\frac{5}{16}$ in. (33 mm) with integrally rolled weathering contacts.
- **13-3.3.2** The standard intermediate window frame and ventilator sections shall be a minimum depth of $1\frac{1}{4}$ in. (32 mm) with integrally rolled weathering contacts.
- 13-3.3.3 The residential-type window frame and ventilator sections shall be a minimum depth of 1 in. (24.5 mm) with integrally rolled weathering contacts.
- 13-3.3.4 The industrial-type window frame and ventilator sections shall be a minimum depth of $1\frac{1}{4}$ in. (32 mm) with applied weathering contacts.

13-3.3.5 Maximum Size Openings.

- (a) The heavy intermediate and industrial types shall be used for openings not exceeding 84 sq ft (7.8 m²) in area with neither dimension exceeding 12 ft (3.66 m). Where multiple units are installed, the distance between unprotected vertical steel mullions shall not exceed 7 ft (2.13 m).
- (b) The standard intermediate types shall be used for openings not exceeding 60 sq ft (5.57 m²) in area with neither dimension exceeding 10 ft (3.05 m). Where multiple units are installed, the distance between unprotected vertical steel mullions shall not exceed $6\frac{1}{2}$ ft (1.98 m).
- (c) Residential-type windows shall be used for openings not exceeding $6\frac{1}{2}$ ft (1.98 m) in either dimension. Where multiple units are installed, the distance between unprotected vertical steel mullions shall not exceed $3\frac{1}{2}$ ft (1.07 m).

13-3.4 Hollow Metal Plate Steel (Combination) Window.

13-3.4.1 These consist of formed sheet steel frame sections at the head, jambs and sill, and plate steel window. They are of the double-hung, counterbalanced, or stationary types.

13-3.4.2 Maximum Size Openings.

- (a) Single window: 5 ft 0 in. by 5 ft 0 in. (1.52 m by 1.52 m).
- (b) Multiple window: 7 ft 0 in. by 10 ft 0 in. (2.13 m) by (2.13 m) by (2.13 m).
- 13-3.5 Borrowed Lites. Borrowed lights shall be limited to the maximum size openings indicated in their individual listings. (See Appendix J.)

13-4 Installation.

13-4.1 Frames shall be securely fastened to the wall and shall be capable of resisting all wind stresses and any other stresses for which the window was designed.

13-4.2 Fire Lock Angles.

- **13-4.2.1** Fire lock angles shall be designed to hold the ventilator in the frame as the assembly expands under exposure to fire.
- 13-4.2.2 When the window is provided with fire lock angles, the fire lock angles shall be so adjusted that they pass one another with a minimum of clearance.

13-4.3 Installation of the Glazing Material.

- 13-4.3.1 The clearance between the edges of the glazing material and the frame shall not exceed ½ in. (3.18 mm).
- 13-4.3.2 Wire clips, glazing angle clips, continuous glazing channels, or continuous glazing angles shall be used to retain the glazing material. Where wire clips or glazing angle clips are used for glazing the window, one wire clip or glazing angle clip shall be installed in each mounting hole. Where continuous glazing angles or channels are used, a screw or bolt and nut shall be installed in each mounting hole.
 - 13-4.3.3 Wire glass shall be well imbedded in putty, and all exposed joints between the frame and the glass shall be struck and pointed. Glazing materials shall be installed in accordance with their individual listing.
- 13-5 Closing Devices. All fire windows shall be of a fixed type or shall be automatic closing. The automatic closing device may be an integral part of the assembly or a separate system, such as weights suspended by ropes, wire cables, or chains over pulleys, so arranged that operation of the automatic fire detector shall permit the ventilator to close.

Chapter 14 Installation of Glass Block

14-1 Classification.

- **14-1.1** Only labeled glass block shall be used.
- **14-1.2** Glass block shall be permitted for the protection of openings not exceeding 120 sq ft (11.15 m²) in area with neither the width nor height exceeding 12 ft (3.66 m).
- **14-2 Installation.** Glass block shall be installed in accordance with its individual listing.

Chapter 15 Care and Maintenance

15-1* General.

- 15-1.1 When a door or window opening is no longer to be used, the opening shall be filled with construction equivalent to that of the wall.
- **15-1.2** Doors, shutters, and windows shall be operable at all times. They shall be kept closed and latched or arranged for automatic closing.
- 15-1.3 When it is necessary to replace fire doors, shutters, windows or their frames, hardware, and closing mechanisms, replacements shall meet the requirements for fire protection and be installed as required for new installations elsewhere in this standard.
- 15-1.4 Repairs shall be made and defects that may interfere with operation shall be corrected immediately.

15-2 Specific Requirements.

15-2.1* Inspections.

- 15-2.1.1* Hardware shall be examined frequently, and any parts found to be inoperative shall be replaced immediately.
- 15-2.1.2 Tinclad and Kalamein doors shall be inspected regularly for dry rot.
- 15-2.1.3 Chains or cables employed on suspended doors shall be inspected frequently for excessive wear and stretching.

15-2.2 Lubrication and Adjustments.

- 15-2.2.1 Guides and bearings shall be kept well lubricated to facilitate operation.
- **15-2.2.2** Chains or cables on biparting counterbalanced doors shall be checked frequently and adjustments made to ensure proper latching and to keep the doors in proper relation to the opening.

15-2.3 Prevention of Door Blockage.

- 15-2.3.1 Door openings and the surrounding areas shall be kept clear of everything that would obstruct or interfere with the free operation of the door.
- **15-2.3.2** Where necessary, a barrier shall be built to prevent the piling of material against sliding doors.
- **15-2.3.3** Blocking or wedging of doors in the open position shall be prohibited.

15-2.4 Maintenance of Closing Mechanisms.

15-2.4.1 Self-closing devices shall be kept in proper working condition at all times.

- **15-2.4.2** Swinging doors normally held in the open position and equipped with automatic closing devices shall be operated at frequent intervals to ensure proper operation.
- 15-2.4.3 All horizontal or vertical sliding and rolling fire doors shall be inspected and tested annually to check for proper operation and full closure. Resetting of the release mechanism shall be done in accordance with the manufacturer's instructions. A written record shall be maintained and be made available to the authority having jurisdiction.
- **15-2.4.4** Fusible links or other heat-actuated devices and release devices shall not be painted.
- **15-2.4.5** Care shall be taken to prevent paint accumulation on stay rolls.

15-2.5 Repair of Fire Doors and Windows.

- **15-2.5.1** Broken or damaged glazing material shall be replaced with labeled glazing. Wire glass shall be well embedded in putty, and all exposed joints between the frame and the glass shall be struck and pointed. Other glazing materials shall be installed in accordance with their individual listing.
- **15-2.5.2** Any breaks in face covering of doors shall be repaired immediately.
- **15-2.5.3** When a fire door, frame, or any part or its appurtenances receives damage to the extent it could impair the door's proper emergency function it shall be repaired with parts obtained from the original door's manufacturer. Upon completion of repairs the door shall be tested to assure emergency operation and closing.
- **15-2.6 Fire Prevention.** Combustible material shall be kept well away from openings.

Chapter 16 Referenced Publications

- 16-1 The following documents or portions thereof are referenced within this standard and shall be considered part of the requirements of this document. The edition indicated for each reference is the current edition as of the date of the NFPA issuance of this document.
- **16-1.1 NFPA Publications.** National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.
- NFPA 81, Standard for Fur Storage, Fumigation and Cleaning, 1986 edition
- NFPA 82, Standard on Incinerators, Waste, and Linen Handling Systems and Equipment, 1990 edition
- NFPA 220, Standard on Types of Building Construction, 1992 edition
 - NFPA 232, Standard for the Protection of Records, 1991 edition

- NFPA 251, Standard Methods of Fire Tests of Building Construction and Materials, 1990 edition
- NFPA 252, Standard Methods of Fire Tests of Door Assemblies, 1990 edition
- NFPA 253, Standard Method of Test for Critical Radiant Flux of Floor Covering Systems Using a Radiant Heat Energy Source, 1990 edition
- NFPA 257, Standard for Fire Tests of Window Assemblies, 1990 edition.
- **16-1.2 ANSI Publications.** American National Standards Institute, Inc., 1430 Broadway, New York, NY 10018.

ANSI/BHMA A156.1-1988, Requirements for Butts and Hinges.

ANSI/BHMA A156.4-1986, Requirements for Door Controls.

16-1.3 ASME Publication. American Society of Mechanical Engineers, United Engineering Center, 345 East 47th Street, New York, NY 10017.

ASME/ANSI A17.1-1990, Safety Code for Elevators and Escalators, Eratta-1991.

16-1.4 CSA Publication. Canadian Standards Association, 178 Rexdale Blvd, Rexdale (Toronto), Ontario, Canada M9W 1R3.

CAN 3-B44, Safety Code for Elevators, including Supplement Number 1-1987.

16-1.5 U.S. Government Publications. Specification Sales, GSA 3FRSBS, Washington Navy Yard, Bldg. 197, Stop 249, Washington, DC 20407.

Federal Specification FF-S-325 (1957) and Interim Amendment 3 (1965).

Appendix A

This Appendix is not a part of the requirements of this NFPA document, but is included for information purposes only.

- A-0-12 Safety glazing is also an important consideration when using glazing materials in fire doors and in fire resistance rated walls that may be subject to accidental human impact. In such applications all model building codes contain requirements for safety glazing based on CPSC 16 CFT, Part 12-1, U.S. Consumer Product Safety Commission Safety Standard for Architectural Glazing. However, wired glass used in fire rated assemblies is exempt from the CPSC Standard and instead is allowed to meet the performance criteria of ANSI Z79.1, Safety Performance Specifications and Methods of Test for Safety Glazing Materials Used in Buildings, which requires significantly less impact resistance.
- **A-1-1.1** The authority having jurisdiction may require upgrading of existing installations to meet current standards and requirements only when the lack of compliance with this standard presents a serious fire or life safety hazard. It should be noted that care and maintenance of materials for ongoing and existing installations should be maintained in accordance with the standards under which they

were installed. Protected openings provide access, ingress, egress, observation, passage of light, natural ventilation (other than ducts or transfer grilles), or movement through fire resistive walls and ceilings that have been tested in accordance with NFPA 251.

- **A-1-2.1** The development of fire doors and related devices is a continuous process; therefore, this standard cannot be up to date at all times. This standard is intended to be current only to the date of publication.
- **A-1-4 Fire Door.** The fire protection rating of a fire door presumes that the door is installed with the appropriate frame, hardware, and other accessories required by this standard. In any instance where any of the required elements are omitted, the assembly rating is void by this standard and the opening protection is not considered equivalent to the labeled or otherwise indicated fire protection rating of the door component.
- A-1-4 Glazing Material. Safety is also an important consideration when using glazing materials in fire doors and in fire resistance rated walls subject to accidental human impact. In such applications all model building codes contain requirements for safety glazing based on CPSC 16 CFR, Part 1201, U.S. Consumer Product Safety Commission Safety Standard for Architectural Glazing. However, wired glass used in fire rated assemblies is exempt from the CPSC Standard and instead is allowed to meet the performance criteria of ANSI Z97.1, Safety Performance Specifications and Methods of Test for Safety Glazing Materials Used in Buildings.
- **A-1-5.1** Labels or classification marks may be of metal, paper, or plastics or may be stamped or diecast into the item.
- **A-1-6.1** Doors are of several classifications, types, and methods of operation. Fire door assemblies consist of individually labeled components that are essential to satisfactory performance of the complete assembly. Some labels cover one or more components in addition to the door. (For specific information see 1-6.2 and Appendix E.)
- A-1-6.3 Testing laboratories may provide a label or certificate of inspection for door assemblies larger than the maximum size indicated in Appendix C. Door assemblies exceeding these size limitations have not been subjected to the standard fire tests. In certain cases the testing laboratory may be prepared to furnish a label or certificate of inspection for such oversize door assemblies. This does not indicate that the door assemblies are capable of furnishing standard fire protection but only that they conform to the requirements of design, materials, and construction as established by the individual listings.
- **A-1-7.3 Exception** NFPA 252 permits the dislodging of small portions of glass lights (glazing material) during the hose stream test. Since the glazing material as used in this exception does not constitute a glass light, no dislodging of the glazing material is allowed.
- **A-1-7.4** Doors containing special fire resistant glazing materials fabricated and tested as door assemblies in accordance with NFPA 252, *Standard Methods of Fire Tests of Door Assemblies*, to determine a fire protection rating should be regulated by this standard as a fire assembly and not as a glazing material permitted in fire door assemblies as prescribed in Section 1-7.

- **A-1-10** Fire doors, shutters, or fire windows are of value only if properly installed so they will close at the time of fire.
- **A-2-5.1** Door frames may carry a label stating the hourly rating. The rating of the installed assembly will carry the rating of the door or the door frame, whichever is less.
- A-2-5.2 Door frames should be installed following the general guidelines shown in Figure B-26(a). The door frame installations shown in Figure B-26(a) do not represent all types of installations, but illustrate some typical door frame installation techniques required for the proper installation of fire door frames.
- **A-2-5.2.1** Test information suggests that a door frame butted to the end of a drywall construction will not perform under standard fire and hose stream test methods.
- **A-2-8** Individual listed or labeled hardware products are usually suitable for fire door assemblies of any construction or hourly rating. There are, however, some exceptions to this because of limitations found either in individual door or frame construction or in the hardware products.

Some latches, for example, are only listed for use in $\frac{1}{3}$ -hour assemblies. Another example is that some pairs of doors may only be equipped with latches having a latch throw of $\frac{3}{4}$ in. (19 mm) while others of a different manufacturer may have been tested with latches having a latch throw of $\frac{1}{2}$ in. (12.7 mm).

Other products such as concealed door closers, electric strikes, open back strikes, viewers, or spring hinges are limited in use either according to door and frame construction, size, or maximum hourly protection.

Organizations offering labeling and listing service should indicate such limitations on the label or supplementary marking. The authority having jurisdiction should refer to the individual manufacturer's published listings when specific information is needed.

- **A-2-8.3 Exception** Some manufacturers provide doors with protection plates of other sizes or materials, as indicated in their individual published listings.
- **A-2-8.5.4** Adequate spring power is essential for hydraulic door closers to close a fire door with sufficient force to overcome the resistance of the latching mechanism. However, too much spring power causes opening resistance and makes it difficult for the handicapped, infirm, and young children to open doors.

Closers are classified in sizes from 2 to 6 with an increased closing force for higher numbers. Generally a size 4 minimum closer should be used on exterior fire doors and a size 3 minimum on interior fire doors. Door widths greater than 3 ft 2 in. (0.97 m) exterior and 3 ft 4 in. (1.02 m) interior, parallel or single lever arm applications, and abnormal air pressures will usually require increasing to the next closest size. A combination of these factors could require increasing two sizes. Individual manufacturers' recommendations should be consulted.

Spring hinges should be adjusted to achieve positive latching when allowed to freely close from 30 degrees open.

- A-2-8.9.1 Labeled door holder/release devices for swinging doors should, wherever possible, be installed at the top of the door as close as possible to the lock edge and should be located to avoid interference with any other hardware. If necessary, the holder/release may be located at the bottom of the door as close as possible to the lock edge with the device installed on the wall or floor.
- A-3-5.2 Structural steel frames consist of head and jamb members, either shop or field assembled.
- **A-3-10** Self-closing devices for these doors consist of a system of weights suspended by ropes, wire cables, or chains over pulleys arranged to return the door to the normally closed position each time it is used.

Automatic closing devices consist of a system of weights suspended by ropes, wire cables, or chains over pulleys and a hold-open device with a release mechanism that is activated by an automatic fire detector. Upon the detection of fire, additional closing weights are released, causing the door to close and latch.

The above automatic closing system may be used with a listed releasing device in addition to fusible links and in conjunction with a fire detection system in order to actuate the closing system.

All weights shall be enclosed in a substantial metal enclosure for their entire length of travel. Pulleys over which the weight cable or chain passes should be shielded to prevent the cable or chain from jumping off the pulley and thereby possibly preventing the door from closing. (Typical arrangements are shown in Figures B-30 and B-32.)

- **A-4-2.3 Jamb.** The vertical component or member of an opening whether framed or not.
- **A-4-6.1** If the power operator is of a type that will not close under power failure, then the door should be disconnected from the operator and caused to close under fire conditions. This is accomplished by a listed release device activated by the closing system that then closes the fire door. If the power operator is to close the door under fire conditions, its logic circuit should be such that upon a signal from the fire detection system, it closes under power operation.
- **A-5-7.3** The length of the track is given in terms of height of the opening, 4 in. (102 mm) being allowed for the lap of the door, 4 in. (102 mm) for attaching the bumper, and 1 in. (25.4 mm) clearance when the door is wide open.
- **A-6-4.3** A flame baffle may be an integral part of the hood or curtain and utilized where required to protect the opening.
- **A-6-6** The arrangements shown in Figures B-48, B-49, and B-50 are recommended to give the performance intended. Other arrangements acceptable to the authority having jurisdiction may be used.
- **A-7-1.6** Where door assemblies are used for smoke or draft control, gasketing or reduced clearances may be required. See NFPA 105, Recommended Practice for the Installation of Smoke-Control Door Assemblies.

- A-9-1.2 Some chute doors, depending on location, may be required to have a temperature rise of not more than 250°F (121°C) at the end of 30 minutes exposure to the standard fire test as described in NFPA 252, Standard Methods of Fire Tests of Door Assemblies.
- **A-10-2.2** Shutters may be installed on the inside or outside of an opening or between jambs, but preferably on the inside or between jambs for ease of maintenance and protection from adverse weather conditions.
- **A-13-2.2** The authority having jurisdiction should be consulted on local building code requirements that may have more restrictive limitations on the maximum size and the total area of fire windows and borrowed lights required to protect openings in interior partitions and exterior walls.
- **A-15-1** Walls with openings have less fire resistance than unpierced walls. Fire doors, shutters, and fire windows are designed to protect the opening under normal conditions of use, with clear spaces on both sides of the opening. When the opening is not used and combustible material may be piled against or near the door, window, or shutter, the designed protection cannot be expected.
- **A-15-2.1** Fire doors, shutters, and windows are valueless unless properly maintained and closed or able to close at the time of fire. A periodic inspection and maintenance program should be implemented and should be the responsibility of the property management.
- **A-15-2.1.1** Hinges, catches, closers, latches, and stay rolls are especially subject to wear.

Appendix B Drawings of Fire Door Assemblies and Components

This Appendix is not a part of the requirements of this NFPA document, but is included for information purposes only.

The figures included in this section illustrate typical good practice. Other methods acceptable to the authority having jurisdiction may be used.

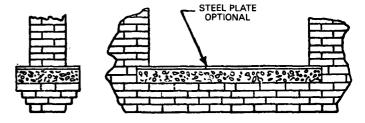


Figure B-1 Concrete sill supported by a corbel of brick used with combustible floors.

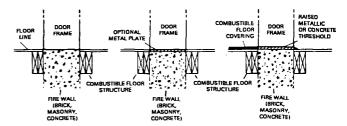


Figure B-2 Noncombustible sill used with combustible floors for doors swinging into steel frame.

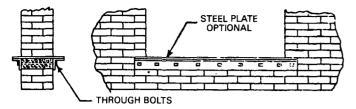


Figure B-3 Angle iron and concrete sill used with combustible floors.

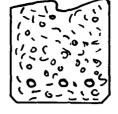


Figure B-8 Reinforced concrete lintel.

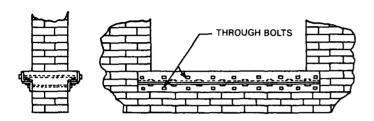


Figure B-4 Z-bar and concrete sill used with combustible floors.

Figure B-5 Steel lintel.

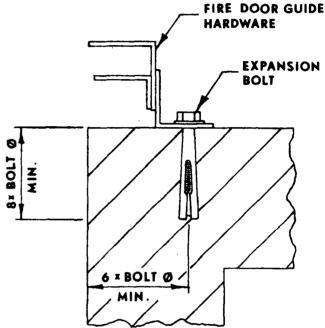


Figure B-9 Corner walls.

Figure B-6 Steel lintel.

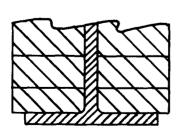


Figure B-7 Steel lintel.

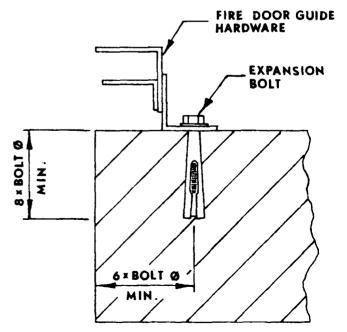


Figure B-10 Unusually thick walls.

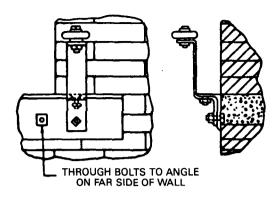


Figure B-11 Stay roll.

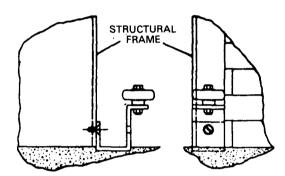


Figure B-12 Stay roll.

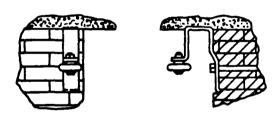


Figure B-13 Stay roll.



Figure B-14 Concealed type stay roll.

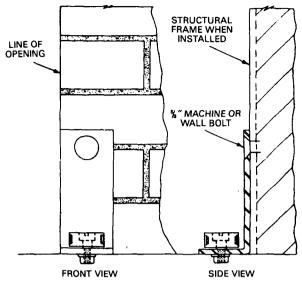
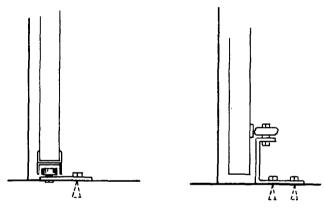
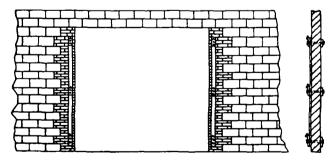


Figure B-15 Concealed type stay roll.

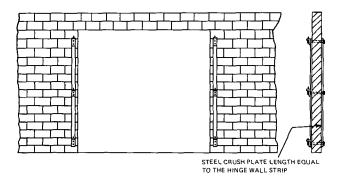

Figure B-15(a) Stay rolls.

Figure B-15(b) Stay rolls.

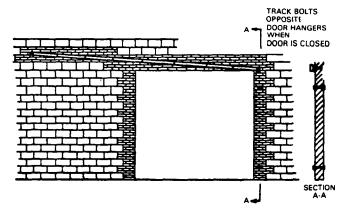

This illustrates typical reinforcement of a hollow concrete masonry wall opening to provide adequate anchorage of the door mounting hardware. Brick reinforcement may be omitted provided all hollow cells within 16 in. (0.41 m) of the opening are filled with concrete. It is recommended where openings are subjected to heavy traffic that jambs be protected with steel frames extending the full thickness of the wall.

Figure B-16 Hollow concrete masonry wall prepared for doors swinging in pairs — lap mounted, standard method.

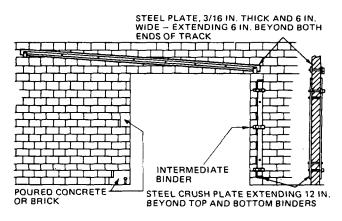
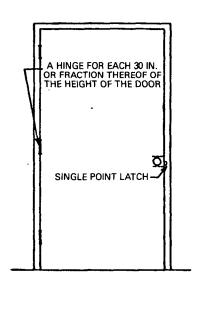
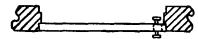

This illustrates typical reinforcement for anchorage of door mounting hardware by use of steel plates to bridge cavities in the hollow concrete masonry units and to prevent their crushing. It is recommended where openings are subjected to heavy traffic that jambs be protected with steel frames extending the full thickness of the wall.

Figure B-17 Hollow concrete masonry wall prepared for doors swinging in pairs — lap mounted.

This illustrates typical brick reinforcement of a hollow concrete-masonry wall opening to provide adequate anchorage of the door mounting hardware. Brick reinforcement may be omitted provided all hollow cells within 16 in. (0.41 m) of opening on each side and all cells where track is mounted are filled with concrete. It is recommended where openings are subjected to heavy traffic that jambs be protected with steel frames extending the full thickness of the wall.

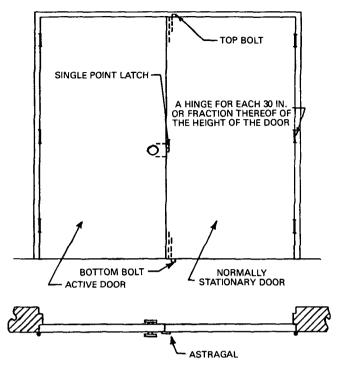
Figure B-18 Hollow concrete masonry wall prepared for single tinclad or sheet metal sliding door, standard method.




NOTE: STEEL PLATES INSTALLED ON BOTH SIDES OF WALL WITH % IN. THROUGH BOLTS. BINDERS, TRACK, AND STAY ROLLS SECURED WITH % IN. THROUGH BOLTS.

This illustrates typical reinforcement for anchorage of door mounting hardware by use of steel plates to bridge the cavities in the hollow concrete masonry units and to prevent their crushing.

For SI Units: 1 in. = 25.4 mm.


Figure B-19 Hollow concrete masonry wall prepared for a single sliding door.

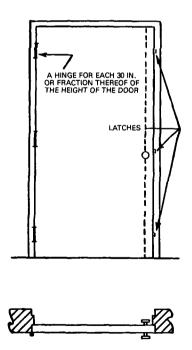

For S1 Units: 1 in. = 25.4 mm.

Figure B-20 Builders hardware (single swinging door with single point latch — flush mounted).

NOTE: The astragal may be attached to inside of inactive leaf or outside of active leaf.

Figure B-21 Builders hardware (doors swinging in pairs with single point latch — flush mounted).

For SI Units: 1 in. = 25.4 mm.

Figure B-22 Builders hardware (single swinging door with concealed three point latch — flush mounted).

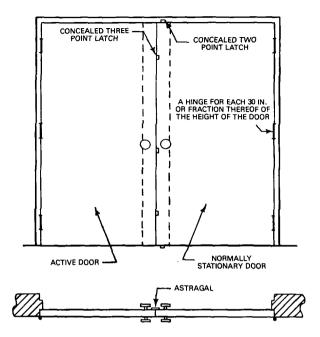


Figure B-23 Builders hardware (doors swinging in pairs with concealed two and three point latches — flush mounted).

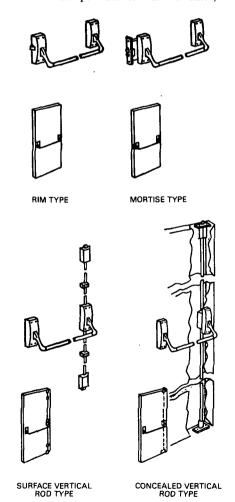


Figure B-24 Types of fire exit hardware.

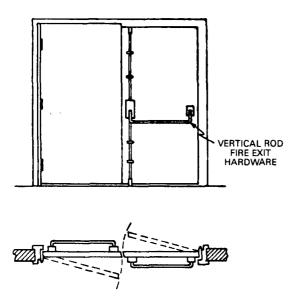


Figure B-25 Double egress door and frame.

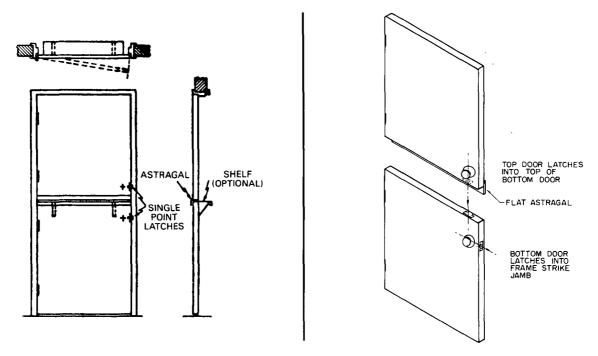


Figure B-26 Dutch door and Dutch door with two latches.

Figure B-26(a) Typical pressed steel door frame installations.

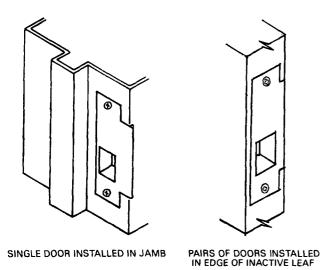


Figure B-27 Typical latch strike for single or pairs of doors.

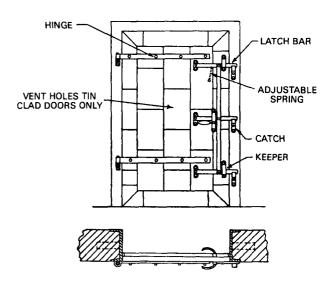


Figure B-29 Fire door hardware (single swinging door — flush mounted).

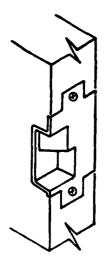
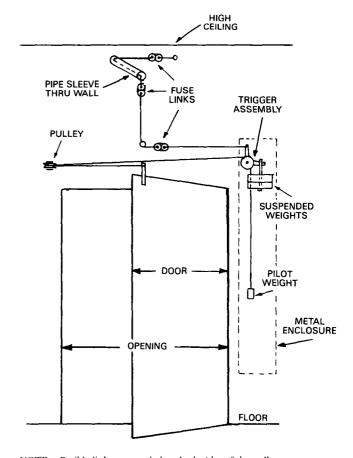
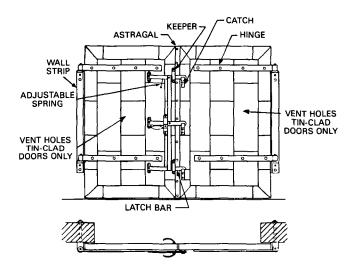
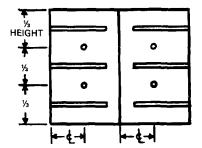



Figure B-28 Typical "open-back" latch strike for pairs of doors, installed in edge of inactive leaf when permitted by individual published listings.

NOTE: Fusible links are needed on both sides of the wall.

Figure B-30 Closing devices for single swinging door.

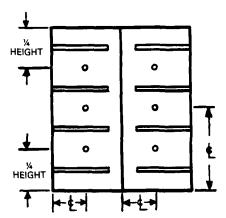
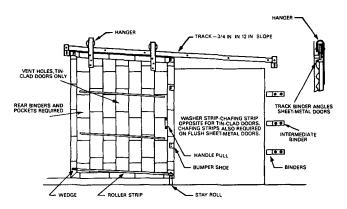

Figure B-31 Fire door hardware (doors swinging in pairs — lap mounted).

Figure B-32 Closing devices for doors swinging in pairs.


TWO 3-INCH DIAMETER VENT HOLES REQUIRED FOR EACH DOOR LEAF UP TO AND INLCLUDING 8 FEET 6 INCHES IN HEIGHT.

THREE 3-INCH DIAMETER VENT HOLES REQUIRED FOR EACH DOOR LEAF 8 FEET 6 INCHES AND UP TO AND INCLUDING 12 FEET IN HEIGHT.

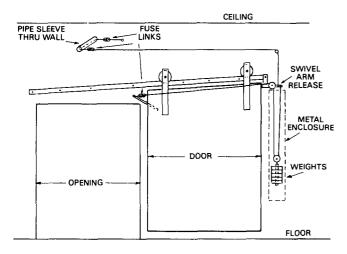

For SI Units: 1 in. = 25.4 mm; 1 ft = 0.3048 m.

Figure B-33 Location of vent holes for swinging doors.

For SI Units: 1 in. = 25.4 mm; 1 ft = 0.3048 m.

Figure B-34 Single sliding door (inclined track).

NOTE: Fusible links are needed on both sides of the wall.

Figure B-35 Closing devices for single sliding door (inclined track).

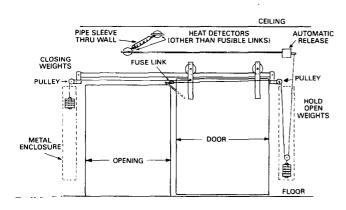
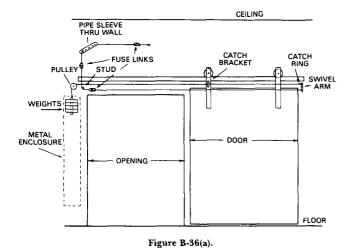



Figure B-36 Closing devices for single sliding door (level track).

TRACK BINDER ANGLES
SHEET METAL DOORS

REQUIRED FOR
TIN-CLAD DOORS
ONLY
REAR BINDERS
AND POCKETS
REQUIRED
(SEE 4-1.3)

WENTHOLES
REQUIRED
(SEE 4-1.3)

BUMPER SHOE

BACK BUMPER

HEAD BINDER

HEAD BINDER

WASHER STRIP CHAFING
STRIP OPPOSITE FOR TIN
CLAD DOORS, CHAFING
ON FILUSH SHEET-METAL
DOORS.
SHL BINDER

STAY ROLL

STAY ROLL

STAY ROLL

STAY ROLL

STAY ROLL

NOTE: Binder and pocket required. Vent holes required for tinclad only.

Figure B-37 Center parting horizontally sliding doors (level track).

Astragal arrangements

THREE BINDERS WALL SIDE

CONTINUOUS ASTRAGAL Figure B-37(a).

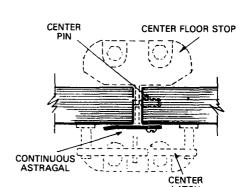


Figure B-37(b).



Figure B-37(c).

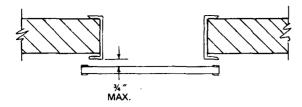


Figure B-37(d).

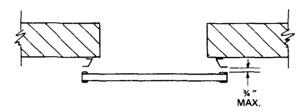
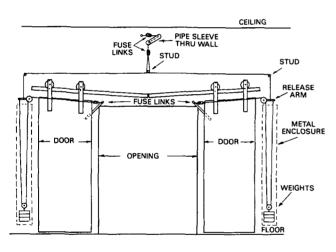



Figure B-37(e).

NOTE: Fusible links are needed on both sides of the wall.

Figure B-38 Closing devices for center parting horizontally sliding doors (inclined track).

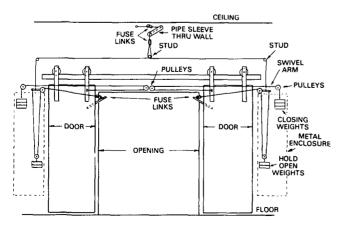


Figure B-39 Closing devices for center parting horizontally sliding doors (level track).

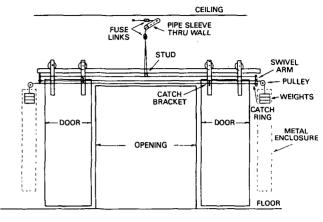
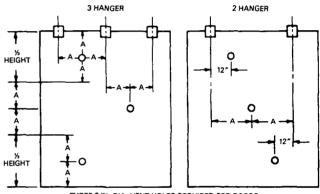
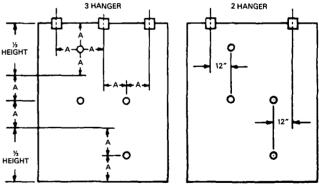
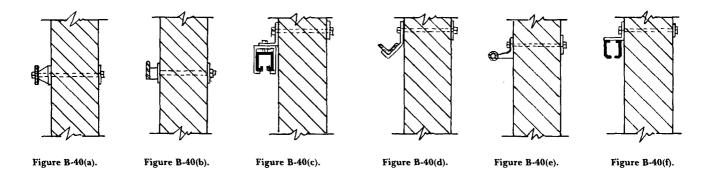
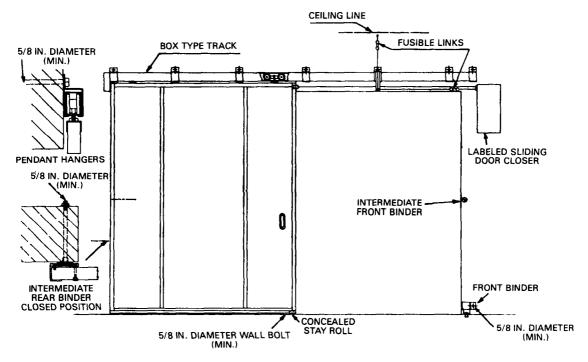




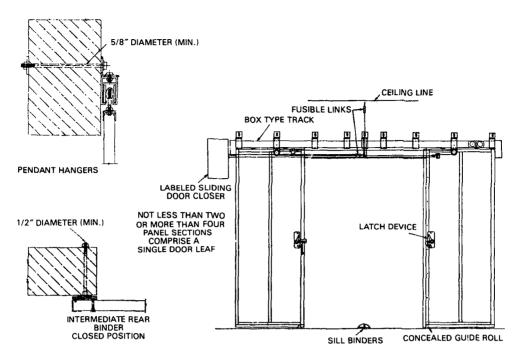
Figure B-39(a).


THREE 3 IN-DIA. VENT HOLES REQUIRED FOR DOORS UP TO AND INCLUDING 9 FT.-0 IN. IN HEIGHT A = EQUAL DISTANCES FROM CENTERLINES



FOUR 3 IN: DIA. VENT HOLES REQUIRED FOR DOORS OVER 9 FT.-0 IN. AND UP TO AND INCLUDING 12 FT.-4 IN. IN HEIGHT

NOTE: For vertically sliding doors the vent holes are to be positioned similarly, but so as not to interfere with the attached hardware. For SI Units: 1 in. = 25.4 mm; 1 ft = 0.3048 m.


Figure B-40 Location of vent holes for horizontally sliding doors.

NOTE: Fusible links are needed on both sides of the wall. For SI Units: 1 in. = 25.4 mm.

Figure B-41 Horizontally sliding composite door.

NOTE: Fusible links are needed on both sides of the wall. For SI Units: 1 in. = 25.4 mm.

Figure B-42 Center parting horizontally sliding composite door.

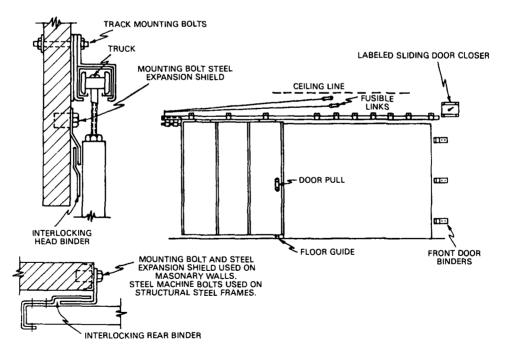


Figure B-43 Horizontally sliding hollow metal door.

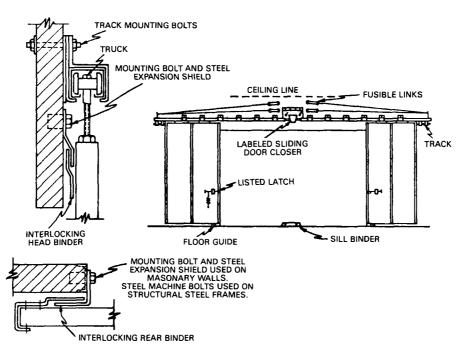


Figure B-44 Center parting horizontally sliding hollow metal door.

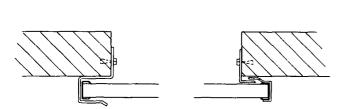


Figure B-44(a) Binder arrangements.

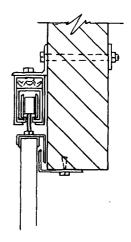
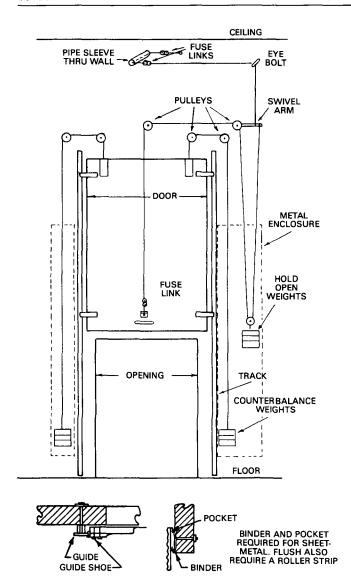



Figure B-44(b) Binder arrangements.

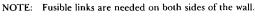


Figure B-45 Vertically sliding door.

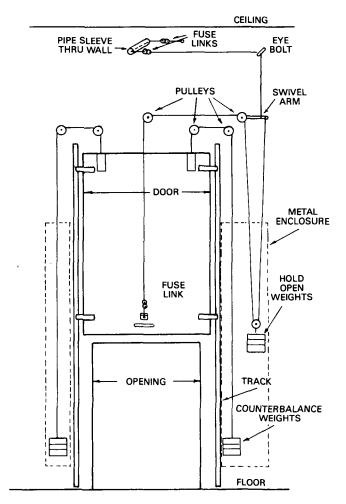


Figure B-46 Closing devices for vertically sliding door.

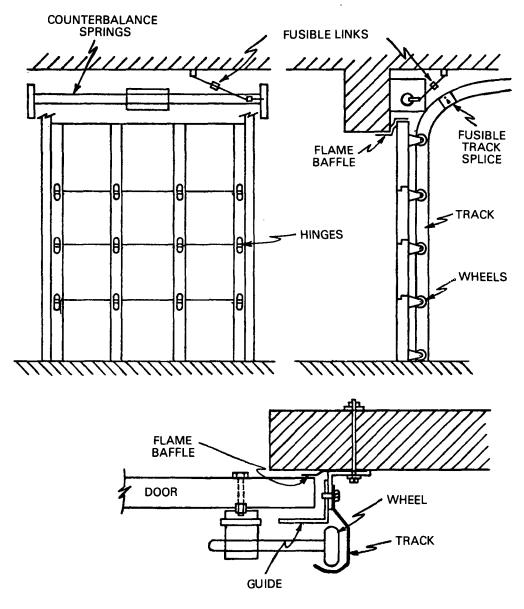


Figure B-47 Vertically sliding steel sectional overhead door.

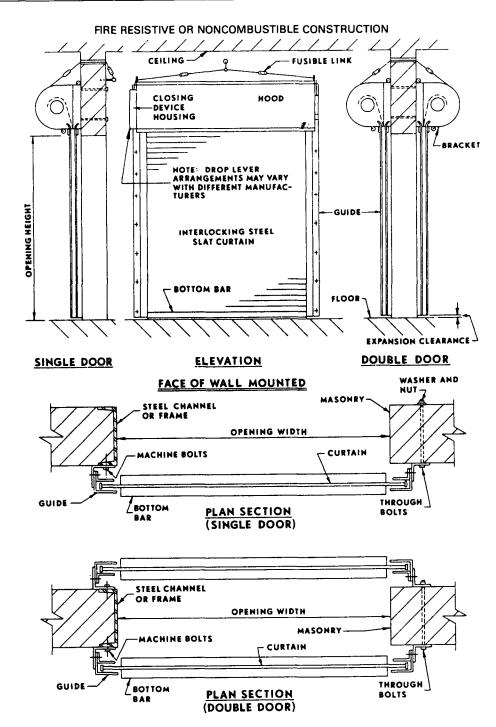


Figure B-48 Rolling steel doors — surface mounted.

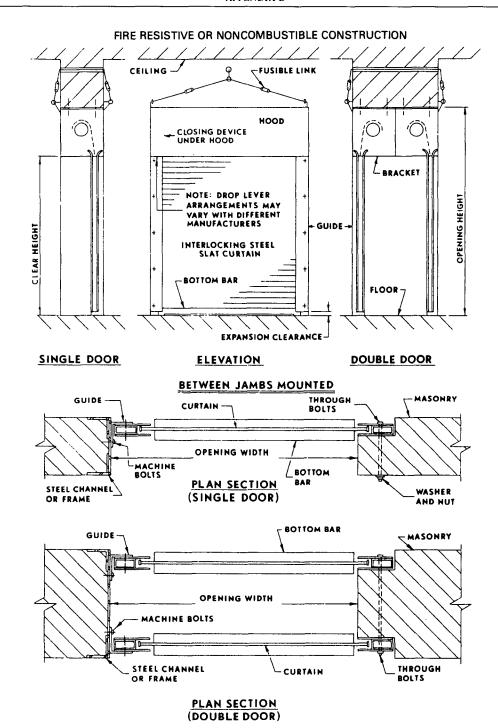
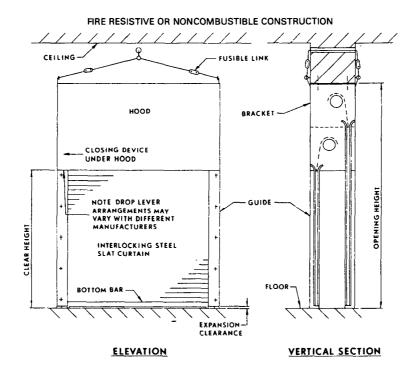
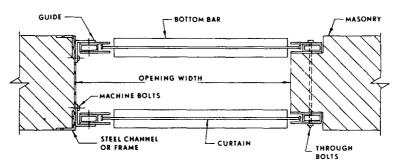
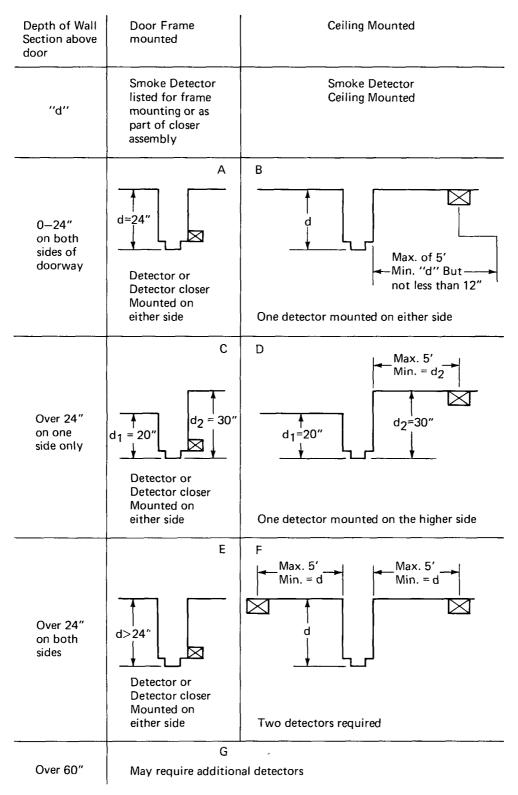




Figure B-49 Rolling steel doors between jamb mounted.



SUPERIMPOSED

PLAN SECTION

Figure B-50 Rolling steel doors between jamb superimposed mounted.

For SI Units: 1 in. = 25.4 mm; 1 ft = 0.3048 m.

Figure B-51 Detector installation guide for door opening protection.

(See also NFPA 72E, Standard on Automatic Fire Detectors, for additional details.)

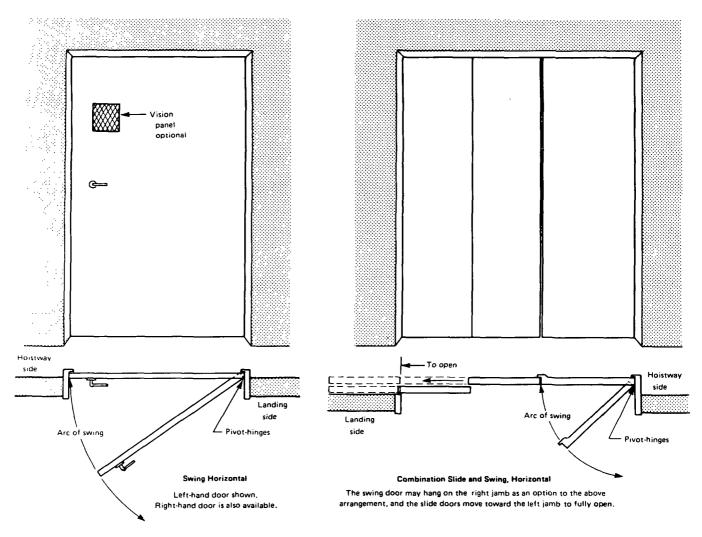


Figure B-52.
(Diagram courtesy of ASME Handbook on A17.1)

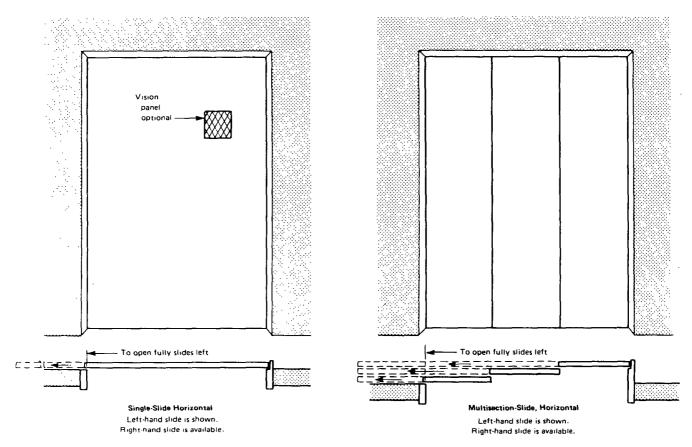


Figure B-53.
(Diagram courtesy of ASME Handbook on A17.1)

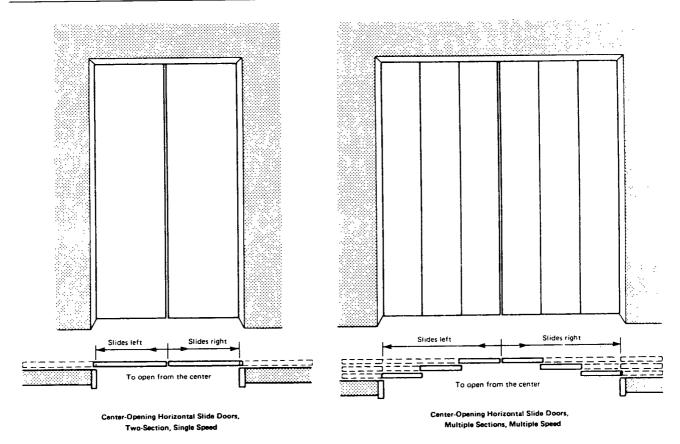
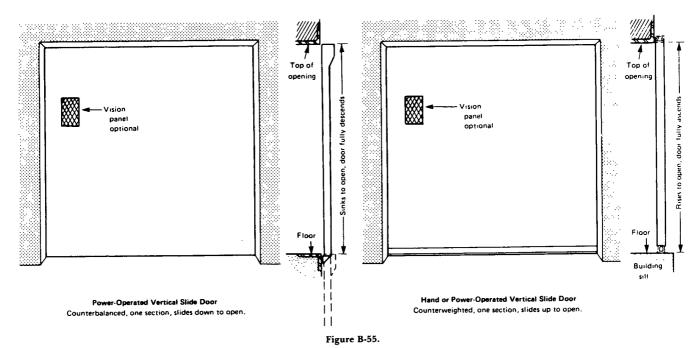



Figure B-54.
(Diagram courtesy of ASME Handbook on A17.1)

(Diagram courtesy of ASME Handbook on A17.1)

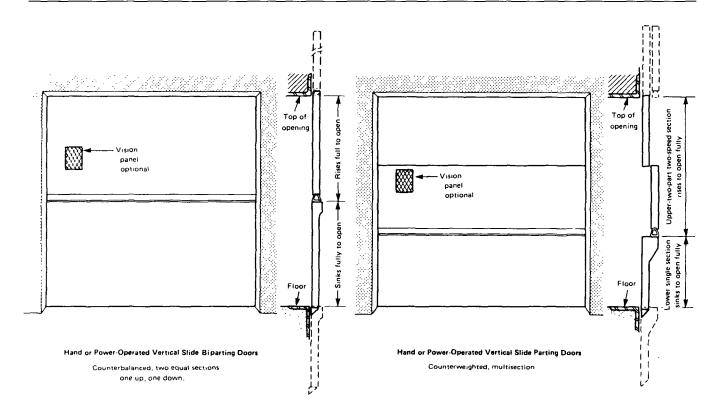


Figure B-56.
(Diagram courtesy of ASME Handbook on A17.1)

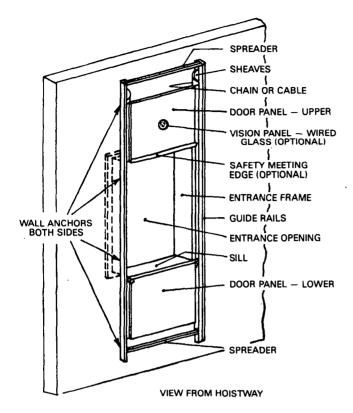
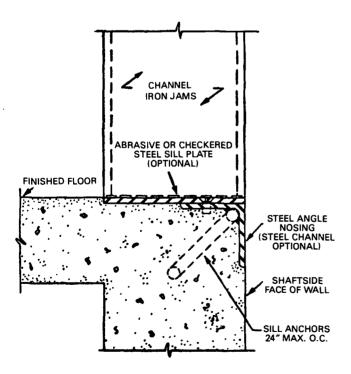
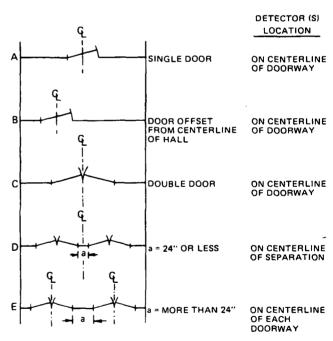



Figure B-57 Dumbwaiter assembly installation for vertically biparting doors.



For SI Units: 1 in. = 25.4 mm.

Figure B-58 Sill section showing recommended construction for biparting doors.

Figure B-59 Example of proper mounting for detectors.

For SI Units: 1 in. = 25.4 mm.

Figure B-60.

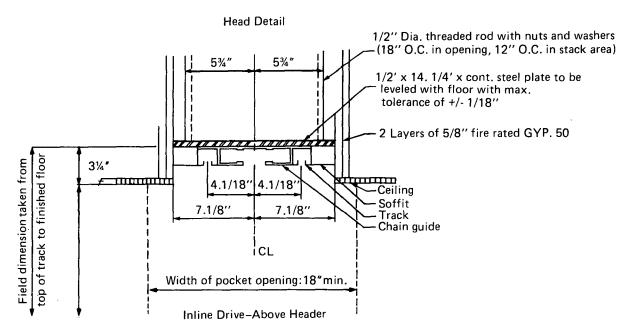


Figure B-61 Typical lintel detail for horizontally sliding accordian or folding door.

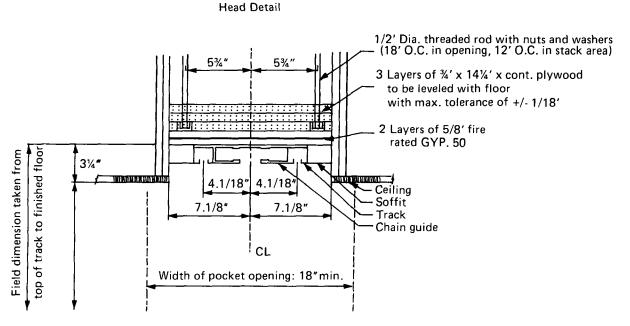


Figure B-62 Typical applied lintel (head) detail for horizontally sliding accordian or folding door.

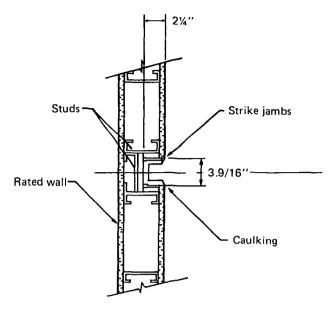


Figure B-63 Typical strike jamb for horizontally sliding accordian or folding door.

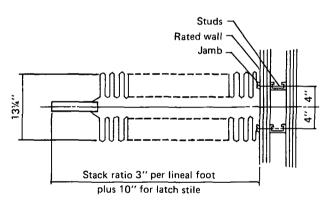


Figure B-64 Typical horizontally sliding accordian or folding door with no pocket.

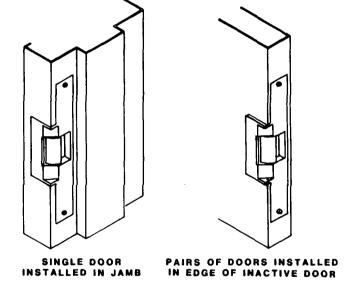


Figure B-65 Typical "Electric Strike" for single swing and for pairs of doors when permitted by individual listings.