

NFPA 77

**Recommended Practice on
Static Electricity**

2007 Edition

NFPA, 1 Batterymarch Park, Quincy, MA 02169-7471
An International Codes and Standards Organization

IMPORTANT NOTICES AND DISCLAIMERS CONCERNING NFPA DOCUMENTS

NOTICE AND DISCLAIMER OF LIABILITY CONCERNING THE USE OF NFPA DOCUMENTS

NFPA codes, standards, recommended practices, and guides, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

ADDITIONAL NOTICES AND DISCLAIMERS

Updating of NFPA Documents

Users of NFPA codes, standards, recommended practices, and guides should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of Tentative Interim Amendments. An official NFPA document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments and any Errata then in effect. In order to determine whether a given document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments or corrected through the issuance of Errata, consult appropriate NFPA publications such as the National Fire Codes® Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed below.

Interpretations of NFPA Documents

A statement, written or oral, that is not processed in accordance with Section 6 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Patents

The NFPA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of NFPA codes, standards, recommended practices, and guides, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on these documents. Users of these documents are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

NFPA adheres to applicable policies of the American National Standards Institute with respect to patents. For further information contact the NFPA at the address listed below.

Law and Regulations

Users of these documents should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of its codes, standards, recommended practices, and guides, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the NFPA. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of safe practices and methods. By making this document available for use and adoption by public authorities and private users, the NFPA does not waive any rights in copyright to this document.

Use of NFPA documents for regulatory purposes should be accomplished through adoption by reference. The term "adoption by reference" means the citing of title, edition, and publishing information only. Any deletions, additions, and changes desired by the adopting authority should be noted separately in the adopting instrument. In order to assist NFPA in following the uses made of its documents, adopting authorities are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. For technical assistance and questions concerning adoption of NFPA documents, contact NFPA at the address below.

For Further Information

All questions or other communications relating to NFPA codes, standards, recommended practices, and guides and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, NFPA, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

For more information about NFPA, visit the NFPA website at www.nfpa.org.

Copyright © 2006 National Fire Protection Association. All Rights Reserved.

NFPA 77

Recommended Practice on Static Electricity

2007 Edition

This edition of NFPA 77, *Recommended Practice on Static Electricity*, was prepared by the Technical Committee on Static Electricity. It was issued by the Standards Council on July 28, 2006, with an effective date of August 17, 2006, and supersedes all previous editions.

This edition of NFPA 77 was approved as an American National Standard on August 17, 2006.

Origin and Development of NFPA 77

An NFPA project addressing static electricity was initiated in 1936, and a progress report was presented to the NFPA in 1937. A tentative edition of NFPA 77 was adopted in 1941. This tentative edition was further revised and officially adopted by the NFPA in 1946. Revisions were adopted in 1950, 1961, 1966, 1972, 1977, 1982, 1988, 1993, and 2000.

The 2000 edition of NFPA 77 presented a totally revised overview of the subject of static electricity and its hazards, including the current level of understanding of static electricity and considerable new information explaining the fundamental aspects of the phenomenon and recommendations for evaluating and controlling potential hazards. Also included were sections addressing specific hazards of flammable gases and vapors and combustible dusts, sections on specific industrial processes and operations, a database of relevant properties of numerous commercially significant materials, a glossary of terms, and diagrams that showed acceptable methods of bonding and grounding.

The 2007 edition of NFPA 77 includes the following amendments:

- (1) Numerous editorial changes to comply with the *Manual of Style for NFPA Technical Committee Documents*
- (2) Text that allows use of self-checking bonding clamps and bond wires that continuously monitor the resistance to ground and verify that resistance is maintained within acceptable levels
- (3) Cautionary statements regarding the use of appropriate instruments based on the electrical classification of the area in which the instruments will be used
- (4) Cautionary statements regarding the use of high-voltage static neutralizers in electrically classified areas and the use of such static neutralizers as inductive neutralizers when de-energized or upon failure
- (5) Correction of errors

Technical Committee on Static Electricity

C. Charles Snow, Jr., Chair
3M Company, MN [M]

Peter R. Apostoluk, Greif Inc., IL [M]
Mark Blitshteyn, Ion Systems, Industrial Products
Division, CT [M]
Rep. Converting Equipment Manufacturers
Association
C. James Dahn, Safety Consulting Engineers Inc., IL [SE]
Vahid Ebadat, Chilworth Technology Inc., NJ [SE]
Robert F. McMican, Jr., ExxonMobil Research and
Engineering Co., United States [U]
Rep. American Petroleum Institute

Charles G. Noll, Bloomsburg University of Pennsylvania,
PA [RT]
Thomas H. Pratt, Burgoyne Incorporated, GA [SE]
Douglas A. Rivord, Graco, Inc., MN [U]
Lon D. Santis, Institute of Makers of Explosives, DC [U]
Rep. Institute of Makers of Explosives
Don R. Scarbrough, Elyria, OH [SE]
Gene H. Wolfe, R. R. Donnelley & Sons, IL [U]

Alternates

Ron F. Stewart, Orica Canada Incorporated, Canada [U]
(Alt. to L. D. Santis)

Nonvoting

Laurence G. Britton, Neolytica, WV [SE]

Robert P. Benedetti, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on safeguarding against the fire and explosion hazards associated with static electricity, including the prevention and control of these hazards. This Committee shall also have primary responsibility for conductive and static-dissipative floors, except as this subject is addressed by the Committee on Health Care Facilities.

Contents

Chapter 1 Administration	77- 5	Chapter 8 Flammable and Combustible Liquids and Their Vapors	77-19
1.1 Scope	77- 5	8.1 General	77-19
1.2 Purpose	77- 5	8.2 Combustion Characteristics of Liquids, Vapors, and Mists	77-19
1.3 Application (Reserved)	77- 5	8.3 Generation and Dissipation of Charge in Liquids	77-20
1.4 Equivalency	77- 5	8.4 Flow in Pipe, Hose, and Tubing	77-21
Chapter 2 Referenced Publications	77- 5	8.5 Storage Tanks	77-22
2.1 General	77- 5	8.6 Loading of Tank Vehicles	77-24
2.2 NFPA Publications	77- 5	8.7 Vacuum Trucks	77-24
2.3 Other Publications	77- 5	8.8 Railroad Tank Cars	77-24
2.4 References for Extracts in Recommendations Sections	77- 6	8.9 Marine Vessel and Barge Cargo Tanks	77-24
Chapter 3 Definitions	77- 6	8.10 Process Vessels	77-24
3.1 General	77- 6	8.11 Gauging and Sampling	77-26
3.2 NFPA Official Definitions	77- 6	8.12 Tank Cleaning	77-27
3.3 General Definitions	77- 6	8.13 Portable Tanks, Intermediate Bulk Containers (IBCs), and Non-Bulk Containers	77-27
Chapter 4 Units and Symbols of Measure	77- 7	8.14 Vacuum Cleaning	77-29
4.1 Units (Reserved)	77- 7	8.15 Clean Gas Flows	77-29
4.2 Symbols	77- 7	8.16 Plastic Sheets and Wraps	77-29
Chapter 5 Fundamentals of Static Electricity	77- 7	Chapter 9 Powders and Dusts	77-29
5.1 General	77- 7	9.1 General	77-29
5.2 Accumulation and Dissipation of Charge	77- 9	9.2 Combustibility of Dust Clouds	77-29
5.3 Discharge of Static Electricity and Ignition Mechanisms	77-10	9.3 Mechanisms of Static Electric Charging	77-29
Chapter 6 Evaluating Static Electricity Hazards	77-12	9.4 Retention of Static Electric Charge	77-30
6.1 General	77-12	9.5 Discharges in Powder Operations	77-30
6.2 Measuring a Static Electric Charge	77-13	9.6 Pneumatic Transport Systems	77-31
6.3 Measuring the Charge on a Conductor	77-14	9.7 Flexible Hose	77-31
6.4 Measuring the Charge on a Nonconductor	77-14	9.8 Flexible Boots and Socks	77-31
6.5 General Practices	77-14	9.9 Bag Houses	77-31
6.6 Measuring the Accumulation and Relaxation of Charge	77-14	9.10 Hybrid Mixtures	77-32
6.7 Measuring the Resistivity of Materials	77-14	9.11 Manual Addition of Powders to Flammable Liquids	77-32
6.8 Assessment of Bonding and Grounding	77-15	9.12 Bulk Storage	77-32
6.9 Measuring Spark Energies	77-15	Chapter 10 Specific Applications	77-32
6.10 Measuring Ignition Energies	77-15	10.1 Intermediate Bulk Containers (IBCs)	77-32
Chapter 7 Control of Static Electricity Hazards	77-15	10.2 Web and Sheet Processes	77-34
7.1 General	77-15	10.3 Spray Application	77-37
7.2 Control of Ignitable Mixtures in Equipment	77-15	10.4 Belts and Conveyors	77-37
7.3 Control of Static Charge Generation	77-16	10.5 Explosives	77-38
7.4 Charge Dissipation	77-16	10.6 Cathode Ray Tube Video Display Terminals	77-38
7.5 Charge Neutralization	77-17	Annex A Explanatory Material	77-38
7.6 Control of Static Charge on Personnel	77-18	Annex B Physical Characteristics of Materials	77-42
7.7 Maintenance and Testing	77-19	Annex C Additional Information on Flash Point	77-48
7.8 Discomfort and Injury	77-19		

Annex D	Additional Information on Vapor Pressure	77-48	Annex G	Recommended Means for Providing Bonding and Grounding	77-50
Annex E	Additional Information on Charge Relaxation	77-49	Annex H	Glossary of Terms	77-51
Annex F	Additional Information on Conductivity	77-50	Annex I	Informational References	77-57
			Index		77-58

NFPA 77
Recommended Practice on
Static Electricity
2007 Edition

IMPORTANT NOTE: This NFPA document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notices and Disclaimers Concerning NFPA Documents." They can also be obtained on request from NFPA or viewed at www.nfpa.org/disclaimers.

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Annex A.

A reference in brackets [] following a section or paragraph indicates material that has been extracted from another NFPA document. As an aid to the user, the complete title and edition of the source documents for extracts in the recommendations sections of this document are given in Chapter 2 and those for extracts in the informational sections are given in Annex I. Editorial changes to extracted material consist of revising references to an appropriate division in this document or the inclusion of the document number with the division number when the reference is to the original document. Requests for interpretations or revisions of extracted text should be sent to the technical committee responsible for the source document.

Information on referenced publications can be found in Chapter 2 and Annex I.

Chapter 1 Administration

1.1 Scope.

1.1.1 This recommended practice applies to the identification, assessment, and control of static electricity for purposes of preventing fires and explosions.

1.1.2* This recommended practice does not apply directly to shock hazards from static electricity. However, application of the principles set forth in this recommended practice can reduce such shock hazards to personnel.

1.1.3* This recommended practice does not apply to the prevention and control of static electricity in hospital operating rooms or in areas where flammable anesthetics are administered or handled.

1.1.4* This recommended practice does not apply to lightning.

1.1.5* This recommended practice does not apply to stray electrical currents or to induced currents from radio frequency (RF) energy.

1.1.6* This recommended practice does not apply to fueling of motor vehicles, marine craft, or aircraft.

1.1.7* This recommended practice does not apply to cleanrooms.

1.1.8 This recommended practice does not apply to control of static electricity and static electricity hazards involved with electronic components, which have their own requirements.

1.2 Purpose. The purpose of this recommended practice is to assist the user in controlling the hazards associated with the generation, accumulation, and discharge of static electricity by providing the following:

- (1) Basic understanding of the nature of static electricity
- (2) Guidelines for identifying and assessing the hazards of static electricity
- (3) Techniques for controlling the hazards of static electricity
- (4) Guidelines for controlling static electricity in selected industrial applications

1.3 Application. (Reserved)

1.4 Equivalency. Nothing in this recommended practice is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those prescribed by this recommended practice.

1.4.1 Technical documentation should be submitted to the authority having jurisdiction to demonstrate equivalency.

1.4.2 The system, method, or device should be approved for the intended purpose by the authority having jurisdiction.

Chapter 2 Referenced Publications

2.1 General. The documents or portions thereof listed in this chapter are referenced within this recommended practice and should be considered part of the recommendations of this document.

2.2 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, Quincy, MA 02169-7471.

NFPA 30, *Flammable and Combustible Liquids Code*, 2003 edition.

NFPA 69, *Standard on Explosion Prevention Systems*, 2002 edition.

NFPA 70, *National Electrical Code*®, 2005 edition.

NFPA 99, *Standard for Health Care Facilities*, 2005 edition.

NFPA 495, *Explosive Materials Code*, 2006 edition.

NFPA 496, *Standard for Purged and Pressurized Enclosures for Electrical Equipment*, 2003 edition.

NFPA 498, *Standard for Safe Havens and Interchange Lots for Vehicles Transporting Explosives*, 2006 edition.

NFPA 1124, *Code for the Manufacture, Transportation, Storage, and Retail Sales of Fireworks and Pyrotechnic Articles*, 2006 edition.

NFPA 1125, *Code for the Manufacture of Model Rocket and High Power Rocket Motors*, 2007 edition.

2.3 Other Publications.

2.3.1 AIChE Publications. American Institute of Chemical Engineers, 3 Park Avenue, New York, NY 10016-5901.

Britton, L. G., "Using Material Data in Static Hazard Assessment," *Plant/Operations Progress*, April 1992, pp. 56-70.

2.3.2 API Publications. American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005.

API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*, 6th edition, 1998.

2.3.3 ASTM Publications. ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959.

ASTM D 257, *Standard Test Methods for DC Resistance or Conductance of Insulating Materials*, 1999.

2.3.4 CENELEC Publications. CENELEC, Rue de Stassartstraat, 35, B - 1050 Brussels, Belgium.

EN 61241-2-2, *Electrical Apparatus for Use in the Presence of Combustible Dust — Part 2: Test Methods; Section 2: Method for Determining the Electrical Resistivity of Dust in Layers*, International Electrotechnical Commission, Brussels, 1996.

2.3.5 IME Publications. Institute of Makers of Explosives, 1120 Nineteenth Street, NW, Suite 310, Washington, DC 20036-3605.

Safety Library Publication No. 3, *Suggested Code of Regulations for the Manufacture, Transportation, Storage, Sale, Possession, and Use of Explosive Materials*.

Safety Library Publication No. 17, *Safety in the Transportation, Storage, Handling, and Use of Explosive Materials*.

2.3.6 JIS Publications. Japan Industrial Standards. 1-3-1 Kamigaseki, Chiyoda-ku, Tokyo 100-8901, Japan.

JIS B 9915, *Measuring Methods for Dust Resistivity (with Parallel Electrodes)*, Japan Industrial Standards, Tokyo, 1989.

2.3.7 U.S. Department of Defense Publications. U.S. Government Printing Office, Washington, DC 20402.

Standard 4145.26M, *Contractors' Safety Manual for Ammunition and Explosives*.

Standard 6055.9, *Ammunition and Explosive Safety Standards*.

2.3.8 Additional Publications.

BS 5958, *Code of Practice for Control of Undesirable Static Electricity*, Part 1, General Considerations, British Standards Institution, London, 1991.

Glor, M., *Electrostatic Hazards in Powder Handling*, Research Studies Press, Ltd., Letchworth, Hertfordshire, England, 1988.

International Safety Guide for Oil Tankers and Terminals, 4th Edition, Witherby and Co., Ltd., London, 1996.

Merriam-Webster's Collegiate Dictionary, 11th edition, Merriam-Webster, Inc., Springfield, MA, 2003.

Pratt, T. H., *Electrostatic Ignitions of Fires and Explosions*, Burgoine, Inc., Marietta, GA, 1997.

Walmsley, H. L., "Avoidance of Electrostatic Hazards in the Petroleum Industry," *Journal of Electrostatics*, vol. 27, No. 1 and No. 2, Elsevier, New York, 1992.

2.4 References for Extracts in Recommendations Sections.

NFPA 220, *Standard on Types of Building Construction*, 2006 edition.

Chapter 3 Definitions

3.1 General. The definitions contained in this chapter apply to the terms used in this recommended practice. Where terms are not defined in this chapter or within another chapter, they should be defined using their ordinarily accepted meanings within the context in which they are used. *Merriam-Webster's*

Collegiate Dictionary, 11th edition, is the source for the ordinarily accepted meaning.

3.2 NFPA Official Definitions.

3.2.1* Approved. Acceptable to the authority having jurisdiction.

3.2.2* Authority Having Jurisdiction (AHJ). An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

3.2.3* Listed. Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.

3.2.4 Recommended Practice. A document that is similar in content and structure to a code or standard but that contains only nonmandatory provisions using the word "should" to indicate recommendations in the body of the text.

3.2.5 Should. Indicates a recommendation or that which is advised but not required.

3.3 General Definitions.

3.3.1 Antistatic. Capable of dissipating a static electric charge at an acceptable rate.

3.3.2 Bonding. For the purpose of controlling static electric hazards, the process of connecting two or more conductive objects together by means of a conductor so that they are at the same electrical potential, but not necessarily at the same potential as the earth.

3.3.3 Breakdown Strength. The minimum voltage, measured in volts per meter of thickness, necessary to cause a spark through a solid material that is held between electrodes that produce a uniform electric field under specified test conditions.

3.3.4 Breakdown Voltage. The minimum voltage, measured in volts, necessary to cause a spark through a gas mixture between electrodes that produce a uniform electric field under specified test conditions.

3.3.5* Capacitance. The amount of charge, measured in coulombs per volt or in farads, that must be stored on a specified body or material to raise the potential difference by 1 volt.

3.3.6 Combustible. Capable of reacting with oxygen and burning if ignited. [220, 2006]

3.3.7 Combustible Dust. Any finely divided solid material that is 420 microns or smaller in diameter (i.e., material that will pass through a U.S. No. 40 standard sieve) that presents a fire or explosion hazard when dispersed and ignited in air or other gaseous oxidizer.

3.3.8 Conductive. Possessing the ability to allow the flow of an electric charge; possessing a conductivity greater than 10^4 picosiemens per meter (pS/m) or a resistivity less than 10^8 ohm-meters ($\Omega\text{-m}$).

3.3.9 Conductor. A material or object that allows an electric charge to flow easily through it.

3.3.10 Grounding. The process of bonding one or more conductive objects to the ground, so that all objects are at zero (0) electrical potential; also referred to as *earthing*.

3.3.11 Ignitable Mixture. A gas-air, vapor-air, mist-air, or dust-air mixture, or combinations of such mixtures, that can be ignited by a sufficiently strong source of energy, such as a static electric discharge.

3.3.12 Inert Gas. For the purpose of controlling static electric hazards, a nonflammable, nonreactive gas that renders the combustible material in a system incapable of supporting combustion.

3.3.13 Nonconductive. Possessing the ability to resist the flow of an electric charge.

3.3.14 Nonconductor. A material or object that resists the flow of an electric charge.

3.3.15 Semiconductive. Possessing a conductivity between 10^2 pS/m and 10^4 pS/m or a resistivity between 10^8 Ω -m and 10^{10} Ω -m.

3.3.16 Static Electric Discharge. A release of static electricity in the form of a spark, corona discharge, brush discharge, or propagating brush discharge that might be capable of causing ignition under appropriate circumstances.

3.3.17 Static Electricity. An electric charge that is significant only for the effects of its electric field component and that manifests no significant magnetic field component.

Chapter 4 Units and Symbols of Measure

4.1 Units. (Reserved)

4.2 Symbols. The following symbols are used throughout this recommended practice and are defined as follows:

A	= electric current; quantity of charge passing per second through a given point (ampere; coulombs per second)
C	= capacitance (farads)
d	= diameter (meters)
E	= electric field strength (volts per meter)
e	= base of Napierian (natural) logarithms = 2.718
ϵ	= dielectric constant of a material
ϵ_0	= electrical permittivity of a vacuum = 8.845×10^{-12} (farads per meter)
$\epsilon\epsilon_0$	= electrical permittivity of a material (farads per meter)
I_s	= streaming current (amperes)
κ	= liquid conductivity (siemens per meter)
μ	= ion mobility (square meters per volt-second)
μm	= micrometers (microns) = 10^{-6} meter
$\Omega\text{-m}$	= electrical resistivity (ohm-meters)
P	= pressure (millimeters of mercury)
Q	= quantity of electrical charge (coulombs)
R	= electrical resistance (ohms)
ρ	= volume resistivity (ohm-meters)
S	= electrical conductance (siemens)
t	= elapsed time (seconds)
τ	= charge relaxation time constant (seconds)
v	= flow velocity (meters per second)
V	= electrical potential difference (volts)
W	= energy or work done (joules)

Chapter 5 Fundamentals of Static Electricity

5.1 General.

5.1.1 The most common experiences of static electricity are the crackling and clinging of fabrics as they are removed from a clothes dryer or the electric shock felt when touching a metal object after walking across a carpeted floor or stepping out of an automobile. Nearly everyone recognizes that these phenomena occur mainly when the atmosphere is very dry, particularly in winter. To most people, static electricity is simply an annoyance. In many industries, particularly those where combustible materials are handled, static electricity can cause fires or explosions.

5.1.2 The word *electricity* is derived from *elektron*, the ancient Greek word for *amber*. The phenomenon of electrification was first noticed when pieces of amber were rubbed briskly. For centuries, the word *electricity* had no meaning other than the ability of some substances to attract or repel lightweight objects after being rubbed with a material such as silk or wool. Stronger electrification accompanied by luminous effects and small sparks was first observed about 300 years ago by Otto von Guericke.

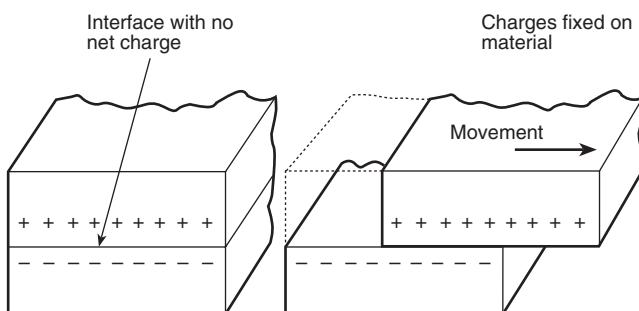
5.1.3 In comparatively recent times, when the properties of flowing (current) electricity were discovered, the term *static* came into use to distinguish a charge that was at rest from one that was in motion. Today the term is used to describe phenomena that originate from an electric charge, regardless of whether the charge is at rest or in motion.

5.1.4 All materials, whether solid or fluid, are composed of various arrangements of atoms. Atoms are composed of positively charged nuclear components, which give them mass, surrounded by negatively charged electrons. Atoms can be considered electrically neutral in their normal state, meaning that there are equal amounts of positive and negative charge. They can become charged where there is an excess or a deficiency of electrons relative to the neutral state. Electrons are mobile and of insignificant mass and are the charge carriers most associated with static electricity.

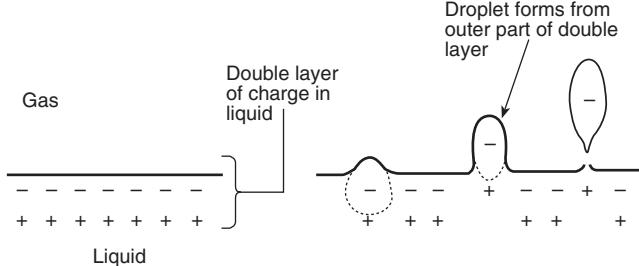
5.1.5 In materials that are conductors of electricity, such as metals, electrons can move freely. In materials that are insulators, electrons are more tightly bound to the nuclei of the atoms and are not free to move. Examples of insulators include the following:

- (1) Nonconductive glass
- (2) Rubber
- (3) Plastic resins
- (4) Dry gases
- (5) Paper
- (6) Petroleum fluids

5.1.6 The mobility of electrons in materials known as semiconductors is freer than in insulators but is still less than in conductors. Semiconductive materials are commonly characterized by their high electrical resistance, which can be measured with a megohmmeter.


5.1.7 In otherwise insulating fluids, an electron can separate from one atom and move freely or attach to another atom to form a negative ion. The atom losing the electron then becomes a positive ion. Ions are charged atoms and molecules.

5.1.8 Unlike charges attract each other, and the attractive force can draw the charges together if the charges are mobile. The energy stored is the result of the work done to keep the charges separated by a finite distance.


5.1.9 Separation of charge cannot be prevented absolutely, because the origin of the charge lies at the interface of materials. Where materials are placed in contact, some electrons move from one material to the other until a balance (equilibrium condition) in energy is reached. This charge separation is most noticeable in liquids that are in contact with solid surfaces and in solids that are in contact with other solids. The flow of clean gas over a solid surface produces negligible charging.

5.1.10 The enhanced charging that results from materials being rubbed together (triboelectric charging) is the result of surface electrons being exposed to a broad variety of energies in an adjacent material, so that charge separation is more likely to take place. The breakup of liquids by splashing and misting results in a similar charge separation. It is necessary to transfer only about one electron for each 500,000 atoms to produce a condition that can lead to a static electric discharge. Surface contaminants at very low concentrations can play a significant role in charge separation at the interface of materials. [See Figure 5.1.10(a) and Figure 5.1.10(b).]

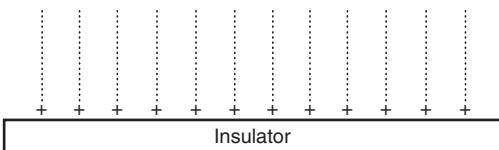
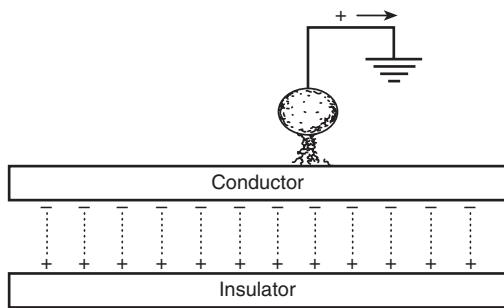

5.1.11 Conductive materials can become charged where brought near a highly charged surface. Electrons in the conductive material are either drawn toward or forced away from the region of closest approach to the charged surface, depending on the nature of the charge on that surface. If the conductive material is then touched to ground or to a third object, additional electrons can pass to or from ground or the object. If contact is then broken and the conductive material and charged surface are separated, the charge on the isolated conductive object changes. The net charge that is transferred is called *induced charge*. [See Figure 5.1.11(a) through Figure 5.1.11(d).]

FIGURE 5.1.10(a) Typical Charge Generation by Relative Movement of Insulating Materials. (Source: H. L. Walmsley, "Avoidance of Electrostatic Hazards in the Petroleum Industry," p. 19.)


FIGURE 5.1.10(b) Typical Charge Generation by Atomization. (Source: H. L. Walmsley, "Avoidance of Electrostatic Hazards in the Petroleum Industry," p. 19.)

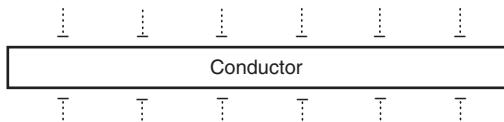

FIGURE 5.1.11(a) Charged Insulator with Field Lines Shown. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 29.)

FIGURE 5.1.11(b) Induced Charge on Conductor, Charge Remains on Conductor as Conductor Is Removed from Contact with Insulator. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 29.)

FIGURE 5.1.11(c) Discharge of Free Charge from Conductor. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 29.)

FIGURE 5.1.11(d) Isolated Conductor Carrying a Charge (After Being Separated from Insulator).

5.1.12 The separation of charge on a neutral isolated conductor and its distribution near a charged insulating surface produces electrical stresses near the point of closest approach. Sharp edges on the conductor can yield a localized electrical breakdown of the gas stream, known as *corona*, or an electric spark across the gap. Either of these events can transfer charge between the materials, leaving the isolated conductor charged. Such a

transfer occurs, for example, where a person wearing nonconductive shoes receives a static electric shock by contacting the metal frame supporting a highly charged web. As a result, the person acquires a net static electric charge and can receive a second shock after leaving the area by touching a grounded metal object, thereby allowing the acquired charge to flow to earth.

5.1.13 Charge can also be imparted to a surface or into the bulk of a material by directing a stream of electrons or ions against the surface or the material. If the surface or material is not conductive or is conductive but isolated from ground, the charge delivered by the bombarding stream remains after the stream stops.

5.1.14 Charge can also be injected into a stream of nonconductive fluid by submerging within the stream a pointed electrode on which a high voltage has been impressed.

5.2 Accumulation and Dissipation of Charge.

5.2.1 A static electric charge will accumulate where the rate at which charges separate exceeds the rate at which charges recombine. Work must be done to separate charges, and there is a tendency for the charges to return to a neutral state. The potential difference, that is, the voltage, between any two points is the work per unit charge that would have to be done to move the charges from one point to the other. This work depends on the physical characteristics (that is, shape, size, and nature of materials and location of objects) of the particular system and can be expressed by the following equation:

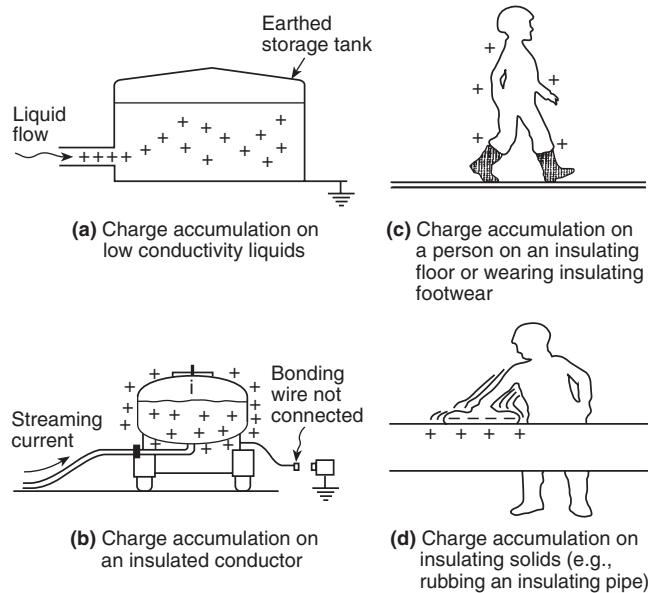
$$C = \frac{Q}{V}$$

where:

C = capacitance (farads)

Q = charge that has been separated (coulombs)

V = potential difference (volts)


5.2.2 Typical examples of accumulation are illustrated in Figure 5.2.2.

5.2.3 Separation of electric charge might not in itself be a potential fire or explosion hazard. There must be a discharge or sudden recombination of the separated charges to pose an ignition hazard. One of the best protections from static electric discharge is a conductive or semiconductive path that allows the controlled recombination of the charges.

5.2.4 In static electric phenomena, charge is generally separated by a resistive barrier, such as an air gap or insulation between the conductors, or by the insulating property of the materials being handled or processed. In many applications, particularly those in which the materials being processed are charged insulators (nonconductors), it is not easy to measure the charges or their potential differences.

5.2.5 Where recombining of charges occurs through a path that has electrical resistance, the process proceeds at a finite rate and is described by the *charge relaxation time* or *charge decay time*, τ . This relaxation process is typically exponential and is expressed by the following equation:

$$Q_t = Q_0 e^{-t/\tau}$$

FIGURE 5.2.2 Examples of Charge Accumulation. (Source: H. L. Walmsley, *Avoidance of Electrostatic Hazards in the Petroleum Industry*, p. 37.)

where:

Q_t = charge remaining at elapsed time t (coulombs)

Q_0 = charge originally separated (coulombs)

e = base of natural logarithms = 2.718

t = elapsed time (seconds)

τ = charge relaxation time constant (seconds)

5.2.6 The rate of charge recombination depends on the capacitance of the material and its resistance and is expressed as follows:

$$\tau = RC$$

where:

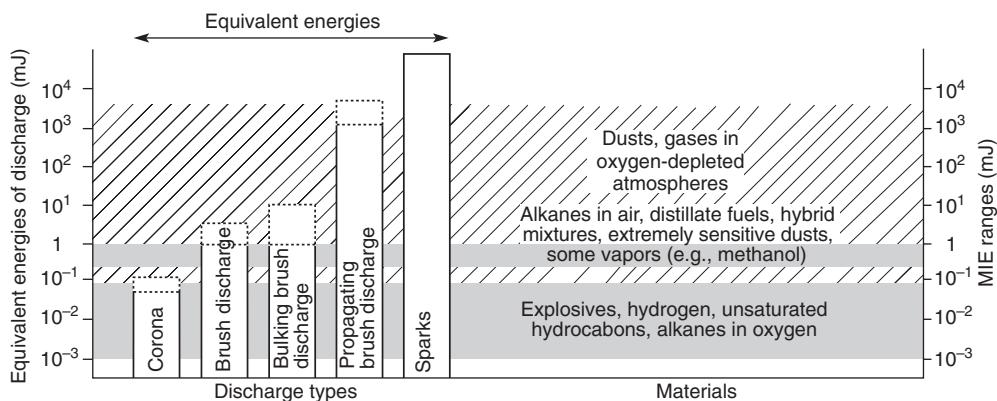
τ = charge relaxation time constant (seconds)

R = resistance (ohms)

C = capacitance (farads)

5.2.7 For bulk materials, the relaxation time is often expressed in terms of the volume resistivity of the material and its electrical permittivity as follows:

$$\tau = \rho \epsilon \epsilon_0$$


where:

τ = charge relaxation time constant (seconds)

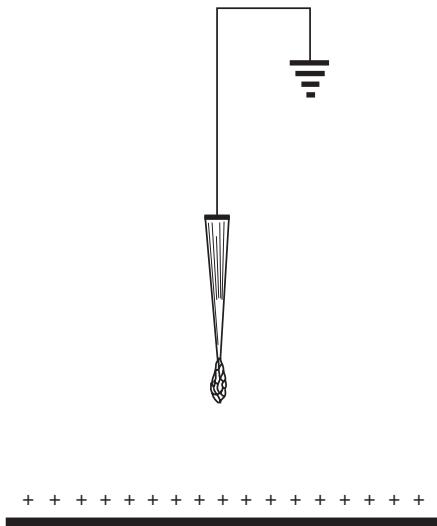
ρ = volume resistivity (ohm-meters)

$\epsilon \epsilon_0$ = electrical permittivity of material (farads per meter)

5.2.8 The exponential decay model described in 5.2.5 is helpful in explaining the recombination process but is not necessarily applicable to all situations. In particular, nonexponential decay is observed where the materials supporting the charge are certain low-conductivity liquids or powders composed of combinations of insulating, semiconductive, and conductive materials. The decay in such cases is faster than the exponential model predicts.

FIGURE 5.3.1 Approximate Energies of Types of Discharges Compared with Minimum Ignition Energies (MIEs) of Typical Combustible Materials. (Adapted from H. L. Walmsley, *Avoidance of Electrostatic Hazards in the Petroleum Industry*, p. 26.)

5.2.9 Dissipation of static electric charges can be effected by modifying the volume or surface resistivity of insulating materials with antistatic additives, by grounding isolated conductors, or by ionizing the air near insulating materials or isolated conductors. Air ionization involves introducing mobile electric charges (positive, negative, or both) into the air around the charged objects. The ions are attracted to the charged objects until the charges on the objects are neutralized. The ion current in the air serves as the mechanism that brings the neutralizing charge to the otherwise bound or isolated charge.

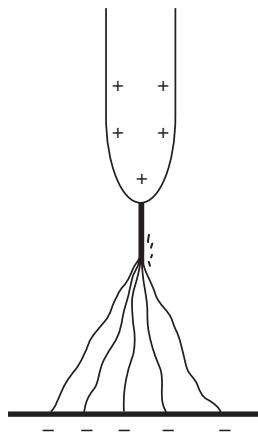

5.3 Discharge of Static Electricity and Ignition Mechanisms.

5.3.1 General. As electric charge accumulates through separation, there is an increase in the electrical forces trying to restore a neutral condition by reuniting those charges in the form of a static electric discharge. Many types of discharges can occur and are illustrated broadly in Figure 5.3.1. For a static electric discharge to be a source of ignition, the following four conditions must be met:

- (1) An effective means of separating charge must be present.
- (2) A means of accumulating the separated charges and maintaining a difference of electrical potential must be available.
- (3) A discharge of the static electricity of adequate energy must occur.
- (4) The discharge must occur in an ignitable mixture.

5.3.2 Corona Discharge. Corona discharge is an electrical discharge in the microampere range that results from a localized needle-shaped electrical breakdown of gases by charges on surfaces such as sharp edges, points, and wires. The charges can arise on conductors at high voltages or on grounded conductors that are situated near a charged surface. Corona discharge is accompanied by a faint luminosity. (See Figure 5.3.2.)

5.3.2.1 In most cases, the energy density of corona discharge is very low. Consequently, the hazard from corona discharge is small. Where corona discharge is more intense, pre-breakdown streamers called *brush discharges* occur. These appear as random filaments of light that make faint hissing or frying sounds. Brush discharges that originate on needlelike tips with radii smaller than 1 mm do not, in general, lead to ignition. Discharges from blades, however, can ignite mixtures that have very low ignition energies, such as hydrogen-air or carbon disulfide-air mixtures.


FIGURE 5.3.2 Corona Discharge. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 32.)

Gas-air and vapor-air mixtures can be ignited if brush discharges originate from elements with edge diameters greater than 5 mm or from a rod with a hemispherical end, such as a human finger. (See Figure 5.3.2.1.)

5.3.2.2 Sharp edges, corners, and projections (e.g., those with an edge diameter of 5 mm or less) that point toward charged surfaces need to be identified because they can concentrate the charge, providing intense, localized stresses that can lead to electrical corona and sparks.

5.3.3 Sparks Between Conductors.

5.3.3.1 Sparks from ungrounded charged conductors, including the human body, are responsible for most fires and explosions ignited by static electricity. Sparks are typically intense capacitive discharges that occur in the gap between two charged conducting bodies, usually metal. The energy of a spark discharge is highly concentrated in space and in time.

FIGURE 5.3.2.1 Brush Discharge. (Adapted from H. L. Walmsley, "Avoidance of Electrostatic Hazards in the Petroleum Industry," p. 27.)

5.3.3.2 The ability of a spark to produce ignition is governed largely by its energy, which is some fraction of the total energy stored in the system.

5.3.3.3 The energy of a spark can be determined from the capacitance of the conductive system and the electrical potential or from the quantity of charge separated from the conductors. It is expressed by the two equations that follow. These two equations can be equated to show that $Q = CV$. Q can also be substituted for CV in the first equation to yield $W = \frac{1}{2}(Q/V)$. These relationships are shown graphically in Figure 5.3.3.3.

$$W = \frac{1}{2}CV^2$$

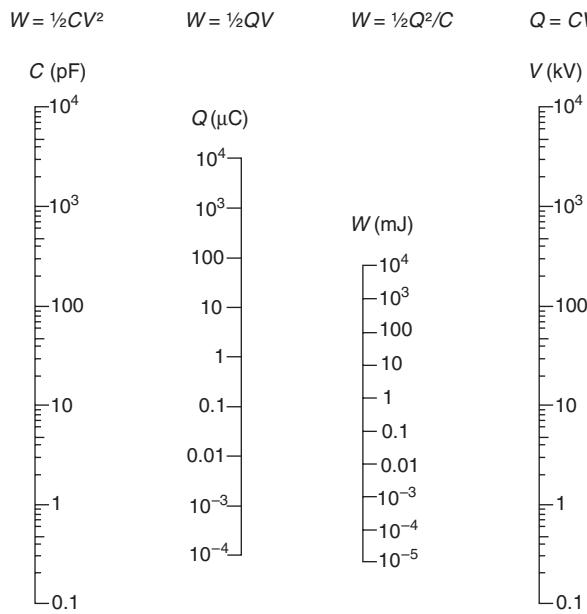
$$W = \frac{1}{2} \left(\frac{Q^2}{C} \right) = \frac{Q^2}{2C}$$

where:

W = energy (joules)

C = capacitance (farads)

V = potential difference (volts)


Q = charge (coulombs)

5.3.3.4* To be capable of causing ignition, the energy released in the discharge must be at least equal to the minimum ignition energy (MIE) of the ignitable mixture. Other factors, such as the shape of the charged electrodes and the form of discharge, influence conditions for the static electric discharge and its likelihood of causing ignition.

5.3.3.5 Most gases and vapors of saturated hydrocarbons require about 0.25 mJ of energy for spark discharge ignition, assuming optimum mixtures with air. Unsaturated hydrocarbons can have lower MIEs. Discussion of the MIE for specific materials can be found in 8.2.3, 9.2.4, and 9.10.1.

5.3.3.6 Mists, dusts, and fibers usually require an MIE that is one or two orders of magnitude greater than that for gases and vapors. It should be noted that, for any given particulate material, the MIE diminishes rapidly with decreasing particle size.

5.3.3.7 The ignition energies for gases, vapors, and dusts are reduced by an increase in the oxygen concentration relative to

FIGURE 5.3.3.3 Nomograph for Estimating Energy in a Capacitive Spark Discharge. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 113.)

that for air. Likewise, ignition energies are increased by a decrease in oxygen concentration.

5.3.4 Hybrid Mixtures. Where two or more flammable materials of different phases (e.g., a dust and a vapor) are present in the same mixture, the mixture is referred to as a *hybrid*. Tests have shown that adding a flammable gas to a dust suspension can greatly lower the ignition energy of the dust. This phenomenon is especially true where the gas is present at a concentration below its lower flammable limit (LFL) or the dust is below its minimum explosive concentration (MEC). Such hybrid mixtures can sometimes be ignited even if both components are below their lower limits. A hybrid mixture can be formed by the following:

- (1) Vapor desorption from particulates (such as in resin product receivers)
- (2) Reaction of particulates with atmospheric moisture that produces a flammable gas
- (3) Introduction of a dust into a flammable vapor atmosphere (such as adding a dust or powder to a flammable liquid)

5.3.5 Static Electric Discharge from the Human Body.

5.3.5.1 The human body is a good electrical conductor and has been responsible for numerous incidents of static electric discharge.

5.3.5.2 A person insulated from ground can accumulate a significant charge by walking on an insulating surface, by touching a charged object, by brushing surfaces while wearing nonconductive clothing, or by momentarily touching a grounded object in the presence of charges in the environment. During normal activity, the potential of the human body can reach 10 kV to 15 kV, and the energy of a possible spark can reach 20 mJ to 30 mJ. A comparison of these values to the MIEs of gases or vapors makes the hazard readily apparent.

5.3.6 Discharges Between Conductors and Insulators.

5.3.6.1 Sparks often occur between conductors and insulators. Examples of such occurrences include situations in which plastic parts and structures, insulating films and webs, liquids, and particulate material are handled. The charging of these materials can result in surface discharges and sparks, depending on the accumulated charge and the shape of nearby conductive surfaces. The variable charge density (both in magnitude and polarity) observed on insulating surfaces is the effect of these discharges spreading over a limited part of the insulating surface.

5.3.6.2 Even with the use of static electricity neutralizers, some charges will remain in certain areas but typically are not hazardous if there is no mechanism by which they can accumulate. However, a dangerous (i.e., ignition-capable) static electric charge can result because of concentration of individual charges. Examples of how such concentration of charge can occur include stacking or nesting of empty plastic containers, winding film onto a roll or drum, and filling a vessel with a nonconductive liquid or powder.

5.3.7 Discharge on the Surface of an Insulator Backed by a Conductor. A surface coated with a thin (less than 8 mm) layer of an insulating material will act as a capacitor to store charge. At sufficiently high charge levels (i.e., greater than $250 \mu\text{C}/\text{m}^2$), a branching discharge will be observed on the surface of the coating. This branching discharge is referred to as a *propagating brush discharge*. Alternatively, an electrical breakdown through the layer can occur. The energy stored in the coating can be as high as several joules per square meter, so the energy of the discharge, however distributed in space, can be sufficient to ignite gas-air, vapor-air, and dust-air mixtures. (See Figure 5.3.7.)

5.3.8* Discharges During Filling Operations. During the filling of large silos with powders, granules, and pellets, surface flashes up to a meter in length have been observed. These discharges, referred to as *bulking brush (cone) discharges*, are accompanied by a

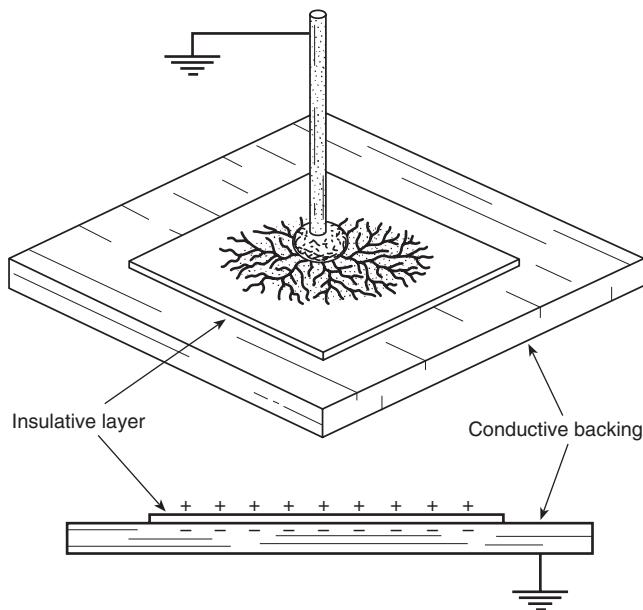


FIGURE 5.3.7 Propagating Brush Discharge. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 35.)

crackling sound capable of being heard above the noise of the material transfer. Bulking brush discharges have a maximum effective energy of 10 mJ to 25 mJ and are believed responsible for dust explosions in grounded silos. Similar discharges are observed during the filling of tank vehicles with nonconductive liquids. In those cases, the phenomenon is known as a *surface streamer* or *go-devil*. (See Figure 5.3.8.)

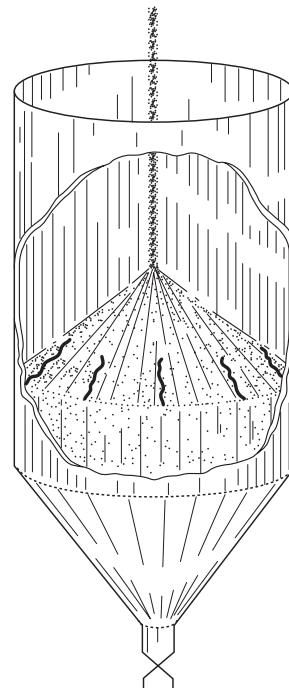


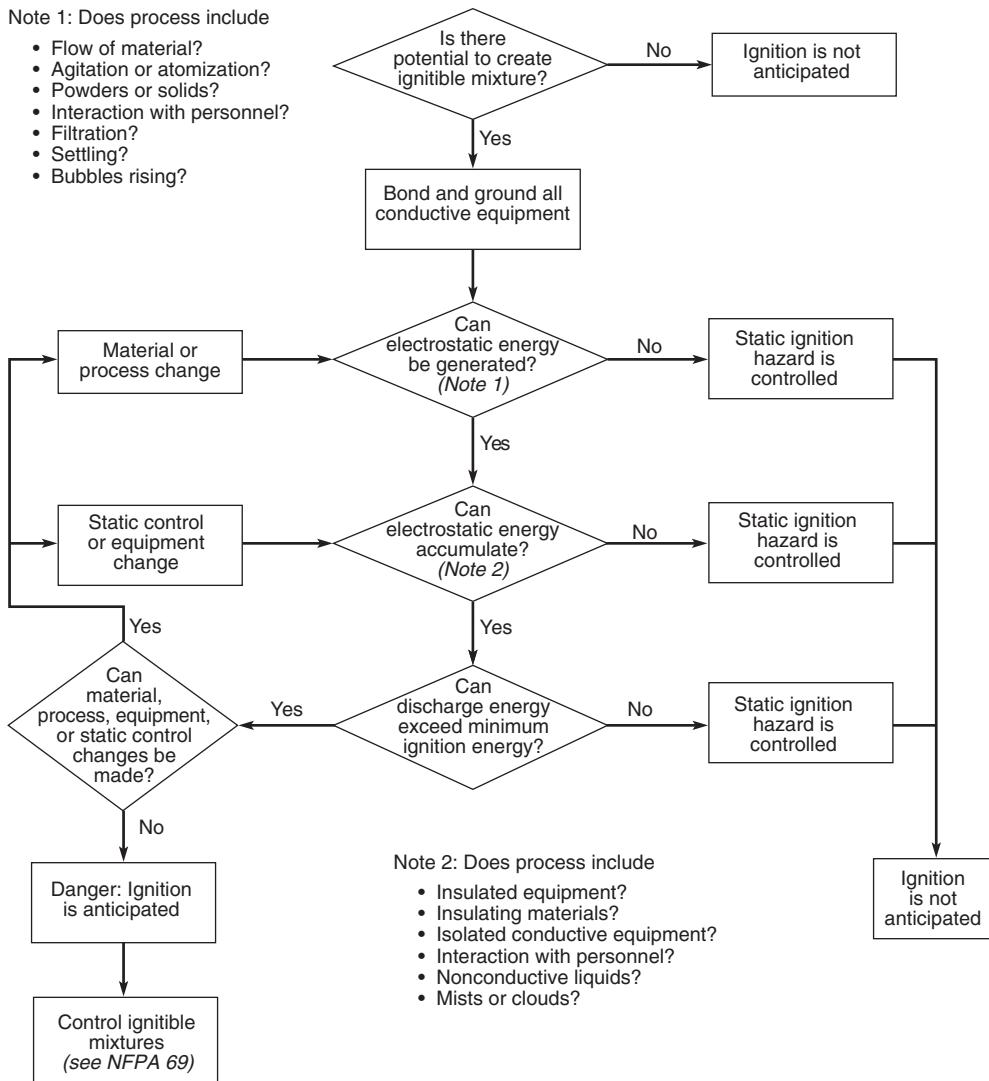
FIGURE 5.3.8 Bulking Brush Discharge During Filling of Silo with Bulk Powder.

Chapter 6 Evaluating Static Electricity Hazards

6.1 General.

6.1.1 There are two basic steps in evaluating static electricity hazards:

- (1) Identification of locations where charge separates and accumulates
- (2) Assessment of the ignition hazards at the locations where charge separates and accumulates


6.1.2 The evaluation process specified in 6.1.1 is outlined in Figure 6.1.2.

6.1.3 On-site evaluation or survey of the process should be made to identify any ungrounded conductive objects, including personnel, and any materials that could serve as electrical insulators and interfere with proper bonding and grounding. The survey should identify those locations that might pose a static electricity hazard, even if there is no evidence of accumulation of charge at the time of the evaluation.

6.1.3.1 Special attention should be given to insulating materials that are handled or processed.

Note 1: Does process include

- Flow of material?
- Agitation or atomization?
- Powders or solids?
- Interaction with personnel?
- Filtration?
- Settling?
- Bubbles rising?

FIGURE 6.1.2 Flow Chart for Determining Static Electric Ignition Hazard.
(For recommendations for bonding and grounding, see 7.4.1. For information on controlling ignitable mixtures, see NFPA 69, *Standard on Explosion Prevention Systems*.)

6.1.3.1.1 Each process operation should be considered separately, and attention should be given to the likely range of exposure of the materials. For example, changes in temperature and relative humidity can significantly influence the bulk conductivity and surface conductivity of materials.

6.1.3.2 It is often helpful to first complete a design review of the operation, process, or machine and a visual survey of the area. An on-site instrumented evaluation should then be conducted during actual operating conditions to determine the nature and magnitude of any static electricity hazards present.

WARNING: During an audit, precautions should be taken that are consistent with the equipment and the materials in the area where measurements are to be taken. The primary ignition hazard comes from introducing a grounded electrode, such as the

housing of a field meter (see Section 6.4), into the vicinity of a charged surface, thus providing a route for a static electric discharge. The surface being measured should always be approached slowly during observation of the meter's response. Extreme care should be taken so that neither instruments nor testing techniques cause ignition of flammable atmospheres. Appropriate safe work practices should be employed where measurements are being taken in and around physical hazards such as moving belts, webs, and pulleys.

6.2 Measuring a Static Electric Charge. A meaningful evaluation requires using an appropriate instrument, using the instrument according to the manufacturer's instructions, maintaining calibration of the instrument, and interpreting the measurements according to the manufacturer's recommendations.

6.3 Measuring the Charge on a Conductor.

6.3.1 The voltage on a conductor is proportional to the charge it supports and is expressed by the following equation:

$$V = \frac{Q}{C}$$

where:

V = potential difference (volts)

Q = charge supported by the conductor (coulombs)

C = capacitance of the conductor (farads)

6.3.2 The voltage on a conductor can be measured by direct contact using a voltmeter, provided that the impedance of the voltmeter is high enough so that it does not discharge the conductor and the capacitance is small enough so that it does not collect a significant charge from the conductor. An electrostatic voltmeter with input impedance greater than 10^{12} ohms can be used for measuring voltages on most ungrounded conductors. Because conductors have the same voltage at every point on their surface, the location at which the test probe of the voltmeter touches the surface of the conductor is not important.

6.4 Measuring the Charge on a Nonconductor.

6.4.1 The charge on a nonconductor cannot be measured using a direct contact electrostatic voltmeter. A noncontact electrostatic voltmeter, or field meter, must be used. A noncontact electrostatic voltmeter senses the strength of the static electric field from the net charge on or in the nonconductor. The field strength, which is proportional to the static electric force per unit charge, describes the electric forces present near a charged object. For practical purposes, an electric field is the force that a person experiences or measures around a charged object.

6.4.2 Field meters are calibrated to measure the electric field in units of volts per unit distance, typically kilovolts per meter. In most cases, the measurements are proportional to the net static electric charge on the object being measured. Field meters are referred to as *field mills* or *charge locators*, depending on their principle of operation and level of sophistication. Because the charge density on or in a nonconductor typically is not uniform, measurements should be taken at several locations.

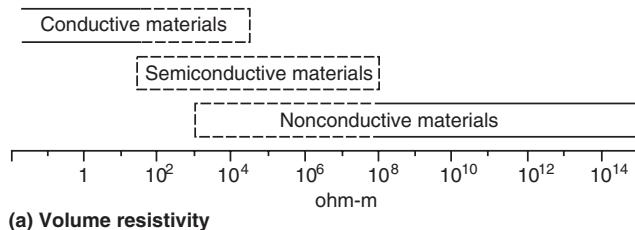
6.4.3 Charged nonconductors exist in many forms, such as sheets, films, webs, powders, liquids, process rolls, and extrusions. Charges on these materials and objects produce electric fields that are influenced by the instrument, by the observer, and by other nearby conductive, semiconductive, or insulating materials. As a result, the electric field measured by the instrument generally is different from the electric field present before the instrument was introduced. This phenomenon is a result of a change in capacitance.

6.4.4 The forces between electric charges exhibit themselves at a distance. For that reason, the effects of accumulated charge can be observed as the charged objects are approached. For example, the hands and arms of a person who approaches a highly charged object will tingle and might even draw a spark as the surface of the skin and the hair become "charged." Sometimes these observations and sparks provide the first indication that a potentially hazardous condition exists. Charging of the human body can happen even if the person is well grounded.

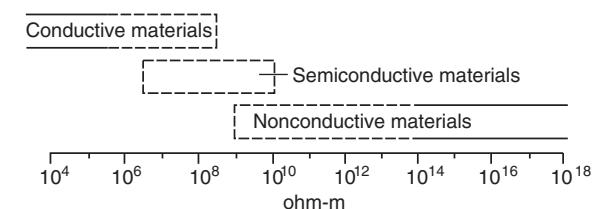
6.5 General Practices.

6.5.1 The primary instrument for locating a charge on either a conductor or a nonconductor is the noncontact voltmeter or field meter. As its name implies, the instrument does not contact the charged surface directly. Rather, it senses the magnitude and the polarity of the electric field that exists *at its sensing aperture*. As stated in 6.4.3, the instrument and its sensing aperture disturb the electric field around the charge to be measured, so the meter reading does not accurately indicate the actual magnitude of the field where the meter is not present. Aside from that deficiency, the field meter is an inexpensive and valuable tool for locating a static electric charge.

6.5.2 In some cases, primarily cases involving flowing liquids and flowing bulk solids, it is easier to collect a sample of the charged material in an isolated vessel or cup, referred to as a *Faraday cup*, and to use an electrometer to measure the streaming current or net charge flowing to the cup receiving the charged material.


6.6 Measuring the Accumulation and Relaxation of Charge.

6.6.1 Measuring the rate of accumulation and relaxation of static electric charge involves measuring changing potential differences or currents.


6.6.2 Field meters and dedicated charge decay monitors can be used to observe charge relaxation on conductors and nonconductors under conditions of prescribed initial voltages.

6.6.3 Leakage currents down to about 10^{-13} amperes can be measured from isolated conductors using commercially available electrometers. The isolated conductor can be a Faraday cup containing a bulk solid or fluid.

6.7 Measuring the Resistivity of Materials. Electrical resistivity of materials often consists of volume (bulk) and surface components. In electrostatic processes, the approximate ranges of resistivities that define materials as insulating, semiconductive (antistatic), or conductive are summarized in Figure 6.7.

(a) Volume resistivity

(b) Surface resistivity

FIGURE 6.7 Ranges of Volume and Surface Resistivities. (Source: H. L. Walmsley, "Avoidance of Electrostatic Hazards in the Petroleum Industry," p. 138.)

6.7.1 Electric charges can be conducted from a solid, liquid, or powder, either across the surface or through the material.

6.7.2 The volumetric resistivity of a material can be determined by applying a potential difference across a sample of known cross section and monitoring the current through the cross section.

6.7.3 Adsorbed material, particularly water vapor, and compaction of materials are known to lower the resistivity of materials. The resistivity of many materials also has been found to vary with the applied potential difference and with the duration of the test. Various designs of cells used to measure resistivity have been developed into standard test configurations that are applicable to specific kinds of samples. Appropriate test procedures include the following:

- (1) ASTM D 257, *Standard Test Methods for DC Resistance or Conductance of Insulating Materials*
- (2) CENELEC EN 61241-2-2, *Electrical Apparatus for Use in the Presence of Combustible Dust — Part 2: Test Methods; Section 2: Method for Determining the Electrical Resistivity of Dust in Layers*
- (3) JIS B 9915, *Measuring Methods for Dust Resistivity (with Parallel Electrodes)*

6.8 Assessment of Bonding and Grounding.

6.8.1 As defined in 3.3.2, *bonding* is a process whereby two or more conductive objects are connected by means of a conductor so that they are at the same electrical potential; that is, the voltage difference between the objects is zero (0). The objects might or might not be at the same potential as the earth. In fact, a considerable potential difference between the objects and the earth could exist.

6.8.2 As defined in 3.3.10, *grounding* is the process of bonding one or more conductive objects to the earth so that they are all at zero (0) electrical potential.

6.8.3 In both bonding and grounding, the intent is to eliminate the occurrence of a static electric spark.

6.8.4 Identification of conductive equipment and objects within a process is critical for successful bonding and grounding. Periodic inspection and testing of bonding and grounding systems are equally important. Proper inspection and testing ensure that the chances for a static electric charge to accumulate are minimized. In bonding and grounding installations that are prone to corrosion, movement, or insulating surface coatings, self-testing bonding clamps and systems can be used to continuously test the resistance to ground and verify acceptable levels.

6.8.5 The resistance to ground of the bonding or grounding path is important, not only to ensure relaxation of the static electric charge but also to maintain worker safety and satisfy other purposes, such as for lightning protection and electrical system shock protection. Practices that constitute proper resistance to ground vary from application to application. Chapters 7 through 10 provide examples of acceptable grounding practices.

6.8.6 The resistance to ground is measured with an ohmmeter or a megohmmeter. Care should always be taken to use appropriate instruments or procedures to avoid ignition hazards based on the classification of the area.

6.9 Measuring Spark Energies.

6.9.1 The discharge energy for conductors is determined from the voltage on the conductor and its capacitance and is expressed by the following equations (which were also given in 5.3.3.3):

$$W = \frac{1}{2} CV^2$$

$$W = \frac{1}{2} \left(\frac{Q^2}{C} \right)$$

where:

W = energy (joules)

C = capacitance (farads)

V = potential difference (volts)

Q = charge (coulombs)

6.9.2 A capacitance meter often can be used to measure electrostatic charge storage capacity where the charge is stored on a conductive element.

6.10 Measuring Ignition Energies.

6.10.1 Any combustible solid (dust), liquid (vapor), or gas should be evaluated for its potential as an ignitable atmosphere in the presence of discharges of static electricity. This evaluation requires determining the MIE of the material. Some data on MIE can be found in Table B.1.

6.10.2 Standardized test equipment and procedures have been developed for measuring the MIEs of particulate and gaseous materials. The equipment is highly specialized and requires trained technicians for its operation. Typically, the equipment is operated and maintained by specialized testing firms.

Chapter 7 Control of Static Electricity Hazards

7.1 General.

7.1.1 The objective of controlling a static electricity hazard is to provide a means whereby charges, separated by whatever cause, can recombine harmlessly before discharges can occur.

7.1.2 Ignition hazards from static electricity can be controlled by the following methods:

- (1) Removing the ignitable mixture from the area where static electricity could cause an ignition-capable discharge
- (2) Reducing charge generation, charge accumulation, or both by means of process or product modifications
- (3) Neutralizing the charges, the primary methods of which are grounding isolated conductors and air ionization

7.2 Control of Ignitable Mixtures in Equipment.

7.2.1 General. Despite efforts to prevent accumulation of static electric charges through good design, many operations that involve the handling of nonconductive materials or nonconductive equipment do not lend themselves to engineered solutions. It then becomes desirable or essential, depending on the nature of the materials involved, to provide other measures, such as one of the following:

- (1) Inerting of the equipment
- (2) Ventilation of the equipment or the area in which it is located
- (3) Relocation of the equipment to a safer area

7.2.2 Inerting.

7.2.2.1 Where an ignitable mixture is contained, such as in a processing vessel, the atmosphere can be made oxygen deficient by introducing enough inert gas (e.g., nitrogen or combustion flue gas) to make the mixture nonignitable. This technique is known as *inerting*.

7.2.2.2 Where operations are normally conducted in an atmosphere containing a mixture above the upper flammable limit (UFL), it might be practical to introduce the inert gas only during those periods when the mixture passes through its flammable range. NFPA 69, *Standard on Explosion Prevention Systems*, contains requirements for inerting systems.

7.2.3 Ventilation. Mechanical ventilation can be used to dilute the concentration of a combustible material to a point well below its lower flammable limit (LFL), in the case of a gas or vapor, or below its minimum explosive concentration (MEC), in the case of a dust. Usually, such a reduction means dilution to a concentration at or below 25 percent of the lower limit. Also, by properly directing the air movement, it might be practical to prevent the material from approaching an area of operation where an otherwise uncontrollable static electricity hazard exists.

7.2.4 Relocation. Where equipment that can accumulate a static electric charge is unnecessarily located in a hazardous area, it might be possible to relocate it to a safe location rather than to rely on other means of hazard control.

7.3 Control of Static Charge Generation. Electric charges separate where materials are placed in contact and then pulled apart. Reducing process speeds and flow rates reduces the rate of charge generation. Such charge separation is found where plastic parts and structures, insulating films and webs, liquids, and particulate material are handled. If the material flows at a slow enough rate, a hazardous level of excess charge does not normally accumulate. This means of static electricity control might not be practical due to processing requirements. (See Chapters 8 through 10 for recommended practices in specific applications.)

7.4 Charge Dissipation.

7.4.1 Bonding and Grounding. Bonding is used to minimize the potential difference between conductive objects, even where the resulting system is not grounded. Grounding (i.e., earthing), on the other hand, equalizes the potential difference between the objects and the earth. Examples of bonding and grounding are illustrated in Figure 7.4.1.

7.4.1.1 A conductive object can be grounded by a direct conductive path to earth or by bonding it to another conductive object that is already connected to the ground. Some objects are inherently bonded or inherently grounded because of their contact with the ground. Examples of inherently grounded objects are underground metal piping and large metal storage tanks resting on the ground.

7.4.1.2 The total resistance between a grounded object and the soil is the sum of the individual resistances of the ground wire, its connectors, other conductive materials along the intended grounding path, and the resistance of the ground electrode (i.e., ground rod) to the soil. Most of the resistance in a ground connection exists between the ground electrode and the soil. This ground resistance is quite variable because it depends on the area of contact, the resistivity of the soil, and the amount of moisture present in the soil.

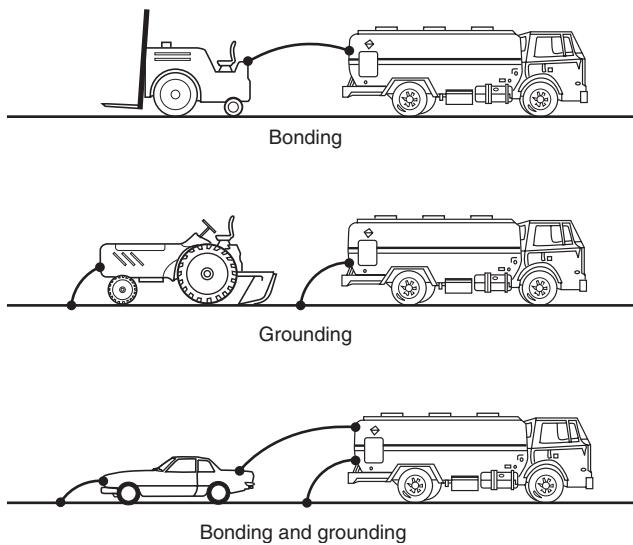


FIGURE 7.4.1 Bonding and Grounding.

7.4.1.3 To prevent the accumulation of static electricity in conductive equipment, the total resistance of the ground path to earth should be sufficient to dissipate charges that are otherwise likely to be present. A resistance of 1 megohm (10^6 ohms) or less generally is considered adequate.

7.4.1.3.1 Where the bonding/grounding system is all metal, resistance in continuous ground paths typically is less than 10 ohms. Such systems include those having multiple components. Greater resistance usually indicates that the metal path is not continuous, usually because of loose connections or corrosion. A grounding system that is acceptable for power circuits or for lightning protection is more than adequate for a static electricity grounding system.

7.4.1.3.2 Annex G contains diagrams of various grounding devices, connections, and equipment.

7.4.1.4 Where wire conductors are used, the minimum size of the bonding or grounding wire is dictated by mechanical strength, not by its current-carrying capacity. Stranded or braided wires should be used for bonding wires that will be connected and disconnected frequently. (See Annex G for additional information.)

7.4.1.5 Grounding conductors can be insulated (e.g., a jacketed or plastic-coated cable) or uninsulated (i.e., bare conductors). Uninsulated conductors should be used because defects are easier to detect.

7.4.1.6 Permanent bonding or grounding connections can be made by brazing or welding. Temporary connections can be made using bolts, pressure-type ground clamps, or other special clamps. Pressure-type clamps should have sufficient pressure to penetrate any protective coating, rust, or spilled material to ensure contact with the base metal.

7.4.1.7 Workers should be grounded only through a resistance that limits the current to ground to less than 3 mA for the range of voltages experienced in the area. This method, referred to as *soft grounding*, is used to prevent injury from an electric shock from line voltages or stray currents.

7.4.2 Humidification.

7.4.2.1 The surface resistivity of many materials can be controlled by the humidity of the surroundings. At humidities of 65 percent and higher, the surface of most materials adsorbs enough moisture to ensure a surface conductivity that is sufficient to prevent accumulation of static electricity. When the humidity falls below about 30 percent, these same materials could become good insulators, in which case accumulation of charge increases.

7.4.2.2 While humidification does increase the surface conductivity of the material, the charge will dissipate only if there is a conductive path to ground.

7.4.2.3 Humidification is not a cure-all for static electricity problems. Some insulators do not adsorb moisture from the air, and high humidity will not noticeably decrease their surface resistivity. Examples of such insulators are uncontaminated surfaces of some polymeric materials, such as plastic piping, containers, and films, and the surface of petroleum liquids. These surfaces are capable of accumulating a static electric charge even when the atmosphere has a humidity of 100 percent.

7.4.3 Charge Relaxation and Antistatic Treatments.

7.4.3.1 Based on their properties, liquid and solid materials carrying a static electric charge need time to dissipate, or "relax," the charge. In some cases, the materials can be allowed sufficient time for the charges to relax before being introduced into a hazardous area or process.

7.4.3.2 Charge relaxation can occur only if a path to ground for conduction of the charge is available. Increasing the conductivity of the material will not eliminate hazards if the material remains isolated from ground.

7.4.3.3 A nonconductive material often can be made sufficiently conductive to dissipate static electric charge, either by adding conductive ingredients to its composition or by applying hygroscopic agents to its surface to attract atmospheric moisture.

7.4.3.4 Carbon black can be added to some plastics or rubbers to increase conductivity. Carbon-filled plastics and rubber articles are sometimes sufficiently conductive to be grounded like metal objects. Antistatic additives can also be mixed with liquid and particulate streams to foster charge relaxation.

7.4.3.5 In some cases, particularly with plastic films or sheeting, a material is added to attract atmospheric moisture to the surface, thus increasing surface conductivity. Care should be taken where antistatic plastic film or sheeting is used in low-humidity conditions. In environments with less than 30 percent humidity, film or sheeting can become nonconductive and accumulate static electric charge.

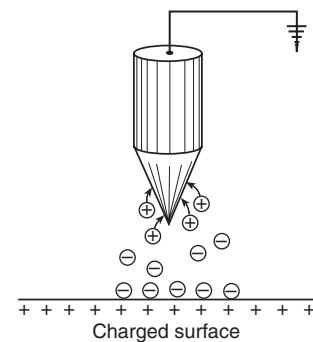
7.4.3.6 Topical hygroscopic coatings attract atmospheric moisture and make the surface of the coated material conductive. However, such coatings can be easily washed away or rubbed off or can lose effectiveness over time. This type of coating should be considered only as a temporary measure to reduce accumulation of static electric charge.

7.4.3.7 Conductive polymers, laminates with conductive elements, and metallized films have been developed for improved static dissipation.

7.5 Charge Neutralization.

7.5.1 General. Air can be made to contain mobile ions that are attracted to surfaces and will eliminate unbalanced static electric

charge from those surfaces. In using air ionizers, certain factors that can influence their effectiveness must be considered, such as environmental conditions (e.g., dust and temperature) and positioning of the device in relation to the material processed, machine parts, and personnel. It is important to note that these control devices do not prevent the generation of static electric charge. They provide ions of opposite polarity to neutralize the generated static electric charge.


7.5.2 Inductive Neutralizers.

7.5.2.1 Inductive neutralizers include the following:

- (1) Needle bars, which are metal bars equipped with a series of needlelike emitters
- (2) Metal tubes wrapped with metal tinsel
- (3) Conductive string
- (4) Brushes made with metal fibers or conductive fibers

7.5.2.2 The design of each type of inductive neutralizer is based on or consists of sharply pointed elements arranged for placement in the static electric field near the charged surfaces.

7.5.2.3 A charge drawn from ground to the needlelike tips of an inductive neutralizer produces a concentrated electric field at the tips. If the tips are sharply pointed, the electrical field will be sufficient (i.e., greater than 3 kV/mm) to produce a localized electrical breakdown of the air. This electrical breakdown, known as corona, injects ions into the air that are free to move to distant charges of opposite polarity. The flow of ions produced in corona constitutes a neutralizing current. (See Figure 7.5.2.3.)

FIGURE 7.5.2.3 Example of an Induction Needle.

7.5.2.4 Although inexpensive and easy to install, inductive neutralizers require a minimum potential difference between the object and the needle tip to initiate corona and the neutralizing process. In the absence of this minimum charge, neutralization will not occur, and a residual potential of a few thousand volts will be left on the material where sharp inductive points are within about 12 mm of the surface.

7.5.2.5 It is critically important that inductive neutralizers are connected to a secure ground. If the inductive neutralizer is not grounded, sparks from the induction bar can occur.

7.5.3 Active Electric Static Neutralizers.

7.5.3.1 Electric static neutralizers use a high-voltage power supply to produce corona from sharp electrodes. The charge on any object near the device attracts charge from the corona to achieve neutralization. The use of a high-voltage power supply eliminates the limitation of inductive

neutralizers in control of charges having fields below the corona onset threshold. An electric static neutralizer must be suitable for the location in which it is used and must not constitute a source of ignition. For example, where not energized or in case of failure, an electric static neutralizer can be designed to function as an induction neutralizer.

7.5.3.2 Electric static neutralizers using alternating current (ac) use a high-voltage power supply to energize the corona electrodes at 50 Hz to 60 Hz. The use of an alternating field stresses the electrodes to produce both positive and negative ions for use in the neutralizing process. Current from the power supply is capacitive-coupled to each or to several of the sharp electrodes to limit spark energy in the event of a short circuit. An electric static neutralizer must be suitable for the location in which it is used and must not constitute a source of ignition.

7.5.3.3 Electric static neutralizers that use pulsed or steady-state double-polarity direct current (dc) use a pulsed or steady field to stress the electrodes to produce ions for use in the neutralizing process. In the event of a short circuit, the spark energy is controlled by current-limiting resistors. Pulsed or double-polarity dc ionizers must be suitable for the location in which they are used and must not constitute a source of ignition.

7.5.4 Active Radioactive Static Neutralizers. Radioactive (nuclear) ionizers use ionizing radiation to produce ions for neutralization of static electric charges. The most common radioactive ionizers depend on alpha particle generation from the decay of polonium-210 (^{210}Po).

7.5.4.1 Performance of radioactive ionizers deteriorates with the decay of the radioactive material. The neutralizers must be registered and installed in accordance with Nuclear Regulatory Commission regulations and replaced periodically (at least annually), because ionization capability diminishes with radioactive decay. Radioactive ionizers are often used in conjunction with inductive neutralizers to control high charge densities.

7.5.4.2 Although cost and regulatory compliance issues are associated with radioactive ionizers, they are nonincendive, require no wiring, and can reduce static electric charges to the lowest levels.

7.6 Control of Static Charge on Personnel. The human body is an electrical conductor and can accumulate a static charge if insulated from ground. This charge can be generated by contact and separation of footwear with floor coverings, by induction, or by participation in various manufacturing operations. Where ignitable mixtures exist, the potential for ignition from the charged human body exists, and means to prevent accumulation of static electric charge on the human body might be necessary.

7.6.1 Prevention of Charge Accumulation. Steps to prevent charge accumulation include use of the following:

- (1) Conductive flooring and footwear
- (2) Personnel-grounding devices
- (3) Antistatic or conductive clothing

7.6.2 Conductive Flooring and Footwear.

7.6.2.1 Conductive or antistatic flooring can provide effective dissipation of static electricity from personnel. Materials can be solid or they can be coatings that are selected on the basis of wear characteristics, chemical resistance, and the floor area that needs to be covered. Small areas can be handled with a grounded metal plate. Typical resistance to ground for flooring systems should be less than 10^8 ohms. Accumulation of

debris, wax, and other high-resistivity materials will compromise the conductivity of the floor.

7.6.2.2* Electrostatic dissipative (ESD) footwear used in conjunction with conductive flooring provides a means to control and dissipate static electric charges from the human body. Resistance to earth through ESD footwear and conductive flooring should be between 10^6 ohms and 10^9 ohms. For materials with very low ignition energies, the resistance to earth through footwear and flooring should be less than 10^6 ohms. Resistance can be measured with commercially available footwear conductivity testers.

7.6.2.3 Resistance of footwear can increase with accumulation of debris on the footwear, use of orthopedic foot beds, and reduced floor contact area. Conductivity of footwear can be tested on a periodic basis to confirm functionality.

7.6.2.4 Conductive footwear is footwear designed to have a resistance to ground through the footwear and the floor of less than 10^6 ohms. It is typically used where materials of low ignition energy, such as explosives and propellants, are handled. Conductive footwear should not be used where a possibility for electrocution by line voltages exists.

7.6.3* Personnel Grounding Devices.

7.6.3.1 Where ESD footwear will not provide adequate personnel grounding, supplementary devices should be used. Such devices include wrist straps, heel/toe grounders, and conductive overshoes.

7.6.3.2 Supplemental devices should be selected so that accumulation of hazardous static electric charge is prevented, while the risk of electrocution is not increased. In most practical situations, grounding of personnel is achieved by ensuring that the resistance from the skin to ground is approximately 10^8 ohms or less. The need to protect against electrocution via a grounding device imposes a minimum resistance from skin to ground of 10^6 ohms. Based on skin contact and contact with the floor, especially during activities where the entire sole of the footwear is not in contact with the floor (e.g., kneeling), effectiveness can be compromised. Grounding devices should have a minimum resistance of 10^6 ohms for shock protection.

7.6.3.3 The simplest type of commercial device is a grounding bracelet with a built-in resistor typically giving a resistance to ground of about 10^6 ohms for shock protection. Wrist straps of this type have the greatest utility at ventilation hoods and at other locations where limitation on the operator's mobility can be tolerated. Breakaway wrist tether systems could be necessary where emergency egress is needed. A hood can be equipped with two external coiled grounding cords with cuff attachments that can be removed and kept by individual users.

7.6.3.4 Ground continuity should be checked periodically to the manufacturer's specified limits using a voltmeter or volt ohmmeter or a commercial tester.

7.6.4 Antistatic or Conductive Clothing.

7.6.4.1 Although silk and most synthetic fibers are excellent insulators and undergarments made from these materials exhibit static phenomena, no conclusive evidence exists to indicate that wearing such undergarments constitutes a hazard. However, removal of outer garments is particularly hazardous in work areas, such as in hospital operating rooms, explosives manufacturing facilities, and similar occupancies and where clothing is contaminated by flammable liquids. Outer garments used in such areas should be suitable for the work area

and should be antistatic. NFPA 99, *Standard for Health Care Facilities*, provides information on test methods for evaluating the antistatic performance of wearing apparel.

7.6.4.2* Although the likelihood of ignition by a grounded person due to any type of clothing is usually very low, the charging of personnel (e.g., where personnel are getting out of a forklift truck) is greatly increased by clothing that has high resistivity.

7.6.4.3* In oxygen-enriched atmospheres, such as those that could be present in liquid oxygen filling plants, vapor from the cooled gas can permeate an employee's clothing, increasing its combustibility. A static electric charge that accumulates on the employee and then suddenly discharges can ignite the clothing.

7.6.5 Gloves. Gloves should be antistatic or conductive with the same resistivity as prescribed for footwear. Gloves should be tested in conjunction with the footwear.

7.6.6 Cleaning or Wiping Cloths.

7.6.6.1 Synthetic fabrics used in cleaning or wiping cloths can develop sufficient static electric charge to produce discharges capable of igniting solvent vapors. Flammable liquids and combustible liquids used at temperatures above their flash points, when used with synthetic cleaning or wiping cloths, increase the risk of fire. Typically, charge generation increases with the speed and vigor of the wiping action. The material being cleaned or wiped, if nonconductive, also can accumulate an incendive charge.

7.6.6.2 Cotton or synthetic fabric treated with an antistatic compound should be used if static electric charge generation needs to be controlled, especially if flammable solvents are being used for cleaning or wiping. Conductive solvents should be used. Test methods for determining the electrostatic-generating properties of fabrics can be found in NFPA 99, *Standard for Health Care Facilities*.

7.7 Maintenance and Testing. All provisions for control of personnel static electricity should be maintained and tested to remain effective. Preventive maintenance procedures and recommendations for clothing, footwear, and flooring can be found in NFPA 99, *Standard for Health Care Facilities*.

7.8 Discomfort and Injury. Static shock can result in discomfort and, under some circumstances, injury. While the discharge itself typically is not dangerous to humans, it can cause an involuntary reaction that results in a fall or entanglement with moving machinery. If charge accumulation cannot be avoided and no flammable gases or vapors are present, consideration should be given to the various methods by which contact with metal parts can be eliminated. Such methods include use of nonmetal handrails, insulated doorknobs, and other nonconductive shields.

Chapter 8 Flammable and Combustible Liquids and Their Vapors

8.1 General. This chapter discusses the assessment and control of static electricity hazards involved with the storage, handling, and use of flammable and combustible liquids and their vapors and mists. While focused on flammable and combustible liquids, the principles of this chapter also apply to non-combustible liquids and vapors (e.g., wet steam) where their storage, use, and handling can cause a static electricity ignition

hazard. The chapter begins with a discussion of the combustion characteristics of liquids and their vapors and mists, followed by a discussion of charge generation and dissipation in liquids. Emphasis is then given to processes involving the following:

- (1) Flow in pipe, hose, and tubing
- (2) Storage tanks
- (3) Loading of tank vehicles
- (4) Vacuum trucks
- (5) Railroad tank cars
- (6) Marine vessel and barge cargo tanks
- (7) Process vessels
- (8) Gauging and sampling
- (9) Tank cleaning
- (10) Portable tanks and containers
- (11) Vacuum cleaning

8.2 Combustion Characteristics of Liquids, Vapors, and Mists.

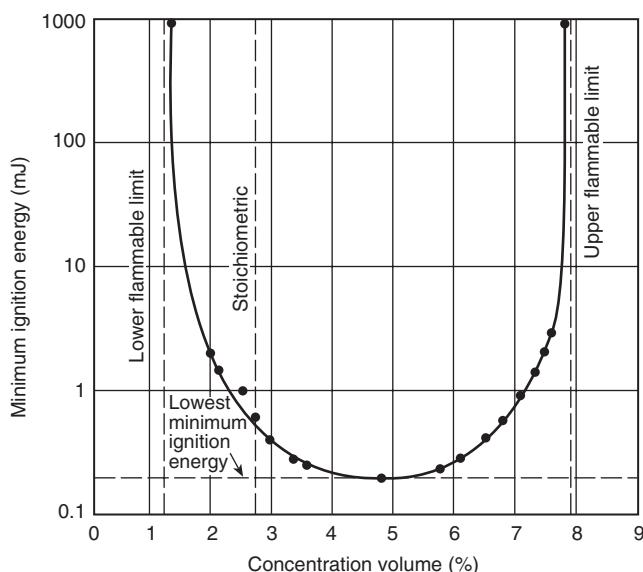
The following combustion properties of liquids need to be understood to properly assess the static electricity ignition hazard:

- (1) Flash point
- (2) Flammable limit and vapor pressure
- (3) Ignition energy
- (4) Oxidant concentration

8.2.1 Flash Point.

8.2.1.1* Flash point is the minimum temperature at which a liquid gives off sufficient vapor to form an ignitable mixture with air near the surface of the liquid. Flash point is determined using a variety of test procedures and apparatus, the selection of which sometimes depends on other physical characteristics of the liquid.

8.2.1.2 If the flash point of a liquid is at or below typical ambient temperatures, it is likely to evolve an ignitable vapor. The lower the flash point, the higher the vapor pressure and the more likely that a vapor will be present to ignite. Because of the variability in flash point test methods, the published flash point of a particular liquid only approximates the lowest temperature at which ignition is possible for that liquid. Thus, an allowance of 4°C to 9°C below the published flash point should be made in the evaluation of an ignition hazard.


8.2.1.3 In addition to the conditions described in 8.2.1.2, the following effects also can generate an ignitable vapor:

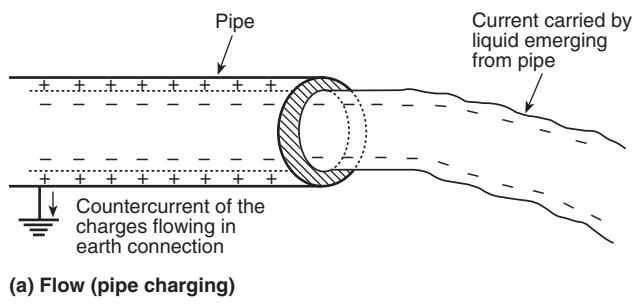
- (1) Off-gassing of flammable vapors from solids or low-volatility liquids
- (2) Processing at pressures below atmospheric pressure
- (3) Nonhomogeneity of the vapors above the liquid
- (4) Mist, droplets, or foam on the surface of a liquid

8.2.2* Flammable Limits and Vapor Pressure. Vapors or gases in air are flammable only between certain concentrations — the lower flammable limit (LFL) and the upper flammable limit (UFL). The concentrations between these limits constitute the flammable range. Below the LFL, vapors are too lean to burn; above the UFL, they are too rich to burn. Both increased pressure (above atmospheric pressure) and increased temperature widen the flammability range of typical hydrocarbons.

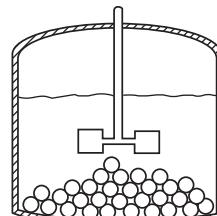
8.2.3 Ignition Energy. The energy needed to ignite a vapor-air mixture varies with the concentration. For most materials, the lowest ignition energy value occurs at a concentration near the midpoint between those for the LFL and UFL. The lowest value is referred to as the minimum ignition energy (MIE). Some MIEs are given in Section B.1. Figure 8.2.3 illustrates a typical relationship between ignition energy and concentration.

FIGURE 8.2.3 Minimum Ignition Energy (MIE) of Benzene as a Function of Concentration. (Adapted from L. G. Britton, “Using Material Data in Static Hazard Assessment.”)

8.2.4* Oxidant Concentration. Combustibility is normally determined for atmospheric air, which contains 21 percent oxygen. With an oxygen-enriched atmosphere, the flammable range expands; that is, the LFL decreases and the UFL increases. If the oxygen concentration is sufficiently reduced by inerting, however, an oxygen concentration below which no ignition is possible is reached. This concentration is referred to as the *limiting oxygen concentration* (LOC). By effectively inerting to below the LOC, the hazard of ignition can be eliminated, as explained in NFPA 69, *Standard on Explosion Prevention Systems*. Other oxidants, if present in the mixture, can be addressed similarly. Laboratory testing might be required to evaluate the hazard.


8.3 Generation and Dissipation of Charge in Liquids.

8.3.1* Charge Generation. Charge separation occurs where liquids flow through pipes, hose, and filters; where splashing occurs during transfer operations; or where liquids are stirred or agitated. The greater the area of the interface between the liquid and the surfaces and the higher the flow velocity, the greater is the rate of charging. The charges become mixed with the liquid and are carried to receiving vessels, where they can accumulate. The charge is often characterized by its bulk charge density and its flow as a streaming current to the vessel. (See Figure 8.3.1.)


8.3.2* Charge Relaxation. Static electric charge on a liquid in a grounded conductive container will dissipate at a rate that depends on the conductivity of the liquid.

8.3.2.1 For liquids with conductivity of 1 picosiemens per meter (1 pS/m) or greater, charge relaxation proceeds by exponential, or ohmic, decay, as described for semiconductive materials in 5.2.5. For liquids with conductivity less than 1 pS/m, relaxation occurs more rapidly than would be predicted by the exponential decay model. (See 5.2.8.)

8.3.2.2 According to the Bustin relationship (see Annex E), where low viscosity liquids (less than $30 \times 10^{-6} \text{ m}^2/\text{sec}$) are

(a) Flow (pipe charging)

(b) Agitation/stirring

FIGURE 8.3.1 Examples of Charge Generation in Liquids. (Source: H. L. Walmsley, “Avoidance of Electrostatic Hazards in the Petroleum Industry,” p. 33.)

charged, relaxation proceeds by hyperbolic decay. However, for those same liquids, the exponential decay constant gives a conservative estimate for the relaxation time.

8.3.3 Factors That Affect Liquid Charging.

8.3.3.1* In grounded systems, the conductivity of the liquid phase has the most effect on the accumulation of charge in the liquid or on materials suspended in it. A liquid is considered nonconductive (charge accumulating) if its conductivity is below 50 pS/m, assuming a dielectric constant of 2. Table B.2 lists values of conductivity for typical liquids. What is important is that the charge decays from the liquid fast enough to avoid ignition hazards. The acceptable conductivity in any particular application can be larger or smaller, depending on flow rate and processing conditions.

8.3.3.2 Conductive liquids, defined as having conductivities greater than 10^4 pS/m, do not pose a hazard due to static electric charge accumulation in typical hydrocarbon and chemical processing and handling operations. In this recommended practice, liquids having conductivities of 50 pS/m to 10^4 pS/m are considered semiconductive.

8.3.3.3 The charging characteristics of many industrial liquids, particularly nonpolar hydrocarbons, are the result of trace contaminants in the liquid, sometimes in concentrations of less than 1 ppm. Thus, industrial liquids can become more or less conductive by orders of magnitude, depending on the concentration of contaminants that results from process, storage, and handling practices.

8.3.3.4 Conductive liquids that at first could appear to be safe can present a significant hazard if isolated from ground by an insulating container or if suspended in air. Where isolated, essentially all charge on the conductive liquid can be released

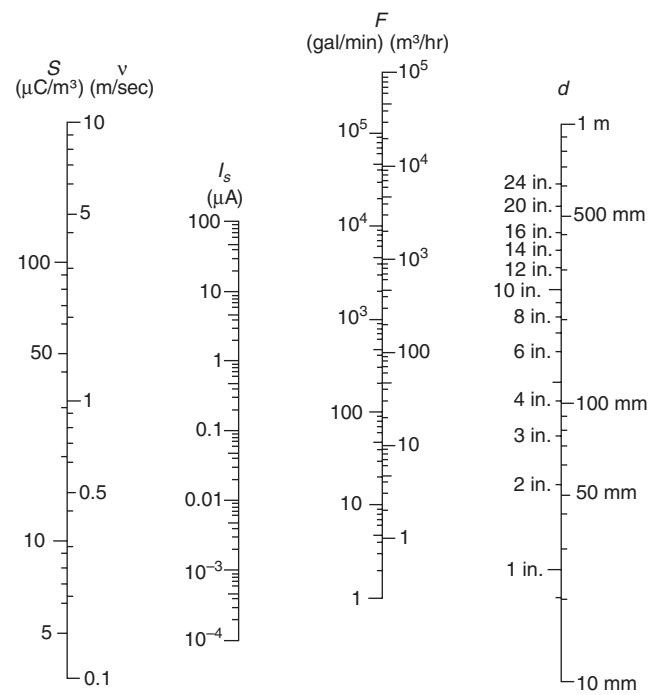
as an incendive spark. Where suspended as a mist, significant static electric fields can lead to incendive brush discharge.

8.3.3.5 In the petroleum industry, for tank-loading and distribution operations involving petroleum middle distillates, liquids in the semiconductive category are handled as conductive liquids. The use of such procedures is possible because regulations prohibit the use of nonconductive plastic hose and tanks, and multiphase mixtures and end-of-line polishing filters are not involved.

8.3.3.6 In general chemical operations, semiconductive liquids represent a distinct category in which the tendency to accumulate charge varies greatly with the operation and with liquid conductivity. These operations can involve multiphase mixtures, nonconductive tank linings, and microfilters, all of which promote charge accumulation in equipment.

8.4 Flow in Pipe, Hose, and Tubing.

8.4.1* Metal Piping Systems.


8.4.1.1 All parts of continuous all-metal piping systems should have a resistance to ground that does not exceed 10 ohms. A significantly higher resistance could indicate poor electrical contact, although this will depend on the overall system. For flanged couplings, neither paint on the flange faces nor thin plastic coatings used on nuts and bolts will normally prevent bonding across the coupling after proper torque has been applied. Jumper cables and star washers are not usually needed at flanges. Star washers could even interfere with proper torquing. Electrical continuity of the ground path should be confirmed after assembly and periodically thereafter.

8.4.1.2 Bonding wires might be needed around flexible, swivel, or sliding joints. Tests and experience have shown that resistance in these joints is normally below 10 ohms, which is low enough to prevent accumulation of static charges. However, the manufacturer's specifications should be checked or the joints should be inspected, because a few are fabricated with insulating surfaces. Where painted, slip flanges (lap joints) using nonconductive gaskets can cause loss of continuity in the grounding path. This loss of continuity can be remedied by using a conductive gasket, such as a flexible, graphite-filled, spiral-wound gasket, or by installing a jumper wire across the joint.

8.4.1.3 Bonding and grounding should not compromise sections of pipe that are supposed to be isolated. For example, insulating flanges could have been installed to avoid arcs from stray current or from cathodic protection systems, which provide a separate ground path.

8.4.1.4 Figure 8.4.1.4(a) and Figure 8.4.1.4(b) provide guidance in estimating the charge on a nonconductive liquid flowing through a smooth pipe.

8.4.2* Nonconductive Pipe and Lined Pipe. Nonconductive surfaces affect the rates of charge generation and charge dissipation during flow through a pipe. The rate of charge generation is similar in conductive and nonconductive pipes, while the rate of charge loss can be significantly slower in nonconductive pipes. For charged, nonconductive liquids, insulation by the pipe wall can result in charge accumulation of the opposite polarity on the outer surface of the insulating liner or pipe. Charge accumulation can eventually lead to electrical breakdown and pinhole punctures of either the liner or, in the case of nonconductive pipe, the entire wall thickness.

Notes:

(1) One straight line through the scales simultaneously solves the following:

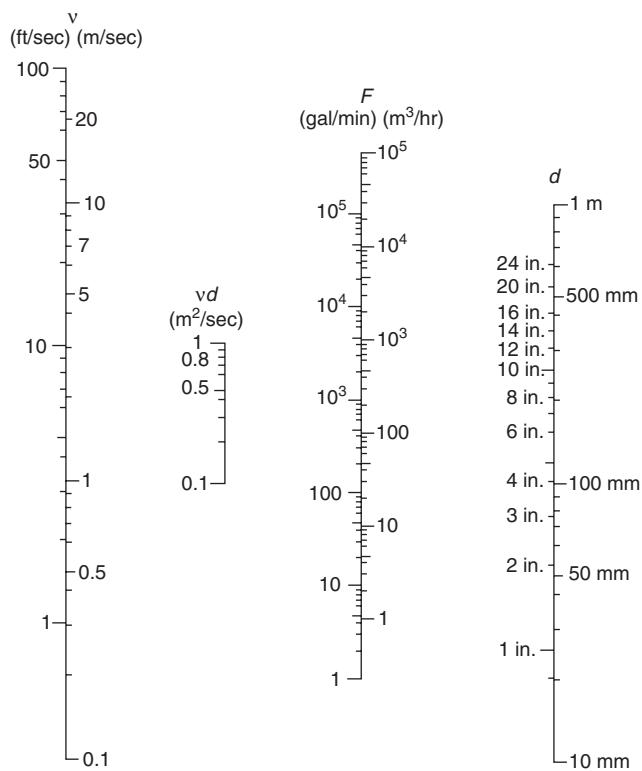
$$I_s = 2.5 \times 10^{-5} v^2 d^2 \quad S = 3.18 \times 10^{-5} v \quad F = (\pi/4) v d^2$$

(2) To convert from ft/sec to m/sec, multiply by 3.28; to convert from bbl/hr to m³/hr, multiply by 0.159.

FIGURE 8.4.1.4(a) Nomograph for Estimating Charge on Nonconductive Liquid Flowing Through a Smooth Pipe. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 112.)

8.4.3* Flexible Hose and Tubing. Flexible hose and flexible tubing are available in metal, lined metal, nonconductive plastic, reinforced rubber and plastic, and composite-ply types.

8.4.3.1 Where nonconductive hose or tubing must be used because of process conditions, the hazards of static electric charge generation should be thoroughly investigated.


8.4.3.2 As a minimum, all conductive couplings (e.g., end fittings) and components should be bonded and grounded.

8.4.3.3 If hose are used immediately downstream of filters in nonconductive liquid service, they should be of metal or other conductive material. Semiconductive liners might be necessary to prevent charge accumulation and pinhole damage to the hose.

8.4.3.4 Conductive hose should be electrically continuous and the continuity should be periodically checked.

8.4.4 Fill Pipes. Fill pipes should be conductive and should be bonded to the filling system.

8.4.4.1 Fill pipes should extend to the bottom of the vessel and can be equipped with either a 45-degree cut tip or a tee to divert flow horizontally near the bottom of the vessel being filled.

Notes:

(1) One straight line through the scales solves the flow relation:

$$F = (\pi/4) vd^2$$

(2) To convert from bbl/hr to m³/hr, multiply by 0.159.

FIGURE 8.4.1.4(b) Nomograph for Estimating Fluid Flow Parameters. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 114.)

8.4.4.2 The design should prevent upward spraying during the initial stage of filling. A “slow start” might be necessary, so that the inlet velocity is held to less than 1 m/sec until the outlet of the dip pipe is covered by at least two pipe diameters of liquid.

8.4.5 Filtration.

8.4.5.1 Microfilters.

8.4.5.1.1 Microfilters typically have pore sizes less than 150 µm. These filters generate very large streaming currents with nonconductive liquids, due to their large contact area. (Conductive liquids typically dissipate their charge to ground through the body of the liquid.) Streaming currents frequently are greater than those for the pipe flow entering the microfilter by two orders of magnitude, and the charge density added to the liquid can exceed 2000 µC/m³.

8.4.5.1.2 To prevent the charges described in 8.4.5.1.1 from entering the receiving vessel, the filter should be placed far enough upstream so that the charge can decay to the magnitude it would be in the pipe flow. Common industry practice is to provide 30 sec of residence time in the pipe or conductive hose downstream of the microfilter, especially if the conductivity of the liquid is not known. For nonconductive liquids

that have both very low conductivity (i.e., less than 2 pS/m) and high viscosity (i.e., greater than 30 centistokes) at the lowest intended operating temperature, longer residence times might be appropriate. In those cases, a residence time of up to three times the relaxation time constant of the liquid should be considered.

8.4.5.2 Strainers. Mesh strainers finer than 150 µm should be treated as microfilters. Mesh strainers coarser than 150 µm can also generate significant static electric charge where fouled with accumulated debris. If such coarse strainers are used in services where debris can be expected to accumulate, then those strainers should also be treated as microfilters.

8.4.5.3 Polishing Filters. A polishing filter is sometimes placed at the end of a delivery line to remove debris. This filter might be a bag installed on the end of a hose and directly exposed to the vapor in the tank. Filters used in flammable liquid service should be enclosed in grounded metal housings.

8.4.6 Suspended Material. Immiscible and marginally soluble liquids and slow-dissolving solids can disperse as droplets or as an emulsion. Where a nonconductive liquid contains a dispersed phase, such as water in oil, the continuous phase determines the charge relaxation behavior. Charge generation typically is greater for such suspensions than that for a single phase.

8.4.7 Miscellaneous Line Restrictions. Piping system components, such as orifice plates, valves, elbows, and tees, increase turbulence and can increase the rate of charge generation. Brief contact with a plastic component, in particular, can cause significant charge generation. Suspended material such as water (see 8.4.6) also has been found to increase this effect.

8.5 Storage Tanks.

8.5.1 General. Liquid flowing into a tank can carry a static electric charge that will accumulate in the tank. This charge can be detected as a potential above the surface of the liquid in the tank. The maximum surface potential attained depends not only on the charge density of the incoming liquid but also on the dimensions of the tank. For commercial tanks of equal volume, the maximum potential will be greater in tanks having smaller cross-sectional areas, because liquid depth increases faster relative to the rate of charge relaxation. Smaller potentials will therefore be generated in, for example, a near-rectangular barge tank than in a cylindrical vertical tank of the same volume.

8.5.2 Conductive Fixed-Roof Storage Tanks. Charge accumulation in the liquid in a tank can lead to static electric discharge between the liquid surface and the tank shell, roof supports, or tank appurtenances. The charge generation rate is influenced by turbulence in the liquid and by the settling of particulate matter, such as water droplets, iron scale, and sediment.

8.5.2.1 Precautions. If the vapor space in the tank is likely to contain an ignitable mixture (e.g., in cases where intermediate vapor pressure products or low vapor pressure products contaminated with high vapor pressure liquids are stored) or where switch loading is practiced, the following protective measures should be taken:

- (1) Splash filling and upward spraying should be avoided.
- (2) The fill pipe should discharge near the bottom of the tank, with minimum agitation of water and sediment on the tank bottom.

- (3) If possible, the inlet flow velocity should be limited during the initial stage of tank filling to reduce agitation and turbulence, and the following also should be applied:
 - (a) The flow velocity of the incoming liquid should be no greater than 1 m/sec until the fill pipe is submerged either two pipe diameters or 0.6 m, whichever is less.
 - (b) Because too low a velocity can result in entrained water settling out at low points in the piping, the inlet flow velocity should be kept as close to 1 m/sec as possible during the initial tank filling period to prevent subsequent re-entrainment of water or other contaminants that could significantly increase the product's charging tendency when the velocity is increased.
- (4)*The following applies to storage tanks greater than 50 m³ containing liquids that are either nonconductive or for which conductivity is unknown:
 - (a) The inlet flow velocity can be increased to 7 m/sec after the fill pipe is submerged.
 - (b) Where operating experience has shown that the practice is acceptable, such as in the petroleum industry, the inlet flow velocity can be increased above 7 m/sec, but in no case to a velocity greater than 10 m/sec. [See Figure 8.4.1.4(a) and Figure 8.4.1.4(b) for determining flow rate.]
- (5) If the liquid is nonconductive and contains a dispersed phase, such as entrained water droplets, the inlet flow velocity should be restricted to 1 m/sec throughout the filling operation.
- (6) A 30-sec minimum residence time should be provided for liquid to flow between upstream microfilter screens and the tank. (See 8.4.5.)
- (7) Tanks should be inspected for ungrounded conductive objects, such as loose gauge floats and sample cans, because such objects floating on the liquid surface can promote sparks.
- (8) Lines should not be blown out with air or other gases if the liquid is a Class I liquid or is handled at or above its flash point, because introducing substantial amounts of air or other gas into a tank through such a liquid can create a hazard due to charge generation, misting of the liquid, and formation of an ignitable atmosphere.

8.5.2.2 Grounding.

8.5.2.2.1 Storage tanks for nonconductive liquids should be grounded. Storage tanks on grade-level foundations are considered inherently grounded, regardless of the type of foundation (e.g., concrete, sand, or asphalt).

8.5.2.2.2 For tanks on elevated foundations or supports, the resistance to ground can be as high as 10^6 ohms and still be considered adequately grounded for purposes of dissipation of static electric charges, but the resistance should be verified. The addition of grounding rods and similar grounding systems will not reduce the hazard associated with static electric charges in the liquid.

8.5.2.3 Spark Promoters.

8.5.2.3.1 A tank gauging rod, high-level sensor, or other conductive device that projects downward into the vapor space of a tank can provide a location for static electric discharge between the device and the rising liquid; therefore, these devices should meet the following criteria:

- (1) They should be bonded securely and directly downward to the bottom of the tank by a conductive cable or rod to eliminate a spark gap or should be installed in a gauging well that is bonded to the tank.
- (2) They should be inspected periodically to ensure that the bonding system has not become detached.

8.5.2.3.2 If tank fixtures are nonconductive, the potential for sparking does not exist, and no specific measures are needed. Devices that are mounted to the sidewall of the tank (e.g., level switches or temperature probes) and project a short distance into the tank might not pose a static electric discharge hazard. These situations should be evaluated on an individual basis.

8.5.2.4 Tank Mixers. In-tank jet mixing or high-velocity agitator mixing can stir up water and debris and cause splashing at the surface that can generate static electric charges. If an ignitable mixture exists at the surface, ignition is possible. Surface splashing should be minimized. Gas blanketing or inerting can be employed to eliminate the ignition hazard.

8.5.2.5 Gas Agitation.

8.5.2.5.1 Air, steam, or other gases should not be used for agitation because they can produce high levels of charge in liquids, mists, or foams. In addition, air agitation can create an ignitable atmosphere in the vapor space of the tank. If gas agitation is unavoidable, the vapor space should be purged prior to mixing, and the process should be started slowly to ensure that static electric charge does not accumulate faster than it can dissipate.

8.5.2.5.2 It should be noted that special precautions need to be taken to prevent agitation with air to dilute any initial inerting. Similarly, while agitation with an inert gas can eventually result in an inert vapor space, the electrostatic charge buildup due to the agitation process can result in a spark and ignition before inerting of the tank vapor space is achieved. A waiting time should be observed prior to any gauging or sampling activities.

8.5.3 Conductive Floating Roof Storage Tanks. Floating roof storage tanks are inherently safe, provided that the floating roof is bonded to the tank shell. Bonding typically is achieved by shunts between the floating roof or cover and the wall of the tank. The shunts are installed for lightning protection, but they also provide protection from static electric charges that could be generated. If the floating roof is landed on its supports, charge accumulation in the surface of the liquid can occur, and the precautions for a fixed roof tank should be followed. If an internal floating roof tank is not adequately ventilated, flammable vapor can accumulate between the floating roof and the fixed roof.

8.5.4 Coated and Lined Tanks. Metal tanks with nonconductive coatings or linings can be treated as conductive tanks, provided that either of the following criteria applies:

- (1) The nonconductive coating or lining has a volume resistivity equal to or lower than 10^{10} ohm-m, such as fiberglass-reinforced linings for corrosion prevention, and is no thicker than 2 mm.
- (2) The nonconductive lining has a volume resistivity greater than 10^{10} ohm-m, such as polyethylene or rubber linings, but has a breakdown potential less than 4 kV.

8.5.4.1 Metal tanks with nonconductive coatings or linings that do not meet the criteria of 8.5.4(1) or 8.5.4(2) should be treated as nonconductive tanks. Regardless of the coating or

lining thickness or resistivity, the tank should be bonded to the filling system. The coating or lining is not regarded as a barrier to the flow of static electric charges. Its resistivity is of the same order of magnitude as that of the liquid, or there could be small bare areas (holidays) in the coating.

8.5.4.2 A thin coat of paint, a thin plastic liner, or a layer of metal oxide on the inside of piping, vessels, or equipment does not constitute a static electric hazard.

8.5.5 Tanks Constructed of Nonconductive Materials. Tanks constructed of nonconductive materials are not permitted for storage of Class I, Class II, and Class IIIA liquids, except under special circumstances, as outlined in Section 4.2 of NFPA 30, *Flammable and Combustible Liquids Code*. (See 8.10.7 for design and use recommendations.)

8.6 Loading of Tank Vehicles. Recommended loading precautions for tank vehicles vary with the characteristics of the liquid being handled and the design of the loading facility. A summary of recommended precautions that should be used where a flammable mixture exists in the tank vehicle compartment, based on API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*, is provided in Table 8.6. These precautions are intended for tank vehicles with conductive (metal) compartments. (For compartments with nonconductive linings, see 8.10.4. For compartments of nonconductive material, see 8.10.7.)

8.6.1 Top Filling. Splash filling should be avoided by using a fill pipe that is designed according to the recommendations in 8.4.4.

8.6.2 Bottom Filling. The bottom-filling inlet should be designed with a deflector or a diverter to prevent upward spraying and generation of mist. Using a cap or a tee to direct incoming liquid sideways toward the compartment walls, rather than upward, will achieve this objective.

8.6.3 Switch Loading. The practice of loading a liquid having a high flash point and low conductivity into a tank that previously contained a low flash point liquid is referred to as *switch loading*. This practice can result in the ignition of residual flammable vapor as the tank is filled. The methods of hazard prevention are similar to those specified in 8.5.2.1(1) through 8.5.2.1(3) and 8.5.2.1(5) through 8.5.2.1(8). Flow velocities are found in Table 8.6.

8.6.4 Highway Transport. As noted in API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*, tank vehicles normally do not create a static electricity hazard during transport, provided that they are compartmented or contain baffles. The compartments or baffles minimize sloshing of the liquid in the tank vehicle, which could result in significant charge generation. Clear bore (unbaffled) tank vehicles should not be used for liquids that can generate an ignitable mixture in the vapor space.

8.6.5 Antistatic Additives. Charge accumulation can be reduced by increasing the conductivity of the liquid by adding a conductivity-enhancing agent (antistatic additive).

8.6.5.1 Antistatic additives normally are added in parts-per-million concentrations and should be used in accordance with manufacturer instructions.

8.6.5.2 Where antistatic additives are used as a primary means of minimizing accumulation of static electric charge, the operator should verify the concentration of the additive at critical points in the system.

8.7* Vacuum Trucks.

8.7.1 For control of static electricity, hose should be conductive or semiconductive.

8.7.2 As an alternative to the recommendation of 8.7.1, all conductive components should be bonded, and the truck should be grounded.

8.7.3 In no case should plastic dip pipes or plastic intermediate collection pans or drums be used.

8.8 Railroad Tank Cars.

8.8.1 In general, the precautions for railroad tank cars are similar to those for tank vehicles specified in Section 8.6. The major exception is the larger volume typical of railroad tank cars (e.g., greater than 87 m³) compared with that of tank vehicles (e.g., about 50 m³). The greater volume allows greater maximum filling rates to be used, up to a maximum of (0.8/d) m/sec, where *d* is the inside diameter of the inlet in meters.

8.8.2 Many tank cars are equipped with nonconductive bearings and nonconductive wear pads located between the car itself and the trucks (wheel assemblies). Consequently, resistance to ground through the rails might not be low enough to prevent accumulation of a static electric charge on the tank car body. Therefore, bonding of the tank car body to the fill system piping is necessary to protect against charge accumulation. In addition, because of the possibility of stray currents, loading lines should be bonded to the rails.

8.9 Marine Vessel and Barge Cargo Tanks. Marine vessel and barge cargo tanks are beyond the scope of this recommended practice. The recommendations given in the *International Safety Guide for Oil Tankers and Terminals* (ISGOTT) should be followed.

8.10 Process Vessels.

8.10.1 Means of Static Electric Charge Accumulation. Accumulation of static electricity in process vessels occurs by the same methods as described in Section 8.5 for storage tanks.

8.10.1.1 Where a conductive and a nonconductive liquid are to be blended, the conductive liquid should be added to the vessel first, if possible, so that the conductivity of the mixture is as high as possible throughout the mixing process.

8.10.1.2 Re-entry of recirculation loops should be designed to minimize splashing and surface disruption, for example, by use of subsurface jets that do not break the liquid's surface.

8.10.2* Procedures for Transfer to Tanks.

8.10.2.1 When two or more nonconductive liquids are introduced into a blending tank, the less dense liquid should be loaded first to avoid a surface layer comprising the lighter, more highly charged component.

8.10.2.2 Splash recirculation normally should be done only if the vessel is inerted or vapor enriched.

8.10.3 Agitation. Agitators should be covered with sufficient depth of liquid before being operated, to minimize splashing, or should be operated at reduced speed until sufficient depth has been achieved. In cases where hazardous charge accumulation cannot be avoided using the measures discussed in Section 8.10, the vessel can be inerted.

Table 8.6 Summary of Precautions for Loading Tank Vehicles

Recommended Loading Precaution ^a	Liquid Being Loaded			
	Nonconductive			
	Low Vapor Pressure	Intermediate Vapor Pressure	High Vapor Pressure ^b	Conductive ^{c,d}
Bonding and Grounding. Tank trucks should be bonded to the fill system, and all bonding and grounding should be in place prior to starting operations. Ground indicators, often interlocked with the filling system, frequently are used to ensure bonding is in place. Bonding components, such as clips, and the fill system continuity should be periodically examined and verified. For top loading, the fill pipe should form a continuous conductive path and should be in contact with the bottom of the tank.	Yes ^e	Yes	Yes	Optional
Initial Loading. Top-loading fill pipes and bottom-loading systems should be equipped with spray deflectors, and splash filling should be avoided. A slow start (i.e., velocity less than 1 m/sec) should be employed until the inlet into the compartment is covered by a depth equal to two fill-pipe diameters to prevent spraying and to minimize surface turbulence.	Yes	Yes	Yes	Yes
Maximum Loading Rate. The maximum loading rate should be limited so the velocity in the fill pipe or load connection does not exceed 7 m/sec or $(0.5/d)$ m/sec (where d = inlet inside diameter in meters), whichever is less. ^f Transition from slow start to normal pumping rate can be achieved automatically using a special loading regulator tip (which shifts the rate when submerged to a safe depth). Excessive flow rates should be avoided, either procedurally or by system design, which is the preferred method.	Yes ^e	Yes	Optional ^c	Optional
Charge Relaxation. A residence time of at least 30 sec should be provided between any microfilter or strainer and the tank truck inlet. ^g A waiting period of at least 1 minute should be allowed before the loaded tank compartment is gauged or sampled through the dome or hatch. [However, sampling and gauging via a sample well (gauge well) can be done at any time.]	Yes ^e	Yes	Yes	Optional
Spark Promoters. A tank gauging rod, high-level sensor, or other conductive device that projects downward into the vapor space of a tank can provide a location for static discharge between the device and the rising liquid and should be avoided. These devices should be bonded securely and directly downward to the bottom of the tank by a conductive cable or rod (to eliminate a spark gap) or should be installed in a gauging well that is bonded to the bottom. ^h Periodic inspection should be conducted to ensure that the bonding system does not become detached and that there are no ungrounded components or foreign objects.	Yes	Yes	Yes	Optional

^aLoading precautions vary with the product being handled. In loading operations where a large variety of products are handled and where it is difficult to control loading procedures, such as at self-service loading racks, a single standard procedure that includes all the precautions should be followed.

^bIf high vapor pressure products are handled at low temperatures (near or slightly below their flash points), all the recommended loading precautions should be followed.

^cWhere additives are used to increase conductivity, caution should be exercised. (See 8.6.5.)

^dSemiconductive liquids can accumulate charge where charging rates are extremely high or where they are effectively isolated from ground. They might need to be handled as nonconductive liquids. (See 8.3.3.6.)

^eRecommended loading precautions need not be applied if only low vapor pressure combustible liquids at ambient temperatures are handled at the loading rack and there is no possibility of switch loading or cross contamination of products. All loading precautions should be followed where low vapor pressure products are handled at temperatures near (within 4°C to 9°C) or above their flash points.

^fWhere the product being handled is a nonconductive, single-component liquid (such as toluene or heptane), the maximum fill rate should be $(0.38/d)$ m/sec.

^gVery low conductivity and high-viscosity products can require additional residence time of up to 100 sec. (See 8.4.5.1.2.)

^hIf these devices are nonconductive, the potential for sparking does not exist, and no specific measures need be taken. Devices that are mounted to the sidewall of the tank (e.g., level switches and temperature probes), that project a short distance into the tank, and that have no downward projection might not pose an electrostatic hazard. These situations should be evaluated on an individual basis.

8.10.4 Vessels with Nonconductive Linings. The accumulation of static electric charge can result in pinhole damage to equipment such as enamel- or glass-lined reactors. Because static electric discharges often occur at the liquid interface as liquid drains from the wetted wall, a vapor ignition hazard could also exist. In some cases, it is possible to specify static dissipative coatings for the vessel or agitator. Conductive vessels and appurtenances should be bonded and grounded. In some cases, inerting might be necessary.

8.10.5 Adding Solids. The most frequent cause of static electric ignitions in process vessels is the addition of solids to flammable liquids in the vessels. Even where the vessel is inerted, large additions of solids will introduce air into the vessel while expelling flammable vapor from the vessel. The sudden addition of a large volume of solids can also result in static discharge from a floating pile of charged powder.

8.10.5.1 Manual addition of solids through an open port or manway should be done only in 25 kg batches.

8.10.5.2 Batch additions larger than 25 kg [e.g., from flexible intermediate bulk containers (*see 10.1.6*)] should be done through an intermediate hopper with a rotary valve or an equivalent arrangement. The hopper can be inerted separately to reduce air entrainment into the mixing vessel, while expulsion of vapor into the operating area can be avoided by venting the vessel to a safe location. The addition of solids from nonconductive plastic bags can be hazardous, even if the solids are noncombustible (e.g., silica).

8.10.5.3 Bags should be constructed of paper, plies of paper and plastic in which the nonconductive plastic film is covered by paper on both sides, or antistatic plastic. Because grounding clips can be impractical, such bags can be effectively grounded by contact with a grounded conductive vessel or skin contact with a grounded operator.

8.10.5.4 Fiber drums or packages should not have a loose plastic liner that can leave the package and behave like a plastic bag.

8.10.5.5 Metal chimes should be grounded.

8.10.5.6 Personnel in the vicinity of openings of vessels that contain flammable liquids should be grounded, and special attention should be paid to housekeeping, because accumulation of nonconductive residues (e.g., resins) on the floor or on items such as grounding clips can impair electrical continuity.

8.10.6 Mixing Solids. Where solids are dissolved or dispersed into nonconductive liquids, the rate of charge generation can be large, depending on factors such as solids loading, particle size, and agitation rate. Dissipation of the charge frequently is achieved by raising the conductivity of the continuous phase by reformulation with conductive solvents or by the addition of antistatic additives. Alternatively, ignition hazards can be controlled by inerting.

8.10.7 Nonconductive Process Vessels.

8.10.7.1 In general, nonconductive process vessels should not be used with flammable liquids, which present external ignition risks if their outer surfaces become charged.

8.10.7.2 If a nonconductive tank is to be used and the possibility exists that the atmosphere around the tank or in the vapor space is ignitable, the following criteria should be met to ensure the safe dissipation of charge and to prevent discharges:

- (1) All conductive components (e.g., a metal rim and hatch cover) should be bonded together and grounded.
- (2) Where the tank is used to store nonconductive liquids, the following criteria should be met:
 - (a) An enclosing, grounded conductive shield should be provided to prevent external discharges.
 - (b) The shield should be a grounded wire mesh buried in the tank wall and should enclose all external surfaces.
- (3) Where used to store nonconductive liquids, the tank should have a metal plate to provide a path through which charge can flow from the liquid contents to ground, and the following criteria also should be met:
 - (a) The plate should have a surface area not less than $500 \text{ cm}^2/\text{m}^3$ of tank volume.
 - (b) The plate should be located at the bottom of the tank and bonded to ground.
- (4) Where the tank is used to store conductive liquids, an internal grounding cable extending from the top to the bottom of the tank and connected to ground or a grounded fill line meeting the following criteria and extending to the bottom of the tank should be provided:
 - (a) The grounded fill line enters at the bottom of the tank.
 - (b) The grounded fill line does not introduce a spark promoter.

8.11 Gauging and Sampling. Gauging and sampling operations, including temperature measurement, can introduce spark promoters into a storage tank or compartment. A conductive gauging well for manual sampling and gauging should be used.

8.11.1 Precautions. The precautions given in Section 8.11 should be taken where use of a gauging well is not possible, where the material stored is a nonconductor, or where the vapor space of the container could be ignitable.

8.11.2 Manual Operations. Where gauging and sampling operations are conducted manually, the personnel grounding recommendations in Section 7.6 should be considered.

8.11.3 Materials. Gauging and sampling systems should be either completely conductive or completely nonconductive. For example, conductive sampling and gauging devices should be used with a conductive lowering device, such as a steel tape or cable.

8.11.3.1 Chains are not electrically continuous and should not be used in flammable atmospheres.

8.11.3.2 Conductive sampling and gauging devices, including the sampling container and the lowering device, should be properly bonded to the tank or compartment.

8.11.3.3 The bonding specified in 8.11.3.2 should be accomplished by use of a bonding cable or by maintaining continuous metal-to-metal contact between the lowering device and the tank hatch.

8.11.3.4 Ideally, if nonconductive hand gauging or sampling devices are used, no waiting period is needed after loading or filling; however, it should be noted that these devices might not retain the necessary level of nonconductivity due to environmental factors such as moisture or contamination. Therefore, an appropriate waiting period should be allowed where nonconductive devices are used.

8.11.3.5 Cord made from synthetic material such as nylon should not be used due to possible charging if it slips rapidly through gloved hands. Although natural cellulosic fiber cord can, in principle, be used, such cord is frequently composed of a natural-synthetic blend, with corresponding charge-generating ability.

8.11.4 Gauging. Where possible, gauging should be carried out using automatic gauging systems. These systems can be used safely in tanks, provided that the gauge floats and similar devices are electrically bonded to the tank shell through a conductive lead-in tape or conductive guide wires. Free-floating, unbonded floats can be effective spark promoters and should be avoided. Noncontact gauging devices, such as radar and ultrasonic gauges, are also satisfactory, provided that electrical continuity is ensured. Isolated conductive components must not be used.

8.11.5 Waiting Period.

8.11.5.1 Depending on the size of the compartment and the conductivity of the product being loaded, a sufficient waiting period should be allowed for accumulated charge to dissipate.

8.11.5.2 A 30-minute waiting period should be allowed before the gauging or sampling of storage tanks greater than 40 m^3 , unless a gauging well is used. The waiting period before the gauging or sampling of smaller vessels can be reduced to 5 minutes for tanks between 20 m^3 and 40 m^3 and to 1 minute for tanks less than 20 m^3 . Longer waiting periods might be appropriate for very low conductivity liquids ($\kappa < 2\text{ pS/m}$) or nonconductive liquids that contain a second dispersed phase [such as a Class I liquid with more than 0.5 percent water (weight basis)]. If a gauging well is used, a waiting period is unnecessary.

8.12 Tank Cleaning.

8.12.1 Water Washing.

8.12.1.1 The mist created in a tank by water spraying can be highly charged. This is a particular problem with tanks larger than 100 m^3 , due to the size of the mist cloud that can form. Water washing using sprays should be done only in an inerted or nonflammable atmosphere.

8.12.1.2 Although specifically written for marine cargo tanks, the *International Safety Guide for Oil Tankers and Terminals* (ISGOTT) presents a comprehensive discussion of tank cleaning. Tanks less than 100 m^3 and with all conductive components grounded have a negligible discharge hazard. Where a possibility of steam entering the tank during the water-washing process exists, the precautions in 8.12.3 should be followed.

8.12.2 Solvent Washing. Mist charge densities created by flammable solvents are similar to those from water washing, and similar precautions should be taken regarding grounding of conductive components.

8.12.2.1 Where an ignitable atmosphere or mist cannot be avoided because of the type of solvent or cleaning process used, the tank or vessel being cleaned should be inerted or enriched to reduce the likelihood of ignition during the cleaning process.

8.12.2.2 Where the vessel is not inerted or enriched and an ignitable atmosphere is present, the following precautions should be considered where solvent is used as a cleaning agent:

- (1) The solvent should be conductive.
- (2) Where a solvent blend, such as reclaimed solvent, is used, the conductivity should be checked periodically.

- (3) High flash point materials (at least 9°C above the maximum operating temperature during cleaning) should be used, and the flash point should be confirmed on a daily basis.
- (4) The cleaning system should be conductive and bonded to the tank, and continuity tests of all bonded equipment should be done periodically.
- (5) Ungrounded conductive objects should be treated in accordance with the following:
 - (a) They should not be introduced into the tank during the cleaning process.
 - (b) They should not be introduced into the tank for a sufficient period of time after the cleaning process, which might take several hours due to the generation of mist.

8.12.3 Steam Cleaning. Steam cleaning can create very large charge densities with correspondingly large space charge potentials that increase with the size of the tank. Therefore, the following precautions should be taken:

- (1) Tanks larger than 4 m^3 should be inerted before steam cleaning.
- (2) All components of the steaming system should be conductive and grounded.
- (3) All conductive components of the tank should be bonded and grounded.

8.12.4 Internal Grit Blasting.

8.12.4.1 Where possible, tanks and process vessels should be clean and free of ignitable materials (no more than 10 percent of the LFL).

8.12.4.2 Hose used for grit blasting should be grounded, and the resistance to ground from any part of the hose assembly, especially the nozzle, should not exceed 10^6 ohms . (See A.8.4.3.)

8.13 Portable Tanks, Intermediate Bulk Containers (IBCs), and Non-Bulk Containers. The practices specified in this section should be followed to reduce static electricity hazards during filling and emptying of portable tanks, IBCs, and containers.

8.13.1 Metal Portable Tanks and IBCs.

8.13.1.1 Metal portable tanks and IBCs should be bottom-filled, if possible.

8.13.1.2 Where used for nonconductive flammable liquids, filters should be placed at least 30 sec upstream, as recommended in 8.4.5.1.2.

8.13.1.3 The portable tank or IBC should be bonded to the fill system prior to opening and should be closed before being disconnected from the bond.

8.13.1.4 Filling rates should be similar to those normally used for drum filling, about 225 L/min or less, unless the container is inerted.

8.13.1.5 If the fill pipe does not extend close to the bottom and the vessel is not inerted, a slow start velocity of 1 m/sec or less should be used until the fill pipe is submerged to about 150 mm.

8.13.1.6 Portable tanks and IBCs with nonconductive linings present hazards somewhat more severe than with drums, due to the larger capacity and the greater energy that can be stored for equal charge densities.

8.13.2 Nonconductive Portable Tanks and IBCs.

8.13.2.1 Filling nonconductive portable tanks or IBCs with combustible liquids at temperatures below their flash points presents no significant static electric ignition hazard. Filling such a vessel with a combustible liquid above or within 9°C of its flash point should be done as if the liquid were flammable.

8.13.2.2 Refilling a vessel that could contain flammable vapors from a previous product should not be permitted. Additionally, the routine handling of nonconductive vessels filled with any type of liquid can generate a charge on the outside surface of the vessel.

8.13.2.3 Nonconductive portable tanks and IBCs should not be used where ignitable ambient vapors are present.

8.13.2.4 Portable tanks and IBCs constructed of nonconductive materials are prohibited for use with Class I liquids by NFPA 30, *Flammable and Combustible Liquids Code*. Where such containers are used for Class II and Class III liquids, the precautions for filling depend on the size of the container, the container design, and the conductivity of the liquid.

8.13.3 Metal Non-Bulk Containers.

8.13.3.1 Where being filled, metal containers and associated fill equipment should be bonded together and grounded.

8.13.3.2 Bonding should be done with a clamp that has hardened steel points that will penetrate paint, corrosion products, and accumulated material using either screw force or a strong spring. (See Annex G for recommendations.)

8.13.3.3 The clamp should be applied prior to removal of the container bungs and at a point on the top chime that is located away from the bung openings.

8.13.3.4 The grounded fill pipe should be cut at approximately 45 degrees and be left relatively sharp to inhibit brush discharges from the liquid surface.

8.13.3.5 The tip of the fill pipe should extend to within 25 mm of the bottom of the drum and remain beneath the liquid surface until the drum is filled. Viscous liquids that flow without splashing can be deflected by a short fill nozzle to flow down the inside wall of the drum. Inerting of the drum is seldom necessary.

8.13.3.6 Where liquid is dispensed from a metal container, the container should be grounded.

8.13.3.7 Self-closing, metal dispensing valves should be used.

8.13.3.8 Where liquid is dispensed from an upright drum, the dip pipe, conductive hose, and pump should be bonded to the drum and grounded. (For funnels and receiving containers, see 8.13.6.)

8.13.4 Plastic-Lined Metal Non-Bulk Containers.

8.13.4.1 The effects of static electricity from thin, internal coatings, such as phenolic or epoxy paints, can be ignored, provided that the lining is not thicker than 2 mm. A container with a thin lining up to 2 mm in thickness can be treated as a metal container.

8.13.4.2 Where the drum has a lining of nonconductive plastic thicker than 2 mm, it should be treated as a nonconductive container, unless it can be shown that the surface resistivity is not greater than 10^{10} ohms per square.

8.13.5 Plastic Non-Bulk Containers. The use of plastic containers for Class I liquids is limited by NFPA 30, *Flammable and*

Combustible Liquids Code. Where such containers are used for Class II and Class III liquids, the precautions for filling depend on the size of the container, the container design, and the conductivity of the liquid.

8.13.5.1 Because plastic containers cannot be grounded, they should not be used for Class I liquids or handled in flammable atmospheres without expert review of the hazards.

8.13.5.2 For Class II liquids, hazards of static electricity should be addressed as follows:

- (1) Where the liquid might exceed its flash point during filling or emptying
- (2) Where the container might be stored or handled in an ignitable ambient atmosphere

8.13.5.3 The options that can be used to address the situation specified in 8.13.5.2(1) include bottom filling and cooling of the liquid prior to unloading, especially if the container has been in direct sunlight or in a hot storage area. Continuous inerting during unloading can also be considered.

8.13.5.4 For the situation specified in 8.13.5.2(2), plastic containers should be stored away from containers of flammable liquids so that the hazard of static electric discharge from the external surface of the plastic container is avoided.

8.13.6 Hand-Held Containers Up to 20 L Capacity. The fire risk from static electricity increases with the volume of the container and the volatility of the liquid handled. Thus, the smallest-volume container capable of effectively fulfilling a particular need should normally be selected and should not exceed 20 L.

8.13.6.1 Listed safety cans should be used, especially those types equipped with a flexible metal dispensing hose so they can be used without a funnel.

8.13.6.2 Because nonconductive containers cannot be grounded, they should be limited to 2 L for Class IA liquids and 5 L for Class IB and Class IC liquids. An exception is gasoline, for which approved 20 L plastic cans have been widely used for many years with no reported increase in ignition incidents due to static electricity compared with metal cans. That record is due in part to the rapid establishment of rich (above the UFL) gasoline vapor inside the can.

8.13.6.3 The plastic containers specified in 8.13.6.2 should not be used for other flammable liquids without review of the hazards. Unlike gasoline, conductive liquids such as alcohols can become inductively charged by a charged plastic container and give rise to sparks. In addition, the container can contain an ignitable atmosphere.

8.13.7 Nonconductive Containers. Subject to the volume limitations described in 8.13.6, it is common to handle flammable liquids in small glass or plastic containers of 0.5 L capacity or less.

8.13.7.1 Where the containers specified in 8.13.7 are involved in frequent transfer operations, such as a small-scale solvent blending operation, a grounded metal funnel with a spout that extends to the bottom of the container should be used for filling the container. This practice ensures that any charge induced on the liquid by the container, as could happen if the plastic container has been charged by rubbing, is dissipated through the grounded funnel.

8.13.7.2 Plastic or glass funnels should be used only where essential for compatibility reasons.

8.13.8 Containers for Sampling.

8.13.8.1 Ignition risk is greatly increased where an ignitable atmosphere is present outside the container; for example, where sampling is directly from a tank or a sample is transferred near a manway, because such a situation can precipitate a large fire or explosion. A grounded metal sample “thief” or glass bottle in a grounded metal sample cage can be used in such cases.

8.13.8.2 Because they are more easily charged than glass, non-conductive plastic containers should be avoided except where used in well-ventilated areas. If outdoor sampling is carried out at sample spigots that are located away from tank openings and in freely ventilated areas and if sampled quantities are 1 L or less, the fire risk is, in most cases, insufficient to necessitate any special procedures other than bonding of metal components.

8.13.9* Cleaning.

8.13.9.1 Containers should be bonded and grounded prior to being opened for cleaning operations such as steaming.

8.13.9.2 Cleaning equipment should be bonded or grounded.

8.14* Vacuum Cleaning. Collecting liquids and solids in an ignitable atmosphere using a vacuum cleaner can create a significant hazard due to ignition from static electric discharge. If it is necessary to use such equipment in a process area, the hazards and the procedures for safe use should be carefully reviewed and clearly communicated to the potential users.

8.15 Clean Gas Flows.

8.15.1 Usually a negligible generation of static electricity occurs in single-phase gas flow. The presence of solids such as pipe scale or suspended liquids such as water or condensate will create charge, which is carried by the gas phase. The impact of the charged stream on ungrounded objects can then create spark hazards. For example, carbon dioxide discharged under pressure will form charged solid “snow.” In an ignitable atmosphere, this phenomenon can create an ignition hazard. For that reason, carbon dioxide from high-pressure cylinders or fire extinguishers should never be used to inert a container or vessel.

8.15.2 Gases with very low ignition energies, such as acetylene and hydrogen, that contain suspended material can be ignited by corona discharge where they are escaping from stacks at high velocity. This phenomenon is associated with electrical breakdown at the periphery of the charged stream being vented. Such discharges can occur even if the equipment is properly grounded.

8.16 Plastic Sheets and Wraps.

8.16.1 Nonconductive plastic sheets and wraps, such as those used to wrap shipping pallets, present hazards similar to those of plastic bags. Such sheets and wraps can generate brush discharges from their surfaces following rubbing or separation of surfaces. Isolated wet patches can also create spark hazards.

8.16.2 An additional problem is charging of personnel as they handle plastic sheets and wrap. Plastic sheets and wrap should not be brought into areas that can contain ignitable atmospheres. Plastic pallet wrap can be removed outside the area and, if necessary, replaced by a suitable tarpaulin or other temporary cover. Antistatic wrap is available. Tear sheets (used outside many clean areas) can generate significant static electric charge when they are pulled from a dispenser, and precautions are similar to those for plastic sheets. (Additional information on handling sheet materials is found in Section 10.2.)

Chapter 9 Powders and Dusts

9.1 General. Powders include pellets, granules, and dust particles. Pellets have diameters greater than 2 mm, granules have diameters between 420 μm and 2 mm, and dusts have diameters of 420 μm or less. It should be noted that aggregates of pellets and granules will often also contain a significant amount of dust. The movement of powders in industrial operations commonly generates static electric charges. The accumulation of these charges and their subsequent discharge can lead to fires and explosions.

9.2 Combustibility of Dust Clouds.

9.2.1 A *combustible dust* is defined as any finely divided solid material 420 μm or smaller in diameter (i.e., material that will pass through a U.S. No. 40 standard sieve) that can present a fire or deflagration hazard.

9.2.2 For a static electric discharge to ignite a combustible dust, the following four conditions need to be met:

- (1) An effective means of separating charge must be present.
- (2) A means of accumulating the separated charges and maintaining a difference of electrical potential must be available.
- (3) A discharge of the static electricity of adequate energy must be possible.
- (4) The discharge must occur in an ignitable mixture of the dust.

9.2.3 A sufficient amount of dust suspended in air needs to be present for an ignition to achieve sustained combustion. This minimum amount is called the *minimum explosive concentration* (MEC). It is the smallest concentration, expressed in mass per unit volume, for a given particle size that will support a deflagration where uniformly suspended in air. (*In this chapter, air is assumed to be the supporting atmosphere unless another oxidizing atmosphere is specified.*)

9.2.4* For a dust cloud to be ignited by a static electric discharge, the discharge needs to have enough energy density, both in space and in time, to effect ignition. However, the term used for discharge ignition, *minimum ignition energy* (MIE), is simply that of the energy in the discharge. The MIE of a dust cloud is the energy in a capacitive discharge at or above which ignition can occur.

9.3 Mechanisms of Static Electric Charging

9.3.1 Contact static electric charging occurs extensively in the movement of powders, both by surface friction between powders and surfaces and by friction between individual powder particles. The charging characteristics of particles often are determined as much by surface contamination as by their chemical characteristics; thus, the magnitude and polarity of a charge are difficult to predict.

9.3.2 Charging can be expected any time a powder comes into contact with another surface, such as in sieving, pouring, scrolling, grinding, micronizing, sliding, and pneumatic conveying. In those operations, the more vigorous the contact, the more charge is generated, as shown in Table 9.3.2. The table shows that a wide range of charge densities is possible in a given operation; the actual values will depend on both the product and the operation.

9.3.3 An upper limit to the amount of charge that can be carried by a powder suspended in a gas exists. This limit is set by the strength of the electric field at the surface of the particle and depends on the surface charge density, as well as the

Table 9.3.2 Typical Charge Levels on Medium-Resistivity Powders Emerging from Various Powder Operations (Before Compaction)

Operation	Mass Charge Density ($\mu\text{C}/\text{kg}$)
Sieving	10^{-3} to 10^{-5}
Pouring	10^{-1} to 10^{-3}
Auger or screw-feed transfer	10^{-2} to 1.0
Grinding	10^{-1} to 1.0
Micronizing	10^2 to 10^{-1}
Pneumatic conveying	10^3 to 10^{-1}

Source: BS 5958, *Code of Practice for Control of Undesirable Static Electricity*, Part 1, General Considerations.

particle's size and shape. For well-dispersed particles, the maximum surface charge density is of the order of $10 \mu\text{C}/\text{m}^2$. This value can be used to estimate maximum charge-to-mass ratios from particle diameter and density information.

9.4 Retention of Static Electric Charge.

9.4.1 Bulk powder can retain a static electric charge, depending on its bulk resistivity and its bulk dielectric constant. The relaxation time is expressed by the following equation:

$$\tau = \epsilon \epsilon_0 \rho \quad (9.4.1)$$

where:

τ = charge relaxation time constant (seconds)
 ϵ = dielectric constant of the bulked powder
 ϵ_0 = permittivity of a vacuum
 $(8.845 \times 10^{-12} \text{ sec}/\text{ohm}\cdot\text{m})$
 ρ = bulk volume resistivity of the powder
 $(\text{ohm}\cdot\text{meters})$

9.4.2 The ability of a solid to transmit electric charges is characterized by its volume resistivity. For liquids, this ability is characterized by its conductivity.

9.4.3 Powders are divided into the following three groups:

- (1) Low-resistivity powders having volume resistivities of up to $10^8 \text{ ohm}\cdot\text{m}$, including metals, coal dust, and carbon black
- (2) Medium-resistivity powders having volume resistivities between $10^8 \text{ ohm}\cdot\text{m}$ and $10^{10} \text{ ohm}\cdot\text{m}$, including many organic powders and agricultural products
- (3) High-resistivity powders having volume resistivities above $10^{10} \text{ ohm}\cdot\text{m}$, including organic powders, synthetic polymers, and quartz

9.4.3.1 Low-resistivity powders can become charged during flow. The charge rapidly dissipates where the powder is conveyed into a grounded container. However, if the powder is conveyed into a nonconductive container, the accumulated charge can result in an incendiary spark.

9.4.3.2 Where a medium-resistivity powder comes to rest in bulk, the charge retained depends on the resistance between the powder and ground. If the powder is placed in a grounded container, charge retention is determined by the bulk volume resistivity of the powder, which includes the interparticle resistance, as governed by the relationship expressed in Equation 9.4.1. If the powder is placed in a nonconductive container, charge retention is determined by the resistance of the container. The special significance of medium-resistivity powders

is that they are relatively safe during handling because they do not produce bulking brush discharges or sparks.

9.4.3.3 High-resistivity powders do not produce spark discharges in themselves, but they can produce other types of discharge, such as corona, brush, bulking brush, and propagating brush discharges (see Section 5.3). High-resistivity powders lose charge at a slow rate, even in properly grounded containers. Many high-resistivity powders are also hydrophobic and, in bulk, are capable of retaining charge for hours or even days. High-resistivity powders, such as thermoplastic resins, can have bulk resistivities up to about $10^{16} \text{ ohm}\cdot\text{m}$.

9.5 Discharges in Powder Operations.

9.5.1 Spark Discharge.

9.5.1.1 Where spark discharges occur from conductors, the energy in the spark can be estimated from the following equations or from the nomograph in Figure 5.3.3.3:

$$W = \frac{1}{2} CV^2 \quad (9.5.1.1a)$$

$$W = \frac{1}{2} QV \quad (9.5.1.1b)$$

$$W = \frac{1}{2} \left(\frac{Q^2}{C} \right) \quad (9.5.1.1c)$$

$$Q = CV \quad (9.5.1.1d)$$

where:

W = energy (joules)
 C = capacitance (farads)
 V = potential difference (volts)
 Q = charge (coulombs)

9.5.1.2 It should be noted that equations 9.5.1.1a through 9.5.1.1d apply only to capacitive discharges from conductors and cannot be applied to discharges from insulators. Discharge energies so estimated can be compared with the MIE of the dust to provide an insight into the probability of ignition by capacitive spark discharge (see 5.3.3). Layers of combustible dusts can be ignited by capacitive spark discharge, which can lead to secondary dust explosions. For a dust layer, there is no correlation with the MIE for dust cloud ignition. Capacitive spark discharges must be avoided by grounding all conductive containers, equipment, products, and personnel.

9.5.2 Corona and Brush Discharge. Where large amounts of powder having medium or high resistivities are handled, corona and brush discharges are to be expected. No evidence is available, however, that a corona discharge is capable of igniting a dust cloud. Likewise, no evidence is available that a brush discharge can ignite dusts with MIEs greater than 3 mJ, provided that no flammable gas or vapor is present in the dust cloud.

9.5.3 Propagating Brush Discharge. Because propagating brush discharges can have energies greater than 1 J, they should be considered capable of igniting both clouds and layers of combustible dusts.

9.5.4 Bulking Brush Discharge.

9.5.4.1 Where powders that have resistivities greater than about $10^9 \text{ ohm}\cdot\text{m}$ are put into grounded conductive containers, they usually dissipate their charges by conduction at a rate slower than that of the charge accumulated in the loading

process. The charge is therefore compacted, and discharges occur from the bulking point (where the particles first contact the heap) to the walls of the container. These discharges are referred to as *bulking brush discharges*. Experience indicates that these discharges are not capable of igniting dusts having MIEs greater than 10 mJ. However, such discharges have been attributed to explosions of dusts having MIEs less than 10 mJ.

9.5.4.2 During the compaction process, the energy in the discharge increases as the particle size increases. Therefore, it can be expected that systems most at risk are those involving pellets having an appreciable fraction of fines (dust).

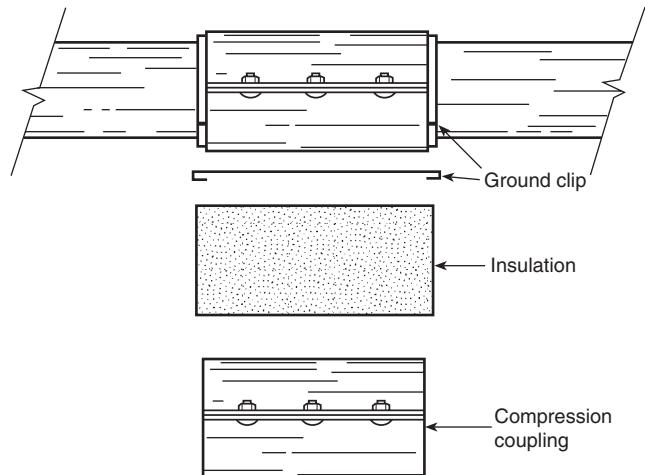
9.6 Pneumatic Transport Systems.

9.6.1 Pneumatic transport of powdered material through pipes or ducts can produce a static electric charge on both the product being transported and the conduit. This static electric charge remains on the material as it exits the system. Precautions against accumulation of charge should be taken where the material is collected.

9.6.2 Pipes and ducts should be metal and should be grounded.

9.6.2.1 Equipment to which the conduits connect should be metal and grounded to dissipate the charge impressed on it by the transport of the material.

9.6.2.2 Where the use of pipe-joining methods or installation of piping components results in an interruption of continuity of the ground path, one of the following criteria should be met:


- (1) A jumper cable should be used to maintain continuity.
- (2) An independent ground should be provided for the isolated section of the conduit, as shown in Figure 9.6.2.2.

9.6.3 Nonconductive pipe or ductwork should not be used.

9.6.4 Short lengths of transparent plastic should not be used as flow visualizers, because they have been known to give rise to propagating brush discharges capable of igniting dusts.

9.7* Flexible Hose.

9.7.1 Hose made of nonconductive material that incorporate a spiral stiffening wire should be kept in good repair to ensure that

FIGURE 9.6.2.2 Compression Fitting for Pneumatic Transport Duct. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 136.)

the internal wire directly contacts the metal end couplings and that the end couplings make a good connection to ground.

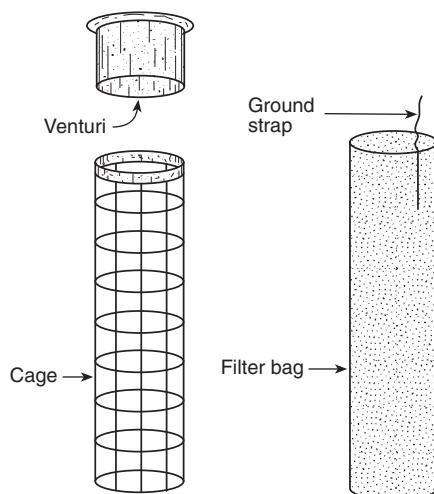
9.7.2 Hose with more than one internal spiral should not be used, because it is not possible to determine if one of the spirals has lost its continuity.

9.8 Flexible Boots and Socks.

9.8.1 Flexible boots and socks are commonly used for gravity transfer operations. Flexible boots typically are made of plastic or rubber, while flexible socks typically are made of woven fabric. A nonconductive boot could give rise to either brush discharge or propagating brush discharge. Propagating brush discharge cannot happen with a sock, because of the low breakdown strength of the air gaps in the weave. However, there are conditions where socks can produce brush discharges (e.g., where used with flexible intermediate bulk containers). (See Section 10.1.6.)

9.8.2 For combustible dusts, the end-to-end resistance of boots and socks should be less than 10^8 ohms, preferably less than 10^6 ohms, measured with a megohmmeter.

9.8.3 Flexible connections should not be depended on for a bond or ground connection between process equipment. Separate bonding or grounding connections should be used.


9.9 Bag Houses.

9.9.1 As dusts are drawn or blown into a bag house, they necessarily carry with them a static electric charge, the magnitude of which depends on the characteristics of the dust and the process, as illustrated in Table 9.3.2. The charge remains on the dust and accumulates on the surfaces of the bags. It is therefore important to keep all conductive equipment grounded to prevent the induction of this accumulated charge onto conductive components that could have inadvertently become ungrounded. Such induction is particularly true in the case of cage assemblies.

9.9.2 If cage assemblies are not well grounded, capacitive spark discharge can occur from the ungrounded cages to either the structure of the bag house or adjacent cage assemblies. Many times the bags have metal braid pigtails attached to their cuffs, the notion being that the pigtail can simply be brought through the cage and bonded to the tube sheet. This method of grounding the cage is not always successful. Furthermore, the reason for the pigtail is often misunderstood. Because the bag is nonconductive, the bag itself is not grounded. It is therefore useless to extend the metal braid down the entire length of the bag. (See Figure 9.9.2.)

9.9.3 Bags and cages should be engineered so that a positive ground connection is always ensured during maintenance, even if personnel are inexperienced or inattentive. One way of ensuring this connection is by sewing two metal braids into the cuffs of the bags, 180 degrees apart. Each braid is continuous and is sewn up the inside of the cuff, across the top, and down the outside of the cuff. This method ensures that the braids always make a positive contact with the cage, the venturi, and the clamp and that such an arrangement withstands the rigors of the operation. In any case, the resistance between the cage and ground should be less than 10 ohms.

9.9.4 No evidence is available that filter bags made from conductive or antistatic fabric are needed to prevent incendive discharges. On the contrary, such bags could create discharge hazards if sections of the fabric become isolated or if a bag falls into the bottom of the bag house.

FIGURE 9.9.2 Arrangement of Cage and Filter Bag. (Source: T. H. Pratt, *Electrostatic Ignitions of Fires and Explosions*, p. 134.)

9.10* Hybrid Mixtures.

9.10.1 The term *hybrid mixture* applies to any mixture of suspended combustible dust and flammable gas or vapor where neither the dust itself nor the gas or vapor itself is present in sufficient quantity to support combustion but where the mixture of the two can support combustion. Hybrid mixtures pose particular problems because they combine the problems of the high charge densities of powder-handling operations with the low ignition energies of flammable vapors. The MIE of a hybrid mixture is difficult to assess, but a conservative estimate can be made by assuming that the MIE of the mixture is at or near the MIE of the gas alone. Because hybrid mixtures contain a flammable gas or vapor, they can be ignited by brush discharge.

9.10.2 Powders that contain enough solvent (i.e., greater than 0.2 percent by weight) so that significant concentrations of solvent vapor can accumulate in the operations in which they are handled are referred to as *solvent-wet powders*. Consideration should be given to applying the recommendations of Chapter 8 to solvent-wet powders unless the resistivity of the solvent-wet product is less than 10^8 ohm-m.

9.11* Manual Addition of Powders to Flammable Liquids.

9.11.1 The most frequent cause of static electric ignitions in process vessels is the addition of solids to flammable liquids in the vessels. Even where the vessel is inerted, large additions of solids introduce air into the vessel while expelling flammable vapor from the vessel. The sudden addition of a large volume of solids can also result in static discharge from a floating pile of charged powder.

9.11.1.1 Manual addition of solids through an open port or manway should be done only in 25 kg batches.

9.11.1.2 Batch additions larger than 25 kg [e.g., flexible intermediate bulk containers (FIBCs) (see 10.1.6)] should be done through an intermediate hopper with a rotary valve or an equivalent arrangement. The hopper can be separately inerted to reduce air entrainment into the mixing vessel, while expulsion of vapor into the operating area can be avoided by venting the vessel to a safe location.

9.11.1.3 The addition of solids from nonconductive plastic bags can be hazardous, even if the solids are noncombustible (e.g., silica). Bags should be constructed of paper, plies of paper and plastic in which the nonconductive plastic film is covered by paper on both sides, or antistatic plastic. Because grounding clips can be impractical, such bags can be effectively grounded by contact with a grounded conductive vessel or by skin contact with a grounded operator.

9.11.1.4 Fiber drums or packages should not have a loose plastic liner that can leave the package and behave like a plastic bag.

9.11.1.5 Metal chimes should be grounded.

9.11.1.6 Personnel in the vicinity of openings of vessels that contain flammable liquids should be grounded, and special attention should be paid to housekeeping, because accumulation of nonconductive residues (e.g., resins) on the floor or on items such as grounding clips can impair electrical continuity.

9.11.2 Powder should not be emptied from a nonconductive container in the presence of a flammable atmosphere.

9.11.3 Direct emptying of powders from nonconductive plastic bags into a vessel that contains a flammable atmosphere should be strictly prohibited.

9.11.4 Where a thorough understanding of the process exists and where the vessel does not contain an ignitable atmosphere, adding the powder to the vessel before adding the liquid might be practical.

9.12 Bulk Storage.

9.12.1 Where powders are moved into bulk storage (e.g., silos, rail cars, trucks, IBCs, or FIBCs), the powder is compacted by the force of gravity. The compaction process is accompanied by bulking brush discharge, as explained in 9.5.4. In the compaction process, the energy of the discharge increases as the particle size increases. Therefore, the systems most at risk are pellets with an appreciable fraction of fines (dust).

9.12.2 The exact conditions for ignition-capable bulking brush discharge are not well understood. However, the following general factors that are known to increase its probability have been identified by Glor in *Electrostatic Hazards in Powder Handling*:

- (1) Increase in the resistivity of the powder greater than 10^{10} ohm-m
- (2) Increase in the particle size of the powder greater than 1 mm
- (3) Increase in the charge density of the powder greater than $1 \mu\text{C/kg}$
- (4) Increase in filling rate as follows:
 - (a) For granules with a diameter greater than 1 mm to 2 mm, an increase greater than 20,000 kg/hr
 - (b) For granules with a diameter of about 0.8 mm, an increase greater than 20,000 to 30,000 kg/hr

Chapter 10 Specific Applications

10.1 Intermediate Bulk Containers (IBCs).

10.1.1 General. The discussion and precautions for powders and granular solids, as set forth in Chapter 9, also apply to operations that involve handling these materials in intermediate bulk containers (IBCs).

10.1.1.1 Static electric charges are generated in granular materials during the filling and emptying of IBCs. These charges result from movement and the rubbing of the granules against process equipment or against each other.

10.1.1.2 The amount of charge that can be accumulated on a bed of a powdered material in a grounded container depends on the resistivity of the powder, not the resistivity of a block of the material. The higher the resistivity, the lower the apparent conductivity and the longer a charge will be retained. In cases of very large resistivities, charges will relax slowly and can remain on beds of material for appreciable periods. Thus, generation and relaxation occur simultaneously where granular materials are moved about. Where the rate of generation exceeds the rate of relaxation, significant charges can accumulate.

10.1.2 Types of Discharge. Where a static electric charge accumulates on bulk containers or associated process equipment, the following four types of discharge can occur (see Section 5.3):

- (1) Spark discharge
- (2) Brush discharge
- (3) Propagating brush discharge
- (4) Bulking brush discharge

10.1.2.1 Spark discharges can take place between two conductors at different potentials and can release energy capable of igniting atmospheres that contain flammable gases or vapors or combustible dusts, depending on process conditions. An example of a situation in which such a discharge can occur is a conductor that is isolated from ground and located in a bin of material.

10.1.2.2 Brush discharge usually is not a concern in the normal handling of granular materials. However, brush discharge can be a source of ignition where flammable gases or vapors are present, as in the handling of hybrid mixtures or very rapid discharge of a granular material from a container. Such situations should be avoided if possible.

10.1.2.3 Propagating brush discharges typically contain energies of 1 J or greater, depending on process conditions. These discharges can ignite most flammable atmospheres.

10.1.2.4 Bulking brush discharges contain energies on the order of 10 mJ. To minimize the risks associated with bulking brush discharge, powders that have minimum ignition energies (MIEs) of 10 mJ or less should be loaded only into containers of 2 m³ or less, unless the vessel is inerted.

10.1.3 Granular Material.

10.1.3.1 If a granular material contains only particles larger than 420 µm, then ignitable dust clouds cannot be formed. However, if a granular material consists of fine particles or contains an appreciable fraction of fine particles, then ignitable dust suspensions can be formed and ignition sources cannot be tolerated.

10.1.3.2 Experience has shown that where powders have resistivities of less than 10⁸ ohm-m, static electric charges usually relax rapidly enough to prevent their accumulation in the bulk granular material.

10.1.4 Conductive Intermediate Bulk Containers (IBCs).

10.1.4.1 Conductive IBCs (e.g., those constructed of metal) should be grounded during all operations in areas where an ignitable atmosphere exists.

10.1.4.2 The following are examples of engineering and administrative controls that should be considered to ensure that grounding of conductive containers and associated conductive equipment is accomplished during all operations:

- (1) Metal funnels should be grounded.
- (2) Flexible fill pipes should have any conductive components, including internal stiffening wires, connected to ground.

10.1.4.3 Where a nonconductive material is transferred into a conductive IBC that is grounded, any charge that has accumulated on the material will remain on the material. The process of relaxation is the slow migration of the charges through the material to the opposite charges on the wall. While this relaxation process is occurring, which can last a few seconds or many minutes, depending on the conductivity of the material, an electric field still exists at the surface of the material.

10.1.4.4 In the case of IBCs with open tops, the electric field can induce charges on other conductors that might be present, including ungrounded personnel. Thus, induction of surface charges onto other ungrounded conductors can occur even where conductive IBCs are properly grounded. Appropriate precautions should be taken.

10.1.4.5 IBCs made of conductive materials and nonconductive liners should be used only if the liners are essential (e.g., to maintain compatibility between the IBC and the material being handled). The risk of ignition and the possibility of electric shock from propagating brush discharge depend heavily on the thickness and resistivity of the liner, the handling procedure, the electrical properties of the material being handled, and the incendiary nature of any combustible material that might be present.

10.1.4.6 In general, propagating brush discharge will not occur if the nonconductive liner has a breakdown voltage lower than 4 kV. Each situation should be considered individually.

10.1.5 Nonconductive IBCs.

10.1.5.1 The term *nonconductive* applies to any IBC that has a volume resistivity greater than 10¹⁰ ohm-m or a surface resistivity greater than 10¹¹ ohms.

10.1.5.2 Where a material is transferred into a nonconductive IBC, the container material will hinder the relaxation to ground of any static electric charge that is present on the material. In this instance, even conductive contents can accumulate charge.

10.1.5.3 Nonconductive IBCs should not be filled or emptied in areas where easily ignitable atmospheres (i.e., gases, flammable vapors, sensitive dusts, and hybrid mixtures with MIEs of less than 10 mJ) are present.

10.1.5.4 Where powders are to be added to flammable liquids from nonconductive containers, the receiving system should be closed and inerted.

10.1.5.5 Nonconductive IBCs should not be used with solvent-wet powders (i.e., powders containing more than 0.2 percent by weight of solvent) in locations where the ambient temperature is near or above the flash point of the solvent.

10.1.5.6 If a nonconductive IBC is moved into a location where flammable gases or vapors are also present, rubbing of the container should be avoided.

10.1.6 Flexible Intermediate Bulk Containers (FIBCs).

10.1.6.1 Description. Flexible intermediate bulk containers (FIBCs) are basically very large fabric bags supported in a frame. They are more convenient than rigid IBCs, because they can be fully collapsed after use, taking up little storage space.

10.1.6.1.1 The fabric is usually polypropylene, and the fabric is sewn to form a three-dimensional cube or rectangle with lifting straps. An FIBC can be filled with a powder or granular material and moved about with conventional materials-handling equipment.

10.1.6.1.2 An advantage of FIBCs is that they can be unloaded quickly, typically 300 kg to 500 kg in 30 sec or less. Therefore, rates at which static electric charges are generated can often exceed the rates at which the charges can relax under common conditions of use, and accumulation of a static electric charge can be expected. In general, the precautions given in Section 10.1 for IBCs also apply to FIBCs.

10.1.6.2 Charge Generation. Static electric charges can be generated during the filling and emptying of FIBCs and can accumulate on both the contents and the fabric of the FIBC. If the accumulated charge is strong enough and is released in the presence of an ignitable atmosphere, ignition can occur.

10.1.6.3 Nonconductive FIBCs.

10.1.6.3.1 FIBCs constructed of nonconductive materials (e.g., polypropylene fabric with polyester stitching) have no special features incorporated in their design to minimize static electric charging. Nonconductive FIBCs can be used for materials that do not form ignitable atmospheres in normal handling operations.

10.1.6.3.2 Experience has shown that granular materials that form dust clouds during handling can be safely handled in nonconductive FIBCs, provided that the dust clouds generated cannot be easily ignited by a static electric discharge. In other words, the material should have an MIE for a dust cloud that is greater than 100 mJ. The following criteria also apply:

- (1) Nonconductive FIBCs should not be used for granular materials that have an MIE of less than 100 mJ.
- (2) Nonconductive FIBCs should never be used in areas where a flammable gas or vapor is present.

10.1.6.4 Conductive FIBCs.

10.1.6.4.1 FIBCs constructed of conductive fabric can be treated the same way as conductive IBCs, as specified in 10.1.4. If conductive FIBCs are used with a liner, the recommendations of 10.1.4.5 and 10.1.4.6 also apply. It is essential that these FIBCs be grounded during all operations.

10.1.6.4.2 FIBCs constructed of nonconductive fabric and containing woven, grounded, conductive filaments can be considered to be conductive. One type of FIBC has conductive filaments spaced less than 20 mm apart, each of which is connected at least once to its neighbor, preferably at one end. They are intended to be grounded. Another type has conductive filaments or threads that form an interconnecting grid of not more than 50 mm mesh size. They also are intended to be grounded.

10.1.6.4.3 The recommendations for conductive IBCs given in 10.1.4 also apply to conductive FIBCs. A grounding tab that is electrically connected to the conductive threads is provided and is intended to be connected to a ground point when the FIBC is filled or emptied.

10.1.6.5 Summary. Currently the manufacture and use of FIBCs are in the development stage, and many variants and combinations of fabric are being introduced. It is, therefore, not possible to make recommendations for the safe use of all the types being used in areas where an ignitable atmosphere might be present. In particular, at this time, sufficient data are not available for FIBCs constructed of layers of various conductive and nonconductive fabrics.

10.1.7 Container Linings.

10.1.7.1 Both conductive and nonconductive liners are used in containers. Conductive liners (e.g., carbon-filled polyethylene) have been used inside nonconductive containers to provide a means for grounding. In instances where product contamination is a concern, nonconductive (e.g., polyethylene) liners have been used in both conductive (e.g., metal) and nonconductive (e.g., polypropylene) containers. In instances where very fine powders can leak through the weave of the cloth, nonconductive (e.g., polyethylene) liners have been used.

10.1.7.2 Extreme caution should be exercised in the use of conductive liners to ensure that they do not become ungrounded.

10.1.7.3 As in the case of conductive containers, conductive liners should be grounded during all operations.

10.1.7.4 In the handling of materials that accumulate static electric charges, the use of liners that have resistivities greater than 10^{11} ohms inside conductive containers could create conditions where propagating brush discharges or capacitor-like discharges can occur. Because the conditions under which these discharges can occur are many and varied, no general recommendations can be given at this time.

10.1.7.5 Where nonconductive liners are used in nonconductive containers, the precautions recommended should be the same as for nonconductive containers alone, as given in 10.1.5 and 10.1.7.4.

10.1.7.6 Liners should never be removed from containers (e.g., to shake out a residue) where easily ignitable atmospheres (i.e., gases, flammable vapors, sensitive dusts, and hybrid mixtures with MIEs of less than 30 mJ) are present.

10.2 Web and Sheet Processes.

10.2.1 General.

10.2.1.1 In web processes, such as printing, coating, spreading, and impregnating, static electricity is a frequent, annoying, and often expensive source of production problems. If flammable solvents are used in the process, static electric charges can constitute an ignition source.

10.2.1.2 In practice, paper or any other substrate charged with static electricity will attract or repel other objects. This phenomenon can cause difficulty in controlling the sheet or web, which is the continuous substrate that is being printed or coated. It can also cause problems with delivering and handling the printed product due to static attraction between the sheets or folded signatures. Static electric charges can transfer by induction or by contact with various objects (e.g., during handling of the paper or substrate by personnel). These static electric charges can accumulate on a person who is not adequately grounded.

10.2.2 Substrates.

10.2.2.1 Paper.

10.2.2.1.1 The characteristics of the surface of the paper have a great deal to do with the amount of static electric charge that is generated during processing. Generally, printing on paper causes fewer problems than printing on plastic substrates and other synthetic materials. Static electric charge accumulates on paper during the handling process. On presses and in other handling operations, static electric charge can be generated by belts driving the paper rolls, sliding of the web over idler rollers and angle bars, motion of the web through a nip, and motion of brushes and delivery belts in the folder.

10.2.2.1.2 In some operations, static electric charge is deliberately deposited on the web to improve certain operations, such as material deposition and sheet transfer. In gravure printing, for example, electrostatic assist is used to improve the transfer of ink. On high-speed offset and high-speed gravure presses, ribbon tacking is used to control the ribbons and signatures in the folder.

10.2.2.2 Plastics. Most plastic films are characterized by extremely high surface and bulk resistivities. This resistivity allows static electric charge to accumulate on the web after contact with machine parts, such as rollers and belts, with little dissipation occurring.

10.2.2.3 Fabrics and Nonwovens.

10.2.2.3.1 Fabrics are usually made of blends of natural fibers (usually hygroscopic and capable of relaxing a charge) and synthetic fibers (usually highly resistive and capable of holding a charge). The smaller the proportion of natural fibers used, the greater the incidence of static electric problems in subsequent operations. Fabrics are thin, like paper and plastic films, and accumulate static electricity in a similar manner.

10.2.2.3.2 Nonwovens often have a loft that gives them a three-dimensional structure. They are almost exclusively synthetic, so they tend to generate and hold substantial charges in the forming process. These charges can be more difficult to remove due to the depth of the loft. In a subsequent coating or saturating process, large amounts of charge can again be generated due to relative motion of the fibers and again the charge can be difficult to remove if the loft returns. The solvent-wet batt contains a relatively large volume of flammable vapor, and electrostatic discharge can cause ignition.

10.2.3 Inks and Coatings.

10.2.3.1 Inks used in letter presses and offset presses are typically Class IIIB liquids that have flash points above 93°C and present little fire or explosion hazard. However, inks used in silk screen, rotogravure, and flexograph printing are usually Class IB and Class IC liquids with flash points less than 38°C. Fires can occur in these inks due to the use of solvents with vapors that can be ignited by static electric discharge, as well as by other ignition sources.

10.2.3.2 The solutions and suspensions that are used to coat and saturate webs are diverse. While they are still wet, water-based coatings are generally conductive enough to dissipate any charge that is generated in the process, even though there might be minor concentrations of solvent present that can create an ignitable vapor layer on the web. When dry, however, these coatings are not always capable of dissipating the charge, but vapors are seldom left at this point.

10.2.3.3 Flammable solvent-based inks and coatings should be considered nonconductive and, therefore, incapable of dissipating a charge. Conductivity enhancers in the ink or coating cannot be relied on to assist dissipation of charge at high processing speeds. Measurement of coating solution conductivity can provide additional data to determine static generation and dissipation characteristics.

10.2.3.4 Black inks used in gravure printing are generally nonconductive. Where accumulations of black ink, particularly black ink used on uncoated papers, are washed or cleaned off the rubber impression rollers, the resin can be washed out of the ink buildup, leaving a residue of conductive carbon (i.e., the pigment). If this conductive residue is not thoroughly wiped off the rollers, sparking and arcing from the roller to the cylinder or other grounded press parts can occur.

10.2.4 Processes.

10.2.4.1 Printing Presses. All other factors being equal, printing presses that operate at higher speeds generate more static electricity. A rotogravure press, for example, can generate static electricity where the rubber roll presses the substrate against an engraved roll, which is wetted with the ink. Charge can be transferred from the engraved roll to the substrate. In a multicolored press, there is a similar arrangement for each color. The generation of charge is a function of the pressure between the rolls and the angle to the roll. The electrostatic assist (ESA) process, where used, deposits large amounts of charge onto the substrate. Note that ESA equipment must be suitable for Class I, Division 1, locations.

10.2.4.2 Coating. Coating of web materials is done using a wide variety of equipment. Some coating processes can generate hazardous amounts of static electric charge due to their design, while others cause little effect. The operating conditions that cause high rates of charge generation include high forces between rollers and the web, such as in gravure coating. This high rate of generation is aggravated by maintaining a tension difference across the coating roller, which causes slippage. The result is a sizable charge at the point where a large amount of ignitable vapor and a large liquid surface area are present. The rubber backup roller can accumulate enough electrostatic charge to present an ignition hazard. An electrostatic charge neutralizer might be needed on the roller.

10.2.4.3 Saturating. Saturating is the process of immersion of a web in a liquid so that the liquid fills the pores in the web. The excess liquid is then squeezed or wiped from both sides of the web. Electrostatic charging during saturating operations is not usually a problem for most webs. Where the web is a nonwoven with substantial loft and the liquid is flammable and of low conductivity, a static electric hazard can be created.

10.2.4.4 Calendering.

10.2.4.4.1 Calendering is a process by which a substrate is squeezed at high pressure between rollers that are generally smooth. This process is used to create a dense product with a smooth surface, such as magazine cover stock. It is also used to mill and form webs from materials such as rubber and plastics. The intimate contact caused by the high pressures and the working of the materials between the nipped rollers creates charge on the web. Charging can be high enough to form corona discharge at the exit of the nip.

10.2.4.4.2 Because flammable solvents are not usually present, the effect of static electric charge is to cause operator

shock and web-handling problems. Static neutralizers can effectively remove the charge.

10.2.4.5 Web Handling and Converting. The path of the web through processing machinery often is guided over many rollers. Movement of the web over the rollers produces static electric charge due to friction. A freely turning idler roller imparts little charge to the web. As the speed of the process increases above 60 m/min, air is drawn between the web and the roller, reducing the intimacy of contact and, thus, the rate of charge generation. If the roller does not turn freely, however, the web slips on the roller surface and can generate a large static electric charge. Periodic inspections and maintenance should be performed to ensure that the rollers are always free-turning.

10.2.4.5.1 Converting large rolls of web goods to finished product involves operations such as slitting, sheeting, folding, and packaging. These operations involve many contacting surfaces, and materials used to construct machinery for such operations are chosen for durability and resistance to wear, more so than for static electric characteristics. The machinery is designed to occupy a minimum of floor area for economy of plant space. The machines are dense with rollers, belts, and framework that variously generate charge and suppress static electric charge and provide minimal space to install static electricity neutralizers. The result is a static electric problem that can be hard to measure and hard to control. Problems include the following:

- (1) Product sticking or flying
- (2) Machine jams
- (3) Misaligned product stacks
- (4) Bad product rolls
- (5) Bad packages

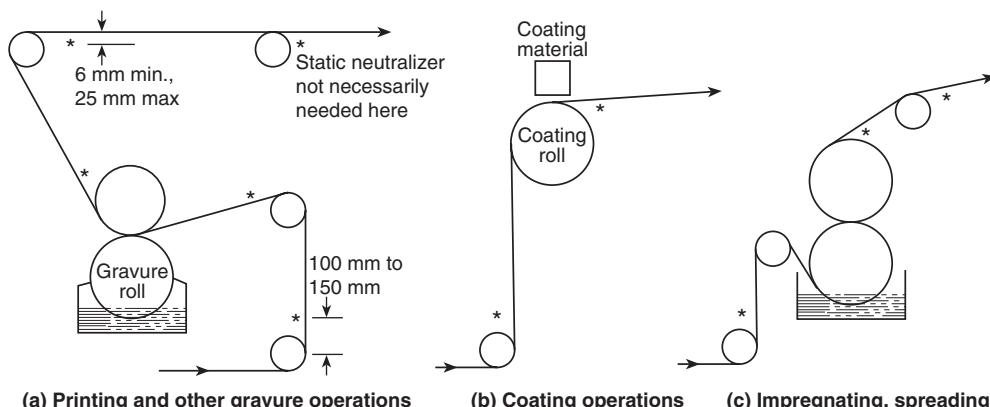
10.2.4.5.2 With photosensitive materials, the charge can cause product damage, which is revealed only when the customer complains.

10.2.4.6 Ribbon Tacking. On high-speed offset and gravure presses, high-voltage tacking is used to improve the delivery of signatures to the folder. These high-voltage devices should be suitable for Class II, Division 2, locations subject to accumulations of settled paper dust.

10.2.5 Control of Static Electricity in Web Processes.

10.2.5.1 Higher operating speeds result in the potential for increased volumes of flammable vapors in the immediate vicinity of the area where flammable liquids are applied to the substrate. Coating technology, such as the enclosed ink gravure fountain, has minimized the volume of flammable vapors in the application area. Solvent vapors can be diluted below the lower flammable limit (LFL) by means of mechanical ventilation. The performance of the ventilation system is optimized by capturing vapors as close to their source as possible. The ventilation system should be interlocked with the equipment to ensure safe operation of the process. Vapors will always be within the flammable range in the areas close to the application process and the substrate.

10.2.5.2 A common method of removing static electric charge from processing machinery is by grounding the machine.


10.2.5.2.1 For grounding of the machine to be effective, all conductive parts of the machine should be electrically bonded together.

10.2.5.2.2 It should be noted that the charge on the material being processed is not removed by the grounding and bonding specified in 10.2.5.2 and 10.2.5.2.1.

10.2.5.3 The ionization method of charge neutralization is the most effective means for controlling static electric charge on the webs in presses and coaters. Neutralizers, also referred to as *static elimination bars* or *inductive ionizers*, are commonly used close to the substrate, but they should not touch the substrate.

10.2.5.3.1 The reduction of charge at any one point in the operation does not prevent generation of charge in later steps of the process. Static neutralizers might be necessary at a number of locations. (See Figure 10.2.5.3.1.)

10.2.5.3.2 High-speed operations might require a second static neutralizer at a single location, but providing more than two usually gains no additional benefit. Neutralizers should extend across the full width of the web. For fast-running presses, inductive neutralizers, such as tinsel wrapped around a bar or grounded needle points, spaced 12 mm to 25 mm apart and placed at the inlet and delivery side of each impression roller, have been found to be effective.

*Suggested locations for static neutralizers

FIGURE 10.2.5.3.1 Typical Locations for Static Neutralizers.

10.2.5.3.3 As with all neutralizers, positioning is important, and effectiveness of individual installations should be confirmed by field measurement of residual charge or voltage.

10.2.5.3.4 An area of web as small as 0.01 m² or an area 115 mm in diameter might be capable of releasing an incendive discharge. The neutralizer should be installed as far as possible from grounded metal machine parts or areas where the web is supported by rollers.

10.2.5.3.5 The location of the initial inductive ionizer should be 100 mm to 175 mm from the roller tangent (i.e., web exit) point and 6 mm to 25 mm from the web. Thus, the first neutralizer after the roller might have to be placed so close to the roller that it is partially suppressed from ionizing but can minimize the area of high charge. An additional ionizer or two downstream from the roller might also be necessary to reduce the charge to the desired extent.

10.2.5.3.6 The final location near critical rollers should be determined by adjustment and measurement to minimize web charge, as indicated by apparent voltage.

10.2.5.4 Tinsel or needle points remain functional only as long as they are clean and sharp.

10.2.5.4.1 Accumulation of contaminants (e.g., ink, coating solution, or paper dust) and corrosion products should be controlled by an effective maintenance program.

10.2.5.4.2 Visual inspection and performance verification of the neutralizers should be done at intervals that will depend on how process conditions affect performance of the neutralizers.

10.2.5.5 Humidification has been used in the past to decrease static electric charge on materials in the environment, such as in garments and floor coverings. However, with modern high-speed operations, nonconductors, such as paper and plastic films, cannot adsorb enough moisture from the atmosphere during the brief time that they are exposed to humid air to increase their surface conductivity. Plastics generally do not become sufficiently conductive, even in humid atmospheres, due to lack of ionized molecules in an acquired surface layer of moisture. Therefore, humidification should not be used as a method of control of static electricity in such processes.

10.3 Spray Application.

10.3.1 Processes that involve spray application of liquids or powders (e.g., paints, coatings, lubricants, and adhesives) can cause accumulation of static electric charges on the spray apparatus and on the surfaces of the objects being sprayed and other objects in the spray area. If the material sprayed is ignitable, static electric discharge can result in ignition.

10.3.2* Personnel involved in operating or servicing electrostatic spray application equipment should be trained in the operating procedures recommended by the manufacturer of the equipment and in the control of hazards associated with the materials being sprayed and their residues.

10.4 Belts and Conveyors.

10.4.1 General. Flat or V-shaped rubber or leather belts used for transmission of power and belts used for the transportation of solid materials can generate static electric charges that warrant corrective measures if a possibility exists that ignitable concentrations of flammable gases or vapors or combustible dusts or fibers might be present. The amount of charge generated increases as any of the following increases:

- (1) Belt speed
- (2) Belt tension
- (3) Width of the contact area

10.4.2 Flat Belts.

10.4.2.1* Synthetic, rubber, or leather flat belts are usually good insulators, because they are dry when operated and because they operate at elevated temperatures due to friction. Generation of static electric charge occurs where the belt leaves the pulley and can occur with either conductive or nonconductive pulleys.

10.4.2.2* Accumulation of static electric charge on belts can be prevented by using belts made of conductive materials or by applying a conductive dressing to the belt.

10.4.2.2.1 If a dressing is used, it should be reapplied frequently, or the conductivity of the belt will diminish. Whether or not a dressing is used, belts should be kept free of accumulations.

10.4.2.2.2 It should be noted that both conductive and nonconductive belts can generate and deposit charge on the material or objects being conveyed.

10.4.2.3 An electrostatic neutralizer placed so that the points are close to the inside of the belt and a few centimeters away from the point where the belt leaves the pulley is also effective in draining away most of the charge. (See 10.2.5.3.)

10.4.3* V Belts.

10.4.3.1 V belts are not as susceptible to hazardous accumulations of static electric charge as are flat belts. Under certain conditions of temperature and humidity, however, a V belt can generate a significant charge.

10.4.3.2 Where ignitable mixtures of gases, vapors, dusts, or fibers are present, the preferred method to limit ignition by static electric discharge is to use a direct drive instead of a belt. If a V belt is necessary for other reasons, it should be protected in accordance with 10.4.2.2.

10.4.4 Conveyer Belts.

10.4.4.1 Belts used for the transport of solid materials usually move at speeds that are slow enough to prevent an accumulation of static electric charges. However, if the material being transported is very dry, or if the belt operates in a heated environment and at high speeds, significant charges can be generated.

10.4.4.2 Material that is spilled from the end of a conveyor belt into a hopper or chute can carry a significant charge. In such cases, the belt support and terminal pulleys should be electrically grounded or bonded to the hopper or chute. A passive or active neutralizer installed close to the end of the conveyor can also help reduce the charge. Conductive or anti-static belts cannot be expected to remove static from the conveyed product.

10.4.5 Pulleys and Shafts.

10.4.5.1 Metal pulleys can accumulate a charge equal and opposite to that carried by the belt that runs over them. The charge typically will pass to the supporting shaft and then through bearings to the equipment and to ground. Where nonconductive components isolate metal parts, separate bonding or grounding of those parts could be necessary.

10.4.5.2 Lubricated bearings are still sufficiently conductive to allow dissipation of a static electric charge from the shaft. However, the conductivity across bearings that operate at very high speed is not necessarily sufficient to prevent accumulation of charge where the rate of generation is also high. For that reason, shafts that rotate at high speed should meet the following criteria:

- (1) They should be checked for accumulation of static electric charge.
- (2) They should be bonded or grounded by means of a sliding metal contact to the housing, if necessary.

10.4.5.3 The effective resistance across a bearing while in operation can be measured with a common ohmmeter as follows:

- (1) One of the probes should be placed on the grounded machine frame.
- (2) The other probe should be allowed to rest against the rolling member.

10.4.5.3.1 A value of approximately 10^4 ohms is to be expected. If a value greater than 10^5 ohms is found, an auxiliary grounding brush or shoe might be needed to prevent changes with time that could exceed 10^6 ohms. The grounding brush should be periodically checked and maintained.

10.4.5.3.2 Critical bearings without a brush should be measured periodically.

10.4.6 Maintenance of Belts and Conveyors. Belts and conveyors should be inspected frequently for slipping or jamming to lessen the chance of generation of static electricity.

10.4.6.1 Drive systems operating in hazardous environments should be designed to stall without slipping.

10.4.6.2 Lubricant does not prevent the removal of static electric charges. Therefore, all bearings should be properly lubricated. However, the flow of static electricity across the film of lubricant sometimes results in pitting of bearing surfaces. A conductive grounded brush running on the shaft or pulley prevents pitting of the bearings.

10.5 Explosives. Most explosives and materials used as solid propellants contain enough oxidizer to sustain an explosive reaction without any outside contribution. These materials typically are sensitive to static electric discharge and can be extremely hazardous to handle if suitable precautions are not taken. In addition to the recommendations contained in this recommended practice, the following documents should be consulted for more specific information:

- (1) NFPA 495, *Explosive Materials Code*
- (2) NFPA 498, *Standard for Safe Havens and Interchange Lots for Vehicles Transporting Explosives*
- (3) NFPA 1124, *Code for the Manufacture, Transportation, Storage, and Retail Sales of Fireworks and Pyrotechnic Articles*
- (4) NFPA 1125, *Code for the Manufacture of Model Rocket and High Power Rocket Motors*
- (5) IME Safety Library Publication No. 3, *Suggested Code of Regulations for the Manufacture, Transportation, Storage, Sale, Possession, and Use of Explosive Materials*
- (6) IME Safety Library Publication No. 17, *Safety in the Transportation, Storage, Handling, and Use of Explosive Materials*
- (7) U.S. Department of Defense Standard 4145.26M, *Contractors' Safety Manual for Ammunition and Explosives*
- (8) U.S. Department of Defense Standard 6055.9, *Ammunition and Explosive Safety Standards*

10.6 Cathode Ray Tube Video Display Terminals.

10.6.1 A static electric charge is commonly present on the face of cathode ray tube (CRT) video display terminals, particularly on color monitors and color television screens. This charge is the direct result of the CRT's high-energy electron beam "writing" the image on the inside surface of the screen. The charge accumulates on the nonconductive surface of the screen and can reach energies capable of igniting a flammable atmosphere, if discharge occurs. Such an atmosphere can be created by wiping the screen of an operating or recently operated CRT with a cloth or tissue that is wet with a commercial cleaner that contains a flammable liquid such as isopropyl alcohol or by using a spray-on aerosol cleaner that uses a flammable gas propellant. The static electric charge can be removed from the screen of the CRT by accessories or by proper procedures. (See 10.6.3.) Other video display terminals, such as liquid crystal displays, gas plasma displays, and vacuum fluorescent displays, do not present similar static electric effects. That does not mean, however, that those displays are intrinsically safe for use in hazardous locations.

10.6.2 In an industrial environment that is classified as hazardous in accordance with Article 500 of NFPA 70, *National Electrical Code*, only engineering methods are acceptable for controlling the hazard.

10.6.2.1 Due to the high voltages present, the CRT should be enclosed in a purged or pressurized enclosure, as described in NFPA 496, *Standard for Purged and Pressurized Enclosures for Electrical Equipment*.

10.6.2.2 To protect against a static electric discharge from the screen's surface, the screen cannot be exposed to the surrounding environment but should be located behind a window in the enclosure.

10.6.3 In nonhazardous locations, a commercial static electric dissipating screen that overlays the CRT screen can be used to drain the static electric charge by means of a connection to ground. The ground connection from the overlay should be secure to prevent shock or an ignition-capable spark. One safe procedure for reducing the charge on the CRT screen is to wipe the screen with a water-wet cloth or tissue immediately before using any solvent-based cleaner. This action drains off the excess charge through the operator's body. Ideally, nonflammable or low-volatility cleaning agents should be used.

Annex A Explanatory Material

Annex A is not a part of the recommendations of this NFPA document but is included for informational purposes only. This annex contains explanatory material, numbered to correspond with the applicable text paragraphs.

A.1.1.2 See NFPA 70, *National Electrical Code*, for additional information on grounding to prevent shock hazards.

A.1.1.3 For information on the hazards of static electricity in hospital operating rooms and similar areas, see NFPA 99, *Standard for Health Care Facilities*.

A.1.1.4 For information on the hazards of lightning, see NFPA 780, *Standard for the Installation of Lightning Protection Systems*.

A.1.1.5 For information on the hazards of stray electrical currents and induced radio frequency currents, see API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*.

A.1.1.6 For information on the hazards of automotive and marine craft fueling, see NFPA 30A, *Code for Motor Fuel Dispensing Facilities and Repair Garages*, and NFPA 302, *Fire Protection Standard for Pleasure and Commercial Motor Craft*. For information on aircraft refueling, see NFPA 407, *Standard for Aircraft Fuel Servicing*.

A.1.1.7 For information on the hazard of static electricity in cleanrooms, see NFPA 318, *Standard for the Protection of Semiconductor Fabrication Facilities*.

A.3.2.1 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdiction may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A.3.2.2 Authority Having Jurisdiction (AHJ). The phrase “authority having jurisdiction,” or its acronym AHJ, is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A.3.2.3 Listed. The means for identifying listed equipment may vary for each organization concerned with product evaluation; some organizations do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

A.3.3.5 Capacitance. Capacitance is the property of a system of conductors and nonconductors that permits the storage of electrically separated charges where potential differences exist between the conductors. For a given potential difference, the higher the capacitance, the greater is the amount of charge that can be stored. Quantitatively, it is the ratio of the charge on one of the conductors of a capacitor (there being an equal and opposite charge on the other conductor) to the potential difference between the conductors. The unit of capacitance is the farad. Because the farad is so large a quantity, capacitance (see examples in Table A.3.3.5) is usually reported in microfarads (μF) or picofarads (pF) in accordance with the following equation:

$$1 \text{ farad} = 10^6 \mu\text{F} = 10^{12} \text{ pF}$$

Table A.3.3.5 Examples of Capacitance of Various Items

Item	Capacitance (pF)
Tank car	1000
Automobile	500
Person	100-300
Oil/solvent drum	10-100
Metal scoop	10-20
Needle electrode	1
Dust particle	10^{-7}

A.5.3.3.4 MIEs can be determined for pure materials and their mixtures. The actual ignition energy could be higher than the MIE by an order of magnitude or more if the mixture varies significantly from the most easily ignited concentration. For hazard evaluation, the MIE should be considered the worst case.

A.5.3.8 See Britton, *Avoiding Static Ignition Hazards in Chemical Operations*, for additional information.

A.7.6.2.2 See ANSI Z41, *Standard for Personal Protection — Protective Footwear*.

A.7.6.3 See Britton, *Avoiding Static Ignition Hazards in Chemical Operations*, for additional information.

A.7.6.4.2 See Britton, *Avoiding Static Ignition Hazards in Chemical Operations*, for additional information.

A.7.6.4.3 See NFPA 53, *Recommended Practice on Materials, Equipment, and Systems Used in Oxygen-Enriched Atmospheres*.

A.8.2.1.1 Class I flammable liquids, which have flash points of less than 38°C , can form ignitable vapor-air mixtures under most ambient conditions. Class II and Class III combustible liquids, which have flash points of 38°C or greater, typically require some degree of preheating before they evolve enough vapor to form an ignitable mixture. Certain liquids of low fire hazard, such as solvent formulations consisting of mostly water, might be classed as combustible liquids, yet they can generate ignitable vapor-air mixtures in closed containers at less than 38°C . Similarly, certain liquids that do not have a flash point could be capable of generating an ignitable vapor-air mixture as a result of degassing or slow decomposition, especially where the vapor space is small compared with the liquid volume. (Also see Annex C.)

A.8.2.2 Operating a process at less than the LFL is often safer than operating above the UFL, particularly for tanks and other large vessels. Even if liquid in a tank rapidly generates sufficient vapor for operation above the UFL, flammable mixtures can still be present at tank openings, such as sampling ports, and the flammable range could be traversed inside the tank during start-up or some other operating condition.

Often, the atmosphere in the vessel can be inerted, as described in NFPA 69, *Standard on Explosion Prevention Systems*. This technique reduces the oxygen concentration below that required to sustain combustion. Inerting might not be effective near tank openings, especially in cases where additions of solids can entrain air. Also, for storage tanks, the inert gas supply should be capable of compensating for changes in temperature or in-breathing of air during tank emptying. (Also see Annex D.)

A.8.2.4 Preventing an ignitable atmosphere can be accomplished using any of the methods described in NFPA 69, *Standard on Explosion Prevention Systems*. Of those methods, the most common is to add a suitable inert gas, such as nitrogen, so that the resulting concentration of oxygen is not sufficient to support a flame. A safety factor is usually applied. For most flammable gases and vapors, inerting typically requires reducing the oxygen concentration to about 5 percent by volume.

A.8.3.1 The system of two layers having opposite net charge is referred to as an *electrical double layer*. Farther away from the contact surface is what is known as a *diffuse layer*, which has a charge of opposite polarity. Any process that shears the liquid, such as pipe flow, moves the diffuse layer downstream with the bulk of the liquid, while the bound layer charge relaxes to the wall, provided that the wall is grounded. This process, in effect, allows the diffuse layer to result in charge accumulation in the liquid. For conductive liquids such as water, the diffuse layer is only a few molecules thick. However, for nonconductive liquids, such as light petroleum distillates, the layer could be many millimeters thick. Ionic species present in liquids undergo charge separation at interfaces in a manner that results in one sign of charge being more strongly bound at the contacted surface than the other. This results in a bound layer of liquid close to the contact surface.

Where small droplets having dimensions smaller than the thickness of the double layer are formed, the formation of the droplet can pinch off a net charge. This can result in charged sprays and mists for both conductive and nonconductive liquids. The larger the area of the interface, the greater is the rate of charging. Examples of such processes are fine filtration; agitation of two-phase systems, such as water and oil; and suspension of powder in liquid.

The charges that are carried in the bulk of the flowing liquid create a current referred to as a *streaming current*. Although the charge is separated at the wall, flow mixes the charge into the bulk of the liquid, and a charge density, measured in coulombs per cubic meter, can be achieved. Streaming current, in coulombs per second or amperes, is equal to the volume flow rate, in cubic meters per second, multiplied by the liquid charge density, in coulombs per cubic meter.

A.8.3.2 See Annex E.

A.8.3.3.1 The mechanism of charge generation is highly complex. For flow of liquid in pipes, the charging current depends on the liquid's electrical conductivity and dielectric constant and its viscosity and flow characteristics, which involve factors such as flow velocity, pipe diameter, and surface roughness. For equal flow characteristics, electrical conductivity is the dominant factor. This is most pronounced for low-conductivity liquids, due to trace contaminants.

Trace contaminants have a negligible effect on the liquid's dielectric constant and viscosity but have a dominant effect on conductivity. Conductive liquids are much less affected by trace contaminants. In many systems, such as long pipes, the charge density reaches a steady state at which the rate of charge generation is balanced by the rate of charge relaxation back to ground. (Also see Annex E.)

A.8.4.1 See Britton, *Avoiding Static Ignition Hazards in Chemical Operations*, for additional information.

Various theoretical and empirical models have been derived expressing either charge density or charging current in terms of flow characteristics, such as pipe diameter and flow velocity. Liquid dielectric and physical properties appear in

more complex models. For turbulent flow of a nonconductive liquid through a pipe under conditions where the residence time is long compared with the relaxation time, the charging current, I_s , can be expressed by the following equation:

$$I_s = N(v^x)(d^y)$$

where:

I_s = streaming current (amperes)

N = constant (characterizing flow conditions, as explained in the following text)

v = flow velocity (meters per second)

x = approximately 2

d = diameter of conduit (meters)

y = approximately 2

Various values for the constants can be found in the literature. The constant, N , has been reported to range from 3.75×10^{-6} C-sec/m⁴ to 25×10^{-6} C-sec/m⁴. The lower value corresponds to turbulent flow through a long, smooth pipe, while the higher value corresponds to turbulent flow through spiral-wound composite hose. An order of magnitude value for N is 1×10^{-5} C-sec/m⁴. While more recent studies suggest that y is equal to 1, it has been most commonly reported that both x and y are approximately equal to 2, so that the charging current is roughly proportional to the square of $(v \times d)$. An important outcome of the studies is that $(v \times d)$ can be used as a means of characterizing the charging current in pipe flow and as a basis for setting flow limits where filling tanks. (See Sections 8.5 and 8.6.)

A.8.4.2 All-plastic nonconductive pipe should not be used for handling nonconductive or semiconductive liquids except where it can be shown that the advantages outweigh any risks associated with external static electric discharge or leaks from pinholes or where tests have demonstrated that the phenomena will not occur. Grounded, plastic-lined metal pipe does not pose either of those risks directly, but tolerance for liner pinholes should be considered. For example, if the liquid is corrosive to metal piping, gradual loss of metal because of pinholes could lead to unacceptable product contamination and eventual loss of containment. Conversely, minor pinhole damage might be acceptable, provided that the liner is intended only to minimize product discoloration caused by rust and scale.

Where nonconductive and partly conductive liquids need to be transferred through plastic piping systems, mitigating strategies include the following:

- (1) Reducing the rate of charging by decreasing flow velocity
- (2) Eliminating or relocating microfilters further upstream
- (3) Reducing wall resistivity, possibly to less than 10^8 ohm-m
- (4) Increasing the breakdown strength of the pipe wall by increasing the thickness or changing the material of construction
- (5) Incorporating an external grounded conductive layer on the piping

Combinations of these strategies can be considered. For example, in many cases, the presence of an external conductive layer on a plastic pipe will not by itself eliminate puncturing of the internal plastic wall, and if the layer does not provide containment, it will not prevent external leakage.

A.8.4.3 For all-metal conductive hose, the resistance to ground from any point normally should be 10 ohms or less except where insulating flanges are used to avoid sparks from

stray current. For conductive hose that contain a continuous bonding element, such as wire or braid, the resistance to ground from any metal connector normally should be 1000 ohms per meter or less, with the same exception being applicable. Resistance to ground through semiconductive hose with a current-limiting design that eliminates a low-resistance bonding element and resistance to ground through insulating flanges should be between 10^3 ohms/m and 10^5 ohms/m. In either case, the total resistance to ground from a metal hose connector should not exceed 10^6 ohms.

While a resistance to ground of less than 10^6 ohms will prevent accumulation of static electric charge in most cases, if periodic testing reveals a significant increase in the as-installed resistance, that increase could be the result of corrosion or other damage, which could lead to sudden loss of continuity. The hose, insulating flange, or both should be inspected to determine the need for replacement.

Where conductive hose has double spirals, one for bonding and the other for mechanical strength, continuity between the end connectors confirms the continuity of only one spiral. A fire was reported during draining of toluene from a tank vehicle through such a hose. It was found that the inner spiral not only was broken but was not designed to be bonded to the end connectors. For handling nonconductive liquids, one option is to use a hose with a semiconductive or conductive liner, so that a broken inner spiral cannot become isolated from ground and form a spark gap. Ideally, the inner spiral should be separately bonded to the end connectors.

It is especially important to ensure continuity with end connectors (or nozzles) where a hose is used in an ignitable atmosphere. In general, it is safer to use a properly designed fixed fill system, such as a dip pipe arrangement, for filling tank vehicles, rather than to use a hose.

Where used in flammable atmospheres, such as inside tanks, utility hose should be conductive or semiconductive. In particular, all metal connectors and nozzles should be grounded. Ungrounded hose connectors on nonconductive hose can become charged by a variety of means, such as by the insertion of a nitrogen hose into a tank containing charged liquid or mist, by rubbing, or by steam impact. While clean and dry gases do not generate charge, a nonconductive hose will become highly charged by the flow of steam.

A.8.5.2.1(4) See API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*, for further information.

A.8.7 See API 2219, *Safe Operation of Vacuum Trucks in the Petroleum Service*, for general recommendations.

A.8.10.2 See NFPA 69, *Standard on Explosion Prevention Systems*, for additional information.

A.8.13.9 See NFPA 326, *Standard for the Safeguarding of Tanks and Containers for Entry, Cleaning, or Repair*.

A.8.14 If used for flammable liquid spills, which could involve a second phase such as spill control granules or debris, wet-dry vacuum cleaners pose a number of problems, including the following:

- (1) Generation of static electricity
- (2) Electrical classification of powered equipment
- (3) Chemical compatibility
- (4) Industrial hygiene (relative to the exhaust from the vacuum cleaner)

Commercial machines for Class I, Group D, and Class II, Group E through Group G atmospheres are typically air-operated via a venturi, so they contain no electrical power. Air supply hose and liquid recovery hose should be conductive and constructed of semiconductive fabric. Filters are also semiconductive or conductive. The design is such that all parts are continuously bonded and grounded. Normally, ground continuity at prescribed checkpoints is established before each use. Floats or similar mechanisms are employed to shut off suction once the recovery tank has reached capacity level. Additional precautions might be needed to avoid overflow via siphoning (if the recovery hose is completely submerged in liquid) or where defoaming agents are not used. For flammable liquid spills in particular, measures should be taken, including training and personnel grounding, to ensure personnel are not a source of ignition.

A.9.2.4 The MIE of a dust cloud is determined using a sample that is representative of the dust in a process. The equipment and procedures used over the years have been many and varied. Therefore, MIE data might not be comparable from one data set to the next. Furthermore, the conditions under which laboratory data are acquired can be different from those of the process being examined. For these reasons, comparisons of MIE data are sometimes qualitative rather than quantitative. Nevertheless, comparisons can be quite useful.

The MIE of a dust decreases with decreasing particle size and with increasing temperature. The MIE could increase with increasing moisture content of the dust. The MIE of a dust varies little with the humidity of the supporting atmosphere, excluding problems with hygroscopic dusts. The factors that affect the MIE should be considered in a hazards analysis of a process.

A.9.7 Some flexible hose can be cut to length and put into service by simply slipping them over a pipe with a hose clamp. It is important that the spiral wires be in good metal-to-metal contact with the pipes to maintain a proper ground of the spiral. This contact can be achieved by stripping the spiral and bending it under the hose next to the pipe and under the clamp. In cases where hose with metal spirals are connected to plastic pipes, the spirals should be independently grounded.

The reason for discouraging the use of hose with more than one spiral is that if one of the spiral wires is broken in such a way that it is disconnected from ground, it can become a source of spark gap ignition.

A.9.10 See Britton, *Avoiding Static Ignition Hazards in Chemical Operations*, for additional information.

A.9.11 See Britton, *Avoiding Static Ignition Hazards in Chemical Operations*, for additional information.

A.10.3.2 See NFPA 33, *Standard for Spray Application Using Flammable or Combustible Materials*, for further information.

A.10.4.2.1 Investigations into the static electric hazard in grain elevators have shown that danger exists where the voltage reaches 30,000 volts on the belt. These studies also show that low relative humidity is an important factor in that it allows voltages to increase rapidly at temperatures below freezing.

A.10.4.2.2 The surface resistivity of a grain conveyor belt affects its ability to accumulate a charge. Tests have shown that belts with a resistance of 10^6 ohms to 10^8 ohms are conductive enough to prevent significant accumulation of charge. According to the CENELEC draft standard *Safety of Machinery — Electrotechnical Aspects*, a belt is considered to be

sufficiently conductive if the surface resistance is less than 3×10^8 ohms.

A.10.4.3 According to the CENELEC draft standard *Safety of Machinery — Electrotechnical Aspects*, V belts and similar transmission belts are considered to be sufficiently conductive if the following criterion is met:

$$R \times B < 10^5 \text{ ohm-m}$$

where:

R = electrical resistance, measured at the inner side of the mounted transmission belt between an electrode halfway between the two pulleys and ground (ohms)

B = width of a flat belt or twice the depth of the side face of a V belt (meters)

For belts constructed of different materials, a belt is considered to be sufficiently conductive if the resistance across the belt does not exceed 10^9 ohms, measured at 23°C and 50 percent relative humidity.

Annex B Physical Characteristics of Materials

This annex is not a part of the recommendations of this NFPA document but is included for informational purposes only.

B.1 Combustibility Parameters of Gases and Vapors. Table B.1 lists typical gases and vapors and the lowest value of their minimum ignition energies (MIEs) in millijoules; the stoichiometric composition, expressed as percent by volume in air (or other oxidant); and the flammable limits, also expressed as percent by volume in air (or other oxidant).

B.2 Static Electric Characteristics of Liquids. Table B.2 lists typical flammable and combustible liquids and their conductivities, dielectric constants, and relaxation time constants.

Table B.1 Combustibility Parameters of Gases and Vapors

Gas or Vapor*	Lowest MIE (mJ)	Stoichiometric Mixture (% by volume)	Flammable Limits (% by volume)
Acetaldehyde	0.37	7.73	4.0–57.0
Acetone	1.15 @ 4.5%	4.97	2.6–12.8
Acetylene	0.017 @ 8.5%	7.72	2.5–100
Acetylene in oxygen	0.0002 @ 40%	—	—
Acrolein	0.13	5.64	2.8–31
Acrylonitrile	0.16 @ 9.0%	5.29	3.0–17.0
Allyl chloride	0.77	—	2.9–11.1
Ammonia	680	21.8	15–28
Benzene	0.2 @ 4.7%	2.72	1.3–8.0
1,3-Butadiene	0.13 @ 5.2%	3.67	2.0–12
Butane	0.25 @ 4.7%	3.12	1.6–8.4
n-Butyl chloride	1.24	3.37	1.8–10.1
Carbon disulfide	0.009 @ 7.8%	6.53	1.0–50.0
Cyclohexane	0.22 @ 3.8%	2.27	1.3–7.8
Cyclopentadiene	0.67	—	—
Cyclopentane	0.54	2.71	1.5 – ND
Cyclopropane	0.17 @ 6.3%	4.44	2.4–10.4
Dichlorosilane	0.015	17.36	4.7–96
Diethyl ether	0.19 @ 5.1%	3.37	1.85–36.5
Diethyl ether in oxygen	0.0012	—	2.0–82
Di-isobutylene	0.96	—	1.1–6.0
Di-isopropyl ether	1.14	—	1.4–7.9
Dimethoxymethane	0.42	—	2.2–13.8
2,2-Dimethylbutane	0.25 @ 3.4%	2.16	1.2–7.0
Dimethyl ether	0.29	—	3.4–27.0
2,2-Dimethyl propane	1.57	—	1.4–7.5
Dimethyl sulfide	0.48	—	2.2–19.7
Di-t-butyl peroxide	0.41	—	—
Ethane	0.24 @ 6.5%	5.64	3.0–12.5
Ethane in oxygen	0.0019	—	3.0–66
Ethyl acetate	0.46 @ 5.2%	4.02	2.0–11.5
Ethylamine	2.4	5.28	3.5–14.0
Ethylene	0.07	—	2.7–36.0

Table B.1 *Continued*

Gas or Vapor*	Lowest MIE (mJ)	Stoichiometric Mixture (% by volume)	Flammable Limits (% by volume)
Ethylene in oxygen	0.0009	—	3.0-80
Ethyleneimine	0.48	—	3.6-46
Ethylene oxide	0.065 @ 10.8%	7.72	3.0-100
Furan	0.22	4.44	2.3-14.3
Heptane	0.24 @ 3.4%	1.87	1.05-6.7
Hexane	0.24 @ 3.8%	2.16	1.1-7.5
Hydrogen	0.016 @ 28%	29.5	4.0-75
Hydrogen in oxygen	0.0012	—	4.0-94
Hydrogen sulfide	0.068	—	4.0-44
Iso-octane	1.35	—	0.95-6.0
Isopentane	0.21 @ 3.8%	—	1.4-7.6
Isopropyl alcohol	0.65	4.44	2.0-12.7
Isopropyl chloride	1.08	—	2.8-10.7
Isopropylamine	2.0	—	—
Isopropyl mercaptan	0.53	—	—
Methane	0.21 @ 8.5%	9.47	5.0-15.0
Methane in oxygen	0.0027	—	5.1-61
Methanol	0.14 @ 14.7%	12.24	6.0-36.0
Methylacetylene	0.11 @ 6.5%	—	1.7 - ND
Methylene chloride	>1000	—	14-22
Methyl butane	<0.25	—	1.4-7.6
Methyl cyclohexane	0.27 @ 3.5%	—	1.2-6.7
Methyl ethyl ketone	0.53 @ 5.3%	3.66	2.0-12.0
Methyl formate	0.4	—	4.5-23
N-Pentane	0.28 @ 3.3%	2.55	1.5-7.8
2-Pentane	0.18 @ 4.4%	—	—
Propane	0.25 @ 5.2%	4.02	2.1-9.5
Propane in oxygen	0.0021	—	—
Propionaldehyde	0.32	—	2.6-17
n-Propyl chloride	1.08	—	2.6-11.1
Propylene	0.28	—	2.0-11.0
Propylene oxide	0.13 @ 7.5%	—	2.3-36.0
Tetrahydrofuran	0.54	—	2.0-11.8
Tetrahydropyran	0.22 @ 4.7%	—	—
Thiophene	0.39	—	—
Toluene	0.24 @ 4.1%	2.27	1.27-7.0
Trichlorosilane	0.017	—	7.0-83
Triethylamine	0.75	2.10	—
2,2,3-Trimethyl butane	1.0	—	—
Vinyl acetate	0.7	4.45	2.6-13.4
Vinyl acetylene	0.082	—	1.7-100
Xylene	0.2	1.96	1.0-7.0

ND: Not determined.

* In air at standard temperature and pressure, unless otherwise noted.

Source: L. G. Britton, "Using Material Data in Static Hazard Assessment."

Table B.2 Static Electric Characteristics of Liquids

Liquid	Conductivity (pS/m)	Dielectric Constant	Relaxation Time Constant (sec)
Conductive Liquids: Conductivity >10⁴ pS/m			
Acetaldehyde (15°C)	1.7 × 10 ⁸	21.1	1.1 × 10 ⁻⁶
Acetamide	8.8 × 10 ⁷	59	5.9 × 10 ⁻⁶
Acetic acid (0°C)	5 × 10 ⁵	6.15	1.1 × 10 ⁻⁴
Acetic acid (25°C)	1.12 × 10 ⁶	6.15	4.9 × 10 ⁻⁵
Acetic anhydride (25°C)	4.8 × 10 ⁷	NA	NA
Acetone (25°C)	6 × 10 ⁶	20.7	3 × 10 ⁻⁵
Acetonitrile (20°C)	7 × 10 ⁸	37.5	5 × 10 ⁻⁷
Acetophenone (25°C)	3.1 × 10 ⁵	17.39	5.0 × 10 ⁻⁴
Acetyl bromide (25°C)	2.4 × 10 ⁸	NA	NA
Acetyl chloride (25°C)	4 × 10 ⁷	NA	NA
Acrolein	1.55 × 10 ⁷	NA	NA
Acrylonitrile	7 × 10 ⁵	38	4.8 × 10 ⁻⁴
Allyl alcohol (25°C)	7 × 10 ⁸	NA	NA
Aminoethyl-ethanolamine	>1 × 10 ⁶	NA	NA
n-Aminoethyl piperazine	2.4 × 10 ⁵	NA	NA
Ammonia (-79°C)	1.3 × 10 ⁷	NA	NA
Iso-amyl alcohol	1.4 × 10 ⁵	14.7	9.3 × 10 ⁻⁴
Aniline (25°C)	2.4 × 10 ⁶	6.89	2.5 × 10 ⁻⁵
Anthracene (25°C)	3 × 10 ⁴	NA	NA
Arsenic tribromide (25°C)	1.5 × 10 ⁸	NA	NA
Arsenic trichloride (25°C)	1.2 × 10 ⁸	NA	NA
Benzaldehyde (25°C)	1.5 × 10 ⁷	NA	NA
Benzoic acid (125°C)	3 × 10 ⁵	NA	NA
Benzonitrile (25°C)	5 × 10 ⁶	25.2	4.5 × 10 ⁻⁵
Benzyl alcohol (25°C)	1.8 × 10 ⁸	NA	NA
Benzylamine (25°C)	<1.7 × 10 ⁶	NA	NA
Benzyl benzoate (25°C)	<1 × 10 ⁵	NA	NA
Benzyl cyanide	<5 × 10 ⁶	18.7	>3.3 × 10 ⁻⁵
Biphenyl (liquid above 120°C)	>1 × 10 ⁴	NA	NA
Bromoform (25°C)	<2 × 10 ⁶	4.39	>1.9 × 10 ⁻⁵
Isobutyl alcohol	9.12 × 10 ⁵	17.51	1.7 × 10 ⁻⁴
sec-Butyl alcohol	<1 × 10 ⁷	16.56	>1.5 × 10 ⁻⁵
t-Butyl alcohol	2.66 × 10 ⁶	12.47	4.2 × 10 ⁻⁵
Isobutyl chloride	1 × 10 ⁴	6.49	5.7 × 10 ⁻³
sec-Butyl chloride	1 × 10 ⁴	7.09	6.3 × 10 ⁻³
Capronitrile (25°C)	3.7 × 10 ⁸	NA	NA
m-Chloroaniline (25°C)	5 × 10 ⁶	NA	NA
Chlorohydrin (25°C)	5 × 10 ⁷	NA	NA
m-Cresol	1.397 × 10 ⁶	11.8	7.5 × 10 ⁻⁵
o-Cresol	1.27 × 10 ⁵	11.5	8.0 × 10 ⁻⁴
p-Cresol	1.378 × 10 ⁶	9.91	6.4 × 10 ⁻⁵
Cyanogen	<7 × 10 ⁵	NA	NA
Cyclohexanone	5 × 10 ⁵	NA	NA
Cymene (25°C)	<2 × 10 ⁶	NA	NA
Dibutyl-o-phthalate	1.8 × 10 ⁵	6.436	3.2 × 10 ⁻⁴
Dichloroacetic acid (25°C)	7 × 10 ⁶	NA	NA
cis-Dichloroethylene	8.5 × 10 ⁵	9.20	9.6 × 10 ⁻⁵
Dichlorohydrin (25°C)	1.2 × 10 ⁹	NA	NA
Diethylamine (-33.5°C)	2.2 × 10 ⁵	NA	NA
Diethyl carbonate (25°C)	1.7 × 10 ⁶	2.82	1.5 × 10 ⁻⁵
Diethylene glycol	5.86 × 10 ⁷	31.69	4.8 × 10 ⁻⁶
Diethylenetriamine	>1 × 10 ⁶	NA	NA
Diethyl oxalate (25°C)	7.6 × 10 ⁷	NA	NA
Diethyl sulfate (25°C)	2.6 × 10 ⁷	NA	NA

Table B.2 *Continued*

Liquid	Conductivity (pS/m)	Dielectric Constant	Relaxation Time Constant (sec)
Dimethyl acetamide	1.1×10^7	NA	NA
Dimethyl formamide	6×10^6	36.71	5.4×10^{-5}
Dimethyl sulfate (0°C)	1.6×10^7	NA	NA
Dimethyl sulfoxide	2×10^5	46.68	2.1×10^{-3}
Diphenyl oxide	$<1.7 \times 10^6$	4.22	$>2.2 \times 10^{-5}$
Epichlorohydrin (25°C)	3.4×10^6	22.6	5.9×10^{-5}
Ethanolamine	1.1×10^9	37.72	3.0×10^{-7}
Ethylacetate (25°C)	4.6×10^4	6.02	1.2×10^{-3}
Ethyl acetoacetate (25°C)	4×10^6	15.7	3.5×10^{-5}
Ethyl acrylate	3.35×10^5	NA	NA
Ethyl alcohol (25°C)	1.35×10^5	24.55	1.6×10^{-3}
Ethylamine (0°C)	4×10^7	NA	NA
Ethyl benzoate (25°C)	$<1 \times 10^5$	6.02	$>5.3 \times 10^{-4}$
Ethyl bromide (25°C)	$<2 \times 10^6$	9.39	$>4.2 \times 10^{-5}$
Ethyl chloride	$<3 \times 10^5$	9.45	$>2.8 \times 10^{-4}$
Ethyl cyanoacetate	6.9×10^7	26.7	3.4×10^{-6}
Ethylene carbonate	$<1 \times 10^7$	89.6	$>7.9 \times 10^{-5}$
Ethylenediamine	9×10^6	12.9	1.3×10^{-5}
Ethylene dibromide (25°C)	$<2 \times 10^4$	4.78	$>2.1 \times 10^{-3}$
Ethylene glycol	1.16×10^8	37.7	2.9×10^{-6}
Ethylene glycol monobutyl ether	4.32×10^7	9.30	1.9×10^{-6}
Ethylene glycol monoethyl ether	9.3×10^6	29.6	2.8×10^{-5}
Ethylene glycol monomethyl ether	1.09×10^8	16.93	1.4×10^{-6}
Ethyleneimine	8×10^8	18.3	2.0×10^{-7}
Ethylene oxide	4×10^6	12.7	2.8×10^{-5}
Ethyl formate	1.45×10^5	7.16	4.4×10^{-4}
Ethyldene chloride	2.0×10^5	10.0	4.4×10^{-4}
Ethyl isothiocyanate (25°C)	1.26×10^7	NA	NA
Ethyl lactate	1.0×10^8	13.1	1.2×10^{-6}
Ethyl nitrate (25°C)	5.3×10^7	NA	NA
Ethyl oxalate	7.12×10^7	NA	NA
Ethyl propionate	8.33×10^{10}	5.65	6×10^{-10}
Ethyl thiocyanate (25°C)	1.2×10^8	NA	NA
Eugenol (25°C)	$<1.7 \times 10^6$	NA	NA
Formamide (25°C)	4×10^8	111.0	2×10^{-6}
Formic acid (25°C)	6.4×10^9	58.5	8.1×10^{-8}
Furfural (25°C)	1.5×10^8	NA	NA
Glycerol (25°C)	6.4×10^6	42.5	5.9×10^{-5}
Guaiacol (25°C)	2.8×10^7	NA	NA
Hydrogen bromide (-80°C)	8×10^5	NA	NA
Hydrogen chloride (-96°C)	1×10^6	NA	NA
Hydrogen cyanide (0°C)	3.3×10^8	NA	NA
Hydrogen iodide (at boiling point)	2×10^7	NA	NA
Iodine (110°C)	1.3×10^4	NA	NA
Mercury (0°C)	1.063×10^{18}	NA	NA
Methoxy triglycol	$>1 \times 10^6$	NA	NA
Methyl acetamide	2×10^7	191.3	8.5×10^{-5}
Methyl acetate (25°C)	3.4×10^8	6.68	1.7×10^{-7}
Methyl alcohol (18°C)	4.4×10^7	32.70	6.6×10^{-6}
Methyl cyanoacetate	4.49×10^7	29.30	5.8×10^{-6}
Methyl ethyl ketone (25°C)	1×10^7	18.51	1.6×10^{-5}
Methyl formamide	8×10^7	182.4	2.0×10^{-5}
Methyl formate	1.92×10^8	8.5	3.9×10^{-7}
Methyl iodide (25°C)	$<2 \times 10^6$	NA	NA
Methyl isobutyl ketone	$<5.2 \times 10^6$	13.11	$>2.2 \times 10^{-5}$

(continues)

Table B.2 *Continued*

Liquid	Conductivity (pS/m)	Dielectric Constant	Relaxation Time Constant (sec)
Methyl nitrate (25°C)	4.5×10^8	NA	NA
n-Methyl-2-pyrolidone	2×10^6	32.0	1.4×10^{-4}
Methyl thiocyanate (25°C)	1.5×10^8	NA	NA
Naphthalene (82°C)	4×10^4	NA	NA
Nitrobenzene (0°C)	5×10^5	34.82	6.2×10^{-4}
Nitroethane	5×10^7	28.06	5.0×10^{-6}
Nitromethane (18°C)	6×10^7	35.87	5.3×10^{-6}
1-Nitropropane	3.3×10^7	23.24	6.2×10^{-6}
2-Nitropropane	5×10^7	25.52	4.5×10^{-6}
Nitrotoluene (25°C) (ortho or meta)	$<2 \times 10^7$	NA	NA
Octyl alcohol	1.39×10^7	10.34	6.9×10^{-6}
Phenetole (25°C)	$<1.7 \times 10^6$	NA	NA
Phenol	1×10^6	9.78	8.7×10^{-5}
Phenyl isothiocyanate (25°C)	1.4×10^8	NA	NA
Phosgene (25°C)	7×10^5	NA	NA
Phosphorus (25°C)	4×10^8	NA	NA
Phosphorus oxychloride (25°C)	2.2×10^8	NA	NA
Pinene (23°C)	$<2 \times 10^4$	NA	NA
Piperidine (25°C)	$<2 \times 10^7$	NA	NA
Propionaldehyde (25°C)	8.5×10^7	18.5	1.9×10^{-6}
Propionic acid (25°C)	$<1 \times 10^5$	3.44	$>3.0 \times 10^{-4}$
Propionitrile	8.51×10^6	27.2	2.8×10^{-5}
Propyl acetate (i- or n-)	$1-6 \times 10^4$	6.002	NA
n-Propyl alcohol (25°C)	2×10^6	20.33	9×10^{-5}
Isopropyl alcohol (25°C)	3.5×10^8	19.92	5×10^{-7}
Propyl formate	5.5×10^9	7.72	1.2×10^{-8}
Pyridine (18°C)	5.3×10^6	12.4	2.1×10^{-5}
Quinoline (25°C)	2.2×10^6	9.0	3.6×10^{-5}
Salicylaldehyde (25°C)	1.6×10^7	13.9	7.5×10^{-6}
Succinonitrile	5.64×10^{10}	56.5	8.9×10^{-9}
Sulfolane	$<2 \times 10^6$	43.3	$>1.9 \times 10^{-4}$
Sulfonyl chloride (25°C)	2×10^8	NA	NA
Sulfuric acid (25°C)	1×10^{12}	NA	NA
Tetraethylene-pentamine	$>1 \times 10^6$	NA	NA
Tetramethylurea	$<6 \times 10^6$	23.06	$>3.4 \times 10^{-5}$
m-Toluidine	5.5×10^4	9.91	1.6×10^{-3}
o-Toluidine	3.79×10^7	6.34	1.5×10^{-6}
p-Toluidine (100°C)	6.2×10^6	4.98	7.1×10^{-6}
Trichloroacetic acid (25°C)	3×10^5	NA	NA
1,1,1-Trichloroethane	7.3×10^5	7.53	9.1×10^{-5}
Triethylene glycol	8.4×10^6	23.69	2.5×10^{-5}
Triethylenetetramine	$>1 \times 10^6$	NA	NA
Trimethylamine (-35°C)	2.2×10^4	NA	NA
Vinyl acetate	2.6×10^4	NA	NA
Water (extremely pure)	4.3×10^6	80.4	1.7×10^{-4}
Water (air distilled)	$\sim 1 \times 10^9$	80.4	7.1×10^{-4}
Semiconductive Liquids: Conductivity from 50 pS/m to 10^4 pS/m			
Amyl acetate	2160	4.75	1.9×10^{-2}
Armeen	470	NA	NA
Biphenyl (liquid at 69°C – 120°C)	2500–10,000	NA	NA
Bromobenzene	1200	5.40	4×10^{-2}
1-Bromonaphthalene	3660	4.83	1.1×10^{-2}
Butyl acetate (i- or n-)	4300	NA	NA

Table B.2 *Continued*

Liquid	Conductivity (pS/m)	Dielectric Constant	Relaxation Time Constant (sec)
Butyl acrylate	3580	NA	NA
Chlorobenzene	7000	5.621	7.1×10^{-3}
Chloroform	<10,000	4.806	$>4.3 \times 10^{-3}$
Dibutyl sebacate	1700	4.54	2.4×10^{-2}
Dichlorobenzene	3000	9.93	2.9×10^{-3}
Ethylene dichloride	4000	10.36	2.2×10^{-2}
2-Ethylhexyl acrylate	610	NA	NA
Gasoline (leaded)	>50	2.3	<0.41
Hydrogen sulfide (at boiling point)	1000	NA	NA
Methylene chloride	4300	8.93	1.8×10^{-2}
Pentachloroethane	100	3.83	0.3
Sulfur (130°C)	5000	NA	NA
1,2,4-Trichlorobenzene	200	4.08	0.18
Trichloroethylene	800	3.42	3.7×10^{-2}
Vinyltrimethoxysilane (<2% methanol)	5900	NA	NA
Nonconductive Liquids: Conductivity <50 pS/m			
Anisole	10	4.33	3.8
Benzene (pure)	5×10^{-3}	2.3	~100 (dissipation)
Biphenyl (solid <69°C)	0.17	NA	NA
Bromine (17.2°C)	13	NA	NA
Butyl stearate	21	3.111	1.3
Caprylic acid	<37	2.45	>0.58
Carbon disulfide (1°C)	7.8×10^{-4}	2.6	~100 (dissipation)
Carbon tetrachloride	4×10^{-4}	2.238	~100 (dissipation)
Chlorine (-70°C)	<0.01	NA	NA
Cyclohexane	<2	2.0	>8.8
Decalin	6	2.18	3.2
Dichlorosilane	NA	NA	NA
Diesel oil (purified)	~0.1	~2	~100 (dissipation)
Diethyl ether	30	4.6	1.4
1,4-Dioxane	0.1	2.2	~100 (dissipation)
Ethyl benzene	30	2.3	0.68
Gasoline (straight run)	~0.1	~2	~100 (dissipation)
Gasoline (unleaded)	<50 (varies)	NA	NA
Heptane (pure)	3×10^{-2}	2.0	~100 (dissipation)
Hexane (pure)	1×10^{-5}	1.90	~100 (dissipation)
Hexamethyldisilazane	29	NA	NA
Isovaleric acid	40	2.64	>0.58
Jet fuel	0.01-50	2.2	0.39-100
Kerosene	1-50	2.2	0.39-19
Pentachlorodiphenyl	0.8	5.06	~100
Silicon tetrachloride	NA	NA	NA
Stearic acid (80°C)	<40	NA	NA
Styrene monomer	10	2.43	2.2
Sulfur (115°C)	100	NA	NA
Toluene	<1	2.38	21
Trichlorosilane	NA	NA	NA
Turpentine	22	NA	NA
Xylene	0.1	2.38	~100

NA: Not applicable.

Source: L. G. Britton, "Using Material Data in Static Hazard Assessment."

Annex C Additional Information on Flash Point

This annex is not a part of the recommendations of this NFPA document but is included for informational purposes only.

C.1 Errors in Flash Point Testing. The reported flash point of a liquid might not represent the minimum temperature at which a pool of liquid will form an ignitable atmosphere.

C.1.1 Typical closed-cup test methods involve downward flame propagation, which is more difficult than upward propagation, and the region where the test flame is introduced is normally fuel-lean relative to the liquid surface. Also, the volume of the test apparatus is too small to allow flame propagation of certain flammable vapors such as halogenated hydrocarbons.

C.1.2 Limitations of flash point test methods are discussed in ASTM E 502, *Standard Test Method for Selection and Use of ASTM Standards for the Determination of Flash Point of Chemicals by Closed Cup Methods*. In most cases, closed-cup flash points are lower than open-cup values.

C.2 Safety Margin for Use of Flash Point.

C.2.1 The temperature of interest in determining the hazard is the temperature at the exposed liquid surface, not that of the bulk liquid, because vapor is in equilibrium with the liquid at the surface. However, in many instances, the surface temperature is difficult to determine. While the surface temperature should be considered to the extent possible, most hazard evaluations are, by necessity and practicality, based on bulk temperature. Therefore, a safety factor should be applied where the hazard is assessed using the flash point.

C.2.2 For pure liquids in containers, the vapor should be considered potentially ignitable if the liquid temperature is within 4°C of the reported flash point. For mixtures whose composition is less certain, such as hydrocarbon mixtures, the safety factor should be at least 9°C. Where combinations of adverse effects are identified, the safety factors might have to be increased accordingly.

C.3 Effect of Bulk Liquid Temperature.

C.3.1 The surface temperature of a quiescent liquid in a tank can significantly exceed the temperature of the bulk liquid due to heat transfer from the unwet upper walls of the tank, which in some cases could be heated by sunlight to as much as 60°C.

C.3.2 Because vapor-liquid equilibrium is established at the vapor-liquid interface, the higher surface temperature discussed in C.3.1 can result in a vapor concentration that is elevated compared to the concentration based on the bulk liquid temperature. An elevated concentration means that vapor in the tank could be ignitable, even if the bulk liquid temperature is less than the reported flash point, which can be a significant hazard during sampling. Vapor vented from large storage tanks could be at a concentration that is only 30 percent to 50 percent of theoretical saturation, based on bulk liquid temperature. This vapor also could be a significant hazard if tank vapor is assumed to be above the upper flammable limit (UFL).

C.4 Effect of Ambient Pressure.

C.4.1 The vapor pressure above a liquid depends only on the temperature at the surface and the time necessary to reach equilibrium. The fraction of the total pressure exerted by a vapor determines the composition of the vapor-air mixture.

Thus, where the total pressure is reduced, as could be the case at high altitudes, the vapor concentration in air increases.

C.4.2 Because flash points are reported at a pressure of 1 atm [101.3 kPa (760 mm Hg)], an ambient pressure less than that value lowers the actual effective flash point. The flash point correction given in ASTM E 502, *Standard Test Method for Selection and Use of ASTM Standards for the Determination of Flash Point of Chemicals by Closed Cup Methods*, is expressed as follows:

$$FP_{corr} ({}^\circ C) = C + 0.25 (101.3 - A)$$

$$FP_{corr} ({}^\circ C) = C + 0.03 (760 - B)$$

$$FP_{corr} ({}^\circ F) = F + 0.006 (760 - B)$$

where:

FP_{corr} = corrected flash point

C = observed flash point (°C)

A = ambient barometric pressure (kPa)

B = ambient barometric pressure (mm Hg)

F = observed flash point (°F)

C.5 Effect of Low Concentrations of Volatiles. Low concentrations of volatile components in a liquid mixture can accumulate in the vapor space of a container over time, which can reduce the flash point to a temperature below the reported value. This effect can result from off-gassing, chemical reaction, or some other mechanism. An example is bitumen. Similarly, if a tank truck is not cleaned after delivering gasoline, and a higher flash point liquid, such as kerosene or diesel fuel, is transferred to it, the residual gasoline will create an ignitable atmosphere both in the truck's tank and possibly in the receiving tank as well. Solids that contain more than 0.2 weight percent flammable solvent need to be evaluated for their potential to form ignitable vapor in containers.

C.6 Liquid Mist.

C.6.1 If a liquid is dispersed in air in the form of a mist, it is possible for a flame to be propagated through the mist, even at temperatures below the liquid's flash point.

C.6.2 In cases such as those described in C.6.1, the mist droplets behave like dust particles. The flash point of the liquid is irrelevant in determination of the combustibility of mists. Even at very low liquid temperatures, frozen liquid droplets can burn. Ease of ignition and rate of combustion both increase as the droplet size of the mist decreases. Depending on the volatility of the liquid, droplets with diameters less than 20 µm to 40 µm typically vaporize and ignite ahead of a flame front, and their overall combustion behavior is similar to that of a vapor.

C.6.3 Because mists usually are produced by some form of shear process, and those processes also generate static electricity, it is good practice to avoid splashing and other procedures that generate mist inside equipment.

Annex D Additional Information on Vapor Pressure

This annex is not a part of the recommendations of this NFPA document but is included for informational purposes only.

D.1 Vapor Pressure.

D.1.1 The vapor pressure can be used with a measured lower flammable limit (LFL) to estimate the flash point. Usually, the calculated flash point is less than the measured value due to limitations in the flash point test technique. Conversely, only

an approximate estimate of the LFL can be made from the flash point.

D.1.2 The vapor pressure can be used to replace the concentration volume axis shown in Figure 8.2.3 with the corresponding temperatures required to generate the concentrations shown in the figure. This method allows the determination of the equilibrium liquid temperature at which vapor ignition is most probable, corresponding to generation of the vapor-air mixture having the lowest minimum ignition energy (MIE). For many liquids, this point is approximately halfway between the LFL and the upper flammable limit (UFL). For example, benzene generates its lowest MIE vapor-air mixture at about 7°C (4.8 percent benzene vapor in air), and toluene generates its lowest-MIE vapor air-mixture at about 2.6°C (4.1 percent toluene vapor in air). Therefore, for operations conducted at room temperatures, toluene is more prone to ignition from a low-energy static electric discharge than is benzene. In closed containers at equilibrium, benzene becomes too rich to burn (the concentration of vapor exceeds its UFL of 8 percent) at temperatures above about 16°C. Conversely, at about 7°C, benzene is more easily ignited than toluene, because the latter will generate a vapor composition not far above its LFL. Some of the lowest-MIE compositions are given in Table B.1.

D.2 High Vapor Pressure Liquids.

D.2.1 High vapor pressure liquids are defined in API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*, as having “a Reid vapor pressure above 4.5 psia” (an absolute pressure of 31 kPa). At normal handling temperatures, rapid evaporation of such liquids minimizes the duration of a flammable atmosphere above the liquid during loading, and the UFL is soon exceeded. However, if there is no initial heel in the tank and the tank is not inerted, the flammable range will be traversed prior to vapor equilibrium being attained.

D.2.2 The duration of the ignitable atmosphere is minimal for liquefied gases such as propylene, but it could be considerable for certain petroleum distillate fuels. Inerting might be considered where high vapor pressure nonconductive liquids are loaded into tanks containing air with no liquid heel.

D.3 Intermediate Vapor Pressure Liquids.

D.3.1 Intermediate vapor pressure liquids are defined in API RP 2003, *Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents*, as having “a Reid vapor pressure below 4.5 psia” (an absolute pressure of 31 kPa) and a closed-cup flash point below 38°C. They are most likely to generate ignitable mixtures in vessels at ordinary temperatures.

D.3.2 Although graphical methods have been proposed to estimate whether liquids are likely to generate ignitable atmospheres at various temperatures, based on their Reid vapor pressures, such graphs were originally derived for petroleum fuel mixtures and do not always apply to other flammable liquids.

D.4 Low Vapor Pressure Liquids. Low vapor pressure liquids are Class II and Class III combustible liquids (i.e., with closed-cup flash points above 38°C) and will generate ignitable atmospheres only if handled at an elevated temperature, suspended as a mist, or subject to slow vapor evolution. However, static electricity generated during handling could ignite vapors present from previous operations.

Annex E Additional Information on Charge Relaxation

This annex is not a part of the recommendations of this NFPA document but is included for informational purposes only.

E.1 General. Charge relaxation is characterized by a time constant, which is the time required for a charge to dissipate to e^{-1} (approximately 37 percent) of its original value, assuming that charge relaxation follows exponential decay. This time constant is determined from the following equation:

$$\tau = \frac{\epsilon \epsilon_0}{\kappa}$$

where:

τ = charge relaxation time constant (seconds)

ϵ = dielectric constant for the liquid

ϵ_0 = electrical permittivity of a vacuum = 8.845×10^{-12} farads per meter

κ = liquid conductivity (siemens per meter)

E.1.1 Overall, the time constant provides some indication of a liquid’s potential for accumulating a static electric charge. Exponential, or “ohmic,” decay has been experimentally confirmed for hydrocarbon liquids having conductivities of 1 pS/m or greater and is described by the following equation:

$$Q_t = Q_0 e^{-t\kappa/\epsilon\epsilon_0}$$

where:

Q_t = charge density (coulombs per cubic meter)

Q_0 = initial charge density (coulombs per cubic meter)

e = base of natural logarithms = 2.718

t = elapsed time (seconds)

κ = liquid conductivity (siemens per meter)

ϵ = dielectric constant for the liquid

ϵ_0 = electrical permittivity of a vacuum = 8.845×10^{-12} farads per meter

E.1.2 According to Bustin et al. in the API publication *New Theory for Static Relaxation from High Resistivity Fuel*, the rate at which charge is lost depends on the conductivity of the liquid. The lower the conductivity, the slower is the relaxation. Liquids with conductivity of less than 1 pS/m relax differently when they are highly charged. The usual relationship described by Ohm’s law does not apply. Instead, for nonviscous liquids (i.e., less than 30×10^{-6} m²/sec), relaxation precedes hyperbolic decay.

E.1.2.1 The Bustin theory of charge relaxation has been experimentally confirmed for low-conductivity hydrocarbon liquids, both in small-scale laboratory experiments and in full-scale tests and is described by the following equation:

$$Q_t = \frac{Q_0}{(1 + \mu Q_0 t / \epsilon \epsilon_0)}$$

where:

Q_t = charge density (coulombs per cubic meter)

Q_0 = initial charge density (coulombs per cubic meter)

μ = ion mobility (square meters per volt-second), about 1×10^{-8} m²/V-sec for charged distillate oil

t = elapsed time (seconds)

$\epsilon \epsilon_0$ = electrical permittivity for the liquid (farads per meter)

