NFPA 232

Standard for the Protection of Records

2000 Edition

NFPA, 1 Batterymarch Park, PO Box 9101, Quincy, MA 02269-9101 An International Codes and Standards Organization

NFPA License Agreement

This document is copyrighted by the National Fire Protection Association (NFPA), 1 Batterymarch Park, Quincy, MA 02269-9101 USA.

All rights reserved.

NFPA grants you a license as follows: The right to download an electronic file of this NFPA document for temporary storage on one computer for purposes of viewing and/or printing one copy of the NFPA document for individual use. Neither the electronic file nor the hard copy print may be reproduced in any way. In addition, the electronic file may not be distributed elsewhere over computer networks or otherwise. The hard copy print may only be used personally or distributed to other employees for their internal use within your organization.

Copyright © NFPA One Batterymarch Park Quincy, Massachusetts 02269

IMPORTANT NOTICE ABOUT THIS DOCUMENT

NFPA codes, standards, recommended practices, and guides, of which the document contained herein is one, are developed through a consensus standards development process approved by the American National Standards Institute. This process brings together volunteers representing varied viewpoints and interests to achieve consensus on fire and other safety issues. While the NFPA administers the process and establishes rules to promote fairness in the development of consensus, it does not independently test, evaluate, or verify the accuracy of any information or the soundness of any judgments contained in its codes and standards.

The NFPA disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, or reliance on this document. The NFPA also makes no guaranty or warranty as to the accuracy or completeness of any information published herein.

In issuing and making this document available, the NFPA is not undertaking to render professional or other services for or on behalf of any person or entity. Nor is the NFPA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

The NFPA has no power, nor does it undertake, to police or enforce compliance with the contents of this document. Nor does the NFPA list, certify, test or inspect products, designs, or installations for compliance with this document. Any certification or other statement of compliance with the requirements of this document shall not be attributable to the NFPA and is solely the responsibility of the certifier or maker of the statement.

See inside back cover for additional important notices and information.

NOTICES

All questions or other communications relating to this document and all requests for information on NFPA procedures governing its codes and standards development process, including information on the procedures for requesting Formal Interpretations, for proposing Tentative Interim Amendments, and for proposing revisions to NFPA documents during regular revision cycles, should be sent to NFPA headquarters, addressed to the attention of the Secretary, Standards Council, National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101.

Users of this document should be aware that this document may be amended from time to time through the issuance of Tentative Interim Amendments, and that an official NFPA document at any point in time consists of the current edition of the document together with any Tentative Interim Amendments then in effect. In order to determine whether this document is the current edition and whether it has been amended through the issuance of Tentative Interim Amendments, consult appropriate NFPA publications such as the *National Fire Codes*[®] Subscription Service, visit the NFPA website at www.nfpa.org, or contact the NFPA at the address listed above.

A statement, written or oral, that is not processed in accordance with Section 6 of the Regulations Governing Committee Projects shall not be considered the official position of NFPA or any of its Committees and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

The NFPA does not take any position with respect to the validity of any patent rights asserted in connection with any items which are mentioned in or are the subject of this document, and the NFPA disclaims liability for the infringement of any patent resulting from the use of or reliance on this document. Users of this document are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility.

Users of this document should consult applicable federal, state, and local laws and regulations. NFPA does not, by the publication of this document, intend to urge action that is not in compliance with applicable laws, and this document may not be construed as doing so.

Licensing Policy

This document is copyrighted by the National Fire Protection Association (NFPA). By making this document available for use and adoption by public authorities and others, the NFPA does not waive any rights in copyright to this document.

- 1. Adoption by Reference—Public authorities and others are urged to reference this document in laws, ordinances, regulations, administrative orders, or similar instruments. Any deletions, additions, and changes desired by the adopting authority must be noted separately. Those using this method are requested to notify the NFPA (Attention: Secretary, Standards Council) in writing of such use. The term "adoption by reference" means the citing of title and publishing information only.
- 2. Adoption by Transcription—A. Public authorities with lawmaking or rule-making powers only, upon written notice to the NFPA (Attention: Secretary, Standards Council), will be granted a royalty-free license to print and republish this document in whole or in part, with changes and additions, if any, noted separately, in laws, ordinances, regulations, administrative orders, or similar instruments having the force of law, provided that: (1) due notice of NFPA's copyright is contained in each law and in each copy thereof; and (2) that such printing and republication is limited to numbers sufficient to satisfy the jurisdiction's lawmaking or rule-making process. B. Once this NFPA Code or Standard has been adopted into law, all printings of this document by public authorities with lawmaking or rule-making powers or any other persons desiring to reproduce this document or its contents as adopted by the jurisdiction in whole or in part, in any form, upon written request to NFPA (Attention: Secretary, Standards Council), will be granted a nonexclusive license to print, republish, and vend this document in whole or in part, with changes and additions, if any, noted separately, provided that due notice of NFPA's copyright is contained in each copy. Such license shall be granted only upon agreement to pay NFPA a royalty. This royalty is required to provide funds for the research and development necessary to continue the work of NFPA and its volunteers in continually updating and revising NFPA standards. Under certain circumstances, public authorities with lawmaking or rule-making powers may apply for and may receive a special royalty where the public interest will be served thereby.
 - 3. Scope of License Grant—The terms and conditions set forth above do not extend to the index of this document.

(For further explanation, see the Policy Concerning the Adoption, Printing, and Publication of NFPA Documents, which is available upon request from the NFPA.)

NFPA 232

Standard for the

Protection of Records

2000 Edition

This edition of NFPA 232, *Standard for the Protection of Records*, was prepared by the Technical Committee on Record Protection and acted on by the National Fire Protection Association, Inc., at its World Fire Safety Congress and Exposition™ held May 14–17, 2000, in Denver, CO. It was issued by the Standards Council on July 20, 2000, with an effective date of August 18, 2000, and supersedes all previous editions.

This edition of NFPA 232 was approved as an American National Standard on August 18, 2000.

Origin and Development of NFPA 232

The destructive fire in the general offices of the Chicago, Burlington, and Quincy Railway in Chicago on March 25, 1922, was clear proof that valuable and often irreplaceable business records, unless properly protected, can be destroyed even in so-called "fire-resistive" buildings. Following this destructive fire, the Committee on Record Protection was organized. Reports were submitted annually from 1923 through 1936 and again in 1939. In 1947, a standard was developed from the officially adopted committee reports of 1942 to 1946. In 1960, the standard underwent major editorial revision and was revised again in 1963, 1967, and 1970. In 1975, it was reconfirmed. The 1980 edition reformatted the standard to conform to the NFPA *Manual of Style* and revised the detail specifications to performance-oriented requirements. The 1986 edition was a reconfirmation of the 1980 edition.

Changes to the 1991 edition included a reclassification of certain types of records. New provisions were added for the construction, arrangement, and protection of file rooms. These changes further increased the chance that vital documents would be spared during most fire events.

The 1995 edition incorporated several editorial changes, the inclusion of a retroactivity clause, and further addressed the protection requirements for non-paper records media.

The 2000 edition incorporates NFPA 232A and, where appropriate, the information that was contained in NFPA 232A is included as enforceable language. The documents were combined because both contained similar information. Requirements for housekeeping and emergency planning are included to provide guidance during emergency conditions and recovery operations.

Technical Committee on Record Protection

Stephen E. Hannestad, *Chair* U.S. Nat'l Archives and Records Admin., MD [U]

Forrest V. Weir, Secretary
U.S. Nat'l Archives and Records Admin., MD [U]
(Alt. to S. E. Hannestad)

Warren D. Bonisch, Schirmer Engineering Corp., TX [SE]
Tom V. Clark, Marsh USA, Inc., GA [I]
Charles J. Doughty, Iron Mountain/Nat'l Underground
Storage, Inc., PA [M]
George P. Garland, Star Fire Protection Co., NY [IM]
Steven J. Germano, Royal & Sun Alliance, NY [I]
Rep. American Insurance Services Group
Thomas Goonan, Tom Goonan Assoc., VA [SE]
James D. Kieffer, Kieffer & Assoc., Inc., ON, Canada [SE]
Rep. Pierce Leahy Corp.
Philip D. LeGrone, Chubb & Son, Inc., NY [I]
Dana F. Mason, Georgia State University, GA [E]
Melvin Musson, Musson Consulting Group, MO [SE]

Gerald W. O'Rourke, O'Rourke & Co., CA [SE]
Mark J. Petrone, CT Interlocal Risk Mgmt. Agency, CT [I]
Charles A. Sabah, C. A. Sabah & Co. Inc., NV [M]
Hugh W. Smith, Firelock Fire Proof Vaults, PA [M]
Frank J. Spitz, Jr., Spitz Fire Protection Design Co., PA
[SE]
Woodrow W. Stratton, U.S. Library of Congress, DC [U]
William L. Testa, Grinnell Fire Protection Systems Co./
Tyco Inc., RI [M]
Rep. Nat'l Fire Sprinkler Assn.
Michael W. Tindall, Integrated Alarm Systems, Inc. (IASA),
MD [IM]
James J. Urban, Underwriters Laboratories Inc., IL [RT]

Alternates

Howard J. Gruszynski, Underwriters Laboratories Inc., IL [RT] (Alt. to J. J. Urban)

Jack Thacker, Allan Automatic Sprinkler Corp. of So. California, CA [M]
(Alt. to W. L. Testa)

Nonvoting

Leon deValinger, Jr., Dover, DE [SE] (Member Emeritus)

David R. Hague, NFPA Staff Liaison

This list represents the membership at the time the Committee was balloted on the final text of this edition. Since that time, changes in the membership may have occurred. A key to classifications is found at the back of the document.

NOTE: Membership on a committee shall not in and of itself constitute an endorsement of the Association or any document developed by the committee on which the member serves.

Committee Scope: This Committee shall have primary responsibility for documents on the protection of books, papers, plans, and other records from loss incident to fire.

CONTENTS 232–3

Contents

Chapter	1 Introduction	32 - 4	Chapter	6 E	mergency Planning	232 –10
1.1	Scope	32 - 4	6.1	Respo	onsibility	232 –10
1.2	Purpose	32 - 4	6.2	Plann	ning for Response	232 –10
1.3	Retroactivity 2	32 – 4	6.3	Recov	very Plan	232 –10
1.4	Planning 2	32 - 4	6.4	Fire 1	Protection Plan	232 –11
1.5	Equivalency	32 - 4	6.5	Train	ing	232 –11
1.6	Definitions	32 - 4				
1.7	Required Levels of Protection 2	32 - 5	Chapter	7 F	ile Rooms	232 –11
1.8	Establishment of Risk Tolerance 2	32 - 5	7.1	Gene	ral	232 –11
			7.2	Desig	gn	232 –11
Chapter	2 General	32 - 6	7.3	Locat	tion	232 –11
2.1	Responsibility of the Records Manager and		7.4	Size		232 –11
	Archivist 2	32 - 6	7.5	Supp	oorting Structure	232 –11
2.2	Fire Risk Evaluation Factors 2	32 - 6	7.6	Floor	r	232 –11
2.3	Exposure	32 - 6	7.7	Walls	s	232 –11
2.4	Operations in Records Storage Areas 2	32 - 6	7.8	Roof		232 –12
2.5	Housekeeping	32 - 6	7.9	File I	Room Door	232 –12
			7.10	Dam	pproofing	232 –12
Chapter	3 Construction	32 - 6	7.11	Elect	trical Service	232 –12
3.1	General Requirements for New File Rooms,		7.12	Heat	ing and Ventilation	232 –12
	Vaults, Archives, and Records Centers 2	32 - 6	7.13	Fire S	Suppression and Signaling	
3.2	Records Storage Areas 2	32 – 7		Equi	pment	232 –12
3.3	Protection Against Outside Exposure		7.14	Oper	rating Practices	232 –13
	Fires	32 – 7				
~ 1			Chapter	8 R	Records Protection Equipment	232 –13
	4 Building Equipment and Facilities 2		8.1	Gene	eral	232 –13
4.1	Heating Systems		8.2	Class	sification of Devices	232 –13
4.2	Electrical Systems		8.3	Selec	ction of Equipment	232 –13
4.3	Service Aisles					
4.4	Locking Devices	32- 7				232 –14
4.5	Air-Conditioning and Ventilation	20 7	9.1	Gene	eral	232 –14
4.6	Systems		9.2	Fire-	Resistive Buildings	232 –14
4.6	Lightning Protection 2	32 - 8	9.3	Non-	Fire-Resistive Buildings	232 –14
Chapter	5 Standard Records Vault	32 - 8	Cl	10 1	Defense at Dell'estion	090 15
5.1	General		Chapter	10	Referenced Publications	434 –13
5.2	Design		Annondi	A	Explanatory Material	929 15
5.3	Location 2		Appendi	IX A	Explanatory Material	434 -13
5.4	Size 2		Annendi	v R	Fire Characteristics	232 –23
5.5	Foundations 2		пррени	IA D	The characteristics	404-40
5.6	Floor		Annendi	v C	Salvage of Water-Damaged Library	
5.7	Walls		пррени		Materials	232 –24
5.8	Independence from Building Structure 2					, ,
5.9	Roof		Appendi	x D	Fire Control	232 –25
5.10	Vault Door		11.	-		, 40
	Electrical Service		Appendi	x E	Fire Control Systems	232 –27
	Operating Practices		11		,	
	Fire Suppression and Signaling		Appendi	x F	Referenced Publications	232 –31
	Equipment	32 –10	**			
5.14	Oversize Vault		Index			232 –33

NFPA 232

Standard for the

Protection of Records

2000 Edition

NOTICE: An asterisk (*) following the number or letter designating a paragraph indicates that explanatory material on the paragraph can be found in Appendix A.

A reference in parentheses () following a section or paragraph indicates material that has been extracted from another NFPA document. The complete title and edition of the document the material is extracted from is found in Chapter 10. Editorial changes to extracted material consist of revising references to an appropriate division in this document or the inclusion of the document number with the division number when the reference is to the original document. Requests for interpretations or revisions of extracted text shall be sent to the appropriate technical committee.

Information on referenced publications can be found in Chapter 10 and Appendix F.

Chapter 1 Introduction

- **1.1* Scope.** This standard provides requirements for records protection equipment and facilities and records-handling techniques that provide protection from the hazards of fire. This standard does not consider forcible entry.
- **1.1.1** This standard covers the following four categories of records storage environments and corresponding levels of risk tolerance:
- (1) Records vaults, which provide the highest level of protection
- (2) File rooms, which provide an intermediate level of protection for active and semiactive records
- (3) Archival storage, which provides a high level of protection for permanently valuable records
- (4) Records centers, which provide an intermediate level of protection for temporary records
- 1.1.2* This standard does not cover the storage and handling of cellulose nitrate film records.
- 1.1.3* This standard does not cover the storage and handling of useful records.

1.2 Purpose.

- **1.2.1** This standard is prepared for the use and guidance of those charged with purchasing, designing, constructing, installing, inspecting, approving, listing, operating, or maintaining equipment and facilities that protect records against fire and its associated effects.
- **1.2.2** This standard also is intended for the use and guidance of those charged with planning, surveying, classifying, retaining, disposing, and otherwise handling records.
- **1.3 Retroactivity.** The provisions of this standard reflect a consensus of what is necessary to provide an acceptable degree of protection from the hazards addressed in this standard at the time the standard was issued.

Unless otherwise specified, the provisions of this standard shall not apply to facilities, equipment, structures, or installations that existed or were approved for construction or installation prior to the effective date of the standard. Where specified, the provisions of this standard shall be retroactive.

In those cases where the authority having jurisdiction determines that the existing situation presents an unacceptable degree of risk, the authority having jurisdiction shall be permitted to apply retroactively any portions of this standard deemed appropriate.

The retroactive requirements of this standard shall be permitted to be modified if their application clearly would be impractical in the judgment of the authority having jurisdiction, and only where it is clearly evident that a reasonable degree of safety is provided.

- **1.4 Planning.** It could be necessary for many of those charged with planning, inspecting, approving, operating, and maintaining records facilities, equipment, and techniques to consult with an experienced and competent fire protection engineer or records protection consultant.
- **1.5 Equivalency.** Nothing in this standard is intended to prevent the use of systems, methods, or devices of equivalent or superior quality, strength, fire resistance, effectiveness, durability, and safety over those prescribed by this standard. Technical documentation shall be submitted to the authority having jurisdiction to demonstrate equivalency. The system, method, or device shall be approved for the intended purpose by the authority having jurisdiction.
- **1.6 Definitions.** For the purpose of this standard, the following terms have the meanings as specified.
- **1.6.1* Approved.** Acceptable to the authority having jurisdiction.
- **1.6.2** Archive(s). Noncurrent records preserved for their historic value; also applied to the building, structure, enclosure, or institution where such records are deposited or retained.
- **1.6.3* Authority Having Jurisdiction.** The organization, office, or individual responsible for approving equipment, materials, an installation, or a procedure.

1.6.4 Building.

- **1.6.4.1* Fire-Resistive Building.** A building of Type I or Type II-222 construction in which the structural members, including walls, partitions, columns, floors, and roofs are of noncombustible or limited-combustible materials.
- **1.6.4.2 Non-Fire-Resistive Building.** A building of that type of construction in which the structural members, including walls, partitions, columns, floors, and roofs, do not qualify as fire-resistive as defined herein.
- **1.6.5 Compartmentation.** The subdivision of a building into relatively small areas so that fire or smoke can be confined to the room or section in which it originates.
- **1.6.6 Disposition.** The scheduled destruction, formal transfer to an archives, donation to a historical society, or other transfer of legal and administrative custody and control of records from the creating entity to another entity.
- **1.6.7 File Processing Area.** A work surface used for preparing records for filing or for retrieving records from, or filing records to, storage.
- **1.6.8 File Room.** A fire-resistive enclosure that provides less fire protection than a vault and is used exclusively for the storage of records. An ordinary file room utilizes totally enclosed storage devices; an open-shelf file room uses open shelving and additional protection features.

INTRODUCTION 232–5

- **1.6.9 File Room Door.** An approved assembly that protects paper records against fire for the duration of its rated exposure.
- **1.6.10 Labeled.** Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- **1.6.11* Listed.** Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that either the equipment, material, or service meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- **1.6.12 Low-Energy Devices.** Devices listed as power limited for the purposes of fire protection and life safety, security, and environmental monitoring.
- **1.6.13 Mobile Shelving.** A system of records storage, also known as track files, compaction files, or movable files, in which sections or rows of shelves are manually or electrically moved on tracks to provide access aisles. Mobile shelving is usually a type of open-shelf file equipment.
- **1.6.14 Open-Shelf File Equipment.** Any shelving that does not enclose file compartments on six sides.

1.6.15 Records.

- **1.6.15.1 Important Records.** Those records for which a reproduction, although acceptable as a substitute for the original, could be obtained only at considerable expense and labor or only after considerable delay.
- **1.6.15.2 Intermediate-Term Records.** Those temporary records that have a scheduled retention period of less than 60 years.
- **1.6.15.3 Long-Term Records.** Those temporary records that have a scheduled retention period of 60 years or more.
- **1.6.15.4** Nonpermanent or Temporary Records. Those records that have a fixed disposal date approved by the responsible party and that do not meet the definitions of Permanent Records; Unscheduled Records; or Sample or Select Records.
- **1.6.15.5 Permanent Records.** Those records that have been determined by the responsible party to have sufficient value to warrant their permanent retention and preservation. Permanent records include all records that have been accessioned into an archive, and those the responsible party has designated the disposition as permanent.
- **1.6.15.6 Sample or Select Records.** Those records in which the final disposition requires an analytical or statistical sampling prior to final disposition authorization, in which some percentage will be retained as permanent records.
- **1.6.15.7 Unscheduled Records.** Those records in which the final disposition has not been approved by the responsible party.
- **1.6.15.8* Useful Records.** Temporary records that normally accumulate in operations and are kept for a time period established by the responsible party. This type of record, if lost,

would cause temporary inconveniences but otherwise would entail no serious disadvantage.

- **1.6.15.9* Vital Records.** Those records that are irreplaceable or that contain information for which temporary unavailability could constitute a serious legal or business impairment.
- **1.6.16 Records Center.** A building or enclosure having a minimum storage volume of records exceeding 50,000 ft³ (1416 m³) used for the retention and reference of semicurrent records pending their ultimate disposition.
- **1.6.17 Responsible Party.** An organization, office, or individual charged with the classification, retention scheduling, and disposition of records.
- **1.6.18 Risk Management.** The probability (likelihood) of a hazard being realized. While much easier to define than a hazard, it is difficult, if not impossible, to assign a precise numerical value to the risk. Risk assessment should be seen as a specific part of a wider, overall assessment of the risk to which people, facilities, and record collections at work are exposed and can be part of an overall program of risk management.
- **1.6.19 Shall.** Indicates a mandatory requirement.
- **1.6.20 Should.** Indicates a recommendation or that which is advised but not required.
- **1.6.21 Slab.** A poured concrete floor-ceiling assembly.
- **1.6.22 Standard.** A document, the main text of which contains only mandatory provisions using the word "shall" to indicate requirements and which is in a form generally suitable for mandatory reference by another standard or code or for adoption into law. Nonmandatory provisions shall be located in an appendix, footnote, or fine-print note and are not to be considered a part of the requirements of a standard.

1.6.23 Vault.

- **1.6.23.1** Ground-Supported Vault. A vault that is supported from the ground up and that is structurally independent of the building in which it is located.
- **1.6.23.2 Standard Records Vault.** A completely fire-resistive enclosure used exclusively for records storage.
- **1.6.23.3 Structure-Supported Vault.** A vault that is supported by the framework of a fire-resistive building and that can be supported individually on any floor of such a building.
- **1.6.24 Vault Door.** An approved assembly that protects paper records against fire for the duration of its rated exposure.
- **1.6.25 Vault Floor.** The ground-supported slab or the slab between vaults in a tier.
- **1.6.26 Vault Roof.** The ceiling or roof of a single vault and the ceiling or roof of the top vault of a tier, but not the slab between vaults in a tier, which is classified as a floor.

1.7 Required Levels of Protection.

- **1.7.1** Vital records shall be maintained in a records vault, a file room, or, for small volumes, a listed 1-hour device in a fire-resistive building.
- 1.7.2* Permanent records shall be maintained in a records vault, a file room, an archive, or a records center.
- **1.7.3** Long-term temporary records shall be maintained in a file room or a records center.
- **1.8* Establishment of Risk Tolerance.** The responsible party shall establish an acceptable level of risk tolerance for both single and catastrophic events. Archives and records centers

shall be protected by a professionally designed fire protection system specifically designed to achieve the stipulated level of risk tolerance. If the design is not in strict compliance with established NFPA standards (e.g., NFPA 13, Standard for the Installation of Sprinkler Systems, and NFPA 230, Standard for the Fire Protection of Storage), the authority having jurisdiction shall be permitted to require design verification through full-scale fire testing by an independent organization acceptable to the authority having jurisdiction.

Chapter 2 General

- **2.1* Responsibility of the Records Manager and Archivist.** The records manager or archivist shall determine which, if any, of the records need a higher level of protection as provided by the use of special vaults, safes, or insulated containers as specified in Chapter 8. It is essential that storage of cellulose nitrate film shall not be permitted in records vaults, file rooms, archives, or records centers. NFPA 40, *Standard for the Storage and Handling of Cellulose Nitrate Motion Picture Film*, shall be referenced for these protection requirements.
- **2.2 Fire Risk Evaluation Factors.** In considering the protection of records stored en masse, the following basic factors shall be evaluated:
- The exposure from the building housing the records, from nearby buildings, or from neighboring operations (e.g., the possibility of involving the records in a fire originating outside of the records facility)
- (2) The potential of fire initiation within the records facility, including the susceptibility of the records or containers to ignition
- (3) The potential of fire development posed by the stored records themselves, particularly as that potential relates to the available or proposed fire control capabilities or mechanisms
- (4) The potential impact of fire development in the stored records on the housing structure and adjacent operations
- (5) The fire control systems with the resultant extent and type of damage from fire, fire effects (e.g., heat, smoke), and fire-extinguishing efforts (principally water and physical disruption of records necessary to effect manual fire fighting)
- (6) The potential threat to life of occupants and fire service personnel
- **2.3* Exposure.** The responsible party shall consider the potential for the records to be destroyed by a fire that initiates in an area external to the operations. Any reasonable degree of protection for records stored in mass quantities in any multistory building shall include fire-resistive construction adequately designed to withstand the maximum fire impact of the exposing occupancy within. The same shall apply to singlestory buildings unless a proper fire wall separates the records area from the remainder of the building. Where records need to be housed in a building that could burn around them, properly rated vaults, safes, or insulated containers capable of resisting a total burnout as specified in Chapters 8 through 9 shall be used and are the only known means of protection that can provide reasonable assurance of records recovery.
- **2.4* Operations in Records Storage Areas.** In archival facilities, records storage areas shall be separated from processing areas, offices, and research rooms by a fire wall. Wherever records centers and archives are located within the same facil-

ity, the archival storage area shall be separated from the records center area by a fire wall.

Other fire risks in the records storage areas shall be reduced by the following means:

- (1) Using manual instead of power-operated equipment
- (2) Using electric instead of gas-fueled fork lifts
- (3) Prohibiting the use of portable space heaters, lights on extension cords, hot plates, coffee makers, duplicating devices, battery chargers, welding or cutting torches, and other such ignition sources within storage areas
- (4) Prohibiting the storage of oils, paints, or other flammables in or contiguous to the records areas

2.5 Housekeeping.

- **2.5.1** Stairwells, corridors, doorways, and any other portions of the means of egress for a building shall be free of combustibles, trash containers, and other materials. Trash shall be collected and disposed of at the end of each work day and more often if necessary.
- **2.5.2** Electrical rooms, mechanical rooms, and telephone closets shall be kept free of combustibles and locked. Stacks, exhaust ducts, and filters shall be cleaned as frequently as necessary to prevent the buildup of combustible dusts and fibers.
- **2.5.3** Combustible packing materials, such as shredded paper, StyrofoamTM peanuts, plastic, and excelsior, shall be stored in metal containers with self-closing covers. Areas where packing materials cannot be protected using these methods, such as dedicated crating and packing areas, shall be enclosed in 1-hour fire-resistive construction or shall be equipped with sprinklers.
- **2.5.4** Dumpsters or compactors used for bulk collection of trash or recyclable paper shall be constructed of metal with metal or plastic covers. Dumpsters and other large trash containers, if inside buildings, shall be stored as follows:
- (1) In trash rooms having both automatic sprinklers and a 1-hour fire resistance rating
- (2) In loading dock areas having both automatic sprinklers and a 1-hour fire resistance rating

Chapter 3 Construction

- 3.1 General Requirements for New File Rooms, Vaults, Archives, and Records Centers.
- **3.1.1*** The most important general principles for fire-safe records centers and archives construction shall be as described in this chapter.
- **3.1.2*** Automatic sprinkler systems in all areas of an archive or records center shall be required.
- **3.1.3*** For records centers the maximum storage volume of records shall not exceed $250,000~\rm{ft^3}~(7079~\rm{m^3})$ in a single compartment. For an archive, the maximum storage volume of records shall not exceed $125,000~\rm{ft^3}~(3540~\rm{m^3})$ in a single compartment.
- **3.1.4*** Each storage compartment shall be designed to contain fire from spreading to any adjacent records storage compartment. Fire walls separating records storage compartments shall be a minimum of 4-hour fire-resistive construction. Fire-resistive construction shall be in accordance with NFPA 220, *Standard on Types of Building Construction*.

- **3.1.4.1*** Building columns within the records storage area shall be of 2-hour fire-resistive construction from the floor to the point where they meet the roof-forming system.
- **3.1.4.2*** Large drop sprinklers shall be permitted to be used to protect lightweight roof structures during early fire development.
- **3.1.5** Records centers and archives shall not be constructed of materials that contribute fuel to a fire and that, by the nature of the construction, create combustible concealed spaces. Voids that create concealed spaces in which fire can spread rapidly and where access for fire fighting is difficult shall not be permitted.
- **3.1.6** Combustible wall and ceiling finishes shall not be used. NFPA 101[®], *Life Safety Code*[®], and most building codes shall be consulted for specific minimum requirements for interior finish materials. Fabrics or industrial coverings, where used, shall be noncombustible.
- **3.2* Records Storage Areas.** In records storage areas where high-rise, self-supporting stacks are used, a plan of action shall be established with the fire department in advance to determine the best means of gaining access to the stacks, venting smoke, and reaching and fighting a stack fire at its source.
- **3.3* Protection Against Outside Exposure Fires.** If sufficient clear space cannot be provided, the exterior walls of the records center or archives facing adjacent buildings shall be of masonry or other fire-resistive construction without doors, windows, or other openings. Where openings in an exposed wall are necessary, provision shall be made to prevent the transmission of heat or flames from a nearby fire through such openings. Suitable protection shall include fire windows with wired glass, fire doors, outside sprinklers, fire shutters, or a combination of these. Combustible roof coverings, window frames, and eaves add to the hazard from an exposure fire and shall be given special consideration in planning fire protection.

Chapter 4 Building Equipment and Facilities

4.1 Heating Systems.

- **4.1.1*** Boilers and furnaces of central heating systems shall be separated from the remainder of the structure by rated fire walls or separations.
- **4.1.2** Oil-fired and gas-fired heating equipment, piping, and fuel oil storage facilities shall be installed and maintained in accordance with the requirements of recognized safe practices. Heating equipment shall be inspected and serviced at least annually by qualified personnel or a service contractor. All heating units shall have safety devices appropriate for the particular type of installation. Combustibles, such as paper, wood, and textiles, shall be kept away from steam piping or other heat piping and ducts.
- **4.1.3** Gas and oil open-flame space heaters are not compatible with storage of archives and valuable records and shall be prohibited. Piping of fuel shall be prohibited in the vicinity of records storage areas.
- **4.1.4*** The requirements for safety and fire protection where gas is used as fuel for heating shall be in accordance with NFPA 54, *National Fuel Gas Code*. The requirements for the use of liquefied petroleum gas as fuel shall be in accordance with NFPA 58, *Liquefied Petroleum Gas Code*. The installation of oil

burners and equipment used with them shall be in accordance with NFPA 31, Standard for the Installation of Oil-Burning Equipment. The requirements of NFPA 90A, Standard for the Installation of Air-Conditioning and Ventilating Systems, shall be applied to air duct systems used for heating and ventilating.

4.2 Electrical Systems.

- **4.2.1 General.** Installation and modifications to provide for the changing needs of the records center or archive, including lighting, television, sound systems, shop machinery, and appliances, shall be made by licensed or qualified electricians in accordance with NFPA 70, *National Electrical Code*®. The equipment shall be listed.
- **4.2.2* Light Fixtures.** Light fixtures shall be arranged so as not to interfere with the sprinkler distribution pattern.
- **4.3 Service Aisles.** Shelving in otherwise dead-end service aisles shall be terminated at least 18 in. (457 mm) from the wall to prevent entrapment.

4.4* Locking Devices.

4.4.1 It is common for records centers and archives security measures to funnel all occupants through a few exits that can be monitored closely. Unfortunately, this arrangement often means that other doors required for egress are locked in violation of NFPA 101, Life Safety Code.

The 1997 edition of NFPA 101, Life Safety Code, includes equivalency concepts that allow the authority having jurisdiction to permit locking systems on these doors, provided that such systems afford a level of life safety equivalent to that prescribed in NFPA 101. There are electromechanical and electromagnetic locking devices available that satisfy this requirement where installed in a properly designed system. Some of these systems provide an appropriate time delay before opening. Hydraulic and pneumatic devices are available that could meet this requirement. A properly designed system shall include the following.

- (a) Any failure of the device or the system shall cause the system to fail in the unlocked condition.
- (b) Sprinkler system operation shall cause the system to unlock in the fire zone of origin.
- (c) Fire alarms in the building shall cause the system to unlock. These systems shall include the following:
- (1) A manual fire alarm box shall be provided at each exit egress door that is controlled by the system.
- (2) A sign shall be placed on each required exit door stating that the door unlocks within 15 to 30 seconds after pushing the panic bar or when the fire alarm sounds. Letters used in the sign shall be 1¹/₂ in. (38 mm) high with a ¹/₄-in. (6-mm) stroke.
 - (d) Smoke detection shall cause the system to unlock.
- **4.4.2** A daily functional test protocol shall be conducted by an individual specifically assigned the responsibility.
- **4.5 Air-Conditioning and Ventilation Systems.** Central airconditioning equipment shall be located and installed in a manner that does not increase fire hazards in records centers or for archives' visitors or collections. Air-conditioning ducts shall be equipped with automatic fire dampers and fan shutoffs in accordance with NFPA 90A, *Standard for the Installation of Air-Conditioning and Ventilating Systems*.

4.6* Lightning Protection. NFPA 780, Standard for the Installation of Lightning Protection Systems, shall be used in applying methods of protecting buildings from damage by lightning.

Chapter 5 Standard Records Vault

5.1 General.

- **5.1.1** The vault shall be equipped, maintained, and supervised to minimize the possibility of origin of fire within and to prevent entrance of fire from outside for a specified period of time
- **5.1.2** To resist the maximum expected exposure fire, a vault shall be constructed as specified herein and in accordance with the ratings in Chapter 9.

5.2 Design.

- **5.2.1** In a fire-resistive building, the vault shall be of either the ground-supported or the structure-supported type.
- **5.2.2** In a non-fire-resistive building, the vaults shall be of the ground-supported type. The walls of a building shall not be used as walls of the vault, because collapse of the building can cause damage to the vault and its contents.
- **5.2.3*** Plans and specifications shall be prepared and construction shall be supervised by a licensed or registered structural engineer or architect in consultation with a licensed or registered fire protection engineer.
- **5.2.4** Proper design and construction of a vault shall consider its qualities as a flame barrier and as a heat retardant, its ability to avoid settlement and consequent cracking, and its ability to maintain the integrity of the vault structure under the stresses and impacts to which it can be subjected during a fire, including impact from falling objects and stresses, strains, and erosion due to sudden cooling with fire hose streams.
- **5.3* Location.** Because of the difficulty of providing resistance to severe impact, vaults in non-fire-resistive buildings shall be located where they are not exposed to falling heavy objects, such as a safe, machine, or water tank, in the event of collapse of the building as the result of a fire.
- **5.4 Size.** For the purpose of restricting the quantity of vital records exposed to destruction by fire in a single enclosure and reducing the possibility of fire originating within a vault, the vault dimensions shall not exceed 5000 ft³ (142 m³), and the interior height shall not exceed 12 ft (3.7 m). (For conditions requiring storage of a larger volume of vital records, see Section 5.14.)

5.5 Foundations.

5.5.1 Ground-Supported Vaults. Foundations for vaults shall carry the entire load of the vault or tier of vaults and contents without settlement or cracking. Unburied structural members supporting vaults shall have fire resistance at least equal to that of the vault.

5.5.2 Structure-Supported Vaults.

5.5.2.1* The supporting structures for vaults shall be of adequate strength to carry the full load, including the wet weight of the vault structure and its contents.

- **5.5.2.2** There shall be no combustible material in any portion of the building structural members that supports the vault. All building structural members that support the vault shall have fire resistance at least equal to that of the vault.
- **5.5.2.3** The walls of a structure-supported vault shall follow the column lines of the building wherever possible and shall extend from slab to slab in each story where a vault is located. If vaults are located on more than one floor of a building, they shall be placed, preferably one above the other, in each story.

5.6 Floor.

- **5.6.1** Floors shall be noncombustible and shall have floor surfacing limited to concrete sealer.
- **5.6.2** In structure-supported vaults, the floor of the fire-resistive building shall be permitted to serve as the floor of the vault, provided it is of noncombustible construction throughout and complies with the following.
- (1) Floors above grade shall be adequate to support the full load (wet weight) and shall have unrestrained fire resistance equivalent to that required for the walls of the vault. (See Section 5.7.)
- (2) Floors above grade shall not be pierced for any purpose.

5.7 Walls.

- **5.7.1 Materials.** Walls shall be noncombustible and of fire-resistive construction throughout.
- **5.7.2 Reinforcing Rods.** Reinforcing rods in concrete shall be located to avoid failure from fire exposure.
- **5.7.3 Trim.** Noncombustible material shall be used for trim or partitions within the vault.
- **5.7.4* Minimum Resistance.** The design shall provide the necessary minimum resistance to fire and fire hose streams according to structural consideration and variations in the quality of materials and workmanship. The walls shall have sufficient lateral strength to withstand impact due to collapsing structural members, toppling machinery, toppling building equipment, or combination thereof.

5.7.5 Openings in Walls.

- **5.7.5.1*** The walls of vaults shall have no openings other than those necessary for access, electric lighting, power-limited circuits, ventilation, and sprinkler piping. (See 5.7.5.5 and 5.14.1.)
- **5.7.5.2** Door openings shall be protected with approved vault doors. Doors shall not open into elevator, conveyor, or other shafts, and there shall be no openings from one vault into another.
- **5.7.5.3** The number of door openings shall not exceed two for any single vault and shall be limited in size to that necessary for convenient ingress and egress and for ventilation.
- **5.7.5.4** Wall penetrations for sprinkler piping, electric lighting, and power-limited circuits shall be as small as possible and shall be sealed with approved or listed fire-rated material to prevent smoke, heat, flame, or water penetration. Conduit, if used, shall be sealed inside and outside.
- **5.7.5.5*** Wall penetrations for ventilation shall be as small as possible and shall be protected to maintain the required rating of the wall. In addition, smoke dampers activated by automatic sensing devices shall be provided.

5.7.6 Bonding.

- **5.7.6.1** Vault walls of masonry units shall be laid with corners that are well-bonded for their full height.
- **5.7.6.2** If the floor construction of a fire-resistive building forms the roof of the vault, the joint between the top of the vault wall and the underside of the floor arch or slab shall be finished tightly and filled thoroughly with mortar or cement grout.
- **5.7.6.3** If any wall(s) of a building is of suitable construction to form part of the vault enclosure, the wall(s) of the vault that intersects with the building wall(s) shall, where practicable, be bonded or keyed into it, or both, for the full height and width of the vault wall(s).

5.8 Independence from Building Structure.

- **5.8.1** Vault construction shall not be used as a support or bearing for the structural members of the building.
- **5.8.2** In ground-supported vaults, the walls and supports of vaults shall be structurally independent of the building.

5.9 Roof.

- **5.9.1** In non-fire-resistive buildings, the roofs of the vaults shall be entirely independent of the walls, floor, ceiling, columns, piers, or roof construction of the building.
- **5.9.2** In structure-supported vaults, the roof or the floor of the fire-resistive building shall be permitted to serve as the roof of the vault, provided it is of noncombustible construction throughout and complies with the following:
- The roof of the vault shall be reinforced concrete or reinforced concrete on protected steel supports.
- (2) The roof of the vault shall have a fire resistance at least equivalent to that of the walls and shall have structural strength adequate to carry the design load or greater if subject to unusual impact or if exposed to fire from outside the vault.
- (3) All interior supports shall have a fire resistance equivalent to that of the walls.
- (4) The roofs of vaults shall not be pierced for any purpose.

5.10* Vault Door.

5.10.1* The vault door shall be listed or labeled in accordance with ANSI/UL 155, *Tests for Fire Resistance of Vault and File Room Doors.* The vault door shall have a rating, in hours of fire resistance, equivalent to the rating of the walls of the vault, as follows:

4-hour vault — 4-hour door 6-hour vault — 6-hour door

- **5.10.2** Installation of the vault door unit shall be made in conformity with instructions supplied by the manufacturer and shall be entrusted only to those experienced in such installation work.
- **5.10.3*** The door-locking mechanism shall permit the door to be opened easily from the inside to prevent an individual from accidentally being locked in the vault.
- **5.10.4** Doors shall be equipped with an automatic closing device operated by a heat-actuated or smoke-actuated release for doors that are held in the open position.

5.11 Electrical Service.

- **5.11.1** All electrical service within the vault shall be enclosed in conduit and installed in accordance with NFPA 70, *National Electrical Code.*
- **5.11.2** The wiring shall provide as many fixed lamps as needed for illumination. Pendant lamps and extension cords shall not be used within a vault. Fixed lighting shall be used for illumination of all portions of the vault to preclude the use of matches or other hazardous lighting.
- **5.11.3** Necessary lighting shall be limited to vaporproof or explosion proof lamps controlled by a two-pole switch equipped with a pilot light outside the vault. No other electrical devices or appliances shall be permitted within the vault.

Exception: Power-limited circuits shall be permitted within the vault.

5.12 Operating Practices.

- **5.12.1** Filing equipment shall be noncombustible throughout. All records shall be stored in fully enclosed noncombustible containers. (For storage of records in open-type equipment, see Chapter 7.)
- **5.12.2** The records in the filing equipment shall be not less than 3 in. (76 mm) above the floor.
- **5.12.3** Records containers shall be separated by at least 6 in. (152 mm) from piping and conduit that penetrates the wall. Where sprinklers are installed, records containers shall be kept 18 in. (457 mm) below sprinkler deflectors.
- **5.12.4** The vault shall be under supervision from opening until closing time, and inspections shall be made daily, particularly before closing time, to ensure that all records containers are closed, no records are left on top of the records containers or are elsewhere exposed, all wastepaper is removed, and the vault doors are closed and locked.
- **5.12.5** Vaults shall not be used as working spaces. Persons other than those authorized to handle the records shall not be permitted in the vaults.

5.12.6 Housekeeping.

- **5.12.6.1** Stairwells, corridors, doorways, and any other portions of the means of egress for a building shall be free of combustibles, trash containers, and other materials. Trash shall be collected and disposed of at the end of each work day and more often if necessary.
- **5.12.6.2** Electrical rooms, mechanical rooms, and telephone closets shall be kept free of combustibles and locked. Stacks, exhaust ducts, and filters shall be cleaned as frequently as necessary to prevent the buildup of combustible dusts and fibers.
- **5.12.6.3** Combustible packing materials, such as shredded paper, Styrofoam peanuts, plastic, and excelsior, shall be stored in metal containers with self-closing covers. Areas where packing materials cannot be protected using these methods, such as dedicated crating and packing areas, shall be enclosed in 1-hour fire-resistive construction or shall be equipped with sprinklers.
- **5.12.6.4** Dumpsters or compactors used for bulk collection of trash or recyclable paper shall be constructed of metal with metal or plastic covers. Dumpsters and other large trash containers, if inside buildings, shall be stored as follows:
- (1) In trash rooms having both automatic sprinklers and a 1-hour fire resistance rating

- (2) In loading dock areas having both automatic sprinklers and a 1-hour fire resistance rating.
- **5.12.7** Smoking shall not be permitted inside vaults. Matches and lighters shall not be permitted inside vaults.

5.13 Fire Suppression and Signaling Equipment.

5.13.1* Other than power-limited circuits, automatic or manual fire protection devices shall be limited to those not requiring wall penetration.

Exception: Wall penetration necessary for supplying automatic sprinklers shall be permitted. (See Section 5.14.)

- **5.13.2** Portable fire extinguishers of a type suitable for Class A fires in accordance with NFPA 10, *Standard for Portable Fire Extinguishers*, shall be provided outside of the vault within 25 ft (8.2 m) of the vault door.
- **5.13.3** When standpipe systems are provided, they shall be installed in accordance with NFPA 14, *Standard for the Installation of Standpipe and Hose Systems*, and they shall be located outside the vault and within 25 ft (8.2 m) of the vault door.
- **5.13.4** Where automatic fire detection systems are installed for providing warning of fire inside the vault, they shall be in accordance with Section 5.11 and NFPA 72, *National Fire Alarm Code*®.

5.14 Oversize Vault.

- **5.14.1*** Where the volume of vital records exceeds that which can be stored in a record vault of maximum permitted size [5000 ft³ (142 m³)], an oversize vault of dimensions not greater than 25,000 ft³ (708 m³) shall be designed and constructed as a standard vault and equipped with an automatic fire suppression system in accordance with NFPA 13, Standard for the Installation of Sprinkler Systems; NFPA 750, Standard on Water Mist Fire Protection Systems; or NFPA 2001, Standard on Clean Agent Fire Extinguishing Systems.
- **5.14.2** Filing equipment shall be noncombustible but shall not be required to be completely enclosed. Where mobile shelving is used, smoke detection in accordance with 5.13.3 shall be provided in addition to automatic sprinklers. In accordance with 5.11.3, no electrically operated mobile shelving shall be permitted.

Chapter 6 Emergency Planning.

6.1 Responsibility. (909: 2-1.1)

- **6.1.1** Emergency planning responsibilities include the following:
- (a) Those responsible for the institution shall establish and maintain plans and programs to mitigate against the disastrous effects of fire.
- (b) In carrying out this responsibility described in (a), a risk assessment shall be conducted. (909: 2-1.1.1)
- **6.1.2** Those responsible for the facility shall appoint a risk manager who is responsible for the protection of the site. The risk manager's duties include, but are not limited to, the following: life safety systems, fire prevention, fire inspections, periodic property surveys, proper operation of fire protection equipment such as fire detection and fire suppression equipment, and portable fire extinguishers. Other duties shall

include plans review for fire safety of new construction, renovations, or installation. (909: 2-1.1.2)

6.2 Planning for Response. (909: 2-3)

- **6.2.1*** The risk manager shall develop and implement an emergency management plan. There shall be an annual exercise to ensure that management and staff can implement and work with the plan and incorporate lessons learned from the exercise into an updated plan.
- (a) The plan shall include provisions for notifying the fire department of the type and location of the emergency and directing them to the site once they arrive.
- (b) Emergency telephone numbers shall be posted on or adjacent to all telephones. (909: 2-3.1)
- **6.2.2** An emergency evacuation plan shall be prepared in cooperation with the local fire department and other applicable authorities and updated annually. This shall include the following:
- Fire safety precautions when normal operational conditions are substantially changed
- Fire safety precautions to make necessary adjustments for temporary storage
- (3) Modification of staff training and drills to adjust for circumstances created by special conditions
- (4) Provisions to notify the local fire service of special conditions expected to require adjustments to the emergency evacuation plan (909: 2-3.2)
- **6.2.3** Fire exit drills required by NFPA *101*, *Life Safety Code*, shall be conducted at regular intervals, but no less than twice per year. (909: 2-3.3)
- **6.3 Recovery Plan.** A recovery plan shall be prepared in cooperation with the fire department, appropriate building staff, police, and insurance representatives. This plan shall be updated annually and shall include the following:
- (a) Procedures to identify and prioritize collections and other valuable materials in accordance with the facility's policy
- (b) A list of recovery equipment suppliers (e.g., pumps, freezing equipment, storage facilities, and so forth) and tradespeople
- (c) A current list of disaster recovery specialists for damaged fine arts, collections, and archives, such as conservators from museums, archives, and other cultural properties willing to lend mutual aid assistance
- (d) A list of people assigned to assist with recovery operations, including staff to deal with the press, fire authorities, police, and authorities that can restrict entry following a fire of suspicious origin
- (e) Measures to maintain up-to-date copies of important documents in a secure, off-site location. Examples of such records include, but are not limited to, the following: collections inventories (e.g., accession, catalog, conservation, and loan documents along with copies of donation and gift forms), historical records (including baptismal and wedding records), essential business and insurance records, and building plans and systems documentation (e.g., drawings, specifications, and operating manuals).
- (f) Procedures to identify and handle hazardous materials, such as asbestos or PCPs, that can cause a health hazard or contaminate the structure or contents after a fire. This shall include impoundment of fire-fighting water where it poses a hazard to the environment. (909: 2-4)

FILE ROOMS 232–11

6.4 Fire Protection Plan.

- (a) Format of Plan. A fire protection plan shall be developed for systematic achievement of fire safety goals and updated annually. This shall include a yearly comprehensive facility inspection procedure with a documentation and corrective action process to ensure that all problems and hazards identified during the inspection are documented and corrected as soon as possible.
- (b) *Fire Safety Log.* The risk manager shall be responsible for maintaining a permanent, current file of the facility's fire protection program. As a minimum, permanent records documenting the following shall be kept:
- (1) Training of staff, including fire evacuation drills and use of portable fire extinguishers
- (2) Testing, inspection, and maintenance reports for all fire safety equipment and systems, including records of actions taken to correct deficiencies
- (3) "As-built" plans, specifications, wiring and layout diagrams, and acceptance test reports for all fire protection systems (e.g., fire detection and alarm systems, automatic fire suppression systems)
- (4) The facility's fire protection plan
- (5) The facility's emergency plan
- (6) Inspection reports by local code enforcement officials, the authority having jurisdiction, local fire service officials, and insurance loss control representatives, including records of actions taken to correct deficiencies identified during each inspection
- (7) Fire protection systems actuation and alarm reports complete with the cause of the alarm or activation, response, and corrective action(s) taken
- (8) Full reports, including cause, extent of damage, response and recovery of all fire incidents
- (c) Arson. Facilities shall implement precautions to prevent arson. (909: 2-2.3)
- **6.5 Training.** In accordance with the requirements of this section, the risk manager shall ensure that the staff receive periodic and regular training in all aspects of the following:
- (1) The emergency management plan
- (2) The emergency evacuation plan
- (3) The recovery plan
- (4) The fire protection systems
- (5) The proper use of portable extinguishers

Chapter 7 File Rooms

7.1 General.

7.1.1 All file rooms shall be provided with automatic sprinkler protection.

Exception: Sprinklers shall not be required where all storage is held in six-sided noncombustible containers.

- **7.1.2*** File rooms shall be used exclusively for the storage and handling of important records and shall be equipped, maintained, and operated to minimize the effects of fires of both internal and external origin. Vital records shall not be stored in a file room. File rooms shall not be used as ordinary work
- **7.1.3** To minimize the effects of fires of both internal and external origin, a file room shall be constructed and operated

as specified in this chapter and in accordance with the ratings in Chapter 9.

7.2 Design.

- **7.2.1** Plans and specifications shall be prepared, and construction shall be supervised by a licensed or registered structural engineer or architect in consultation with a licensed or registered fire protection engineer.
- **7.2.2** Fire resistance ratings prescribed for file rooms shall be of the same duration that materials or assemblies have been shown to withstand for a fire exposure that has been established in accordance with the test procedures of NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials.

7.3 Location.

7.3.1* File rooms shall not be located below ground.

Exception: Underground storage and basement storage areas specifically designed by licensed or registered fire protection engineers to mitigate the inherent problems of subterranean storage.

- **7.3.2** File rooms shall be located to prevent severe impact by a falling machine, safe, water tank, or other heavy object or structure.
- **7.4 Size.** The volume of file rooms shall not exceed $50,000 \text{ ft}^3$ (1416 m^3).

7.5 Supporting Structure.

- **7.5.1*** The supporting structures for file rooms shall be of adequate strength to carry the full load, including the wet weight of the file room structure and its contents.
- **7.5.2** There shall be no combustible material in any portion of the building structural members that support the file room. All building structural members that support the file room shall have fire resistance at least equal to that of the file room.
- **7.5.3** The walls of a structure-supported file room shall follow the column lines of the building wherever possible and shall extend from floor to floor in each story where a file room is located. If file rooms are located on more than one floor of a building, they shall be placed, preferably one above the other, in each story.

7.6 Floor.

- **7.6.1** In structure-supported file rooms, the floor of the fire-resistive building shall be permitted to serve as the floor of the file room, provided it is of noncombustible construction throughout and complies with the following:
- Floors above grade shall be adequate to support the full load (wet weight) and shall have unrestrained fire resistance equivalent to that required for the walls of the file room.
- (2) Floors above grade shall not be pierced for any purpose.
- **7.6.2** Reinforcing rods in concrete shall be so located as to avoid failure from fire exposure.

7.7 Walls.

- **7.7.1 Materials.** Walls shall be constructed of noncombustible or limited-combustible materials.
- **7.7.2 Trim.** Noncombustible material shall be used for trim or partitions within the file room.

7.7.3 Openings in Walls.

- **7.7.3.1*** The walls of file rooms shall have no openings other than those necessary for access, electric lighting, power-limited circuits, sprinkler piping, ventilation, and hot water or low-pressure steam piping. The sealing requirements of 5.7.5.4 shall apply.
- **7.7.3.2** Door openings shall be protected with approved file room doors. Doors shall not open into elevator, conveyor, or other shafts.
- **7.7.3.3** Wall penetrations for ventilation shall be as small as possible and shall be protected to maintain the required rating of the wall. In addition, smoke dampers activated by automatic-sensing devices shall be provided.
- **7.7.4 Bonding.** If any wall(s) of a building is of suitable construction to form part of the file room enclosure, the wall(s) of the file room that intersects with the building wall(s) shall, where practicable, be bonded or keyed into it, or both, for the full height and width of the file room wall(s).

7.8 Roof.

- **7.8.1** In non-fire-resistive buildings, the roof of the file room shall be entirely independent of the walls, floor, ceiling, columns, piers, or roof construction of the building.
- **7.8.2** In fire-resistive buildings, the roof or the floor shall be permitted to serve as the roof of the file room, provided it is of limited-combustible or noncombustible construction throughout and complies with the following:
- The roof of the file room shall be reinforced concrete or reinforced concrete on protected steel supports.
- (2) The roof of the file room shall have a fire resistance at least equivalent to that of the walls and shall have structural strength adequate to carry the design load or greater if subject to unusual impact or if exposed to fire from outside the file room.
- (3) All interior supports shall have a fire resistance equivalent to that of the walls.
- (4) The roofs of the file rooms shall not be pierced for any purpose.

7.9 File Room Door.

7.9.1 The file room door shall be listed or labeled in accordance with ANSI/UL 155, *Tests for Fire Resistance of Vault and File Room Doors.* The file room door shall have a rating, in hours of fire resistance, equivalent to the rating of the walls of the file room, as follows:

6-hour file room—6-hour door

4-hour file room—4-hour door

2-hour file room—2-hour door

1-hour file room—1-hour door

- **7.9.2** Installation of the file room door unit shall be made in conformity with instructions supplied by the manufacturer and shall be entrusted only to those experienced in such installation work.
- **7.9.3*** The door-locking mechanism shall permit the door to be opened from the inside to prevent an individual from accidentally being locked in the file room.
- **7.9.4** Doors shall be equipped with an automatic closing device operated by a heat-actuated or smoke-actuated release for doors that are held in the open position.

7.10 Dampproofing. Where the walls, floor, or roof of a file room are dampproofed, the methods and materials used shall be such that the desired fire resistance of the file room shall not be impaired.

7.11 Electrical Service.

- **7.11.1** All electrical service within the file room shall be enclosed in conduit and installed in accordance with NFPA 70, *National Electrical Code*.
- **7.11.2** The wiring shall provide as many fixed lamps as needed for illumination. Pendant lamps and extension cords shall not be used within a file room. Fixed lighting shall be used for illumination of all portions of the file room to preclude the use of temporary lighting.
- **7.11.3** Necessary lighting shall be limited to vaporproof or explosion proof lamps controlled by a two-pole switch equipped with a pilot light outside the file room. No other electrical devices or appliances shall be permitted within the file room.

Exception No. 1: File maintenance equipment specifically designed and approved for installation and use.

Exception No. 2: Power-limited circuits shall be permitted within the file room.

7.12 Heating and Ventilation.

7.12.1 Where steam heating is used, the coils or radiators shall be located to avoid the possibility of records coming in contact with them. Piping shall be placed close to floor level. Forced air heating systems shall be supplied by air-handling units located outside the file room and shall comply with Section 4.5. Where the pipe is carried through the wall, the holes shall be made as small as practicable, the pipe shall be provided with a close-fitting noncombustible sleeve, and the space around the inside of the sleeve shall be filled completely with approved material. Floors and roofs of file rooms shall not be pierced for piping.

Exception: Slab floors on grade shall be permitted to be pierced for piping.

- **7.12.1.1** No devices such as open-flame heaters and electrical heaters shall be used.
- **7.12.1.2** Heating systems shall not reduce the level of humidity inside the file room to a level that results in deterioration of the records.
- **7.12.2*** Depending on the records media, ventilation shall be provided to maintain humidity within established limits, to prevent excessive temperatures, and to remove volatile organic chemicals (VOCs) produced by the media itself. Any wall penetrations necessary for adequate ventilation shall comply with 7.7.3.3.

7.13 Fire Suppression and Signaling Equipment.

7.13.1 All file rooms shall be provided with an automatic sprinkler system designed and installed in accordance with NFPA 13, *Standard for the Installation of Sprinkler Systems*.

Exception: Where all storage is held in records protection equipment as defined in Chapter 8.

7.13.1.1 Paper records shall be protected as a Class III commodity.

- **7.13.1.2** Where records media are mixed (e.g., paper and magnetic tape), the design shall be for the highest hazard commodity.
- **7.13.1.3*** Where automatic sprinklers are installed, sprinkler alarms and shutoff valves outside the file room shall be provided.
- **7.13.1.3.1** Where paper records are stored on open-shelf file equipment and at heights of 12 ft (3.7 m) or less, the design criteria of NFPA 13, *Standard for the Installation of Sprinkler Systems*, shall be in accordance with Ordinary Hazard Group 2.

Where paper records are stored in excess of 12 ft (3.7 m), the design criteria of NFPA 230, *Standard for the Fire Protection of Storage*, shall apply. Storage shall be considered to be a Class III commodity.

7.13.1.3.2 Where records consisting of other media with combustion characteristics that differ from paper, such as magnetic tape and audiovisual materials, are stored in open-shelf file equipment at a height of 12 ft (3.7 m) or less, the requirements of NFPA 13, *Standard for the Installation of Sprinkler Systems*, shall apply.

For storage in excess of 12 ft (3.7 m), the requirements of NFPA 230, *Standard for the Fire Protection of Storage*, shall apply.

- **7.13.1.3.3** Where records media are mixed (e.g., paper and magnetic tape), the design shall be for the highest hazard commodity.
- **7.13.2** A portable fire extinguisher of a type suitable for Class A fires in accordance with NFPA 10, *Standard for Portable Fire Extinguishers*, or a standpipe system with small hose suitable for use by occupants of the building in accordance with NFPA 14, *Standard for the Installation of Standpipe, Private Hydrant, and Hose Systems*, shall be provided at a location outside the door of the file room.
- **7.13.3** Smoke detection systems, connected to notify the fire department when activated, shall be provided for the following:
- File rooms with open-shelf file equipment, including mobile shelving, that have concealed spaces more than 6 ft (1.8 m) wide
- (2) File rooms with all storage held in six-sided noncombustible containers and a file-processing area not exceeding 10 percent of the total file room floor area
- **7.13.4** Where automatic fire detection systems are installed for providing warning of fire inside of the file room, they shall be in accordance with NFPA 72, *National Fire Alarm Code.* The systems shall be relied upon only where reliable, prompt response of alarms is ensured.

7.14 Operating Practices.

- **7.14.1** The records in the filing equipment shall be not less than 3 in. (76 mm) above the floor.
- **7.14.2** Records containers shall be separated by at least 6 in. (152 mm) from piping and conduit that penetrate the wall. Where sprinklers are installed, records containers shall be kept 18 in. (457 mm) below sprinkler deflectors.

Exception: Where sprinklers are located in each aisle.

7.14.3 The file room shall be under supervision from opening until closing time, and inspections shall be made daily, particularly before closing time, to ensure that all records containers are closed, no records are left on top of records containers

or are elsewhere exposed, all wastepaper is removed, and the file room doors are closed and locked.

7.14.4 File rooms shall not be used as working spaces. No workstations shall be permitted. Persons other than those authorized to handle the records shall not be permitted in the file rooms.

Exception No. 1: File rooms that are fully sprinklered.

Exception No. 2: File rooms with smoke detection systems and all storage held in six-sided noncombustible containers.

7.14.5 Housekeeping.

- **7.14.5.1** Stairwells, corridors, doorways, and any other portions of the means of egress for a building shall be free of combustibles, trash containers, and other materials. Trash shall be collected and disposed of at the end of each work day and more often if necessary.
- **7.14.5.2** Electrical rooms, mechanical rooms, and telephone closets shall be kept free of combustibles and locked. Stacks, exhaust ducts, and filters shall be cleaned as frequently as necessary to prevent the buildup of combustible dusts and fibers.
- **7.14.5.3** Combustible packing materials, such as shredded paper, Styrofoam peanuts, plastic, and excelsior, shall be stored in metal containers with self-closing covers. Areas where packing materials cannot be protected using these methods, such as dedicated crating and packing areas, shall be enclosed in 1-hour fire-resistive construction or shall be equipped with sprinklers.
- **7.14.5.4** Dumpsters or compactors used for bulk collection of trash or recyclable paper shall be constructed of metal with metal or plastic covers. Dumpsters and other large trash containers, if inside buildings, shall be stored as follows:
- (1) In trash rooms having both automatic sprinklers and a 1-hour fire resistance rating
- (2) In loading dock areas having both automatic sprinklers and a 1-hour fire resistance rating.
- **7.14.6** Smoking shall not be permitted inside file rooms. Matches and lighters shall not be permitted inside file rooms.

Chapter 8 Records Protection Equipment

- **8.1* General.** Records protection equipment is movable and shall include fire-resistant safes and cabinets.
- **8.2*** Classification of Devices. Only listed or labeled records protection equipment shall be used.

8.3 Selection of Equipment.

- **8.3.1*** The selection of the class of records protection equipment shall be based on the requirements in Section 8.3 and in Chapter 9.
- **8.3.2** The label on the device shall include the name of the equipment, the temperature rating, and the time rating. The label shall be applied to the equipment and shall be located to be visible after the equipment has been installed.
- **8.3.3*** Cabinets made of wood, fiberboard, or other combustible materials shall not expose containers housing vital or important records to fire.

Chapter 9 Preservation of Records

9.1 General.

- **9.1.1*** The fire resistance requirements for vaults, file rooms, and records protection devices shall be in accordance with the type of construction (e.g., fire-resistive or non-fire-resistive), the total combustibles exposing the vault, file room, or records protection device, and the records media being protected as specified in Chapters 5, 7, and 8.
- **9.1.2** Some records shall be permitted to be protected by duplication. Where the duplication method is used, the duplicated records shall be stored in a separate location not subject to the same fire.
- **9.2 Fire-Resistive Buildings.** The devices required to protect records adequately in a fire-resistive building as shown in Table 9.2 shall be determined by the following:
- (1) The total combustible contents per floor in the building
- (2) The percentage of combustibles that are in an exposed position on any given floor

9.3 Non-Fire-Resistive Buildings.

- **9.3.1** To adequately protect records in a non-fire-resistive building, the devices required shall be determined by the total weight of combustibles per floor, as shown in Table 9.3.1.
- **9.3.2** Any device located in a non-fire-resistive building shall be rated for impact resistance.

Table 9.2 Equipment for a Fire-Resistive Building

Contents per Flo any Combus Partition	of Combustible or Area, Including stible Flooring, s, and Trim 9.1.1(7)]	Noncombustible Desks, Filing Cabinets, Lockers, and Other Closed Containers (Not over 30 Percent of	Combustible Desks, Filing Cabinets, Shelving, Containers, etc.			
lb/ft ²	kg/m^2	Combustible Exposed)				
<5	<24.4	1-hr device (without impact) or file room	1-hr device (without impact) or file room			
6–10	29.3–48.8	1-hr device (without impact) or file room	1-hr device (with impact) or file room			
11–15	53.7–73.2	1-hr device (without impact)	2-hr device or file room			
16–20	78.1–97.6	1-hr device (with impact) or file room	2-hr device or file room			
21–30	102.5–146.4	1-hr device (with impact) or file room	4-hr device, file room, or vault			
31–35	151.4—171	2-hr device or file room	4-hr device, file room, or vault			
36–45	175.8–219.7	2-hr device or file room	6-hr vault or file room			
46–50	224.5–244	4-hr device, file room, or vault	6-hr vault or file room			
51–60	249–293	4-hr device, file room, or vault	6-hr device or file room with no combustibles near door			

APPENDIX A 232–15

Table 9.3.1 Equipment for a Non-Fire-Resistive Building

Total Weight of Combustible Contents per Floor Area, Including Building Members and Roofs, but not Exterior Walls [see A.9.1.1(7)]

lb/ft ²	kg/m^2	Record Container Rating
<25	<122.1	2-hr device or file room, except in one-story and basement buildings or two-story without basement 1-hr device (with impact) or file room. Where impacts or blanketing of ruins by collapse of masonry wall or adjoining building is possible, a device or file room of 2-hr or higher rating shall be used
26-50	126.9-244.1	2-hr device or file room
51–100	249–488.2	4-hr device, file room, or vault. 4-hr vault for basement or ground story, 2-hr or above
101–150	493.1-732.4	Vault, file room, or device: basement or ground (first) story, 6-hr; first floor, 4-hr; upper floors, 2-hr
>151	>737.2	Vault, file room, or device shall not be located in basement or ground story without basement; first floor, 6-hr; second floor, 4-hr; upper floors, 2-hr

Note: Wood weighs approximately 36 lb/ft 3 (577 kg/m $^3).$

Chapter 10 Referenced Publications

10.1 The following documents or portions thereof are referenced within this standard as mandatory requirements and shall be considered part of the requirements of this standard. The edition indicated for each referenced mandatory document is the current edition as of the date of the NFPA issuance of this standard. Some of these mandatory documents might also be referenced in this standard for specific informational purposes and, therefore, are also listed in Appendix F.

10.1.1 NFPA Publications. National Fire Protection Association, 1 Batterymarch Park, P.O. Box 9101, Quincy, MA 02269-9101

NFPA 10, Standard for Portable Fire Extinguishers, 1998 edition. NFPA 13, Standard for the Installation of Sprinkler Systems, 1999 edition.

NFPA 14, Standard for the Installation of Standpipe, Private Hydrant, and Hose Systems, 2000 edition.

NFPA 31, Standard for the Installation of Oil-Burning Equipment, 1997 edition.

NFPA 40, Standard for the Storage and Handling of Cellulose Nitrate Motion Picture Film, 1997 edition.

NFPA 54, National Fuel Gas Code, 1999 edition.

NFPA 58, Liquefied Petroleum Gas Code, 1998 edition.

NFPA 70, National Electrical Code®, 1999 edition.

NFPA 72, National Fire Alarm Code®, 1999 edition.

NFPA 90A, Standard for the Installation of Air-Conditioning and Ventilating Systems, 1999 edition.

NFPA 101®, Life Safety Code®, 2000 edition.

NFPA 220, Standard on Types of Building Construction, 1999 edition.

NFPA 230, Standard for the Fire Protection of Storage, 1999 edition. NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials, 1999 edition.

NFPA 750, Standard on Water Mist Fire Protection Systems, 2000 edition.

NFPA 780, Standard for the Installation of Lightning Protection Systems, 2000 edition.

NFPA 909, Standard for the Protection of Cultural Resources, Including Museums, Libraries, Places of Worship, and Historic Properties, 1997 edition.

NFPA 1600, Standard on Disaster/Emergency Management and Business Continuity Programs, 2000 edition.

NFPA 2001, Standard on Clean Agent Fire Extinguishing Systems, 2000 edition.

10.1.2 Other Publication.

10.1.2.1 ANSI/UL Publication. Underwriters Laboratories Inc., 333 Pfingsten Road., Northbrook, IL 60062-2096.

ANSI/UL 155, Tests for Fire Resistance of Vault and File Room Doors, 1995.

Appendix A Explanatory Material

Appendix A is not a part of the requirements of this NFPA document but is included for informational purposes only. This appendix contains explanatory material, numbered to correspond with the applicable text paragraphs.

A.1.1 Businesses have been forced to close due to the insurmountable task of replacing organizational and operational records. Although accurate nationwide statistics are needed, it is known that the losses sustained in fires by such businesses have had the adverse effect of lowering their credit ratings and that some went out of business because of the destruction of their records.

Since the turn of the century, the volume of records, especially of business records, has increased rapidly. These records have to be stored. This need, stimulated by competition among manufacturers, led to the development of better records containers, especially that of lighter weight containers with greater capacity and fire resistance. The heavy, old-line safes of uncertain fire resistance could no longer meet the needs of business and have been replaced largely by modern fire-resistive containers. Newer techniques of records keeping (e.g., microfilm and electronic computers) are creating new problems and new demands.

The issues facing the records protection field today are better acknowledgment and increased study of the records protection problem. Technically, the equipment needed to provide the necessary protection has been produced and rigorously tested. It is now the responsibility of records owners and custodians to learn how to estimate the protection needed and the responsibility of architects, contractors, and builders, as well as custodians, to understand how to provide this protection.

Archives are intended for the permanent retention of records specifically selected because of their legal, historical, or intrinsic value. The responsible party should also consider environmental conditions that impact records protection. Although fire is the ultimate risk to the records, other factors such as high temperatures [in excess of 76°F (24.4°C)], rapid fluctuation in temperatures, excessively high or low humidity, exposure to volatile organic chemicals (VOCs), particulates, and pests can over time lead to the destruction of the records. The records media is a major factor in determining the degree of environmental controls necessary in an archive storage area. Audiovisual and magnetic media require the highest levels of environmental control.

A.1.1.2 See NFPA 40, Standard for the Storage and Handling of Cellulose Nitrate Motion Picture Film. Neither NFPA 40 nor NFPA 42, Code for the Storage of Pyroxylin Plastic, currently apply to cellulose nitrate still-film negatives.

A.1.1.3 See NFPA 230, Standard for the Fire Protection of Storage.

A.1.6.1 Approved. The National Fire Protection Association does not approve, inspect, or certify any installations, procedures, equipment, or materials; nor does it approve or evaluate testing laboratories. In determining the acceptability of installations, procedures, equipment, or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure, or use. The authority having jurisdic-

tion may also refer to the listings or labeling practices of an organization that is concerned with product evaluations and is thus in a position to determine compliance with appropriate standards for the current production of listed items.

A.1.6.3 Authority Having Jurisdiction. The phrase "authority having jurisdiction" is used in NFPA documents in a broad manner, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the authority having jurisdiction may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the authority having jurisdiction. In many circumstances, the property owner or his or her designated agent assumes the role of the authority having jurisdiction; at government installations, the commanding officer or departmental official may be the authority having jurisdiction.

A.1.6.4.1 Fire-Resistive Building. See Table A.1.6.4.1. For more information on Type I and Type II-222 construction, see NFPA 220, *Standard on Types of Building Construction*.

Table A.1.6.4.1 Fire Resistance Ratings (in hours) for Type I through Type V Construction

	Type I		Type II			Type III		Type IV	Type V	
	443	332	222	111	000	211	200	2НН	111	000
Exterior Bearing Walls										
Supporting more than one floor, columns, or other bearing walls	4	3	2	1	0^1	2	2	2	1	0^{1}
Supporting one floor only	4	3	2	1	0^{1}	2	2	2	1	0^{1}
Supporting a roof only	4	3	1	1	0^{1}	2	2	2	1	0^{1}
Interior Bearing Walls										
Supporting more than one floor, columns, or other bearing walls	4	3	2	1	0	1	0	2	1	0
Supporting one floor only	3	2	2	1	0	1	0	1	1	0
Supporting roofs only	3	2	1	1	0	1	0	1	1	0
Columns										
Supporting more than one floor, columns, or other bearing walls	4	3	2	1	0	1	0	H^2	1	0
Supporting one floor only	3	2	2	1	0	1	0	H^2	1	0
Supporting roofs only	3	2	1	1	0	1	0	H^2	1	0
Beams, Girders, Trusses, and Arches										
Supporting more than one floor, columns, or other bearing walls	4	3	2	1	0	1	0	H^2	1	0
Supporting one floor only	3	2	2	1	0	1	0	H^2	1	0
Supporting roofs only	3	2	1	1	0	1	0	H^2	1	0
Floor Construction	3	2	2	1	0	1	0	H^2	1	0
Roof Construction	2	$1^{1}/_{2}$	1	1	0	1	0	H^2	1	0
Exterior Nonbearing Walls ³	0^{1}	0^{1}	0^{1}	0^{1}	0^{1}	0^{1}	0^{1}	0^{1}	0^{1}	0^{1}

Those members that shall be permitted to be of approved combustible material.

¹ See A-3-1 (table) in NFPA 220, Standard on Types of Building Construction.

² "H" indicates heavy timber members; see text for requirements.

³ Exterior nonbearing walls meeting the conditions of acceptance of NFPA 285, Standard Method of Test for the Evaluation of Flammability Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components Using the Intermediate-Scale, Multistory Test Apparatus, shall be permitted to be used.

APPENDIX A 232–17

- **A.1.6.11 Listed.** The means for identifying listed equipment may vary for each organization concerned with product evaluation; some organizations do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.
- **A.1.6.15.8 Useful Records.** Useful records can include, but not be limited to, records for accounting, payables, correspondence, and time cards.
- **A.1.6.15.9 Vital Records.** Records of exceptionally high intrinsic value, such as those of financial securities, or records that also are rare artifacts could necessitate individualized protection measures outside the scope of this standard. Records essential to the reconstruction of other records also should be considered for special protection.

Examples of vital records are those for which a reproduction cannot be substituted for the original; records needed promptly to sustain business or to recover monies with which to replace buildings equipment, raw materials, finished goods, and work in process; and records needed to avoid delay in restoration of production, sales, and service.

- **A.1.7.2** If permanent records are maintained in a records center, supplemental environmental controls could be required.
- **A.1.8** The authority having jurisdiction, generally the records management officer, should consider the following factors in determining an acceptable level of risk tolerance for various categories of records:
- (a) *Intrinsic Value*. Records of significant monetary value (e.g., bearer bonds, rare manuscripts, etc.) or great symbolic value retained more as an artifact than a record (where a reproduction cannot be substituted for the original, such as founding documents, treaties, etc.).
- (b) *Critical Need*. Are the records vital, important, or simply useful for retention?
- (c) Historical Significance. Do the records contain sufficient historical significance for permanent retention?
- (d) *Retention Period.* Does the level of risk tolerance match the retention period established by legal requirements (generally, the longer the retention period, the lower the level of risk tolerance)?

The National Archives and Records Administration has established a range of risk tolerances for federal records varying from near zero tolerance (requiring extraordinary protective systems) for the *Charters of Freedom* to 300 ft³ (8.5 m³) for general archives and records maintained in records centers.

A total system concept, rather than just a suppression design, is essential.

A.2.1 It is not possible to ensure total fire protection of records in all cases, especially when they are maintained in archives and records center facilities. It is possible, however, to provide a very high level of fire protection that normally can limit the potential loss of records in such facilities. It is important that the archivist or records manager is aware of the degree of protection available or, conversely, the degree of potential damage possible using the protection systems available for the archives or records center.

Storage devices include, but are not limited to, traditional file cabinets, records storage boxes (corrugated or solid fiberboard cartons), transfer cases, and miscellaneous containers of varying construction. The usual arrangement consists of either cartons on freestanding shelving or filing cabinets. Locations can vary from a separate area within a general office complex to specially constructed records facilities. It is not uncommon for records to be stored in basements or attics, in office spaces, in factories or warehouses, or in underground or other readily available facilities, with all such facilities of various types of construction and levels of fire safety. Keeping all records storage at least 3 in. (76 mm) above the floor minimizes the effect of flooding.

A.2.3 A maximum amount of care or the most sophisticated of protection systems within the records storage area is of little value for records stored within a structure that burns as a result of some occurrence or operation outside of the records area.

The degree of additional risk imposed by neighbors varies according to the type and height of the building, the nature or the hazard of the neighbors, and the type of protection used by the neighboring operations.

Where a separate building or a segregated floor or section of a fire-resistive building is used for records storage, the methods described in Chapters 3 through 7 provide a degree of protection commensurate with the type of system selected.

- **A.2.4** Work within records storage areas normally is limited to placing records in, retrieving records from, or removing records from storage. Any additional operations could introduce ignition hazards and could be inappropriate in records storage areas. Records center facilities involve considerably more staff activity in the records storage areas.
- **A.3.1.1** Detailed recommendations for good practice are also contained in various NFPA publications. In most localities, building codes and ordinances govern the type of construction to be used to a large extent. Codes frequently provide for the safety of persons in the building but not for the preservation of the building or the collections. Therefore, it is of critical importance during the development of the project for the records custodian to specify the level of fire safety to be achieved in the construction. The consulting services of a qualified fire protection engineer, acceptable to the records custodian, should be obtained to participate in the development of the fire safety system, including the determination of the requirements to be provided in the final project documentation. Multistory and/or below-grade facilities are extremely hazardous and require substantial research and redundant protection.
- **A.3.1.2** The design of the automatic sprinkler protection and other fire protection and detection systems, and building construction are interrelated. In addition to protecting combustible contents and providing improved safety to life, automatic fire suppression systems can, in some cases, enable the use of less expensive construction than would be possible without them.
- **A.3.1.3** The principle of compartmentation can be applied to records centers and archives without restricting the flexibility of the arrangement of stack areas or the flow of visitors. Compartmentation necessitates fire-resistive wall and floor construction with openings that are provided with self-closing or automatic fire doors having specific fire resistance ratings.

In a similar way, properly enclosed stairways equipped with fire doors prevent the spread of fire, smoke, and heat from one level to another. Elevator shafts, dumbwaiter shafts, and all other vertical openings that pass through the structure also should be safeguarded. Air-handling systems (e.g., ventilation, heating, and cooling) should be constructed and equipped to prevent the passage of smoke, heat, and fire from one fire area to another or from one level to another in accordance with FPA 90A, Standard for the Installation of Air-Conditioning and Ventilating Systems.

The contents of an archive, or even a records center, often are considered to be of very high value or even irreplaceable, but they are always combustible. Therefore, every effort should be made to construct the building so that it resists the spread of fire. This means that during a fire the walls, roof, floor, columns, and partitions should prevent the passage of flame, smoke, or excessive heat and should continue to support their loads. Fire resistant is not equivalent to noncombustible. A noncombustible structure might not keep a fire from spreading, since some materials that do not burn lose their strength when exposed to intense heat. This loss of strength could cause walls or floors to collapse. Many types of construction using various building materials have been tested and rated according to the length of time they resist fire. The duration of the resistance needed by the archive or records center depends on the quantity of combustible material in the contents of each room as well as the structure itself. Different structural assemblies have fire resistance ratings ranging from less than 1 hour to more than 6 hours.

NFPA 220, Standard on Types of Building Construction, classifies and defines various kinds of building construction. The "Building Materials List" published by Underwriters Laboratories Inc., under the heading "Fire Resistance Classification," provides information on structural assemblies that have been tested in accordance with NFPA 251, Standard Methods of Tests of Fire Endurance of Building Construction and Materials. Detailed recommendations for good practice also are contained in various NFPA publications.

A.3.1.4 Given the amount of fire loading in a records storage compartment, the potential is there for a 16- to 24-hour fire event without effective fire control measures.

Some architects have designed facilities that are located underground or largely underground, windowless, or completely ventilated by mechanical means. Although these types of construction provide advantages in controlling temperatures, humidity, and air pollution, they do create problems for fire extinguishment and life safety in the event of fire. These problems are greatly magnified if loss of power impairs ventilating systems. Alternative means for allowing the escape of heat and smoke should be provided. Adequate roof ventilation is particularly essential, since heated gases and smoke tend to rise.

Provisions should be made for the safe emergency evacuation of people as well as for access by the fire department to the fire area. Knockout panels located to allow direct access to well-maintained aisles within the structure are invaluable for this purpose. Fire department officials should be consulted and should be aware of the existence of these panels to avoid unnecessary breaching of walls in the event of fire.

Automatic sprinklers are essential in these types of buildings and are recommended. Smoke detection systems can provide critically important early detection to activate a smoke control system and provide early warning to occupants.

See Chapter 11 of NFPA 101®, Life Safety Code®, for guidance in providing life safety measures for underground structures and windowless buildings.

A.3.1.4.1 Columns within shelving are potentially exposed to high temperatures exceeding the fire resistance of steel.

A.3.1.4.2 Standard sprinklers have not been proven to protect lightweight roof structures (such as bar joists) during early fire development.

A.3.2 Fuel loads in records storage areas can range from $30 \, \mathrm{lb/ft^2}$ to hundreds of $\mathrm{lb/ft^2}$ ($146 \, \mathrm{kg/m^2}$ to approximately $1000 \, \mathrm{kg/m^2}$), with corresponding fire durations greater than those of commonly used building construction. Furthermore, the higher fuel loading in records storage areas can result in fire durations that more closely resemble those in warehouse occupancies than those found in business occupancies. Analysis of the Military Personnel Records Center fire in St. Louis in 1973 indicates that a fire in a lower floor of a multistory building with sprinklers not installed, shut off, or inadequately designed will result in a total loss of the building, regardless of the way in which it is subdivided, unless the fire load is less than the structural fire resistance. There is no construction recognized that will support a building above an uncontrolled archives or records center fire.

In some archives and records centers, the part of the building used to house records is only a shell. The metal stacks are self-supporting and extend through several floor levels of the building. The stack floors are merely platforms that provide a walkway through the stacks. This arrangement results in slot-like openings between the stacks and the walkways, allowing a rapid, uninterrupted, upward flow of air, heat, smoke, and flames. In new records centers and archives, or in major renovations of existing structures, these types of stacks should be avoided. Floors should be of conventional building construction with appropriate fire resistance ratings, and the shelves installed thereon should be constructed as ordinary furniture.

A.3.3 Outside fires pose an exposure hazard. Clear space provides optimum protection.

The requirements for protection from exposure fires are determined by the distance between the archives and records centers and neighboring buildings and the hazards associated with the individual occupancies (e.g., residence, factory, office building). With so many variables, the records center or archives need to consider the risk of fire spreading from neighboring occupancies, whether in other buildings or in the building housing the records center or archives (e.g., universities, museums, and other institutions). Determining the severity of such exposures is a matter of judgment based on the factors contributing to the hazard of radiant and convected heat. See NFPA 80A, Recommended Practice for Protection of Buildings from Exterior Fire Exposures, for further guidance with regard to exposure fires.

- **A.4.1.1** A major potential source of fire is malfunction of heating equipment.
- **A.4.1.4** All these standards prescribe reasonable provisions for safety to life and property from fire.
- **A.4.2.2** Narrow aisle spaces [approximately 30 in. (800 mm)] mandate a limitation on the width of suspended, continuous lighting fixtures, because they limit sprinkler penetration into the aisle. It has been shown that a 9-in. (230-mm) fixture in a 30-in. (800-mm) aisle does not interfere materially with water spray from a conventional sprinkler. Large-drop sprinklers have not been tested with respect to this problem. Lights installed tight against the ceiling can be arranged to avoid interference with sprinkler distribution.
- **A.4.4** It is imperative that security measures do not impede the safe emergency evacuation of visitors and employees. Attendance can vary greatly with the time of year, the exhibits

APPENDIX A 232–19

offered, and other special events. Therefore, in planning the capacity of exits, serious consideration should be given to the maximum number of people who could be expected to be in the building at any given time. NFPA 101, Life Safety Code, contains information on construction, protection, and occupancy features designed to minimize danger to life from fire, smoke, fumes, and panic before buildings are vacated. NFPA 101 is the basis for legal requirements governing exit facilities in many government jurisdictions and should be consulted in planning life safety measures for a records center or archives.

- **A.4.6** Lightning is always a potential fire hazard, more so in some areas or locations than in others. Lightning protection can be incorporated more effectively and economically in new construction than as an afterthought.
- **A.5.2.3** Vaults require unusually good design and construction to ensure that the structure satisfactorily withstands all of the conditions that could be imposed upon it by fire.
- **A.5.3** Vaults below grade are undesirable because under certain conditions sufficient burning or smoldering debris can accumulate in a basement to produce a cooking effect of such duration that the effects of combustion cannot be resisted by construction alone (within practical limitations). Also, vaults located below grade could be damp, causing destruction of records by the formation of mold, and could be subject to flooding under either flood or fire conditions, with consequent damage to records.
- **A.5.5.2.1** The wet weight of records is approximately 2.4 times the dry weight. Dry correspondence files weigh approximately 30 lb/ft³ (480 kg/m³).
- **A.5.7.4** Traditionally recognized construction that meets these requirements is as follows.
- (a) Reinforced concrete with steel rods at least $^{1}/_{2}$ in. (13 mm) in diameter spaced 6 in. (152 mm) on center and running at right angles in both directions. Rods are wired securely at intersections not over 12 in. (305 mm) apart in both directions and installed centrally in the wall or panel.
- (b) A structural steel frame protected with at least 4 in. (102 mm) of concrete, brickwork, or its equivalent tied with steel ties or wire mesh equivalent to No. 8 ASW gauge wire on an 8-in. (203-mm) pitch. Any brick protection used is filled solidly to the steel with concrete.
- (c) Walls of ground-supported vaults are of greater thickness than those described herein where it is necessary to account for such factors as unusual structural conditions and loads.

Fire resistance is determined by wall thickness as follows:

- The minimum thickness of a 4-hour vault wall is 12 in. (305 mm) for brick and 8 in. (203 mm) for reinforced concrete
- (2) The minimum thickness of a 6-hour vault wall is 12 in. (305 mm) for brick and 10 in. (254 mm) for reinforced concrete
- **A.5.7.5.1** Traditional practice has been to prohibit wall penetrations in vaults and file rooms for the purposes of ventilation. Minimal ventilation was provided by leaving the door

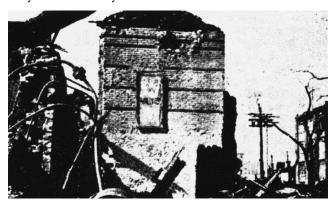
open during the operational hours. Although this indirect ventilation can be adequate for records on high-quality bond paper, many nontextual media require far more extensive heating, ventilating, and air-conditioning (HVAC) controls to prevent premature deterioration. Vaults and file rooms containing audiovisual materials or magnetic media on acetate or polyester bases require not only cool storage at low humidity, but frequent air exchanges to remove the harmful gases generated by the media itself.

A.5.7.5.5 Environmental requirements such as heating, cooling, and humidity control can be permitted to be provided by controlling the environment outside of the vault.

A.5.10 Vault doors are capable of the following:

- Preventing the passage of flame or heat above a specified temperature into the vault chamber for the time period indicated on the label
- (2) Withstanding the stresses and strains due to fire or the application of a fire hose stream while the unit is in a highly heated condition without materially reducing its fire resistance
- **A.5.10.1** Ordinary fire doors such as hollow metal, tinclad, sheet metal, or metal-clad types; steel-plate type; and file room doors cannot be permitted to be used as vault doors. Figures A.5.10.1(a) and (b) illustrate the importance of installing labeled vault doors.

The two-story vault was in this sprinklered four-story brick, plank-on-timber hardware factory in Syracuse, NY [see Figure A.5.10.1(a)]. The \$977,000 fire was detected by the security guard. After this fire of suspicious origin was extinguished, sprinkler valves were found shut off.


Satisfactory performance of a labeled vault door saved records in the upper story of this two-story vault [see Figure A.5.10.1(b)]. A labeled fire door (not a vault door) on the first story was damaged, and records in the first story were destroyed.

- **A.5.10.3** Interior emergency lighting could be necessary.
- **A.5.13.1** Sprinklers in vaults on grade can be permitted to be supplied by pipes that rise through the floor.

FIGURE A.5.10.1(a) A hardware factory fire in Syracuse, NY, that involved a two-story vault.

FIGURE A.5.10.1(b) The labeled vault door in the upper story of the two-story vault saved the records.

A.5.14.1 Automatic sprinklers are the best fire protection devices. Records custodians, librarians, and others responsible for maintaining documents gradually are coming to accept the use of automatic sprinklers for the protection of books and records with the understanding that the sprinklers add negligible water hazards and mitigate serious fire hazards.

The following is an example of the role sprinklers play as a possible records protection medium.

The Factory Mutual engineering division ran a test on sprinklered and unsprinklered four-tier, steel, open-deck library stacks. Two fires of identical nature were started in a test section containing 11,000 books. The first test used automatic sprinklers and the second did not.

In the sprinklered test, the fire burned unhampered for 3 minutes and 43 seconds before the first sprinkler opened. All fire spread halted at this point. Another sprinkler opened at 7 minutes and 53 seconds, and they both discharged for the remainder of the test (30 minutes from start). Combined, their output was 41 gpm (26 L/sec) for a total of 978 gal (3701 L) discharged on 27 percent of the books. Wetting of the books ranged from slightly damp to soaked. Ten percent of the books were fire damaged within a range from slight charring to deep burns. No book was knocked from its shelf by the sprinklers.

In the unsprinklered test, the fire burned unhampered for 10 minutes when all four tiers became heavily involved. Hoses were applied, because the test structure was in danger. A 1-in. (25.4-mm) hose line was tried first but had little effect, and a $2^1/_2$ -in. (63.5-mm) line discharging 265 gpm (162 L/sec) had to be brought in 17 seconds later in order to save the test structure. Books were knocked onto the floor of the tiers and out of the stack. As a result, 89 percent of the books were charred deeply or destroyed, $2^1/_2$ percent were scorched, and the remaining $8^1/_2$ percent were soaked.

Sprinklers work effectively to provide protection for records. The sprinkler performance history shows premature operation of sprinklers to be a negligible problem.

The provision of sprinklers does not ensure that no records are destroyed by fire, but it can minimize the probability of a disastrous records fire.

A.6.2.1 The development of an emergency plan should be in accordance with NFPA 1600, *Standard on Disaster/Emergency Management and Business Continuity Programs*, which provides guidance for managing the emergency condition to minimize loss of life, collections, and property, and to plan for recovery from the emergency situation.

A.7.1.2 Volumes of vital records too small to require a standard vault should not be exposed to the severe fire loading present in a file room, even where protected by an automatic fire suppression system. Such records could be stored in appropriate fire-rated file devices in an ordinary office environment, which poses a fire exposure that is less hazardous.

The presence of filing personnel and processing operations within the file room, the additional hazards of lighting and heating equipment, and the greater volume of records likely to be exposed at one time add to the possibility of origin of fire and destruction of records within the enclosure.

A.7.3.1 File rooms should not be located underground because, under certain conditions, burning or smoldering debris can accumulate in a basement in sufficient quantities to produce a "cooking effect" of such duration that it cannot be resisted by construction alone (within practical limitations). Underground storage imposes risk factors such as inaccessibility, delayed or impaired access, smoke and heat ventilation, water accumulation, and availability of safe refuge.

A.7.5.1 The wet weight of paper records is approximately 2.4 times the dry weight. Dry correspondence files weigh approximately 30 lb/ft³ (480 kg/m³).

A.7.7.3.1 Traditional practice has been to prohibit wall penetrations in vaults and file rooms for the purposes of ventilation. Minimal ventilation was provided by leaving the door open during the operational hours. Although this indirect ventilation can be adequate for records on high-quality bond paper, many nontextual media require far more extensive HVAC controls to prevent premature deterioration. Vaults and file rooms containing audiovisual materials or magnetic media on acetate or polyester bases require not only cool storage at low humidity, but frequent air exchanges to remove the harmful gases generated by the media itself. Use of hot water or steam heating should be carefully considered if the file room contains records on media other than high-quality bond paper, because these types of radiant heating frequently produce unacceptably low levels of humidity that can lead to the premature destruction of records.

A.7.9.3 Interior emergency lighting could be necessary.

A.7.12.2 If forced ventilation is not required [i.e., for records on high-quality bond paper in locations where the ambient temperature does not exceed 80°F (27°C)], an electric fan can be permitted to be placed close to the door and directed through the door opening. Such fans can be permitted to be mounted conveniently near the top of the door. Fans should be located so that they do not obstruct the closing of the door.

A.7.13.1.3 Sprinklers in file rooms on grade can be permitted to be supplied by pipes that rise through the floor.

A.8.1 Fire protection devices are intended to provide protection for various types of records for various durations of fire exposure by segregating them from surrounding fire exposure. Protection of records from the effects of fire is considered to have begun in about 1910 when Underwriters Laboratories Inc. conducted the first test in which both the temperatures of the furnace and of the air inside the record container being tested were recorded. Although the container first tested was lacking in fire-resistive properties and the test was crude compared with present-day tests of equipment, the method used set a precedent that was destined to exert an influence not only on the testing of records containers but on fire tests in general.

APPENDIX A 232–21

To establish the fire-resistive rating of a records container, it is necessary to measure interior temperatures and set the maximum allowable temperatures. In view of the fact that the rate of temperature rise inside a safe is influenced by the temperature of the furnace fire, the new method called for closer furnace control and the use of a specific schedule of furnace fire temperatures. Gradually, as fire tests increased, practices tended toward uniformity and led eventually to the standard curve now in use.

The maximum permitted interior temperature originally was set at 350°F (177°C) in order to provide a safety factor, because the ignition temperature of most paper is somewhat higher. This limit was set before the standard time-temperature curve was adopted and helped to emphasize the desirability of a uniform rule for regulation of testing furnace temperatures. The adoption of a temperature rise limit meant that records containers were to be rated on a quantitative basis.

Recently, requirements for records containers other than paper records storage (e.g., magnetic data processing and photographic media) were developed. The requirements provide limits for interior temperature and humidity due to their effect on the integrity of such media. There are two limits for maximum interior temperature and humidity: 150°F (66°C) and 85 percent relative humidity (RH) and 125°F (52°C) and 80 percent RH respectively. It has been determined that these limits provide adequate protection for most of the magnetic and photographic media available today.

A.8.2 Classification of Devices. Devices can be classified as follows:

- (a) Records protection equipment is classified in terms of an interior temperature limit and a time in hours. The following three temperature and humidity limits are employed:
- (1) 125°F (66°C) with 80 percent RH, which is regarded as limited conditions for floppy disks
- (2) 150°F (65.6°C) with 85 percent RH, which is regarded as limited conditions for photographic, magnetic, or similar nonpaper records
- (3) 350°F (196°C) with 100 percent RH, which is regarded as limited conditions for paper records

The time limits employed are 4 hours, 3 hours, 2 hours, and 1 hour. The complete rating means that the specified interior temperature and humidity limits are not exceeded when the record protection equipment is exposed to a standard fire test for the length of time specified.

- (b) Ratings are assigned to various categories as follows:
- (1) Insulated records containers
- (2) Fire-resistant safes
- (3) Insulated filing devices
- (4) Insulated file drawer
- (c) Insulated records containers and fire-resistant safes are effective in withstanding exposure to a standard test fire before and after an impact due to a fall of 30 ft (9.1 m). Insulated filing devices and file drawers are not subjected to an impact test and are not required to have the strength to endure such an impact.
- (d) Insulated records containers and fire-resistant safes rated Class 350 1 Hour afford more protection to records than insulated filing devices and file drawers rated Class 350 1 Hour because of differences in thermocouple locations within the records protection equipment during fire tests.

(e) Insulated records containers, fire-resistant safes, and insulated filing devices can withstand a sudden exposure to 2000°F (1093°C) temperature without exploding as a result of such exposure.

(f) Noncombustible cabinets with cellular or solid insulation of less than 1 in. (25 mm) thickness have been found to have less than a 20-minute rating under standard test conditions for insulated filing devices. The exact rating depends on the thickness and character of the insulation and other factors. Noncombustible, uninsulated steel files and cabinets have been found to obtain about a 5-minute rating under standard test conditions for insulated filing devices.

This equipment is tested in accordance with ANSI/UL 72, Standard for Tests for Fire Resistance of Record Protection Equipment.

A total system concept, rather than just a suppression design, is essential.

A.8.3.1 Figures A.8.3.1(a) and (b) show the value of fire-rated containers for protection of records. These containers were in a one-story brick and steel building destroyed by fire.

FIGURE A.8.3.1(a) The 1-hour rated equipment at the right and the 2-hour rated safe in the center protected their contents.

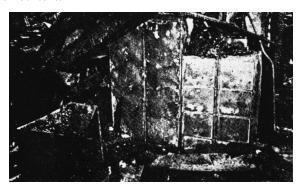
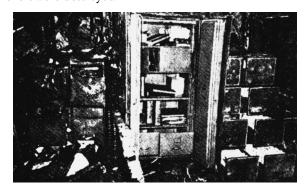



FIGURE A.8.3.1(b) Records in the nonrated equipment at the left were destroyed.

A.8.3.3 In many fires, records protection equipment is subjected to severe impact. At times, in non-fire-resistive buildings, floors collapse, and the records devices fall one or more stories. The resistance of records protection equipment to impact where highly heated differs markedly from its resistance where cold. It is essential that, if these devices are intended for a location where impact is probable, their classification should indicate resistance to impact.

For protection of vital or important records, it has been demonstrated that it is not good practice to rely on records protection equipment having less resistance to heat and fire than required for the fire hazard in its vicinity.

The fire records of the past 25 to 30 years show that many old-line or "iron" safes (i.e., safes of the types made prior to approximately 1917, which was before the availability of standards and testing facilities and before the availability of present-day construction methods and materials) involved in fires in non-fire-resistive buildings did not protect their contents due to their inability to withstand stress and strain due to the following:

- (a) Impact caused by falling one or more floors as a result of building collapse
- (b) Resistance to fire exposure that was less than assumed (Prior to approximately 1917, safes were usually not labeled with their fire rating. Today the fire resistance of such safes is considered uncertain. It is obviously not good practice to rely on any safe of unknown or uncertain resistance to fire or impact for use in the protection of valuable records.)

The selection of a suitable rating for a records device involves the exercise of a certain degree of judgment. When in doubt, it is obviously best to let judgment err on the side of making certain that vital and important records survive a fire that completely consumes the combustibles (fuel) in the fire area of the records enclosure.

If many various degrees of fire hazards exist where vital and important records are or could be stored or used, it is advisable to use a standard classification or rating that preserves such records at the location of greatest hazards so that, in the event a records enclosure is shifted from a location of lightest fire hazard to a location of greatest hazard, the safety of the records is not jeopardized. Increased protection from external fires can be provided by placing the records in rated containers in a vault or a file room.

Uninsulated steel containers (closed on six sides) provide housing protection for records stored in fire-resistive vaults or file rooms where all combustible material (other than records in the containers) is completely excluded. Such installations provide less opportunity for fire to originate and have a decided retarding effect on the spread of fire, reducing the possibility of a free sweep of flames or the buildup of room temperatures above the ignition point of ordinary combustible materials. Also, the files are protected from fires originating outside the vault or file room.

A.9.1.1 *Protection of Nonvital Records.* A method of calculating fuel load is as follows:

- (1) Volumes in cubic feet are determined for the following:
 - Enclosed combustibles (e.g., volume of totally enclosed, six-sided steel containers)
 - b. Partially enclosed combustibles (e.g., volume of containers enclosed on five sides with steel)
 - c. Free combustibles (e.g., volume of combustible containers and all-steel containers with less than five sides, plus the volume of paper and books placed on flat, horizontal furniture tops) (The volume of free combustibles on flat, horizontal furniture tops is figured for furniture $6^{1}/_{2}$ ft or less above the floor. A factor is used to convert the surface area of this furniture in square feet to a given volume of free combustibles that

can be expected to be on the surface. Therefore, the volume of free combustibles on horizontal furniture tops is equal to the total surface area in square feet divided by 24.)

- (2) The weight of all wood or cellulose furniture as determined in lb = *A*
- (3) The weight of all plastic furniture as determined in lb = B
- (4) The weight of books and papers enclosed in six-sided steel containers is determined by multiplying the volume of the containers by 28 lb/ft³ = *C*.
- (5) The weight of books and papers partially enclosed in fivesided steel containers is determined by multiplying the volume of the containers by 28 lb/ft³ = *D*.
- (6) The weight of the free combustibles is determined by multiplying the volume of books and papers located on the horizontal surface $6^{-1}/_{2}$ ft or less above the floor and the volumes of both combustible containers and steel containers having less than five sides by $28 \text{ lb/ft}^3 = E$.
- (7) The fuel load is calculated as F = A + 2B + C + D + E.
- (8) The fuel load derating factor (percent) is calculated as follows:
 - a. If the derating percentage is less than 50 percent, a derating factor *G* of 60 percent is used.
 - b. If the derating percentage is 50 percent to 80 percent, a derating factor *G* of 80 percent is used.
 - c. If the derating percentage is more than 80 percent, a derating factor G of 90 percent is used.
 - d. In all cases, the derating factor for partially enclosed combustibles equals 25 percent.
- (9) The total derated fuel load as calculated in lb = H = F ($C \times G$ + 0.25D)
- (10) The derated fuel load as calculated in $lb/ft^2 = I$

Limiting the fuel load to 6 lb/ft^2 could reduce or eliminate the need for an extinguishing system. This reduction could be permitted to be accomplished by using any or all of the following methods:

- Enclosed steel records-handling equipment for all records and file material (e.g., regular or lateral steel filing cabinets)
- (2) Steel desks
- (3) Noncombustible, limited-combustible, or flame-retardant partitions and space dividers
- (4) Noncombustible or flame-retardant draperies or other hangings
- (5) Elimination of furniture having a large combustible surface (e.g., wooden or plastic wardrobes, supply cabinets, bookcases)
- (6) Elimination of lounge chairs or couches with foam cushioning
- (7) Artificial plants that are either noncombustible or, if of a plastic type, fire-tested to avoid any type of plastic that drips burning particles
- (8) Self-closing metallic waste baskets

Complete automatic sprinkler protection could be needed in office space where the fuel load exceeds $6\ lb/ft^2$.

Conversion factors for SI units are as follows:

 $ft^3 = 0.028 \text{ m}^3$

 $ft^2 = 0.093 \text{ m}^2$

lb = 0.45 kg

 $lb/ft^3 = 16 kg/m^3 ft = 0.305 m$

APPENDIX B **232–**23

Appendix B Fire Characteristics

This appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

B.1 Metal Containers.

- **B.1.1 Fire Initiation.** In some facilities, all records are kept in metal filing equipment or equivalent metal containers (closed on six sides), and the arrangement, housekeeping, and operational methods prohibit the maintenance of any combustible materials of any type in locations outside the steel containers. Where the surrounding building and all its associated materials are noncombustible, the risk of fire or the possibility of fire development should be considered to be the burnout of one drawer and damage to the materials in the surrounding drawers above, below, behind, and beside the drawer of origin under the following conditions:
- All of the records are kept exclusively in metal file cabinets or equivalent metal cabinets (closed on all six sides).
- (2) The arrangement, housing, and operational methods prohibit combustible materials outside the metal containers.
- (3) The surrounding buildings and all their associated materials are noncombustible.
- **B.1.2** Initial Fire Development. Where all records housed are contained within closed metal filing equipment, transfer cases, or similar containers (whether or not of the insulated type) so that no fuel is exposed to flames outside the containers and there are no other combustibles in the area, no significant fire development would be expected from most initiating sources. Fire spread from a significant ignition source would be anticipated to be very slow.

B.2 Open Shelving.

B.2.1 Fire Initiation. Records facilities use various shelf-filing equipment, normally with the records either contained in file folders or stored in various styles of open or closed cartons. Typically, rows of records face each other across long service aisles about 30 in. (762 mm) in width. The exposed faces present a wall of paper. Paper has an ignition temperature of approximately 450°F (232°C). Where exposed files exist, the loose ends of the papers or the edge of the file folders can be ignited almost instantly by any source ranging from a match to a faulty fluorescent ballast or by direct contact with an exposed incandescent light bulb. Because of their mass, closed cartons resist ignition slightly longer, but there is a good probability that an ordinary match could ignite them. Ignition of a few pieces of paper, such as could occur on a service cart, could readily ignite the faces of the boxes.

Attempts have been made to develop economical methods of increasing the fire resistance of typical records storage cartons. The method tried most frequently is coating the cartons with an intumescent type of fire-retardant paint. Tests of cartons protected by such paint that has been properly applied show that the coating prevents actual ignition of the cardboard. However, intumescent paint does not intumesce effectively under approximately 400°F (204°C). The temperature of even a small exposure fire (such as could occur on a library cart) could weaken the paper in the box to the point where the box breaks open under the weight of the paper it contains, exposing the ordinary combustible paper contents of the box. Similar results have occurred in tests of boxes that have been covered with aluminum foil, with the additional effect of transmission of heat through the aluminum, causing ignition of the

cardboard carton beneath it. In a small-scale test conducted as a joint effort of the NFPA Technical Committee on Record Protection and the U.S. General Services Administration, the effect of a fire-retardant paint coating on boxes demonstrated a very brief delay only in the ignition and development of fire up and across the face of the records storage. Therefore, as a records container still is made of paper, the inherent characteristics of easy ignition and rapid fire development associated with paper do not change.

B.2.2 Initial Fire Development. Where records are stored on open-type shelving, it can be expected that fire development would occur and would approximate a typical pattern of development demonstrated in tests conducted on high-piled storage by Underwriters Laboratories Inc., Factory Mutual Research Corporation, and in tests conducted on 6-ft (1.8-m) high archive shelving arrangements by the U.S. General Services Administration.

In each instance, the initiating fire was small [i.e., 2 lb (0.91 kg) of paper laid on the floor in the Underwriters Laboratories test, $\frac{1}{2}$ pt (0.24 L) of heptane on cellucotton in an open carton of records in the Factory Mutual tests, and two open cartons of records on a library cart in the U.S. General Services Administration test]. The initial fire development progressed for a brief period at a low level, producing the type of fire that could be approached and easily extinguished if promptly discovered. The period of low-level development lasted between a minimum of approximately 3 minutes to a maximum of approximately 12 minutes to 15 minutes, with an average of approximately 5 minutes. During this period, the fire was directly approachable, since heat levels were not high; however, significant quantities of smoke were produced. The temperature levels at the ceiling were sufficiently low to make it unlikely that any heat-reacting fire detection devices would have signaled the presence of fire.

In view of the relatively large smoke production, smoke detectors could have detected such a fire early in its development. In tests with 14-ft (4.3-m) open shelving, smoke detectors operated within 30 seconds to 1 minute, but fire was judged to be beyond portable extinguisher control in less than 3 minutes, providing little justification for the cost of installing smoke detection systems in this case.

B.2.3 Full Fire Development. By the end of the relatively short early development stage in each of the tests described in B.2.2, a sufficient number of the exposed boxes had been preheated so that the fire development characteristics changed suddenly, the temperatures increased rapidly, and the flames enveloped large areas, extending almost immediately beyond human approach and the ability to attack using simple portable extinguishers. Fire development increased rapidly from this point. In each of these cases, a fire control mechanism was being tested, and the fires were not allowed to progress to their ultimate potential.

In some Factory Mutual tests, however, loose records in boxes were released by the fire and exfoliated into the aisle, providing very rapid acceleration of the fire and a condition approaching full fire development in a limited area, perhaps 60 ft² to 70 ft² (5.6 m² to 6.5 m²). On the other hand, in the same test series, a fire test was conducted in which all of the papers were oriented perpendicular to the aisle and stored loose on edge in shelving 14 ft (4.3 m) high. The box fronts were removed to expose the loose paper edges. Contrary to expectations, the fire developed slowly and was never beyond the control of modest local forces employing small

hose. Prevention of exfoliation of burning paper apparently served to avoid the dramatic increase in fire intensity.

B.2.4 Fire Severity Potential. Unless fire development is stopped by either manual or automatic fire extinguishment, the entire records storage in one room or on one floor could quickly become involved in fire. The spread of a fire and the extent of damage is related directly to the total quantity of combustibles involved. The severity of a fire is approximately 1 hour for each 10 lb/ft² (49 kg/m²) of gross weight of combustibles involved. The weight of paper in a typical records storage area is equivalent to approximately 10 lb/ft² (49 kg/ m2) for each shelf height of storage. A typical center with records stored seven shelves high contains fuel in quantities of approximately 70 lb/ft² (342 kg/m²) of floor area, and in a center where records are stored 15 shelves high, the weight of the paper would be approximately 150 lb/ft² (732 kg/m²). In either case, there are no traditional types of fire-resistive construction capable of withstanding the total impact of burnout. This information is particularly important in any situation where records are stored in a multistory building.

B.2.5 Inherent Fire Capacity. Any archives or records centers using open-type shelving are inherently prone not only to the destruction of the records, but also to the destruction of the facility itself and its neighboring operations, unless all fires are stopped in their early stages.

B.3 Mobile Shelving.

B.3.1 Fire Initiation. Shelving that is mounted on rollers, usually on tracks, is used to conserve space in records facilities. One aisle is provided for a series of shelving units, and, to gain access to a particular shelf, units are moved manually or by motor until the desired shelf unit is positioned to be accessible from the aisle. Ignition sources are similar to those in opentype shelving but with the added potential of an ignition source from the electric-drive units. Slow-developing, burrowing fires can be expected except in the exposed aisle, where a fire would be similar in character to that in open-type shelving.

B.3.2 Initial Fire Development. Tests conducted by Factory Mutual Research Corporation for the U.S. General Services Administration and Library of Congress indicated that fires originating in the open aisle could be expected to follow the pattern of open-shelving fires in initial development and quickly involve both faces. Additional tests conducted by Underwriters Laboratories Inc. for the U.S. National Archives and Records Administration indicated that mobile shelving units with electric-drive units and "fire park mode" can provide for early detection and operation of the sprinkler systems, limiting the fire spread tunneling effect. [The fire park mode setting automatically operates the motor drives on all shelving units to create a 4- to 5-in. (1.6- to 2-cm) mini-aisle between each shelving unit upon the activation of a smoke detector, water flow alarm, or manual fire alarm.] The length and height of mobile units is determined by available space, loaded weight, access time, and other factors. A recommended limit for length is 25 ft (7.6 m) if an automatic fire park mode is not utilized. Fire spread down an open aisle with facing combustible storage is likely to be rapid. Fire spread tunneling through the shelving array is likely to be very slow, providing some opportunity for control and extinguishment by a public fire department if the fire is discovered and reported promptly.

B.3.3 Fire Severity Potential. The potential for a total burnout of a records facility is exactly the same as for a similar quantity of records on open shelving, except that a fire that involves mobile shelving takes considerably longer to spread beyond the control of a municipal fire department.

B.3.4 Inherent Fire Capacity. As in the case of records stored on open shelving, records stored on mobile shelving are inherently prone not only to the destruction of the records, but also to the destruction of the facility itself. The slow spread of a fire within the shelves improves the effectiveness of outside efforts to stop the fire.

Appendix C Salvage of Water-Damaged Library Materials

This appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

NOTE: The following material is taken from *Procedures for Salvage of Water-Damaged Library Materials* by Peter Waters. This manual is the most comprehensive and up-to-date information on the salvage of water-damaged materials. It also contains a list of individuals to contact for professional advice and sources for supplies, equipment, and services. Emphasis is placed on having a plan of action before an emergency occurs. It can be obtained at no cost from the Library of Congress.

C.1 Assessment of Damage and Planning for Salvage. Weather is the critical factor in determining which course to take after any flood or fire in which museum, archival, or library materials are damaged. When it is hot and humid, salvage must be initiated with a minimum of delay to prevent or control the growth of mold. When the weather is cold, more time can be taken to plan salvage operations and experiment with various drying procedures.

C.1.1 The first step is to establish the character and degree of damage. Once an accurate assessment of the damage has been made, firm priorities and plans for salvaging the damaged materials can be drawn up. These plans must include a determination of the special facilities and equipment required. Overcautious, unrealistic, or inadequate appraisals of damage can result in the loss of valuable materials. Speed is of the utmost importance, but careful planning is equally essential in the salvage effort.

C.1.2 Where water damage has resulted from fire-fighting measures, cooperation with the fire marshal is vital for a realistic appraisal of the feasibility of salvage efforts. Fire marshals and safety personnel will decide when a damaged building is safe to enter. In some cases, areas involved in the fire may require a week or longer before they are cool enough to be entered. Occasionally, parts of a collection may be identified early in the salvage planning effort as being especially vulnerable to destruction unless they receive attention within a few hours after the fire has abated. If the fire marshal appreciates such needs, it may be possible to provide means of access to the area even when other parts of the building remain hazardous.

C.1.3 Once all entrances and aisles are cleared, the most important collections, including rare materials and those of permanent research value, should be salvaged first, unless other materials would be more severely damaged by prolonged immersion in water. Examples of the latter are books printed on paper of types widely produced between 1880 and

APPENDIX D **232**–25

1946, now brittle or semibrittle. However, materials in this category that can be replaced should be left until last.

- **C.1.4** Salvage operations must be planned so that the environment of flooded areas can be stabilized and controlled both before and during the removal of the damaged materials. In warm, humid weather, mold growth may be expected to appear in a water-damaged area within 48 hours. In any weather, mold will appear within 48 hours in unventilated areas made warm and humid by recent fire in adjacent parts of the building. For this reason, every effort should be made to reduce high temperatures and vent the areas as soon as the water has receded or been pumped out. Water-soaked materials must be kept as cool as possible by good air circulation until they can be stabilized. To leave such materials more than 48 hours in temperatures above 70°F (21°C) and humidity above 70 percent will almost certainly result in heavy mold growth and lead to high restoration costs.
- **C.1.4.1** Damaged most by these conditions are volumes printed on coated stock and such highly proteinaceous materials as leather and vellum bindings. Starch-impregnated cloths, glues, adhesives, and starch pastes are affected to a lesser degree. As long as books are tightly shelved, mold will develop only on the outer edges of the bindings. Thus, no attempt should be made in these conditions to separate books and fan them open. Archival files packed closely together on the shelves in cardboard boxes or in metal file cabinets are the least affected.
- **C.1.4.2** As a general rule, damp books located in warm and humid areas without ventilation will be subject to rapid mold growth. Archival files that have not been disturbed will not be attacked as quickly by mold. Very wet materials, or those still under water, will not develop mold. As they begin to dry after removal from the water, however, both the bindings and the edges of books will be quickly attacked by mold, especially when in warm, unventilated areas. A different problem exists for books printed on coated stock, since, if they are allowed to dry in this condition, the leaves will be permanently fused together.

C.2 Summary of Emergency Procedures.

- (a) It is imperative to seek the advice and help of trained conservators with experience in salvaging water-damaged materials as soon as possible. The Library of Congress is an excellent information source for technical advice where needed. Contact: Preservation Office, Library of Congress, Washington, DC (202) 287-5212.
 - (b) Turn off heat and create free circulation of air.
- (c) Keep fans and air conditioning on at night, except when a fungicidal fogging operation is in process because a constant flow of air is necessary to reduce the threat of mold.
- (d) Brief each worker carefully before salvage operations begin, giving full information on the dangers of proceeding except as directed. Emphasize the seriousness of timing and the priorities and aims of the whole operation. Instruct workers on means of recognizing manuscripts, materials with water-soluble components, leather and vellum bindings, materials printed on coated paper stock, and photographic materials.
- (e) Do not allow workers to attempt restoration of any items on site. (This was a common error in the first ten days after the Florence flood, when rare and valuable leather- and vellum-bound volumes were subjected to scrubbing and processing to remove mud. This resulted in driving mud into the interstices of leather, vellum, cloth, and paper; caused extensive

damage to the volumes; and made the later work of restoration more difficult, time consuming, and extremely costly.)

- (f) Carry out all cleaning operations, whether outside the building or in controlled environment rooms, by washing gently with fresh, cold, running water and soft cellulose sponges to aid in the release of mud and filth. Use sponges with a dabbing motion; do not rub. These instructions do not apply to materials with water-soluble components. Such materials should be frozen as quickly as possible.
- (g) Do not attempt to open a wet book (wet paper is very weak and will tear at a touch). Hold a book firmly closed when cleaning, especially when washing or sponging. A closed book is highly resistant to impregnation and damage.
- (h) Do not attempt to separate single-sheet materials unless they are supported on polyester film or fabric.
- (i) Do not attempt to remove all mud by sponging. Mud is best removed from clothes when dry; this is also true of library materials
- (j) Do not remove covers from books, as they will help to support the books during drying. When partially dry, books may be hung over nylon lines to finish drying. Do not hang books from lines while they are very wet because the weight will cause damage to the inside folds of the sections.
- (k) Do not press books and documents mechanically when they are water-soaked. This can force mud into the paper and subject the materials to stresses that will damage their structures.
- (l) Use soft pencils for making notes on slips of paper, but do not attempt to write on wet paper or other artifacts.
- (m) Clean, white blotter paper, white paper towels, strong toilet paper, and unprinted newsprint paper may be used for interleaving in the drying process. When nothing better is available, all but the color sections of printed newspapers may be used. Great care must be taken to avoid rubbing the inked surface of the newspaper over the material being dried; otherwise, some offsetting of the ink may occur.
- (n) Under no circumstances should newly dried materials be packed in boxes and left without attention for more than a few days.
- (o) Do not use bleaches, detergents, water-soluble fungicides, wire staples, paper or bulldog clips, adhesive tape, or adhesives of any kind. Never use felt-tipped fiber or ballpoint pens or any marking device on wet paper. Never use colored blotting paper or colored paper of any kind to dry books and other documents.

Appendix D Fire Control

This appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

- **D.1 General.** The basic elements of fire control are two-fold—detection of the existence of fire plus its extinguishment. The individual efficiency and capability of both detection and extinguishment determines the degree of safety or, conversely, the extent of damage in case of fire.
- **D.2 Water.** Most archivists or records managers are seriously concerned about water damage. In view of the constant problems involved in the leakage of domestic water systems and steam mains, the rain intrusion from leaky roofs or windows, and the resultant damage from mildew or decomposition of paper, this concern is understandable. It is important, however, for the archivist or records manager to realize that wet

records can be recovered, but burned records are lost permanently. Furthermore, unless there is a specialized fire-extinguishing system to control the development and growth of a fire, responding fire-fighting forces have no choice but to attack the fire with fire department hose streams. In many records facilities, the quantity of paper fuel involved is such that the fire department has to attack a fire from a distance and under extremely adverse conditions. This situation normally forces the fire department to use heavy hose streams having the characteristics of a hydraulic ram. Wide and forceful disruption of the records storage arrangement is a routine consequence of efforts to prevent total destruction.

D.3 Recovery. Recovering wet records is a problem whether the source of water is a result of fire-fighting efforts, a fire, or another source, such as a flood, a hurricane, a heavy rainstorm, roof leakage, spillage from operations located above, or a breakdown of any of the numerous water or steam systems in a building. Virtually any wet paper records can be recovered, provided prompt and proper action is taken. Effective salvage necessitates prompt action, special techniques, facilities, and expert advice. Preplanning is essential.

Archivists and records managers interested in salvage should reference NFPA 909, Standard for the Protection of Cultural Resources, Including Museums, Libraries, Places of Worship, and Historic Properties, and the Federal Fire Council Recommended Practice No. 2, Salvaging and Restoring Records Damaged by Fire and Water. Salvage of wet records from the 1973 fire at the Military Personnel Records Center, St. Louis, MO, is treated in considerable detail in the July 1974 NFPA Fire Journal and the October 1974 American Archivist. Also useful as background material is the publication Conservation of Library Materials, a manual (volume I) and bibliography (volume II) on the care, repair, and restoration of library materials by George M. Cunha and Dorothy G. Cunha.

D.4 Fire Extinguishers. Regardless of the other types of fire extinguishment systems provided, it is essential that every records storage facility be provided with an adequate supply of well-distributed Class A portable fire extinguishers suitable for extinguishing fires in paper and plastic records. The extinguishers should be of the trigger action type in which the flow can be started and stopped by the operator. NFPA 10, Standard for Portable Fire Extinguishers, should be referenced for specific information regarding portable fire extinguishers. Gaseous extinguishers are not effective for extinguishing deep-seated fires in paper materials. The presence of proper extinguishers enables the working or guard force, on discovery of a fire or on response to an alarm from an early warning detection system, to attack and extinguish the fire while it is small with minimum damage to the records. It is important that local forces are instructed properly in the use of small extinguishers.

D.5 Fire Departments. The fire department is an essential part of any fire protection plan. The role of the fire department depends on the type and capabilities of an automatic extinguishing system, if provided. Where no extinguishing system is provided and total dependence is placed on the fire department for control of any fire that exceeds the capabilities of persons using hand extinguishers, it is reasonable to expect that the fire department will be forced to make a massive attack because of the size and position of the fire at the time of arrival.

Fire fighters are limited by their tolerance to heat and smoke. To reach the actual seat of the fire, the fire department could undertake actions that are disruptive or damaging to

records that are not actually burning. Rows of records could block access to the seat of the fire. High-density smoke could conceal the seat of the fire. To save the structure and to prevent propagation of the fire to other areas, it could be necessary for the fire fighters to disrupt the storage arrangement in unignited areas to obtain access to the ignited area or to use high-pressure hose streams in a general sweeping action in an effort to provide a general cooling/quenching effect. In any sizable records facility, the total amount of fuel necessitates the use of heavy hose streams. In some communities, fire departments have the capability and are likely to use monitoror snorkel-type hose streams. Properly constructed fire walls, confining the fire to a single fire area, assist a fire department in limiting the size of a fire. All records within the fire area are likely to be seriously affected by either fire or by water from the high-pressure streams, or by both.

D.6 Role of Fire Department and Extinguishing Systems. Where an automatic extinguishing system of proper design is provided, the role of the fire department changes from the implementation of direct fire attack to assisting and supplementing the automatic extinguishing system.

D.6.1 If the system is an automatic sprinkler system, the primary responsibilities of the fire department are to supplement the water supply, determine the proper time to discontinue the flow of water, extinguish fire in any small, shielded areas that the sprinkler system could not reach, and overhaul the actual burned areas to prevent rekindling or re-ignition. For further information, NFPA 13E, Recommended Practice for Fire Department Operations in Properties Protected by Sprinkler and Standpipe Systems, should be referenced.

D.6.2 Where a total flooding carbon dioxide, Halon 1301, or other gaseous system is provided and has been successful in its operation, the primary responsibility of the fire department is to vent the gas and to prevent the possibility of rekindling by wetting and removing the materials that were ignited. The period during which carbon dioxide gas is phased out is critical, and, unless the smothering action has been totally effective, rekindling of a serious fire can occur. This procedure is potentially hazardous and should be executed only with the full capabilities of the fire department in readiness.

D.6.3 If high-expansion foam is used, the primary responsibility of the fire department is to assist in removal of the foam and to extinguish any small glows (i.e., deep-seated fires) or flames that are found while the foam is being removed. Depending on the situation, it could be desirable to continue the application of the high-expansion foam for a soaking period. However, the length of time that the foam is kept in place affects the degree of wetting. Therefore, overhaul procedures should be carried out rapidly but cautiously, with extinguishing equipment standing by in readiness.

D.7 Fire Department Preplanning. Fire department preplanning for attack in specific locations is essential in all systems of fire control. It is important that the archivist or records manager contact the appropriate chief officer of the responding fire department to establish pre-fire planning arrangements. The best extinguishing system can be overcome if a fire officer, due to lack of knowledge, makes improper use of the system or prematurely removes an automatic system from operation. Conversely, lack of knowledge and a sense of caution can result in a fire officer maintaining the operation of an extinguishing system for an excessive length of time, increasing damage to the records from the extinguishing agent.

APPENDIX E 232–27

Appendix E Fire Control Systems

This appendix is not a part of the requirements of this NFPA document but is included for informational purposes only.

E.1 Detection.

E.1.1 General. In any fire control system, the first step should be the detection of the presence of fire with immediate notification of emergency response forces, including the fire department. A number of different methods of detection are available, ranging from highly sophisticated devices for almost immediate detection of products of combustion to dependence on passersby (see Section E.5). Detection of fire, although vitally important, does not in itself prevent fire damage. Detection needs to be followed by extinguishment, which includes the use of fire extinguishers or other first aid fire equipment by facility personnel or guards, attack by the fire department using the various manually directed appliances at its disposal, or control by automatic suppression systems, such as sprinklers, carbon dioxide, or halon. The capabilities and efficiency of each of these systems vary significantly and also can affect the extent of fire damage.

E.1.2 Human Detection Capabilities. An evaluation of the various methods of fire detection demonstrates that any detection system that relies only on casual observation by those persons whose activities take place outside the records storage area is undependable, and a facility that depends upon detection by passersby is at risk of total burnout. Some records centers assign responsibility for fire detection to watchpersons or guards around the clock or a combination of employee responsibility during the workday and watchpersons or guards after business hours. Although this approach is superior to dependence on casual observation, it should be considered very limited. (The major fire at the Military Records Center in St. Louis was first reported by a passerby, although the building had guard patrols.)

As previously described, the period during which such observation can result in the detection and response to a small fire situation is quite limited if, for instance, a fire initiates within the service aisles of the stack area. Since this type of fire usually is the most critical and damaging, it is considered to be the type that most necessitates early detection. Normally, guard rounds are regulated at intervals of 1 hour or more. A major fire catastrophe could develop between periods of observation of the most alert and conscientious guard. The presence of guards can be effective in peripheral situations, such as a small office fire. They also can function in fire prevention programs. Guards are, however, of limited value in controlling a fire in record shelving, except in notifying the fire department.

E.1.3 Heat Detection. Fixed temperature or rate-of-rise heat detection equipment sometimes is used in records facilities. As described in Appendix B, these devices are not likely to respond to a fire until it has developed into its major stage. At this point, unless there is an installed automatic extinguishing system, the fire is likely to be beyond the capabilities of local forces. The heat detection system alone cannot control the fire. It is likely that, when the municipal fire department arrives at the scene and sets up operations, they will be severely challenged by the fire. This situation complicates fire-fighting efforts and increases the resultant records damage. As an alternative, if the heat-actuated detection equipment is used to

operate an automatic fire control system, it could provide a very effective function.

- **E.1.4** Automatic Sprinkler Detection. In considering detection systems that initiate the operation of an extinguishing system, it is necessary to consider briefly the detection aspects of automatic water sprinkler systems. Each automatic sprinkler is a fixed temperature device that opens (fuses) when heated to a preset temperature. Where the automatic sprinkler system is equipped with a waterflow detection device, the sprinkler system virtually becomes a fixed temperature fire detection system as well as an automatic water extinguishing system. For this reason, the detection of water flow in the sprinkler system is important, and it is considered axiomatic that every sprinkler system installed in a records storage facility should be equipped with waterflow detection that activates the building fire alarm system and thus transmits the alarm.
- **E.1.5** Early Warning Detection. These devices, known generically as smoke detectors, respond to either the visible (e.g., smoke) or invisible (i.e., molecular size) products of combustion, or both, produced from the moment of ignition. In a properly engineered installation, these devices can detect a smoldering fire in its low-energy stage. Where ignition from a smoldering fire is likely, smoke detectors can provide warning very early in the development of fire.
- **E.1.5.1** Listed or approved smoke detectors include ionization type, photoelectric beam or spot type, infrared type, and others. It is possible, if necessary, for these early warning systems to activate associated fire-extinguishing systems. Such smoke detectors should be considered part of the overall system in any important records collection where a smoldering fire is possible.
- **E.1.5.2** Total dependence on a combination of smoke detection and hand fire extinguisher attack still leaves the facility subject to a major disaster. Dependence solely on an early warning detection system exposes the facility to full fire development before effective efforts can be undertaken.
- E.1.6 Locating Smoke Detectors. It is important that the system be individually engineered by competent personnel. Where the devices are used, they are installed because of the need to detect fire as early in its development as possible. The various types of air movement, including stratification caused by heating or other air-handling systems, as well as those caused by the records storage arrangement, are important considerations. The system should be capable of detecting and locating the presence of fire in any portion of the records storage area within a brief time in order to obtain maximum protection. While the time element specified directly affects the cost of the system, it also affects the extent of the damage. Generally, the shorter the time for detection, the higher the cost of the system. NFPA 72, National Fire Alarm Code®, should be referenced for further information on the spacing of smoke detectors.
- **E.1.7 Fire Alarm Systems.** Fire alarm systems can perform numerous functions, such as detecting incipient fire, notifying on-premises first-response teams, notifying the fire department, sounding evacuation signals, shutting fire doors, starting smoke control systems, monitoring system status, and printing a permanent record of all events. They also can be used to activate certain types of fire suppression systems.