INTERNATIONAL ISO/IEC
STANDARD 13813

First edition
1998-08-01

Information technology — Programming

languages — Generic packages of real and
complex type declarations and basic
operations for Ada (including vector and
matrix types)

Technologies de l'infofmation — Langages de programmation —
Paquetages génériques de déclarations de types réel et complexe et
opérations de basepour Ada (y compris les types vecteur et matrice)

Ref b
= . ISONEC 13813:1988(E)

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

Contents Page
Forgword. v
Introduction vi
1 SCOPE . 1
2 Normative references 1
3 Types and operations provided 30" .. 2
4 Instantiations @y 2
5 Implementations 8. 3
6 Exceptions 4
7 Arguments outside the range of safe nmigbers.)
8 Method of specification of subprograms 5
9 Accuracy requirements .. (3N ... L 6
10 (Overflow 0. 7
11 (Infinities0 8
12 |Underflow .o oo 8
13 |Generiez€omplex Types Package 8

134 XTypes ..o 9

1372 Constants 9

13.3 COMPLEX selection, conversion and composition operations 9

13.4 COMPLEX arithmetic operations 11

13.5 Mixed REAL and COMPLEX arithmetic operations 12

13.6 Mixed IMAGINARY and COMPLEX arithmetic operations . .. 12

© ISO/IEC 1998
All rights reserved. Unless otherwise specified, no part of this publication may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 « CH-1211 Genéve 20 o Switzerland

Printed in Switzerland

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

13.7 IMAGINARY sclection, conversion and composition operations 13

13.8 IMAGINARY ordinal and arithmetic operations
13.9 Mixcd REAL and IMAGINARY arithmetic operations.

14 Array Exceptions Package L

15 Generic Real Arrays Package
15.1 Types . ..o

1= 9

+5-2—REAF—FECTBRarttinmettcoperations——————————
15.3 REAL_VECTOR scaling operations T
15.4 Other REAL_VECTOR operations(h7.
15.5 REAL_MATRIX arithmetic operations:.%...
15.6 REAL_MATRIX scaling operationsM.~
15.7 Other REAL_MATRIX operations.a.0.

16 Gencric Complex Arrays Package (...
16.1 Types ..o NS -

16.2 COMPLEX_VECTOR sclection, (conversion and composifion
operations Ao

16.3 COMPLEX_VECTOR arithufetic operations C

16.4 Mixed REAL_VECTOR and COMPLEX_VECTOR arithmetic|op-
ecrations)

16.5 COMPLEX_VECTOR scaling operations

16.6 Other COMPLEX_VECTOR operations C

16.7 COMPLEX_MATRIX sclection, conversion and composifion

operations L
16.8 COMRLEX_MATRIX arithmectic operations.......... R
16.9 Mixed REAL_MATRIX and COMPLEX_MATRIX arithmetic{op-
erations L

16.10” COMPLEX_MATRIX scaling operations
1611 Other COMPLEX_MATRIX operations

17~ Generic Complex Input/Output Package

18 Standard non-generic packages

Annexes

Ada specification for GENERIC_COMPLEX_TYPES
Ada specification for ARRAY_EXCEPTIONS
Ada specification for GENERIC_REAL_ARRAYS

Ada specification for GENERIC_COMPLEX_ARRAYS

Ada specification for COMPLEX_IO

| H IO Q W B

Rationale e
F.1 Abstract
F.2 Introduction
F.3 What basic operations arc included?
F.4 Sclecting an array index subtypeo o
F.5 The use of overloadings versus default values
F.6 Should constants be included? ... oo oo oo
F.7 Why define a type IMAGINARY?
F.8 The use of operator notation versus function notation . . .
F.9 Complex arithmetic oo oo oo

13
14

18
19

19
20

30
33
34

36

42
42

iii

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

iv

© ISO/IEC

F.10 Accuracy requirements. 48
F.11 Naming and renaming conventions 49
F.12 Genericityo oot 50
F.13 Range constraints o1
F.14 Exceptional conditions, signed zeros and infinities. 51
F.15 The COMPLEX_IO package o1
F.16 Packaging of real, complex and mixed operations the
objectives and consequences L 52
F.17 Ada 95 considerations 53
Adp 95 specifications of array packages L. 55
Bilpliographyo oo 61

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1

998(E)

Foreword

ISO (the International Organization for Standardization) and IE(]
ternational Electrotechnical Commission) fofify the specialized sy
worldwide standardization. National bodiessthat are members of I
participate in the development of Interiational Standards through
committees established by the respectiverorganization to deal with j
ficlds of technical activity. ISO and“IEC technical committees cg
in ficlds of mutual interest. Other\international organizations, gove
and non-governmental, in lidison with ISO and IEC, also take ps
work.

In the field of information technology, ISO and IEC have esta
joint technical commiittee, ISO/IEC JTC 1. Draft International
adopted by thegoint technical committee are circulated to nation
for voting. Publication as an International Standard requires appr
least 75 % of the national bodies casting a vote.

Intefiiational Standard ISO/IEC 13813 was prepared by Joint
Committee ISO/IEC JTC 1, Information technology, Subcommitte
gramming languages, their environments and system software inter

Annexes A, B, C, D and E form an integral part of this Internatio
dard. Annecxes F, G and H are for information only.

(the In-
stem for
O or IEC
technical
articular
llaborate
rnmental
rt in the

blished a
tandards
al bodies
val by at

Technical
22, Pro-

faces.

nal Stan-

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

Introq

The gene
complex
applicati
applicati
that are
state of {

The spec
compilal
text in n
normatiy

The wor
“is allow
as in the
(such as
capacity

duction

ric packages described here are intended to provide the basic real and
scalar, vector, and matrix operations from which portable, reusable
bns can be built. This International Standard serves a broad class of
bns with reasonable case of use, while demanding implementations
of high quality, capable of validation and also practical given the
he art.

ifications included in this International Standard are presented as
le Ada specifications in annexes A, B, C, D and E with explanatory
imbered sections in the main body of text. The explanatory text is
>, with the exception of notes (labeled as such).

|l “may,” as used in this International Standard,@Consistently means
'd to” (or “are allowed to0”). It is used only to express permission,
commonly occurring phrase “an implemeutation may”; other words
“can,” “could” or “might”) are used, o éxpress ability, possibility,
or consequentiality.

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

INTERNATIONAL STANDARD © ISO/IEC

ISO/IEC 13813:1998(E)

Information technology —
Programming languages —
Generic packages of real and complex type declarations

and basic operations for Ada (including vector and mj
typles)

1

This I
called

cope

iternational Standard defines the specifications of three generic packagegof-scalar, vector and matri
GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS and GENERIC_COMPLEX”ARRAYS, the specification

of relafted exceptions called ARRAY_EXCEPTIONS and the specification of a gérieric package of complex inpu

operaf
arc ng

The sj
togetl
bodieg

This
imag
they

This I

NOTH
1SO/1j
1SO/1}

2 N
The f
tional
and p

t provided by this International Standard.

ccifications of non-generic packages called COMPLEX_TYPES;REAL_ARRAYS and COMPLEX_ARRAYS arc
er with those of analogous packages for other precisions. This International Standard does not
of these packages.

iternational Standard specifies certain fundaniental scalar, vector and matrix arithmetic operati
ary and complex munbers. They were chésen because of their utility in various application area

11
I’O needed to support a generic packageor complex clementary functions.

iternational Standard is applicablést0 programming environments conforming to ISO/IEC 8652.

— This International Standdrd™s specifically designed for applicability in programming environments ¢
PC 8652:1987. Except for the,packages and generic packages dealing with arrays, comparable facilities ar]
bC 8652:1995; specifications for the generic array packages comforming to ISO/IEC 8652:1995 are provided

lormativedeferences

llowing 8tandards contain provisions which, through reference in this text, constitute provisions of
Standard. At the time of publication, the editions indicated were valid. All standards are subject
rties\to agreements based on this International Standard are encouraged to investigate the possibility

the m

e st aditios £fibio oo dosde 1o Biiatad Bolow MNarbore oF TEVC 200 d TQO) shaintain roonictore
OSt—TFeeeHtreattiohs Sreerat et eatea HOW— SO e O g eI HH—Fe8T ;

htrix

Ix operations
of a package
and output

ions called COMPLEX_IO0. A package body is not required for ARRAY_EXCEPTIONS; bodies of the other packages

hlso defined,
provide the

bns for real,
§; moreover,

pnforming to
e specified in
in annex G.

his Interna-
to revision,
r of applying
of currently

™ot

valid International Standards.

ISO/IEC 8652, Information technology

ISO/IEC 11430, Information technology

Ada.

ISO/IEC 11729, Information technology

Ada.

ISO/IEC 13814, Information technology

Programming languages - Ada.

Programming languages

Programming languages

Programiming languages Generic package of complex elem

tions for Ada.

Generic package of elementary functions for

Generic package of primitive functions for

entary func-

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

3 Types and operations provided

© ISO/IEC

The following record type, scalar type and four array types are exported by the packages provided by this International

Standard:

COMPLEX IMAGINARY

REAL_VECTOR REAL_MATRIX

COMPLEX_VECTOR COMPLEX_MATRIX
Type COMPLEX provides a cartesian representation of complex scalars; type IMAGINARY is provided to répuesent pure
imaginary pcalars; two composite types with clements of type REAL are provided, REAL_VECTOR an¢ REAL_MATRIX,
to represent real vectors and matrices; and two composite types with elements of type COMPLEX. axc~provideql, COM-
PLEX_VECTPR and COMPLEX_MATRIX, to represent complex vectors and matrices.
The following twenty-four operations are provided:

"+l' n_n H*" H/"

"<|l ||<=l' ll>" |’>=ll

REE "abs" CONJUGATE TRANSPOSE

RE M SET_RE SET_IM

COMPOSE_FROM_CARTESIAN MODULUS ARGUMENT, COMPOSE_FROM_POLAR

UNIT] VECTOR IDENTITY_MATRIX GET PUT
These are fhe usual mathematical operators (+, =, * and /) fursreal, complex and imaginary scalars, and for real
and complgx vectors and matrices (together with analogous\componentwise operations for vectors); the relhtional
operators (K, <=, > and >=) for imaginary scalars; the expoerentiation operator (*x) for complex and imaginary gcalars,
and for real and complex vectors; the absolute value opérator (abs) for real, imaginary and complex scalars, and for
real and complex vectors and matrices; the conjugatéoperation (CONJUGATE) for complex and imaginary scalaps, and
for complex vectors and matrices; the transpose, operation (TRANSPOSE) for real and complex matrices; the cartesian
component}part opcrations (RE, IM, SET_RE,/SET_IM and COMPOSE_FROM_CARTESIAN) for complex scalars, pectors
and matrices (and, where applicable, for imaginary scalars), for selecting component-parts and for composinfy from
component}parts; the polar component-part operations (MODULUS, ARGUMENT and COMPOSE_FROM_POLAR) for cpmplex
scalars, vedtors and matrices, for sclecting component-parts and for composing from component-parts; the initfalizing
operations [(UNIT_VECTOR and IDENTITY_MATRIX) for real and complex vectors and matrices; and the input/jontput
operations [(GET and PUT) for conipléx scalars.
4 Instdntiations
This Interpational~Standard describes generic packages GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, [GENER-
IC_COMPLEK (ARRAYS and COMPLEX_IO. Each package has a generic formal paramecter, which is a generic |formal

floating-po

This International Standard also describes non-generic packages COMPLEX_TYPES, REAL_ARRAYS and COMPLEX_ARRAYS,
which provide the same capability as instantiations of the packages GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS
and GENERIC_COMPLEX_ARRAYS. It is required that non-generic packages be constructed for cach precision of floating-
point type defined in package STANDARD.

Depending on the implementation, the user may or may not be allowed to specify a generic actual type having a range
constraint (sce clause 5). If allowed, such a range constraint will have the nsual effect of causing CONSTRAINT_ERROR
to be raised when a scalar argument outside the user’s range is passed in a call to one of the subprograms, or when
one of the subprograins attempts to return a scalar value (or to coustruct a composite value with a scalar component
or element) outside the user’s range. Allowing the generic actual type to have a range constraint also has some
implications for implementers.

2

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

5 Implementations

Portable implementations of GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENERIC_COMPLEX_ARRAYS and COM-
PLEX_IO arc strongly encouraged. However, implementations are not required to be portable. In particular, an
implementation of this International Standard in Ada may usc pragma INTERFACE or other pragmas, unchecked
conversion, machine-code insertions, or other machine-dependent techniques as desired.

An implementation is allowed to make reasonable assumptions about the environment in which it is to be used,
but onpy—when—necessary—in—order tonatch algarithms to hardware characteristics in an economical manner. For
example, an implementation is allowed to limit the precision it supports (by stating an assumed maxitum value for
SYSTEM.MAX_DIGITS), since portable implementations would not, in general, be possible otherwisex-All|such limits
and asgumptions shall be clearly documented. By convention, an implementation of GENERIC_COMPLEX_TYPES, GENER-
IC_REAL_ARRAYS, GENERIC_COMPLEX_ARRAYS or COMPLEX_IO is said not to conform to this International Standard in
any enyironment in which its limits or assumptions are not satisfied, and this International Standard does not define
its behhvior in that environment. In effect, this convention delimits the portability of implementations.

For an} of the generic packages GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENERIC_COMPLEX_ARRAYS or COM-
PLEX_]0, an implementation may impose a restriction that the generic actual typg\shall not have a rangp constraint
that rduces the range of allowable values. If it does impose this restriction, thermthe restriction shall be ocumented,
and th effects of violating the restriction shall be one of the following:

Compilation of a unit containing an instantiation of that gencricypackage is rejected.

CONSTRAINT_ERROR or PROGRAM_ERROR is raised during thewelaboration of an instantiation of that gpneric pack-
age.

Convetsely, if an implementation does not impose the restriction, then such a range constraint shall not|be allowed,
when inclnded with the user’s actual type, to interferewith the internal computations of the subprogranis; that is, if
the ardunents and result (of functions), or their components, are within the range of the type, then the impllementation
shall réturn the result (if any) and shall not raise'an exception (such as CONSTRAINT_ERROR).

Any of the restrictions discussed above mayin fact be inherited from implementations of the package GENERIC_ELE-
MENTARY_FUNCTIONS of ISO/IEC 11430.aird the package GENERIC_PRIMITIVE_FUNCTIONS of ISO/IEC 11729, if used.
The d¢pendence of an implementationion such inherited restrictions should be documented.

Lmplethentations of GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS shall function
propetfly in a tasking environinént. Apart from the obvious restriction that an implementation of these pgckages shall
avoid {leclaring variables.thiat are global to the subprograms, no special constraints are imposed on implgmentations.
With fhe exception of €0MPLEX_IO0, nothing in this International Standard requires the use of such globa variables.

Some hardware andtheir accompanying Ada implementations have the capability of representing and di criminating
betwedn positively and negatively signed zeros as a means (for example) of preserving the sign of an |nfinitesimal
quantity that-has underflowed to zero. Iimplementations of these packages may exploit that capability, when available,
s0 as floexhibit continuity in the results of ARGUMENT as certain limits are approached. At the same timg, implemen-
tations imwhich that capability is nunavailable are also allowed, Because a definition of what comprises tlje capability
of representing and distinguishing signed zeros is beyond the scope of this International Standard, implementations
arc allowed the freedom not to exploit the capability, even when it is available. This International Standard does not,
specify the signs that an implementation exploiting signed zeros shall give to zcro results; it does, however, specify
that an implementation exploiting signed zeros shall yield a scalar result (or a scalar element of a composite result)
for ARGUMENT that depends on the sign of a zero imaginary component of a scalar argument (or a corresponding scalar
clement of a composite argument). An implementation shall exercise its choice consistently, cither exploiting signed-
zero behavior everywhere or nowhere in these packages. In addition, an implementation shall document its behavior

with respect to signed zeros.
In implementations of GENERIC_COMPLEX_TYPES and GENERIC_COMPLEX_ARRAYS, all operations involving mixed real

and complex arithmetic are required to construct the result by using real arithmetic (instcad of by converting rcal
values to complex values and then using complex arithmetic). This is to facilitate conformance with IEEE arithmetic.

3

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

6 Exceptions

© ISO/IEC

The ARGUMENT_ERROR cxception is declared in GENERIC_COMPLEX_TYPES and GENERIC_COMPLEX_ARRAYS. This excep-
tion is raised by a subprogram in these generic packages when the argument(s) of the subprogram violate one or more
of the conditions given in the subprogram’s definition (sce clause 8).

NOTE — These conditions are related only to the mathematical definition of the subprogram and are therefore implementation

independent

The ARRAY |
tion is rais
of the con
the bounds
and/or coh

The ARGUME
clared in th
this Interna
rOrs Or arra,

INDEX_ERROR cxception is declared in GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS. Tlis
d by a subprogram in these generic packages when the argument(s) of the subprogram violatc due o
itions for matching clements of arrays (as in predefined equality); that is, for dyadic arrdy oper
of the given left and right array operands need not be equal, but their appropriate vectérlengths
mn lengths (for matrices) shall be equal.

NT_ERROR and ARRAY_INDEX_ERROR exceptions are declared as renamings of exceptions of the same nal
» ELEMENTARY_FUNCTIONS_EXCEPTIONS package of ISO/IEC 11430 and in the ARRAY_EXCEPTIONS pac
tional Standard, respectively. These exceptions distinguish neither between~différent kinds of argum
 index errors, nor between different subprograms. The ARGUMENT_ERROR cxeeption does not distingu

tween instaptiations of either GENERIC_COMPLEX_TYPES, GENERIC_COMPLEX_ARRAYS) thc GENERIC_ELEMENTARY

TIONS packl
ARRAY_INDJ
or GENERIC

Besides ARG
packages ar

Virt
packages
has an u
actual ty|
user’s gey
perform
no beari

For
raised in
operation
ROR will

hee of ISO/IEC 11430 or the GENERIC_COMPLEX_ELEMENTARY_FUNCTIONS package of ISO/IEC 1381
EX_ERROR cxception does not distinguish between different instamtiations of cither GENERIC_REAL_A
| COMPLEX_ARRAYS.

UMENT_ERROR and ARRAY_INDEX_ERROR, the ounly exceptiéngiallowed during a call to a subprogram i1
> predefined exceptions, as follows:

rally any predefined exception is possible during she evaluation of an argument of a subprogram i
For example, NUMERIC_ERROR, CONSTRAINT_ERROR, or cven PROGRAM_ERROR could be raised if an arg)
idefined value; and, as stated in clause 4, if the implementation allows range constraints in the
pe, then CONSTRAINT_ERROR will be raisediwhen the value of an argument lics outside the range
heric actual type. Additionally, STORAGELERROR could be raised, c.g. if insufficient storage is avail
he call. All these exceptions are raised before the body of the subprogram is entered and therefor
g on implementations of these packages.

he subprograms in COMPLEX_IO ounly, any of the exceptions declared (by renaming) in TEXT_IO 1
the appropriate circumstanices. For example, TEXT_I0.LAYOUT_ERROR will be raised during an

to a string if the given string is too short to hold the formatted output. Additionally, TEXT_I0.DA
be raised during th¢tévaluation of arguments of an input operation if the components of the cd

value obflained are not of<thé type REAL, or, for implementations of COMPLEX_IO not based on an instantia

TEXT_IO
make us
presence
all possil

FLOAT_IO, if¢licMnput sequence does not have the required syntax. Implementations of COMPLEX_I0
of an instantiation of TEXT_I0.FLOAT_IO shall make every attempt to raisec TEXT_I0.DATA_ERROR

cxcep-
I more
ations,
Or TOW

me de-
kage of
nt er-
ish be-
| FUNC-
t. The
RRAYS

b these

these
ument
‘eneric
of the
vble to
> have

hay be
utput
A_ER-
mplex
sion of
which
in the

f invalidinput sequence syntax; however, this International Standard recognizes the difficulty in handling

le invalid input sequences for these types of implementations.

Also

as/stated in clause 4, if the implementation allows range constraints in the eeneric actual typc

, then

CONSTRAINT_ERROR will be raised when a subprogram in these packages attempts to return a scalar value (or to
construct a composite value with a scalar component or element) outside the range of the user’s generic actual type.
The exception raised for this reason shall be propagated to the caller of the subprogram.

Whenever the arguments of a subprogram are such that a scalar result (or a scalar component or clement of
a composite result) permitted by the accuracy requirements would exceed REAL' SAFE_LARGE in absolute value, as
formalized below in clause 10, an implementation may raise (and shall then propagate to the caller) the exception
specified by Ada for signaling overflow.

Once exccution of the body of a subprograin has begun, an iinplementation may propagate STORAGE_ERROR to
the caller of the subprogram, but only to signal the unexpected exhaustion of storage. Similarly, once execution
of the body of a subprogramn has begun, an implementation may propagate PROGRAM_ERROR to the caller of the
subprogram, but only to signal errors made by the user of these packages.

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

No exception is allowed during a call to a subprogram in these packages except those permitted by the foregoing rules.
In particular, for arguments for which all scalar results (or scalar components or elements of all composite results)
satisfying the accuracy requirements remain less than or equal to REAL'SAFE_LARGE in absolute value, a subprogram
shall locally handle an overflow occurring during the computation of an intermediate result, if such an overflow is
possible, and not propagate an exception signaling that overflow to the caller of the subprogram.

The only exceptions allowed during an instantiation of GENERIC_COMPLEX_TYPES, GENERIC_REAL_ARRAYS, GENER-
IC_COMPLEX_ ARRAYS or COMPLEX 10, 111(111(111153 the exccution of th(‘ optlonal sequence of statements in the body
i STR® ; A y Wing reasons.

e restriction
v, in fact, be
allowed for

limitations

e generic actual typc shall not havc a rangce (.onstramt, and the user v1olates that I(‘StIl(thIl (1t ma
kcapable consequence of the violation). The raising of PROGRAM_ERROR during instantiation is only

the pulrpose of signaling errors made by the user - for example, violation of this same restrictiony.of of othe

of the implementation. The raising of STORAGE_ERROR during instantiation is only allowed for-the purposd of signaling
the exhaustion of storage.

NOTE| — In ISO/IEC 8652:1987, the exception specified for signaling overflow or division by zero is NUMERIC_ERROR, but
ISO/ILC 8652:1995 replaces that by CONSTRAINT _ERROR.

7 Arguments outside the range of safe numbers

ISO/IEC 8652 fails to define the result safe interval of any basic ok¢predefined operation of a real subtype when the
absoldte value of one of its operands exceeds the largest safe number of the operand subtype. (The failurp to define a

in this case occurs because no safe interval is defined forsthe operand in question.) In order to awvd
sments that would, conscquently, be more stringent plrafy’those of Ada itself, this International Stan
bt define the result of a contained subprogram whemthe absolute value of one of its scalar arguments (
components or clements of composite arguments) exceeds REAL' SAFE_LARGE. All of the accuracy 1
her provisions of the following clauses are undérstood to be implicitly qualified by the assumption
gram argiments (or scalar components oxelements of composite subprogram arguments) are less t
L'SAFE_LARGE in absolute value.

id imposing
ard likewise
or one of the
cquirements

that scalar
1an or equal

result
requir
does 1
scalar
and o
subpr
to REA

8 Method of specification of subprograms

his Interna-
pument(s) if
conventions

b the subprograms have twéd or more overloaded forms. For cach form of a subprogram covered by
Standard, the subprograin is specified by its parameter and result type profile, the domain of its ar
ted, its range if restrieted, and the accuracy required of its implementation. The meaning of, and

Some
tional
restric

applichble to, the domaing range and accuracy specifications are described below.

The s

becification ©f<each subprogram covered by this International Standard includes, where necessary,

izatiof of the ‘argiunent values for which the subprogram is mathematically defined. It is expressed by

a character-
inequalities

or otler conditions which the arguments shall satisfy to be valid. Whenever the arguments fail to sdtisfy all the
(:onditlions, the implementation shall raise ARGUMENT_ERROR. It shall not raise that exception if all the cdnditions are
satisfibd

Inability to deliver a result for valid arguments because the scalar result (or a scalar component or element of the
composite result) overflows, for example, shall not raise ARGUMENT_ERROR, but shall be treated in the same way that
Ada defines for its predefined floating-point operations (sce clause 10).

The usual mathematical meaning of the “range” of a function is the set of values into which the function maps the
values in its domain. Some of the subprograms covered by this International Standard (for example, ARGUMENT) arc
mathematically multivalued, in the sense that a given argument value can be mapped by the subprogram into many
different result values. By means of range restrictions, this International Standard imposes a uniqueness requircment
on the results of multivalued functions, thereby reducing themn to single-valued functions.

The range of cach subprogram result is shown, where necessary, in the specifications. Range definitions take the form
of inequalities limiting the results of a subprogram. An implementation shall not exceed a limit of the range when

5

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO

JIEC

that limit is a safe number of REAL (like 0.0, 1.0, or CYCLE/2.0 for certain values of CYCLE). On the other hand, when
a range limit is not a safe number of REAL (like 7, or CYCLE/2.0 for certain other values of CYCLE), an implementation
may exceed the range limit, but may not exceed the safe number of REAL next beyvond the range limit in the direction
away from the interior of the range; this is, in general, the best that can be expected from a portable iimplementation.
Effectively, therefore, range definitions have the added effect of imposing accuracy requirements on implementations

above and t

eyond those presented as error bounds in the specifications (see clanse 9).

9 Accu

Because th
generic pac

The accural
allowed in
quircments
constrain th
(in that cor
is discussed
accuracy re|
nents or ele
requiremen

The accura
(real or cor
(indicated i
Internation

of intermedjate results is used to implement such inner prodicts.

The first ki
It is specifi
shall hold

domain defy

Three form
the scalar 1
measurc us
cancellatior

For a real 1
defined in t|

provided th

racy requirements

v are implemented on digital computers with only finite precision, the subprograms provided in
kages can, at best, only approximate the corresponding mathematically defined operations

'y requirements contained in this International Standard define the latitude that'imiplementatio
npproximating the intended precise mathematical result with floating-point computations. Accurs
of two kinds are stated in the specifications. Additionally, range definitiongAtnpose requircient
e values implementations may yield, so the range definitions are another sourec of accuracy requirg
text, the precise meaning of a range limit that is not a safe number of REAL] as an accuracy requir
in clause 8). Every result returned by a subprogram is subject to,all”of the subprogram’s app
Huircments, except in the one case described in clause 12. In that cade) the scalar result (or scalar ¢
ments of the composite result) will satisfy a small absolute erroptéquirement in licu of the other ac
s defined for the subprogram.

'y requirements on array opcrations arc defined in terms*ofcorresponding accuracy requirements or
nplex) scalar clements, unless the mathematical defifidtion of the operation includes an inner p
1 the specifications as such). The accuracy of operatious involving inner products is beyond the scope
h] Standard, except that an implementation shall;ddcument what, if any, extended-precision accunm

d by bounds on appropriate measuresof the relative error in the computed result of a subprogram,
except as provided by the rules ithclauses 10 and 12) for all arguments satisfying the conditions
nition, whenever those measures are defined.

5 of measure are used inthe specifications; they depend on the type (real, hmaginary or comp
esult. In the real or inmaginary case, the measurce is the usual “relative error”; in the complex ca
d for cach componerft=part is, whenever possible, a “component-part error,” but in cases where subs

may be involved@his is relaxed to a “box error.”

csult, if theanathematical result is « and the computed result is z, then the relative error rel_er
he usual way:
rel_err(r) = |o — z|/|q|

» mathematical result is finite and nonzero.

these

1S are
Ccy re-
s that
ments
pinent,
icable
pIPO-
uracy

) their
oduct
of this
lation

1d of (scalar) accuracy requircment usediin’the specifications is a “maximum relative error requiregnent.”

which
in the

ex) of
e, the
rantial

() is

For a complex result, if the mathematical result is « + 43 and the computed result is = 4 iy, then the component-part
errors real_comp_err(x), imag-comp_err(y) arc defined as:

provided th

provided the mathematical component-part 3 is finite and nonzero;

real_comp_err(x) = |a — z|/|]
e mathematical component-part « is finite and nonzero, and

mmag-comp_err(y) = |3 —y|/|3]

imag_box_err(y) arc defined as:

real_box_err(r) = |o — x|/ max(|«|, |3])

imag-box_err(y) = |3 — y|/ max(|«|, |A])

and the box errors real_bor_err(zx),

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

provided the mathematical component-parts «, 3 are finite and not both zero.

In all other cases, the above measures of the relative error are not defined (i.c., when the mathematical result, or a
component-part of the mathematical result, is infinite or zero).

The sccond kind of (scalar) accuracy requirement used in the specifications is a stipulation, usually in the form of an
cquality, that the implementation shall deliver “prescribed results” for certain special arguments. It is used for two

purpos

mat}

When
or CYC
prescri
certainy
results
not haj
are pre

Range
accura
relativ

10 ¢
Floati
implen
progra
result

the 1

In add
of the
CXPON
compu

CS:

to define the computed result when one of the measures of the relative error is undefined, §o,
cmatical result (or a component-part of the mathematical result) is zero; and

to strengthen the accuracy requirements at special argument values.
buch a prescribed result (or component-part of a prescribed result) is a safe number of REAL (li}

sed result (or component-part of a prescribed result) is not a safe number OfREAL (like 7, or CY
other valucs of CYCLE), an implementation may deliver any value in the gugrounding safe interval.
take precedence over maximum relative error requirements but never ¢omitravene them. Complex
¢ the same kind of accuracy requirement for both of their componentparts. Where all results of a
scribed, the operation is specified as “exact.”

lefinitions in the specifications, are an additional source of at¢uracy requirements, as stated in clat
‘v requirement, a range definition has the effect of elimipating some of the values permitted by th
error requirements, c.g. those outside the range.

Dverflow

g-point hardware is typically incapablecof representing numbers whose absolute value ex
cntation-defined maximum. For the type REAL, that maximum will be at least REAL' SAFE_LARGE. 1
ns defined by this International Standard, whenever the maximum relative error requirements per
or a scalar component or element of a composite result) whose absolute value is greater than REAL'S
blementation may

vicld any result permitted by the maximum relative error requirements, or

raisc the exception $pécified by Ada for signaling overflow.

tion, some of th¢ functions arc allowed to signal overflow for certain arguments for which neither
result cap~overflow. This freedom is granted for operations involving either an inner product

ntiationPerission to signal overflow in these cases recognizes the difficulty of avoiding over
ation\of intermediate results, given the current state of the art.

, when the

tc 0.0, 1.0

LE/2.0 for certain values of CYCLE), an implementation shall deliver that valu¢. ;On the other hand, when a

'LE/2.0 for

Prescribed
fesults need
11 operation

sc 8. As an
P maximuin

eeds some
‘or the sub-
nit a scalar
AFE_LARGE,

component
or complex
flow in the

NOTES

1

The rule permits an implementation to raise an exception, instead of delivering a result, for arguments for which the math-

ematical result (or a component-part of the mathematical result) is close to but does not exceed REAL'SAFE_LARGE in absolute
value. Such arguments must necessarily be very close to an argument for which the mathematical result (or a component-part
of the mathematical result) does exceed REAL'SAFE_LARGE in absolute value. In general, this is the best that can be expected
from a portable implementation with a reasonable amount of effort.

2 The rule is motivated by the behavior prescribed by ISO/IEC 8652 for the predefined operations. That is, when the set of
possible results of a predefined operation includes a number whose absolute value exceeds the implementation-defined maximum,
the implementation is allowed to raise the exception specified for signaling overflow instead of delivering a result.

3 In ISO/IEC 8652:1987, the exception specified for signaling overflow is NUMERIC_ERROR, but ISO/IEC 8652:1995 replaces
that by CONSTRAINT_ERROR.

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO

11 Infinities

JIEC

An implementation shall raise the exception specified by Ada for signaling division by zero in the following specific
cases where the corresponding mathematical results, or component-parts thereof, are infinite:

a) divis

ion by (real, imaginary or complex) zcro;

b)

arraj
¢)

expd

d) arra]
(integer)

NOTE — Iy

replaces that by CONSTRAINT_ERROR.

12 Une

Floating-p
some impld
subprograr
result (or

and a pres
or element

a) any

b) any
the max

ze1ro0

9

NOTES

1 Whenevj
general, uns

2 The ruld

- 1 1 i 1 1L s . 1 1. . — L 1 1 1 1
- OpCTatiols WITOSC A UITCIITAatICar T TO T TITVOT VeSOV IS IO O aIT CICTITCITE Dy (ICal OT COITPICX - ZCT

7 operations whose mathematical definition involves exponentiation of (real or complex).zero by a n

nentiation of (real, imaginary or complex) zero by a negative (integer) exponent;

exponent;

ISO/IEC 8652:1987, the exception specified for signaling division by zero is NUMERIC_(ERROR, but ISO/IEC 86

lerflow

int hardware is typically incapable of representing nonzero humbers whose absolute value is leg

ribed result is not stipulated, the implementationtmay yield for that scalar result (or a scalar com
of that composite result)

value permitted by the maximum relative.error requirements;

nonzero value less than or equal .t0-REAL'SAFE_SMALL in magnitude (and having the correct sign,
mum relative error requirementdpermit values with either sign); or

er the beh@wior on underflow is as described in 12 b) or 12 c), the maximum relative error requirements
chievabletanid are waived.

) viola

rgative

b2:1995

s than

mentation-defined minimum. For the type REAL, that mifiuium will be at most REAL' SAFE_SMALL. For the
1s defined by this International Standard, whenever the filaximun relative error requirements permit 4 scalar
scalar component or clement of a composite result)owhose absolute value is less than REAL'SAFE[SMALL

poncent

unless

are, in

ing the

maximum ré

pérniits an implementation to deliver a scalar result (or component or element of a composite result

or slightly exceeds REAL'SAFE_SMALL in absolute value. Such arguments must necessarily be very close to an argument fo
the mathematical result (or component-part of the result) is less than REAL'SAFE_SMALL in absolute value. In general, this is
the best that can be expected from a portable implementation with a reasonable amount of effort.

13 Generic Complex Types Package

) equals
r which

The generic package GENERIC_COMPLEX_TYPES defines operations and types for scalar complex arithmetic. One generic
formal parameter, the floating-point type REAL, is defined for GENERIC_COMPLEX_TYPES. The corresponding generic
actual paramecter determines the precision of the arithmetic to be used in an instantiation of this generic package.

The Ada p

8

ackage specification for GENERIC_COMPLEX_TYPES is given in annex A.

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

13.1

Types

ISO/IEC 13813:1998(E)

Two types arc defined and cxported by GENERIC_COMPLEX_TYPES. The typc COMPLEX provides a cartesian represen-
tation of a complex number; it is declared as a record with two components which represent the real and imaginary
parts. The type IMAGINARY is provided to represent a pure imaginary number; it is declared as a private type whose
full type declaration reveals it to be derived from type REAL.

13.2
i:
j:

Each (

Each ¢

13.3

funct
funct

Constants

’

.0
.0;

tonstant IMAGINARY

1
tonstant IMAGINARY 1

onstant represents the imaginary unit value.

onstant is exact.

COMPLEX selection, conversion and composition operations

jon RE (X : COMPLEX) return REAL;
jon IM (X : COMPLEX) return REAL;

Each function returns the specified cartesian component-part of X

Each function is exact.

proce

proce

Each j
Each j
funct
funct
Each

betwe
numb

Hure SET_RE (X : in out COMPLEX;
RE : in REAL) ;

Hure SET_IM (X : in out COMPLEX;
IM : in REAL) ;

rocedure is exact.

ion "+" (LEFT : REAL;
RIGHT : IMAGINARY) return COMPLEX;
ion "-" (LEFT _:“REAL;
RIGHT~:~IMAGINARY) return COMPLEX;

n real and/imaginary numbers. This is also the standard mathematical operation for composin
r fromyteal and imaginary numbers.

The r

al“component-part of the result is exact. The imaginary component-part of the result shall satisfy f

rocedure resets the specified (cartgsian) component of X; the other (cartesian) component is unchdnged.

peration refirns the COMPLEX result of applying the appropriate standard mathematical operation fqr arithmetic

b a complex

he accuracy

requirement of the appropriate unary operation for real arithmetic, as defined by Ada.

function "+" (LEFT : IMAGINARY;

RIGHT : REAL) return COMPLEX;

function "-" (LEFT : IMAGINARY;

RIGHT : REAL) return COMPLEX;

Each operation returns the COMPLEX result of applying the appropriate standard mathematical operation for arithmetic
between real and imaginary numbers. This is also the standard mathematical operation for composing a complex
number from real and imaginary numbers.

The real component-part of the result shall satisfy the accuracy requirement of the appropriate unary operation for

real ar

ithmetic, as defined by Ada. The imaginary component-part of the result is exact.

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

function COMPOSE_FROM_CARTESIAN (RE :
function COMPOSE_FROM_CARTESIAN (RE, IM :

© ISO

REAL) return COMPLEX;
REAL) return COMPLEX;

JIEC

Each function constructs a COMPLEX result (in cartesian representation) formed from given cartesian component-parts

(when only

the real component-part is given, a zero imaginary component-part is assumed).
b .

Each function is exact.

function MBPHEHS—CF———CBMPEEX—TreturnmREAL;

function 'labs" (RIGHT : COMPLEX) return REAL renames MODULUS;
function ARGUMENT (X : COMPLEX) return REAL;

function ARGUMENT (X : COMPLEX;

Each funct
—CYCLE/2.(
CYCLE is gi

CYCLE < 0.(.

The functig
For the fun
a)
b)

1) for
tively

Whe

Whe

2) for
Otherwise,
For the fun

function ¢
function

Each funct
The period
ARGUMENT_H

CYCLE : REAL) return REAL;

on calculates and returns the specified polar component-part of X (where MODUEUS(X) > ()

< ARGUMENT(X, CYCLE) < CYCLE/2.0). CYCLE dcfines the period of ARGUMENT(X, CYCLE); wl
en, a period of 27 is assumed (—7 < ARGUMENT(X) < m). The exception ARGUMENT_ERROR is raid

n MODULUS returns 0.0 when X = (0.0,0.0).

‘tion ARGUMENT, special cases arce defined as follows:
1 X.RE > 0.0 and X.IM = 0.0, ARGUMENT rcturns 0.0.
1 X.RE < 0.0 and X.IM = 0.0, two cases can arisc:

an implementation exploiting signed zeros, ARGUMENT returns —CYCLE/2.0 (or —7) when X.IM is 4
igned zero and CYCLE/2.0 (or 7) when X. IM is\a positively signed zero;

an implementation not exploiting signed-zeros, ARGUMENT returns CYCLE/2.0 (or).

for the function MODULUS (and its renatning "abs"), the maxinnun relative error is 3.0-REAL'BASE'EP
:tion ARGUMENT, the maximum telative crror is 4.0 - REAL'BASE'EPSILON.

OMPOSE_FROM_POLAR (MODULUS, ARGUMENT :
OMPOSE_FROM_POLAR
(MODULUS, ARGUMENT, CYCLE :

REAL) return COMPLEX;
REAL) return COMPLEX;
on constricts-& COMPLEX result (in cartesian representation) formed from given polar component

of ARGUMENT s specified by CYCLE; when no CYCLE is given, a period of 27 is assumed. The exc
'RROR is r&ised for CYCLE < 0.0.

For the fu
(cartesian)

T

ctiéng COMPOSE_FROM_POLAR, the usual mathematical definitions apply, c.g., for MODULUS < 0
CBMPLEX result is formed from |MODULUS| and the rotation of ARGUMENT by CYCLE/2.0 (or 7

) and
cn no
ed for

nega-

5ILON.

tparts.
cption

0, the
); for

bl

|ARGUMENT| > CYCLE/Z.U (or [ARGUMENT| > 7), the (cartesian) CUMPLEX result 1s tormed by reducing ARGUMENT ac-
cording to the period CYCLE (or 27).

For these functions, special cases are defined as follows:

a)
b)

when MODULUS = 0.0, the result is (0.0,0.0);

result is MODULUS and the imaginary component-part of the result is 0.0;

)

when ARGUMENT is an integral multiple of CYCLE (or an integral multiple of 27), the real component-part of the

when ARGUMENT is the sum of CYCLE/4.0 and an integral multiple of CYCLE (or the sum of 7/2 and an integral

multiple of 27), the real component-part of the result is 0.0 and the imaginary component-part of the result is

MODULUS;

10

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813

:1998(E)

d) when ARGUMENT is an odd integral multiple of CYCLE/2.0 (or an odd integral multiple of), the real component-

part

of the result is —MODULUS and the imaginary component-part of the result is 0.0;

¢) when ARGUMENT is the sum of —CYCLE/4.0 and an integral multiple of CYCLE (or the sum of —7/2 and an
integral multiple of 2m), the real component-part of the result is 0.0 and the imaginary component-part of the result
is —MODULUS.

Otherwise, for the function COMPOSE_FROM_POLAR with CYCLE specified, the maximum relative crror in the cartesian

compo
MUl r
to som

For latpper values of |[ARGUMENT|, degraded accuracy is allowed. An implementatioishall document its |
ARGUMENT|.

large

13.4

function "+" (RIGHT : COMPLEX) return COMPLEX;
function "-" (RIGHT : COMPLEX) return COMPLEX;
function CONJUGATE (X : COMPLEX) return COMPLEX;
function "+" (LEFT, RIGHT : COMPLEX) return COMPLEX;
function "-" (LEFT, RIGHT : COMPLEX) return COMPLEX;

Each dperation applics the standard mathematical operation for complex arithmetic. This is also the stax

cmaftic

The re

shall s

funct]
funct]

Each ¢
cmatic
ZCro 18

For co

For co

OMNOT T e

TCTIT-parts 15 3.0 REAL-BASEEPSTLON—Tor thefrctiorr COMPESE_FREM-PEEAR—with€¥EEEomitter
Jative error in the cartesian component-parts is 3.0 -REAL'BASE'EPSILON when |ARGUMENT| is lessitl
» documented implementation-dependent threshold, which shall be not less than

REAL 'MACHINE RADIX |REAL'MACHINE_MANTISSA/2|

COMPLEX arithmetic operations

hl operation for complex identity, negationdonjugation, addition and subtraction.

hl component-part of the result of CONJUGATE is exact. Otherwise, each cartesian component-part
tisfy the accuracy requirement of the appropriate operation for real arithmetic, as defined by Ada

on "x" (LEFT, RIGHT : _COMPLEX) return COMPLEX;
on "/" (LEFT, RIGHT :\.COMPLEX) return COMPLEX;

peration applics théwstandard mathematical operation for complex arithmetic. This is also the stai
hl operation forcomplex multiplication and division. The exception specified by Ada for signaling
raised when diviSion by complex zero is attempted.

nplex multiplication, the maximum box error is 5.0 - REAL'BASE'EPSILON.

nplex division, the maximum box error is 13.0 - REAL ' BASE'EPSILON.

, the maxi-
an or equal

chavior for

dard math-

f the result

dard math-
division by

function "*x" (LEFT : COMPLEX;

RIGHT : INTEGER) return COMPLEX;

This operation returns the result of applying the standard mathematical operation for complex exponentiation by an
integer power. The exception specified by Ada for signaling division by zero is raised when LEFT = (0.0,0.0), and

RIGHT

< 0.

For this operation special cases are defined as follows:

a)

b)

when LEFT = (0.0,0.0), and RIGHT > 0, the result is (0.0,0.0);

when LEFT = (1.0,0.0), the result is (1.0, 0.0);

11

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

¢) when RIGHT = 0, the result is (1.0,0.0);
d) when RIGHT = 1, the resnlt is LEFT.

Otherwise, the following shall hold:

© ISO/IEC

a) For an implementation which obtains the result by converting LEFT to a polar representation, exponentiating
the modulus and multiplying the argument by RIGHT, and reconverting to a cartesian representation, an accuracy

requirement is not specitied.

b) For fpll other implementations, the box error of the result is obtained by applying the sequenee=of cpmplex
multiplidations defined by RIGHT, assuming arbitrary association of the factors, and to the final @emplex division

when RIGHT < 0.

Clause 10 gpplies when the arguments arc such that computation of an intermediate resultseould signal overflgw.

13.5 Mijxed REAL and COMPLEX arithmetic operations

function |'+" (LEFT : REAL;
RIGHT : COMPLEX) return COMPLEX;
function |'+" (LEFT : COMPLEX;
RIGHT : REAL) return COMPLEX;
function ['-" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX;
-" (LEFT : COMPLEX;

RIGHT : REAL) return COMPLEX;

function [

Each operalttion returns the COMPLEX result of applying the appropriate standard mathematical operation for arithmetic

between repl and complex numbers.

The real cpmponent-part of the result shall satisfy the accuracy requirement of the appropriate operation for real

arithmetic,|as defined by Ada. The imaginary component-part of the result is exact.

function ['*" (LEFT : REAL;

RIGHT : COMPLEX)\ return COMPLEX;
function ['*" (LEFT : COMPLEX;

RIGHT : REAL) return COMPLEX;
function |/" (LEFT ;~REAL;

RIGHT:NCOMPLEX) return COMPLEX;
function [/" (LEFT)': COMPLEX;

RIGHT : REAL) return COMPLEX;

Each operafion returns the result of applying the appropriate standard mathematical operation for arithmetic bptween

real and complex numbers. The exception specified by Ada for signaling division by zero is raised when division by

(real or complex) zero is attempted.

Each cartesian component-part of the result shall satisfy the accuracy requirement of the appropriate operation for real
arithmetic, as defined by Ada. Each operation constructs the mathematical result by using real arithmetic (instead

of by using complex arithmetic, after converting real values to complex values).

13.6 Mixed IMAGINARY and COMPLEX arithmetic operations

function "+" (LEFT : IMAGINARY;
RIGHT : COMPLEX) return COMPLEX;
function "+" (LEFT : COMPLEX;

12

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

RIGHT : IMAGINARY) return COMPLEX;

function "-" (LEFT : IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;

function "-" (LEFT : COMPLEX;

RIGHT : IMAGINARY) return COMPLEX;

ISO/IEC 13813:1998(E)

Each operation returns the COMPLEX result of applying the appropriate standard mathematical operation for arithmetic
between imaginary and complex numbers.

The re

requirdment of the appropriate operation for real arithmetic, as defined by Ada.

function "*" (LEFT : IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;

function "*" (LEFT : COMPLEX;

RIGHT : IMAGINARY) return COMPLEX;

function "/" (LEFT : IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;

function "/" (LEFT : COMPLEX;

Each 9
betwed
divisiol

Each «
arithimr

of by 1

13.7

funct

This fy

This f

proce

This

This ¢

RIGHT : IMAGINARY) return COMPLEX;

1 imaginary and complex numbers. The exception specified byyAda for signaling division by zero is
1 by (imaginary or complex) zero is attempted.

etic, as defined by Ada. Each operation constructsithe mathematical result by using real arithm
ising complex arithmetic, after converting real values to complex values).

IMAGINARY selection, conversion and composition operations
fon IM (X : IMAGINARY) return/REAL;
lmction returns the REAL representation of X.

mction is exact.

Hure SET_IM (X _«~out IMAGINARY;
IMY in REAL);

rocedure sets-the IMAGINARY representation of X.

rocedure 1s exact.

funct

i 611) COMPOSE_FROM_CARTESIAN (IM : IMAGINARY) return COMPLEX;

bl component-part of the result is exact. The imaginary component-part of the result shall satisfy the accuracy

peration returns the COMPLEX result of applying the appropriate stafidard mathematical operation for arithmetic

raised when

hrtesian component-part of the result shall satisfy the a@yuracy requirement of the appropriate opergtion for real

gtic (instead

This function coustructs a COMPLEX result (in cartesian representation) formed from the given IMAGINARY value (a zero
real component-part is assumed).

This function is exact.

13.8

IMAGINARY ordinal and arithmetic operations

function "<" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
function "<=" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
function ">" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
function ">=" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;

13

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO/IEC

Each operation returns the result of applying the appropriate standard mathematical relational operation between

real numbe

rs to the REAL representations of LEFT and RIGHT.

Each result shall satisfy the accuracy requirement of the appropriate operation for real arithimetic, as defined by Ada.

function "+" (RIGHT : IMAGINARY) return IMAGINARY;
function "-" (RIGHT : IMAGINARY) return IMAGINARY;
function CONJUGATE (X : IMAGINARY) return IMAGINARY renames "-";

function
function
function
function
function

Each operaltion applies the standard mathematical operation for imaginary arithmetic. Thiss also the standard
eration for imaginary identity, negation (conjugation), absolute value, additiow(sitbtraction, multiplication

cmatical of
and divisio
is attempt
Each resulf
function
Each operd
tiation by

and RIGHT

For this op|

a) whefi LEFT = 0.0 and RIGHT > 0, the resultris (0.0, 0.0);

b) whe

¢) when RIGHT = 1, the result is (0.0, LEFT).

Otherwise,

a) Whg
exponent

b) Wh
shall sat

'abs" (RIGHT : IMAGINARY) return REAL;

'+" (LEFT, RIGHT : IMAGINARY) return IMAGINARY;
'-" (LEFT, RIGHT : IMAGINARY) return IMAGINARY;
'x" (LEFT, RIGHT : IMAGINARY) return REAL;

'/" (LEFT, RIGHT : IMAGINARY) return REAL;

1. The exception specified by Ada for signaling division by zero is raised when division by (iinaginar

d.
shall satisfy the accuracy requirement of the appropriate operation for real arithmetic, as defined t

"s*" (LEFT : IMAGINARY;
RIGHT : INTEGER) return COMPLEX;

tion returns the COMPLEX result of applying the standard mathematical operation for imaginary ex
hn integer power. The exception specified by Ada_forsignaling division by zero is raised when LEF]

< 0.

eration special cases are defined as follows:

1 RIGHT = 0, the result is (1.050.0);

the following shall hold:

n RIGHT is_dven, the rcal component-part of the result shall satisfy the accuracy requirement
iation byzau(integer power, as defined by Ada. The imaginary component-part of the result is 0.0.

n BIGHT is odd, the real component-part of the result is 0.0. The imaginary component-part of th
sfy~tlie acenracy requirement of the appropriate operation for real exponentiation by an integer po

math-

V) zero

v Ada.

porncu-

[= 0.0

of real

result
Wer, as

defined by Ada:

13.9 Mixed REAL and IMAGINARY arithmetic operations

function

function

function

function

14

"x" (LEFT : REAL;

RIGHT : IMAGINARY) return IMAGINARY;
"x" (LEFT : IMAGINARY;

RIGHT : REAL) return IMAGINARY;
"/" (LEFT : REAL;

RIGHT : IMAGINARY) return IMAGINARY;
"/" (LEFT : IMAGINARY;

RIGHT : REAL) return IMAGINARY;

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

oturns the REAL or IMAGINARY result of Annlvnm the appropriate standard mathematical operation

Tach +13
Ladn opiratvion I

for arithmetic between real and imaginary numbers. The exception specified by Ada for signaling division by zero is
raised when division by (real or imaginary) zero is attempted.

..
.
5
e
<
t
%
¥
C

Each result shall satisfy the accuracy requirement of the appropriate operation for real arithmetic, as defined by Ada.

14 Array Exceptions Package

The ARRAY_EXCEPTIONS package defines one exception, ARRAY_INDEX_ERROR, which is raised by a subprggram in the
generi¢ array packages when the argument(s) of that subprogram violate one or more of the conditions for matching
clemenfts of arrays (sce clause 6).

The Alda package specification for ARRAY_EXCEPTIONS is given in annex B.

15 [Generic Real Arrays Package

The g¢neric package GENERIC_REAL_ARRAYS defines operations and types for, feal vector and matrix arithmetic. One
generi{: formal paramcter, the floating-point type REAL, is defined for GENERIC_REAL_ARRAYS. The cdrresponding
generi{: actual parameter determines the precision of the arithmetic to, be' used in an instantiation of [this generic
package.

The Alda package specification for GENERIC_REAL_ARRAYS is givennin annex C.

15.1 | Types

Two flypes are defined and exported by GENERIC_REAL_ARRAYS. The composite type REAL_VECTOR is provided to
represpnt a vector with elements of type REAL; it is defined as an unconstrained, onc-dimensional array wfith an index
of typp INTEGER. The composite type REAL_MATRIX is provided to represent a matrix with elements of tiype REAL; it
is defihed as an unconstrained, two-dimensiofial array with indices of type INTEGER.

15.2 | REAL_VECTOR arithmetic operations

functfion "+" (RIGHT : REAL\VECTOR) return REAL_VECTOR;
functfion "-" (RIGHT : READ_VECTOR) return REAL_VECTOR;
functlion "abs" (RIGHT\:/REAL_VECTOR) return REAL_VECTOR;

Each pperation retyms/the result of applying the appropriate operation to cach element of RIGHT. Thys is also the
standgrd mathemasical operation for vector identity, negation and absolute value.

Each rray elément of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as defined
by Ada.

function "+" (LEFT, RIGHT : REAL_VECUTOR) return REAL_VECIUR?T
function "-" (LEFT, RIGHT : REAL_VECTOR) return REAL_VECTOR;
function "*" (LEFT, RIGHT : REAL_VECTOR) return REAL_VECTOR;
function "/" (LEFT, RIGHT : REAL_VECTOR) return REAL_VECTOR;

Each operation returns the result of applying the appropriate operation to cach clement of LEFT and the matching
clement of RIGHT. This is also the standard mathematical operation for vector addition, subtraction, multiplication and
division. The index range of the result is LEFT'RANGE. The exception ARRAY_INDEX_ERROR is raised if LEFT'LENGTH #
RIGHT'LENGTH. The exception specified by Ada for signaling division by zcro is raised when division by zero is
attempted.

Each array clement of the result shall satisfv the (scalar) accuracy requirement of the appropriate operation, as defined

by Ada.

15

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

function

H**H

(LEFT
RIGHT :

: REAL_VECTOR;
INTEGER) return REAL_VECTOR;

© ISO/IEC

This operation returns the result of applying the standard mathematical operation for exponentiation by an integer
power to each element of LEFT. The index range of the result is LEFT'RANGE. The exception specified by Ada for
signaling division by zero is raised if for some integer I (in the index range of LEFT), LEFT(I) = 0.0 and RIGHT < 0.

Each array element of the result shall satisfy the (scalar) accuracy requirement of exponentiation by an integer power,

as defined |
function

This opera
LEFT'LENG]

This operaf

Clause 10 4

v Ada.
*" (LEFT, RIGHT : REAL_VECTOR) return REAL;

ion returns the inner (dot) product of LEFT and RIGHT. The exception ARRAY_INDEX-ERROR is rg
'H % RIGHT ' LENGTH.

ion involves an inner product; an accuracy requirement is not specified.

pplies when the elements of LEFT and RIGHT are such that computatiorCof an intermediate result

signal overflow.

15.3 RE/

function

This operaf
index rangg

Each array

function

function '

Each opera
index rangd
when divisi

Each array
by Ada.

LL_VECTOR scaling operations
*" (LEFT : REAL;
RIGHT : REAL_VECTOR) return REAL_VECTOR;

ion applies the standard mathematical operation’ for scaling a vector RIGHT by a real number LEF]
of the vector result is RIGHT ' RANGE.

clement of the result shall satisfy the(sealar) accuracy requirement of multiplication, as defined by

*" (LEFT : REAL_VECTOR;

RIGHT : REAL) returm\ REAL_VECTOR;
/" (LEFT : REAL_VECTOR;

RIGHT : REAL) rfeturn REAL_VECTOR;

ion applics the standard mathematical operation for scaling a vector LEFT by a real number RIGH]
of the vectowmcsult is LEFT'RANGE. The exception specified by Ada for signaling division by zero is
bn by zero_iSyattempted.

plement of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation, as

ised if

could

. The

Ada.

. The

raised

efined

15.4 Other REAL_VECTOR operations

function UNIT_VECTOR (INDEX

INTEGER;
ORDER : POSITIVE;
FIRST : INTEGER := 1) return REAL_VECTOR;

This function returns a “unit vector” with ORDER clements and a lower bound of FIRST. All clements are set to 0.0
except for the INDEX clement which is set to 1.0. The exception ARRAY_INDEX_ERROR is raiscd if INDEX < FIRST or
INDEX > FIRST + ORDER — 1; the exception CONSTRAINT_ERROR is raised if FIRST + ORDER — 1 > INTEGER'LAST.

This function is exact.

16

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

15.5 REAL_MATRIX arithmetic operations

function "+" (RIGHT : REAL_MATRIX) return REAL_MATRIX;
function "-" (RIGHT : REAL_MATRIX) return REAL_MATRIX;
function "abs" (RIGHT : REAL_MATRIX) return REAL_MATRIX;

Each opcration returns the result of applying the appropriate operation to each element of RIGHT. This is also the
standard mathematical operation for matrix identity, negation and absolute value. The index ranges of the result are
thosc of RIGHT

Each arral clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate operagion) as defined
by Ada.

function| TRANSPOSE (X : REAL_MATRIX) return REAL_MATRIX;

This funchion returns the transpose of a matrix X. The index ranges of the result are X'RANGE(2) and X'RANGE(1)
(first and|second index respectively).

This funclion is exact.

function| "+" (LEFT, RIGHT : REAL_MATRIX) return REAL_MATRIX;
function| "-" (LEFT, RIGHT : REAL_MATRIX) return REAL_MATRIX;

Each opefation returns the result of applying the appropriate operation fo cach clement of LEFT and the mmatching
clement df RIGHT. This is also the standard mathematical operation for matrix addition and subtractipn. The
index ranjges of the result are those of LEFT. The exception ARRAY_INDEX_ERROR is raised if LEFT'LENGIH(1) #
RIGHT'LENGTH(1) or LEFT'LENGTH(2) # RIGHT'LENGTH(2)

Each arraly cleinent of the result shall satisfy the (scalar) adeuracy requirement of the appropriate operation, as defined

by Ada.
function| "*" (LEFT, RIGHT : REAL_MATRIX) .return REAL_MATRIX;

This operption applies the standard mathematieal operation for matrix multiplication. The index ranges of the result
arc LEFT'RANGE (1) and RIGHT'RANGE(2) (first and second index respectively). The exception ARRAY_INDEX [ERROR is
raised if JEFT'LENGTH(2) # RIGHT'LENGTH(1).

This operption involves an inner product; an accuracy requirement is not specified.

Clause 1(] applics when the el@nents of LEFT and RIGHT are such that computation of an intermediate respilt could
signal ovdrflow.

function| "*" (LEFT;.RIGHT : REAL_VECTOR) return REAL_MATRIX;

This operption applics the standard mathematical operation for multiplication of a (column) vector LEFT by a (row)
vector RIGHTX \The index ranges of the matrix result arc LEFT'RANGE and RIGHT'RANGE (first and secopd index
respectivdl):

Each array clement of the result shall satisfy the (scalar) accuracy requirement of multiplication, as defined by Ada.

function "x" (LEFT : REAL_VECTOR;
RIGHT : REAL_MATRIX) return REAL_VECTOR;

This opcration applies the standard mathematical operation for multiplication of a (row) vector LEFT by a matrix
RIGHT. The index range of the (row) vector result is RIGHT'RANGE(2). The exception ARRAY_INDEX_ERROR is raised if
LEFT'LENGTH # RIGHT'LENGTH(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 10 applies when the clements of LEFT and RIGHT arc such that computation of an intermediate result could
signal overflow.

17

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC

function "

13813:1998(E)

*ll

(LEFT
RIGHT :

: REAL_MATRIX;
REAL_VECTOR) return REAL_VECTOR;

© ISO/IEC

This operation applies the standard mathematical operation for multiplication of a matrix LEFT by a (column) vector
RIGHT. The index range of the (column) vector result is LEFT'RANGE(1). The exception ARRAY_INDEX_ERROR is raised
if LEFT'LENGTH(2) # RIGHT'LENGTH.

This opceration involves an inner product; an accuracy requirement is not specified.

Clause 10 applics when the clements of LEFT and RIGHT arc such that computation of an intermediate resalt|could
signal overflpw.
15.6 REAL_MATRIX scaling operations
function "" (LEFT : REAL;

RIGHT : REAL_MATRIX) return REAL_MATRIX;
This operatjon applics the standard mathematical operation for scaling a matrix RIGEIby a rcal number LEFT. The
index range$ of the matrix result are those of RIGHT.
Each array plement of the result shall satisfy the (scalar) accuracy requiremefit of multiplication, as defined by|Ada.
function "p" (LEFT : REAL_MATRIX;

RIGHT : REAL) return REAL_MATRIX;
function "|/" (LEFT : REAL_MATRIX;

RIGHT : REAL) return REAL_MATRIX;
Each operatfion applies the standard mathematical operatiom for scaling a matrix LEFT by a rcal number RIGHT. The
index rangep of the matrix result are those of LEFT. Theséxception specified by Ada for signaling division by zero is
raised when| division by zero is attempted.
Each array ¢lement of the result shall satisfy the-(sealar) accuracy requirement of the appropriate operation, as defined
by Ada.
15.7 Other REAL_MATRIX operations
function IDENTITY_MATRIX (ORDER : POSITIVE;

FIRST_1, FIRST_2 INTEGER := 1) return REAL_MATRIX;

This functi¢n returns a_Sqrare “identity matrix” with ORDER? clements and lower bounds of FIRST_1 and FIRST_2
(for the firsp and sccond(index ranges respectively). All elements are set to 0.0 except for the main diagonal, whose
clements arp set te—10. The exception CONSTRAINT_ERROR is raised if FIRST_1 + ORDER — 1 > INTEGER'LAST or
FIRST_2 + QRDER "1 > INTEGER'LAST.
This functidmisexeaet

16 Gen

eric Complex Arrays Package

The generic package GENERIC_COMPLEX_ARRAYS defines operations and types for complex and mixed real and complex
vector and matrix arithmetic. Four generic formal type parameters are defined for GENERIC_COMPLEX_ARRAYS, including
the floating-point type REAL which determines the precision of the arithmetic to be used in an instantiation of this
generic package. The other generic formal type parameters are REAL_VECTOR, REAL_MATRIX and COMPLEX; a cartesian
representation for the COMPLEX type is required throughout. Twenty-two genceric formal subprograin parameters arce
also defined for GENERIC_COMPLEX_ARRAYS.

The Ada package specification for GENERIC_COMPLEX_ARRAYS is given in annex D.

18

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

16.1 Types

Two types are defined and exported by GENERIC_COMPLEX_ARRAYS. The composite type COMPLEX_VECTOR is provided
to represent a vector with elements of type COMPLEX; it 1s defined as an unconstrained, one-dimensional array with an
index of tvpe INTEGER. The composite type COMPLEX_MATRIX is provided to represent a matrix with clements of type
COMPLEX; it is defined as an unconstrained, two-dimensional array with indices of type INTEGER.

16.2 COMPLEX_VECTOR selection, conversion and composition operations

functi¢n RE (X : COMPLEX_VECTOR) return REAL_VECTOR;
functi¢n IM (X : COMPLEX_VECTOR) return REAL_VECTOR;

Each filnction returns a vector of the specified cartesian component-parts of X. The index 'range of the result is
X'RANGE

Each function is exact.

procedfire SET_RE (X : in out COMPLEX_VECTOR;

RE : in REAL_VECTOR) ;
procedpre SET_IM (X : in out COMPLEX_VECTOR;
IM : in REAL_VECTOR) ;

Each prlocedure resets the specified (cartesian) component of cach of the élements of X; the other (cartesian) pomponent
of cach|of the clements is unchanged. The exception ARRAY_INDEXSERROR is raised if X'LENGTH # RE'LENGTH and if
X'LENG[H # IM'LENGTH.

Each pfocedure is exact.

functipn COMPOSE_FROM_CARTESIAN

(RE| : REAL_VECTOR) return COMPLEX_VECTORj
functipn COMPOSE_FROM_CARTESIAN

(RE|, IM : REAL_VECTOR) return COMRREX_VECTOR;

Each fulnction constructs a vector of COMPLEX results (in cartesian representation) formed from given vectors pf cartesian
component-parts (when only the reali¢éomponent-parts are given, imaginary component-parts of zero arg assumed).
The index range of the result is RE'RANGE. The exception ARRAY_INDEX_ERROR is raised if RE'LENGTH # IN'LENGTH.

Each fijnction is exact.

functijpn MODULUS (¥ ~COMPLEX_VECTOR) return REAL_VECTOR;

functijn "abs" (RLGHT : COMPLEX_VECTOR) return REAL_VECTOR
renlmes MODULUS;

functijon ARGUMENT (X : COMPLEX_VECTOR) return REAL_VECTOR;

functijon ARGUMENT (X : COMPLEX_VECTOR;

CYCLE : REAL) return REAL_VECTOR;

Each function calculates and returns a vector of the specified polar component-parts of X. The index range of the result
is X'RANGE. Each array clement of the result shall satisfy the (scalar) range definition of the appropriate function.

CYCLE defines the period of ARGUMENT; when no CYCLE is given, a period of 27 is assumed. The exception ARGUMENT_ER-
ROR is raised for CYCLE < 0.0.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

function COMPOSE_FROM_POLAR

(MODULUS, ARGUMENT : REAL_VECTOR) return COMPLEX_VECTOR;
function COMPOSE_FROM_POLAR

(MODULUS, ARGUMENT : REAL_VECTOR;

CYCLE : REAL) return COMPLEX_VECTOR;

19

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

Each function constructs a vector of COMPLEX results (in cartesian representation) formed from given vectors of polar
component-parts. Each clement of ARGUMENT is assumed to have a period of CYCLE (and is reduced accordingly);
when no CYCLE is given, a period of 27 is assumed. The index range of the result is MODULUS 'RANGE. The cxception
ARRAY_INDEX_ERROR is raised if MODULUS'LENGTH # ARGUMENT'LENGTH; the cxception ARGUMENT_ERROR is raised for
CYCLE < 0.0.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

16.3 COMPLEX_VECTOR arithmetic operations

function |"+" (RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
function |"-" (RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

Each operhtion returns the result of applying the appropriate operation to cach element of RIGHT. This is flso the
standard rhathematical operation for vector identity and negation. The index range of theresilt is RIGHT 'RANGE.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for dJomplex
arithmetic

function |CONJUGATE (X : COMPLEX_VECTOR) return COMPLEX_VECTOR;

This funcfion returns the result of applying the standard mathematical joperation for complex conjugation [to each
element of| X. The index range of the result is X'RANGE.

Each array element of the result shall satisfy the (scalar) accuracy Cequirement of complex conjugation.

function |"+" (LEFT, RIGHT : COMPLEX_VECTOR) return GOMPLEX_VECTOR;
function |"-" (LEFT, RIGHT : COMPLEX_VECTOR) returnvCOMPLEX_VECTOR;
function |"*" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
function |"/" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

Each operption returns the result of applying thévappropriate operation to cach element of LEFT and the njatching
clement of RIGHT. This is also the standard math¢matical operation for vector addition, subtraction, multiplicatfion and
division. The index range of the result is LEFT*RANGE. The cxception ARRAY_INDEX_ERROR is raised if LEFT' LENGTH #
RIGHT'LENGTH. The exception specified by, Ada for signaling division by zcro is raised when division by (cémplex)
zero is att¢mpted.

Each array| element of the result shall'satisfy the (scalar) accuracy requirement of the appropriate operation for omplex
arithmetic

function ["**" (LEFT _& COMPLEX_VECTOR;
RIGHT:” INTEGER) return COMPLEX_VECTOR;

This opergtion retish$ the result of applying the standard mathematical operation for complex exponentiatiop by an
integer poyer poeach clement of LEFT. The index range of the result is LEFT'RANGE. The exception specified by Ada
for signalipg-division by zero is raised if for some integer I (in the index range of LEFT), LEFT(I) = (0.0,0/0) and
RIGHT < 0

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex exponentiation by an integer
power.

function "*" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX;

This operation returns the inner (dot) product of LEFT and RIGHT; no complex conjugation is performed. The exception
ARRAY_INDEX_ERROR is raised if LEFT'LENGTH ## RIGHT' LENGTH.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 10 applies when the clements of LEFT and RIGHT arc such that computation of an intermediate result could
signal overflow.

20

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 1381

16.4

Mixed REAL_VECTOR and COMPLEX_VECTOR arithmetic operations

function "+" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

function "+" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

function "-" (LEFT : REAL_VECTOR;

function "-" (LEFT : COMPLEX_VECTOR;

function "*" (LEFT : REAL_VECTOR;

funct
funct
funct
Each
elemc
divisi
RIGH]

comp

Each

real 4
funct

funct

Each
LEFT
This
Claug

signa

16.5

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

3:1998(E)

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
ion "x" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;
ion "/" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
ion "/" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

operation returns the result of applying the appropriate operation(o cach clement of LEFT and
b, The index range of the result is LEFT'RANGE. The exception™ARRAY_INDEX_ERROR is raised if LE
ex) zero is attempted.

array clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate operat
nd complex arithmetic.

ion "x" (LEFT : REAL_VECTOR;
RIGHT : COMPLEX_VECTOR)\kreturn COMPLEX;

ion "x" (LEFT : COMPLEX_VECTOR;
RIGHT : REAL_VECTOR).return COMPLEX;

operation returns the inner (dot) product of LEFT and RIGHT. The exception ARRAY_INDEX_ERRC
LENGTH # RIGHT'LENGTH.

bperation involves anighner product; an accuracy requirement is not specified.

¢ 10 applics vhon the clements of LEFT and RIGHT arc such that computation of an intermediatg
overflow,

COMPLEX_VECTOR scaling operations

the matching

ht of RIGHT. This is also the standard mathematical operation foryector addition, subtraction, multiplication and

T ' LENGTH #

' LENGTH. The cxception specified by Ada for signaling «division by zero is raised when divisionp by (real or

on for mixed

R is raised if

result could

function "*" (LEFT : COMPLEX;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

Each operation applics the standard mathematical operation for scaling a vector RIGHT by a complex number LEFT.

The i

ndex range of the result is RIGHT ' RANGE.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of complex multiplication.

function "*" (LEFT : COMPLEX_VECTOR;

RIGHT : COMPLEX) return COMPLEX_VECTOR;

function "/" (LEFT : COMPLEX_VECTOR;

RIGHT : COMPLEX) return COMPLEX_VECTOR;

21

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO

JIEC

Each operation applies the standard mathematical operation for scaling a vector LEFT by a complex number RIGHT.
The index range of the result is LEFT'RANGE. The exception specified by Ada for signaling division by zero is raised
when division by (complex) zero is attempted.

Each array element of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex

arithmetic.

function

Each opera
LEFT. The i

Each array
tion.
1

function

function

Each opcra
RIGHT. The
raised when

Each array
real and coy

16.6 Ot

function U

This functig
except for t
or INDEX >

This functi

16.7 COM

" (LEFT : REAL;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

ion applies the standard mathematical operation for scaling a complex vector RIGHT by anreal n
ndex range of the result is RIGHT ' RANGE.

rlement of the result shall satisfy the (scalar) accuracy requirement of mixed real and ‘¢omplex mult

*" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL) return COMPLEX_VECTOR;
/" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL) return COMPLEX_VECTOR;

ion applies the standard mathematical operation for scalingda complex vector LEFT by a real n
index range of the result is LEFT'RANGE. The exception specified by Ada for signaling division by
division by (real) zero is attempted.

slement of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for
nplex arithmetic.

her COMPLEX_VECTOR operations
NIT_VECTOR (INDEX : INTEGER;
ORDER : POSITIVE;
FIRST : INTEGER := 1) return COMPLEX_VECTOR;

n returns a “unit veckorwith ORDER clemnents and a lower bound of FIRST. All clements are set to (0.
1¢ INDEX clement which is set to (1.0,0.0). The exception ARRAY_INDEX_ERROR is raised if INDEX <
FIRST + ORDERY the exception CONSTRAINT_ERROR is raised if FIRST + ORDER — 1 > INTEGER'LA

n 18 exact:

PLEX_MATRIX selection, conversion and composition operations

unber

plica-

umber
ero 1s

mixed

),0.0)
FIRST
5T

function RE (X :
function IM (X :

COMPLEX_MATRIX) return REAL_MATRIX;
COMPLEX_MATRIX) return REAL_MATRIX;

Each function returns a matrix of the specified cartesian component-parts of X. The index ranges of the result are

those of X.

Each function is exact.

procedure

procedure

22

SET_RE (X : in out COMPLEX_MATRIX;
RE : in REAL_MATRIX);

SET_IM (X : in out COMPLEX_MATRIX;
IM : in REAL_MATRIX);

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

Each procedure resets the specified (cartesian) component of cach of the elements of X; the other (cartesian) component
of each of the elements is nnchanged. The exception ARRAY_INDEX_ERROR is raised if X'LENGTH(1) # RE'LENGTH(1)
or X'LENGTH(2) # RE'LENGTH(2) and if X' LENGTH(1) = IM'LENGTH(1) or X'LENGTH(2) # IM'LENGTH(2).

Each procedure is exact.

function COMPOSE_FROM_CARTESIAN

(RE : REAL_MATRIX) return COMPLEX_MATRIX;
functipa—COMPOSE_FROM_CARTESTAN

(RE[, IM : REAL_MATRIX) return COMPLEX_MATRIX;

Each finction constructs a matrix of COMPLEX results (in cartesian representation) formed from-givgn matrices
of cartdsian component-parts (when only the real component-parts are given, imaginary copipenent-pgrts of zero
arc asspuned). The index ranges of the result are those of RE. The exception ARRAY_INDEX_ERROR is raised if
RE'LENGTH(1) # IM'LENGTH(1) or RE'LENGTH(2) # IM'LENGTH(2).

Each fijnction is exact.

functilon MODULUS (X : COMPLEX_MATRIX) return REAL_MATRIX;

functilon "abs" (RIGHT : COMPLEX_MATRIX) return REAL_MATRIX
renlames MODULUS;

functilon ARGUMENT (X : COMPLEX_MATRIX) return REAL_MATRIX;

functilon ARGUMENT (X : COMPLEX_MATRIX;

CYCLE : REAL) return REAL_MATRIX;

Each flinction calculates and returns a matrix of the specifie@polar component-parts of X. The index rgnges of the
result are those of X. Each array clement of the result shall satisfy the (scalar) range definition of the hppropriate
functiop.

CYCLE {lefines the period of ARGUMENT; when no CYGLE s given, a period of 27 is assumed. The exception ARFUMENT_ER-
ROR is Jaiscd for CYCLE < 0.0.

Each afray clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate functiopn.

function COMPOSE_FROM_POLAR

(MODULUS, ARGUMENT : REAL.‘MATRIX) return COMPLEX_MATRIX;
function COMPOSE_FROM_POLAR

(MUDULUS, ARGUMENT :~REAL_MATRIX;

CYCLE “"REAL) return COMPLEX_MATRIX;

ach flimction constiacts a matrix of COMPLEX results (in cartesian representation) formed from given jmatrices of
polar pmponent-parts. Each clement of ARGUMENT is assumed to have a period of CYCLE (and is reduced af-cordingly);
when o CYCLENI given, a period of 27 is assumed. The index ranges of the result are those of MOQULUS. The
exceptjon ARRAY_INDEX_ERROR is raised if MODULUS'LENGTH(1) # ARGUMENT'LENGTH(1) or MODULUS'LENGTH(2) #
ARGUMBENT'LENGTH(2) ; the exception ARGUMENT _ERROR is raised for CYCLE < 0.0.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate function.

16.8 COMPLEX_MATRIX arithmetic operations

function "+" (RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
function "-" (RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;

Each operation returns the result of applying the appropriate operation to each clement of RIGHT. This is also the
standard mathematical operation for matrix identity and negation. The index ranges of the result are those of RIGHT.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for complex
arithmetic.

23

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

function

CONJUGATE (X : COMPLEX_MATRIX) return COMPLEX_MATRIX;

© ISO/IEC

This function returns the result of applying the standard mathematical operation for complex conjugation to cach

element of

X. The index ranges of the result are those of X.

Each array element of the result shall satisfy the (scalar) accuracy requirement of complex conjugation.

function

TRANSPOSE (X : COMPLEX_MATRIX) return COMPLEX_MATRIX;

This funct
(first and

This funct

function
function

Each ope]
index ran

RIGHT'LENGTH(1) or LEFT'LENGTH(2) # RIGHT'LENGTH(2).

Each array

arithmetid.

function
This oper
are LEFT'
raised if L

This opers

Clause 10
signal over

function

This operd
The index

Each array

function

ion returns the transpose of a matrix X. The index ranges of the result are X'RANGE (2) and X)RA
becond index respectively).

ion is exact.

"+" (LEFT, RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
"-" (LEFT, RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;

ation applics the appropriate standard mathematical operation for mdtrix addition or subtractio
bes of the result are those of LEFT. The exception ARRAY_INDEX_ERROR is raisced if LEFT'LENGT

element of the result shall satisfy the (scalar) accuracy requirément of the appropriate operation for

"s" (LEFT, RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;

tion applics the standard mathematical operation for matrix multiplication. The index ranges of tl
RANGE (1) and RIGHT'RANGE(2) (first and second index respectively). The exception ARRAY_INDEX _H
EFT'LENGTH(2) # RIGHT'LENGTH(1).

tion involves an inner product; an@ceuracy requirement is not specified.

applics when the clements oflLEFT and RIGHT are such that computation of an intermediate resu
flow.

"x" (LEFT, RIGHT ,+ \COMPLEX_VECTOR) return COMPLEX_MATRIX;

tion applies the/stanidard mathematical operation for multiplication of a (colummn) vector by a (row)
ranges of théanatrix result are LEFT'RANGE and RIGHT'RANGE (first and sccond index respectively)

¢ elementrof the result shall satisfy the (scalar) accuracy requirement of complex multiplication.

ngn “(LEFT : COMPLEX_VECTOR;

NGE(1)

n. The
H(1) #

omplex

c result,
[RROR 18

t could

vector.

RIGHT T COMPLEX_MATRIX) Teturn CUMYLL‘,X_VL(JIUK;

This operation applies the standard mathematical operation for multiplication of a (row) vector by a matrix. The index
range of the (row) vector result is RIGHT 'RANGE(2). The exception ARRAY_INDEX_ERROR is raised if LEFT'LENGTH #
RIGHT'LENGTH(1).

This operation involves an inner product; an accuracy requirement is not specified.

Clause 10 applies when the clements of LEFT and RIGHT arc such that computation of an intermediate result could
signal overflow.

function

24

"s" (LEFT : COMPLEX_MATRIX;
RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

This operation applies the standard mathematical operation for multiplication of a matrix by a (column) vector.
The index range of the (column) vector result is LEFT'RANGE(1). The exception ARRAY_INDEX_ERROR is raised if
LEFT'LENGTH(2) # RIGHT'LENGTH.

This operation involves an inner product; an accuracy requirement is not specified.

Clause 10 applies when the elements of LEFT and RIGHT are such that computation of an intermediate result could
signal overflow.

16.9 | Mixed REAL_MATRIX and COMPLEX_MATRIX arithmetic operations

functjon "+" (LEFT : REAL_MATRIX;

RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
functjon "+" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL_MATRIX) return COMPLEX_MATRIX;

functjon "-" (LEFT : REAL_MATRIX;
RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
functjon "-" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL_MATRIX) return COMPLEX_MATRIX;

Each ¢peration applics the appropriate standard mathematical operation for matrix addition or subtrjction. The
index Jranges of the result are those of LEFT. The exception ARRAY_INDEX_ERROR is raised if LEFT'LENGTH(1) #
RIGHT[LENGTH(1) or LEFT'LENGTH(2) # RIGHT'LENGTH(2).

Each 4rray clement of the result shall satisfy the (scalar) asguracy requirement of the appropriate operatign for mixed
real alpd complex arithmetic.

functfion "*" (LEFT : REAL_MATRIX;

RIGHT : COMPLEX_MATRIX) .netturn COMPLEX_MATRIX;
functfon "x" (LEFT : COMPLEX_MATRIXj;

RIGHT : REAL_MATRIX)\return COMPLEX_MATRIX;

Each ¢peration applies the standard inathematical operation for matrix multiplication. The index ranges pf the result
arc LEFT'RANGE (1) and RIGHT'RANGE (2) (first and second index respectively). The exception ARRAY_INDEX_ERROR is
raised |if LEFT' LENGTH(2) # RIGHT'LENGTH(1)

This dperation involves @ninner product; an accuracy requirement is not specified.

Claus¢ 10 appliesswhen the clements of LEFT and RIGHT arc such that computation of an intermediate jresult could
signal [overflow,

functfion\"*" (LEFT : REAL_VECTOR;
RIGHT : COMPLEX_VECTOR) return COMPLEX_MATRIX;
function "*" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_MATRIX;

Each operation applics the standard mathematical operation for multiplication of a (column) vector by a (row) vector.
The index ranges of the matrix result are LEFT'RANGE and RIGHT'RANGE (first and second index respectively).

Each array clement of the result shall satisfy the (scalar) accuracy requirement of mixed real and complex multiplica-
tion.

function "*" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_MATRIX) return COMPLEX_VECTOR;
function "*" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_MATRIX) return COMPLEX_VECTOR;

25

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO/IEC

Each operation applies the standard mathematical operation for multiplication of a (row) vector by a matrix. The index
range of the (row) vector result is RIGHT'RANGE(2). The exception ARRAY_INDEX_ERROR is raised if LEFT'LENGTH #
RIGHT'LENGTH(1)

This operation involves an inner product; an accuracy requirement is not specified.

Clause 10 applies when the clements of LEFT and RIGHT are such that computation of an intermediate result could
signal overflow.

function

function

Each operj

The index
LEFT'LENG

This opera
Clause 10
signal over
16.10 C
function
Each operg
The index
Each array
function
function
Each operg
The index
raised whe

Each array
arithmetic,

'x" (LEFT : REAL_MATRIX;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
'+" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

tion applics the standard mathematical operation for multiplication of a matrixNy’a (column)
range of the (column) vector result is LEFT'RANGE(1). The exception ARRAY(INDEX_ERROR is 1
H(2) # RIGHT'LENGTH.

ion involves an inner product; an accuracy requirement is not specified!

How.

DMPLEX_MATRIX scaling operations
'x" (LEFT : COMPLEX;
RIGHT : COMPLEX_MATRIX) return COMPLEX' MATRIX;

tion applies the standard mathematical opesation for scaling a matrix RIGHT by a complex numbe
anges of the result are those of RIGHT.

element of the result shall satisfy the“(scalar) accuracy requirement of complex multiplication.
'x" (LEFT : COMPLEX_MATRIX;
RIGHT : COMPLEX) ,return
(LEFT : COMPLEX_MATRIX;
RIGHT : COMPLEX) return

COMPLEX_MATRIX;
|/||
COMPLEX_MATRIX;

tion applics thestandard mathematical operation for scaling a matrix LEFT by a complex number
ranges of the tesult are those of LEFT. The cxception specified by Ada for signaling division by

1 division by(complex) zero is attempted.

clemént of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for ¢

applics when the elements of LEFT and RIGHT arc such that computation of an intermediate resulf

vector.
ised if

could

- LEFT.

RIGHT.
ZCro 1s

mplex

function

Nyt

(LEFT : REAL;
RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;

Each operation applies the standard mathematical operation for scaling a complex matrix RIGHT by a real munber

LEFT. The

index ranges of the result arc thosc of RIGHT.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of mixed real and complex multiplica-

tion.

function

function

26

"x" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL) return COMPLEX_MATRIX;
"/" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL) return COMPLEX_MATRIX;

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813

:1998(E)

Each operation applies the standard mathematical operation for scaling a complex matrix LEFT by a real number
RIGHT. The index ranges of the result are those of LEFT. The exception specified by Ada for signaling division by zero
is raised when division by (real) zero is attempted.

Each array clement of the result shall satisfy the (scalar) accuracy requirement of the appropriate operation for mixed
real and complex arithmetic.

16.11

Other COMPLEX MATRIX operations

functipn IDENTITY_MATRIX (ORDER : POSITIVE;

This fu
the firs

clement

FIRST_1, FIRST_2 : INTEGER := 1) return COMPLEX_MATRIX;

wction returns a square “identity matrix” with ORDER? clements and lower bounds of FIRST_1 and F
- and sccond index ranges respectively). All elements are set to (0.0,0.0) except for the main diag

FIRST_P + ORDER — 1 > INTEGER'LAST.

This fupction is exact.

17 (eneric Complex Input/Output Package

The ge

Except

onal conditions are reported by raising the appropriate, exception defined in TEXT_IO.

Five gdueric formal parameters are defined for COMPLEX 10, including the floating-point type REAL which
the prdeision of the arithmetic to be used in an insfantiation of this generic package. The other ger
paramdters are the type COMPLEX and subprograms to compose and decompose scalar complex values.

The Ada package specification for COMPLEX_I@iS given in aunex E.

procedure GET (FILE : in FILE_TYPE;

ITEM : out COMRLEX;
WIDTH : in EIELD := 0);

procedure GET (ITEM : out COMPLEX;

WIDTH : 4An_/FIELD := 0);

Each pocedure inputs/@eomplex number from the indicated source. The input sequence is a pair of optio

real lit
may b
the cor
then

a)

brals represeifting the real and imaginary components of a complex value; optionally, the pair of
separated hy a comma and/or surrounded by a pair of parentheses. Blanks are freely allowed be)
ponentdand before the parentheses and comma, if cither is used. If the value of the parameter WI

H) N e H -y . . 1 3 . ey
He—aiPpage terminators—are also allowed 1 these }'\]ar ARG

[RST_2 (for
nal, whose

s arc set to (1.0,0.0). The exception CONSTRAINT_ERROR is raised if FIRST_1 +©ORDER — 1 > INTEGER'LAST or

ieric package COMPLEX_IO defines procedures for the formatted input and output of scalar complex values.

determines
eric formal

ally signed
omponents
fore each of
DTH is zcro,

b) the components shall be separated by at least one blank or line terminator if the comma is omitted; and

¢) reading stops when the right parenthesis has been read, if the input sequence includes a left parenthesis, or

when the imaginary component has been read, otherwise.

If a no

a)

nzero value of WIDTH is supplied, then

the components shall be separated by at least one blank if the comma is omitted; and

bh) exactly WIDTH characters are read, or the characters (possibly none) up to a line terminator, whichever comes

first

(blanks are included in the count).

27

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

The value of type COMPLEX that corresponds to the input sequence is returned in the parameter ITEM.

The exception TEXT_IO.DATA_ERROR is raisced if the input sequence does not have the required syntax, or if the
components of the complex value obtained are not of type REAL. For an implementation of GET which uses invocation(s)
of GET from an instantiation of TEXT_IO.FLOAT_IO, nonstandard behavior is permitted in the presence of invalid input
sequence syntax. If nonstandard behavior is exhibited by an implementation, it shall be documented.

procedure PUT (FILE : in FILE_TYPE;
LJIRM ¢ 111 CUFIFLEA,
FORE : in FIELD := DEFAULT_FORE;
AFT in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);
procedurel PUT (ITEM : in COMPLEX;
FORE : in FIELD := DEFAULT_FORE;
AFT in FIELD := DEFAULT_AFT;
EXP in FIELD := DEFAULT_EXP);
Bach procddure outputs the value of the parameter ITEM as a pair of decimal literals representing the real and imgginary
components of the complex value, using the syntax of an aggregate. More specifically, cach procedurc
a) outputs a left parenthesis;
b) outputs the value of the real component of the parameter ITEM with the format defined by the corresponding
PUT prodedure of an instance of TEXT_I0.FLOAT_IO using the givensvalues of FORE, AFT, and EXP;
¢) outputs a comma;
d) outputs the value of the imaginary component of ¢ghe parameter ITEM with the format defined by the cor-
respondipng PUT procedure of an instance of TEXT_IO+DATA_ERROR using the given valucs of FORE, AFT, aijd EXP;
and
¢) outputs a right parenthesis.
procedure| GET (FROM : in STRING;
ITEM : out COMPLEX;
LAST : out POSITIVE);
The procedlure reads a complek-yalue from the beginning of the given string, following the same rule as the GET
procedure fhat reads a complex value from a file, but treating the end of the string as a line terminator. Thf value
of type COMPLEX that corxfsponds to the input sequence is returned in the parameter ITEM; the index value su¢h that
FROM(LAST] is the last ¢haracter read is returned in LAST.
The excepfion TEXT-IO.DATA_ERROR is raised if the input sequence does not have the required syntax, onf if the
componentt of(thic complex value obtained are not of the type REAL. For an implementation of GET whi¢h uses
invocation(ls) of GET from an instantiation of TEXT_I0.FLOAT_IO, nonstandard behavior is permitted in the presence

of invalid inpuf sequence syntax. If nonstandard hehavior is exhibited by an iinplementation, it shall be docimented.

procedure PUT (TO : out STRING;
ITEM : in COMPLEX;
AFT in FIELD := DEFAULT_AFT;
EXP in FIELD := DEFAULT_EXP);

This procedure outputs the value of the parameter ITEM to the given string as a pair of decimal literals representing
the real and imaginary components of the complex value, using the syntax of an aggregate. More specifically,

a)

a left parenthesis, the real component, and a comma are left justified in the given string, with the real component

having the format defined by the PUT procedure (for output to a file) of an instance of TEXT_I0.FLOAT_IO using a
value of zero for FORE and the given values of AFT and EXP;

28

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

b)
/

EXP.

ISO/IEC 13813:1998(E)

the imaginary component and a right parenthesis are right justified in the given string, with the imaginary
component having the format defined by the PUT procedure (for output to a file) of an instance of TEXT_I0.FLOAT_IO
using a value for FORE that completely fills the remainder of the string, together with the given values of AFT and

TEXT_IO0.LAYOUT_ERROR is raised if the given string is too short to hold the formatted output.

and in
for all
packag)
Th(‘: P4
the sai
RAYS
throug]

Names

shal

shal

by ¢

and

Each 1

generi¢

n 1 k| 1
UdITUAT U TIVITFECTICT TU PACRARTS

tion to the generic type packages, anal

aginary types and bt&lld&l d real and complex vector and matrix types. Non-generic packages'shall

nd GENERIC_COMPLEX_ARRAYS, respectively, except that the predefined (type FLOAT shall replac
out.

of the other non-generic packages (where defined) shall be assigried as follows:

if other predefined floating-point types are supported (e.g., LONG_LONG_FLOAT), package names shall
busidering the predefined types in order of'ascending (for LONG-types) or descending (for SHORT-typ
matching the prefix of cach floating-peint type with that of the corresponding package names.

package, except that the apprapriate predefined type shall replace type REAL throughout.

ogous non-generic packages are required to define standard-scglar complex

»e provided

brecisions defined in package STANDARD. The same floating-point type shall be used to generate real gnd complex

s of the same precision.
ckages COMPLEX_TYPES, REAL_ARRAYS and COMPLEX_ARRAYS shall always be providdd; these packaged shall define
ne types, constants (COMPLEX_TYPES only) and subprograms as GENERIC COMPLEX_TYPES, GENERIC _REAL_AR-

type REAL

if the predefined floating-point type SHORT_FLOAT is supported by a host implementation of Ada, thien this type
be used to generate the packages SHORT _COMPLEX_TYPES, ‘SHORT_REAL_ARRAYS and SHORT_COMPLEX_ARRAYS;

if the predefined floating-point type LONG_FLOAT isshipported by a host implementation of Ada, then this type
be used to generate the packages LONG_COMPLEX:TYPES, LONG_REAL_ARRAYS and LONG_COMPLEX_ARRAYS; and

be assigned
bs) precision

on-generic package shall define the same types, constants (if applicable) and subprograms as the corresponding

29

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

"""""""" \

tive)

ve)
Ada specification for GENERIC_COMPLEX_TYPES

with ELEMENTARY_FUNCTIONS_EXCEPTIONS;

generic

type REAL is digits <>;

package GENERIC_COMPLEX_TYPES is

-- TYPES

type COMPLEX is

record

RE,

IM : REAL;

end record;

type IMAGINARY is private;

—-— CONSTANTS --

i: consEant IMAGINARY;

j: cons|

ant IMAGINARY;

~- SUBPROGRAMS for COMPLEX TYPES --

-— COMPLEX selection, conversion and composition operations --

functioph RE (X : COMPLEX) return REAL;
functiop IM (X : COMPLEX) returnvREAL;

procedufe SET_RE (X : in out-COMPLEX;

RE : in REAL) ;

procedufe SET_IM (X :-In-out COMPLEX;

IM\<in REAL) ;

functiop "+" (LEFT ™ : REAL;

RIGHT : IMAGINARY) return COMPLEX;

functiop "-'\>¢LEFT : REAL;
RIGHT : IMAGINARY) return COMPLEX;
function "+" (LEFT : IMAGINARY;

functio

functio
functio

functio
functio
functio
functio

30

RIGHT : REAL) return COMPLEX;
n "-" (LEFT : IMAGINARY;
RIGHT : REAL) return COMPLEX;

n COMPOSE_FROM_CARTESIAN (RE : REAL) return COMPLEX;
n COMPOSE_FROM_CARTESIAN (RE, IM : REAL) return COMPLEX;

n MODULUS (X : COMPLEX) return REAL;

n "abs" (RIGHT : COMPLEX) return REAL renames MODULUS;
n ARGUMENT (X : COMPLEX) return REAL;
n ARGUMENT (X : COMPLEX;

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

CYCLE : REAL) return REAL;
function COMPOSE_FROM_POLAR (MODULUS, ARGUMENT : REAL) return
function COMPOSE_FROM_POLAR
(MODULUS, ARGUMENT, CYCLE : REAL) return COMPLEX;

-- COMPLEX arithmetic operations --

BEaTIm AAMDITY OOMDL Y

ISO/IEC 13813:1998(E)

COMPLEX;

funqrionm—+ RIGHT—COMPEEX) —Teturm—Cothres
fundtion "-" (RIGHT : COMPLEX) return COMPLEX;
fund¢tion CONJUGATE (X : COMPLEX) return COMPLEX;

fun¢tion "+" (LEFT, RIGHT : COMPLEX) return COMPLEX;
fund¢tion "-" (LEFT, RIGHT : COMPLEX) return COMPLEX;
fund¢tion "*" (LEFT, RIGHT : COMPLEX) return COMPLEX;
fun¢tion "/" (LEFT, RIGHT : COMPLEX) return COMPLEX;
fun¢tion "**" (LEFT : COMPLEX;

RIGHT : INTEGER) return COMPLEX;

-- Mixed REAL and COMPLEX arithmetic operations --

fun¢tion "+" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX;
fun¢tion "+" (LEFT : COMPLEX;

RIGHT : REAL) return COMPLEX;

fun¢tion "-" (LEFT : REAL;
RIGHT : COMPLEX) return COMPLEX;
fun¢tion "-" (LEFT : COMPLEX;

RIGHT : REAL) return COMPLEX;
fun¢tion "*" (LEFT : REAL;

RIGHT : COMPLEX) return* COMPLEX;
funftion "*" (LEFT : COMPLEX;

RIGHT : REAL) return COMPLEX;
fungtion "/" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX;
funftion "/" (LEFT : COMPLEX;

RIGHT ¢ .REAL) return COMPLEX;

-- Mixed IMAGINARY)'and COMPLEX arithmetic operations --

funftion "+"\(LEFT IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;
funftign\™+" (LEFT : COMPLEX;

RIGHT : IMAGINARY) return COMPLEX;

function "-" (LEFT : IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;
function "-" (LEFT : COMPLEX;

RIGHT : IMAGINARY) return COMPLEX;
function "*" (LEFT : IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;
function "*" (LEFT : COMPLEX;

RIGHT : IMAGINARY) return COMPLEX;
function "/" (LEFT : IMAGINARY;

RIGHT : COMPLEX) return COMPLEX;
function "/" (LEFT : COMPLEX;

RIGHT : IMAGINARY) return COMPLEX;

31

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

—-- SUBPROGRAMS for IMAGINARY TYPES --
-— IMAGINARY selection, conversion and composition operations --
function IM (X : IMAGINARY) return REAL;

procedure SET_IM (X : out IMAGINARY;
IM : in REAL);

© ISO/IEC

functiop COMPOSE_FROM_CARTESIAN (IM : IMAGINARY) return COMPLEX;
—-- IMAGINARY ordinal and arithmetic operations --

functiop "<" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
functiop "<=" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
functiop ">" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
functiop ">=" (LEFT, RIGHT : IMAGINARY) return BOOLEAN;
functiop "+" (RIGHT : IMAGINARY) return IMAGINARY;
functiop "-" (RIGHT : IMAGINARY) return IMAGINARY;
n CONJUGATE (X : IMAGINARY) return IMAGINARY renames "<%;
n "abs" (RIGHT : IMAGINARY) return REAL;

functio

functiop "

functiop "+" (LEFT, RIGHT : IMAGINARY) return IMAGINARY;
functiop "-" (LEFT, RIGHT : IMAGINARY) return IMAGINARY:
functiop "#" (LEFT, RIGHT : IMAGINARY) return REALjy
functiop "/" (LEFT, RIGHT : IMAGINARY) return REAL;

functiop "**" (LEFT : IMAGINARY;
RIGHT : INTEGER) return COMPLEX;

—-- Mixed REAL and IMAGINARY arithmetic,\operations --

functiop "*" (LEFT : REAL;

RIGHT : IMAGINARY)) return IMAGINARY;
functiop "*" (LEFT : IMAGINARY;

RIGHT : REAL).return IMAGINARY;
functiop "/" (LEFT : REAEL;

RIGHT £ \IMAGINARY) return IMAGINARY;
functiop "/" (LEFT</~ IMAGINARY;

RIGHT : REAL) return IMAGINARY;

-- EXCEPT[LONS ‘7=

ARGUMENT—ERRBR+—exception

renames ELEMENTARY_FUNCTIONS_EXCEPTIONS.ARGUMENT_ERROR;
-— IMAGINARY private definitions --
private
type IMAGINARY is new REAL;

i: constant IMAGINARY := 1.0;
j: constant IMAGINARY := 1.0;

1]

end GENERIC_COMPLEX_TYPES;

32

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

package ARRAY_EXCEPTIONS is

ARR]

end A

Y _INDEX_ERRUR:

RRAY_EXCEPTIONS;

Annex B
(normative)
Ada specification for ARRAY_EXCEPTIONS

exception,

ISO/IEC 13813:1998(E)

33

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

Annex C
(normative)
Ada specification for GENERIC_REAL_ARRAYS

with ARRAY_EXCEPTIONS;

© ISO/IEC

generic
type REAL is digits <>;

package GENERIC_REAL_ARRAYS is

-- TYPES

type REAL_VECTOR is array (INTEGER range <>) of REAL;
type REAL_MATRIX is array (INTEGER range <>,
INTEGER range <>) of REAL;

-- SUBPROGRAMS for REAL_VECTOR TYPES

-- REAL| VECTOR arithmetic operations --

functioph "+" (RIGHT : REAL_VECTOR) return REAL_VECTOR;
functiop "-" (RIGHT : REAL_VECTOR) return REAL_VECTOR;
functiop "abs" (RIGHT : REAL_VECTOR) return REAL_VECTOR;
functiop "+" (LEFT, RIGHT : REAL_VECTOR) return REAL_VECTOR;

n
functiop "-" (LEFT, RIGHT : REAL_VECTOR) return REAL_VECTOR;
functiop "*" (LEFT, RIGHT : REAL_VECTOR) ,return REAL_VECTOR;
h "/" (LEFT, RIGHT : REAL_VECTOR) return REAL_VECTOR;
h "**" (LEFT : REAL_VECTOR;
RIGHT : INTEGER) weturn REAL_VECTOR;

functio
functio

functiop "*" (LEFT, RIGHT : REAL_VECTOR) return REAL;
-~ REAL| VECTOR scaling-operations --

functiop "*" (LEFT</~ REAL;

RIGHT : REAL_VECTOR) return REAL_VECTOR;
functioph "*" (BEFT : REAL_VECTOR;

RIGHT : REAL) return REAL_VECTOR;
functiop"/™ (LEFT : REAL_VECTOR;

RIOUT RILATN DDA _VUDnOoTAD

4
F L7 A P 2 3 S 7 7 2 ¥ Sy s - AU a2 Gy $ 0 =Y o B e A R e 3y

-- Other REAL_VECTOR operations --
function UNIT_VECTOR (INDEX : INTEGER;
ORDER : POSITIVE;
FIRST : INTEGER := 1) return REAL_VECTOR;
-- SUBPROGRAMS for REAL_MATRIX TYPES --

-— REAL_MATRIX arithmetic operations --

function "+" (RIGHT : REAL_MATRIX) return REAL_MATRIX;

34

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO/IEC

function "-" (RIGHT : REAL_MATRIX) return REAL_MATRIX;
function "abs" (RIGHT : REAL_MATRIX) return REAL_MATRIX;
function TRANSPOSE (X : REAL_MATRIX) return REAL_MATRIX;
function "+" (LEFT, RIGHT : REAL_MATRIX) return REAL_MATRIX;
function "-" (LEFT, RIGHT : REAL_MATRIX) return REAL_MATRIX;
function "*" (LEFT, RIGHT : REAL_MATRIX) return REAL_MATRIX;
fundriom——(EEFF—RIGHF—REAEVECTOR—returnREAEMATREX;
fundtion "*" (LEFT : REAL_VECTOR;

RIGHT : REAL_MATRIX) return REAL_VECTOR;
fundtion "*" (LEFT : REAL_MATRIX;

-~ §

fung

fun

fung

-

fun

-- EX

ARR/J

end Gl

RIGHT : REAL_VECTOR) return REAL_VECTOR;

[EAL_MATRIX scaling operations --

ENERIC_REAL_ARRAYS;

REAL_MATRIX;

tion "*" (LEFT : REAL;

RIGHT : REAL_MATRIX) return REAL_MATRIX;
tion "*" (LEFT : REAL_MATRIX;

RIGHT : REAL) return REAL_MATRIX;
tion "/" (LEFT : REAL_MATRIX;

RIGHT : REAL) return REAL_MATRIX;
ther REAL_MATRIX operations --
tion IDENTITY_MATRIX (ORDER : POSITIVE;

FIRST_1, FIRST_2 : «INTEGER := 1) return

[EPTIONS —--
\Y_INDEX_ERROR: exception renames ARRAY_EXCEPTIONS.ARRAY_INDEX_ERROR;

35

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

Annex D
(normative)

Ada specification for GENERIC_COMPLEX_ARRAYS

with ARRAY_EXCEPTIONS, ELEMENTARY_FUNCTIONS_EXCEPTIONS;

© ISO/IEC

generic

type RH
type RH
type RH

AL is digits <>;
AL_VECTOR is array (INTEGER range <>) of REAL;
AL_MATRIX is array (INTEGER range <>,

INTEGER range <>) of REAL;

type COMPLEX is private;

with f4
with fy
with p1

with p1

with fu
(RE

with £y
with £y
with £y

with fy
(Mog
with fy
(MOg

with £y
with fy

with fy
with £y
with £y
with £y
with fy

Inction RE (X : COMPLEX) return REAL is <>;
Inction IM (X : COMPLEX) return REAL is <>;
ocedure SET_RE (X : in out COMPLEX;

RE : in REAL) is <>;
ocedure SET_IM (X : in out COMPLEX;

IM : in REAL) is <>;

Inction COMPOSE_FROM_CARTESIAN
IM : REAL) return COMPLEX is <>;

Inction MODULUS (X : COMPLEX) return REAL-is <>;
nction ARGUMENT (X : COMPLEX) return REAL is <>;
Inction ARGUMENT (X : COMPLEX;

CYCLE : REAL) return REAL is <>;
nction COMPOSE_FROM_POLAR
ULUS, ARGUMENT : REAL) return COMPLEX is <>;
Inction COMPOSE_FROM_POLAR
ULUS, ARGUMENT, CYCLE :-REAL) return COMPLEX is <>;

nction "-" (RIGHT ;~COMPLEX) return COMPLEX is <>;
nction CONJUGATE (CX~: COMPLEX) return COMPLEX is <>;

nction "+" (LEFT, RIGHT : COMPLEX) return COMPLEX is <>;
Inction "-%_(LEFT, RIGHT : COMPLEX) return COMPLEX is <>;
Inction Y*!% (LEFT, RIGHT : COMPLEX) return COMPLEX is <>;
Inctiofv™/" (LEFT, RIGHT : COMPLEX) return COMPLEX is <>;
Inction "**" (LEFT : COMPLEX;

RIGHT : INTEGER) return COMPLEX is <>;

with function "+" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX is <>;

with function "-" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX is <>;

with function "*" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX is <>;

with function "/" (LEFT : REAL;

RIGHT : COMPLEX) return COMPLEX is <>;

with function "/" (LEFT : COMPLEX;

RIGHT : REAL) return COMPLEX is <>;

package GENERIC_COMPLEX_ARRAYS is

36

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© IS

0/IEC ISO/IEC

-- TYPES --

typ
typ

e COMPLEX_VECTOR is array (INTEGER range <>) of COMPLEX;
e COMPLEX_MATRIX is array (INTEGER range <>,
INTEGER range <>) of COMPLEX;

-- SUBPROGRAMS for COMPLEX_VECTOR types --

fun
fun

pro

pro

13813:1998(E)

COMPLEX_VECTOR selection, conversion and composition operations --

Ftion RE (X : COMPLEX_VECTOR) return REAL_VECTOR;
Ftion IM (X : COMPLEX_VECTOR) return REAL_VECTOR;

Fedure SET_RE (X : in out COMPLEX_VECTOR;
RE : in REAL_VECTOR) ;

redure SET_IM (X : in out COMPLEX_VECTOR;
IM : in REAL_VECTOR) ;

funftion COMPOSE_FROM_CARTESIAN

fun

RE : REAL_VECTOR) return COMPLEX_VECTOR;
ction COMPOSE_FROM_CARTESIAN
RE, IM : REAL_VECTOR) return COMPLEX_VECTOR;

funktion MODULUS (X : COMPLEX_VECTOR) return REAL.VECTOR;

funfktion

fun|
fun|

abs" (RIGHT : COMPLEX_VECTOR) return<REAL_VECTOR
renames MODULUS;

tion ARGUMENT (X : COMPLEX_VECTOR) return REAL_VECTOR;
ction ARGUMENT (X : COMPLEX_VECTOR;

CYCLE : REAL) return REAL_VECTOR;

funktion COMPOSE_FROM_POLAR

(MODULUS, ARGUMENT : REAL_VECTOR) return COMPLEX_VECTOR;

funkction COMPOSE_FROM_POLAR

(MODULUS, ARGUMENT : REAL_VECTOR;
CYCLE - REAL) return COMPLEX_VECTOR;

COMPLEX_VECTOR carithmetic operations --

funktion "+" (RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
funktion "-*~(RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
funktion €ONJUGATE (X : COMPLEX_VECTOR) return COMPLEX_VECTOR;

fun|

ction "+" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

function =" (LEFT, RIGHT T COMPLEX_VECTOR) Teturm COMPEEX—VECTOR:
function "*" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
function "/" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
function "*x" (LEFT : COMPLEX_VECTOR;

RIGHT : INTEGER) return COMPLEX_VECTOR;

function "x" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX;

Mixed REAL_VECTOR and COMPLEX_VECTOR arithmetic operations --

function "+" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

function "+" (LEFT : COMPLEX_VECTOR;

37

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

function "-" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

function "-" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

function "x" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

function "x" (LEFT : COMPLEX_VECTOR;

functio

functio

functio

functio

-- COMP

functio

functio

functio

functio

functiol

functios;

-- Othe

functiol

-- SUBPRO

-- COMP

© ISO/IEC

RIGHT : REAL_VECTUR) return CUMPLEX_VECTUR;

h "/" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
h "/" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_VECTOR;

h "+" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX;
h "x" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX;

LEX_VECTOR scaling operations --

n "x" (LEFT : COMPLEX;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
h "x" (LEFT : COMPLEX_VECTOR;

RIGHT : COMPLEX) return COMPLEX_VECTOR;

n "/" (LEFT : COMPLEX_VECTOR;

RIGHT : COMPLEX) return COMPLEX_VECTOR;

ph "*" (LEFT : REAL;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;
h "x" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL) return COMPLEX_VECTOR;

n "/" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL) return' COMPLEX_VECTOR;

r COMPLEX_VECTOR operations --

1 UNIT_VECTOR (INDEX : INTEGER;

ORDER : POSITIVE;

FIRST : INTEGER := 1) return COMPLEX_VECTOR;

LRAMS for COMPLEX_MATRIX TYPES --

LEXOMATRIX selection, conversion and composition operations --

function RE (X : COMPLEX_MATRIX) return REAL_MATRIX;
function IM (X : COMPLEX_MATRIX) return REAL_MATRIX;

procedure SET_RE (X : in out COMPLEX_MATRIX;

RE : in REAL_MATRIX);

procedure SET_IM (X : in out COMPLEX_MATRIX;

IM : in REAL_MATRIX) ;

function COMPOSE_FROM_CARTESIAN

(RE :

REAL_MATRIX) return COMPLEX_MATRIX;

function COMPOSE_FROM_CARTESIAN

38

(RE,

IM : REAL_MATRIX) return COMPLEX_MATRIX;

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

function
function

MODULUS (X : COMPLEX_MATRIX) return REAL_MATRIX;
"abs" (RIGHT : COMPLEX_MATRIX) return REAL_MATRIX

renames MODULUS;

function
function

ARGUMENT (X : COMPLEX_MATRIX) return REAL,MATRIX;
ARGUMENT (X : COMPLEX_MATRIX;
CYCLE : REAL) return REAL_MATRIX;

ISO/IEC 13813:1998(E)

fundgtion

fungtion

COMPOSE_FROM_POLAR

MODULUS, ARGUMENT : REAL_MATRIX) return COMPLEX_MATRIX;

COMPOSE_FROM_POLAR

MODULUS, ARGUMENT : REAL_MATRIX;
CYCLE

: REAL) return COMPLEX_MATRIX;

-- (JOMPLEX_MATRIX arithmetic operations --

fundtion
fundtion
fundtion
fundtion
fundqtion
fundtion

fundtion

fundtion
fundtion

fundtion

-- Mixed

fungtion

fundtion

fund¢tion

fun¢tion

fun¢tioh

"+" (RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
"-" (RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
CONJUGATE (X : COMPLEX_MATRIX) return COMPLEX_MATRIXS
TRANSPOSE (X : COMPLEX_MATRIX) return COMPLEX_MATRIX;

"+" (LEFT, RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
n—n (LEFT, RIGHT : COMPLEX_MATRIX) return(COMPLEX_MATRIX;
"x" (LEFT, RIGHT : COMPLEX_MATRIX) returm, COMPLEX_MATRIX;

"x" (LEFT, RIGHT : COMPLEX_VECTOR) return COMPLEX_MATRIX;
"x" (LEFT : COMPLEX_VECTOR;

RIGHT : COMPLEX_MATRIX) return COMPLEX_VECTOR;
"x" (LEFT : COMPLEX_MATRIX;

RIGHT : COMPLEX_VECTOR), return COMPLEX_VECTOR;

REAL_MATRIX and COMPLEX_MATRIX arithmetic operations --

"+" (LEFT : REAE_MATRIX;

RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
"+" (LEFT ¢.COMPLEX_MATRIX;

RIGHT . "REAL_MATRIX) return COMPLEX_MATRIX;
"-" (LEET) : REAL_MATRIX;

RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
"-»(LEFT : COMPLEX_MATRIX;

RIGHT : REAL_MATRIX) return COMPLEX_MATRIX;
%" (LEFT : REAL_MATRIX;

RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;

function

function

function

function

function

function

T (LEFT : CUMPLEX_MATRIX;
RIGHT : REAL_MATRIX) return COMPLEX_MATRIX;

"x" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_VECTOR) return COMPLEX_MATRIX;
"x" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_VECTOR) return COMPLEX_MATRIX;
"x" (LEFT : REAL_VECTOR;

RIGHT : COMPLEX_MATRIX) return COMPLEX_VECTOR;
"x" (LEFT : COMPLEX_VECTOR;

RIGHT : REAL_MATRIX) return COMPLEX_VECTOR;
"x" (LEFT : REAL_MATRIX;

RIGHT : COMPLEX_VECTOR) return COMPLEX_VECTOR;

39

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

function "x"

(LEFT

RIGHT :

: COMPLEX_MATRIX;

REAL_VECTOR) return COMPLEX_VECTOR;

—-- COMPLEX_MATRIX scaling operations --

© ISO/IEC

function "*" (LEFT : COMPLEX;

RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
function "x" (LEFT : COMPLEX_MATRIX;

RIGHF—€COMPEE—Treturm COMPEEXMATREX
functidn "/" (LEFT : COMPLEX_MATRIX;

RIGHT : COMPLEX) return COMPLEX_MATRIX;
functidqn "*" (LEFT : REAL;

RIGHT : COMPLEX_MATRIX) return COMPLEX_MATRIX;
functiqn "*" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL) return COMPLEX_MATRIX;
functiqn "/" (LEFT : COMPLEX_MATRIX;

RIGHT : REAL) return COMPLEX_MATRIX;
-— 0Othgqr COMPLEX_MATRIX operations --

functid

-- EXCEPT

ARGUMEN

ARRAY_]

end GENEH

n IDENTITY_MATRIX (ORDER : POSITIVE;

IONS --

FIRST_1, FIRST_2 : INTEGER := 1)“return COMPLEX_MATRIX;

T_ERROR: exception
renames ELEMENTARY_FUNCTIONS_EXCEPTIONS.ARGUMENT_ERROR;
NDEX_ERROR: exception renames ARRAY_EXCEPTIONS.ARRAY_INDEX_ERROR;

IC_COMPLEX_ARRAYS;

40

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

Annex E
(normative)
Ada specification for COMPLEX_IO

with TEXT_IO; use TEXT_IO;

gener

typ

type

wit
wit
wit

packa,

DEF
DEF
DEF
pro

pro

pro

pro

pro

pro

ISO/IEC 13813:1998(E)

| C
e REAL is digits <>;
COMPLEX is private;

function RE (X : COMPLEX) return REAL is <>;

h function IM (X : COMPLEX) return REAL is <>;
h function COMPOSE_FROM_CARTESIAN(RE, IM : REAL) return COMPLEX \is” <>;
re COMPLEX_IO is
AULT_FORE : FIELD := 2;
AULT_AFT : FIELD := REAL'DIGITS - 1;
AULT_EXP : FIELD := 3;
redure GET (FILE : in FILE_TYPE;
ITEM : out COMPLEX;
WIDTH : in FIELD := 0);
redure GET (ITEM : out COMPLEX;
WIDTH : in FIELD := 0);
redure PUT (FILE : in FILE_TYPE;
ITEM : in COMPLEXS
FORE : in FIELD := DEFAULT_FORE;
AFT in FIELD := DEFAULT_AFT;
EXP : in(FIELD := DEFAULT_EXP);
redure PUT (ITEM : 4n COMPLEX;
FORE. G~in FIELD := DEFAULT_FORE;
AFT in FIELD := DEFAULT_AFT;
EXP in FIELD := DEFAULT_EXP);
redure GET)'(FROM : in STRING;
ITEM : out COMPLEX;
LAST : out POSITIVE);
cedure PUT (TO : out STRING;
ITEM : in COMPLEX;
AFT in FIELD := DEFAULT_AFT;
EXP in FIELD := DEFAULT_EXP);

end COMPLEX_IO;

41

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

Annex F
(informative)
Rationale

F.1 Abstract

This annex] a revision of [6], outlines the history, purpose, features and development of International StandardIS(0/IEC
13813 and provides a rationale for its features. Based on recommendations made jointly by the Ada-EurepéNymerics
Working Gpoup and the ACM SIGAda Numerics Working Group, the real and complex types and operations sthndard
is the third|of four ISO standards to address the interrelated issues of portability, efficiency and robustnéss of nunerical
software wtitten in ISO/TEC 8652:1987. Its purpose, features and development are outlined in #i9 commentaty.

F.2 Introduction

The absenfe from ISO/IEC 8652:1987 of predefined types and operations for corfiplex arithmetic and for r¢al and
complex vdctor and matrix arithmetic has been one of the deterrents to the potability of scientific and engipeering
applications software written in that language. Whilst particular vendors have/provided proprictary packaggs, this
has done little to solve the broader problem of portability for applications packages using these operations. [This is
because of|the lack of commonality among different packages: they diffed i the munber of operations implerfiented,
their namds and paramecter type profiles, the handling of exceptionali¢onditions, the precision of the types gud the
accuracy of the operations, and even the use (or avoidance) of genericity.

Internatiorjal Standard ISO/TEC 13813 defines a collection of generic packages: namely, one package for complex and
imaginary fypes and operations; another package for real veétor and matrix types and operations; a third paclage for
complex vdctor and matrix types and operations, includiddg mixed real and complex operations; and a fourth gackage
for the inpfit and output of complex scalar values. (The reasons for adopting this formn of packaging arc discifssed in
clause F.14.)

F.3 What basic operations are included?

In this clapise we discuss the types afid-Operations that are included in the packages as a whole the subdivision of
the faciliti¢gs into separate packages, is discussed later in this annex. Floating-point types and their basic opdrations
arc defined by ISO/IEC 8652:1987, but types and operations involving vectors and matrices are not; for cpmplex
arithmetic not even the cofuplex types and their basic operations are defined by ISO/IEC 8652:1987. Rdal and
complex affithmetic haveanaity features in common; where possible this commonality has been retained. Also, feertain
extensions jhave been included for complex arithmetic, c.g. conjugation.

There are [the us@al mathematical operations for vector and matrix arithmetic; for example, for vectors X| Y the
operation X +A 1§ defined, and for X x Y two operations are defined the scalar product of X and Y returning 4 scalar
result and fhe)matrix product of X and Y returning a matrix result. Additionally, applications, particularly i1} signal
processing, use componentwise products; hence there 1s a third componentwise product of X and Y returning a vector

result (this is defined by applying the multiplication operation to matching components of X and Y).

This International Standard provides both the usual mathematical operations for vectors and matrices as well as the
componentwise operations for vectors (in some cases they arce one and the same, c.g. X + Y). Heunce, the operations
+, =, %/, **x arc provided as appropriate for vectors and matrices; additionally, operations for scaling vectors and
matrices are provided (c.g. XY for a vector X and a scalar Y). Both left-hand and right-hand operations are provided
where necessary, thus X « Y and Y * X arc both provided.

Operator notation is used throughout for clarity and case of use. This has the consequence that procedured forms are
not used and the optimizers of compilation systems may sometimes be relied upon to avoid nnnecessary intermediate
copying of array results (c.g. (X +Y) = X; the intermediate result X + Y is caleulated, but it is assumed that the
implementation will not copy the vector result, where it is inefficient to do so, before calenlating (X + Y) « X). This

42

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

Vs Tere
Cnoiee o

1
involving array sections which are common in the Basic Linear Algebra Subprograms (BLAS) are not part of this
standard; such operations would require additional parameters to define the array section (c.g. the row number and/or

also has the consequence that only sfraiu'hf orward operations can be included; operations

otation as e 3¢ C I
<« ‘\'*)

its bounds).
The choice of basic operations for > C to
types, and in the complex and imaginary case, to inc ludv only limited oxtonslons (e.g. CONJUGATE) Op()ratlons such

as MIN, MAX. SIGN were cousidered, but were rejected for this standard since it was felt that they could be more
approy Liat\lv llluv;\l\ \1 hl;,,‘v‘\r’}L sEa—OF i:l f‘un- A 'T’l\ig- :-]nninn hao tho added Q:]‘mnfan-n of L'nnninn‘ ho I'Cal an(l

asc to those
te) Ul

Caic

2

complgx operations as similar as possible since MIN, MAX and SIGN are inappropriate for complex valuesy| This design
philos¢pphy is also partly responsible for the inclusion of certain operations, such as GET and PUT(fo¥'tle input and
outpuf of complex scalars, respectively.

Severdl operations have been provided for the selection, composition and construction of coniplex values fiom floating-
point falues. The COMPLEX type in GENERIC_COMPLEX_TYPES can be manipulated diréetly since it is jnot private;
howevpr, the RE, IM, SET_RE and SET_IM operations are required for use as generic agfual parameters anc have useful

10 RE,

vectorfand matrix fonm The traditional composition method from cartesian and poldrcoordinates is provided by COM-
POSE_FROM_CARTESIAN and COMPOUSE_FROM_POLAR, respectively, and these proce(ires have vector and mgirix analogs
as well. However, a more natural and abstract method is provided for compléxscalars through the use df mixed real
and infaginary arithmetic operations with the imaginary constant i (or equivalently j). For example, the ponstruction
of a cpmplex number can be accomplished with the mixed real and ifiaginary operations * and + (i.c], one would
write K+ i *Y). An optimized implementation need not perform real@rithmetic during this composition process since
all tht is required is the conversion of Y to the type IMAGINARY and construction of the complex scalar {X,Y). Thus,
applichtion code involving complex scalars can be written in a coneise, readable way, without sacrificing efficiency and

perforfnance.

The abstraction of expressing complex numbers in mathetnatical terms requires certain pure imaginary, mixed real and
imagifary and mixed real and complex operations tode defined. A full set of pure imaginary arithmetic operations
arc prpvided, both unary and binary, including intéger exponentiation. Ordinal arithmetic operations oy the private
type IMAGINARY arc also required for completehess. The analog of the REAL sclection and composition operations
arc prpvided for IMAGINARY types; SET_IM. iy defined as a procedure to be consistent with the COMPLEX pperation of
the saie name. Both left-hand and rightitand COMPLEX composition operations are provided, i.e., mixed real and
imagigary + and -, but note there is no Tixed real and imaginary COMPOSE_FROM_CARTESIAN function{ The other
mixed| real and imaginary arithmetie-Operations (* and /) are also provided, as well as the set of mixed infaginary and
complpx arithmetic operations. Vector and matrix forms of the imaginary operations are not provided.

For rdasons of efficiency, it is/often desirable not to use full complex arithmetic when only one of the|operands is
complpx, but instead, yst.operations on the components (which are real). “Mixed arithmetic” is prov ded for this
purpofe. For example;for' a complex value X and a real value Y, then X * Y need only involve two real mipltiplications
rather than the foutAhat would be required for the product of two complex operands.

Operdtions thatvprovide combinations of more primitive operations could also have been included. (onsider, for
exampple, glig~scalar product #; in the complex case the clements of one of the vectors are sometimes conjugated.
Hened, &+ and a combined operation X * CONJUGATE(Y) could both have been provided; since the pypes of the
(o et ettt e e o -be-dound o one ol operat tons
Analogous combined operations occur for TRANSPOSE, and also for both conjugation and transposition (Hermitian
transposition in the complex case). Inclusion of all combined operations would have had a dramatic effect on the size
of the packages, hence only the primitive operations are provided, and it is left to the user to combine them in an
appropriatc way.

F.4 Selecting an array index subtype

The choice of INTEGER for the array index subtype in GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS is con-
sistent with established norms in the application arcas for which these packages are intended. This is not to say that
other possible choices were not considered. The type LONG_INTEGER was considered but rejected since it would require
significantly more overhead than INTEGER and the latter was deemed to have sufficient range for all but pathological

43

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

applications. Defining a generic formal parameter INDEX_TYPE to allow GENERIC_REAL_ARRAYS and GENERIC_COM-
PLEX_ARRAYS to be instantiated with any discrete type was also discussed. This would have allowed creation of arrays
with enumeration type values for indices, for example. This idea was ruled out for several reasons:

Each discrete type supported by an implementation of these packages would require non-generic packages
corresponding to GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS to be provided for all of the floating-point
precisions defined in package STANDARD. This would have a dramatic, multiplicative effect on the number of packages
defined by this International Standard.

Array packages involving an enumeration index subtype would require attributes such as PREDcatid SUCC to
be used ps part of an implementation, perhaps limiting their efficiency. Note that GENERIC_COMPLEX. ARRAYS and
GENERIC| REAL_ARRAYS do not require the array operands in dyadic operations to have identical ranges; hencg, some
form of index offsetting may be required to form the result of an operation.

The| packages defined in this International Standard are intended for general ugeland cxtensions sudh as a
generalided index type were deemed to be more appropriate for a set of related packages

F.5 Thg use of overloadings versus default values

Close scrufiny of this International Standard will show a subtle overloading of one of the conversion functionk: COM-
POSE_FROM_CARTESIAN is provided to compose the real and imaginary parts (given as real values) into the cpmplex
representafion. It is overloaded with the additional form:

function COMPOSE_FROM_CARTESIAN (RE : REAL) return COMPLEX;
rather thap defining a single function with a default for the real imaginary part:

funcition COMPOSE_FROM_CARTESIAN (RE.tUREAL;
IM": REAL := 0.0) return COMPLEX;

(There is another form of the COMPOSEZFROM_CARTESIAN function, namely,
function COMPOSE_FROM_CARTESIAN (IM : IMAGINARY) return COMPLEX;
but it is nqt relevant to this\discussion.)

The reasornf is that tlre,$eparate one-parameter form is also needed as the complex equivalent of

funcltiofi '+" (X : REAL) return REAL;

Such functions are used as generic actual parameters whenever a genceric formal parameter of the form
function CONVERT (X : REAL) return SCALAR_TYPE;
is required to convert from real to a genceral scalar type (real or complex).

Overloadings of the ARGUMENT and COMPOSE_FROM_POLAR functions arc provided to allow for arbitrary angular unit
values, e.g.,

function COMPOSE_FROM_POLAR (MODULUS, ARGUMENT : REAL) return COMPLEX;
function COMPOSE_FROM_POLAR
(MODULUS, ARGUMENT, CYCLE : REAL) return COMPLEX;

44

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

R S EEr e 7

B : . s e 1 VS USSR IR LU PR RpRp U P
where the two-parameter 10rm i1as ulc usuail radlialil alngular meceasure. The pumm y 1¢asoli to utilize uvvx}umhug instead

of a single function with a default value is quite different than that for COMPOSE_FROM_CARTESIAN and has to do with
the transcendental nature of 2. Since 27 cannot be exactly represented, in terms of accuracy, the most one could
expect from an implementation is s the use of an internal representation of 21 of hwh precision (norhans better precision
than provided by the generic parameter type REAL), which ignores user-specified values for CYCLE in a small, arbitrary
interval about 2. The additional overhead involved in the interval comparison and its arbitrary nature make this

approach somewhat unattractive.

The 18 ; T ; g itted, since
ampllf(ahon of errors in the (ompn‘rod result is nnavoulablo for large valuos of ARGUMENT, hence the relaxation of
for such values exc r\r\(hno an inln]_r‘xnentat ion- r]r\n(gy_jenf threshold. This, écror ammhﬁ(ation
stems from tho nablhfy, when reducing ARGUMENT to its principal value, to produce the exact-remaindgr of a cycle
whose |length cannot be precisely determined (see the rationale in ISO/IEC 11430 for a more “detailed |discussion).
Choosfng an overloading scheme for the ARGUMENT and COMPOSE_FROM_POLAR functionsimicely hides the accuracy
considprations for 27 from the user, thereby makmg it the Ic'sponsllnhty of implementors'of GENERIC_COMPLEX_TYPES

onagictoney with COMPOSE E‘DF\M CARTES[AN an 1d the

or nrofla
Cr Profuc COIsisieiily witil Lu {_CARTES[AN and the

{ac 5 1. ac v " .
(as it ghould be). It has the added benefit of paramcte

trigongmetric functions defined in both ISO/IEC 11430 and ISO/IEC 13814. This\last benefit is signifidant because
the trigonometric functions in ISO/IEC 11430 can be used to implement COMPOSE) FROM_POLAR.

F.6 [Should constants be included?

Early [drafts of this Intcrnational Standard specifically excluded constants, although complex zero, cpmplex one,
complgx i (the square root of -1), and empty vectors and matriees were considered for inclusion. To jnclude such
vectory (and matrices) as constants involves constructs of the form:

NULL_VECTOR : constant REAL_VECTOR (1..0).%= (others => 0.0);

Such ¢onstructs were considered to be rather unustal, and a sufficiently strong case could not be found for their
inclusjon. (The choice of bounds 1..0 was in_any casc arbitrary and other choices were possible). Further, problems
with nfaming constants for different precisiong arose: should SHORT_COMPLEX_ZERO, COMPLEX_ZERO, LONG_GOMPLEX_ZE-
RO, ct(., be provided with different names(ndifferent packages (and in a generic package, what name should|be chosen)?
Altertfatively, functions returning a complex zero, with overloadings for the different precisions, were| considered.
The i:litial conclusion was that thédiiclusion of such constants did not add to the functionality of the packages,
and tlat they could be provided by appropriate aggregates (e.g. (0.0,0.0)) or by calls to the compositipn functions
(c.g. COMPOSE_FROM_CARTESIAN (0.0)). Indeed, the COMPLEX type is a visible, rather than a private, typg specifically
to alldw the writing of su¢h-attributes (see also clause F.9). The marginal increase in convenicnce to the user was
considered insufficient for-tiic inclusion of an arbitrary number of constants.

The sfandardizationdprocess for ISO/IEC 8652:1995 and the concurrent wider attention given to Ada numerics sig-
nificarltly alteredithe landscape of this International Standard. One of the conclusions made during thip revision of
the Adla languap? was the importance of the standardized support for the expression of complex scalars fin the usual
mathdmatical way, i.c., as X + i * Y rather than (X,Y), where X and Y arc of type REAL. As a result, th¢ IMAGINARY
type and-the constant i (and oqmval(‘n‘rlv J) were inc ludod in ISO/IE(} 8652:1995, and the ACM QIG la Numerics
Working GT 7 T . stants i and j
of type IMAGINARY are dchn(‘(l in GENERIC COMPLEX TYPES an(l shall similarly be d(‘fm(‘(l in th(‘ standal(l non-generic
packages, c.g., COMPLEX_TYPES. These are the only constants defined in this International Standard.

F.7 Why define a type IMAGINARY?

One of the main goals for an object-based language such as ISO/IEC 8652:1987 is to provide facilitics for the repre-
sentation and manipulation of objects which is as natural and consistent as possible with real-world constructs. This
was the primary technical motivation to standardize facilities for expressing a complex number as a mathematical
object represented by X 4+ 1 % Y (or equivalently X + j * Y) in this International Standard (although facilities for the
two-component record notation (X,Y) arc also provided). Use of a more abstract notation for a complex number (or
any object) serves to distinguish it from its underlying storage representation.

45

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

Requisite to this abstract notation is the definition of a constant i to represent the imaginary unit value. However,
there are subtle difficulties with the obvious approach of defining i to be a constant of type COMPLEX (with an imaginary
component of unit value). Constructing X + i * Y would involve two mixed real and complex operations which consist
only of degenerate component, operations. The suppression of promoting REAL values to COMPLEX values (as prescribed
by this International Standard) ameliorates the situation by reducing the number of component operations; however,
the systematic avoidance of degenerate operations is still a primary concern to ensure efficiency. Implementations must
take algorithmic measures, such as argument prescreening, or rely upon an optimizing compiler to produce cfficient
code.

For implenjentations which are compatible with IEEE arithmetic, there is the additional concern of corruptéd|results
when infinfte or signed zero components are encountered. For example, using the standard formula*for cpmplex
multiplicatfon, the product (2.0xi)*(co*1) yields NaN+oo*i (where “NaN” is not “Not-a-Number”) sin¢e 0.0xod = NaN
and = + NaN = NaN for any real number z. Argument prescrecning can be applied to obtain the true result ¢f —oo,
but at the|cost of additional overhead. An example of corrupted results with signed zero comfiponients occurp when
calculatingfthe sum (2.0 % i) + (—=0.0 + 2.0 % i); the true result has a real component of —(.0 but applying thp usnal
complex addition algorithm yields a zero of positive sign.

The inclusjon of a type IMAGINARY provides a solution to the difficulties noted apove! It permits the definftion of
distinct miked complex and imaginary operations which remove the extrancous zego'real component from considdration,
thereby aviding the possibility of corrupted results. Defining a set of mixed reabyand imaginary operations malkes the
constructign of the canonical form of a complex number trivial —the mixedSeal and (unit) imaginary multiplication
is simply al type conversion and the mixed real and hmaginary additionredaces to setting the cartesian compponents
of the complex result. It is clearly possible for the real component of acomplex number to vanish, resulting in an

unconverterd number of type COMPLEX which lies on the imaginary axigs SThis is consistent with the relationship Hetween
other typed, c.g., complex numbers which lic on the real axis and @eal numbers which do not have a fractionall part.

GENERIC_CPMPLEX_TYPES defines a full set of pure imaginarydoperations (a separate package for type IMAGINARY is
unwarrantdd since it primarily supports the writing of CAMPLEX cxpressions), including ordinal operators ("<"|, "<=",
n>n o m>=1) which are not predefined since type IMAGINARY is private. The intent is to mirror the treatment|of real
numbers a$ much as possible; however, there is vagiation in the result type of operations since the set of iimgginary
numbers d¢ not form an algebraic field (the set of finaginary munbers is not closed under multiplication). For ejample,

function "*" (LEFT, RIGHT : IMAGINARY) return REAL;
has the respilt type one would mathematically expect, as does

funckion "abs" (RIGHT(:~IMAGINARY) return REAL;
Defining a1} "abs" functiof with a result type of IMAGINARY, analogous to its definition along the real axis, wolld lead

to anomaldus results of the type
1.0+ abs(1.0xi) = 1.0 + 1.0 * i,

1.0+ abs(0.04+1.0%x1) =2.04+0.0x 1

which illusjrate the need to maintain counsistency between the results of mathematically identical complex and] imagi-
nary operations.

The type IMAGINARY is private, with its full type declaration revealing it as derived from type REAL, for at least two
reasons:

The result type of the imaginary multiplication and division operations is REAL; defining IMAGINARY to be
private suppresses the derivation of these operations with an incorrect (IMAGINARY) result type.

Implicit conversion of real literal values to type IMAGINARY is suppressed, which allows overload resolution to
work correctly by avoiding various ambiguous expressions.

The difficulties noted above could be overcome by defining IMAGINARY as a one-compounent, visible record type and
indeed proposals made carly in the standardization process for ISO/IEC 8652:1995 included such a definition with a

46

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC ISO/IEC 13813:1998(E)

component named VALUE (IM was ruled out because it could be confused with the COMPLEX component of the same
name). However, this definition makes it somewhat awkward to represent and access imaginary values; positional
aggregates would be decidedly non-intuitive and named aggregates would scem redundant.

Ounce a type IMAGINARY is defined, it might appear natural to alter the COMPLEX type definition so that its IM component

is of type IMAGINARY. If this design change was implemented, the canonical aggregate representation of a complex

number would no longer be available; for example, one would write (1.0, 1.0 * i) instead of (1.0,1.0). This would

adversely affect current applications and data sets which rely upon this canonical form, perhaps hampering the
todor]

v £l Toot £ 1.Q
a(,(,(‘,pt?nu,\, o TSt AT IO AT O vi et

F.8 [The use of operator notation versus function notation

Becausd of the convenience to the user of operator notation, this has been chosen whenever posgible rather than the use
of funcfion notation. In particular, overloading of the same operator token has been used extensively for related vector
and m4trix operations but such overloading can require the use of type qualification (o, resolve possible pmbiguities
when sfich operators are used in combination.

For exdmple, consider vectors X and Y and a matrix A, then the expression (&%Y) * A is ambiguous. Tlhe relevant
operatipns are

a) [function "*" (LEFT, RIGHT : REAL_VECTOR) return REAL{

b) |[function "*" (LEFT, RIGHT : REAL_VECTOR) return REAL_MATRIX;

c) |function "x" (LEFT : REAL; RIGHT : REAL_MATRIX) return REAL_MATRIX;
d) lfunction "*" (LEFT, RIGHT : REAL_MATRIX) return“REAL_MATRIX;

with the formal paramcters LEFT, RIGHT replaced by thevactual scalars, vectors and matrices in the pppropriate
way. Qoth a and ¢ or b and d can be combined, andggualification is required to resolve this ambiguity] i.e., either
REAL' (K+Y)*A or REAL_MATRIX' (X*Y)*A can be specificd. Such qualification can be avoided if, rather than pverloading
"x" g0 lcomprehensively, function notation with distinct names were used instead:

a1)| function INNER_PRODUCT (X, Y~ REAL_VECTOR) return REAL;
b1)| function OUTER_PRODUCT (X, .Y REAL_VECTOR) return REAL_MATRIX;

The exfpressions then become INNERYPRODUCT (X * Y) x A or OUTER_PRODUCT (X *Y) * A. No qualification is nceded to
distinghish the two expressions (the distinet function names are sufficient. Thus qualification can be avolded, but at
the expense of function notation.

In maily cascs, the operatér notation is the most convenient - only when ambiguity arises is it necessary to qualify
intermbdiate results2and in such cases there is little difference in convenience between the two forms. Overall,
therefdre, operator\notation was chosen as the most convenient.

F.9 |Complex arithmetic

These packages are intended to define portable, accurate and robust implementations of complex arithmetic. The
inclusion of accuracy requirements (discussed in clause F.10) not only controls the accuracy of the operations +, -, *,
/ and ** for complex types, but also imposes an implicit requirement to avoid intermediate overflow in the calculation
of component parts when the final complex result does not itself overflow (in its components). Hence the simple
implementation of 21 /29, where 27 = 1 + iy and 23 = 22 + 1y, by the formula

21/20 = (11 +iy1) (w2 — i)/ (12 + y2?)

is not sufficiently robust since 722 or 22 could overflow prematurely, although the accuracy requirements would impose
a result within certain bounds of the true mathematical result.

The performance and accuracy of complex arithmetic is fundamentally dependent on the form of representation of
the complex value, i.c., whether a cartesian or polar representation is chosen. The algorithms for complex arithmetic

47

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E) © ISO/IEC

in polar form are very different from their cartesian counterparts, and often involve the use of elementary mathe-
matical functions, which can, at best, only approximate the result in finite arithmetic. This International Standard
requires that a cartesian representation be used throughout, in order that reasonable accuracy requirements can be
given. Functionality for conversion to and from polar form is included by the functions ARGUMENT, MODULUS and COM-
POSE_FROM_POLAR, but the internal form of the complex value is required to be cartesian as is the form of algorithms
implementing the complex operations +, =, *, / and *x*.

Having chosen a cartesian representation for the complex types, it is no longer necessary to define such types as private
(which might be the case if both cartesian and polar forms were allowed). By explicitly defining complex,types as
records (with real and imaginary components), a user is able to initialize complex types (particularly arrdys) dlirectly
using aggre¢gates (although complex types imported to generic packages will still require the use of thie eomposition
functions).| The visible record structure also prevents additional components from being added to tHéyrepreserftation.

F.10 Afcuracy requirements

A number fof ways can be devised for measuring the error in a computed complex valué,NFor a true result ¢ =|a + i3
and a calcfilated result z = x + iy, three bounds on the error were considered:

— the/relative error in a component
|or — x| < nela

13—yl < pelf

the box error in a component
| — | < e max(fel, |3])

18—y < memax(|al,|3])

the [circular error in a component
la — x| < celC]

13—yl < ce|(]

where n, p| n and ¢ are small, € is the(ijachine precision, and the appropriate component(s) «, (3 are nonzerd.

The use off relative error measurds is uniform with other standards. Where possible, the tight bound on the telative
error is degirable, but for some opcerations cancellation may occur (e.g. complex multiplication) and the boundl needs
to be relajed somewhat. Befh' box crror and circular error serve this purpose, and the relationship between them is
obvious. Blox error is mgrestraightforward to calculate (in test programs) and was therefore chosen.

This Intertjational Stanidard specifies error requirements for all complex scalar operations (but note the two specipl cases
discussed Below)yand for subprograms where no arithmetic operation should be performed, e.g., COMPOSE_FR(M_CAR-
TESIAN, ap exact result is required. Error requirements may differ on the real and imaginary componenty of the
result of alsiwple ¢ : ation: thig iy i smentati > it strinpe curacylthat is
feasibly obtainable. Whenever possible, this International Standard appeals to the accuracy requirements of the
indicated operation for real arithmetic, and never imposes an accuracy requirement more stringent than is defined in

ISO/IEC 8652:1987.

There are two instances in which the relative error requirement on a complex scalar operation is cither relaxed or
removed:

a) For the COMPOSE_FROM_POLAR function with natural cycle (CYCLE paramcter omitted), degraded accuracy is
allowed when |JARGUMENT| is greater than some documented implementation-dependent threshold, which shall be not
less than

REAL 'MACHINE RADIX |REAL'MACHINE_MANTISSA/2|

48

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

© ISO/IEC

ISO/IEC 13813:1998(E)

This latitude is given to implementations becanse of the difficulty in accurately reducing the ARGUMENT parameter
to its principal value when ARGUMENT is large in magnitude relative to the length of the natural cycle.

b)

repr

It isin
result
for th
certail

of trug
compo

values
of con

upon #) is crossed when the maximum relative error requirement permits comptteéd component values of

Thus,

a resu

Havin

operat)
operat)

techni
cost.
impler

clearly

F.11

A sch
dents

IC_RE
STAND

the pa

Early
popul
1O USE
param
c.g., V
Proces

For complex exponentiation, there is no relative error requirement for implementations which calculate the result
by first converting the complex base to polar form, exponentiating its modulus and multiplying the argument by the
integer exponent, and reconverting to a cartesian representation. This latitude is given to implementations because
this International Standard makes no provision for the accuracy of operations performed on complex numbers

csented in polar form.

Lt ructive to study the subprogram results permitted by the accuracy requirements when a compene

component of a result which has a maximum box error requirement). Let the maximyst relativ

ponent values to include all values between zero and REAL'SAFE_SMALL. Alsecond threshold (als

if the true result is close enough to one of the axes in the complex plahcy’a subprogram is permitt
It close to but on the wrong side of the axis, thereby placing the computed result in an adjacent qu

fons involve scalar products (i.c., a summation of produets), where destructive cancellation is lik
ues exist for cither minimizing or even climinating thiggancellation, but all can have significant co

This International Standard therefore does not specify error requirements for such scalar products

ientations to choose an appropriate balance betweeén computational cost and accuracy (but the ch
documented).

Naming and renaming conventions

\L._ARRAYS and GENERIC_EOMPLEX_ARRAYS utilize the same parameter naming convention utilize
ARD, namely, RIGHT fop-unary operators and LEFT, RIGHT for binary operators. Similarly, COMPLE
rameter naming conyentions of package TEXT_IO.

drafts of this stahdard did not conform to these conventions, and the choice to use LEFT, RIGH
r one (amongdhic working group members responsible for drafting this standard). It was felt that
ful infornfation about the paramecters, and would not be widely accepted in the numerics commuy
ster naming conventions utilized single-character names (for brevity) that were based on the object
W for\wectors. However, once again the need to be consistent with decisions made during the stai

i for ISO/TEC 8652:1995 overruled the objections.

component of a subprogram result be given by n-REAL'BASE'EPSILON (where n > 1.0) and conside
results for which this component moves from 7 - REAL'BASE'EPSILON towards zero) ‘For values o
hent less than a certain threshold dependent upon n, the maximum relative error allows computed
to be less than REAL'SAFE_SMALL which, as this threshold is crossed, immediately widens the accey

- defined measures as above on the errors in complex values, these measures can be used for vector
ions whenever the operation is defined in terms of operations on its elements. However, some vector

me for the naming of parameters,in a uniform way has been adopted in this International Stand
Let by other standard packag@s-have guided the choices made. For example, GENERIC_COMPLEX _TY|

of the true

s near zero and a maximuin relative error requirement is specified for that component (a similar anla‘kysis applies

error for a
- a sequence
f this result
component
table range

dependent
either sign.
bd to return
adrant.

and matrix
and matrix
tly. Various
mputational
this allows
bice shall be

ard. Prece-
PES, GENER-
in package
K_I0 adopts

[was not a
they convey
hity. Earlier
represented,
idardization

Renamings of certain operations and types were considered, for example RE renamed to REAL_PART for selecting the
real component-part of a complex number. Such additions were rejected because they did not add to the functionality

of the

packages, and the case could be made for many such renamings

the choice to include or reject some would be

a matter of taste. Renamings of operations can always be declared external to these packages to provide names more
familiar to a specific user group.

There

are only five concessions to renaming provided in these packages:

The inclusion of "abs" as a renaming of MODULUS for all types that MODULUS is defined, namely COMPLEX, COM-
PLEX_VECTOR and COMPLEX_MATRIX. MODULUS and ARGUMENT provide the polar components of a complex number;
it just happens that the absolute value "abs" of a complex value is also its MODULUS and the alternative forms
were retained for uniformity with the real case. Note that for type IMAGINARY there is an "abs" operation but no

49

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

ISO/IEC 13813:1998(E)

© ISO/IEC

MODULUS; this mirrors the sitnation for real types and suppresses the inclination to pair MODULUS with an ARGUMENT

operatior

1 for type IMAGINARY which would have little utility.

The inclusion of CONJUGATE as a renaming of the unary "-" operation with operand of type IMAGINARY. Con-

jugation and negation are mathematically equivalent when applied to numbers lying on the imaginary axis

the alternative form was retained for uniformity with the COMPLEX type.

The
IC_COMP]
using a s

The
IC_REAL]
using a s

- The
primarily
current v
allowed i

F.12 Ge

The Ada 1
that simila
1s inapprop

type

a derived t)

type

gencerates af
array types

There rems
distinct typ
of function
their applic
packages dd

EX_TYPES and GENERIC_COMPLEX_ARRAYS to cxport direct visibility to this exception from an appl
ngle instantiation of one of these generic packages.

ARRAY_EXCEPTIONS.ARRAY_INDEX_ERROR cxception is renamed to ARRAY_INDEX_ERROR in
ARRAYS and GENERIC_COMPLEX_ARRAYS to cxport dircct visibility to this exceptiomyftom an appl
ngle instantiation of one of these generic packages.

inclusion of both i and j to represent the imaginary unit value. The concesston to include j wad
to accommodate the engineering community, which cannot use i since it typically represents an el
alue. Note however that j is independently defined and not a renaminghof’i (renaming of constants
1 ISO/IEC 8652:1987).

bnericity

hnguage defines two facilities by which packages (with types and basic operations) can be defi
packages can be produced (possibly with constraiiits) mnamely, genericity and derivation. Der
Fiate for composite types (e.g., the complex types,or the vector and matrix types). Given a vector

REAL_VECTOR is array (INTEGER range\<X>) of REAL;
'pe NEW_VECTOR with
NEW_VECTOR is new REAL/(VECTOR;

new array type, but-with the old REAL components. Hence a user cannot derive a new set of scal
for which the newScalar type and the new array types are consistent.

ins the quesfionr of whether the ability to produce similar packages is needed. Without such an
es to represént different entities (c.g. distance, time, velocity, ete.) cannot be defined — a significal
lity. OuxtHe other hand, many users will only wish to use a sct of predefined standard types thro
ationsdn order to share development across applications. Hence, both a generic package and non-

fifling standard types have been defined.

and

GENER-
cation

GENER-
cation

made
ctrical
18 not

1ed so
vation
vpe:

hr and

Wbility,
1t loss
ighout,
Pereric

Unlike ISO/IEC 11430 in which a generic package is given and implementations may provide instances, this Interna-
tional Standard requires both the generic packages (defining types and basic operations, i.c., GENERIC_COMPLEX _TYPES,
GENERIC_REAL_ARRAYS and GENERIC_COMPLEX_ARRAYS) and their equivalent non-generic packages (defining the stan-
dard types and operations, ¢.g. COMPLEX_TYPES and REAL_ARRAYS, ctc.) to be provided. The reason that the non-generic
packages arc required is to ensure that standard types are always provided by an implementation of this standard,
and to avoid one group of users generating their own types which would be different tvpes from those generated by
another group of users.

Each of the non-generic packages must export identical type names, ¢.g., REAL_VECTOR or COMPLEX, rcgardless of the
precision of the floating-point type utilized. This approach enables a user to casily switch precisions in an application;
however, if two precisions are used simultancously, either fully qualified type specifications or renamings of types must

be used.

50

https://standardsiso.com/api/?name=59c18804eb1a11feac50689a77746a57

