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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC]TC 1.
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Introduction

8:2013(E)

Recently, there have been worldwide increasing activities in testing and evaluating the performance of

fingerprint recognition systems or algorithms. Testing activities occur in public sector, pri

vate sector,

and academic entities, typically using datasets exclusive to a given entity. This complicates comparison
of test results from different entities. Methodologies for assessing the level of difficulty of test datasets

should improve the comparability of performance evaluation results over different fingerpri

ISO/IEC 19795-1:2006, 5.5.3[11] states:

niversal” sensor (i.e. a sensor that collects samples equally suitable for ‘all
teste¢d). Nonetheless, performance against this corpus will depend on both the envirenm|
poptilation in which it is collected.”

Comlparison of evaluation results based on testing against different corporamay be

nt datasets.

pus, ideally
algorithms
ent and the

misleading.

Further, policies for inclusion or removal of low-quality data in a corpus may-vary from organization

to ofganization, such that the same algorithm tested against the same cQipus may generq
resullts. There are also certain difficulties when trying to compare multiple evaluation res
from different corpora. Currently there is no established methodology for characterizing
difficulty of datasets used in performance evaluation. The abilitj~to characterize a datag
difficulty should support predictions of operational accuracy. when processing data knoy
equivalent difficulty.

The|purpose of this Technical Report is to provide guidance on predicting how “chal
“strgssing” a fingerprint dataset is for recognition, based on factors such as relative sanj
relative rotation, deformation, and overlap betweendmpressions. The provided guidance
for dharacterizing and measuring the relative difficulty levels of fingerprint datasets used in
evalpation.

Foll
will
orgd

pwing the guidance in this Technical Report, users and system evaluators in different or
be able to compare and place int¢' context the performance evaluation results o
nizations according to the level of\difficulty of its dataset.

Thig Technical Report proposes.dataset generation methods based on analysis of compar
or s¢ores from multiple fingerprint recognition algorithms. These dataset generation meth
credtion of datasets with specific levels of difficulty and creation of datasets for use in inte
evalpations.

ISO

Such
cong
sam

[EC TR 29794-4{16] defines methods for expressing the quality score of a single fingerj
quality scores are typically predictive of matching accuracy. This Technical Report, by
erned with.differences in rotation, deformation, and common area between reference
bles.

NOT
stan

F Other modalities can be considered in the future as more information becomes av{
ardized quality measurements that are suitable for predicting the performance of other biome

te different
hlts derived
the level of
et’s level of
vn to be of

lenging” or
ple quality,
fan be used
technology

ganizations
f the other

son results
bds support
foperability

brint image.
contrast, is
p and probe

ilable about
kric systems.
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Information technology — Biometrics — Characterization
and measurement of difficulty for fingerprint databases
for technology evaluation

1 Scope

Thig
data
over
of d
of a
diffi
Thig

This
data

Outs

2

set for fingerprint recognition, based on relative sample quality, relative rotation, defor
lap between impressions. In addition, this Technical Report establishes a methedAfor c
tasets of different levels of difficulty. This Technical Report defines the relative level

culty is based on differences between reference and probe samples in the aformentio
Technical Report addresses such issues as:

characterizing level of difficulty attributable to differences betwéen samples acquire
same finger,

developing statistical methodologies for representing the‘level of difficulty of a fingerp
by aggregating influencing factors,

comparing the level of difficulty of different fingerprint datasets,

defining procedures for testing and reportingthe'level of difficulty of fingerprint datase
for technology evaluation,

hnalysing mated pair data characteristics based on comparison scores,
describing the archived data selection methodology for building a dataset for evaluatio

Technical Report provides guidelines for comparing the relative level of difficulty of]
sets.

ide the scope of this Technical Report are:
defining the qualitycof individual fingerprint images,

defining the methodologies or explicit measures for evaluating or predicting the pert
fingerprintyrecognition algorithms.

Terims and definitions

Technical Report provides guidance on estimating how “challenging” or “stressing”is alll evaluation

mation, and
bnstruction
bf difficulty

fingerprint dataset used in technology evaluation of fingerprint recognition algorithins. Level of

hed factors.

d from the

rint dataset

ts collected

.

fingerprint

ormance of

For

21
raw

1 el s | R ) £11 s 4 P A 3des 1
LITT PJUIT' PpUSTS UT LIS UUUUITITIIL, LIIC TUTTUWILT S LTS dITU UTTIITIUIUILS dpPpply.

biometric sample

information obtained from a biometric sensor, either directly or after further processing

2.2

biometric reference
<template, model> one or more stored biometric samples, biometric templates or biometric models
attributed to a biometric data subject and used as the object of comparison

EXAMPLE

Gaussian Mixture Model for speaker recognition, in a dataset.

© ISO/IEC 2013 - All rights reserved
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Note 1 to entry: A biometric reference may be created with implicit or explicit use of auxiliary data, such as
Universal Background Models.

Note 2 to entry: The subject/object labelling in a comparison might be arbitrary. In some comparisons a biometric
reference might be used as the subject of the comparison with other biometric references or incoming samples
used as the objects of the comparisons. For example, in a duplicate enrolment check a biometric reference will be
used as the subject for comparison against all other biometric references in the dataset.

2.3

biometric probe

biometric d

2.4

technology
offline eval
specially co

2.5
failure-to-
FTE
proportion

Note 1 to ent
failure-to-en

2.6

ata input to an algorithm for comparison to a biometric reference(s)

evaluation
pation of one or more algorithms for the same biometric modality using a prefexistir
llected corpus of samples

bnrol rate

of the population for whom the system fails to complete the enrolment process

ry: The observed failure-to-enrol rate is measured on test crew enrolments. The predicted/expe
rol rate will apply to the entire target population.

failure-to-acquire rate

FTA
proportion
image or sif

Note 1 to en

of verification or identification attempts for which the system fails to capture or locat
rnal of sufficient quality

rate (the former may be used to estimate the latter).

2.7

false non-n
FNMR
proportion
characteris

2.8

hatch rate

of genuine attempt samples.falsely declared not to match the biometric reference of the s
Lic from the same subject’supplying the sample

false match rate

FMR
proportion
template

Note 1 to en|

rate (the formerymay be used to estimate the latter).

29

of zero-effort impostor attempt samples falsely declared to match the compared non

try:, The measured/observed false match rate is distinct from the predicted/expected false

false reject rate

FRR
proportion

2.10

of verification transactions with truthful claims of identity that are incorrectly denied

false accept rate

FAR

g or

cted

e an

ry: The observed failure-to-acquire rate is‘distinct from the predicted/expected failure-to-acquire

ame

-self

rTatch

proportion of verification transactions with wrongful claims of identity that are incorrectly confirmed
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https://iecnorm.com/api/?name=e890024d8812837572e6a36432f070ac

ISO/IEC TR 29198:2013(E)

211

receiver operating characteristic curve

ROC curve

plotofthe rate of false positives (i.e.impostor attempts accepted) on the x-axis against the corresponding
rate of true positives (i.e. genuine attempts accepted) on the y-axis plotted parametrically as a function
of the decision threshold

2.12

detection error trade-off curve
DET curve

modified ROC curve which plots error rates on both axes (false positives on the x-axis and false negatives
on the y-axis)

2.1
performance
capdbility in terms of error rates and throughput rates

2.14
quality
degiee to which a biometric sample fulfils specified requirements for,a targeted application

Note| 1 to entry: Specified quality requirements may address aspects of quality such as focus, repolution, etc.
Impljcit quality requirements address the likelihood of achieving a cofréct matching result.

2.15
quality score
quantitative expression of quality

bh multiple

'here one is

than dataset

- Aabirethetevelofd ey-ofafinge : asetbe rg-the-pefformance of
fingerprint comparison algorithms against this and other datasets, this Technical Report defines measures that
predict level of difficulty.

Note 3 to entry: This Technical Report addresses the level of difficulty for fingerprint corpora only.

2.19
singular point
either core point or delta point in fingerprint

© ISO/IEC 2013 - All rights reserved 3
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2.20
alignment point
either a singular point or a certain minutia point which is used to align a mated pair of fingerprints

Note 1 to entry: Since each alignment point has position and orientation, the alignment process based on a pair
of corresponding alignment points from a mated pair will compensate the rotation and the translation between
the two fingerprints.

3 Symbols and abbreviated terms

a]lgnmnnf point

hmon area
htive deformation
bl of difficulty

htive sample quality

singular point

AP

CA coy
DF rel
LOD lev
RSQ rel
SP

4 Differ
4.1 Gene

As describe
on the performance of fingerprint recognition:

Sensor
Impres

Image i

ential factors in fingerprint samples

ral

d in ISO/IEC TR 19795-3,[13] the following properties of a fingerprint dataset have influ

type (e.g. total internal reflection, capacitance, thermal, swipe, touchless, ultrasonic, et
sion type (e.g. flat, rolled, segmented slap, scanned ink-print, etc)

esolution

Enviropmental conditions (e.g.temperature, humidity, etc)

Demog

Finger

Faphics (e.g. age, gender, occupation, etc)

bosition (e.g. thumb, index, etc)

Template ageing

Biologi

Cal condition (e.g. skin moisture)

ence

Subject

metivation, habituation etc

When the dataset is homogeneous in the aspects of sensor type and impression type, the rest of the
properties can be represented and quantified by a fingerprint sample quality score.

As defined in ISO/IEC 29794-1,[15] the quality of a biometric sample is the degree to which a biometric
sample fulfils specified requirements for a targeted application and the quality score is a quantitative
expression of the quality. However, the quality score is associated with each individual biometric sample.
As such it does not incorporate differences between reference and probe samples.

As pointed out by Hicklin and Reedy,[1] the ability to match fingerprints is dependent on three
characteristics: (i) number of fingers (in the case of ten-printidentification), (ii) correspondence between
reference and probe images, and (iii) quality of both reference and probe images. Correspondence
between the two fingerprints is a function of the degree of overlap and distortion between the reference

© ISO/IEC 2013 - All rights reserved
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and the probe, as well as inherent friction ridge content. Image quality metrics can be used to quantify
the quality of the reference and probe images separately.

For example, as shown in Figures 1 and 2, even when both finger images are of good quality, the
comparison score will be low if their common area is small (Figure 1) or the relative deformation is
severe (Figure 2). Furthermore, comparison of two low-quality samples may produce a higher score
than comparison of a high-quality and a low-quality sample.

Figure 1 — A low similarity score will result when comparing impressions with small common
area

Figure 2 — A Jow’similarity score will result when comparing impressions with severe
deformation

Congidering'these cases, the quality defined in ISO/IEC TR 29794-4[16] is not fully sufficiept to assess
the L.OD of.a fingerprint dataset in a technology test. In addition, the relative quality needs tp be defined
in oydér to consider the influence of other differences between mated pairs of fingerprints.

The relative level of difficulty may be applicable to selecting data for a performance evaluation. In
cases where limited resources are available to conduct an interoperability performance test, it may
be desirable to focus on challenging datasets because meaningful results may be generated through
relatively fewer comparisons. Further, it can be used to evaluate the suitability of datasets for such
evaluation. An experimenter may focus on a small amount of matchable sample pair data to make an
initial assessment of the suitability of a given dataset for this purpose.

© ISO/IEC 2013 - All rights reserved 5
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4.2 Common area

4.2.1 Introduction

The common area between mated fingerprint sample pairs can vary due to human factors. In general, a
larger common area results in a higher comparison score. Figure 3 depicts the overlapping area of a pair
of mated fingerprints. Possible measures for the common area are:

a) the ratio of the common area to the total area covered by the mated pair (the preferred method,
discussed below), or

b) the arep overlap of the convex hulls of the minutiae on each impression. 0y
N

’

q
N
X

Figure|3 — possible definition of common area based on foreground areas of mated

C) impressions
N

Regardless of the comparison algorithm, the minutiae-based or the image-based, the common area
is one of the major factors which influence the matching performance in fingerprint recognition. In
general, the greater the common area of a mated pair, the higher the similarity score. Figure 4 shows one
mated pair with a similarity score using a commercial fingerprint comparison algorithm.

6 © ISO/IEC 2013 - All rights reserved
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Fig
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ure 4 — Example of a mated pair with low common area whose simila;i&géore is

are a mated pair, (c) and (d) are processed images of (a) and (b) aft inutiae e}
and (e) is the result of aligning (a) and (b) using a core point aé{ﬂ,a ignment p

A

P Definition of common area Q/C)
\\
is document, the measure of the common area for a mate ple pair is defined as the
non area to the total area covered by the mated pair: s\\
O
"4 = P reference NP probe QQ
P reference p probe \Q

e P denotes the fingerprint foreground ext@c\ted by segmentation. This metric is no
, where 0 indicates that no correspondQ@P pair is found.
b\

B Localizing common area for a\ﬁed pair

n a mated pair of segmented\@ngerprints for matching, in order to localize the co
mated pair, it is necessary(to locate a corresponding alignment point pair. For no
erprints, the alignment @“@%AP) pair can be found from corresponding pixel-level sing
pr fingerprints with no‘singular points including the arch type, the AP pair can be ob

esponding minutiaetpoints. Figures 5, 6, and 7 show examples of computing the comny
there can be n@ﬁAP pairs.

AP has on and orientation. By aligning the position and the orientation, the rotaf
slatio§ rences between the reference sample and the probe sample can be correcte

\<</C)
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Figure 5 — Possible localization of common area for wl@ype; (a) and (b) are a mated pair, (c),
(d) and (e) show the resulted common are\{ ased on different AP pairs

N

Alignment

=

P q; localization of common area for arch type aligned by a correspondinjg
; (@) and (b) are a mated pair, and (c) shows the resulted common area

Figure ¢ —
minut

NS
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N

jgure 7 — Possible localization of common area for loop type with missir%(; res
singular point pair; (a) and (b) are a mated pair, and (c) shows the resul(s comm

i Computation of common area for a mated pair &

computation of AP is the key step of common area measure &1 The AP needs to
xel-level precision. Since most of non-arch type fingerprint%%

hre the first choice for the candidate AP. SP detectionl2] aré ¢
hccuracy of alignment of mated fingerprint pairs. Me le, for arch type fingerpri
erprints which miss finding corresponding SPs, corresponding minutiae are used inste
Vs the flowchart of the computation of common areQ

<
>
<

ponding
bn area

be detected

ntain at least one SH pixel-level
nducted in pixel-level tp guarantee

nts and the
hd. Figure 8
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Input fingerprint-pair

:

Compute pixel-level SPs as
candidate AP pairs

No
Exist SP Pairs? —
Yes v
Select AP pair from the Select AP pair from set‘of
candidate SPs corresponding minutiae

Yes/,/””\
Exist AP Pairs? —

X

Align mated pair using
P pair

'

Compute the common area

F Y

Set the-common area to O

™
%+

b

Output the common area

Figure 8 — Flowchart of the computation of common area

When multjple AP candidate-pairs are found in a mated pair as shown in Figure 5, the one with the
maximum dommon area is;seleécted as the final AP.

NOTE1  Fpr the fingerprints with bad sample quality, finding correct APs may fail in spite of the existence of
correspondihg SPs oryminutiae pairs, in which case setting the common area to zero is natural.

NOTE 2  Since @rch type fingerprints have no singular points, the AP pairs can be obtained from a get of

correspondipgiiinutiae pairs using any comparison algorithm. When there are multiple corresponding AP pairs,
the one withlthe maximum common-areaisselected asthe final AP

4.2.5 Relationship between common area and similarity score

It is very natural to claim that the common area and the similarity score have a proportional relation.
However, the similarity score is influenced by other factors such as deformation and sample quality.
Figure 9 shows the scatter plots of the common area versus the similarity score for mated pairs over FVC
2000 datasets.[6] It seems true that mated pairs with high similarity scores have a large common area
while mated pairs with low similarity scores do not necessarily have a small common area. Furthermore,
mated pairs with a small common area tend to produce low similarity scores while mated pairs with a
large common area do not necessarily produce high similarity scores.

10 © ISO/IEC 2013 - All rights reserved
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Matching score ¥s. common area - FVC database: 2000-1a

Matching score vs. common area - FVC database: 2000-2a

8 8

s
o

Common area
Commaon area

8

1
0 200 400 600 800 1000 1200 1400 0 200 400 GO0 800 1000 1200 , 1400 600 1800
Matching score Matching score

Matching score vs. common area - FVC database: 2000-3a

0 200 400 600 800 1000 1200 1400 1600 1800
Matching score

Figure 9 — Scatter plots of cominion area versus similarity scorel?] over FVC 2000 DBs;
(a) 2000-1a, (b) 2000-2a, (c) 2000-3a

4.3 | Relative deformation

4.3.1 Introduction

Pregsure of the fifiger during capture causes deformation of the fingerprint because fingers and skin are
nonyigid, whiehiprevents a perfect match even for a mated pair with 100 % common area. The existence
of deformations makes the fingerprint matching more difficult. The higher the relative deformation
between-a mated pair, the more difficult the fingerprint matching. Therefore, the overall relative
deforngation of mated pairs can reflect the level of dificulty of a fingerprint dataset indirect]y.

While it is difficult to measure the degree of deformation of an individual fingerprint, it is easier to
measure the degree of relative deformation between a mated pair. The relative deformation can be
computed by locating corresponding points or patterns such as minutiae, singular points, ridge lines
and other topological patterns, followed by measuring the position and orientation differences.

Deformation of fingerprints may be both linear and nonlinear. Examples of linear deformation are rigid
deformations (translation and rotations) and shear. Examples of nonlinear transformations include
spline deformation. One simple measure of linear deformation is the extent to which the area of the print
changes (can be estimated using the determinant of the equivalent linear deformation matrix). There
are various measures of elastic deformation such as the bending energy. Possible measures of relative
deformation for a mated pair of fingerprints are:

a) average of orientation differences of corresponding points after alignment of the mated pair, or

© ISO/IEC 2013 - All rights reserved 11
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b) measure of deformation using Thin Plate Spline method.

4.3.2 Measurement of orientation field-based deformation

Assuming the continuity in the fingerprint orientation, when there is no relative deformation between
a mated pair of fingerprints after alignment, the orientations will coincide at the same position. In
most cases of matching, however, there exists relative deformation between a mated pair, which can be
indicated by the overall differences in orientation. The orientation field-based deformation is measured
over the aligned common area, and the computation of pixel-level orientation fields for the mated pair
can be achieved by the multiscale Gaussion filter.[2]

The orient

aligned compmon area:

DF = Avprage(A;),

where A6;j
pair.

Figures 10

by aligning|{with different AP pairs for a mated pair. The rotation differetice between the mated

is compens

common arjea ratio and the relative deformation vary depending er_the AP pair. When multipl
candidate gairs are found in a mated pair, the one with the maxiptum common area is selected aj
final AP. Then, the relative deformation is computed using the final’AP.

ion field-based deformation is defined as the average of the orientation differences ove

= abs(0; - 6;), and 6; and 0, refer to the ridge orientation of the aligned poSjtions in the m|

rhrough 13 demonstrate the computation of the common area arnd the relative deformz

hted by coinciding the orientations of a corresponding AR pair. They show that both

 the

ated

tion
pair

the
b AP
the

Figure 10 — Computation of common area and relative deformation aligned by the right delta
point as AP: (a) and (b) are a mated pair, (c) common area, (d) pixel-level orientation difference

12

(dark-small, light-large), (e) block-wise orientation difference
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int as AP: (a) and (b) are a mated pair, (c) common area, (d) pixel-level orientation difference
(dark-small, light-large), (e) block-wise orientation difference

Figure 12 — Computation of common area and relative deformation aligned by the upper core
point as AP: (a) and (b) are a mated pair, (c) common area, (d) pixel-level orientation difference
(dark-small, light-large), (e) block-wise orientation difference

© ISO/IEC 2013 - All rights reserved 13
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Figure 13 — Computation of common area and relative.deformation aligned by the lower core

P: (a) and (b) are a mated pair, (c) common area, (d) pixel-level orientation difference
(dark-small, light-large), (e) block-wise orientation difference

a ‘§\\§ C
I/’::. N
"

b

CA:51

Figure 14 — Example of small common area but low relative deformation: (a) and (b) are a
mated pair, (c) common area, pixel-level orientation difference (dark-small, light-large), (e)
block-wise orientation difference
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4.3.3 Thin plate spline-based measurement
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The thin plate spline-based method is one approach to measure the deformation between a pair of
fingerprints. In order to measure deformation of mated fingerprint pairs using the thin plate spline, the

corresponding minutia sets should be detected robustly. Bazen, et al.[3] proposed the dete

ction of the

corresponding minutia sets based on triangular local structure, which is called minutia neighbourhood,
because the local structures which are originated from only a small area in a fingerprint are unlikely
to be seriously deformed by plastic distortions. Since the list of possibly corresponding minutia
neighbourhood detected by this local comparison algorithm may contain spurious pairs, the correctness
of each pair needs to be verified further using the Shape Context schemel4] and the RANSAC technique.
[3] After the detection of correctly corresponding minutia pairs, the thin plate spline can be applied

to cpmpute the bending energy which can be used as the measurement of deformatiomb
fingerprint pair.

4.3.4 Relationship between orientation field-based deformation and similarity score

Figure 15 shows the scatter plots of the relative deformation (computed from the orient
versus the similarity score (obtained by a commercial fingerprint comparison algorithm
pairf over FVC 2000 datasets.[6] It can be carefully said that the relative’deformation and t
scorg have an inversely proportional relation. This relation is not so strong because the simi
is alpo influenced by other factors such as common area and samplé.quality. In Figure 15, 1
with high similarity scores tend to have low relative deformatiofi While mated pairs with loy
scores do not necessarily have high relative deformation. Furthermore, mated pairs with h
deformation tend to produce low similarity scores while mated pairs with low relative defd
not pecessarily produce high similarity scores.
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Figure 15 — Scatter plots of relative deformation versus similarity scorel2] over FVC 2000 DBs;

(a) 2000-1a, (b) 2000-2a, (c) 2000-3a
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4.4 Relative sample quality

4.4.1 Introduction

The sample quality of fingerprints is known as one of the most decisive factors which influence the
matching performance of fingerprint recognition systems. Thus, the distribution of sample quality of
a certain fingerprint dataset becomes an indicator of LOD of the dataset. In the technology evaluation
where areference sample can be of low quality, the quality of both samples, not of only the probe sample,
in a mated pair must be considered.

4.4.2 Megsurenrentofretativesamptequatity ——————————————————————————————

From the agpects of relative sample quality of a mated pair, there are four cases in comparisof:
(Case 1) high quality of the reference vs. high quality of the probe

(Case 2) high quality of the reference vs. low quality of the probe

(Case 3) low quality of the reference vs. high quality of the probe

(Case 4) low quality of the reference vs. low quality of the probe

Assuming that the influence of the other factors, common area and relative deformation, to the matdhing
performande are negligible, the similarity scores of the above cases, in-general, are ordered as:

Case 1 p Case 2 = Case 3 > Case 4.

Hence, given a mated pair, the measurement of relative sample quality can be defined by any kind of
mean, arithimetic, geometric, or harmonic, of individual sample quality values produced by a fingerprint
quality metric described in ISO/IEC TR 29794-4.[16]

4.5 Calcuylating LOD of a dataset

4.5.1 Introduction

Considering that common area (CA),(velative deformation (DF), and relative sample quality (RSQ)
between a mated pair of fingerprifits'are major factors influencing the performance of a compaifison
algorithm, the similarity score of the mated pair will increase as CA and RSQ increase while DF decreases.
For a single mated pair, in genéral, the level of difficulty is proportional to the similarity score and is a
function of the influential factors:

LODy, = f(CA, RSQ, DF-1, v) « Similarity score
where LODj, is the level of difficulty for a single pair of fingerprints, v represents unknown facfors,

and DF-1 inficates an inversely proportional relation between the relative deformation and the level of
difficulty.

4.5.2 Measuring LOD of individual pairs

In order to measure LODy, the LOD of a single mated pair of fingerprints, from the multiple factors, it is
modelled that LODy, has a multiple nonlinear regression relationship with CA, RSQ, and DF-1 as:

LODp = B11CA + $12CA2 + $21RSQ +B22RSQ2 + 31 DF-1 + 332(DF-1)2
where Bj (i =1, 2, 3 and j = 1, 2) are coefficients to be estimated experimentally from a given training
dataset. In practice, since LOD is unknown, LODy, is replaced with the similarity score of each mated

pair using a comparison algorithm at hand. After being estimated by multiple nonlinear regression
analysis, fjj’s are used in the above model to calculate the LOD distribution of an unknown dataset under
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evaluation. In applying the coefficients fjj’s obtained from a training dataset to the LOD calculation
model for an unknown test dataset, the underlying assumption is that each factor has a similar amount
of influence on matching error rates.

Since LODy, has a proportional relationship with similarity scores, a linear function can be applied for
normalization of LODy so that LODy, has an inverse relationship with similarity scores. The normalized
LODyp, N LODy, is defined as:

100x(LOD o —LOD,)

NLOD
P~ LoD LOD i,

max

whefe LODmax and LOD iy are the maximum and minimum of LODp, respectively.

Ning non-synthetic datasets from FVC 2000, 2002 and 2004 are used to demonstrate-the validity of the
above model. Each dataset contains 800 fingerprints captured from 100 fingers. The'.OD is measured
only| for the genuine mated pairs. Figure 16 compares the distributions of CA, DE,'and RSQ, respectively,
calcpilated by the methods described above for three FVC datasets (2000-DB2; 2004-DB1,|2004-DB3),
and Figure 17 shows the distribution of LOD for individual pairs from the datasets.
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Figure 16 — Histograms of CA of 3 FVC datasets, 2000-DB2, 2004-DB1, and 2004-DB3
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Figune 17 — Histograms of DF of 3 FVC datasets, 2000-DB2, 2004-DB1, and 2004-DB3
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Figure 18 — Histograms of RSQ of 3 FVC datasets, 2000-DB2, 2004-DB1, and 2004-DB3
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Histogram of normalized LODp
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Figure 19 — Histogram of Normalized LOD of 3. datasets, 2000-DB2, 2004-DB1, and }

The one-way ANOVA (ANalysis Of VAriance) and the Tukey’s HSD (Honestly Significant Diffe
are ppplied to the LOD distributions to exafmine whether their differences are significan
shows the results of the ANOVA test and griouping of datasets in three difficulty levels using
HSD|test. In this figure, datasets in différent colours are significantly different.

Since the LOD of a dataset is computed based on CA, DF, and RSQ, it is independent of
algorithms. However, it is desjrable that the LOD has a certain monotonical relationsh
metrics of matching performance, e.g. the equal error rate (EER) of a certain “universal”

algofithm. Two widely used ‘comparison algorithms (VeriFinger 5.0[2] and Bozorth3[10]) ar¢

the yiniversal comparisomalgorithms for all the datasets.

Table 1 also comparies the ranked average NLODs against EERs and FRR obtained by the two
algorithms across the corresponding datasets. The ranks of LODs are categorized into th
easy, mediumgand difficult. The table shows that the measured NLOD is almost coincident

004-DB3

rence) tests

. Figure 18
the Tukey'’s

comparison
p with the
comparison
 utilized as

Ccomparison
ree classes:
with actual

EERF except.the datasets 2000-DB3 and 2002-DB3, which requires further investigation. Figure 20

illusfrates.a linear relationship between Normalized LOD and EER as measured through Bo

zorth3.
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Table 1 — The Normalized LOD of dataset and corresponding EER computed by comparison

algorithms
EER FRR(FAR = 0.01 %)
Class Dataset NLOD
VeriFinger Bozorth3 VeriFinger

2000-DB2 51.85 0.8214 4.28 1.64 %
Easy 2002-DB1 54.46 0.9286 3.38 1.86 %
2002-DB2 54.88 0.6964 2.51 1.39%
2000-DB1 55.59 3.4464 598 6.89 %
Medium 2004-DB3 56.14 3.9821 6.64 796 %
2000-DB3 56.29 5.4643 8.0 10.93 %
2002-DB3 57.16 2.9821 9.8 5896 %
Difficuld 2004-DB2 57.48 5.403 10.75 1079 %
2004-DB1 59.68 6.625 13.71 13.25%

Scatterplot of normalized LOD vs Bozorth3<EER
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Fighire’20 — Example of relationship between Normalized LOD and Bozorth3 EER

5 Analysis of mated pair data characteristics based on comparison results

5.1 General

By using comparison scores, and not image quality values, a technology testing dataset generation
methodology that extracts and organizes meaningful data for practical accuracy evaluation can be
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possible. Furthermore, this methodology is very straightforward. The following observations can be
made:

— Generally, each comparison algorithm has different scoring characteristics, and the score values
of different algorithms will not be the same, even for mated sample data with same image quality
values.

— Itis possible to measure “matchability” based on the results of multiple comparison algorithms.

5.2 Matchability

5.2.1 Concept of matchability
The [concept of matchability includes the following:
— [For a single mated pair data, the matchability is determined for each vendor algorithm.

— Mated pair data that are labelled as capable of being matched are referredto as “matchable”.

5.2.2 Criteria for determining matchability

Matghability is a function of the proportion of algorithms through-which mated pairs match]Criteria for
determining matchability are as follows:

— KA mated pair that matches through a large proportion ofalgorithms is more matchable than a mated
pair that matches through a small proportion of algotrithms.

— [n the aggregate, a dataset whose mated pairs_match through a large proportion of algorithms is
more matchable than a dataset whose mated-pairs match through a small proportion offalgorithms.

— [f more algorithms with different characteristics can be used, a more universal matchalbility can be
expected to become available.

— [The matchability label of each mated pair data is assigned for each comparison algorithm of all
vendor software.

— [This TR does not provide:guidance on evaluating the impact of different sensor typeg or sensing
technologies on matchability. However, tests can be designed that examine the impa¢t of sensor
variation - e.g. use of different sensors to collect probe and gallery data — on matchability.

5.2.3 Decision of.matchability

Mate¢d pair comparisons may result in match / no match decisions or in comparison scores| depending
on the algorithm. For the purposes of matchability assessment, access to comparison score§ is strongly
preferred. ,Matcher-specific decision thresholds can be used to determine whether a given|mated pair
compdrison is declared a match. The benefit of this approach is that a relatively small number of mated

: 1. 1. . PN dos FINE 2o oY
palrstanopeuseatocnaracteriZzéaaataset s toUD:

Threshold determination may be based on testing organizations’ previous experience with a given
algorithm. An understanding of algorithm-specific comparison score distributions will typically simplify
matchability-based LOD assessments. Such an understanding will also improve inter-organizational
collaboration: sharing score-based decision criteria is more useful than sharing opaque, rank-based
results. To sufficiently understand thresholds, execution of substantial non-mated comparisons is
typically required.

EXAMPLE A testing organization may have previously established that for comparison algorithm B, a
comparison score of 100 typically corresponds to a false match rate of 0.01 %, such that 100 is a reasonable
operating point. For the purposes of matchability determination, mated pairs that score below (weaker than) 100
can be considered non-matches, and mated pairs that score 100 or higher can be considered matches.
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In some cases, it may be necessary or useful to perform a rank-based analysis of mated pairs, such as
when testing an algorithm that only functions in identification mode. In this case, the match decision is
based on whether the correct reference matches at Rank 1 against a given probe.

Comparison algorithms used in matchability determinations should not generate heavily quantized
comparison scores. Quantization reduces insight into comparison scores; such insight may be necessary
to differentiate between subtle differences in mated pair comparison scores. For example, some
comparison algorithms only return scores when comparisons are successful, returning null or failure
results in the case of failed comparisons. This behaviour is undesirable in that it reduces visibility into
borderline comparisons which may be particularly relevant to matchability and to LOD in general.

Table 2 proyides an example oI deCiding matchabIlty using multiple comparison algoritnms.

Table 2 — Example of matchability table

Mate Hairs Algorithm1 Algorithm2 Algorithm3 Matchability
pairfl Match Match Match High
paiy?2 Match Match Nonmatch Medium
paif3 Nonmatch Nonmatch Nonmatch Low
pairN Nonmatch Nonmatch Nonmatch Nonmatchable
The LOD cdn be associated with a certain performance test and discriminated by the test name, such

as “NIST’s MINEX 2004”[Z] and “MTIT”[8]. Comparison algorithims can be collected by the organizgtion

which held

Suppose thi
pairs in the
comparison
match. The
comparison

the performance test.

dataset be N. For a given mated pair, an.algérithm produces a score of +1 if it (1) genera

algorithm produces a score of -1 ofherwise. In this way, we can produce a score for

i refers to the algorithm. We can thus construct the following matrix system:

it we have M algorithms available to assess the LOD of the dataset. Let the number of mated

tes a

score stronger than the declared threshold or (2) identifies the correct mate as a ranK one

each

algorithm, for each probe, which-we shall write as s, ; where n refers to the comparisor and

S11 P12 Sim | wy M

S21 P22 Som | W2 (_IM

SN1 PN2 SnMAWM ) \M
where the matrix on the left is written S, the vector of unknown weights is w and the target on the fight
is t. Note thiat the matrix S will consist entirely of +1s and -1s. Suppose that we solve the above system
for w in a ldast-squares sense and that we find the minimum-norm solution for w, i.e. we find the value
of w with the smallest ||w|| that minimises ||Sw - t||. This solution is revealing about how easy the |data
are to match, Consider the following extreme cases:

the elements of w will all be 1.

and the elements of w will all be -1.

We therefore propose to use the following metric as a measure of dataset matchability:

Databas

e matchability = ||1 —w||1 = ZZ1|1 —wl-|

If the data are all easy to match, then all the comparison algorithms will get the answer correct and

If the data are impossible to match, then all the comparison algorithms will get the answer incorrect

The minimum value of this quantity is zero, i.e. all the comparison algorithms get all the comparisons
correct. The maximum value of this quantity is twice the number of algorithms used, 2M. This metric
can be normalized to [0, 1] by dividing with 2M.

22
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