

INTERNATIONAL
STANDARD

ISO/IEC/
IEEE
8802-11

Second edition
2018-05

AMENDMENT 4
2020-08

**Telecommunications and exchange
between information technology
systems — Requirements for local and
metropolitan area networks —**

**Part 11:
Wireless LAN medium access control
(MAC) and physical layer (PHY)
specifications**

**AMENDMENT 4: Enhancements for
transit links within bridged network**

*Télécommunications et échange entre systèmes informatiques —
Exigences pour les réseaux locaux et métropolitains —*

*Partie 11: Spécifications du contrôle d'accès du milieu sans fil (MAC)
et de la couche physique (PHY)*

*AMENDEMENT 4: Améliorations pour les liaisons de transit dans un
réseau ponté*

Reference number
ISO/IEC/IEEE 8802-11:2018/Amd.4:2020(E)

© IEEE 2018

COPYRIGHT PROTECTED DOCUMENT

© IEEE 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO or IEEE at the respective address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland

Institute of Electrical and Electronics Engineers, Inc
3 Park Avenue, New York
NY 10016-5997, USA

Email: stds.ipr@ieee.org
Website: www.ieee.org

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted (see www.iso.org/directives).

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents) or the IEC list of patent declarations received (see <http://patents.iec.ch>).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

ISO/IEC/IEEE 8802-11:2018/Amd 4 was prepared by the LAN/MAN of the IEEE Computer Society (as IEEE Std 802.11ak-2018) and drafted in accordance with its editorial rules. It was adopted, under the "fast-track procedure" defined in the Partner Standards Development Organization cooperation agreement between ISO and IEEE, by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 6, *Telecommunications and information exchange between systems*.

A list of all parts in the ISO/IEC/IEEE 8802 series can be found on the ISO website.

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

IECNORM.COM : Click to view the full PDF of ISO/IEC/IEEE 8802-11:2018/AMD4:2020

IEEE Std 802.11ak™-2018

(Amendment to IEEE Std 802.11™-2016
as amended by IEEE Std 802.11ai™-2016,
IEEE Std 802.11ah™-2016,
and IEEE Std 802.11aj™-2018)

**IEEE Standard for Information technology—
Telecommunications and information exchange between systems
Local and metropolitan area networks—
Specific requirements**

**Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications**

**Amendment 4: Enhancements for Transit Links
Within Bridged Networks**

Sponsor
**LAN/MAN Standards Committee
of the
IEEE Computer Society**

Approved 8 March 2018
IEEE-SA Standards Board

IECNORM.COM : Click to view the full PDF of IEEE802.11:2018/AMD4:2020

Abstract: Protocols, procedures, and managed objects to enhance the ability of IEEE 802.11™ media to provide transit links internal to IEEE 802.1Q™ bridged networks are specified in this amendment to IEEE Std 802.11™-2016.

Keywords: bridged, bridging, EPD, GCR, GLK, GLK-GCR, IEEE 802.11™, IEEE 802.11ak™, IEEE 802.1Q™, LPD, priority code point, SYNRA, transit link

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2018 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 15 June 2018. Printed in the United States of America.

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.

PDF: ISBN 978-1-5044-4811-6 STD23075
Print: ISBN 978-1-5044-4812-3 STDPD23075

*IEEE prohibits discrimination, harassment and bullying.
For more information, visit <http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html>.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.*

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices and disclaimers, or a reference to this page, appear in all standards and may be found under the heading “Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on request from IEEE or viewed at <http://standards.ieee.org/IPR/disclaimers.html>.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a consensus development process, approved by the American National Standards Institute (“ANSI”), which brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE Standards are documents developed through scientific, academic, and industry-based technical working groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate without compensation from IEEE. While IEEE administers the process and establishes rules to promote fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against interference with or from other devices or networks. Implementers and users of IEEE Standards documents are responsible for determining and complying with all appropriate safety, security, environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and expressly disclaims all warranties (express, implied and statutory) not included in this or any other document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his or her own independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO: PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.

Translations

The IEEE consensus development process involves the review of documents in English only. In the event that an IEEE standard is translated, only the English version published by IEEE should be considered the approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures, symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall make it clear that his or her views should be considered the personal views of that individual rather than the formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of membership affiliation with IEEE. However, IEEE does not provide consulting information or advice pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a consensus of concerned interests, it is important that any responses to comments and questions also receive the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to comments or questions except in those cases where the matter has previously been addressed. For the same reason, IEEE does not respond to interpretation requests. Any person who would like to participate in revisions to an IEEE standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the provisions of any IEEE Standards document does not imply compliance to any applicable regulatory requirements. Implementers of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws. They are made available by IEEE and are adopted for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making these documents available for use and adoption by public authorities and private users, IEEE does not waive any rights in copyright to the documents.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to photocopy portions of any individual standard for company or organizational internal use or individual, non-commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time by the issuance of new editions or may be amended from time to time through the issuance of amendments, corrigenda, or errata. A current IEEE document at any point in time consists of the current edition of the document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at <http://ieeexplore.ieee.org> or contact IEEE at the address listed previously. For more information about the IEEE SA or IEEE's standards development process, visit the IEEE-SA Website at <http://standards.ieee.org>.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: <http://standards.ieee.org/findstds/errata/index.html>. Users are encouraged to check this URL for errata periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-SA Website at <http://standards.ieee.org/about/sasb/patcom/patents.html>. Letters of Assurance may indicate whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not responsible for identifying Essential Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information may be obtained from the IEEE Standards Association.

Participants

At the time this amendment was submitted to the IEEE-SA Standards Board for approval, the IEEE 802.11 Working Group had the following officers:

Adrian P. Stephens, Chair
Jon W. Rosdahl and Dorothy V. Stanley, Vice-chairs
Stephen McCann, Secretary
Robert Stacey and Peter Ecclesine, Technical Editors

At the time this amendment was submitted for balloting, the Enhancements for Transit Links in Bridged Networks Task Group had the following membership:

Donald E. Eastlake, III, Chair and Editor
Mark A. Hamilton, Vice Chair
Norman Finn, Vice Editor
(Filip Mestanov, Yan Zhuang, Former Secretaries)

Osama S. Aboulmagd	Xiaogang Chen	Daniel N. Harkins
Santosh P. Abraham	Minho Cheong	Brian D. Hart
Tomoko Adachi	George Cherian	Chris Hartman
Kare Agardh	Dmitry Cherniavsky	Victor Hayes
Jaehyun Ahn	Zhipei Chi	Shiwen He
Jinsoo Ahn	Hangyu Cho	Allen Heberling
Woojin Ahn	Joongwon Cho	Ahmadreza Hedayat
Roberto Aiello	In-Kyeong Choi	Carolyn Heide
Carlos H. Aldana	Jinsoo Choi	Robert F. Heile
Yaron Alpert	Sangsun Choi	Jerome Henry
Carol Ansley	Sayantan Choudhury	Guido R. Hiertz
Tsuguhide Aoki	Liwen Chu	Koji Horisaki
Lee R. Armstrong	Jinyoung Chun	Jing-Rong Hsieh
Yusuke Asai	John Coffey	Lei Huang
Alfred Asterjadhi	Kenneth Coop	Po-Kai Huang
Kwok Shum S. Au	Carlos Cordeiro	Rongsheng Huang
Vijay Auluck	Subir Das	John Humbert
Stefan Aust	Rolf J. de Vegt	David Hunter
Shahnaz Azizi	Der-Jiunn Deng	George Hurtarte
Alireza Babaei	Thomas Derham	Yasuhiro Inoue
Eugene Baik	Klaus Doppler	Koichi Ishihara
Gabor Bajko	Malcolm Dowse	Mitsuru Iwaoka
Phillip Barber	JiaDong Du	Amin Jafarian
Stephane Baron	Richard Edgar	Alan Jauh
Gwendolyn Barriac	Marc Emmelmann	Chanyong Jeong
Nehru Bhandaru	Iksoo Eo	Jinjing Jiang
Andre Bourdoux	Vinko Erceg	Robert Jiang
John Butington	Zhong Fan	Liang Jin
Ann Bynum	Ping Fang	Nihar Jindal
Lin Cai	Yonggang Fang	Allan Jones
Yu Cai	Matthew J. Fischer	Vincent Knowles Jones
George Calcev	Dan Gal	Kaushik Josiam
Chris Calvert	Chittabrata Ghosh	Carl W. Kain
Radhakrishna Canchi	Monisha Ghosh	Naveen K. Kakani
Fengming Cao	James P. Gilb	Hyunduk Kang
Rui Cao	Tim Godfrey	Hyunjeong Kang
Cagatay Capar	Michael Grigat	Masami Katagiri
Laurent Cariou	Russell Haines	Richard H. Kennedy
William Carney	David Halls	John Kenney
Soo-Young Chang	Christopher J. Hansen	Stuart J. Kerry
Clint F. Chaplin	Peng Hao	Evgeny Khorov
Jiamin Chen	Nathaniel Hardison	Sangwon Ki

Jaehwan Kim	Kaiying Lv	Cheol Ryu
Jeehoon Kim	Michael Lynch	Kiseon Ryu
Jeongki Kim	Jouni K. Malinen	Bahareh Sadeghi
Joonsuk Kim	Alexander Maltsev	Takenori Sakamoto
Kyeongpyo Kim	Hiroshi Mano	Kazuyuki Sakoda
Sang Gook Kim	James Marin	Hemanth Sampath
Suhwook Kim	Roger Marks	Behcet Sarikaya
Yongho Kim	Simone Merlin	Ioannis Sarris
Youhan Kim	James Miller	Sigurd Schelstraete
Younghoo Kim	Apurva Mody	Daniel Schneider
Akira Kishida	Pooya Monajemi	Andy Scott
Shoichi Kitazawa	Michael Montemurro	Jonathan Segev
Jarkko Kneckt	Hiroki Mori	Yongho Seok
Gwangzeen Ko	Kenichi Mori	Kunal Shah
Fumihide Kojima	Masahito Mori	Stephen J. Shellhammer
Tom Kolze	Hitoshi Morioka	Ian Sherlock
Igal Kotzer	Yuichi Morioka	Jung-Chul Shin
Bruce P. Kraemer	Ronald Murias	Robert Slater
Maciej Krasicki	Andrew Myles	Graham K. Smith
Byung-Jae Kwak	Toshihisa Nabetani	Ju-Hyung Son
Jin-Sam Kwak	Yukimasa Nagai	JungBo B. Son
Joseph Kwak	Hiroki Nakano	Hayeong Song
Hyounghin Kwon	Sai Shankar S. Nandagopalan	Sudhir Srinivasa
Yong-Jin Kwon	Chiu Ngo	Jung Hoon H. Suh
Young Hoon H. Kwon	Paul Nikolich	Bo Sun
Massinissa Lalam	Eric Nordstrom	Li-Hsiang Sun
Paul Lambert	John Notor	Sheng Sun
Zhou Lan	Jinhyung Oh	Yakun Sun
James Lansford	Jong-Ee Oh	Kazuaki Takahashi
Daewon Lee	Minseok Oh	Mineo Takai
Hongsup Lee	Min-Seok Oh	Yasushi Takatori
Jae Seung S. Lee	Robert Olesen	Sagar Tamhane
Jehun Lee	Oghenekome Oteri	Tomoya Tandai
Joonsoo Lee	Kazuyuki Ozaki	Rakesh Taori
Wookbong Lee	Santosh Ghanshyam G. Pandey	Alireza Tarighat
Young Ha Lee	Jiyoung Pang	Bin Tian
Yuro Lee	Babis Papadopoulos	Jens Tingleff
Zhongding Lei	Thomas Pare	Fei Tong
James Lepp	Eunsung Park	Payam Torab
Joseph Levy	Giwon Park	Filippo Tosato
Bo Li	Hyungu Park	Toshimitsu Tsubaki
Dejian Li	Jaewoo Park	Kazuyoshi Tsukada
Feng Li	Glenn Parsons	Esa Tuomaala
Guoqing Li	Xiaoming Peng	Richard D. Van Nee
Huan-Bang Li	Eldad Perahia	Allert Van Zelst
Jing Li	Stephanie Pereira	Lorenzo Vangelista
Qinghua Li	Hakan Persson	Prabodh Varshney
Yunbo Li	James E. Petranovich	Ganesh Venkatesan
Zhiqiang Li	Albert Petrick	Sriram Venkateswaran
Dong Guk Lim	Walter Piencik	Sameer Vermani
Yingpei Lin	Steve Pope	Gabriel Villardi
Der-Zheng Liu	Ron Porat	George A. Vlantis
Jianhan Liu	Rethnakaran Pulikkoonattu	Chao Chun Wang
Le Liu	Emily H. Qi	Haiguang Wang
Pei Liu	Verotiana Rabarjaona	Haiming Wang
Yong Liu	Demir Rakanovic	James June J. Wang
Peter Loc	Stephen G. Rayment	Lei Wang
Hui-Ling Lou	Edward Reuss	Qi Wang
Su Lu	Maximilian Riegel	Xiaofei Wang
Chuck Lukaszewski	Mark Rison	Xuehuan Wang
Jun Luo	Zhigang Rong	Lisa Ward
Yi Luo	Richard Roy	Fujio Watanabe

IEC/NOMENCLATURE : Click to view the [PDF](#) of ISO/IEC/IEEE 8802-11:2018/AMD4:2020

Zou Wei-Xia
 Menzo M. Wentink
 Leif Wilhelmsson
 Eric Wong
 Harry R. Worstell
 Tianyu Wu
 Pengfei Xia
 Yan Xin
 Mingguang Xu
 Akira Yamada
 Rongzhen Yang
 Xun Yang

Xun Yang
 Yunsong Yang
 Ke Yao
 James Yee
 Peter Yee
 Su Khiong K. Yong
 Larry Yonge
 Christopher Young
 Chinghwa Yu
 Heejung Yu
 Mao Yu

Tevfik Yucek
 Ji-Hoon Yun
 Katsuo D. Yunoki
 Hongyuan Zhang
 Jiayin Zhang
 Yan Zhang
 Mu Zhao
 Jingyi Zhou
 Chunhui Zhu
 Hufei Zhu
 Lan Zhuo
 Juan Carlos Zuniga

The following members of the individual balloting committee voted on this amendment. Balloters may have voted for approval, disapproval, or abstention.

Osama Aboulmagd
 Tomoko Adachi
 Thomas Alexander
 Nobumitsu Amachi
 Carol Ansley
 Butch Anton
 Alfred Asterjadhi
 Kwok Shum S. Au
 Stefan Aust
 Michael Bahr
 Harry Bims
 Demetrio Bucaneg
 William Byrd
 William Carney
 Juan Carreon
 Jiamin Chen
 Keith Chow
 Charles Cook
 Sourav Dutta
 Donald E. Eastlake, III
 Richard Edgar
 Michael Fischer
 Avraham Freedman
 Tim Godfrey
 David Goodall
 Eric W Gray
 Randall Groves
 Michael Gundlach
 Stephen Haddock
 Mark A. Hamilton

Shiwen He
 Marco Hernandez
 Werner Hoelzl
 Noriyuki Ikeuchi
 Yasuhiko Inoue
 Sergiu Iordanescu
 Akio Iso
 Atsushi Ito
 Raj Jain
 SangKwon Jeong
 Piotr Karocki
 Stuart J. Kerry
 Evgeny Khorov
 Yongbum Kim
 Yasushi Kudoh
 Thomas Kurihara
 James Lepp
 Dejian Li
 Elvis Maculuba
 Jouni K. Malinen
 Roger Marks
 Jeffery Masters
 Stephen McCann
 Michael McInnis
 Michael Montemurro
 Ronald Murias
 Andrew Myles
 Michael Newman
 Nicks A. Nikjoo
 Paul Nikolich
 Robert O'Hara

Satoshi Oyama
 Clinton Powell
 Venkatesha Prasad
 Maximilian Riegel
 Robert Robinson
 Benjamin Rolfe
 Richard Roy
 Shigenobu Sasaki
 Naotaka Sato
 Andy Scott
 Ian Sherlock
 Graham K. Smith
 Robert Stacey
 Dorothy V. Stanley
 Thomas Starai
 Walter Struppler
 Mark Sturza
 Pedro Tonhozi de Oliveira
 Mark-Rene Uchida
 Lorenzo Vangelista
 Dmitri Varsanofiev
 Ganesh Venkatesan
 George A. Vlantis
 Khurram Waheed
 Haiming Wang
 Lei Wang
 Xiaofei Wang
 Karl Weber
 Yunsong Yang
 Oren Yuen

IECNORM.COM - Click to view the official PDF of ISO/IEC/IEEE 8802-11:2018/AMD4:2020

When the IEEE-SA Standards Board approved this amendment on 8 March 2018, it had the following membership:

Jean-Philippe Faure, Chair
Gary Hoffman, Vice Chair
John D. Kulick, Past Chair
Konstantinos Karachalios, Secretary

Ted Burse
Guido R. Hiertz
Christel Hunter
Joseph L. Koepfinger*
Thomas Koshy
Hung Ling
Dong Liu

Xiaohui Liu
Kevin Lu
Daleep Mohla
Andrew Myles
Paul Nikolich
Ronald C. Petersen
Annette D. Reilly

Robby Robson
Dorothy Stanley
Mehmet Ulema
Phil Wennblom
Philip Winston
Howard Wolfman
Jingyi Zhou

*Member Emeritus

IECNORM.COM : Click to view the full PDF of ISO/IEC/IEEE 8802-11:2018/AMD4:2020

Introduction

This introduction is not part of IEEE Std 802.11ak-2018, IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—Part 11: Wireless LAN MAC and PHY Specifications—Amendment 3: Enhancements for Transit Links Within Bridged Networks.

IEEE Std 802.11™ was originally designed with the assumption that non-access point (non-AP) non-mesh stations (STAs) would be leaf nodes of the network. This amendment extends IEEE Std 802.11 so that communication links can be established between general link (GLK) STAs that are usable as transit links inside an IEEE 802.1Q™ network.

Areas of extension and related improvements include the following:

- a) Optional support of IEEE 802® length/type (EPD) frame encoding, as opposed to ISO/IEC 8802-2: 1998 logical link control (LLC) encoding (LPD).
- b) Facilities for GLK APs to send group addressed Data GLK frames to a subset of receiving GLK STAs.
- c) Priority code points in IEEE Std 802.1Q™ have a different default meaning than they do in IEEE Std 802.1D™. For example, in IEEE Std 802.1Q, priority 2 is, by default, higher priority than priority 1, while in IEEE Std 802.1D, it is lower. Thus it is suggested in Annex V that GLK associations use a Priority code point to user priority mapping in their corresponding IEEE 802.1Q bridge port.
- d) Accessibility to the wireless medium via one or more Internal Sublayer Service service access points (SAPs) that map to attached bridge ports.
- e) Improvement of groupcast with retries (GCR) setup to extend GCR to GLK STAs.

Contents

1.	Overview	18
1.3	Supplementary information on purpose	18
2.	Normative references	19
3.	Definitions, acronyms, and abbreviations	19
3.1	Definitions	19
3.2	Definitions specific to IEEE Std 802.11	19
3.4	Abbreviations and acronyms	20
4.	General description	20
4.2	How wireless local area networks (WLANs) are different	20
4.2.5	Interaction with other IEEE 802® layers	20
4.3	Components of the IEEE 802.11 architecture	20
4.3.5	Distribution system (DS) concepts	20
4.3.5.1	Overview	20
4.3.7	Integration with non-IEEE 802.11 LANs	20
4.3.20	Mesh BSS	21
4.3.20.4	IEEE 802.11 components and mesh BSS	21
4.3.27	General link (GLK)	21
4.3.27.1	General	21
4.3.27.2	Selective reception of group addressed frames	22
4.3.27.3	GLK service sets	23
4.3.27.3.1	Provision of the MAC service	23
4.3.27.3.2	GLK IBSS and PBSS	23
4.3.27.3.3	Infrastructure BSS with general links	25
4.3.27.3.4	Infrastructure BSSs with general links in the presence of an ESS	26
4.3.28	Ethertype protocol discrimination (EPD)	27
4.5	Overview of the services	28
4.5.2	Distribution of MSDUs within a DS	28
4.5.2.1	Distribution	28
4.5.3	<u>Connectivity-related services that support the distribution service and the PCP service</u>	28
4.5.3.3	Association	28
4.5.3.4	Reassociation	29
4.5.3.5	Disassociation	29
4.6	Multiple logical address spaces	29
5.	MAC service definition	30
5.1	Overview of MAC services	30
5.1.1	Data service	30
5.1.1.1	General	30
5.1.1.2	Determination of UP	30
5.1.1.3	Interpretation of priority parameter in MAC service primitives	30
5.1.4	MSDU format	30
5.1.5	MAC data service architecture	31
5.1.5.1	General	31

5.1.5.2	<u>Non-GLK n</u> Non-AP STA role	34
5.1.5.3	<u>Non-GLK AP</u> role	34
5.1.5.4	<u>Non-GLK m</u> Mesh STA role	34
5.1.5.6	S1G Relay	34
5.1.5.7	GLK STA role	34
5.1.5.8	GLK AP role	34
5.1.5.9	GLK mesh STA role	36
5.2	MAC data service specification	36
5.2.1	General	36
5.2.1a	GLK MAC data service specification	36
5.2.2	MA-UNITDATA.request	37
5.2.2.1	Function	37
5.2.2.2	Semantics of the service primitive	37
5.2.2.3	When generated	38
5.2.2.4	Effect of receipt	38
5.2.3	MA-UNITDATA.indication	38
5.2.3.1	Function	38
5.2.3.2	Semantics of the service primitive	38
5.2.3.3	When generated	39
5.2.3.4	Effect of receipt	39
5.2.4	MA-UNITDATA-STATUS.indication	39
5.2.4.1	Function	39
5.2.4.2	Semantics of the service primitive	39
5.2.4.3	When generated	39
5.2.4.4	Effect of receipt	39
6.	Layer management	40
6.3	MLME SAP interface	40
6.3.3	Scan	40
6.3.3.2	MLME-SCAN.request	40
6.3.3.2.2	Semantics of the service primitive	40
6.3.7	Associate	41
6.3.7.2	MLME-ASSOCIATE.request	41
6.3.7.2.2	Semantics of the service primitive	41
6.3.7.3	MLME-ASSOCIATE.confirm	42
6.3.7.3.2	Semantics of the service primitive	42
6.3.7.4	MLME-ASSOCIATE.indication	43
6.3.7.4.2	Semantics of the service primitive	43
6.3.7.5	MLME-ASSOCIATE.response	44
6.3.7.5.2	Semantics of the service primitive	44
6.3.8	Reassociate	45
6.3.8.2	MLME-REASSOCIATE.request	45
6.3.8.2.2	Semantics of the service primitive	45
6.3.8.3	MLME-REASSOCIATE.confirm	46
6.3.8.3.2	Semantics of the service primitive	46
6.3.8.4	MLME-REASSOCIATE.indication	48
6.3.8.4.2	Semantics of the service primitive	48
6.3.8.5	MLME-REASSOCIATE.response	49
6.3.8.5.2	Semantics of the service primitive	49
9.	Frame formats	50
9.2	MAC frame formats	50

9.2.4	Frame fields	50
9.2.4.1	Frame Control field	50
9.2.4.1.4	To DS and From DS subfields	50
9.3	Format of individual frame types.....	51
9.3.1	Control frames	51
9.3.1.8	BlockAckReq frame format.....	51
9.3.1.8.1	Overview.....	51
9.3.1.8.7	GLK-GCR BlockAckReq variant.....	52
9.3.1.9	BlockAck frame format	52
9.3.1.9.1	Overview.....	52
9.3.1.9.7	GLK-GCR BlockAck variant	53
9.3.2	Data frames	54
9.3.2.1	Format of Data frames	54
9.3.2.1.1	General.....	54
9.3.2.1.2	Address and BSSID fields	54
9.3.2.1.3	Other MAC Header fields.....	57
9.3.2.1.4	The frame body	57
9.3.2.1.5	Duration field.....	58
9.3.3	9.3.3 Management frames.....	58
9.3.3.6	Association Request frame format.....	58
9.3.3.7	Association Response frame format	59
9.3.3.8	Reassociation Request frame format	59
9.3.3.9	Reassociation Response frame format.....	59
9.4	Management and Extension frame body components	60
9.4.1	Fields that are not elements	60
9.4.1.4	Capability Information field	60
9.4.1.9	Status Code field.....	60
9.4.1.11	Action field	61
9.4.2	Elements.....	61
9.4.2.1	General	61
9.4.2.3	Supported Rates and BSS Membership Selectors element.....	61
9.4.2.27	Extended Capabilities element.....	62
9.4.2.128	DMG Capabilities element	62
9.4.2.128.2	DMG STA Capability Information field	62
9.4.2.232	GLK-GCR Parameter Set element.....	63
9.6	Action frame format details	64
9.6.31	GLK Action frame details.....	64
9.6.31.1	GLK Action field	64
9.6.31.2	GLK Groupcast Mode Change Notification	64
10.	MAC sublayer functional description.....	65
10.2	MAC architecture	65
10.2.8	MAC data service	65
10.3	DCF	65
10.3.6	Group addressed MPDU transfer procedure.....	65
10.12	A-MSDU operation.....	65
10.24	Block acknowledgment (block ack)	66
10.24.1	Introduction	66
10.24.2	Set up and modification of the block ack parameters	66
10.24.3	Data and acknowledgment transfer using immediate block ack policy and delayed block ack policy.....	66
10.24.5	Teardown of the block ack mechanism	66
10.24.6	Selection of BlockAck and BlockAckReq variants	67

10.24.10 GCR and GLK-GCR block ack	67
10.24.10.1 Introduction.....	67
10.24.10.2a Scoreboard context control during GLK-GCR block ack	67
10.24.10.3 GCR block ack BlockAckReq and BlockAck frame exchanges	68
10.61 Addressing of GLK data frame transmission	69
10.62 SYNRA filtering operation.....	69
11. MLME	70
11.2 Power management.....	70
11.2.3 Power management in a non-DMG infrastructure network.....	70
11.2.3.1 General.....	70
11.2.3.3 AP TIM transmissions	70
11.2.3.4 TIM types.....	71
11.2.3.6 AP operation during the CP.....	71
11.2.3.7 AP operation during the CFP.....	72
11.2.9 Power management with general links	73
11.3 STA authentication and association.....	73
11.3.5 Association, reassociation, and disassociation	73
11.3.5.3 AP or PCP association receipt procedures.....	73
11.3.5.4 Non-AP and non-PCP STA reassociation initiation procedures	73
11.3.5.5 AP or PCP reassociation receipt procedures.....	74
11.24 Wireless network management procedures	74
11.24.16 Group addressed transmission service	74
11.24.16.3 GCR procedures.....	74
11.24.16.3.1 Overview	74
11.24.16.3.2 GCR group membership procedures.....	74
11.24.16.3.3 GCR setup procedures	74
11.24.16.3.4 GCR frame exchange procedures	74
11.24.16.3.5 Concealment of GCR transmissions	75
11.24.16.3.6 GCR unsolicited retry	75
11.24.16.3.7 GCR block ack	75
11.24.16.3.8 GCR-SP	75
11.24.16.4 GLK-GCR.....	75
11.24.16.4.1 Overview.....	75
11.24.16.4.2 GLK-GCR frame exchange procedures	75
11.24.16.4.3 GLK-GCR unsolicited retry	76
11.24.16.4.4 GLK-GCR block ack	76
11.51 GLK operation	76
11.51.1 General.....	76
11.51.2 Reported general link metrics	76
11.52 EPD operation	78
14. MLME mesh procedures	78
14.1 Mesh STA dependencies	78
14.2 Mesh discovery	78
14.2.3 Mesh profile	78
14.11 Interworking with the DS <u>or</u> an attached bridge.....	79
14.11.1 Overview of interworking between a mesh BSS and a DS <u>or</u> attached bridge	79
Annex A (informative) Bibliography	80

IECNORM.COM: Click to View the Official ISO/IEC/IEEE 8802-11:2018/Amd.4:2020

Annex B (normative) Protocol Implementation Conformance Statement (PICS) proforma.....	81
B.4 PICS proforma—IEEE Std 802.11-2016.....	81
Annex C (normative) ASN.1 encoding of the MAC and PHY MIB	82
C.3 MIB detail	82
Annex M (informative) <u>EPD and LPD headers and the iIntegration function</u>	88
M.1 Introduction.....	88
M.2 <u>Ethernet V2.0/IEEE 802.3 LAN iIntegration function header conversions</u>	88
M.3 <u>Example A-MSDU subframes</u>	89
M.4 Integration service versus bridging.....	90
Annex N (informative) AP functional description	92
N.1 Introduction.....	92
Annex R (informative) Interworking with external networks	93
R.3 QoS mapping guidelines for interworking with external networks.....	93
Annex X (informative) Link rate considerations	95

IECNORM.COM : Click to view the full PDF of ISO/IEC/IEEE 8802-11:2018/Amd.4:2020

Tables

Table 9-3—To/From DS combinations in Data frames.....	50
Table 9-22—BlockAckReq frame variant encoding	51
Table 9-24—BlockAck frame variant encoding.....	52
Table 9-26—Address field contents	55
Table 9-26a—SYNRA Type field encoding	56
Table 9-29—Association Request frame body	58
Table 9-30—Association Response frame body	59
Table 9-31—Reassociation Request frame body.....	59
Table 9-32—Reassociation Response frame body	59
Table 9-46—Status codes	60
Table 9-47—Category values	61
Table 9-77—Element IDs	61
Table 9-78—BSS membership selector value encoding	61
Table 9-135—Extended Capabilities field	62
Table 9-262ag—GLK-GCR Retransmission Policy subfield.....	63
Table 9-421ag—GLK Action field values.....	64
Table 9-421ah—GLK Groupcast Mode Change Notification frame format	64
Table M-1—IEEE 802.11 integration service STT	88
Table M-2—Ethernet/IEEE 802.3 to IEEE 802.11 translation	89
Table M-3—IEEE 802.11 to Ethernet/IEEE 802.3 translation	89
Table M-1—EPD and LPD MSDU headers.....	89
Table R-3a—Suggested default priority code point to UP mapping.....	93
Table R-4—Suggested default UP to priority code point mapping.....	94

IECNORM.COM : Click to view the full PDF of ISO/IEC/IEEE 8802-11:2018/Amd.4:2020

Figures

Figure 4-13a—Example of GLK IBSS or PBSS	24
Figure 4-13b—Example of infrastructure BSS with general links.....	26
Figure 4-13c—Example of an ESS and extended network with general links.....	27
Figure 5-1—MAC data plane architecture	32
Figure 5-2—MAC data plane architecture (transparent FST)	33
Figure 5-3—Role-specific behavior for a <u>non-GLK</u> non-AP STA	34
Figure 5-4—Role-specific behavior for a <u>non-GLK</u> AP	34
Figure 5-7—S1G relay data plane architecture	34
Figure 5-8—Role-specific behavior block for a GLK STA	35
Figure 5-9—Role-specific behavior block for a mixed-mode GLK AP.....	35
Figure 5-10—Role-specific behavior block for a GLK mesh STA.....	36
Figure 9-27—BAR Control field.....	51
Figure 9-33—BA Control field.....	52
Figure 9-38a—BA Information field format (GLK-GCR BlockAck).....	53
Figure 9-53—Data frame	54
Figure 9-53a—Format of an RA field carrying a SYNRA.....	56
Figure 9-53b—Basic SYNRA Control subfield	56
Figure 9-68—Capability Information field (non-DMG STA).....	60
Figure 9-69—Capability Information field (DMG STA)	60
Figure 9-504—DMG STA Capability Information field format	62
Figure 9-589ds—GLK-GCR Parameter Set element format.....	63
Figure 9-589dt—GLK-GCR Parameters field format	63
Figure M-1—EPD BPDU subframe	90
Figure M-2—EPD VLAN tagged IPv4 subframe	90
Figure M-3—EPD VLAN tagged IS-IS subframe	90

IECNORM.COM : Click to view the full PDF of ISO/IEC/IEEE 8802-11:2018/Amd.4:2020

**IEEE Standard for Information technology—
Telecommunications and information exchange between systems
Local and metropolitan area networks—
Specific requirements**

**Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications**

**Amendment 4: Enhancements for Transit Links
Within Bridged Networks**

(This amendment is based on IEEE Std 802.11™-2016 as amended by IEEE Std 802.11ai™-2016, IEEE Std 802.11ah™-2016, and IEEE Std 802.11aj™-2018.)

NOTE—The editing instructions contained in this amendment define how to merge the material contained here into the base document and its other amendments to form the new comprehensive standard.

Editing instructions are shown ***bold italic***. Four editing instructions are used: change, delete, insert, and replace. ***Change*** is used to make corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using either ***strikethrough*** (to remove old material) or ***underscore*** (to add new material). ***Delete*** removes existing material. ***Insert*** adds new material without disturbing the existing material. Insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. ***Replace*** is used to make large changes in existing text, subclauses, tables, or figures by removing existing material and replacing it with new material. Editorial notes will not be carried over into future editions because the changes will be incorporated into the base standard.¹

1. Overview

1.3 Supplementary information on purpose

Insert the following item at the end of the dashed list in 1.3:

- Defines the mechanisms for communications over the wireless medium used as a link in an IEEE 802.1Q™ bridged network.

¹ Notes in text, tables, and figures are given for information only and do not contain requirements needed to implement the standard.

2. Normative references

Insert the following normative reference into Clause 2 in alphanumeric order:

IEEE Std 802.1AC™-2016, IEEE Standard for Local and metropolitan area networks—Media Access Control (MAC) Service Definition.

3. Definitions, acronyms, and abbreviations

3.1 Definitions

Change the following definition in 3.1 as shown:

distribution system access function (DSAF): A function within an access point (AP) or mesh gate that uses the medium access control (MAC) service and distribution system service (DSS) to provide access between the distribution system (DS) and the wireless medium (WM). Within a general link (GLK) AP or GLK mesh station (STA), the DSAF also switches GLK traffic to the GLK convergence function and from there to the IEEE 802.1Q bridge port.

3.2 Definitions specific to IEEE Std 802.11

Insert the following definitions into 3.2 in alphabetic order:

attached bridge: An IEEE 802.1Q bridge that has one or more bridge port Enhanced Internal Sublayer Service (EISS) interfaces supported by general links (GLKs) provided by a GLK access point (AP), GLK non-AP station (STA), GLK mesh STA, or GLK independent basic service set (IBSS) STA.

general link (GLK): A point-to-point connection between two instances of the IEEE 802.1D Internal Sublayer Service that uses an IEEE 802.11 wireless link between stations (STAs). A general link is suitable for use in an IEEE 802.1Q bridged network.

general link (GLK) convergence function: The convergence function defined in IEEE Std 802.1AC between an IEEE 802.11 medium access control (MAC) and an IEEE 802.1Q bridge.

general link groupcast with retries (GLK-GCR): A variant of GCR that specifies the use of GCR for general link.

general link (GLK) station (STA): A STA that implements GLK functionality.

Change the following definition in 3.2 as shown:

medium access control (MAC) service tuple: The collection of a MAC service data unit (MSDU) along with the associated source address, destination addresses, priority, and service class, optional set of service access point identifiers, and optional indication of whether the supplied associated with the MSDU is in EtherType Protocol Discrimination (EPD) or Logical link control (LLC) Protocol Discrimination (LPD) format, which are all passed as parameters across the MAC service access point (SAP) and are all except the service access point identifiers delivered across the distribution system between access points (APs), mesh gates, and the portal of an extended service set (ESS).

Insert the following definitions into 3.2 in alphabetic order:

method-specific service access point (SAP) (MS-SAP): The point at which an instance of the IEEE 802.11 method-specific medium access control (MAC) service is offered.

synthetic receiver address (SYNRA): A constructed group address used by a general link (GLK) access point (AP) as a receiver address to forward frames to a subset of GLK non-AP stations (STAs), as required by IEEE 802.1Q bridges.

3.4 Abbreviations and acronyms

Insert the following abbreviations into 3.4 in alphabetic order:

GLK	general link
GLK-GCR	general link groupcast with retries
MS-SAP	method specific service access point
SYNRA	synthetic receiver address

4. General description

4.2 How wireless local area networks (WLANs) are different

4.2.5 Interaction with other IEEE 802[®] layers

Change the first sentence of the first paragraph of 4.2.5 as follows:

IEEE Std 802.11 is required to appear to higher layers [logical link control (LLC)sublayer] as a general-purpose IEEE 802 LAN.

4.3 Components of the IEEE 802.11 architecture

4.3.5 Distribution system (DS) concepts

4.3.5.1 Overview

Change the second paragraph of 4.3.5.1 as follows:

Instead of existing independently, an infrastructure BSS might also form a component of an extended form of network that is built with multiple BSSs. The architectural component used to interconnect infrastructure BSSs is the DS for non-general link (non-GLK) operation. The DS and extended service set (ESS) are mechanisms for expanding connectivity for non-GLK operation. For GLK operation, an IEEE 802.1Q bridge might be used to form an extended network (see 4.3.27).

4.3.7 Integration with non-IEEE 802.11 LANs

Change the first paragraph of 4.3.7 as follows:

To integrate the IEEE 802.11 non-GLK architecture with a non-IEEE 802.11 LAN, including a traditional wired LAN, a final logical architectural component is introduced—a *portal*. The IEEE 802.11 GLK architecture (see 4.3.27) does not include the concept of a portal.

4.3.20 Mesh BSS

4.3.20.4 IEEE 802.11 components and mesh BSS

Change the second and third paragraphs of 4.3.20.4 as follows:

However, instead of existing independently, an MBSS might also interconnect with other BSSs through aeeesss the distribution system (DS) or a bridged LAN. The MBSS interconnects with other BSSs through the DS. Then, mesh STAs can communicate with nonmesh STAs. Therefore, a A logical architectural component is introduced in order to integrate the non-GLK mesh STA MBSS with the DS—the mesh gate. Data move between a non-GLK an MBSS and the DS via one or more mesh gates. Thus the mesh gate is the logical point at which MSDUs from an a non-GLK MBSS enter the IEEE 802.11 DS, via the DSAF. In a GLK MBSS, mesh STAs can communicate with nonmesh STAs via a GLK mesh STA with an attached bridge port and from there to the bridged LAN. Once an MBSS contains a mesh gate that connects it to the IEEE 802.11 DS or a GLK mesh STA that connects it to a bridge port, the MBSS can be integrated with other infrastructure BSSs too, given that their APs connect to the same DS or bridged network. Several mesh gates are shown in Figure 4-9 connecting different MBSSs to the DS.

When an MBSS accesses the IEEE 802.11 DS or a bridged network through its mesh gate, the MBSS can be integrated with a non-IEEE-802.11 LAN. To integrate the IEEE 802.11 a DS to which this MBSS connects, the DS needs to contain a portal. See 4.3.7. Consequently, mesh gate and portal are different entities. The portal integrates the IEEE 802.11 architecture with a non-IEEE-802.11 LAN (e.g., a traditional wired LAN), whereas the The mesh gate integrates the MBSS with the IEEE 802.11 DS. A GLK mesh STA integrates the MBSS with a bridged network.

Insert the following subclauses (4.3.27 and 4.3.28, including Figure 4-13a, Figure 4-13b, and Figure 4-13c) after 4.3.26:

4.3.27 General link (GLK)

4.3.27.1 General

GLK STAs establish general links with other GLK STAs. These general links are suitable to be used as links inside an IEEE 802.1Q network. For an infrastructure general link example, see Figure 4-13b (in 4.3.27.3.3).

A GLK STA coordinates with a GLK convergence function to provide the Internal Sublayer Service, as defined in IEEE Std 802.1AC, to an IEEE 802.1Q bridge for each peer GLK STA with which it is communicating. GLK STAs also provides link metrics for the use of external path selection protocols such as spanning tree protocol.

A GLK STA that starts a BSS uses membership selector values to set the BSS policy of requiring or not requiring general link or Ethertype protocol discrimination (EPD) support for any STA that joins the BSS.

A non-AP STA acts as either a GLK STA or a non-GLK STA. A GLK AP might permit associations from non-GLK STAs and acts as a non-GLK AP for those associated non-GLK STAs. GLK DMG STAs can establish a general link through a DMG relay. GLK S1G STAs cannot use or be a S1G relay.

The four-address MAC header can be used in GLK transmissions of Data frames. The use of the four-address MAC header or basic A-MSDU format is necessary for such MPDUs if the frame's SA, TA, RA, and DA fields (source address, transmitter address, receiver address, and destination address, respectively) are all different from each other. The three-address frame format can be used, as defined by Table 9-3, provided the addresses are consistent with Table 9-26.

A SYNRA is a group address RA used by a GLK AP to forward frames to a subset of GLK non-AP STAs, as required by IEEE 802.1Q bridges. The use of a SYNRA can improve bandwidth usage in some cases. SYNRAs are used in GLK AP transmissions.

As described in 4.3.27.2, when a GLK AP transmits a Data frame with a four-address MAC header whose RA contains a group address, the contents of the RA is a synthetic receiver address (SYNRA), and therefore its RA and DA values will not be equal. A GLK non-AP STA supports selective reception of group addressed frames by supporting SYNRA reception.

4.3.27.2 Selective reception of group addressed frames

For the reasons given below, when transmitting a data MPDU that has a group address RA to a set of receiving STAs, the GLK transmitter needs to transmit those MSDUs so that they are accepted by a specified subset of the associated GLK STAs indicated by the IEEE 802.1Q bridge.

The reason for such selective reception is to support requirements of IEEE 802.1Q bridges and can include the MAC service requirements that, when an MSDU is sent, it is not subsequently received and processed by the transmitting station or to break loops in the network topology. When a GLK STA associated with a GLK AP sends an MSDU to that AP with a group address destination, the AP retransmits it and uses the selective reception facility to stop the originating GLK STA from accepting it. Also, since the AP Internal Sublayer Service SAPs are mapped to IEEE 802.1Q bridge ports, loop prevention might need the traffic to be blocked to one or more of the associated GLK STAs. Such blocking can be implemented by the selective reception facility.

Implementation of this selective reception facility in a BSS case includes use of a synthetic group address RA (SYNRA addressing, see 9.3.2.1.2). As an alternative to the use of a SYNRA, selective reception includes sending a copy of the Data frame to each intended receiver using individually addressed MPDUs. In either case, an appropriate address format is needed because the DA is different from the RA (since the RA is either the SYNRA or a serial individual RA). SYNRA addressed MPDUs are transmitted by APs only.

All GLK non-AP STAs in an infrastructure BSS support receipt of SYNRAs (see 9.3.2.1.2 and 10.66). A GLK AP that is requested to deliver an MPDU to multiple GLK STAs can choose to construct and transmit a SYNRA addressed MPDU, use a sequence of unicast MPDUs, or both.

Parameters exchanged during the association (or reassociation) of a GLK STA with a GLK AP determine the mechanism used by the GLK AP to enable selective reception at the GLK STA of group addressed frames transmitted by the GLK AP. One such mechanism is GLK-GCR, which is a subset of GCR customized for general links (see 11.24.16). In GLK-GCR the group address is a SYNRA. Features of GCR that do not apply to GLK-GCR are as follows:

- a) DMS Request and DMS Response frame exchange to set up GLK-GCR service
- b) ADDBA Request/Response frame exchange to setup block ack agreement
- c) GCR-SP delivery method
- d) Unsolicited DMS Response frame for “GCR Advertise”
- e) Concealment address

4.3.27.3 GLK Service Sets

4.3.27.3.1 Provision of the MAC service

MAC service data unit (MSDU) delivery services in an IEEE 802.1Q network can be supported by the IEEE 802.1AC MAC service. GLK STAs coordinate with an IEEE 802.1AC-compliant GLK convergence function, to provide access to the WM via one or more Internal Sublayer Service SAPs. The routing of all MSDUs that are provided by an IEEE 802.1Q relay entity via GLK STAs is controlled by the routing protocols of the IEEE 802.1Q network to which the GLK STA is attached. This enables the routing protocols to use all the general links available to the GLK STA.

4.3.27.3.2 GLK IBSS and PBSS

A GLK IBSS or GLK PBSS can provide access to the WM via general links that are suitable for use in an IEEE 802.1Q network. Figure 4-13a shows an example of a GLK IBSS (or equivalently a PBSS) involving three GLK non-AP STAs. Each participating STA provides MAC services at the MS-SAP, with the inclusion of a station vector that is then mapped to one or more Internal Sublayer Service SAPs by the IEEE 802.1AC GLK Convergence Function. Three general links are shown that connect three pairs of Internal Sublayer Service SAPs in a point-to-point manner. Each of the Internal Sublayer Service SAPs is then mapped to either an Enhanced Internal Sublayer Service (EISS) SAP or MAC-SAP, by the IEEE 802.1Q Media Independent Function or the Internal Sublayer Service to MAC-SAP function, respectively. The EISS SAP provides EISS services to the MAC relay entity of a VLAN bridge component (IEEE 802.1Q MAC Relay Entity). The MAC-SAP provides services to the LLC Sublayer.

NOTE—IEEE Std 802.11 does not specify the details of the IEEE 802.1AC GLK Convergence Function, the IEEE 802.1Q Media Independent Function, the Internal Sublayer Service to MAC-SAP function, the IEEE 802.1Q MAC Relay Entity, and the LLC Sublayer. These entities are specified in other documents such as IEEE Std 802.1AC™-2016 and IEEE Std 802.1Qbz™-2016 [B24a]. These entities are shown with dashed outlines in the figure. Entities that IEEE Std 802.11 does specify are shown with solid outlines and are within the box labeled “802.11 GLK IBSS/PBSS.”

A difference from a non-GLK STA’s IEEE 802.11 IBSS/PBSS is that either or both MAC-SAPs could directly connect to an IEEE 802.1Q bridge.

For example, each of the STAs and attached bridges (including the IEEE 802.1Q MAC Relay Entities) shown could be at the top of a rack in a data center to provide inter-rack connectivity. The two MAC-SAPs shown could even be safely connected to the same IEEE 802.1Q network, since such a network provides protection from loops.

Also, shown in the figure is the possibility to provide a point-to-point link between two LLC Sublayer entities that are each attached to a GLK non-AP STA. For example, this link could allow a computer attached to a GLK STA to directly connect to a network attached storage device attached to a GLK STA.

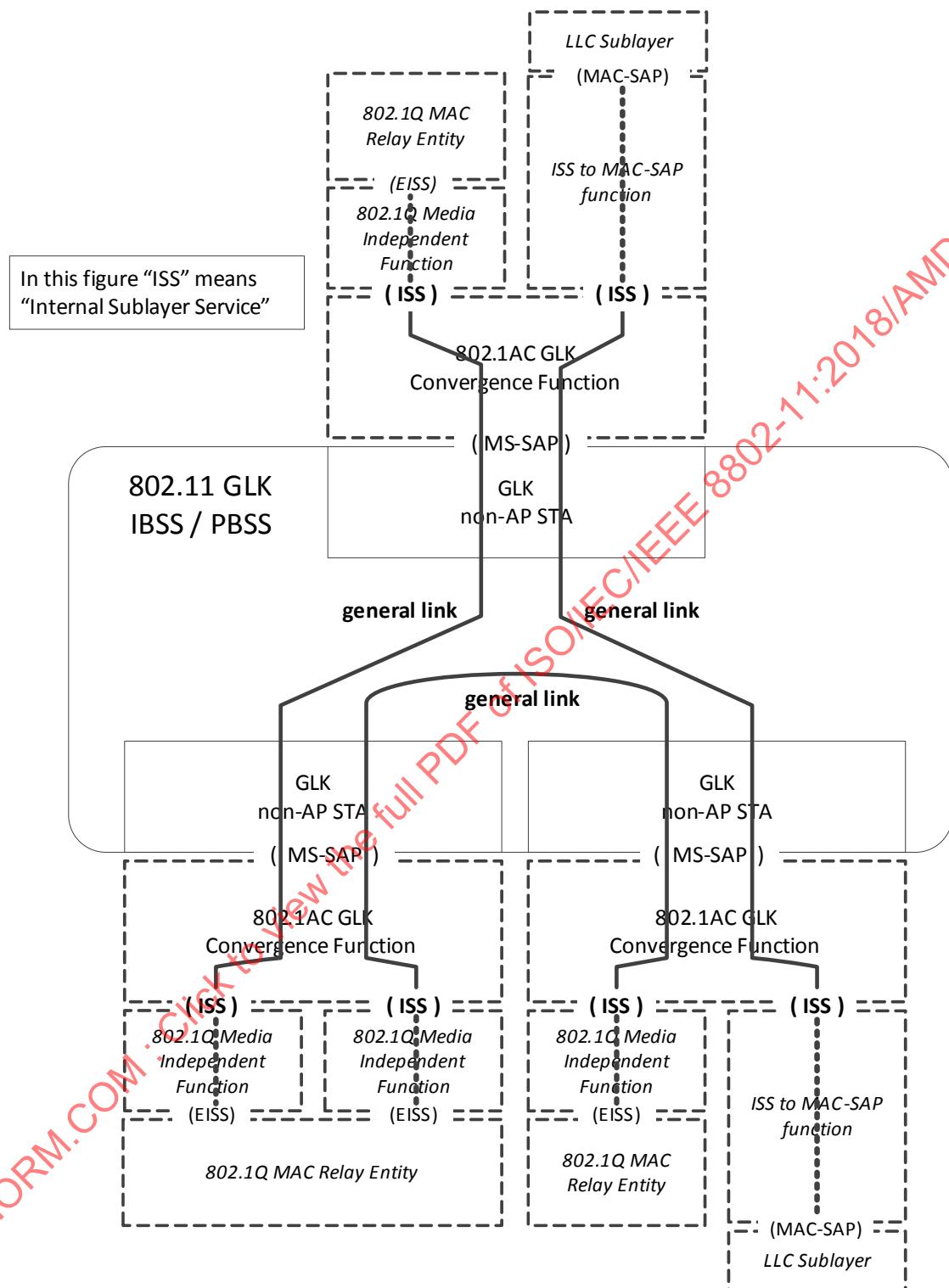


Figure 4-13a—Example of GLK IBSS or PBSS

4.3.27.3.3 Infrastructure BSS with general links

A GLK infrastructure BSS can provide access to the WM via general links that are suitable for use in an IEEE 802.1Q network. Figure 4-13b shows an example of a GLK infrastructure BSS with three GLK non-AP STAs and one GLK AP. Each participating STA provides MAC services at the MS-SAP, with the inclusion of a station vector that is then mapped to one or more Internal Sublayer Service SAPs by the IEEE 802.1AC GLK Convergence Function. Four general links are shown that connect four pairs of Internal Sublayer Service SAPs in a point-to-point manner. Each of the Internal Sublayer Service SAPs is then mapped, by the IEEE 802.1Q Media Independent Function or the Internal Sublayer Service to MAC-SAP function, to either an EISS SAP or a MAC-SAP, respectively. The EISS SAP provides EISS services to the MAC relay entity of a VLAN bridge component (IEEE 802.1Q MAC Relay Entity). The MAC-SAP provides services to the LLC Sublayer.

NOTE—IEEE Std 802.11 does not specify the details of the IEEE 802.1AC GLK Convergence Function, the IEEE 802.1Q Media Independent Function, the Internal Sublayer Service to MAC-SAP function, the IEEE 802.1Q MAC Relay Entity, and the LLC Sublayer. These entities are specified in other documents such as IEEE Std 802.1AC-2016 and IEEE Std 802.1Qbz-2016 [B24a]. These entities are shown with dashed outlines in the figure. Entities that IEEE Std 802.11 does specify are shown with solid outlines and are with in the box labeled “802.11 BSS.”

Although transmissions by an AP are typically received by all STAs associated with that AP, the service provided by a GLK infrastructure BSS might be considered as separate point-to-point links between the corresponding Internal Sublayer Service SAPs. Provisioning of such apparent point-to-point links is natural for MPDUs with an individually addressed RA. In order to provide such apparent point-to-point links for group addressed frames, the GLK AP can transmit them so that they are accepted by a subset of the associated GLK STAs. Such selective transmission can be provided through the GLK SYNRA addressing facility (see 4.3.27.2) or by serial transmissions to the desired receivers.

Three types of example general links are shown in Figure 4-13b:

- The first type is an infrastructure general link that connects a non-AP GLK STA attached bridge port of an IEEE 802.1Q MAC Relay Entity with an GLK AP attached bridge (two of these general links are shown in the figure). These links could be used to enhance the reliability and routing options of an IEEE 802.1Q-compliant LAN by providing redundant wireless links between the bridges in the LAN.
- The second type is a non-AP GLK STA to non-AP GLK STA link that connects the STAs' attached bridges (IEEE 802.1Q MAC Relay Entities). This type of general link is similar to the IBSS or PBSS STA to STA link.
- The third type of general link is a “leaf-node” type of general link that connects entities in the LLC layer attached to a non-AP GLK STA via a general link and an IEEE 802.1Q bridge attached to the GLK AP to another entity available via the IEEE 802.1Q network attached to the GLK AP. Such a general link could provide a connection between a network printer attached to the LAN and a computer attached to the non-AP GLK STA.

A difference between a GLK AP's IEEE 802.11 links and a non-GLK AP's IEEE 802.11 links, which can only be connected to an Internal Sublayer Service SAP via a DS and portal, is that an Internal Sublayer Service SAP could directly connect to an IEEE 802.1Q bridge.

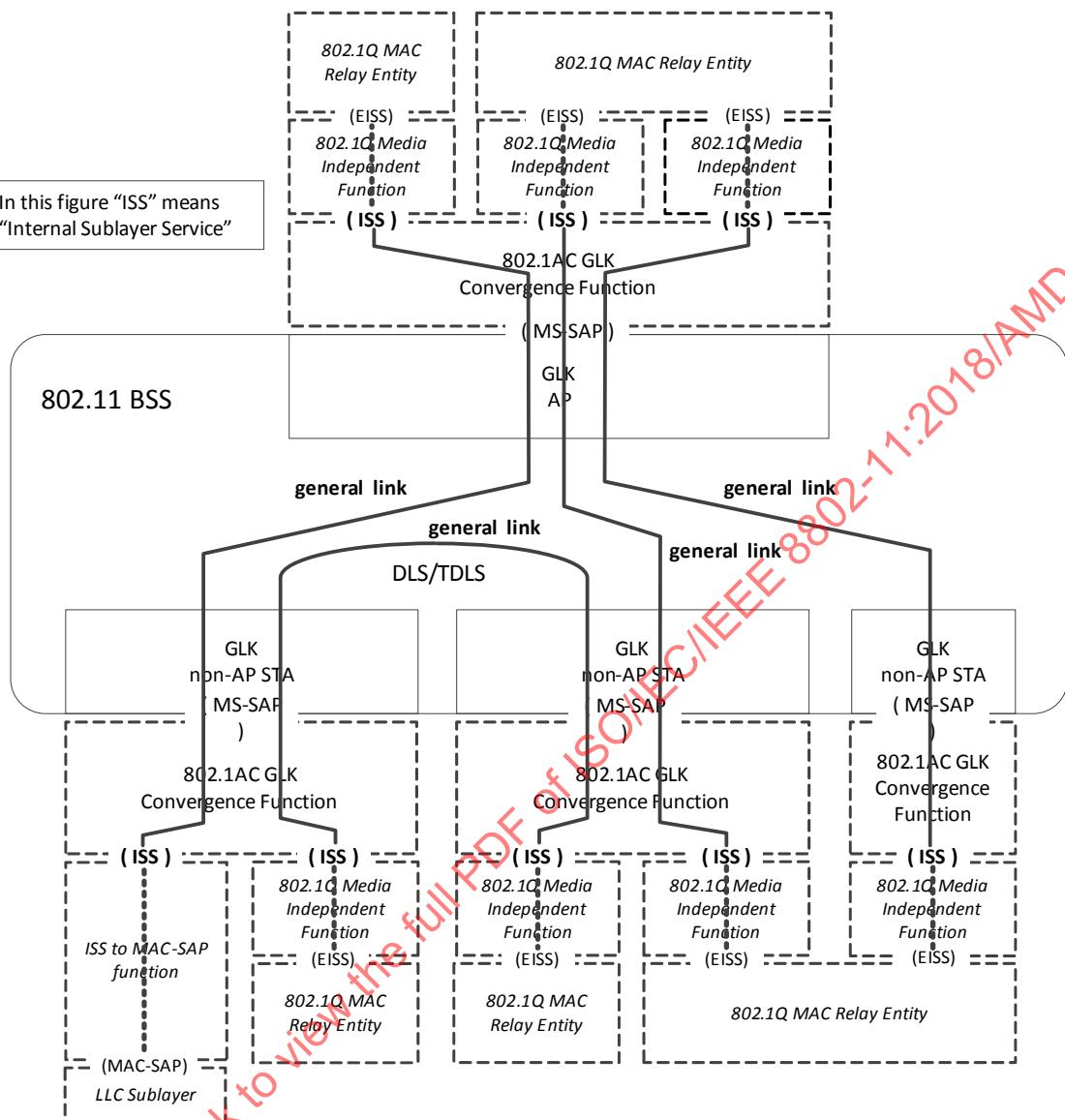


Figure 4-13b—Example of infrastructure BSS with general links

4.3.27.3.4 Infrastructure BSSs with general links in the presence of an ESS

BSSs that support general links can be components of an extended form of network by using the general links within an IEEE 802.1Q bridged network. In such a bridged network, the concept of the DS in a non-GLK ESS is replaced by the other components of the IEEE 802.1Q network. However, such a GLK topology is more general than the non-GLK infrastructure mode. For example, Figure 4-13c shows a network consisting of three types of BSSs: a GLK infrastructure BSS (with only GLK STAs), an infrastructure BSS (with both GLK and non-GLK STAs), and an infrastructure BSS (containing only non-GLK STAs). The example ESS shown in the figure consists of all the non-GLK non-AP STAs, the non-GLK AP, and the portion of the GLK AP that has associated non-GLK non-AP STAs. In the ESS the portal

that is connected to the DS does not show any additional connection because the portal could be connected to any type of bridge, switch, or LAN. Hence no specific interconnection is shown. The general links shown in Figure 4-13c are similar to those shown in Figure 4-13b and provide point-to-point links as described in 4.3.27.3.3. Also, shown in the figure is an example of the possible configuration of more than one IEEE 802.1Q MAC relay entity being attached to a GLK AP or GLK non-AP STA and the possible configuration of more than one GLK AP or GLK non-AP STA being attached to the same IEEE 802.1Q MAC relay entity. These configurations show the flexibility available with general links.

NOTE—IEEE Std 802.11 explicitly does not specify the details of the IEEE 802.1AC GLK Convergence Function, the IEEE 802.1Q Media Independent Function, the Internal Sublayer Service to MAC-SAP function, the IEEE 802.1Q MAC Relay Entity, and the LLC Sublayer. These entities are specified in other documents such as IEEE Std 802.1AC-2016 and IEEE Std 802.1Qbz-2016 [B24a]. These entities are shown with dashed outlines in the figure. Entities that IEEE Std 802.11 does specify are shown with solid outlines.

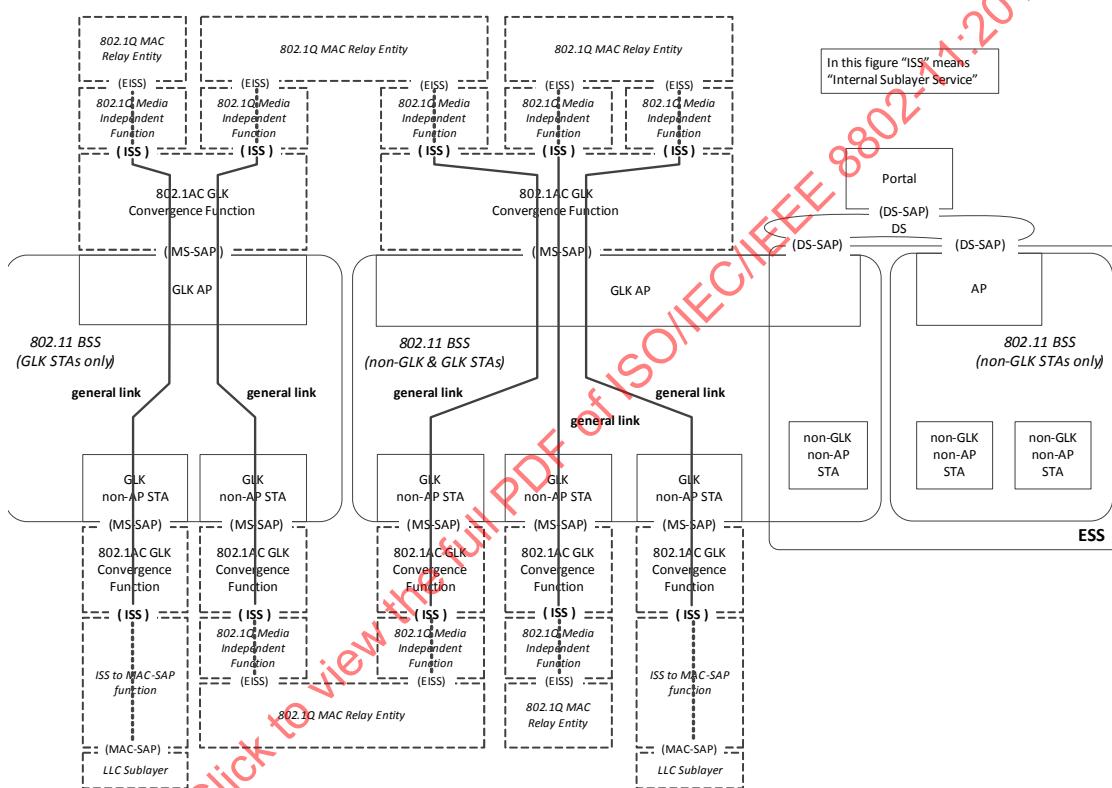


Figure 4-13c—Example of an ESS and extended network with general links

4.3.28 Ethertype protocol discrimination (EPD)

IEEE Std 802-2014 describes the two LLC sublayer protocols: Ethertype protocol discrimination (EPD) and LLC protocol discrimination (LPD). LPD is the default for IEEE 802.11 MSDUs with the exception of the 5.9 GHz bands where EPD is used for the transmission of all MSDUs (see E.2.3 and E.2.4). While not the default, EPD might be used in other bands when it is known that the addressed STAs and the transmitting STA support EPD.

An EPD STA is a STA that supports EPD format MSDUs. EPD STAs, other than those operating in the 5.9 GHz bands, indicate their support through a bit in the Capability Information field, DMG STA Capability Information field, and Relay Capabilities element. An EPD STA, when transmitting an

individually addressed RA, uses EPD if the recipient supports EPD; otherwise, such individually addressed transmissions use LPD.

In an MPDU transmitted with a groupcast RA, the choice between of EPD or LPD format of MSDUs in the MPDU is controlled by the policy of the BSS (see 5.1.4).

4.5 Overview of the services

4.5.2 Distribution of MSDUs within a DS

4.5.2.1 Distribution

Change the first paragraph of 4.5.2.1 as follows:

This is the primary service used by IEEE 802.11 non-GLK STAs. It is conceptually invoked by every data message to or from an IEEE 802.11 non-GLK STA operating in an ESS (when the frame is sent via the DS). Distribution is via the DSS.

Change the subclause title of 4.5.3 as follows:

4.5.3 ~~Connectivity-related services that support the distribution service and the PCP-service~~

4.5.3.3 Association

Change the first and second paragraphs of 4.5.3.3 as follows (including splitting the second paragraph into two paragraphs):

To deliver an MSDU within an ESS via the DS, the ~~distribution service~~ DS needs to know to which AP within the ESS to deliver the MSDU, access so that the MSDU might ultimately be delivered to the addressed for the given IEEE 802.11 STA. This information is provided to the DS by the concept of association. Association is necessary, but not sufficient, to support BSS-transition mobility. Association is sufficient to support no-transition mobility. Association is one of the services in the DSS.

Before a STA is allowed to send an MSDU via an AP, it first becomes associated with the AP.

~~The~~ For a non-GLK STA, the act of becoming associated invokes the association service, which provides the STA to AP mapping to the DS. How the information provided by the association service is stored and managed within the DS is not specified by this standard.

Insert the following paragraph after the now third paragraph of 4.5.3.3:

For a GLK STA, the act of becoming associated invokes the association service, which establishes a general link between two instances of the IEEE 802.1D Internal Sublayer Service. This link provides a point-to-point link between the two Internal Sublayer Service SAPs. The GLK AP STA and the GLK non-AP STA each coordinate with higher layer services and each other to create the point-to-point link. The higher layer services create or enable the Internal Sublayer Service SAPs, inform the GLK convergence function of the mapping of the Internal Sublayer Service SAPs, and inform the network routing protocol of the existence of the general link. The GLK AP and the GLK non-AP STA each establish a service_access_point_identifier for each general link, for their respective MS-SAPs. This process allows for the establishment of a point-to-point link suitable for use in an IEEE 802.1Q network.

4.5.3.4 Reassociation

Change the second paragraph of 4.5.3.4 as follows:

The reassociation service is invoked to “move” a current association of a non-AP STA from one AP to another. In an ESS with a DS, the reassociation service informs this keeps the DS informed of the current mapping between AP and STA as the STA moves from BSS to BSS within an the ESS. For a general link in an IEEE 802.1Q network, the reassociation service informs higher layer services how the link is reconfigured, commonly, with which BSS the GLK non-AP STA is associated. The higher layer services will then destroy, disable, or maintain the existing Internal Sublayer Service SAPs, create or enable new Internal Sublayer Service SAPs, inform the GLK convergence function of the reconfigured general link mapping of the Internal Sublayer Service SAPs, and inform the network routing protocol of the updated general link. The GLK AP and GLK non-AP STA each then establish or maintain a service access point identifier for the reconfigured general link, for their respective MS-SAPs. Reassociation also enables changing association attributes of an established association while the STA remains associated with the same AP. Reassociation is always initiated by the non-AP STA.

4.5.3.5 Disassociation

Change the second paragraph of 4.5.3.5 as follows:

For a non-GLK STA, the act of becoming disassociated invokes the disassociation service, which voids any existing STA to AP mapping known to the DS, for the disassociating STA. How the information provided by the disassociation service is managed within the DS is not specified by this standard. For a general link, disassociation removes or disables the corresponding Internal Sublayer Service SAPs that were configured for the general link. The IEEE 802.1Q bridge uses this information to update bridging for the GLK non-AP STA. In an ESS, this tells the DS to void existing association information. Attempts to send MSDUs via the DS to a disassociated STA will be unsuccessful.

Insert the following paragraph after the second paragraph of 4.5.3.5:

For an IEEE 802.11 link that is the basis of a general link, the disassociation service informs higher layer services of the IEEE 802.1Q network that the general link has been destroyed. The GLK AP and the GLK non-AP STA each coordinate with higher layer services and each other to destroy the point-to-point link. The higher layer services destroy or disable the Internal Sublayer Service SAPs, inform the GLK convergence function of the deletion of the mapping of the Internal Sublayer Service SAPs, and inform the network routing protocol of the destruction of the general link, for their respective MS-SAPs. This process destroys the previously existing point-to-point link that was suitable for use in an IEEE 802.1Q network.

4.6 Multiple logical address spaces

Change the fourth paragraph of 4.6 as follows:

The IEEE 802.11 choice of address space implies that for many instantiations of the IEEE 802.11 architecture, the non-IEEE-802.11 LAN MAC address space and the IEEE 802.11 MAC address space might be the same. In situations where a DS that uses MAC-level IEEE 802 addressing is appropriate, all three of the logical address spaces used within a system could be identical. While this is a common case, it is not the only combination allowed by the architecture. The IEEE 802.11 architecture allows for all three logical address spaces to be distinct. In the GLK case, IEEE 802.1Q bridges are included in the network topology; therefore, the wired LAN MAC address space and IEEE 802.11 MAC address space are the same.

5. MAC service definition

5.1 Overview of MAC services

5.1.1 Data service

5.1.1.1 General

Change the first two sentences of the first paragraph of 5.1.1.1 as follows:

This service provides peer LLC sublayer entities or IEEE 802.1Q bridge ports with the ability to exchange MSDUs. To support this service, the local MAC uses the underlying PHY-level services to transport an MSDU to a peer MAC entity, where it is delivered to the peer LLC sublayer or bridge port.

5.1.1.2 Determination of UP

Change 5.1.1.2 as follows:

The QoS facility supports eight priority values, referred to as *UPs*. The values a UP may take are the integer values from 0 to 7 and are identical to the IEEE 802.1D priority tags. An MSDU with a particular UP is said to belong to a traffic category (TC) with that UP. The UP is provided with each MSDU at the medium access control service access point (MAC SAP) either directly, in the UP parameter, or indirectly, in a TSPEC or SCS Descriptor element designated by the UP parameter. For the transmission of an MSDU that was provided to the Internal Sublayer Service SAP associated with a general link, the UP is determined by the GLK convergence function based on the priority parameter of the M_UNITDATA.request. (See Annex R for recommended mapping guidelines.)

5.1.1.3 Interpretation of priority parameter in MAC service primitives

Change the last paragraph of 5.1.1.3 as follows:

QoS APs deliver the UP with the received MSDUs to the DS or bridge port.

5.1.4 MSDU format

Change the first paragraph of 5.1.4 as follows:

Logical Link Control (LLC) sublayer entities use the MAC sublayer service to exchange PDUs with peer LLC sublayer entities. These PDUs are termed MAC sublayer SDUs (MSDUs) when sent to the MAC sublayer. There are two LLC sublayer protocols used (see IEEE Std 802-2014): LLC Protocol Discrimination (LPD) (see ISO/IEC 8802-2:1998) and Ethertype Protocol Discrimination (EPD) (see IEEE Std 802.3-2012). LPD is used for transmission of all IEEE 802.11 MSDUs with the exception of the 5.9 GHz bands where EPD is used (see E.2.3 and E.2.4). MSDUs are formatted in accordance with LPD or with EPD, as determined by the first condition below that is true. After a true condition has been found, subsequent conditions are ignored.

- a) In the 5.9 GHz bands (see E.2.3 and E.2.4), use EPD.
- b) For OCB communications outside of the 5.9 GHz bands, use LPD.
- c) Within Data frames with individually addressed RAs, if both the transmitter and receiver are EPD STAs, use EPD.

- d) Within Data frames with individually addressed RAs, if either the transmitter or the receiver are not EPD STAs, use LPD.
- e) If the transmitting AP will accept association only from an EPD STA, use EPD.
- f) If the transmitting mesh STA will peer only with an EPD mesh STA, use EPD.
- g) For all other cases, use LPD.

5.1.5 MAC data service architecture

5.1.5.1 General

Change the third and fourth paragraphs of 5.1.5.1 as follows:

During transmission, an MSDU goes through some or all of the following processes: MSDU rate limiting, aggregate MSDU (A-MSDU) aggregation, frame delivery deferral during power save mode, sequence number assignment, integrity protection, fragmentation, encryption, frame formatting (including optional SYNRA construction), and aggregate MAC protocol data unit (A-MPDU) aggregation. When transparent FST is used, an MSDU first goes through an additional transparent FST entity that contains a demultiplexing process that forwards the MSDU down to the selected TX MSDU Rate Limiting process and from there to MAC data plane processing as described in the previous sentence. IEEE Std 802.1X-2010 may block the MSDU at the Controlled Port before the preceding processing occurs. Otherwise, at some point, the Data frames that contain all or part of the MSDU are queued per AC/TS.

During reception, a received Data frame goes through processes of possible A-MPDU deaggregation, MPDU header and cyclic redundancy code (CRC) validation, Address 1 filtering, scoreboard if the block ack mechanism is used, duplicate removal, decryption, possible reordering if the block ack mechanism is used, replay detection, defragmentation, integrity checking, SYNRA receive filtering when the corresponding link is a general link, possible A-MSDU deaggregation, and possible MSDU rate limiting. Then one or more MSDUs are delivered to the MAC SAP or to the DS via the DSAF, via the DSAF, to either the DS or an IEEE 802.1Q bridge port. When transparent FST is used, MSDUs originating from different PHY SAPs go through a final step of a transparent FST entity that contains a multiplexing process before delivering the MSDU. The IEEE 802.1X Controlled/Uncontrolled Ports discards any received MSDU if the Controlled Port is not enabled and if the MSDU does not represent an IEEE 802.1X frame.

Change Figure 5-1 and Figure 5-2 as shown:

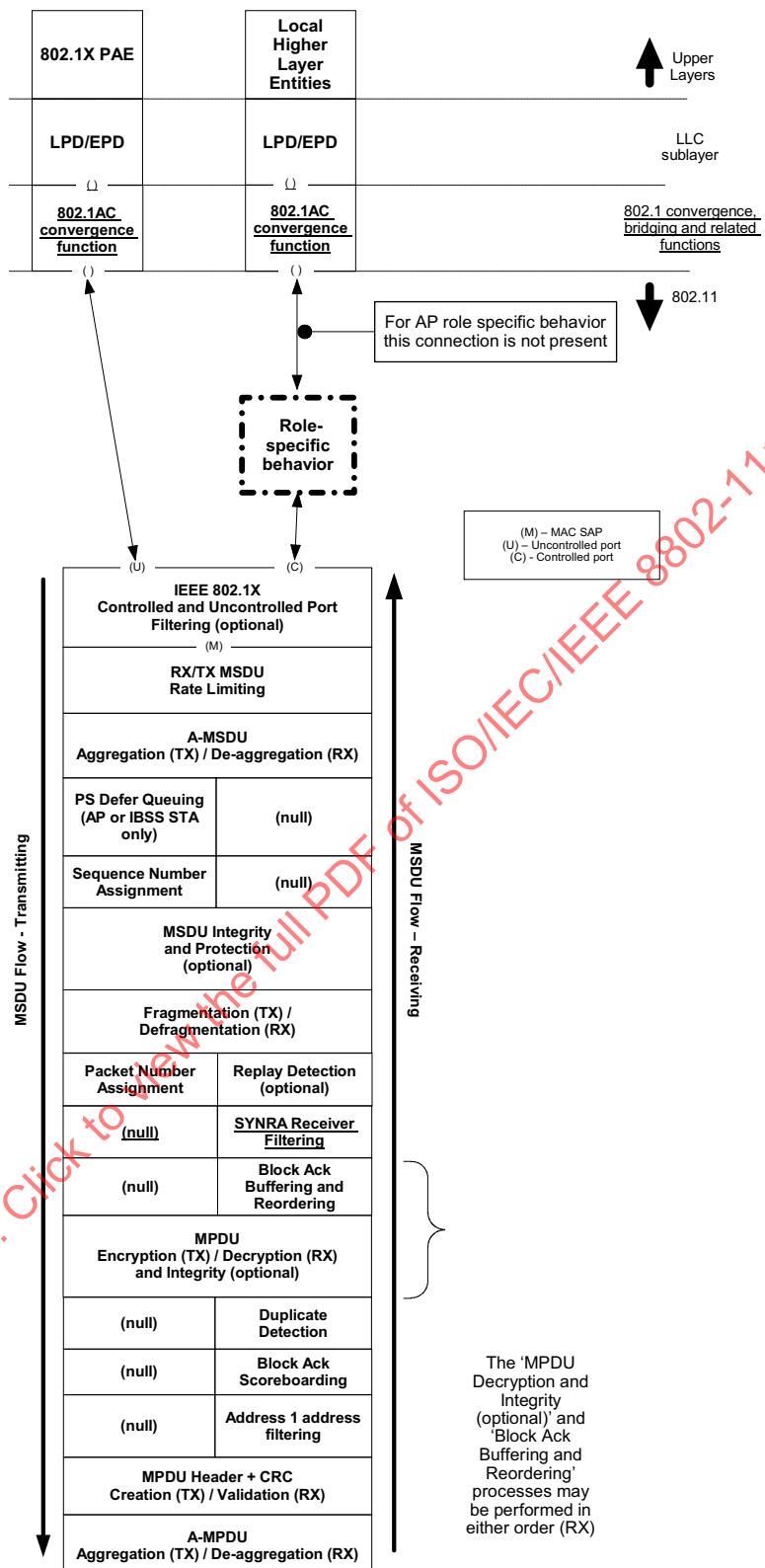


Figure 5-1—MAC data plane architecture

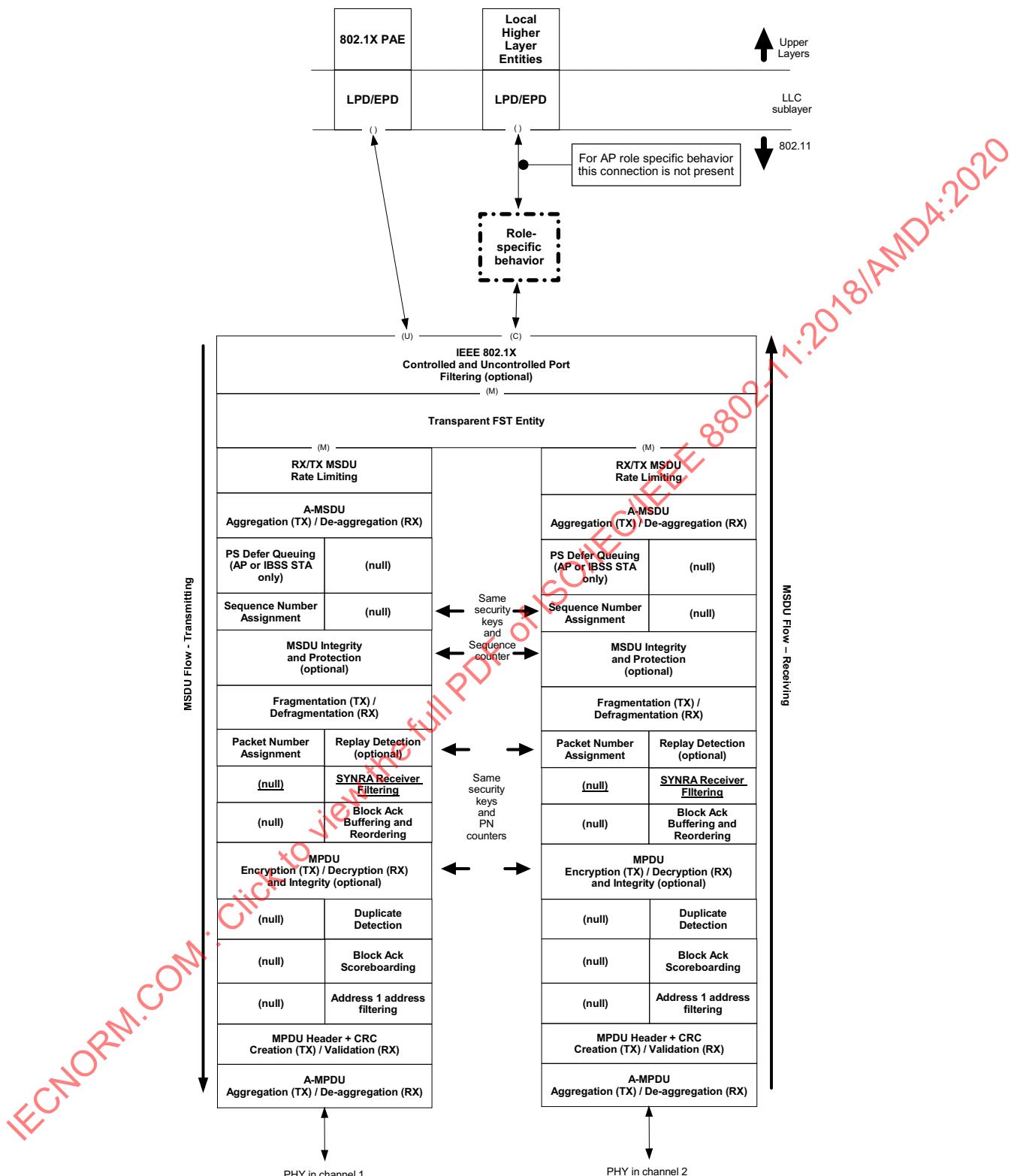


Figure 5-2—MAC data plane architecture (transparent FST)

Change the subclause title and the first sentence of the first paragraph of 5.1.5.2 as follows:

5.1.5.2 Non-GLK nNon-AP STA role

The MAC data plane architecture of a non-GLK non-AP STA is completed by replacing the role-specific behavior block with that shown in Figure 5-3.

Change the title of Figure 5-3 as follows:

Figure 5-3—Role-specific behavior for a non-GLK non-AP STA

Change the subclause title and the first sentence of the first paragraph of 5.1.5.3 as follows:

5.1.5.3 Non-GLK AP role

In a non-GLK AP, the MAC data plane architecture includes distribution system access in its role-specific behavior block, as shown in Figure 5-4.

Change the title of Figure 5-4 as follows:

Figure 5-4—Role-specific behavior for a non-GLK AP

Change the subclause title of 5.1.5.4 as follows:

5.1.5.4 Non-GLK mMesh STA role

5.1.5.6 S1G Relay

Change Figure 5-7 to add Block Ack Scoreboarding as shown in Figure 5-1 and Figure 5-2.

Figure 5-7—S1G relay data plane architecture

Insert the following subclauses (5.1.5.7, 5.1.5.8, and 5.1.5.9, including Figure 5-8, Figure 5-9, and Figure 5-10) after 5.1.5.6:

5.1.5.7 GLK STA role

In a GLK STA's MAC data plane architecture, the role-specific behavior block is as shown in Figure 5-8. The MAC service interface to this block includes a station vector, to provide the selective delivery service to a GLK convergence function. This block performs destination address filtering, as described in 10.2.8, and provides access to the GLK convergence function and ultimately to the bridge ports.

5.1.5.8 GLK AP role

A GLK AP that supports only general links (dot11GLKRequired is true) has the same general architectural structure as described in 5.1.5.7 for a general GLK STA.

A GLK AP that supports both general links and non-GLK links provides access between the bridge ports and general links, and between the DS and non-GLK links. The DSAF behavior of such an AP is extended by adding a switching function to direct received MSDUs to either the DS or toward a bridge port, as appropriate, as shown in Figure 5-9.

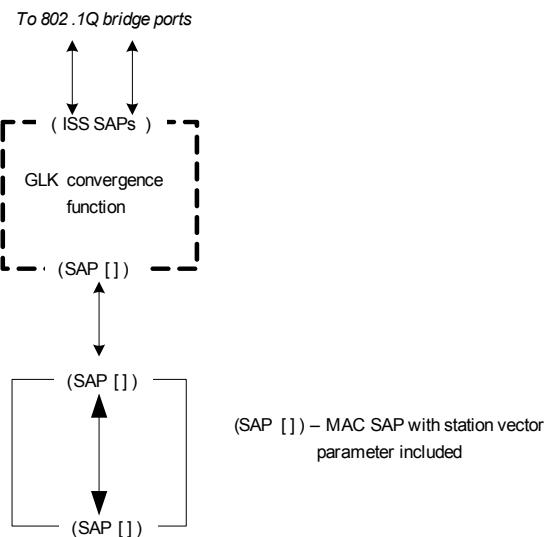


Figure 5-8—Role-specific behavior block for a GLK STA

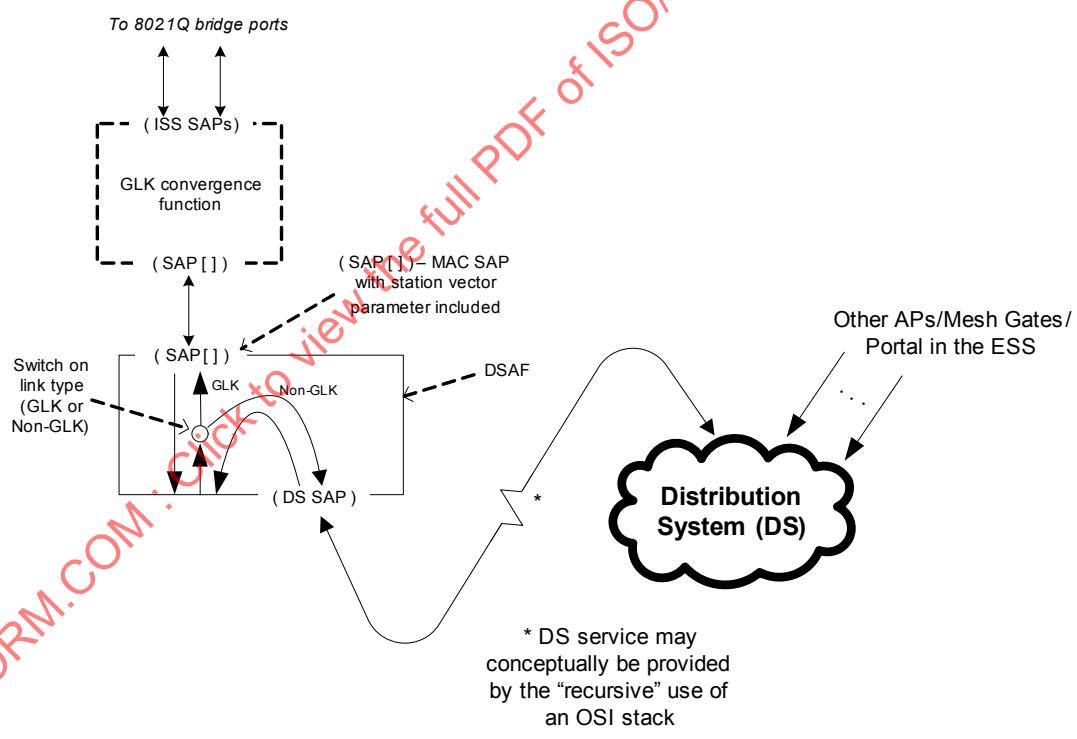


Figure 5-9—Role-specific behavior block for a mixed-mode GLK AP

5.1.5.9 GLK mesh STA role

The only type of mesh STA that has explicit support for GLK is the GLK mesh STA, which is the equivalent of a mesh gate, except it is attached to a bridge rather than a DS. Other mesh STA types implicitly may support general links with the role specific structure shown in 5.1.5.4.

The MAC data plane architecture of a GLK mesh STA, like that for a non-GLK mesh STA, is completed by replacing the role-specific behavior block with that shown in Figure 5-10. In a GLK mesh STA, the function of this block is described in 10.35, to provide access to bridge ports, through provision of the station vector parameter, rather than access to only the local DA address like a non-GLK mesh STA.

This role is not applicable when transparent FST is used and does not apply to Figure 5-2.

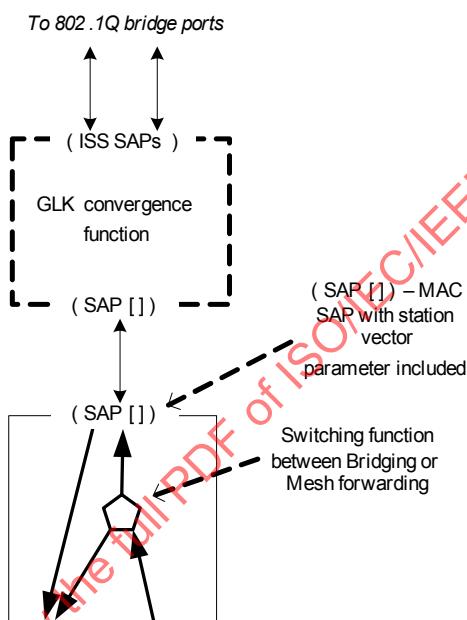


Figure 5-10—Role-specific behavior block for a GLK mesh STA

5.2 MAC data service specification

5.2.1 General

Insert the following subclause (5.2.1a) after 5.2.1:

5.2.1a GLK MAC data service specification

A GLK STA coordinates with the GLK convergence function to create a virtual point-to-point LAN for each general link to an associated or peered GLK STA. This point-to-point LAN is presented by the convergence function as a unique Internal Sublayer Service SAP, which is ultimately mapped to an IEEE 802.1Q bridge port. Each such SAP is identified by a locally unique service_access_point_identifier (as defined in IEEE Std 802.1Q), generated by the STA and the convergence function.

In a GLK STA the MAC data plane architecture's MAC service uses the two parameters, a set of service_access_point_identifiers and an MSDU format indicator.

When GLK is in use, the MAC service primitives presented require the presence of the parameter station vector on request and supply a non-null value for this parameter on indication. In an MA-UNITDATA.request, this parameter is a set of service_access_point_identifiers specifying the one or more general links that are to be used for this request. In an MA-UNITDATA.indication, it is a vector of exactly one service_access_point_identifier specifying the general link that carried this MSDU.

When GLK is in use, the MAC service primitives make use of the MSDU format parameter. In an MA-UNITDATA.request, this parameter indicates whether the supplied MSDU is in EPD or LPD format. If the format is inappropriate for the transmission that carries this MSDU as described in 5.1.4, the STA converts the format before transmission. In an MA-UNITDATA.indication, this parameter indicates the format of the received MSDU, which is determined as described in 5.1.4. The MAC service user uses this information to parse the MSDU correctly.

5.2.2 MA-UNITDATA.request

5.2.2.1 Function

Change 5.2.2.1 as follows:

This primitive requests a transfer of an MSDU from a local LLC sublayer entity or bridge port to a single peer LLC sublayer entity or bridge port, or multiple peer LLC sublayer entities or bridge ports in the case of group addresses.

5.2.2.2 Semantics of the service primitive

Change the primitive parameter list in 5.2.2.2 as follows:

The parameters of the primitive are as follows:

MA-UNITDATA.request(

source address,
 destination address,
 routing information,
 data,
 priority,
 service class,
station vector,
MSDU format

)

Insert the following note after the sixth paragraph (“The priority parameter ”) of 5.2.2.2:

NOTE—For a GLK STA, the bridge port provides the priority. That priority might have been derived from a priority tag in the frame arriving on another port of the bridge or from the configuration of that port if the frame arrived there untagged.

Insert the following paragraphs at the end of 5.2.2.2:

The station vector parameter is a set of service_access_point_identifiers (see 5.2.1a) and is not null when dot11GLKImplemented is true and is null or not present otherwise. It indicates the set of virtual point-to-point LANs for these data transfers, which are mapped to the set of general links over which the MSDU is transferred.

The MSDU format parameter indicates whether the supplied MSDU is in EPD or LPD format.

5.2.2.3 When generated

Change 5.2.2.3 as follows:

This primitive is generated by the LLC sublayer entity or bridge when an MSDU is to be transferred to a peer LLC sublayer entity or entities or to a peer bridge or bridges.

5.2.2.4 Effect of receipt

Change the first paragraph of 5.2.2.4 as follows:

On receipt of this primitive, the MAC sublayer entity determines whether it is able to fulfill the request according to the requested parameters. A request that cannot be fulfilled according to the requested parameters is discarded, and this action is indicated to the LLC sublayer entity using an MA-UNITDATA-STATUS.indication primitive that describes why the MAC was unable to fulfill the request. If the request can be fulfilled according to the requested parameters, the MAC sublayer entity properly formats a frame, passes it to the lower layers for transfer to a peer MAC sublayer entity or entities (see 5.1.4), and indicates this action to the LLC sublayer entity or bridge port using an MA-UNITDATA-STATUS.indication primitive with transmission status set to Successful.

5.2.3 MA-UNITDATA.indication

5.2.3.1 Function

Change 5.2.3.1 as follows:

This primitive defines the transfer of an MSDU from the MAC sublayer entity to the LLC sublayer entity or bridge port or entities or bridge ports in the case of group addresses. In the absence of error, the contents of the data parameter are logically complete and unchanged relative to the data parameter in the associated MA-UNITDATA.request primitive.

5.2.3.2 Semantics of the service primitive

Change the primitive parameter list in 5.2.3.2 as follows:

The parameters of the primitive are as follows:

MA-UNITDATA.indication(

- source address,
- destination address,
- routing information,
- data,
- reception status,
- priority,
- service class,
- station vector,
- MSDU format

)

Insert the following paragraphs at the end of 5.2.3.2:

The station vector parameter is a set of service_access_point_identifiers (see 5.2.1a) and is not null when dot11GLKImplemented is true. It indicates only the single virtual point-to-point LAN for this data transfer, which is mapped from the general link over which the MSDU was received.

The MSDU format parameter indicates if the received MSDU is in EPD or LPD format.

5.2.3.3 When generated

Change 5.2.3.3 as follows:

The MA-UNITDATA.indication primitive is passed from the MAC sublayer entity to the LLC sublayer entity or entities, or bridge port or ports, to indicate the arrival of a frame at the local MAC sublayer entity. Frames are reported only if they are validly formatted at the MAC sublayer, received without error, received with valid (or null) security and integrity information, and their destination address designates the local MAC sublayer entity. The MA-UNITDATA.indication primitive might also be passed from the MAC sublayer entity, in coordination with the MAC sublayer management entity, to the LCC sublayer entity to indicate the arrival of a FILS higher layer protocol (HLP) Container element.

5.2.3.4 Effect of receipt

Change the first paragraph of 5.2.3.4 as follows:

The effect of receipt of this primitive by the LLC sublayer or bridge port is dependent on the content of the MSDU.

5.2.4 MA-UNITDATA-STATUS.indication

5.2.4.1 Function

Change 5.2.4.1 as follows:

This primitive has local significance and provides the LLC sublayer or bridge port with status information for the corresponding preceding MA-UNITDATA.request primitive.

5.2.4.2 Semantics of the service primitive

Change the first sentence of the fourth paragraph of 5.2.4.2 as follows:

The transmission status parameter is used to pass status information back to the local requesting LLC sublayer entity or bridge port.

5.2.4.3 When generated

Change 5.2.4.3 as follows:

The MA-UNITDATA-STATUS.indication primitive is passed from the MAC sublayer entity to the LLC sublayer entity or bridge port to indicate the status of the service provided for the corresponding MA-UNITDATA.request primitive.

5.2.4.4 Effect of receipt

Change 5.2.4.4 as follows:

The effect of receipt of this primitive by the LLC sublayer or bridge port is dependent upon the type of operation employed by the LLC sublayer entity or bridge port.

6. Layer management

6.3 MLME SAP interface

6.3.3 Scan

6.3.3.2 MLME-SCAN.request

6.3.3.2.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.3.2.2 as follows:

The primitive parameters are as follows:

MLME-SCAN.request(

BSSType,
 BSSID,
 SSID,
 ScanType,
 ActiveScanType,
 ProbeDelay,
 ChannelList,
 MinChannelTime,
 MaxChannelTime,
 RequestInformation,
 SSID List,
 ChannelUsage,
 AccessNetworkType,
 HESSID,
 MeshID,
 DiscoveryMode,
 FILSRequestParameters,
 ReportingOption,
 APConfigurationSequenceNumber,
 SIGRelayDiscovery,
 PV1ProbeResponseOption,
 S1GCapabilities,
 ChangeSequence,
 ELOperation,
 MaxAwayDuration,
GeneralLinkType,
 VendorSpecificInfo
)

Insert the following row into the untitled parameter table in 6.3.3.2.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GeneralLinkType	Enumeration	GLK_SUPPORTED, GLK_UNSPECIFIED	This parameter is present if dot11GLKImplemented is true. If GLK_SUPPORTED, a BSS in which the AP supports GLK is requested. If GLK_UNSPECIFIED, the GLK nature of the BSS is ignored.

6.3.7 Associate

6.3.7.2 MLME-ASSOCIATE.request

6.3.7.2.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.7.2.2 as follows:

The primitive parameters are as follows:

MLME-ASSOCIATE.request(
 PeerSTAAddress,
 BSSMaxIdlePeriod,
 ListenInterval,
 Supported Channels,
 RSN,
 QoS Capability,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 SM Power Save,
 QoS Traffic Capability,
 TIMBroadcastRequest,
 EmergencyServices,
 DMG Capabilities,
 Multi-band local,
 Multi-band peer,
 MMS,
 FILSHPContainer,
 FILSIPAddressAssignment,
 AID Request,
 S1G Capabilities,
 TWT,
 MaxAwayDuration,
 S1GRelayActivation,
 ReachableAddress,
 CDMG Capabilities,
 CMMG Capabilities,
GLK-GCR Parameter Set,
 VendorSpecificInfo
)

Insert the following row into the untitled parameter table in 6.3.7.2.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	This parameter is present if dot11GLKGCRImplemented is true and not present otherwise. Specifies the GLK-GCR capabilities supported by the STA.

6.3.7.3 MLME-ASSOCIATE.confirm

6.3.7.3.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.7.3.2 as follows:

The primitive parameters are as follows:

MLME-ASSOCIATE.confirm(

 ResultCode,
 CapabilityInformation,
 AssociationID,
 EDCAParameterSet,
 RCPI of Request,
 RSNI of Request,
 RCPI of Response,
 RSNI of Response,
 RMEnabledCapabilities,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 Extended Capabilities,
 20/40 BSS Coexistence,
 TimeoutInterval,
 BSSMaxIdlePeriod,
 TIMBroadcastResponse,
 QosMapSet,
 QMFPolicy,
 DMG Capabilities,
 Multi-band local,
 Multi-band peer,
 MMS,
 FILSHPContainer,
 FILSIPAddressAssignment,
 KeyDelivery,
 S1G Sector Operation,
 S1G Capabilities,
 AID Response,
 TSF Timer Accuracy,
 TWT,
 Sectorized Group ID List,
 MaxAwayDuration,
 S1GRelayActivation,
 S1GOperation,
 SSTOperation,
 S1GRelay,
 HeaderCompression,
 CDMG Capabilities,
 CMMG Capabilities,
 GLK-GCR Parameter Set,
 VendorSpecificInfo
)

IEEE Std 802.11ak-2018
 IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—
 Part 11: Wireless LAN MAC and PHY Specifications—
 Amendment 4: Enhancements for Transit Links Within Bridged Networks

Insert the following row into the untitled parameter table in 6.3.7.3.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	Specifies the values from the GLK-GCR Parameter Set element if such an element was present in the Association Response frame, otherwise null.

6.3.7.4 MLME-ASSOCIATE.indication

6.3.7.4.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.7.4.2 as follows:

The primitive parameters are as follows:

MLME-ASSOCIATE.indication(

PeerSTAAddress,
 CapabilityInformation,
 BSSMaxIdlePeriod,
 ListenInterval,
 SSID,
 OperationalRateSet,
 BSSMembershipSelectorSet,
 RSN,
 QoS Capability,
 RCPI,
 RSNI,
 RMEnabledCapabilities,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 DSERegisteredLocation,
 HT Capabilities,
 Extended Capabilities,
 20/40 BSS Coexistence,
 QoS Traffic Capability,
 TIM Broadcast Request,
 Emergency Services,
 DMG Capabilities,
 Multi-band local,
 Multi-band peer,
 MMS,
 VHT Capabilities,
 FILS HLP Container,
 FILS IP Address Assignment,
 AID Request,
 S1G Capabilities,
 TWT,
 Max Away Duration,
 S1G Relay Activation,
 Reachable Address,
 CDMG Capabilities,

CMMG Capabilities,
GLK-GCR Parameter Set,
 VendorSpecificInfo
)

Insert the following row into the untitled parameter table in 6.3.7.4.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	Specifies the values from the GLK-GCR Parameter Set element if such an element was present in the Association Request frame, otherwise null.

6.3.7.5 MLME-ASSOCIATE.response

6.3.7.5.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.7.5.2 as follows:

The primitive parameters are as follows:

MLME-ASSOCIATE.response(
 PeerSTAAddress,
 ResultCode,
 AssociationID,
 RCPI,
 RSNI,
 RMEnabledCapabilities,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 TimeoutInterval,
 BSSMaxIdlePeriod,
 TIMBroadcastResponse,
 QoSMapSet,
 Multi-band peer,
 FILSHLPContainer,
 FILSIPAddressAssignment,
 KeyDelivery,
 S1G Sector Operation,
 S1G Capabilities,
 AID Response,
 TSF Timer Accuracy,
 TWT,
 Secotorized Group ID List,
 MaxAwayDuration,
 S1GRelay,
 S1GRelayActivation,
 S1GOperation,
 HeaderCompression,
 SSTOperation,
 CDMG Capabilities,
 CMMG Capabilities,

GLK-GCR Parameter Set

VendorSpecificInfo
)

Change the following row in the untitled parameter table in 6.3.7.5.2 as shown:

Name	Type	Valid range	Description
ResultColor	Enumeration	SUCCESS, REFUSED_REASON_UNSPECIFIED, REFUSED_CAPABILITIES_MISMATCH, REFUSED_EXTERNAL_REASON, REFUSED_AP_OUT_OF_MEMORY, REFUSED_BASIC_RATES_MISMATCH, REJECTED_EMERGENCY_SERVICES_NOT_SUPPORTED, REFUSED_TEMPORARILY, <u>GLK_NOT_AUTHORIZED</u>	Indicates the result response to the association request from the peer MAC entity.

Insert the following row into the untitled parameter table in 6.3.7.5.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	This parameter is present only if the AP selects GLK-GCR for groupcast (either unsolicited retry or block ack) over the general link. Describes the parameters that define how GLK-GCR operates.

6.3.8 Reassociate

6.3.8.2 MLME-REASSOCIATE.request

6.3.8.2.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.8.2.2 as follows:

The primitive parameters are as follows:

MLME-REASSOCIATE.request(
 NewPCPorAPAddress,
 BSSMaxIdlePeriod,
 ListenInterval,
 Supported Channels
 RSN,
 QoS Capability,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 SM Power Save,

QoS Traffic Capability,
 TIM Broadcast Request,
 FMS Request,
 DMS Request,
 Emergency Services,
 DMG Capabilities,
 Multi-band local,
 Multi-band peer,
 MMS,
 FILS HLP Container,
 FILS IP Address Assignment,
 AID Request,
 S1G Capabilities,
 TWT,
 Sectorized Group ID List,
 Max Away Duration
 S1G Relay Activation,
 ELO Operation,
 S1G Relay,
 Header Compression,
 Reachable Address,
 S1G Operation,
 SST Operation,
 CDMG Capabilities,
 CMMG Capabilities,
GLK-GCR Parameter Set,
 Vendor Specific Info
)

Insert the following row into the untitled parameter table in 6.3.8.2.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	This parameter is present if dot11GLKGCRImplemented is true and not present otherwise. Specifies the GLK-GCR capabilities supported by the STA.

6.3.8.3 MLME-REASSOCIATE.confirm

6.3.8.3.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.8.3.2 as follows:

The primitive parameters are as follows:

MLME-REASSOCIATE.confirm(
 Result Code,
 Capability Information,
 Association ID,
 EDCA Parameter Set,
 RCPI of Request,

RSNI of Request,
 RCPI of Response,
 RSNI of Response,
 RMEnabledCapabilities,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 Extended Capabilities,
 20/40 BSS Coexistence,
 TimeoutInterval,
 BSSMaxIdlePeriod,
 TIMBroadcastResponse,
 FMSResponse,
 DMSResponse,
 QoSMapSet,
 QMFPolicy,
 DMG Capabilities,
 Multi-band local,
 Multi-band peer,
 MMS,
 FILSHLPContainer,
 FILSIPAddressAssignment,
 KeyDelivery,
 S1G Sector Operation,
 S1G Capabilities,
 AID Response.
 TSF Timer Accuracy,
 TWT,
 MaxAwayDuration,
 S1GRelayActivation,
 ELOperation,
 S1GRelay,
 HeaderCompression,
 S1GOperation,
 SectorizedGroupIDList,
 SSTOperation,
 CDMG Capabilities,
 CMMG Capabilities,
GLK-GCR Parameter Set,
 VendorSpecificInfo
)

Insert the following row into the untitled parameter table in 6.3.8.3.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	Specifies the values from the GLK-GCR Parameter Set element if such an element was present in the Reassociation Response frame, otherwise null.

6.3.8.4 MLME-REASSOCIATE.indication

6.3.8.4.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.8.4.2 as follows:

The primitive parameters are as follows:

MLME-REASSOCIATE.indication(
PeerSTAAddress,
CurrentAPAddress,
CapabilityInformation,
BSSMaxIdlePeriod,
ListenInterval,
SSID,
OperationalRateSet,
BSSMembershipSelectorSet,
RSN,
QoS Capability,
RCPI,
RSNI,
RMEnabledCapabilities,
Content of FT Authentication elements,
SupportedOperatingClasses,
DSERegisteredLocation,
HT Capabilities,
Extended Capabilities,
20/40 BSS Coexistence,
QoS Traffic Capability,
TIM Broadcast Request,
FMS Request,
DMS Request,
Emergency Services,
DMG Capabilities,
Multi-band local,
Multi-band peer,
MMS,
VHT Capabilities,
FILS HLP Container,
FILS IP Address Assignment,
AID Request,
S1G Capabilities,
TWT,
Sectorized Group ID List,
Max Away Duration,
S1G Relay Activation,
ELO Operation,
S1G Relay,
Header Compression,
Reachable Address,
S1G Operation,
SST Operation,
CDMG Capabilities,
CMMG Capabilities,
GLK-GCR Parameter Set,

IEEE Std 802.11ak-2018
 IEEE Standard for Information technology—Local and metropolitan area networks—Specific requirements—
 Part 11: Wireless LAN MAC and PHY Specifications—
 Amendment 4: Enhancements for Transit Links Within Bridged Networks

VendorSpecificInfo
)

Insert the following row into the untitled parameter table in 6.3.8.4.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	The GLK-GCR Parameter Set element from the received Reassociation Request frame.

6.3.8.5 MLME-REASSOCIATE.response

6.3.8.5.2 Semantics of the service primitive

Change the primitive parameter list in 6.3.8.5.2 as follows:

The primitive parameters are as follows:

MLME-REASSOCIATE.response(
 PeerSTAAddress,
 ResultCode,
 AssociationID,
 RCPI,
 RSNI,
 RMEnabledCapabilities,
 Content of FT Authentication elements,
 SupportedOperatingClasses,
 TimeoutInterval,
 BSSMaxIdlePeriod,
 TIMBroadcastResponse,
 FMSResponse,
 DMSResponse,
 QoSMapSet,
 Multi-band peer,
 FILSHPContainer,
 FILSIPAddressAssignment,
 KeyDelivery,
 S1G Sector Operation,
 S1G Capabilities,
 AID Response,
 TSF Timer Accuracy,
 TWT,
 Sectorized Group ID List,
 MaxAwayDuration,
 S1GRelay,
 S1GRelayActivation,
 S1GOperation,
 HeaderCompression
 SSTOperation,
 CDMG Capabilities,
 CMMG Capabilities,
GLK-GCR Parameter Set,

IECNORM.COM : Click To Download Full PDF of ISO/IEC/IEEE 8802-11:2018/AMDA:2020

VendorSpecificInfo
)

Insert the following row into the untitled parameter table in 6.3.8.5.2 before the “VendorSpecificInfo” row:

Name	Type	Valid range	Description
GLK-GCR Parameter Set	GLK-GCR Parameter Set element	As defined in 9.4.2.232	This parameter is present only if the AP selects GLK-GCR for groupcast (either unsolicited retry or block ack) over the general link. Describes the parameters that define how GLK-GCR operates.

9. Frame formats

9.2 MAC frame formats

9.2.4 Frame fields

9.2.4.1 Frame Control field

9.2.4.1.4 To DS and From DS subfields

Change the following rows in Table 9-3 as shown:

Table 9-3—To/From DS combinations in Data frames

To DS and From DS values	Meaning
To DS = 0 From DS = 1	<p>A Data frame exiting the DS or being sent by the Port Access Entity in an AP, or a group addressed mesh Data frame with the Mesh Control field present using the three-address MAC header format.</p> <p>This is the only valid combination for Data frames transmitted by an<u>a</u> non-GLK AP and group addressed Data frames transmitted by a mesh STA.</p>
To DS = 1 From DS = 1	<p>A Data frame using the four-address MAC header format. This standard defines procedures for using this combination of field values in mesh BSSs, and by S1G relays, as specified in 10.50, or by a GLK STA.</p> <p>This is the only valid combination for individually addressed Data frames transmitted by a mesh STA.</p>

9.3 Format of individual frame types

9.3.1 Control frames

9.3.1.8 BlockAckReq frame format

9.3.1.8.1 Overview

Change Figure 9-27 as shown:

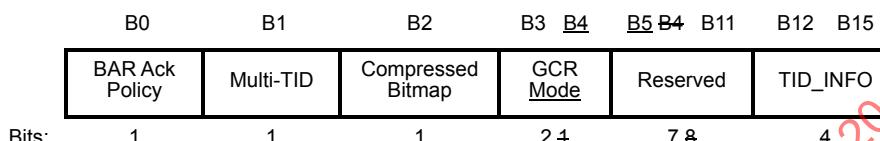


Figure 9-27—BAR Control field

Change the seventh paragraph of 9.3.1.8.1 as follows:

The values of the Multi-TID, Compressed Bitmap, and GCR Mode subfields indicate determine which of the four possible BlockAckReq frame variants is used represented, as indicated in Table 9-22.

Replace Table 9-22 with the following:

Table 9-22—BlockAckReq frame variant encoding

Multi-TID subfield value	Compressed Bitmap subfield value	GCR Mode subfield value (B3 B4)	BlockAckReq frame variant
0	0	00	Basic BlockAck
		01	Reserved
		10	Reserved
		11	Reserved
0	1	00	Compressed BlockAck
		01	GLK-GCR BlockAck
		10	GCR BlockAck
		11	Reserved
1	0	00	Extended Compressed BlockAck
		01	Reserved
		10	Reserved
		11	Reserved
1	1	00	Multi-TID BlockAck
		01	Reserved
		10	Reserved
		11	Reserved

Insert the following subclause (9.3.1.8.7) after 9.3.1.8.6:

9.3.1.8.7 GLK-GCR BlockAckReq variant

For the BlockAcqReq variant, the TID_INFO subfield in the BAR Control field in the GLK-GCR BlockAckReq frame is 0.

The BAR Information field in the GLK-GCR BlockAckReq frame contains the Block Ack Starting Sequence Control subfield as shown in Figure 9-28. The Starting Sequence Number subfield in the Block Ack Starting Sequence Control subfield contains the sequence number of the first MSDU or A-MSDU for which this GLK-GCR BlockAckReq frame is sent. The Fragment Number subfield in the Block Ack Starting Sequence Control subfield is 0.

9.3.1.9 BlockAck frame format

9.3.1.9.1 Overview

Change Figure 9-33 as shown:

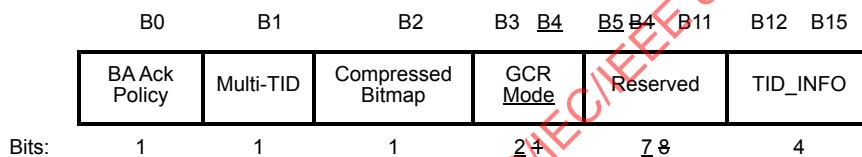


Figure 9-33—BA Control field

Change the seventh paragraph of 9.3.1.9.1 as follows:

The values of the Multi-TID, Compressed Bitmap, and GCR Mode subfields of the BA Control field determine which of the possible BlockAck frame variants is represented, as indicated in the Table 9-24.

Replace Table 9-24 with the following:

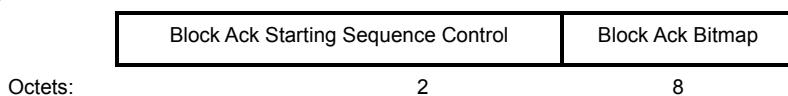
Table 9-24—BlockAck frame variant encoding

Multi-TID subfield value	Compressed Bitmap subfield value	GCR Mode subfield value (B3 B4)	BlockAck frame variant
0	0	00	Basic BlockAck
		01	Reserved
		10	Reserved
		11	Reserved
0	1	00	Compressed BlockAck
		01	GLK-GCR BlockAck
		10	GCR BlockAck
		11	Reserved

Table 9-24—BlockAck frame variant encoding (continued)

Multi-TID subfield value	Compressed Bitmap subfield value	GCR Mode subfield value (B3 B4)	BlockAck frame variant
1	0	00	Extended Compressed BlockAck
		01	Reserved
		10	Reserved
		11	Reserved
1	1	00	Multi-TID BlockAck
		01	Reserved
		10	Reserved
		11	Reserved

Change the eighth paragraph of 9.3.1.9.1 as follows:


The GCR Mode subfield indicates whether the BlockAck frame was sent in response to a GCR BlockAckReq or a GLK-GCR BlockAckReq frame. The GCR Mode subfield is set to 10 when the BlockAck frame is sent in response to a GCR BlockAckReq frame, 01 when the BlockAck frame is sent in response to a GLK-GCR BlockAckReq, and set to 00 otherwise.

Insert the following subclause (9.3.1.9.7, including Figure 9-38a) after 9.3.1.9.6:

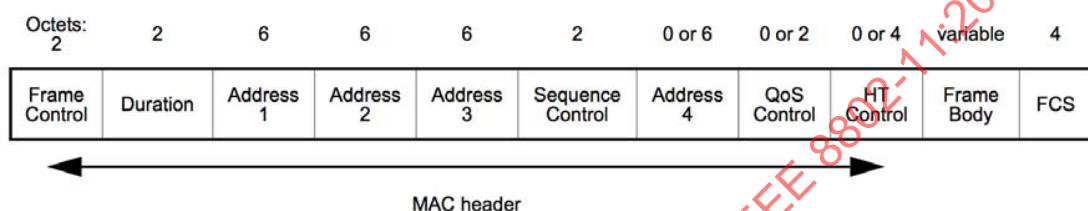
9.3.1.9.7 GLK-GCR BlockAck variant

The TID_INFO subfield in the BA Control field in the GLK-GCR BlockAck frame contains the TID for which this BlockAck frame is sent.

The BA Information field in the GLK-GCR BlockAck frame comprises the Block Ack Starting Sequence Control and the Block Ack Bitmap subfields, as shown in Figure 9-38a. The Block Ack Starting Sequence Control subfield is shown in Figure 9-38a. The Starting Sequence Number subfield in the Block Ack Starting Sequence Control subfield contains the sequence number of the first A-MSDU for which this BlockAck frame is sent. The value of this subfield is defined in 9.24.10. The Fragment Number subfield in the Block Ack Starting Sequence Control subfield is 0.

Figure 9-38a—BA Information field format (GLK-GCR BlockAck)

The Block Ack Bitmap subfield is 8 octets in length and is used to indicate the received status of up to 64 MSDUs and A-MSDUs. Each bit that is equal to 1 in the Block Ack Bitmap subfield acknowledges the successful reception of a single MSDU or A-MSDU in the order of sequence number, with the first bit of the Block Ack Bitmap subfield corresponding to the MSDU or A-MSDU with the sequence number that matches the value of the Starting Sequence Number subfield in the Block Ack Starting Sequence Control subfield.


9.3.2 Data frames

9.3.2.1 Format of Data frames

Insert level 5 subclause headings, and change the text (originating from the former 9.3.2.1 and including new Figure 9-53a, Figure 9-53b, and Table 9-26a) for the now 9.3.2.1.1 through 9.3.2.1.5 as shown:

9.3.2.1.1 General

The format of a Data frame is defined in Figure 9-53. The Frame Control, Duration, Address 1, Address 2, Address 3, and Sequence Control fields are present in all data frame subtypes. The presence of the Address 4 field is determined by the setting of the To DS and From DS subfields of the Frame Control field (see below). The QoS Control field is present when the QoS subfield of the Subtype subfield is set to 1.

Figure 9-53—Data frame

NOTE—The maximum frame body size shown in Figure 9-53 is for GCMP encryption of a maximum-size A-MSDU (note that TKIP encryption is not allowed in this case and any Mesh Control fields are part of the A-MSDU subframes). The corresponding maximum for CCMP encryption is 7951 octets. The maximum frame body size if A-MSDUs are not used is 2346 octets for GCMP encryption of a maximum-size MSDU, 2338 octets for CCMP encryption of a maximum-size MSDU, and 2342 octets for TKIP encryption of a maximum-size MSDU, including in both cases an 18-octet Mesh Control field. The frame body size might in all cases be greater if a vendor-specific cipher suite is used.

Data frames with a value of 1 in the QoS subfield of the Subtype subfield are collectively referred to as *QoS Data frames*. Each of these data subtypes contains QoS in their names, and this frame format is distinguished by the presence of a QoS Control field in the MAC header.

A QoS STA always uses QoS Data frames for data transmissions to other QoS STAs. A QoS STA uses frames with the QoS subfield of the Subtype subfield set to 0 for data transmissions to non-QoS STAs. A non-QoS STA always uses frames with the QoS subfield of the Subtype subfield set to 0 for data transmissions to other STAs. All STAs use frames with the QoS subfield of the Subtype subfield set to 0 for nonconcealed GCR broadcast Data frames unless a transmitting STA knows that all STAs in a BSS have QoS capability, in which case the transmitting STAs use QoS Data frames. All STAs use frames with the QoS subfield of the Subtype subfield set to 0 for nonconcealed GCR group addressed Data frames unless it is known to the transmitter that all STAs in the BSS that are members of the multicast group have QoS capability, in which case STAs use QoS Data frames. APs where `dot11RobustAVStreamingImplemented` is true or mesh STAs where `dot11MeshGCRImplemented` is true use frames with the QoS subfield of the Subtype subfield set to 1 for concealed GCR frames, as described in 11.24.16.3.5.

9.3.2.1.2 Address and BSSID fields

The content of the address fields of Data frames is dependent upon the values of the To DS and From DS subfields in the Frame Control field and whether the Frame Body field contains either an MSDU (or fragment thereof) or an entire A-MSDU, as determined by the A-MSDU Present subfield of the QoS Control field (see 9.2.4.5.9). The content of the address fields transmitted by nonmesh STAs is defined in Table 9-26. The content of the address fields transmitted by mesh STAs is defined in 9.3.5, and the content of the fields transmitted by GLK STAs is defined in 10.65. Where the content of a field is shown as not

applicable (N/A), the field is omitted. Note that Address 1 always holds the receiver address of the intended receiver (or, in the case of group addressed frames, receivers) and that Address 2 always holds the address of the STA that is transmitting the frame.

Table 9-26—Address field contents

To DS	From DS	Address 1	Address 2	Address 3		Address 4	
				MSDU and Short A-MSDU case	Basic A-MSDU and Dynamic A-MSDU case	MSDU and Short A-MSDU case	Basic A-MSDU and Dynamic A-MSDU case
0	0	RA = DA	TA = SA	BSSID	BSSID	N/A	N/A
0	1	RA (see NOTE 1)	TA = BSSID	SA	BSSID	N/A	N/A
1	0	RA = BSSID	TA (see NOTE 2)	DA	BSSID	N/A	N/A
1	1	RA	TA	DA	BSSID	SA	BSSID

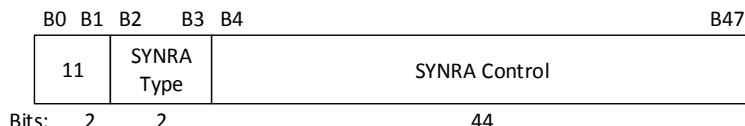
NOTE 1—Address 1 field of a frame with To DS equal to 0 and From DS equal to 1 is equal to the DA, except when an individually addressed A-MSDU frame is used in DMS and S1G relay, in which case, the destination address of the frame is included in the DA field of the A-MSDU subframe (see 11.24.16 and 10.50).

NOTE 2—Address 2 field of a frame with To DS equal to 1 and From DS equal to 0 is equal to the SA, except when an individually addressed A-MSDU frame is used in S1G relay, in which case, the source address of the frame is included in the SA field of the A-MSDU subframe (see 10.50).

A STA uses the contents of the Address 2 field to direct the acknowledgment if an acknowledgment is necessary.

The DA field contains the destination of the MSDU (or fragment thereof) or A-MSDU in the Frame Body field.

NOTE—A SYNRA is never the DA. When a GLK AP uses a SYNRA as the RA, the actual DA is carried in another field. See 10.65.


The SA field contains the address of the MAC entity that initiated the MSDU (or fragment thereof) or A-MSDU in the Frame Body field.

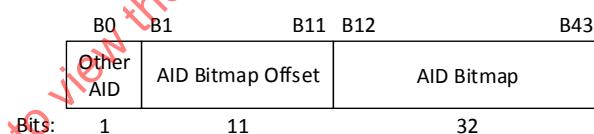
When a Data frame carries an MSDU (or fragment thereof), the DA and SA values related to that MSDU are carried in the Address 1, Address 2, Address 3, and Address 4 fields (according to the setting of the To DS and From DS subfields) as defined in Table 9-26.

When a Data frame carries a basic an-A-MSDU, the DA and SA values related to each MSDU carried by the A-MSDU are carried within the A-MSDU subframe header. Zero, one, or both of these fields are present in the Address 1 and Address 2 fields as indicated in Table 9-26.

The RA field is the individual address of the STA that is the immediate intended receiver of the frame or the group address of the STAs that are the immediate intended receivers of the frame.

When a GLK AP Data frame is sent with a four-address MAC header with a groupcast RA, the RA is a SYNRA (see 10.65). A SYNRA is also used when the DA is not known by the corresponding IEEE 802.1Q bridge. The format of the RA field when it carries a SYNRA is shown in Figure 9-53a.

Figure 9-53a—Format of an RA field carrying a SYNRA


NOTE—IEEE Std 802 and IEEE Std 802.1CQ define groupcast MAC addresses with a similar format to a SYNRA, which are DAs in the context of IEEE Std 802.11. Since SYNRAs only occur in the RA field, the similar formats are disambiguated by virtue of being used within an RA or DA.

The SYNRA Type subfield is used to select between multiple possible SYNRA formats. The SYNRA types and the format of the SYNRA Control subfield for each type are listed in Table 9-26a.

The SYNRA Control subfield format is specified separately for each SYNRA type, as defined in Table 9-26a.

Table 9-26a—SYNRA Type field encoding

Value	Description	SYNRA Control subfield format
0	Basic SYNRA	See Figure 9-53b.
1–3	Reserved	—

Figure 9-53b—Basic SYNRA Control subfield

The AID Bitmap Offset subfield in a Basic SYNRA Control subfield is used to indicate the starting AID value, which is associated with bit 0 of the AID Bitmap subfield. Its value is multiplied by 4 to find the starting AID value, and it has a value from 0 to 494 for a non-S1G STA, or 0 to 2040 for a S1G STA. Other values are reserved.

NOTE—These match the maximum AID values of 2007 (for non-S1G STAs) and 8191 (for S1G STAs).

The AID Bitmap subfield in a Basic SYNRA Control subfield provides the accept/discard indication for a range of 32 consecutive AIDs. Bits B12 to B43 represent AID values in the range AID Bitmap Offset $\times 4 + 1$ to AID Bitmap Offset $\times 4 + 32$, respectively. For each bit in the AID Bitmap subfield, a value of 1 indicates acceptance, and a value of 0 indicates discarding.

The Other AID subfield in a Basic SYNRA Control subfield provides the accept/discard indication for AIDs outside the range of values covered by the AID Bitmap subfield. A value of 1 indicates acceptance, and a value of 0 indicates discarding.

The TA field is the address of the STA that is transmitting the frame.

The BSSID of the Data frame is determined as follows:

- a) If the STA is contained within an AP or is associated with an AP, the BSSID is the address currently in use by the STA contained in the AP.
- b) If the STA is a member of an IBSS, the BSSID is the BSSID of the IBSS.
- c) If the STA is transmitting a Data frame when dot11OCBActivated is true, the BSSID is the wildcard BSSID.
- d) If the STA is a member of an MBSS, the BSSID is the address of the transmitter and is equal to the Data frame's TA.
- e) If the STA participates in a PBSS, the BSSID is the address of the STA contained in the PCP of the PBSS.

9.3.2.1.3 Other MAC Header fields

The Sequence Control field is defined in 9.2.4.4.

The QoS Control field is defined in 9.2.4.5. The presence of the QoS Control field is determined by the Subtype subfield of the Frame Control field, as specified in 9.2.4.1.3.

The HT Control field is defined in 9.2.4.6. The presence of the HT Control field is determined by the +HTC/Order subfield of the Frame Control field, as specified in 9.2.4.1.10.

9.3.2.1.4 The frame body

The frame body consists of either of the following:

- The MSDU (or a fragment thereof), the Mesh Control field (present if the frame is transmitted by a mesh STA and the Mesh Control Present subfield of the QoS Control field is 1, otherwise absent), and a security header and trailer (present if the Protected Frame subfield in the Frame Control field is 1, otherwise absent)
- The A-MSDU and a security header and trailer (present if the Protected Frame subfield in the Frame Control field is 1, otherwise absent)

The presence of an A-MSDU in the frame body is indicated by setting the A-MSDU Present subfield of the QoS Control field to 1, as shown in Table 9-6.

For Data frames of subtype Null (no data), CF-Ack (no data), CF-Poll (no data), and CF-Ack+CF-Poll (no data) and for the corresponding QoS data frame subtypes, the Frame Body field is null (i.e., has a length of 0 octets); these subtypes are used for MAC control purposes. For Data frames of subtypes Data, Data+CF-Ack, Data+CF-Poll, and Data+CF-Ack+CF-Poll, the Frame Body field contains all of, or a fragment of, an MSDU after any encapsulation for security. For Data frames of subtypes QoS Data, QoS Data+CF-Ack, QoS Data+CF-Poll, and QoS Data+CF-Ack+CF-Poll, the Frame Body field contains an MSDU (or fragment thereof) or A-MSDU after any encapsulation for security. For Data frames of subtype QoS Data that are transmitted by a mesh STA, the Frame Body field also contains a Mesh Control field, as described in 9.2.4.7.3.

The maximum length of the Frame Body field can be determined from the maximum MSDU length, plus the length of the Mesh Control field (if present), plus any overhead from encapsulation for encryption (i.e., it is

always possible to send a maximum length MSDU, with any encapsulations provided by the MAC layer within a single Data frame). When the frame body carries an A-MSDU, the size of the Frame Body field is limited by the following:

- The PHY's maximum PHY service data unit (PSDU) length
- If A-MPDU aggregation is used by a non-VHT and non-DMG STA, a maximum MPDU length of 4095 octets (see 9.7)

9.3.2.1.5 Duration field

Within all Data frames sent by STAs during the CFP under PCF, the Duration field is set to 32 768. Within all Data frames sent by the QoS STA, the Duration field contains a duration value as defined in 9.2.5. Within all Data frames sent during the CP by non-QoS STAs, the Duration field is set according to the following rules:

- If the Address 1 field contains a group address, the duration value is set to 0.
- If the More Fragments bit is 0 in the Frame Control field of a frame and the Address 1 field contains an individual address, the duration value is set to the time, in microseconds, required to transmit one Ack frame, plus one SIFS.
- If the More Fragments bit is 1 in the Frame Control field of a frame and the Address 1 field contains an individual address, the duration value is set to the time, in microseconds, required to transmit the next fragment of this Data frame, plus two Ack frames, plus three SIFSS.

The duration value calculation for the Data frame is based on the rules in 10.7 that determine the data rate at which the Control frames in the frame exchange sequence are transmitted. If the calculated duration includes a fractional microsecond, that value is rounded up to the next higher integer. All STAs process Duration field values less than or equal to 32 767 from valid Data frames (without regard for the RA, DA, and/or BSSID address values that might be present in these frames) to update their NAV settings as appropriate under the coordination function rules.

NOTE 1—The QoS Data and QoS Null subtypes are the only Data subtypes transmitted by a DMG STA.

NOTE 2—The HT Control field is not present in frames transmitted by a DMG STA.

9.3.3 Management frames

9.3.3.6 Association Request frame format

Insert the following row into Table 9-29 in numeric order:

Table 9-29—Association Request frame body

Order	Information	Notes
41	GLK-GCR Parameter Set	The GLK-GCR Parameter Set element is present if dot11GLKImplemented is true to indicate the number of reorder buffers the STA has to support GLK-GCR with GCR block ack and respond to corresponding GLK-GCR BlockAckReq frames. Otherwise this element is not present.

9.3.3.7 Association Response frame format

Insert the following row into Table 9-30 in numeric order:

Table 9-30—Association Response frame body

Order	Information	Notes
53	GLK-GCR Parameter Set	The GLK-GCR Parameter Set element is present if dot11GLKImplemented is true and the AP has set up a GLK-GCR for groupcast transmissions over the underlying general link. Otherwise this element is not present.

9.3.3.8 Reassociation Request frame format

Insert the following row into Table 9-31 in numeric order:

Table 9-31—Reassociation Request frame body

Order	Information	Notes
46	GLK-GCR Parameter Set	The GLK-GCR Parameter Set element is present if dot11GLKImplemented is true to indicate the number of reorder buffers the STA has to support GLK-GCR with GCR block ack and respond to corresponding GLK-GCR BlockAckReq frames. Otherwise this element is not present.

9.3.3.9 Reassociation Response frame format

Insert the following row into Table 9-32 in numeric order:

Table 9-32—Reassociation Response frame body

Order	Information	Notes
56	GLK-GCR Parameter Set	The GLK-GCR Parameter Set element is present if dot11GLKImplemented is true and the AP has set up a GLK-GCR for groupcast transmissions over the underlying general link. Otherwise this element is not present.

9.4 Management and Extension frame body components

9.4.1 Fields that are not elements

9.4.1.4 Capability Information field

Change Figure 9-68 and Figure 9-69 as follows:

B0	B1	B2	B3	B4	B5	B6	B7
ESS	IBSS	CF Pollable	CF-Poll Request	Privacy	Short Preamble	Reserved	Reserved

B8	B9	B10	B11	B12	B13	B14	B15
Spectrum Management	QoS	Short Slot Time	APSD	Radio Measurement	<u>EPD</u> Reserved	Delayed Block Ack	Immediate Block Ack

Figure 9-68—Capability Information field (non-DMG STA)

B0	B7	B8	B9	B10	B11	B12	B13	B14	B15
DMG Parameters	Spectrum Management	Triggered Unscheduled PS	Reserved	Reserved	Radio Measurement	<u>EPD</u>	Reserved		

Bits: 8 1 1 2 1 1 1 2 3

Figure 9-69—Capability Information field (DMG STA)

Insert the following paragraph after the 27th paragraph (“A STA sets the Radio Measurement subfield”) of 9.4.1.4:

A STA sets the EPD subfield in the Capability Information field to 1 when dot11EPDImplemented is true and sets it to 0 otherwise.

9.4.1.9 Status Code field

Insert the following row into Table 9-46 in numeric order, and change the Reserved row accordingly:

Table 9-46—Status codes

Status Code	Name	Meaning
122	GLK_NOT_AUTHORIZED	The STA is not authorized to use GLK per local policy.

9.4.1.11 Action field

Insert the following row into Table 9-47 in numeric order, and change the Reserved row accordingly:

Table 9-47—Category values

Code	Meaning	See subclause	Robust	Group addressed privacy
29	GLK	9.6.31	Yes	Yes

9.4.2 Elements

9.4.2.1 General

Insert the following row into Table 9-77 in numeric order:

Table 9-77—Element IDs

Element	Element ID	Element ID Extension	Extensible
GLK-GCR Parameter Set (see 9.4.2.232)	255	34	Yes

9.4.2.3 Supported Rates and BSS Membership Selectors element

Insert the following rows at the end of Table 9-78 in numeric order:

Table 9-78—BSS membership selector value encoding

Value	Feature	Interpretation
125	GLK	Indicates that support for the mandatory features of 11.51 is required in order to join the BSS that was the source of the Supported Rates and BSS Membership Selectors element or Extended Supported Rates and BSS Membership Selectors element containing this value.
124	EPD	Indicates that support for EPD is required in order to join the BSS that was the source of the Supported Rates and BSS Membership Selectors element or Extended Supported Rates and BSS Membership Selectors element containing this value.

9.4.2.27 Extended Capabilities element

Change the following rows in Table 9-135 as shown:

Table 9-135—Extended Capabilities field

Bit	Information	Notes
1	<u>GLK Reserved</u>	<u>The STA sets the GLK field to 1 when dot11GLKImplemented is true and sets it to 0 otherwise.</u>
3	<u>GLK-GCR Reserved</u>	<u>The STA sets the GLK-GCR field to 1 when dot11GLKGCRImplemented is true and sets it to 0 otherwise.</u>

9.4.2.128 DMG Capabilities element

9.4.2.128.2 DMG STA Capability Information field

Change Figure 9-504 as follows:

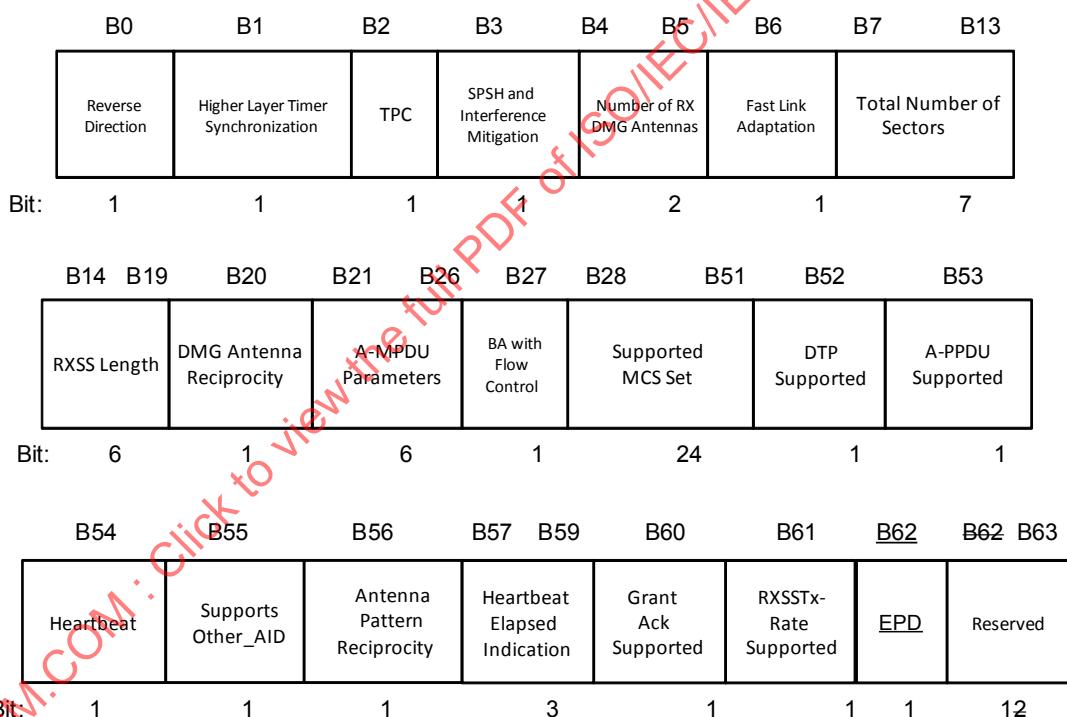


Figure 9-504—DMG STA Capability Information field format

Insert the following paragraph at the end of 9.4.2.128.2:

A DMG STA sets the EPD subfield in the DMG STA Capability Information field to 1 when dot11EPDImplemented is true and sets it to 0 otherwise.

Insert the following subclause (9.4.2.232, including Figure 9-589ds, Figure 9-589dt, and Table 9-262ag) after 9.4.2.231:

9.4.2.232 GLK-GCR Parameter Set element

The GLK-GCR Parameter Set element is included in an Association Request or a Reassociation Request transmitted by a non-AP STA to indicate its buffering capability to support GLK-GCR. The GLK-GCR Parameter Set element is included in the corresponding Association Response or Reassociation Response transmitted by an AP to define the parameters that are used when the GLK AP transmits groupcast frames using GLK-GCR to the associated GLK non-AP STAs. Figure 9-589ds shows the fields that make up the GLK-GCR Parameter Set element.

Element ID	Length	Element ID Extension	GLK-GCR Parameters
Octets: 1	1	1	3

Figure 9-589ds—GLK-GCR Parameter Set element format

The GLK-GCR Parameters field is shown in Figure 9-589dt.

B0	B1	B2	B11	B12	B23
GLK-GCR Retransmission Policy			Buffer Size		Block Ack Starting Sequence Number
Bits: 2			10		12

Figure 9-589dt—GLK-GCR Parameters field format

The GLK-GCR Retransmission Policy subfield is described in Table 9-262ag. This subfield is reserved when the corresponding GLK-GCR Parameters Set element is part of an Association Request or a Reassociation Request.

Table 9-262ag—GLK-GCR Retransmission Policy subfield

B0	B1	Description of the corresponding GLK-GCR mode
0	0	Reserved
0	1	GLK-GCR not operational
1	0	Operating in GLK-GCR unsolicited retry mode
1	1	Operating in GLK-GCR block ack mode

The Buffer Size subfield indicates the maximum number of buffers in the GLK-GCR block ack block. Each buffer is capable of holding a number of octets equal to the maximum size of an A-MSDU that is supported by the STA.

In an Association Request or a Reassociation Request, the Buffer Size subfield in a GLK-GCR Parameter Set element is intended to provide guidance for the recipient to decide its reordering buffer size. If the transmitter has no guidance for the receivers reordering buffer size it sets the Buffer Size subfield to 0.

In an Association Response or Reassociation Response, the Buffer Size subfield in a GLK-GCR Parameters field in the GLK-GCR Parameter Set element is set to a value greater than equal to 1, if the GLK-GCR retransmission policy indicates GLK-GCR block ack mode. Otherwise this subfield is reserved.

The Block Ack Starting Sequence Control subfield indicates the sequence number of the first MSDU or A-MSDU for this GLK-GCR block ack agreement, and is defined in 9.3.1.8. This subfield is reserved when the corresponding GLK-GCR Parameters Set element is part of an Association Request or Reassociation Request.

9.6 Action frame format details

Insert the following subclause (9.6.31, including Table 9-421ag and Table 9-421ah) after 9.6.30.3:

9.6.31 GLK Action frame details

9.6.31.1 GLK Action field

A GLK Action field, in the octet immediately after the Category field, differentiates the GLK Action frame formats. The GLK Action field values associated with each frame format within the GLK category are defined in Table 9-421ag.

Table 9-421ag—GLK Action field values

Value	Meaning	Time priority
0	GLK Groupcast Mode Change Notification	No
1–255	Reserved	—

9.6.31.2 GLK Groupcast Mode Change Notification

The GLK Groupcast Mode Change Notification frame is an Action frame used to indicate a change to the GLK groupcast transmission policy. See Table 9-421ah.

Table 9-421ah—GLK Groupcast Mode Change Notification frame format

Order	Information
1	Category
2	GLK Action
3	GLK-GCR Parameter Set

The Category field is defined in 9.4.1.11. The GLK Action field is defined in 9.6.31.1. The GLK-GCR Parameter Set element is defined in 9.4.2.232.

10. MAC sublayer functional description

10.2 MAC architecture

10.2.8 MAC data service

Insert the following paragraph after the fifth paragraph (“Unless the MPDU ”) of 10.2.8:

A STA transmitting on a general link also uses the addressing rules described in 10.65.

Change the now seventh paragraph of 10.2.8 as follows:

The MAC performs address filtering on the Address 1 field ~~of in~~ each MPDU contained in a PPDU and, for non-GLK non-AP STAs, on the DA of each MSDU within an A-MSDU. In the case of a non-GLK STA receiver, when the Address 1 field or DA field contains a group address, address filtering is performed by comparing the value in the Address 1 field or DA field to all values in the dot11GroupAddressesTable, and the STA also validates the BSSID to verify either that the group addressed frame originated from a STA in the BSS of which the receiving STA is a member, or that it contains the wildcard BSSID value, indicating a Data frame sent outside the context of a BSS (dot11OCBAActivated is true in the transmitting STA). Address 1 filtering is as specified in 10.66 when Address 1 is a SYNRA. A GLK AP does not perform any DA filtering for MPDUs received over a non-general link; all MSDUs so received are passed to the DS for further processing. A GLK STA does not perform DA filtering for MPDUs received over a general link; all MSDUs so received are passed to the GLK convergence function and from there to the bridge for further processing.

10.3 DCF

10.3.6 Group addressed MPDU transfer procedure

Change the last paragraph of 10.3.6 as follows:

A STA that is not an S1G relay STA shall discard an MPDU with a group address in the Address 1 field unless one of the following cases applies: (1) if the value in the Address 1 field matches does not match any value in the dot11GroupAddressesTable or matches and does not match the Broadcast address value, or (2) the STA is a GLK STA and the address in the Address 1 field is a SYNRA. A GLK STA shall process an MPDU with a SYNRA in the Address 1 field as described in 10.66. If an MPDU originates from an S1G relay STA’s associated AP and if the MPDU has any group address in its Address 1 field, then the STA shall forward that MPDU to the S1G relay AP.

10.12 A-MSDU operation

Change the fourth paragraph of 10.12 as follows:

In non-GLK transmissions, the The Address 1 field ~~of in~~ an MPDU carrying an A-MSDU shall be set to an individual address or to the GCR concealment address. In GLK transmissions by an AP, the Address 1 field may be set to a SYNRA. In GLK transmissions by a non-AP STA, the Address 1 field shall be set to an individual address.

10.24 Block acknowledgment (block ack)

10.24.1 Introduction

Change the second paragraph of 10.24.1 as follows:

The block ack mechanism is initialized by an exchange of ADDBA Request/Response frames except for GLK-GCR block ack. After initialization, blocks of QoS Data frames may be transmitted from the originator to the recipient. A block may be started within a polled TXOP, within an SP, or by winning EDCA contention. The number of frames in the block is limited, and the amount of state that is to be kept by the recipient is bounded. The MPDUs within the block of frames are acknowledged by a BlockAck frame, which is requested by a BlockAckReq frame.

Insert the following paragraph after the second paragraph of 10.24.1:

For GLK-GCR block ack, the block ack mechanism is initialized when the GLK STA associates with the GLK AP. The MPDUs within a block of SYNRA addressed Data frames are acknowledged by a BlockAck frame, which is requested by a BlockAckReq frame.

10.24.2 Set up and modification of the block ack parameters

Insert the following note after the first note (now “NOTE 1—A block ack”) of 10.24.2:

NOTE 2—A GLK-GCR block ack is set up at the time the general link is established and might be used by the general link originator whenever the GCR block ack retransmission policy is active. Therefore, an explicit block ack setup or modification procedure is not defined for GLK-GCR block ack. The GLK-GCR block ack is deleted when the corresponding general link gets reassociated or disassociated.

10.24.3 Data and acknowledgment transfer using immediate block ack policy and delayed block ack policy

Change the first paragraph of 10.24.3 as follows:

After setting up either an immediate block ack agreement or a delayed block ack agreement following the procedure in 10.24.2, and having gained access to the medium and established protection, if necessary, the originator may transmit a block of QoS Data frames separated by SIFS, with the total number of frames not exceeding the Buffer Size subfield value in the associated ADDBA Response frame or the GLK-GCR Parameter Set element in the (Re)Association Response frame and subject to any additional duration limitations based on the channel access mechanism. Each of the frames shall have the Ack Policy subfield in the QoS Control field set to No Ack. The RA field in the frames that are not delivered using the GCR block ack retransmission policy shall be the recipient’s individual address. The RA field of in GCR frames delivered using the GCR block ack retransmission policy shall be set to the GCR concealment address. The RA field in data frames delivered using the GLK-GCR block ack retransmission policy shall be set to a SYNRA. The originator requests acknowledgment of outstanding QoS Data frames by sending a Basic BlockAckReq frame. The recipient shall maintain a block ack record for the block.

10.24.5 Teardown of the block ack mechanism

Change the last paragraph of 10.24.5 as follows:

The DELBA frame transmitted to release the block ack setup of a GCR service shall include the GCR Group Address element to indicate the group address of the GCR service. For general links using a GLK-GCR block ack retransmission policy, there is no explicit teardown of the block ack mechanism. The GLK-GCR block ack agreement terminates when the general link is reassociated/disassociated.

10.24.6 Selection of BlockAck and BlockAckReq variants

Change the sixth paragraph of 10.24.6 as follows (including splitting it into two paragraphs, each with a dashed list):

The GCR Mode subfield of the BAR Control field (see Table 9-22) shall be set to +

- GCR BlockAck: in all BlockAckReq frames ~~where the within a GCR block ack agreement or~~
- GLK-GCR BlockAck: in all BlockAckReq frames within a GLK-GCR block ack agreement.
~~is for a group address delivered using the GCR block ack retransmission policy and shall be set to 0 otherwise.~~

The GCR Mode subfield ~~of~~ in the corresponding BA Control field (see Table 9-24) shall be set to +

- GCR BlockAck: in all BlockAck frames ~~where the within a GCR block ack agreement or~~
- GLK-GCR BlockAck: in all Block Ack frames within a GLK-GCR block ack agreement.
~~is for a group address delivered using the GCR block ack retransmission policy and shall be set to 0 otherwise.~~

Change the subclause title of 10.24.10 as follows:

10.24.10 GCR and GLK-GCR block ack

10.24.10.1 Introduction

Change 10.24.10.1 as follows:

Subclause 10.24.10 extends the block ack mechanism to group addressed frames that are transmitted using the GCR block ack ~~and GLK-GCR retransmission policies policy~~. Other than the exceptions noted in 10.24.10.2 through 10.24.10.3, the operation of GCR block ack is the same as is described in 10.24.7.

Insert the following subclause (10.24.10.2a) after 10.24.10.2:

10.24.10.2a Scoreboard context control during GLK-GCR block ack

GLK-GCR scoreboard accounts for all GLK-GCR frames received under the GLK-GCR block ack agreement. The received frame may be discarded after SYNRA filtering (see 10.66) but still accounted for in the scoreboard.

A GLK AP may set up a GLK-GCR block ack agreement with each GLK STA that has indicated support for GLK-GCR in the Association/Reassociation Request frame when the GLK STA associated/reassociated with the GLK AP. Each of those GLK STAs with GLK-GCR block ack agreement shall maintain a block acknowledgment record for full state operation as defined in 10.24.3. This record includes the following information:

- A bitmap, indexed by sequence number
- A 12-bit unsigned integer starting sequence number
- $WinStart_R$, representing the lowest sequence number position in the bitmap
- A variable $WinEnd_R$
- The maximum transmission window size, $WinSize_R$

$WinSize_R$ is set to the smaller of 64 and the value of the Buffer Size subfield in the GLK-GCR Parameter Set element in the most recently received Association Response or the Reassociation Response frame that established the GLK-GCR block ack agreement, or the GLK Groupcast Mode Change Notification action

frame. $WinEnd_R$ is defined as the highest sequence number in the current transmission window. A STA implementing a GLK-GCR block ack agreement shall maintain the block acknowledgment record for that agreement according to the following rules:

- a) At GCR block ack agreement establishment (either during general link establishment or when GLK-GCR groupcast mode changes):
 - 1) $WinStart_R$ = the Starting Sequence Number subfield value (SSN) from the GLK-GCR Parameter Set element included in the Association Response frame, Reassociation Response frame or in the GLK-GCR Groupcast Mode Change Notification frame.
 - 2) $WinEnd_R = WinStart_R + WinSize_R - 1$.
- b) For each Data frame that is received under the GLK-GCR block ack agreement, the block acknowledgment record for that agreement is modified as follows, where SN is the value of the Sequence Number subfield in the received Data frame:
 - 1) If $WinStart_R \leq SN \leq WinEnd_R$, set to 1 the bit in position SN within the bitmap.
 - 2) If $WinEnd_R < SN < WinStart_R + 2^{11}$,
 - i) Set to 0 the bits corresponding to MPDUs with Sequence Number subfield values from $WinEnd_R + 1$ to $SN - 1$.
 - ii) Set $WinStart_R = SN - WinSize_R + 1$.
 - iii) Set $WinEnd_R = SN$.
 - iv) Set to 1 the bit at position SN in the bitmap.
 - 3) If $WinStart_R + 2^{11} \leq SN \leq WinStart_R$, make no changes to the record.
- c) For each BlockAckReq frame received under the GLK-GCR block ack agreement, the block acknowledgment record for that agreement is modified as follows, where SSN is the value from the Starting Sequence Number subfield in the received BlockAckReq frame:
 - 1) If $WinStart_R < SSN \leq WinEnd_R$,
 - i) Set $WinStart_R = SSN$.
 - ii) Set to 0 the bits corresponding to MPDUs with Sequence Number subfield values from $WinEnd_R + 1$ to $WinStart_R + WinSize_R - 1$.
 - iii) Set $WinEnd_R = WinStart_R + WinSize_R - 1$.
 - 2) If $WinEnd_R < SSN < WinStart_R + 2^{11}$,
 - i) Set $WinStart_R = SSN$.
 - ii) Set $WinEnd_R = WinStart_R + WinSize_R - 1$.
 - iii) Set to 0 bits the corresponding to MPDU with Sequence Number subfield values from $WinStart_R$ to $WinEnd_R$.
 - 3) If $WinStart_R + 2^{11} \leq SSN \leq WinStart_R$, make no changes to the record.

10.24.10.3 GCR block ack BlockAckReq and BlockAck frame exchanges

Insert the following paragraph after the seventh paragraph (“For GCR streams NOTE—This is ... counter.”) of 10.24.10.3:

For GLK-GCR transmissions with retransmission policy equal to GLK-GCR block ack, an originator may send a BlockAckReq frame with the Block Ack Starting Sequence Control subfield set to the Sequence Number field in the MPDU containing the earliest MSDU that has not been acknowledged and has not expired due to lifetime limits, in order to minimize buffering latency at the receivers of the GLK-GCR transmission.

Insert the following subclauses (10.61 and 10.62) after 10.60.5:

10.61 Addressing of GLK data frame transmission

If a corresponding IEEE 802.1Q Bridge provides a station vector parameter that indicates a single general link, then the GLK STA shall transmit the MSDU using individually addressed MPDU(s) to the peer STA with one of the following methods:

- A frame with a three-address MAC header if the RA and the DA are equal and the transmitter is an AP.
- A frame with a four-address MAC header.
- A frame containing a Basic A-MSDU.

If a corresponding IEEE 802.1Q Bridge provides a station vector parameter that indicates multiple general links, then GLK transmission of the MSDU shall use one of the following methods:

- Transmit multiple individually addressed MPDUs to peer STAs.
- Transmit group addressed MPDU(s) using a SYNRA in a frame with a four-address MAC header with the following restrictions:
 - Shall not be sent by a non-GLK STA or non-AP STA.
 - Shall not address a STA that is in PS mode.
 - Shall not address a STA whose general link might pass through a relay.

A GLK AP may use any combination of these methods, such that each peer STA is addressed once. This also applies for each retry triggered by GLK-GCR, which shall use the same method for all transmission attempts.

The addressing of the frame with a four-address MAC header shall be as follows:

- Address 1 is the MAC address of the immediate destination STA (the receiver of the MPDU) or a SYNRA.
- Address 2 is the MAC address of the transmitter STA (the transmitter of the MPDU).
- Address 3 is the DA of the MSDU (the destination address of the MSDU), or BSSID for a Basic A-MSDU.
- Address 4 is the SA of the MSDU (the source address of the MSDU), or BSSID for a Basic A-MSDU.

The addressing of the frame with the three-address MAC header format containing a basic A-MSDU shall be as follows:

- Address 1 is the MAC address of the immediate destination STA (the receiver of the MPDU).
- Address 2 is the MAC address of the transmitter STA (the transmitter of the MPDU).
- Address 3 is the BSSID.
- DA in A-MSDU subframe header is the DA of the MSDU (the destination address of the MSDU).
- SA in A-MSDU subframe header is the SA of the MSDU (the source address of the MSDU).

10.62 SYNRA filtering operation

A GLK infrastructure non-AP STA shall support reception of frames with a SYNRA as RA.

When a GLK non-AP STA receives a group address RA in an MPDU from its associated GLK AP, if the SYNRA Type subfield does not represent a supported SYNRA type, or the From DS and To DS subfields in the Frame Control field are not both 1, then the non-AP STA shall discard the frame, and not use the frame

for updating any scoreboard used for GLK-GCR block ack. All other group addressed Data frames received from the associated GLK AP shall be counted as received for the purposes of the scoreboard used for GLK-GCR block ack, even if discarded based on the subsequent SYNRA filtering, as described below.

For Basic SYNRA Control subfield, the frame shall be discarded if any of the following filter rules are satisfied:

- The AID of the STA falls within the range of AID values covered by the AID Bitmap subfield, and the bit representing its AID value is 0.
- The AID of the STA falls outside the range of AID values covered by the AID Bitmap subfield, and the Other AID subfield is 0.

11. MLME

11.2 Power management

11.2.3 Power management in a non-DMG infrastructure network

11.2.3.1 General

Change the third paragraph of 11.2.3.1 as follows:

If any non-GLK STA in its BSS is in PS mode, the AP shall buffer all non-GCR-SP group addressed BUs that arrive via the DS and deliver them to all non-GLK STAs immediately following the next Beacon frame containing a DTIM transmission. If the AP is an S1G AP, the AP may additionally deliver these BUs using group AID as defined in 10.51. If any GLK STA in its BSS is in PS mode, the AP shall not include any such STAs as a SYNRA destination and shall buffer all group addressed BUs that arrive from the attached bridge and are destined to such STAs, delivering them with individually addressed MPDUs using power save delivery methods.

Insert the following note after the third paragraph of 11.2.3.1:

NOTE—The group addressed buffered BUs containing one or more MSDUs for GLK type STAs and for non-GLK type STAs are not repeated by the AP to the other type of STA. Network entities external to the AP, such as the bridged network, may repeat these MSDUs to both types of STAs by other means, outside the scope of this standard.

11.2.3.3 AP TIM transmissions

Change the first paragraph of 11.2.3.3 as follows (footnote 42 remains unchanged):

The TIM shall identify the STAs for which traffic is pending and buffered in the AP. This information is coded in a partial virtual bitmap, as described in 9.4.2.6. In addition, the TIM contains an indication whether non-SYNRA group addressed traffic is pending. Every STA is assigned an AID by the AP as part of the association process. AID 0 (zero) is reserved to indicate the presence of buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA but that are not delivered using group AID. The AP shall identify those STAs for which it is prepared to deliver⁴² buffered BUs by setting bits in the TIM's partial virtual bitmap that correspond to the appropriate AIDs.

11.2.3.4 TIM types

Change the first paragraph of 11.2.3.4 as follows:

Two different TIM types are distinguished: TIM and DTIM. After a DTIM, the AP shall transmit buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA, before transmitting any individually addressed frames. The AP may additionally delivery these BUs using group AID as defined in 10.51.

11.2.3.6 AP operation during the CP

Change the following list items in the lettered list of 11.2.3.6 as shown:

- d) If a STA has The bit for AID 0 (zero) in the Bitmap Control field of the TIM element shall be set to 1 when non-GCR-SP non-SYNRA group addressed traffic that is not delivered using group AID is buffered, according to 9.4.2.6.
- e) If any associated non-GLK STAs are in PS mode, the AP shall buffer all non-GCR-SP group addressed BUs that arrive via the DS, except those that have the StrictlyOrdered service class. If any GLK STA in its BSS is in PS mode, the AP shall not include any such STAs as a SYNRA destination and shall buffer all group addressed BUs destined to such STAs, except those that have the StrictlyOrdered service class, delivering them with individually addressed MPDUs using power save delivery methods.
- f) When dot11FMSActivated is false, the AP shall transmit all buffered non-GCR-SP non-SYNRA group addressed BUs immediately after every DTIM.

When dot11FMSActivated is true and the AP has established an FMS delivery interval for a multicast stream, the AP shall transmit all non-GCR-SP non-SYNRA group addressed BUs belonging to particular FMS stream immediately after the DTIM that has the Current Count field value of the FMS Counter field set to 0 for that particular FMS stream.

The More Data subfield of each group addressed frame shall be set to indicate the presence of further buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA. If the AP is unable, before the primary or secondary TBTT following the DTIM, to transmit all of the buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA, before the primary or secondary TBTT following the DTIM, then the AP shall set the bit for AID 0 (zero) in the TIM element to 1 for a single BSSID or set the corresponding group address bit to 1 for multiple BSSIDs, as defined in 9.4.2.6, and when dot11FMSActivated is true, shall set the appropriate bits in the FMS Descriptor element as described in 9.4.2.75 to indicate for which non-GCR-SP non-SYNRA group addresses there are still buffered BUs, until all buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA have been transmitted.

When the AP transmits an STBC DTIM or TIM Beacon frame, the AP shall retransmit all non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA and that were transmitted following the non-STBC DTIM or TIM Beacon frame except that they are transmitted using the basic STBC MCS. It may be the case that a complete set of buffered non-GCR-SP non-SYNRA group addressed BUs is sent over a period of time during which non-STBC and STBC transmissions are interleaved, but the transition from non-STBC group addressed transmissions to STBC group addressed transmissions shall be preceded by the transmission of an STBC Beacon frame and the transition from STBC group addressed transmissions to non-STBC group addressed transmissions shall be preceded by the transmission of a non-STBC Beacon frame.

11.2.3.7 AP operation during the CFP

Change the following list items in the lettered list of 11.2.3.7 as shown:

- c) Prior to every CFP, and at each beacon interval within the CFP, the AP shall assemble the partial virtual bitmap containing the buffer status per destination for STAs in the PS mode, set to 1 the bits in the partial virtual bitmap for STAs the PC is intending to poll during this CFP, and shall send this out in the TIM field of the DTIM. The bit for AID 0 (zero) in the Bitmap Control field of the TIM element shall be set to 1 when non-SYNRA group addressed traffic is buffered, according to 9.4.2.6.
- d) All non-GCR-SP group addressed MSDUs that will be delivered using non-SYNRA MPDUs except those with a service class of StrictlyOrdered shall be buffered if any associated STAs are in the PS mode, regardless of whether those STAs are CF-Pollable.
- e) When dot11FMSActivated is false, the AP shall transmit all buffered non-GCR-SP non-SYNRA group addressed BUs immediately after every DTIM (Beacon frame with DTIM Count field of the TIM element equal to 0).

When dot11FMSActivated is true and the AP has set up an FMS delivery interval for a multicast stream, the AP shall send all non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA and belonging to a particular FMS stream immediately after the DTIM with the Current Count field value of the FMS Counter field set to 0 for that particular FMS stream.

The More Data subfield shall be set to 1 in the headers of all but the final frame containing one of these buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA to indicate the presence of further buffered group addressed BUs. If the AP is unable to transmit all of the buffered non-GCR-SP group addressed BUs before the non-STBC or STBC TBTT following the DTIM, the AP shall set the bit for AID 0 (zero) in the TIM element to 1 for a single BSSID or set the corresponding group addressed bit to 1 for multiple BSSIDs, as defined in 9.4.2.6, and when dot11FMSActivated is true, shall set the appropriate bits in the FMS Descriptor element as described in 9.4.2.75 to indicate for which group addresses there are still buffered BUs, until all buffered non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA have been transmitted.

When the AP transmits an STBC DTIM or TIM Beacon frame, the AP shall retransmit all non-GCR-SP group addressed BUs that will be delivered using MPDUs with an RA other than a SYNRA and that were transmitted following the non-STBC DTIM or TIM Beacon frame except that they are transmitted using the basic STBC MCS. It may be the case that a complete set of buffered non-GCR-SP non-SYNRA group addressed BUs is sent over a period of time during which non-STBC and STBC transmissions are interleaved, but the transition from non-STBC group addressed transmissions to STBC group addressed transmissions shall be preceded by the transmission of a STBC Beacon frame and the transition from STBC group addressed transmissions to non-STBC group addressed transmissions shall be preceded by the transmission of a non-STBC Beacon frame.

- f) Buffered BUs for STAs in the PS mode shall be forwarded to the CF-Pollable STAs under control of the PC. Transmission of these buffered BUs as well as CF-Polls to STAs in the PS mode that were indicated in the DTIM in accordance with paragraph c) of this subclause shall begin immediately after transmission of buffered non-GCR-SP non-SYNRA group addressed frames (if any), and shall occur in order by increasing AID of CF-Pollable STAs. A CF-Pollable STA for which the TIM element of the most recent Beacon frame indicated buffered BUs shall be in the awake state at least until the receipt of an individually addressed frame from the AP in which the Frame Control field does not indicate the existence of more buffered BUs. After acknowledging the last of the buffered BUs, the CF-Pollable STA operating in the PS mode may enter the doze state until the next DTIM is expected.

Insert the following subclause (11.2.9) after 11.2.8:

11.2.9 Power management with general links

GLK STAs that have established general links (associations) have additional power management behaviors to support data frames with a SYNRA and GLK GCR. These behaviors are in addition to the GLK STA behaviors listed in the previous subclauses.

NOTE—It is suggested that a STA using a general link that carries unknown traffic loads on behalf of other endpoints not use PS mode, due to the increased delay and jitter it would cause. However, GLK STAs that find PS mode useful may utilize PS mode while performing behaviors in this subclause.

Data frames with a SYNRA are queued for normal (nonbuffered) transmission to associated GLK STAs that are not in PS mode. A SYNRA shall not be used to address GLK STAs in PS mode.

NOTE—The net effect of the above is that any GLK non-AP STA in PS mode will, for all traffic for which the PS STA is a recipient, result in MPDUs that are buffered and, if there are multiple receivers, potentially duplicated. The IEEE 802.1Q bridge at the AP should use higher-layer facilities to filter traffic being sent to the STA so as to limit the amount of buffered traffic.

A GLK STA that has enabled GLK-GCR on its general link shall not enter PS mode. GLK STAs shall not use the FMS, TFS nor WNM-Sleep procedures applied to group addressed frames.

11.3 STA authentication and association

11.3.5 Association, reassociation, and disassociation

11.3.5.3 AP or PCP association receipt procedures

Change the following list item in the lettered list of 11.3.5.3 as shown:

- f) The SME shall refuse an association request from a STA that does not support all of the rates in the BSSBasicRateSet parameter and all of the membership selectors in the BSSMembershipSelectorSet parameter in the MLME-START request primitive.

Insert the following list item and note after item h) in 11.3.5.3, and reletter the remaining list items appropriately:

- i) An AP or PCP may refuse GLK association based on local policy and, if so, shall return the GLK_NOTAUTHORIZED ResultCode.

NOTE—For example, there might be a list of authorized GLK peers or clients or a limit on the number of GLK peers or clients and the peer or client is not on that list or its acceptance would exceed the limit.

11.3.5.4 Non-AP and non-PCP STA reassociation initiation procedures

Change the first numbered list of item c) in the lettered list of 11.3.5.4 as follows:

- c) If a Reassociation Response frame ... SUCCESS, the state variable ... to initial values:
 - 1) All EDCAF state
 - ...
 - 11) GLK-GCR agreement

11.3.5.5 AP or PCP reassociation receipt procedures

Change the following list item in the lettered list of 11.3.5.5 as shown:

- f) The SME shall refuse a reassociation request from a STA that does not support all of the rates in the BSSBasicRateSet parameter and all of the membership selectors in the BSSMembershipSelectorSet parameter in the MLME-START.request primitive.

11.24 Wireless network management procedures

11.24.16 Group addressed transmission service

11.24.16.3 GCR procedures

11.24.16.3.1 Overview

Insert the following paragraphs at the end of 11.24.16.3.1:

GLK-GCR is a variant of GCR where the setup is implicit and is accomplished using a (Re)Association frame exchange between the peers and termination is implicit and is accomplished when the corresponding general link is torn down. Modification is explicit and is accomplished using a GLK Groupcast Mode Change Notification frame.

GLK-GCR defines two retransmission policies for group addressed frames:

- GLK-GCR unsolicited retry
- GLK-GCR block ack

When a GLK STA implements the GLK-GCR procedures defined in 11.24.16.4.2 or 11.24.16.4.3, it shall set dot11GLKGCRImplemented to true; otherwise dot11GLKGCRImplemented shall be set to false. When dot11GLKGCRImplemented is true the GLK-GCR bit field shall be set to 1 in the Extended Capabilities element, to indicate support for GLK-GCR, otherwise the field shall be set to 0.

11.24.16.3.2 GCR group membership procedures

Insert the following paragraph at the beginning of 11.24.16.3.2:

The GCR group membership procedures do not apply to GLK-GCR. GLK-GCR uses SYNRA.

11.24.16.3.3 GCR setup procedures

Insert the following paragraph at the beginning of 11.24.16.3.3:

The following setup procedures apply only if the underlying link is a non-general link.

11.24.16.3.4 GCR frame exchange procedures

Insert the following paragraph at the beginning of 11.24.16.3.4:

The GCR frame exchange procedures do not apply to GLK-GCR. See 11.24.16.4.2 for GLK-GCR frame exchange procedures.

11.24.16.3.5 Concealment of GCR transmissions

Insert the following paragraph at the beginning of 11.24.16.3.5:

The concealment of GCR transmissions does not apply to GLK-GCR.

11.24.16.3.6 GCR unsolicited retry

Insert the following paragraph at the beginning of 11.24.16.3.6:

The GCR unsolicited retry procedures do not apply to GLK-GCR. See 11.24.16.4.3 for GLK-GCR unsolicited retry.

11.24.16.3.7 GCR block ack

Insert the following paragraph at the beginning of 11.24.16.3.7:

The GCR block ack procedures do not apply to GLK-GCR. See 11.24.16.4.4 for GLK-GCR block ack.

11.24.16.3.8 GCR-SP

Insert the following paragraph at the beginning of 11.24.16.3.8:

The GCR-SP delivery method does not apply to GLK-GCR.

Insert the following subclause (11.24.16.4) after 11.24.16.3.8:

11.24.16.4 GLK-GCR

11.24.16.4.1 Overview

GLK-GCR functions as GCR does except as described in the subclauses below. The RA field in the MAC header corresponding to the Data frames transmitted under the GLK-GCR agreement shall contain a SYNRA.

11.24.16.4.2 GLK-GCR frame exchange procedures

A GLK AP that supports GLK-GCR and has set up GLK-GCR for groupcast transmissions shall transmit group addressed frames only via the GLK-GCR mechanism. The GLK AP shall not transmit groupcast frames via the No-Ack/No-Retry (non-GCR; see 10.3.6) service as long as GLK-GCR is active. Data frames using the GLK-GCR mechanism use the non-GCR-SP delivery mode. A GLK AP providing GLK-GCR service may switch between GCR block ack, or GCR unsolicited retry retransmission policies only after indicating such a switch using the GLK Groupcast Mode Change Notification frame.

When the GLK AP updates the GLK-GCR retransmission policy, the GLK AP shall set the Last Sequence Control field in the GLK-GCR Parameter Set element to the sequence number of the MPDU corresponding to the GCR traffic flow that is being updated that was delivered prior to the change in retransmission policy.

To avoid undetected retries being passed up at a receiver's MAC SAP, GLK non-AP STAs that support GLK-GCR should detect duplicates of received group addressed frames and discard them (see 10.3.2.12).

A GLK AP may update the retransmission policy for any reason, such as a change in the size of the group or the capabilities of the members of the group. The GLK AP advertises the current settings using a GLK Groupcast Mode Change Notification frame.

11.24.16.4.3 GLK-GCR unsolicited retry

A STA supports the GLK-GCR unsolicited retry retransmission policy if `dot11GLKGCRImplemented` is true; otherwise, the STA does not support the GLK-GCR unsolicited retry retransmission policy.

A GLK AP adopting the GLK-GCR unsolicited retry retransmission policy uses the backoff procedure described in 10.22.2.10.2.

If a block ack agreement has successfully been established for a group addressed stream that is delivered using the GLK-GCR unsolicited retry retransmission policy, the GLK STA shall follow the duplicate detection procedures defined in 10.3.2.12 and 10.24.4.

11.24.16.4.4 GLK-GCR block ack

A STA supports the GLK-GCR block ack retransmission policy if `dot11GLKGCRImplemented` is true; otherwise, the STA does not support the GLK-GCR block ack retransmission policy.

The Buffer Size subfield in the GLK-GCR Parameters field in the GLK-GCR Parameter Set element sent in the (Re)Association Response frame by the GLK AP is the GCR buffer size (see 10.24.10).

Insert the following subclauses (11.51 and 11.52) after 11.50.7:

11.51 GLK operation

11.51.1 General

GLK STAs are capable of creating general links with other GLK STAs, that can be used as links within an IEEE 802.1Q bridged network. Such links (1) include facilities to send group addressed Data frames to a subset of receiving GLK STAs including use of improved GCR mechanisms, (2) can be mapped to the IEEE 802.1Q Internal Sublayer Service, and (3) provide link metrics appropriate for use by IEEE 802.1Q bridges in making routing decisions.

When `dot11GLKImplemented` is true, the STA is a GLK STA and `dot11QosOptionImplemented` shall be true. A STA advertises its GLK capability using the GLK field of the Extended Capabilities element (see 9.4.2.27). `dot11GLKImplemented` is true if and only if a STA implements the GLK facility.

The Supported Rates and BSS Membership Selectors or Extended Supported Rates and BSS Membership Selectors elements shall include the GLK selector if `dot11GLKRequired` is true.

If `dot11GLKRequired` is true, every association or mesh peering created by the STA shall establish a general link.

In an IBSS, if `dot11GLKRequired` is not true, general links shall not be established.

A GLK STA shall support SYNRA operations as described in 10.65 and 10.66.

11.51.2 Reported general link metrics

The bridge management protocols in IEEE Std 802.1Q require link metrics for each general link. GLK STAs shall provide metrics for their general links as follows: