37

STATIONARY COMBUSTION ENGINES AND GAS TURBINES 1975

Copyright © 1975 All Rights Reserved

NATIONAL FIRE PROTECTION ASSOCIATION

470 Atlantic Avenue, Boston, MA 02210

JOIN NOW... AND DO SOMETHING FOR YOUR CAREER!!

Membership in the NATIONAL FIRE PROTECTION ASSOCIATION brings you:

- · Reports of major fires and their causes
- . News of changes in fire codes and standards
- Current information on NEW fire prevention techniques
- Personal assistance from NFPA experts

... and MUCH MORE, including FIRE JOURNAL and FIRE NEWS with your membership. With the guidance of NFPA, your career has nowhere to go but up!!

Write for Details and Membership Application

Licensing Provision – This document is copyrighted by the National Fire Protection Association (NFPA).

- 1. Adoption by Reference Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders or similar instruments. Any deletions, additions and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (attention: Assistant Vice President Standards) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription A. Public authorities with law-making or rule-making powers only, upon written notice to the NFPA (attention: Assistant Vice President Standards), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and, (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's law-making or rule-making process. B. Public authorities with advisory functions and all others desiring permission to reproduce this document or its contents in whole or in part in any form shall consult the NFPA.

All other rights, including the right to vend, are retained by NFPA.

(For further explanation, see the Policy Concerning the Adoption, Printing and Publication of NFPA Documents which is available upon request from the NFPA.)

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines

NFPA No. 37 - 1975

1975 Edition of No. 37

The 1975 edition of the Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines contains revisions prepared by the Committee on Internal Combustion Engines and adopted at the 1975 Fall Meeting of the National Fire Protection Association. This edition supersedes the 1970 edition. 1975 amendments, other than editorial, are indicated by vertical lines in the margin of the pages in which they appear.

Origin and Development of No. 37

This Standard was initiated in 1904 as "Rules and Requirements for the Construction and Installation of Gas and Gasoline Engines" by a committee of the National Board of Fire Underwriters. NFPA published editions in 1905, 1915, 1922, 1934, 1955, 1963, 1967 and 1970. In 1955, responsibility for the standard was transferred from the Committee on Gases to the Committee on Internal Combustion Engines.

Committee on Internal Combustion Engines

E. O. Mattocks, Chairman 523 Rutile Drive, Box 403 Ponte Vedra Beach, FL 32082

Robert Ely, San Diego Fire Department Donald D. Henderer, Engine Manufacturers Assn.

D. E. Hughes, American Gas Association
 James M. Ingalls, Factory Insurance Association

Frank J. Mapp, American Telephone and Telegraph Co.

LaMar Nielson, The Garrett Corp.

R. L. Swingle, International Harvester Co., Solar Division

B. F. Vilbert, American Petroleum Institute

Alternates

A. J. Mercurio, Factory Insurance Assn. (Alternate to James M. Ingalls)

Roy A. Siskin, American Gas Association (Alternate to D. E. Hughes) Thomas C. Young, Engine Manufacturers Assn. (Alternate to Donald D. Henderer)

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

Interpretation Procedure of the Committee on Internal Combustion Engines

Those desiring an interpretation shall supply the Chairman with five identical copies of a statement in which shall appear specific reference to a single problem, paragraph, or section. Such a statement shall be on the business stationery of the inquirer and shall be duly signed.

When applications involve actual field situations they shall so state and all parties involved shall be named.

The Interpretations Committee will reserve the prerogative to refuse consideration of any application that refers specifically to proprietary items of equipment or devices. Generally inquiries should be confined to interpretation of the literal text or the intent thereof.

Requests for interpretations should be addressed to the National Fire Protection Association, 470 Atlantic Avenue, Boston, MA 02210.

Page

CONTENTS

Chapter 1. General Provisions

10. 11.	Purpose and Scope	37 –5 37 –5
	Chapter 2. Engines	
20. 21. 22. 23. 24.	General Locations Foundations Floor and Roof Protection Hazardous Locations Units Handling Hazardous Materials	37-7 37-8 37-8 37-8 37-8
	Chapter 3. Engine Protective Devices	
30. 31. 32. 33.	All Engines Engines — 10 Horsepower or More Engines — 100 Horsepower or More Gas Turbines	37–10 37–10 37–10 37–10
	Chapter 4. Fuel Supply for Gas Fueled Engines	
40. 41. 42. 43. 44.	Gas Piping LP-Gas Systems Regulators Shutoff Valves Pressure Boosting Equipment	37–12 37–13 37–13 37–13 37–14
	Chapter 5. Fuel Supply for Liquid Fueled Engines	
50. 51. 52. 53. 54. 55. 56. 57.	Design and Construction of Liquid Fuel Tanks Fuel Tanks for Gasoline Fuel Tanks for Diesel and Fuel Oils Fuel Flow Control Filling Vent Piping Fuel Piping, Valves and Fittings Transfer of Liquid Fuel to Engines	37-15 37-16 37-18 37-18 37-19 37-19
60. 61. 62. 63.	Chapter 6. Exhaust Piping and Chimneys Design and Construction Installation Clearance from Combustible Material for Low Heat Appliances Clearance from Combustible Material for Medium or High Heat Appliances	37-20 37-20 37-21 37-22
	Chapter 7. Lubricating Oil	
70. 71. 72.	Crankcase Protection	37-23 37-23 37-23
	Chapter 8. Instructions	
80.	Operating Instructions	37-24
	Chapter 9 Fire Protection	
90. 91.	General	37-24 37-24

Standard for the Installation and Use of

Stationary Combustion Engines and Gas Turbines

NFPA No. 37 - 1975

CHAPTER 1. GENERAL PROVISIONS

10. Purpose and Scope

- 101. This standard applies to the installation and operation of stationary combustion engines and gas turbines. This standard applies also to portable engines which remain connected for use in the same location for a period of one week or more and which are used instead of or to supplement stationary engines.
- 102. This standard does not apply to engines used to propel any mobile structure.
- 103. Engines used to drive fire pumps shall comply with this standard and any special provisions contained in the Standard for the Installation of Centrifugal Fire Pumps, NFPA No. 20—1974.

11. Definitions

Approved means acceptable to the authority having jurisdiction.

Engines shall include such prime movers as internal combustion engines, external combustion engines, gas turbine engines, and free piston engines, using either gaseous fuels or liquid fuels, or combinations thereof.

Engines, Portable shall include engines mounted on skids as well as those mounted on wheels or otherwise so arranged that they can be moved from place to place as the required service indicates.

FLUE GAS TEMPERATURES are the temperatures of the flue products at the point or points of passing close to or through combustible materials, or at the entrance to a chimney, whichever is applicable.

Gallon refers to 1 U.S. gallon = 0.83 Imperial gallons = 3.785 liters.

Horsepower is the power (corrected brake horsepower of an engine at its operating speed) developed and measured at the flywheel or output shaft corrected to standard conditions of 29.92 inches of mercury barometric pressure, 60° F. air temperature, and 10mm water vapor pressure.

Psig indicates pressure in pounds per square inch gage.

SPARK PROTECTED refers to electrical equipment enclosed in a tight case or protected by shields, screens or insulation which will contain sparks or prevent their emission.

Tank, Day is a fuel oil tank located inside a structure which provides fuel to the engine.

TANK, INTEGRAL is a fuel tank furnished by the engine manufacturer and mounted on the engine.

TANK, SUPPLY is a separate fuel tank for supplying fuel to the engine or to a day tank.

CHAPTER 2. ENGINES

20. General Locations

- 201. Engines, with or without their "weatherproof" housings, which are attached to the engine subbase, may be installed outdoors, inside structures, or on roofs of structures, as follows:
 - (a) Engines, and their "weatherproof" housings if provided, which are installed outdoors or outdoors on roofs of structures, shall be located at least 5 feet from openings in walls and at least 3 feet from structures having combustible adjacent walls.
 - (b) Engines rated at more than 50 hp shall be located in accordance with 201(a), or be installed in detached structures reserved exclusively for the purpose (or with equipment and processes having similar hazard), or in rooms within or attached to other structures.
 - (1) Detached structures shall be of noncombustible or fire-resistive construction (see NFPA No. 220 1975, Standard | Types of Building Construction). Provision shall be made for venting a fuel explosion with minimum structural damage (see NFPA No. 68 1974, Guide for Explosion Venting) or ventilation adequate to prevent a hazardous accumulation of flammable vapors or gases shall be provided both when the engine is operating or shut down (see 204).
 - (2) Rooms located within structures shall have interior walls, floors, and ceilings of at least one hour fire resistance rating. (The ceiling of such a room located on the top floor of a structure need not be fire-resistive but shall be either noncombustible or protected with automatic sprinklers.)

These rooms shall have provision for venting a fuel explosion with minimum structural damage (see NFPA No. 68—1974) or ventilation adequate to prevent a hazardous accumulation of flammable vapors or gases shall be provided both when the engine is operating or shut down (see 204).

Openings in the engine room that open into other sections of the structure shall be provided with automatic or self-closing fire doors or dampers to confine a fire to the engine room.

(3) Rooms attached to structures shall comply with 201(b)1 except that the common wall shall have a fire resistance

rating of at least one hour. Openings in the engine room should preferably be in outside walls but, if they open into other sections of the structure, they shall be provided with automatic or self-closing fire doors or dampers.

- 202. Engines which are installed in structures or at outside locations shall have adequate emergency lighting as well as normal lighting.
- 203. Engines shall be situated so that they will be readily accessible for maintenance, repair and fire fighting.
- 204. Provision shall be made to supply sufficient air for combustion, proper cooling, and adequate ventilation. Requirements for air vary with the types and sizes of engines and the driven equipment and the nature of the engine room.
- 205. Appreciable quantities of combustible materials (not the engine and its appurtenances) shall not be located in a room housing an engine.

21. Foundations

211. Stationary engines shall be supported on firm foundations or suitable steel framework properly secured.

22. Floor and Roof Protection

221. If engine is mounted on a combustible floor or roof, the surface beneath the engine and beyond the engine to a minimum distance of 12 inches shall be covered with noncombustible insulation with sheet metal between the insulation and the engine.

23. Hazardous Locations

231. In areas where flammable gases or liquids, combustible dusts or flyings normally exist, engines not compressing a flammable gas or not pumping a flammable liquid shall be installed in an enclosure of fire resistive construction, with outside access only and well ventilated from a nonhazardous outside area.

24. Units Handling Hazardous Materials (Other Than Their Own Fuel Supply).

241. The use of an integral engine-driven unit compressing a flammable gas or pumping a flammable liquid is permitted provided the combination unit or group of such combined units are suitably isolated by fire-resistive construction or by being placed in a separate room or structure. Such a room or structure shall be well ventilated from a nonhazardous area.

- 242. Each engine comprising part of a unit for compressing a flammable gas or pumping a flammable liquid shall have magnetos or distributors and coils of the spark protected type and have all leads positively attached. Ventilation openings in such devices shall be adequately protected by a fire screen unless the device is purged, pressurized, or otherwise protected.
- 243. Ignition wire shall be positively attached at each end by use of the outer sheath or the insulation.
- 244. Spark plugs shall be fully shielded against flashover. Spark plugs either fully radio shielded or provided with insulating boots are acceptable.
- 245. Flame arresting equipment shall be securely attached to the engine air intake to avoid blowoff or rupture. A firmly fixed air filter shall be considered as meeting this requirement.
- 246. Starter, generator and associated electrical equipment, attached to engines, shall be of the spark protected type.
- 247. Batteries, wiring and electrical protective devices shall be protected against flashover and accidental shorting.
- 248. Means shall be provided for shutting down the engine at a readily accessible location remote from the engine.

CHAPTER 3. ENGINE PROTECTIVE DEVICES

30. All Engines

301. Each stationary engine shall have an automatic engine speed governor.

31. Engines — 10 Horsepower or More

- 311. Engines of 10 horsepower or more shall be equipped with the device specified in 301 and the following additional protection shall be provided:
 - (a) An automatic engine shutdown device for high jacket water temperature or high cylinder temperature.
 - (b) An automatic engine shutdown device for low lubricating oil pressure or, in the case of a splash lubricated engine, for low oil level.
 - (c) If an engine is intended for emergency use only or is constantly attended, an alarm is permissible in lieu of the devices specified in 311(a) and (b).

32. Engines — 100 Horsepower or More

- 321. Engines of 100 horsepower or more shall have the devices specified in 301 and 311 and the following additional protection shall be provided:
 - (a) An automatic engine shutdown device for engine overspeed
 - (b) An automatic engine shutdown device for high lubricating oil temperature
 - (c) Some means of shutting down the engine at a readily accessible location remote from the engine
 - (d) A remote means of shutting off the fuel supply and of shutting down lubricating oil pumps not directly driven by the engine
 - (e) If the engine is intended for emergency use only or is constantly attended, an alarm is permissible in lieu of the engine shutdown device specified in 321(b).

33. Gas Turbines

331. Gas turbine engines shall be equipped with the devices specified in 301, 311 and 321 and the following additional protection shall be provided:

- (a) An automatic engine shutdown device for high exhaust temperatures
- (b) A means for shutting off the fuel supply in the event of flameout
- (c) If a turbine is intended for emergency use only or is constantly attended, an alarm is permissible in lieu of the device specified in 331(a).
- 332. In the event of a turbine shutdown, the turbine starting sequence shall be repeated, and shall include a purge cycle adequate to insure a nonflammable atmosphere in the turbine and all connected equipment prior to ignition.

CHAPTER 4.

FUEL SUPPLY FOR GAS FUELED ENGINES

40. Gas Piping

- 401. Except as provided in 402 and 403, gas piping shall be installed in accordance with the appropriate standard cited in 401(a) through (c).
 - (a) For all fuel gases other than LP-Gas in the liquid phase and for service pressures of 60 psi and less, the National Fuel Gas Code, NFPA No. 54 — ANSI Z223.1 (1974) and the Standard for the Storage and Handling of Liquefied Petroleum Gases, NFPA No. 58 — ANSI Z106.1 (1974).
 - (b) For all fuel gases other than LP-Gas in the liquid phase and for service pressures in excess of 60 psi, Code for Fuel Gas Piping, ANSI B31.2 (1968) and the Standard for the Storage and Handling of Liquefied Petroleum Gases, NFPA No. 58 — ANSI Z106.1 (1974).
 - (c) For LP-Gas in the liquid phase, the Standard for the Storage and Handling of Liquefied Petroleum Gases, NFPA No. 58 ANSI Z106.1 (1974).
- 402. Plastic pipe, carrying fuel, shall not be used in a structure housing an engine or engines.
- 403. The use of approved metallic flexible connectors for protection against damage caused by settlement, vibration, expansion, contraction or corrosion is acceptable. The use of approved nonmetallic connectors for the same purpose is acceptable except for LP-Gas in the liquid phase. If flexible connectors containing LP-Gas in the liquid phase are located so that they may be exposed to a fire of short duration the approval shall consider the ability of the connector to stand up under such conditions.

41. LP-Gas Systems

411. Liquefied petroleum gas (LP-Gas) supply systems shall be installed in accordance with the appropriate provisions of the Standard for the Storage and Handling of Liquefied Petroleum Gases, NFPA No. 58 — 1974 (ANSI Z106.1).

42. Regulators

421. A gas pressure regulator located inside a structure shall be provided with either a vent to the outside of the structure and discharge at least five feet away from any structure opening, or a listed vent limiting device, except any regulator or zero governor that operates with gas pressure on both sides of the diaphragm does not require venting. When the gas pressure on the upstream side of the regulator is more than ½ psig, a relief valve shall be installed on the downstream side of the regulator. Relief valves shall be connected to the outside of the structure and discharge at least 5 feet away from any structure opening, and such relief valves and any connected piping shall be sized to vent the required volume of gas.

43. Shutoff Valves

- 431. Gas piping to engines shall have an approved shutoff valve remote from the engine and preferably outside the structure. If the valve is locked open, the key shall be secured in a well-marked accessible location near the valve.
- 432. Every gas engine shall have a carburetion valve, zero governor type regulating valve or an auxiliary valve which will automatically shut off the flow of gas in case the engine stops from any cause.
- 433. Automatically started or unattended engines shall be provided with an auxiliary valve which will stop the flow of gas in case the engine stops for any cause. A zero governor type regulator alone is not adequate protection in such installations. The auxiliary valve shall be installed ahead of any unlisted flexible connector to the carburetion valve, zero governor, or other controls.

44. Pressure Boosting Equipment

441. When low pressure gas is supplied and pressure boosting equipment is required, compressors shall be approved for the service intended. Receivers, where required, shall be designed, constructed and tested in accordance with the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1, Pressure Vessels (1974)*.

^{*}Available from American Society of Mechanical Engineers, 345 E. 47th St., New York, N. Y. 10017.

CHAPTER 5.

FUEL SUPPLY FOR LIQUID FUELED ENGINES

50. Design and Construction of Liquid Fuel Tanks

- 501. Integral tanks shall be of steel with welded or brazed joints.
- 502. Day tanks shall be of steel with welded joints constructed with the following metal thicknesses:

MINIMUM THICKNESS OF STEEL

Capacity	Not Galvanized	Galvanized	
Gallons	Mfrs. Std. Gage No.	Mfrs. Std. Gage No.	
10 or less	18	20	
11 to 180	16	18	
181 to 275	14	16	
276 to 550	12	14	

- (a) Tanks in this category listed and labeled "Inside Storage Tanks for Oil Burner Fuel" by Underwriters' Laboratories, Inc., shall be considered as meeting this provision.
- 503. Outside aboveground or underground fuel supply tanks shall be constructed in accordance with the applicable tank specification in Article 20 of the Flammable and Combustible Liquids Code, NFPA No. 30 1973.
 - (a) Underground tanks smaller than 2,500 gallons capacity listed and labeled as "Underground Tank for Flammable Liquids," and aboveground tanks listed and labeled as "Aboveground Tank for Flammable Liquids" by Underwriters' Laboratories, Inc., and tanks constructed in accordance with A.P.I. Standard No. 650 (1973) shall be considered as meeting this provision.

51. Fuel Tanks for Gasoline

511. Only integral tanks shall be permitted inside or on roofs of structures.

- 512. An integral tank shall not exceed 25 gallons capacity and not more than one tank shall be installed on each engine. It shall be securely mounted on the engine assembly, protected against vibration, physical damage, engine heat and the heat of exhaust piping.
- 513. Tanks other than integral tanks shall be located underground or aboveground outside of structures.
- 514. Other requirements for day and supply tanks, such as construction, minimum distance from any line of adjoining property that may be built upon, spacing, dikes, foundations, supports, depth and cover, anchorage, normal and emergency vents and testing, shall be in accordance with the applicable provisions of Articles 21, 22, 24, and 26 of the Flammable and Combustible Liquids Code, NFPA No. 30 1973.

52. Fuel Tanks for Diesel and Fuel Oils

- 521. Fuel tanks inside structures shall comply with the provisions of 522 through 527 inclusive. Fuel tanks on roofs of structures shall comply with 522, 523, 525, 526 and 527.
- 522. Not more than one integral tank shall be installed on each engine. It shall be securely mounted on the engine assembly, protected against vibration, physical damage, engine heat and the heat of exhaust piping.
- 523. Except for installations used for emergency purposes as permitted in 525, an unenclosed day tank located above the lowest story, cellar or basement shall not exceed 60 gallons (50 Imperial gallons) capacity and the total capacity of these tanks so located shall not exceed 60 gallons (50 Imperial gallons).
- 524. Day tanks and supply tanks installed for any purpose in the lowest story, cellar or basement shall comply with 525 and 526.
- 525. Unenclosed day tanks or supply tanks supplying engines which drive generators, alternators, fire pumps, or other equipment used for emergency purposes shall not exceed 660 gallons (550 Imperial gallons). Not more than one unenclosed 660 gallon capacity tank, or two or more unenclosed tanks with an aggregate capacity of not more than 660 gallons, shall be connected to one engine. The aggregate capacity of all unenclosed day and supply tanks in a building shall not exceed 1320 gallons (1100 Imperial gallons). Day and supply tanks with individual

capacities larger than 660 gallons (550 Imperial gallons) or those tanks which cause the unenclosed aggregate capacity to exceed 1320 gallons (1100 Imperial gallons) in a building shall be enclosed in accordance with 526.

526. Tank enclosures shall comply with the following:

- (a) The enclosure for tanks shall be constructed of walls, floor and top having a fire resistance rating of not less than 3 hours with the walls bonded to the floor. If the walls of such enclosure extend to and are bonded to the underside of a concrete floor or roof above which has a fire resistance rating of not less than 3 hours, a separate top is not required for the tank enclosure. At least 15 inches clearance shall be left around the tank for the purpose of inspection and repair.
- (b) Each tank enclosure shall be provided with an opening which is closed by a self-closing Class A fire door if it opens inside a building. If a door opening goes outside, an appropriate door shall be provided based on exposure presented. Openings shall be protected by a ramp or sill high enough to contain the entire contents of the tank within the walls to the height corresponding to the level of oil that will be retained and the sill shall be built to withstand the lateral pressure due to the liquid head and walls and floor shall be waterproof. In lieu of this, a drain to a properly sized underground tank is permissible.
- (c) Provision shall be made for adequate ventilation of such enclosures prior to entering for inspection or repair of tanks. An enclosed tank shall be equipped with an open vent or an automatically operated vent, terminating outside the building. Vent openings and vent pipes shall be ample size to prevent abnormal pressure in the tank during filling. This can be accomplished by providing a vent pipe not less in size than the discharge of the pump.
- 527. Day or supply tanks inside structures or on roofs shall be securely mounted on substantial noncombustible supports.
- 528. Supply tanks located outside aboveground or underground, or beneath a structure, shall comply with the applicable provisions of Articles 20, 21, 22, 24, and 26 of the Flammable and Combustible Liquids Code, NFPA No. 30 1973.

53. Fuel Flow Control

- 531. Liquid fuel supply systems, including drains from carburetors, shall be designed and installed to minimize as far as practicable the accidental discharge of fuel into the engine room or structure. This shall include properly sized and located drains and overflow connections discharging to a tank (inside or outside) or to a safe area outside the structure. Adequate alarms, float controlled valves or mechanical or remote-reading level gages or protected sight glass gages shall be installed to aid personnel in properly operating the fuel system. Stationary powered fuel pumps supplying integral or day tanks shall have "stop" controls sensitive to high tank liquid level.
- 532. When supplied by pumps, day tanks or integral tanks shall be provided with an overflow line, a high level alarm, and a high level automatic shutoff. The overflow line shall be continuous piping to the supply tank without valves or traps. Its capacity shall exceed the delivery capacity of the supply lines it serves.
- 533. Overflows, vents, fuel piping or fuel tanks shall not be located at or near engine air intake, exhaust piping, mufflers or filters.
- 534. Where residual oils are utilized as engine fuel, it is sometimes necessary to heat the fuel above the flash point for satisfactory handling and injection into the engine. This necessitates special storage, purifying and heating systems. When fuel is heated, care shall be taken to maintain circulation through heaters regardless of engine fuel demand by means of constant recirculation to fuel tank, as well as to provide thermostatic control and suitable pressure and temperature gages. Pressure relief valves and relief piping returns to supply tank shall be incorporated where necessary.

54. Filling

- 541. Integral tanks for gasoline shall be filled by a closed piping system except filling may be done by approved safety cans when the engine is shut down.
- 542. Integral tanks for diesel and fuel oils shall be filled by a closed piping system except that filling may be done from a container when the engine is shut down.
- 543. Piping for day and supply tanks shall be in accordance with 2180, 2260, and 2340 of NFPA No. 30 1973, Flammable and Combustible Liquids Code.

55. Vent Piping

551. Vent piping shall be installed in accordance with 2160, 2240 or 2320 of the Flammable and Combustible Liquids Code, NFPA No. 30 — 1973.

56. Fuel Piping, Valves and Fittings

- 561. Piping shall be in accordance with Chapter III of NFPA No. 30 1973, Flammable and Combustible Liquids Code, except that piping shall be steel or other metal and the provisions of 562 shall apply.
- 562. Piping systems shall be substantially supported, protected against physical damage and excessive stresses. The use of approved, metallic or nonmetallic, flexible connectors for protection against damage caused by settlement, vibration, expansion, contraction or corrosion is acceptable. If flexible connectors are located so that they may be exposed to a fire of short duration, the approval shall consider the ability of the connectors to stand up under such conditions.
- 563. Sufficient valves shall be provided to control flow of liquid fuel in normal operation and to shut off the flow of fuel in the event of a pipe break.
- 564. Piping to aboveground supply tanks filled from tank cars or tank vehicles by centrifugal pumps shall be provided with check valves to prevent back flow.

57. Transfer of Liquid Fuel to Engines

- 571. Liquid fuel shall feed to engines by pumps only, except that gravity feed is permitted from integral tanks.
- 572. When engines are installed above the lowest story, cellar, or basement or on roofs, the fuel supply shall be pumped to day or supply tanks in an approved manner.

CHAPTER 6. EXHAUST PIPING AND CHIMNEYS

60. Design and Construction

- 601. Engine exhaust discharge systems shall be designed on the basis that the flue gas temperatures (see Definition) normally do not exceed 1000° F. continuously, and do not exceed 1400° F. except for infrequent brief periods. Such engines shall be classified as low heat appliances. If these temperatures are exceeded, special consideration shall be given to the higher temperatures.
- 602. Exhaust pipes shall be of wrought iron or steel, and of sufficient strength to withstand the service. Fittings of cast iron are acceptable.
- 603. Chimneys, where required, shall be constructed and installed in accordance with 601, 602, 801, 803, 901, and 902 of the Standard for Chimneys, Fireplaces and Venting Systems, NFPA No. 211 1972.
- 604. Provision shall be made in exhaust systems to prevent damage resulting from the ignition of unburned fuel. Normally, this is accomplished by built-in strength in the system but also may be accomplished by use of devices such as relief valves, rupture discs, or their equivalent.
- 605. Low points in exhaust systems shall be provided with suitable means for draining of condensate.

61. Installation

- 611. Exhaust pipes shall be adequately supported and shall be connected to the engine or muffler so that emission of sparks, flame or gas within the structure is prevented.
 - 612. When necessary, a flexible connector should be provided in the exhaust pipe from the engine to minimize the possibility of a break in the engine exhaust system because of engine vibration or heat expansion. This connection shall not permit the release of dangerous quantities of gas into the engine room.