INTERNATIONAL STANDARD

ISO/IEC 9594-5

Second edition 1995-09-15

Information technology — Open Systems Interconnection — The Directory: Protocol specifications

Technologies de l'information — Interconnexion de systèmes ouverts (OSI) — L'Annuaire: Spécifications du protocole

CONTENTS

:	Scop	e		
	_	native references		
	2.1	Identical Recommendations International Standards		
-	2.2	Paired Recommendations International Standards equivalent in technical content		
		nitions		
	3.1	OSI Reference Model Definitions		
	3.2	Remote Operations Definitions		
	3.3	Basic Directory Definitions		
	3.4	Distributed Operation Definitions.		
		eviations		
. (Conv	rentions		
j]	Proto	col overview		
	6.1	Remote Operations – Specification and OSI Realization		
	6.2	Directory ROS-Objects and Contracts		
	6.3	DAP Contract and Packages		
(6.4	DAP Contract and Packages DSP Contract and Packages		
(6.5	DISP Contracts and Packages		
(6.6	DOP Contract and Packages		
(6.7	Use of underlying services		
']	6.6 DOP Contract and Packages 6.7 Use of underlying services. Directory protocol abstract syntax			
	7.1	Abstract syntaxes		
•	7.2	Directory application contexts		
,	7.3	Directory application contexts Operation Codes.		
•	7.4	Error Codes		
,	7.5	Versions and the rules for extensibility.		
.]	Map	oing onto used services		
:	8.1	Application contexts omitting RTSE		
:	8.2	Application contexts including RTSE		
•	Conf	ormance		
	9.1	Conformance by DUAS		
9	9.2	Conformance by DSAs		
9	9.3	Conformance by a shadow supplier		
9	9.4	Conformance by a shadow consumer		
Annex .	Α –	DAP in ASN.1		
Annex	В –	DSP in ASN.1		
Annex	C –	DISP in ASN.1		
Annex :	D -	DOP in ASN.1		
Annex I	E -	Reference definition of protocol object identifiers		
Annex 1	F -	Directory operational binding types		
Annex (G –	Amendments and corrigenda		

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

[©] ISO/IEC 1995

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 9594-5 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 21, Open systems interconnection, data management and open distributed processing, in collaboration with ITU-T. The identical text is published as ITU-T Recommendation X.519.

Implementors should note that a defect resolution process exists and that corrections may be applied to this part of ISO/IEC 9594 in the form of technical corrigenda. A list of approved technical corrigenda for this part of ISO/IEC 9594 can be obtained from the subcommittee secretariat. Published technical corrigenda are available from your national standards organization.

This second edition technically revises and enhances ISO/IEC 9594-5:1990. It also incorporates technical corrigendum 1:1992. Implementations may still claim conformance to the first edition of this part of ISO/IEC 9594. However, at some point, the first edition will no longer be supported (i.e. reported defects will no longer be resolved). It is recommended that implementations conform to this second edition as soon as possible.

ISO/IEC 9594 consists of the following parts, under the general title Information technology — Open Systems Interconnection — The Directory:

- Part 1: Overview of concepts, models and services
- Part 2: Models
- Part 3: Abstract service definition
- Part 4: Procedures for distributed operation
- Part 5: Protocol specifications
- Part 6: Selected attribute types
- Part 7: Selected object classes
- Part 8: Authentication framework
- Part 9: Replication

Annexes A to F form an integral part of this part of ISO/IEC 9594. Annex G is for information only.

Introduction

This Recommendation | International Standard, together with the other Recommendations | International Standards, has been produced to facilitate the interconnection of information processing systems to provide directory services. A set of such systems, together with the directory information which they hold, can be viewed as an integrated whole, called the *Directory*. The information held by the Directory, collectively known as the Directory Information Base (DIB), is typically used to facilitate communication between, with or about objects such as application entities, people, terminals and distribution lists.

The Directory plays a significant role in Open Systems Interconnection, whose aim is to allow, with a minimum of technical agreement outside of the interconnection standards themselves, the interconnection of information processing systems:

- from different manufacturers:
- under different managements;
- of different levels of complexity; and
- of different ages.

This Recommendation | International Standard specifies the application service elements and application contexts for two protocols - the Directory Access Protocol (DAP) and the Directory System Protocol (DSP). The DAP provides for access to the Directory to retrieve or modify Directory information. The DSP provides for the chaining of requests to retrieve or modify Directory information to other parts of the distributed Directory System where the information may be held.

In addition this Recommendation | International Standard specifies the application service elements and application contexts for the Directory Information Shadowing Protocol (DISP) and the Directory Operational Binding Management Protocol (DOP). The DISP provides for the shadowing of information held in one DSA to another DSA. The DOP provides for the establishment, modification and termination of bindings between pairs of DSAs for the administration of relationships between the DSAs (such as for shadowing or hierarchical relationships).

This second edition technically revises and enhances, but does not replace, the first edition of this Recommendation | International Standard. Implementations may still claim conformance to the first edition.

This second edition specifies version I of the Directory service and protocols. The first edition also specifies version 1. Differences between the services and between the protocols defined in the two editions are accommodated using the rules of extensibility defined in this edition of this Recommendation | International Standard.

Annex A, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the directory access protocol.

Annex B, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the directory system protocol.

Annex C, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the directory information shadowing protocol.

Annex D, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module for the directory operational binding management protocol.

Annex E, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which contains all the ASN.1 object identifiers assigned in this Recommendation | International Standard.

Annex F, which is an integral part of this Recommendation | International Standard, provides the ASN.1 module which contains all the ASN.1 object identifiers assigned to identify operational binding types in this series of Recommendations | International Standards.

Annex G, which is not an integral part of this Recommendation | International Standard, lists the amendments and defect reports that have been incorporated to form this edition of this Recommendation | International Standard.

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – OPEN SYSTEMS INTERCONNECTION – THE DIRECTORY: PROTOCOL SPECIFICATIONS

1 Scope

This Recommendation | International Standard specifies the Directory Access Protocol, the Directory System Protocol, the Directory Information Shadowing Protocol, and the Directory Operational Binding Management Protocol fulfilling the abstract services specified in ITU-T Rec. X.511 | ISO/IEC 9594-3, ITU-T Rec. X.518 | ISO/IEC 9594-4, and CCITT Rec. X.525 | ISO/IEC 9594-9.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

- ITU-T Recommendation X.500 (1993) USO/IEC 9594-1:1995, Information technology Open Systems Interconnection The Directory: Overview of concepts, models and services.
- ITU-T Recommendation X.501 (1993) | ISO/IEC 9594-2:1995, Information technology Open Systems Interconnection The Directory: Models.
- ITU-T Recommendation X 511 (1993) | ISO/IEC 9594-3:1995, Information technology Open Systems Interconnection The Directory: Abstract service definition.
- ITU-T Recommendation X.518 (1993) | ISO/IEC 9594-4:1995, Information technology Open Systems Interconnection The Directory: Procedures for distributed operation.
- ITU-T Recommendation X.520 (1993) | ISO/IEC 9594-6:1995, Information technology Open Systems Interconnection – The Directory: Selected attribute types.
- ITU-T Recommendation X.521 (1993) | ISO/IEC 9594-7:1995, Information technology Open Systems Interconnection The Directory: Selected object classes.
- ITU-T Recommendation X.509 (1993) | ISO/IEC 9594-8:1995, Information technology Open Systems Interconnection The Directory: Authentication framework.
- ITU-T Recommendation X.525 (1993) | ISO/IEC 9594-9:1995, Information technology Open Systems Interconnection The Directory: Replication
- ITU-T Recommendation X.680 (1994) | ISO/IEC 8824-1:1995, Information technology Abstract Syntax Notation One (ASN.1): Specification of basic notation.
- ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:1995, Information technology Abstract Syntax Notation One (ASN.1): Information object specification.
- ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:1995, Information technology Abstract Syntax Notation One (ASN.1): Constraint specification.
- ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:1995, Information technology Abstract Syntax Notation One (ASN.1): Parametrization of ASN.1 specifications.

- ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1:1995, Information technology ASN.1 encoding rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).
- ITU-T Recommendation X.880 (1994) | ISO/IEC 13712-1:1995, Information technology Remote Operations: Concepts, model and notation.
- ITU-T Recommendation X.881 (1994) | ISO/IEC 13712-2:1995, Information technology Remote Operations: OSI realizations - Remote Operations Service Element (ROSE) service definition.
- ITU-T Recommendation X.882 (1994) | ISO/IEC 13712-3:1995, Information technology Remote Operations: OSI realizations Remote Operations Service Element (ROSE) protocol specification.

2.2 Paired Recommendations | International Standards equivalent in technical content

- CCITT Recommendation X.200 (1988), Reference Model of Open Systems Interconnection for CCITT Applications.
 - ISO 7498:1984, Information processing systems Open Systems Interconnection Basic Reference Model.
- CCITT Recommendation X.216 (1988), Presentation Service Definition for Open Systems Interconnection for CCITT Applications.
 - ISO 8822:1988, Information processing systems Open Systems Interconnection Presentation service definition.
- CCITT Recommendation X.217 (1988), Service Definition for the Association Control Service Element.
 ISO 8649:1988, Information processing systems Open Systems Interconnection Service Definition for the Association Control Service Element.
- CCITT Recommendation X.218 (1988) Reliable Transfer: Model and Service Definition.
 ISO/IEC 9066-1:1989, Information processing systems Text communication Reliable Transfer: Model and service definition.
- CCITT Recommendation X.227 (1988), Protocol Specification for the Association Control Service Element.
 - ISO 8650:1988, Information processing systems Open Systems Interconnection Protocol specification for the Association Control Service Element.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply;

3.1 OSI Reference Model Definitions

The following terms are defined in CCITT Rec. X.200 | ISO 7498:

- a) abstract-syntax;
- b) *application-context*;
- c) application-entity;
- d) application process;
- e) application-protocol-control-information;
- f) application-protocol-data-unit;
- g) application-service-element.

3.2 Remote Operations Definitions

The following terms are defined in ITU-T Rec. X.880 | ISO/IEC 9072-1:

- a) connection package;
- b) contract, association contract;

- c) error;
- d) operation;
- operation package; e)
- f) ROS-object.

3.3 **Basic Directory Definitions**

The following terms are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2:

- the Directory;
- b) (Directory) user;
- Directory System Agent (DSA); c)
- Directory User Agent (DUA).

3.4 **Distributed Operation Definitions**

The following terms are defined in ITU-T Rec. X.518 | ISO/IEC 9594-4:

- chaining; a)
- referral. b)

4 **Abbreviations**

15011EC 959A-5:1995 For the purposes of this Recommendation | International Standard, the following abbreviations apply:

AC **Application Context**

ACSE Association Control Service Element

AE **Application Entity**

Application Protocol Control Information **APCI**

Application Protocol Data Unit **APDU**

Application Service Element **ASE**

DAP Directory Access Protocol

DISP Directory Information Shadowing Protocol

DOP Directory Operational Binding Management Protocol

DSA Directory System Agent

Directory System Protocol **DSP**

DUA Directory User Agent

ROS Remote Operations Service

ROSE Remote Operations Service Element

5 **Conventions**

With minor exceptions this Directory Specification has been prepared according to the "Presentation of ITU-TS/ISO/IEC common text" guidelines in the Guide for ITU-TS and ISO/IEC JTC 1 Cooperation, March 1993.

The term "Directory Specification" (as in "this Directory Specification") shall be taken to mean ITU-T Rec. X.519 | ISO/IEC 9594-5. The term "Directory Specifications" shall be taken to mean the X.500-Series Recommendations and all parts of ISO/IEC 9594.

This Directory Specification uses the term "1988 edition systems" to refer to systems conforming to the previous (1988) edition of the Directory Specifications, i.e. the 1988 edition of the series of CCITT X.500 Recommendations and the ISO/IEC 9594:1990 edition. Systems conforming to the current Directory Specifications are referred to as "1993 edition systems".

If the items in a list are numbered (as opposed to using "-" or letters), then the items shall be considered steps in a procedure.

This Directory Specification defines directory operations using the Remote Operation notation defined in ITU-T Rec. X.880 | ISO/IEC 9072-1.

6 Protocol overview

6.1 Remote Operations – Specification and OSI Realization

ITU-T Rec. X.880 | ISO/IEC 9072-1 defines several information object classes that are useful in the specification of ROS-based application protocols such as the various Directory protocols defined in this Directory Specification. A number of these classes are used in this and subsequent clauses. The specification techniques provided in ITU-T Rec. X.880 | ISO/IEC 9072-1 are used to define a generic protocol between objects. When realized as an OSI application layer protocol, the concepts of ITU-T Rec. X.880 | ISO/IEC 9072-1 are mapped to OSI concepts in ITU-T Rec. X.881 | ISO/IEC 9072-2 and ITU-T Rec. X.882 | ISO/IEC 9072-3.

The ROS-OBJECT-CLASS class is used to define a set of common capabilities of a set of ROS-objects in terms of the (association) contracts they support as initiators and/or responders. When realized using the communication services of OSI, a ROS-object maps to an application process and a contract to an application context. In these Directory Specifications the term abstract service is used to refer to a ROS association contract and OSI application layer protocol to refer to the realization of a contract between two open systems using OSI communication services.

The **OPERATION-PACKAGE** class is used to define a set of operations which may be invoked by a ROS-object assuming the role of "consumer", the operations which may be invoked by a ROS-object assuming the role of "supplier", and the operations which may be invoked by both ROS-objects. When using the communication services of OSI, an operation package is realized as an application service element (ASE).

The CONNECTION-PACKAGE class is used to define the bind and unbind operations used to establish and release an association. When realized using the communication services of OSI, a connection package is realized as the procedures that use the services of the Association Control Service Element.

The CONTRACT class is used to define an association contract in terms of a connection package and one or more operation packages. When specifying the contract, the packages in which the association initiator assumes the role of consumer, the association responder assumes the role of consumer, and either may assume the role of consumer are identified. When using the communication services of OSI, a contract is realized as an application context.

The **APPLICATION-CONTEXT** class is used to define the static aspects of an application context. These include the contract that is realized via the application context, the OSI service that establishes and releases the association, the OSI service that provides information transfer for the interactions of the contract, and the abstract syntaxes used.

The ABSTRACT-SYNTAX class, which is built in to ASN.1, is used to define and assign an object identifier to an ASN.1 type whose values comprise an abstract syntax.

The OSI application layer protocols defined in the Directory Specifications, the DAP, DSP, DISP and DOP, are protocols to provide communication between a pair of application processes. In the OSI environment this is represented as communication between a pair of application-entities (AEs) using the presentation service. The function of an AE is provided by a set of application-service-elements (ASEs). The interaction between AEs is described in terms of their use of the services provided by the ASEs. All the services provided by the Directory ASEs are contained in a single AE.

The Remote Operations Service Element (ROSE) supports the request/reply paradigm of the operation. The Directory ASEs provide the mapping function of the abstract-syntax notation of the directory operation packages onto the services provided by the ROSE.

The Association Control Service Element (ACSE) supports the establishment and release of an application-association between a pair of AEs. Associations between a DUA and a DSA may be established only by the DUA. Only the initiator of an established association can release it.

Optionally, the Reliable Transfer Service Element (RTSE) may be used to reliably transfer the Application Protocol Data Units (APDUs) of the DISP.

6.2 Directory ROS-Objects and Contracts

ITU-T Rec. X.511 | ISO/IEC 9594-3 defines the abstract service between a DUA and the Directory which provides an access point to support a user accessing Directory services.

The dua class of ROS-object describes a DUA, being an instance of this class, as the initiator of the contract dapContract. This contract is referred to in these Directory Specifications as the Directory Abstract Service. It is specified as a ROS-based information object in 6.3.

The **directory** class of ROS-object describes the provider of the Directory Abstract Service. This provider is the responder of the **dapContract**.

directory ROS-OBJECT-CLASS::={
 RESPONDS { dapContract }
 id-rosObject-directory }

The Directory is further modeled, as depicted in Figure 1, as being represented to a DUA by a DSA which supports the particular access point concerned. ITU-T Rec. X.518 | ISO/IEC 9594-4 defines the interactions between a pair of DSAs within the Directory to support user requests which are chained.

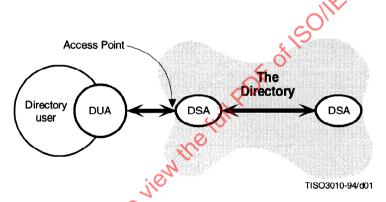


Figure 1 – Directory Interactions

The directory object is therefore manifested as a set interacting DSAs. Each DSA comprising the directory is an instance of the dap-dsa class. A dap-dsa object assumes the role of responder in the dapContract.

In addition to interacting with DUAs, DSAs interact with one another to achieve various objectives. In what follows, a number of contracts and ROS-objects expressing how DSAs participate in these contracts are defined. Any real DSA may instantiate one or more of these DSA ROS-objects.

The interactions between DSAs generally required to provide the Directory Abstract Service in the presence of a distributed DIB are defined as a **dspContract**. A DSA that participates in this contract is defined as a ROS-object of class **dsp-dsa**. The contract is referred to in these Directory Specifications as the DSA Abstract Service. It is specified as a ROS-based information object in 6.4.

dsp-dsa ROS-OBJECT-CLASS::={
 BOTH { dspContract }
 ID id-rosObject-dspDSA }

The Shadow Abstract Service specifies the shadowing of information between a shadow supplier and a shadow consumer DSA. This service is manifested in two forms and therefore is defined as two distinct contracts. They are specified as a ROS-based information objects in 6.5.

The **shadowConsumerContract** expresses the form of the service in which the shadow consumer, a ROS-object of class **initiating-consumer-dsa**, initiates the contract. A ROS-object of class **responding-supplier-dsa**, responds in this contract.

The **shadowSupplierContract** expresses the form of the service in which the shadow supplier, a ROS-object of class **initiating-supplier-dsa**, initiates the contract. A ROS-object of class **responding-consumer-dsa**, responds in this contract.

```
initiating-supplier-dsa ROS-OBJECT-CLASS::= {
    INITIATES { shadowSupplierContract }
    ID id-rosObject-initiatingSupplierDSA }

responding-consumer-dsa ROS-OBJECT-CLASS::= {
    RESPONDS { shadowSupplierContract }
    ID id-rosObject-respondingConsumerDSA }
```

The interactions between two DSAs to manage a set of operational bindings are defined as a dopContract.

```
dop-dsa ROS-OBJECT-CLASS::= {
    BOTH {dopContract }
    id-rosObject-dopDSA }
```

A DSA that participates in this contract is defined as a ROS-object of class **dop-dsa**. This contract is specified as a ROS-based information object in 6.6.

6.3 DAP Contract and Packages

The dapContract is defined as an information object of class CONTRACT.

```
dapContract CONTRACT ::= {
    CONNECTION dapConnectionPackage
    INITIATOR CONSUMER OF { readPackage | searchPackage | modifyPackage }
    id-contract-dap }
```

When a DUA and DSA from different open systems interact, this association contract may be realized as an OSI application layer protocol, referred to in these Directory Specifications as the Directory Access Protocol (DAP). The definition of this protocol in terms of an OSI application context is provided in 7.2 of this Directory Specification.

The dapContract is composed of a connection package, dapConnectionPackage, and three operation packages, readPackage, searchPackage and modifyPackage.

The connection package, dapConnectionPackage, is defined as an information object of class CONNECTION-PACKAGE. The bind and unbind operations of this connection package, directoryBind and directoryUnbind, are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3.

```
dapConnectionPackage CONNECTION-PACKAGE ::= {
    BIND directoryBind
    UNBIND directoryUnbind
    id-package-dapConnection }
```

The operation packages, **readPackage**, **searchPackage** and **modifyPackage**, are defined as information objects of class **OPERATION-PACKAGE**. The operations of these operation packages are defined in ITU-T Rec. X.511 | ISO/IEC 9594-3.

```
readPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES { read | compare | abandon }
    ID id-package-read }
```

```
searchPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES { list | search }
    id-package-search }

modifyPackage OPERATION-PACKAGE ::= {
    CONSUMER INVOKES { addEntry | removeEntry | modifyEntry | modifyDN }
    id-package-modify }
```

NOTE – These packages, when realized as ASEs, are used for the construction of application contexts defined in this Specification They are not intended to allow for claims of conformance to individual, or other combinations of, ASEs.

Since the DUA is the initiator of the **dapContract**, it assumes the role of consumer of the operation packages of the contract. This means that only the DUA can invoke operations in this contract and its OSI realization.

6.4 DSP Contract and Packages

The dspContract is defined as an information object of class CONTRACT.

When a pair of DSAs from different open systems interact, this association contract is realized as an OSI application layer protocol, referred to in these Directory Specifications as the Directory System Protocol (DSP). The definition of this protocol in terms of an OSI application context is provided in 7.2.

The dspContract is composed of a connection package, dspConnectionPackage, and three operation packages, chainedReadPackage, chainedSearchPackage and chainedModifyPackage.

The connection package, dspConnectionPackage, is defined as an information object of class CONNECTION-PACKAGE. It is identical to the connection package, dapConnectionPackage.

```
dspConnectionPackage CONNECTION-PACKAGE ::= {
    BIND dSABind
    UNBIND dSAUnbind
    id-package-dspConnection }
```

The operation packages, **chainedReadPackage**, **chainedSearchPackage** and **chainedModifyPackage**, are defined as information objects of class **OPERATION-PACKAGE**. The operations of these operation packages are defined in ITU-T Rec. X.518 I ISO/IEC 9594-4.

```
OPERATION-PACKAGE ::=
chainedReadPackage
     OPERATIONS
                       { chainedRead | chainedCompare | chainedAbandon }
     ID
                       id-package-chainedRead }
                       OPERATION-PACKAGE ::=
chainedSearchPackage
                                                       {
     OPERATIONS
                        { chainedList | chainedSearch }
     ID
                       id-package-chainedSearch }
chainedModifyPackage
                       OPERATION-PACKAGE ::=
     OPERATIONS
                       { chainedAddEntry | chainedRemoveEntry
                       | chainedModifyEntry | chainedModifyDN }
     ID
                       id-package-chainedModify }
```

NOTE – These packages, when realized as ASEs, are used for the construction of application contexts defined in this Specification They are not intended to allow for claims of conformance to individual, or other combinations of, ASEs.

In the **dspContract** either DSA may assume the role of initiator and either the initiating or responding DSA may invoke the operations of the contract.

6.5 DISP Contracts and Packages

The shadowConsumerContract and shadowSupplierContract are defined as information objects of class CONTRACT.

```
shadowConsumerContract CONTRACT ::= {
    CONNECTION dispConnectionPackage
    INITIATOR CONSUMER OF ID id-contract-shadowConsumer }
```

shadowSupplierContract CONTRACT ::= {
 CONNECTION dispConnectionPackage
 RESPONDER CONSUMER OF ID id-contract-shadowSupplier }

NOTE – The term consumer and supplier are employed in the notation for the **CONTRACT** and **OPERATION-PACKAGE** classes are used to designate two roles. These roles correspond to the two terms shadow consumer and shadow supplier, respectively, used in ITU-T Rec. X.525 | ISO/IEC 9594-9.

The OSI realizations of the two forms of the Shadow Abstract Service, referred to collectively as the Directory Information Shadowing Protocol (DISP), are defined in terms of several OSI application contexts, provided in 7.2.

The shadowConsumerContract and shadowSupplierContract are composed of a common connection package, disp-ConnectionPackage, and one operation package, either shadowConsumerPackage in the first case or shadow-SupplierPackage in the second.

The connection package, **dispConnectionPackage**, is defined as an information object of class **CONNECTION-PACKAGE**. It is identical to the connection package, **dapConnectionPackage**.

dispConnectionPackage CONNECTION-PACKAGE ::= {
 BIND dSAShadowBind
 UNBIND dSAShadowUnbind
 id-package-dispConnection }

The operation packages, **shadowConsumerPackage** and **shadowSupplierPackage**, are defined as information objects of class **OPERATION-PACKAGE**. The operations of these operation packages are defined in ITU-T Rec. X.525 | ISO/IEC 9594-9.

shadowConsumerPackage
CONSUMER INVOKES
SUPPLIER INVOKES
ID

cordinateShadowUpdate
SupplierPackage
SUPPLIER INVOKES

ID

cordinateShadowUpdate
lupdateShadow
ID

cordinateShadowUpdate
lupdateShadow
ID

cordinateShadowUpdate
lupdateShadow
id-package-shadowSupplier }

Since the shadow consumer is the initiator of the **shadowConsumerContract**, it assumes the role of consumer of the **shadowConsumerPackage**. This means that the shadow consumer invokes the **requestShadowUpdate** operation and that the shadow supplier invokes the **updateShadow** operation.

Since the shadow supplier is the initiator of the **shadowSupplierContract**, it assumes the role of supplier of the **shadowSupplierPackage**. This means that the shadow supplier invokes the operations of the contract.

6.6 DOP Contract and Packages

The dopContract is defined as an information object of class CONTRACT.

dopContract CONTRACT ::= {
 CONNECTION dopConnectionPackage
 OPERATIONS OF { dopPackage }
 ID id-contract-dop }

When a pair of DSAs from different open systems interact, this association contract is realized as an OSI application layer protocol, referred to in these Directory Specifications as the Directory Operational Binding Management Protocol (DOP). The definition of this protocol in terms of an OSI application context is provided in 7.2.

The connection package, dopConnectionPackage, is defined as an information object of class CONNECTION-PACKAGE. It is identical to the connection package, dapConnectionPackage.

 dopConnectionPackage
 CONNECTION-PACKAGE
 ::= {

 BIND
 dSAOperationalBindingManagementBind

 UNBIND
 dSAOperationalBindingManagementUnbind

 ID
 id-package-dopConnection }

The operation package, dopPackage, is defined as information objects of class **OPERATION-PACKAGE**. The operations of these operation packages are defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

The DSA that may assume the role of initiator of the **dopContract**, depends on the DSA roles assigned for the operational binding(s) to be managed using the operations of this contract. Only the initiator may invoke the operations of the **dopContract**. More than one operational binding type may be managed with this contract only if the DSA roles for the distinct types are compatible (e.g. a DSA assumes Role A for each binding type).

6.7 Use of underlying services

The DAP, DSP, DOP and DISP protocols make use of underlying services as described below.

6.7.1 Use of ROSE services

The Remote Operations Service Element (ROSE) is defined ITU-T Rec. X.881 | ISO 9072-2.

The ROSE supports the request/reply paradigm of remote operations.

The Directory ASEs are users of the RO-INVOKE, RO-RESULT, RO-ERROR, RO-REJECT-U and RO-REJECT-P services of the ROSE.

The remote operations of the DAP and the DSP are asynchronous. Note that as the DUA is a consumer of the DAP it may choose to operate in a synchronous manner.

The remote operations of the DISP shall be supported as synchronous operations and may optionally be supported as asynchronous operations.

The remote operations of the DOP are asynchronous.

6.7.2 Use of RTSE services

The Reliable Transfer Service Element (RTSE) is defined in CCITT Rec. X.218 | ISO/IEC 9066-1.

The RTSE provides for the reliable transfer of Application Protocol Data Units (APDUs). The RTSE ensures that each APDU is completely transferred exactly once, or that the sender is warned of an exception. The RTSE recovers from communication and end-system failure and minimizes the amount of retransmission needed for recovery.

Alternative application contexts with and without RTSE are defined to support the DISP.

The RTSE is used in normal mode. The use of the normal mode of the RTSE implies the use of the normal mode of the ACSE and the normal mode of the Presentation Service.

If the RTSE is included in an application context, the **RO-BIND** service maps onto the **RT-OPEN** service of the RTSE and the **RO-UNBIND** service maps onto the **RT-CLOSE** service of the RTSE. The basic ROSE services are the sole user of the **RT-TRANSFER**, **RT-TURN-PLEASE**, **RT-TURN-GIVE**, **RT-P-ABORT** and **RT-U-ABORT** services of the RTSE.

6.7.3 Use of ACSE services

The Association Control Service Element (ACSE) is defined in CCITT Rec. X.217 | ISO 8649.

The ACSE provides for the control (establishment, release, abort) of application-associations between AEs.

If the RTSE is included in an application context, the RTSE is the sole user of the A-ASSOCIATE, A-RELEASE, A-ABORT and A-P-ABORT services of the ACSE.

If the RTSE is not included in an application context, the **RO-BIND** and **RO-UNBIND** services are the sole users of the **A-ASSOCIATE** and **A-RELEASE** services of the ACSE. The application-process is the user of the **A-ABORT** and **A-P-ABORT** services of the ACSE.

The receipt of an **A-ABORT** or **A-P-ABORT** on an association supporting the DAP terminates all request processing. Except for certain conditions described in ITU-T Rec. X.518 | ISO/IEC 9594-4, this is also true for the DSP. It is a Directory user responsibility to confirm if requested modifications to the DIB occurred.

The receipt of an **A-ABORT** or **A-P-ABORT** on an association supporting the DISP is described in ITU-T Rec X.525 | ISO/IEC 9594-9.

The receipt of an **A-ABORT** or **A-P-ABORT** on an association supporting the DOP is described in ITU-T Rec. X.518 | ISO/IEC 9594-4.

6.7.4 Use of the Presentation service

The presentation-service is defined in CCITT Rec. X.216 | ISO 8822.

The Presentation Layer coordinates the representation (syntax) of the Application Layer semantics that are to be exchanged.

In normal mode, a different presentation-context is used for each abstract-syntax included in the application-context.

The ACSE is the sole user of the P-CONNECT, P-RELEASE, P-U-ABORT and P-P-ABORT services of the presentation-service.

If the RTSE is included in an application context, the RTSE is the sole user of the P-ACTIVITY-START, P-ACTIVITY-END, P-ACTIVITY-INTERRUPT, P-ACTIVITY-DISCARD, P-ACTIVITY-RESUME, P-DATA, P-MINOR-SYNCHRONIZE, P-U-EXCEPTION-REPORT, P-P-EXCEPTION-REPORT, P-TOKEN-PLEASE and P-CONTROL-GIVE services of the Presentation Service.

If the RTSE is not included in an application context, the ROSE is the sole user of the P-DATA service of the Presentation Service.

Presentation default context, context restoration, and context management are not used.

6.7.5 Use of Lower Layer Services

(This subclause applies to ITU-T Rec. X.519 only and not to ISO/IEC 95945)

The session-service is defined in ITU-T Recommendation X.215. The Session Layer structures the dialogue of the flow of information between the end-systems.

If the RTSE is included in an application context, the Kernel, Half-duplex, Exceptions, Minor-synchronize and Activity Management functional units of the Session Service are used by the Presentation Layer.

If the RTSE is not included in the application context, the Kernel and Duplex functional units of the Session Service are used by the Presentation Layer.

The transport-service is defined in CCITT Recommendation. X.214. The Transport Layer provides for the end-to-end transparent transfer of data over the underlying network connection.

The choice of the class of transport-service used by the Session Layer depends on the requirements for multiplexing and error recovery. Support for Transport Class 0 (non-multiplexing) is mandatory. Transport Expedited Service is not used.

Support for other classes is optional. A multiplexing class may be used to multiplex the DAP or DSP and other protocols over the same network connection. An error recovery class may be chosen over a network connection with an unacceptable residual error rate.

An underlying network supporting the OSI network-service defined in Recommendation X.213 is assumed.

A network-address is as defined in CCITT Recommendations X.121, E.163, E.164, or X.200 (OSI NSAP-address).

7 Directory protocol abstract syntax

7.1 Abstract syntaxes

Two abstract syntaxes used in the Directory protocols are specified elsewhere. The abstract-syntax of ACSE, acseabstract-syntax, is needed to establish the associations. The abstract-syntax of RTSE, rtse-abstract-syntax, is optionally needed for the DISP.

The ASN.1 type from which the values of the abstract syntaxes are derived is specified using the parameterized types **ROS** {}, **Bind** {}, and **Unbind** {} which are defined in ITU-T Rec. X.880 | ISO/IEC 9072-1.

These abstract syntaxes and those specified below shall (as a minimum) be encoded according to the Basic ASN.1 encoding rules.

7.1.1 DAP Abstract Syntax

The Directory ASEs that realize the operation packages specified in 6.3 share a single abstract syntax, directory Access Abstract Syntax. This is specified as an information object of the class ABSTRACT-SYNTAX.

DAP-PDUs

IDENTIFIED BY id-as-directoryAccessAS }

DAP-PDUs ::= CHOICE {

basicRos ROS { { DAP-InvokeIDSet }, { DAP-Invokable }, { DAP-Returnable } },

bind Bind { directoryBind },
unbind Unbind { directoryUnbind } }

DAP-InvokeIDSet ::= InvokeId (ALL EXCEPT absent:NULL)

DAP-Invokable OPERATION ::= { read | compare | abandon

| list | search

| addEntry | removeEntry | modifyEntry | modifyDN }

DAP-Returnable OPERATION ::= { read | compare | abandon

| list | search

| addEntry | removeEntry | modifyEntry | modifyDN

7.1.2 DSP Abstract Syntax

The Directory ASEs that realize the operation packages specified in 6.4 share a single abstract syntax, directorySystemAbstractSyntax. This is specified as an information object of the class ABSTRACT-SYNTAX.

directorySystemAbstractSyntax

ABSTRACT-SYNTAX ::=

DSP-PDUs

IDENTIFIED BY id-as-directorySystemAS }

DSP-PDUs ::= CHOICE {

basicRos ROS { {DSP-InvokeIDSet }, { DSP-Invokable }, {DSP-Returnable } },

bind Bind { dSABind },
unbind Unbind { dSAUnbind } }

DSP-InvokeIDSet ::= InvokeId (ALL EXCEPT absent:NULL)

DSP-Invokable OPERATION ::= { chainedRead | chainedCompare | chainedAbandon

| chainedList | chainedSearch

| chainedAddEntry | chainedRemoveEntry | chainedModifyEntry

| chainedModifyDN }

DSP-Returnable OPERATION ::= { chainedRead | chainedCompare | chainedAbandon

| chainedList | chainedSearch

| chainedAddEntry | chainedRemoveEntry | chainedModifyEntry

| chainedModifyDN }

7.1.3 DISP Abstract Syntax

The Directory ASEs that realize the operation packages specified in 6.5 either the abstract syntax directoryShadow-AbstractSyntax or directoryReliableShadowAbstractSyntax, depending on whether RTSE is not or is used in the application context. These two abstract syntaxes are specified as information objects of the class ABSTRACT-SYNTAX.

directoryShadowAbstractSyntax ABSTRACT-SYNTAX ::=

DISP-PDUs

IDENTIFIED BY id-as-directoryShadowAS }

directoryReliableShadowAbstractSyntax ABSTRACT-SYNTAX ::= {

Reliable-DISP-PDUs

IDENTIFIED BY id-as-directoryReliableShadowAS }

In addition, the following abstract syntax is used in the contexts employing RTSE. It is comprised of the abstract syntax of RTSE itself and the abstract syntax of **Bind { dSAShadowBind }**, and **Unbind { dSAShadowUnbind }**.

ReliableShadowBinding-PDUs

IDENTIFIED BY id-as-reliableShadowBindingAS }

The ASN.1 types from which the values of the abstract syntaxes are derived are specified using the ROS {}, Bind {}, and Unbind {} parameterized types.

DISP-PDUs ::= CHOICE {

basicROS ROS { { DISP-InvokeIDSet }, { DISP-Invokable }, {DISP-Returnable } },

bind Bind { dSAShadowBind },
unbind Unbind { dSAShadowUnbind } }

Reliable-DISP-PDUs ::= ROS { { DISP-InvokeIDSet }, { DISP-Invokable },

{DISP-Returnable } }

ReliableShadowBinding-PDUs ::= CHOICE {

rTS [0] RTSE-apdus,

bind Bind { dSAShadowBind }, unbind Unbind { dSAShadowUnbind } }

DISP-InvokeIDSet ::= InvokeID (ALL EXCEPT absent:NULL)

DISP-Invokable OPERATION ::= { requestShadowUpdate | updateShadow

| coordinateShadowUpdate }

DISP-Returnable OPERATION ::= { requestShadowUpdate | updateShadow

| coordinateShadowUpdate }

7.1.4 DOP Abstract Syntax

The Directory ASE that realizes the operation package specified in 6.56 employs the abstract syntax, directory-OperationalBindingManagementAbstractSyntax. This is specified as an information object of the class ABSTRACT-SYNTAX.

directoryOperationalBindingManagementAbstractSyntax A

ABSTRACT-SYNTAX ::= {

DOP-PDUs

IDENTIFIED BY id-as-directoryOperationalBindingManagementAS }

DOP-PDUs ::= CHOICE {

basicRos ROS { { DOP-InvokeIDSet }, { DOP-Invokable }, { DOP-Returnable } },

bind Bind { directoryBind },
unbind Unbind { directoryUnbind } }

DOP-InvokeIDSet ::= InvokeId (ALL EXCEPT absent:NULL)

DOP-Invokable OPERATION ::= destablishOperationalBinding

| modifyOperationalBinding | terminateOperationalBinding }

DOP-Returnable OPERATION ::= { establishOperationalBinding

| modifyOperationalBinding | terminateOperationalBinding }

7.2 Directory application contexts

7.2.1 Directory Access Application Context

The dapContract is realized as the directoryAccessAC. This application context is specified as an information object of the class APPLICATION-CONTEXT.

directoryAccessAC APPLICATION-CONTEXT ::= {
 CONTRACT dapContract

CONTRACT dapCon
ESTABLISHED BY acse
INFORMATION TRANSFER BY pData

ABSTRACT SYNTAXES { acse-abstract-syntax | directoryAccessAbstractSyntax }

APPLICATION CONTEXT NAME id-ac-directoryAccessAC }

7.2.2 Directory System Application Context

The **dspContract** is realized as the **directorySystemAC**. This application context is specified as an information object of the class **APPLICATION-CONTEXT**.

directorySystemAC APPLICATION-CONTEXT ::= {
 CONTRACT dspContract

ESTABLISHED BY acse
INFORMATION TRANSFER BY pData

ABSTRACT SYNTAXES { acse-abstract-syntax | directorySystemAbstractSyntax }

APPLICATION CONTEXT NAME id-ac-directorySystemAC }

7.2.3 Directory Shadow Application Contexts

If a DSA supports the DISP, that DSA shall support at least one of the shadow supplier role or shadow consumer role and at least one of the **shadowSupplierInitiatedAC** or the **shadowConsumerInitiatedAC**. If a DSA supports the **shadowSupplierInitiatedAC** for a particular role, it may also optionally support the **reliableShadowSupplierInitiatedAC** for the same role. If a DSA supports the **shadowConsumerInitiatedAC** for a particular role, it may also optionally support the **reliableShadowConsumerInitiatedAC** for the same role.

7.2.3.1 Shadow Supplier Initiated Contexts

The **shadowSupplierContract** may be realized as the **shadowSupplierInitiatedAC**. This application context is specified as an information object of the class **APPLICATION-CONTEXT**.

ESTABLISHED BY acse
INFORMATION TRANSFER BY pData

ABSTRACT SYNTAXES { acse-abstract-syntax | directoryShadowAbstractSyntax }

APPLICATION CONTEXT NAME id-ac-shadowSupplierInitiatedAC }

This application context requires that only synchronous operations be employed.

A variant of this application context that permits the use of asynchronous operations is identified as **id-ac-shadow-SupplierInitiatedAsynchronousAC**.

The shadowSupplierContract may optionally be realized as the reliableShadowSupplierInitiatedAC. This application context is specified as an information object of the class APPLICATION-CONTEXT.

ESTABLISHED BY
INFORMATION TRANSFER BY
ABSTRACT SYNTAXES

association-by-RTSE
transfer-by-RTSE
{ acse-abstract-syntax

APPLICATION CONTEXT NAME id-ac-reliableShadowSupplierInitiatedAC }

7.2.3.2 Shadow Consumer Initiated Contexts

The shadowConsumerContract may be realized as the shadowConsumerInitiatedAC. This application context is specified as an information object of the class APPLICATION-CONTEXT.

shadowConsumerInitiatedAC APPLICATION-CONTEXT ::= {
 CONTRACT shadowConsumerContract

ESTABLISHED BY acse
INFORMATION TRANSFER BY pData

ABSTRACT SYNTAXES { acse-abstract-syntax | directoryShadowAbstractSyntax }

APPLICATION CONTEXT NAME id-ac-shadowConsumerInitiatedAC }

This application context requires that only synchronous operations be employed.

A variant of this application context that permits the use of asynchronous operations is identified as id-ac-shadow-ConsumerInitiatedAsynchronousAC.

The **shadowConsumerContract** may optionally be realized as the **reliableShadowConsumerInitiatedAC**. This application context is specified as an information object of the class **APPLICATION-CONTEXT**.

reliableShadowConsumerInitiatedAC
CONTRACT
ESTABLISHED BY
INFORMATION TRANSFER BY
ABSTRACT SYNTAXES
ABSTRACT SYNTAXES
APPLICATION-CONTEXT ::= {
shadowConsumerContract
association-by-RTSE
transfer-by-RTSE
| acse-abstract-syntax
| reliableShadowBindingAbstractSyntax

| reliableShadowBindingAbstractSyntax | directoryReliableShadowAbstractSyntax }

APPLICATION CONTEXT NAME id-ac-reliableShadowConsumerInitiatedAC }

7.2.4 Directory Operational Binding Management Application Context

The dopContract is realized as the directoryOperationalBindingManagementAC. This application context is specified as an information object of the class APPLICATION-CONTEXT.

directoryOperationalBindingManagementAC APPLICATION-CONTEXT
CONTRACT dopContract
ESTABLISHED BY acse
INFORMATION TRANSFER BY pData

ABSTRACT SYNTAXES { acse-abstract-syntax |

directoryOperationalBindingManagementAbstractSyntax

::=

APPLICATION CONTEXT NAME id-ac-directoryOperationalBindingManagementAC }

7.3 Operation Codes

7.3.1 Operation Codes for DAP and DSP Packages

The following operation codes are used by the operation packages of the DAP and the DSP:

id-opcode-read Code ::= local: 1 local: 2 id-opcode-compare Code ::= local: 3 id-opcode-abandon Code ::= Code ::= id-opcode-list local: 4 id-opcode-search Code ::= local: 5 id-opcode-addEntry Code ::= local: 6 local: 7 id-opcode-removeEntry Code ::= id-opcode-modifyEntry local 8 Code ::= id-opcode-modifyDN Code ::= local: 9

7.3.2 Operation Codes for DISP Packages

The following operation codes are used by the operation packages of the DISP.

id-opcode-requestShadowUpdate Code ::= local : 1 id-opcode-updateShadow Code ::= local : 2 id-opcode-coordinateShadowUpdate Code ::= local : 3

7.3.3 Operation Codes for DOP Packages

The following operation codes are used by the operation package of the DOP.

7.4 Error Codes

7.4.1 Error Codes for DAP and DSP Packages

The following error codes are used by the operation packages of the DAP and the DSP. The code **id-errcode-referral** is only used in the DAP. The code **id-opcode-dsaReferral** is only used in the DSP.

id-errcode-abandoned	Code	::=	local: 5
id-errcode-securityError	Code	::=	local: 6
id-errcode-abandonFailed	Code	::=	local: 7
id-errcode-updateError	Code	::=	local:8
id-opcode-dsaReferral	Code	::=	local:9

7.4.2 Error Codes for DISP Packages

The following error code is used by the operation packages of the DISP.

id-errcode-shadowError Code ::= local: 1

7.4.3 Error Codes for DOP Packages

The following error codes is used by the operation package of the DOP.

id-err-operationalBindingError Code ::= local: 100

7.5 Versions and the rules for extensibility

The Directory may be distributed and more than two Directory Application Entities may interoperate to service a request. The Directory AEs may be implemented conforming to different editions of the Directory specification of the Directory service which may or may not be represented by different protocol version numbers. The version number is negotiated to the highest common version number between two directly binding Directory AEs.

NOTE 1 – There is currently only one version of each Directory protocol. The 1988 edition and the 1993 edition are of the same version. The above procedure is defined in case later editions of the Directory Specifications define a new version.

A DUA may issue a request as specified in the latest edition of the Directory specification to which the DUA was implemented. Using the rules of extensibility defined below, that request shall be forwarded to the appropriate DSA that will respond to that request, regardless of the edition of the intervening DSAs. The responding DSA shall function as defined below.

NOTE 2 – An intermediate DSA only chaining the request may choose to examine selected elements of the Directory APDU that is needed to perform its function, e.g. name resolution.

7.5.1 DUA to DSA

7.5.1.1 Version negotiation

When accepting an association, i.e. binding, utilizing the DAP, the version negotiated shall only affect the point-to-point aspects of the protocol exchanged between the DUA and the DSA to which it is connected. Subsequent requests or responses on the association shall not be constrained by the version negotiated.

NOTE - There are no point-to-point aspects of the DAP that are currently indicated by different protocol versions.

7.5.1.2 Request and response processing

The DUA may initiate requests using the highest edition of the specification of that request it supports. If one or more elements of the request are critical, it shall indicate the extension number(s) in the **criticalExtensions** parameter.

NOTE 1 – If the information the extension replaced in a CHOICE, ENUMERATED, or INTEGER (used as ENUMERATED) type would be essential for proper operation in a DSA implemented according to an earlier edition of the Specification, it is recommended that the extension be marked critical.

When processing a request from a DUA a DSA shall follow the rules defined in 7.5.2.2.

When processing a response, a DUA shall:

- a) ignore all unknown bit name assignments within a bit string; and
- b) ignore all unknown named numbers in an **ENUMERATED** type or **INTEGER** type that is being used in the enumerated style, provided the number occurs as an optional element of a **SET** or **SEQUENCE**; and
- c) ignore all unknown elements in SETs, at the end of SEQUENCEs, or in CHOICEs where the CHOICE is itself an optional element of a SET or SEQUENCE.
 - NOTE 2 Implementations may as a local option ignore certain additional elements in a Directory PDU. In particular, some unknown named numbers and unknown **CHOICEs** in mandatory elements of **SETs** and **SEQUENCEs** can be ignored without invalidating the operation. The identification of such elements is for further study.
- d) not consider the receipt of unknown attribute types and attribute values as a protocol violation; and
- e) optionally report the unknown attribute types and attribute values to the user.

7.5.1.3 Extensibility rules for error handling

When processing a known error type with unknown indicated problems and parameters, a DUA shall:

- a) not consider the receipt of unknown indicated problems and parameters as a protocol violation (i.e. it shall not issue a **RO-U-REJECT** or abort the application association); and
- b) optionally report the additional error information to the user.

When processing an unknown error type, a DUA shall:

- a) not consider the receipt of unknown error type as a protocol violation (i.e. it shall not issue a **RO-U-REJECT** or abort the application association); and
- b) optionally report the error to the user.

7.5.2 DSA to DSA

7.5.2.1 Version negotiation

When establishing or accepting an association, i.e. binding, utilizing the DSP, the version negotiated shall only effect the point-to-point aspects of the protocol exchanged between the DSAs. Subsequent requests or responses on the association shall not be constrained by the version negotiated.

NOTE 1 - There are no point to point aspects of the DSP that are currently indicated by different protocol versions.

When establishing or accepting an association, i.e. binding, utilizing the DISP, the version negotiated shall define all aspects of the protocol exchanged between the DSAs. Subsequent requests or responses on the association shall be constrained by the version negotiated.

NOTE 2 – There is currently only one version of the DISP protocol.

When establishing or accepting an association, i.e. binding, utilizing the DOP, the version negotiated shall define all aspects of the protocol exchanged between the DSAs. Subsequent requests or responses on the association shall be constrained by the version negotiated.

NOTE 3 – There is currently only one version of the DOP protocol.

7.5.2.2 Rules of extensibility for operation processing

If any DSA performing an operation (after name resolution is completed) detects an element of **criticalExtensions** whose semantic is unknown, it shall return an **unavailableCriticalExtension** indication as a **serviceError** or in a **PartialOutcomeQualifier**.

NOTE 1 – If a **criticalExtensions** string with one or more zero values is received, this indicates either that the extensions corresponding to the values are not present in the operation or are not critical. The presence of a zero value in a **criticalExtensions** string shall not be inferred as either the presence or absence of the corresponding extension in the APDU.

Otherwise, when processing a Directory PDU a DSA shall:

- a) ignore all unknown bit name assignments within a bit string; and
- b) ignore all unknown named numbers in an **ENUMERATED** type or **INTEGER** type that is being used in the enumerated style, provided the number occurs as an optional element of a **SET** or **SEQUENCE**; and
- c) ignore all unknown elements in SETs, at the end of SEQUENCEs, or in CHOICEs where the CHOICE is itself an optional element of a SET or SEQUENCE.

NOTE – Implementations may as a local option ignore certain additional elements in a Directory PDU. In particular, some unknown named numbers and unknown CHOICEs in mandatory elements of SETs and SEQUENCEs can be ignored without invalidating the operation. The identification of such elements is for further study.

7.5.2.3 Rules of extensibility for chaining

If the PDU is a request, the DSA shall forward the request containing the unknown types and values to any additional DSAs determined by the name resolution process.

If the PDU is a response, the DSA shall process the unknown types and values as it would process known types and values (see clause on results merging in the Directory Specification on Distributed Operations) and forward to the initiating DSA or DUA.

7.5.2.4 Rules of extensibility for error handling

When processing an known error type with unknown indicated problems and parameters, a DSA:

- a) shall not consider the receipt of unknown indicated problems and parameters as a protocol violation (i.e. it shall not issue a **RO-U-REJECT** or abort the application association); and
- b) may attempt to recover as appropriate to its understanding of just the error type, or may just return the error (and its unknown indicated problems and parameters) to the next appropriate DSA or DUA.

When processing an unknown error type, a DSA which is only involved in chaining the request shall:

- a) not consider the unknown error type as a protocol violation (i.e. it shall not issue a **RO-U-REJECT** or abort the application association); and
- b) not attempt to correct or recover from the error and its indicated problems and parameters; and
- c) return the unknown error type to the next appropriate DSA or DUA.

When processing an unknown error a DSA which is correlating multiple responses shall:

- a) not consider the unknown error type as a protocol violation (i.e. it shall not issue a RO-D-REJECT or abort the application association); and
- b) not attempt to correct or recover from the error and its indicated problems and parameters; and
- c) put the unknown error in PartialOutcomeQualifier; and
- d) continue correlating results as usual.

8 Mapping onto used services

This clause defines the mapping of the DAP, DSP, DOP and DISP onto the used services.

The mapping onto used services of the DAP, DSP and DOP, as well as for the DISP application contexts that omit the RTSE is defined in 8.1. The mapping onto used services for the DISP application contexts that use the RTSE is defined in 8.2.

8.1 Application contexts omitting RTSE

This subclause defines the mapping onto used services of the DAP, DSP and DOP application contexts, as well as the DISP application contexts that do not include the RTSE.

8.1.1 Mapping onto ACSE

This subclause defines the mapping of the (DirectoryBind, DSABind, DSAShadowBind or DSADOPBind) and (DirectoryUnbind, DSAUnbind, DSAShadowUnbind or DSADOPUnbind) services onto the services of the ACSE. The ACSE is defined in CCITT Rec. X.217 | ISO 8649.

8.1.1.1 Bind onto A-ASSOCIATE

The **DirectoryBind**, **DSABind**, **DSABind** or **DSADOPBind** service is mapped onto the A-ASSOCIATE service of the ACSE. The use of the parameters of the A-ASSOCIATE service is qualified in the following subclauses.

8.1.1.1.1 Mode

This parameter shall be supplied by the initiator of the association in the A-ASSOCIATE request primitive, and shall have the value 'normal mode'.

8.1.1.1.2 Application context name

The initiator of the association shall propose one of the following application contexts:

- a) For the DAP, the directoryAccessAC;
- b) For the DSP, the **directorySystemAC**;
- c) For the DOP, the directoryOperationalBindingManagementAC;
- d) For the DISP, either the shadowSupplierInitiatedAC or the shadowConsumerInitiatedAC.

8.1.1.1.3 User Information

The mapping of the **DirectoryBind** or **DSABind** onto the User Information parameters of the A-ASSOCIATE request primitive is defined in CCITT Rec. X.880 | ISO 9072-1.

8.1.1.1.4 Presentation Context Definition List

The initiator of the association shall supply the Presentation Context Definition List in the A-ASSOCIATE request primitive which shall contain the ACSE abstract-syntax (id-as-acse) and either the DAP abstract syntax (id-as-directoryAccessAS), the DSP abstract syntax (id-as-directorySystemAS), the DOP abstract syntax (id-as-directoryOperationalBindingManagementAS), or the DISP abstract syntax(id-as-directoryShadowAS).

8.1.1.1.5 Quality of Service

This parameter shall be supplied by the initiator of the association in the A-ASSOCIATE request primitive, and by the responder of the association in the A-ASSOCIATE response primitive. The parameters 'Extended Control' and 'Optimized Dialogue Transfer' shall be set to "feature not desired". The remaining parameters shall be such that default values are used.

8.1.1.1.6 Session Requirements

This parameter shall be set by the initiator of the association in the A-ASSOCIATE request primitive, and by the responder of the association in the A-ASSOCIATE response primitive. The parameter shall be set to specify the following functional units:

- a) Kernel;
- b) Duplex.

8.1.1.1.7 Application Entity Title and Presentation Address

These parameters shall be supplied by the initiator and the responder of the association (Application Entity Title is optionally supplied).

For a DUA establishing an association for an initial request these parameters are obtained from locally held information.

For a DUA (or DSA) establishing an association with a DSA to which it has been referred, these parameters are obtained from the AccessPoint value of a Continuation Reference.

For a DSA establishing an association, this parameter is obtained from its knowledge information, i.e. an external reference.

8.1.1.2 Unbind onto A-RELEASE

The **DirectoryUnbind**, **DSAUnbind**, **DSAShadowUnbind** or **DSADOPUnbind** is mapped onto the A-RELEASE service of the ACSE. The use of the parameters of the A-RELEASE service is qualified in the following subclause.

8.1.1.2.1 Result

This parameter shall have the value 'affirmative'.

8.1.1.3 Use of A-ABORT and A-P-ABORT Services

The application-process is the user of the A-ABORT and A-P-ABORT services of the ACSE.

8.1.2 Mapping onto ROSE

The Directory ASE services are mapped onto the RO-INVOKE, RO-RESULT, RO-ERROR, RO-REJECT-U and RO-REJECT-P services of the ROSE. The mapping of the abstract-syntax notation of the Directory ASEs onto the ROSE services is as defined in CCITT Rec. X.880 | ISO 9072-1.

8.2 Application contexts including RTSE

This subclause defines the mapping onto used services for the DISP application contexts that include the RTSE. Support for this mapping is conditional on a claim of conformance to these application contexts. The RTSE is defined in CCITT Rec. X.218 | ISO/IEC 9066-1.

8.2.1 Mapping onto RT-OPEN and RT-CLOSE

This subclause defines the mapping of the **DSAShadowBind** and **DSAShadowUnbind** services onto the **RT-OPEN** and **RT-CLOSE** services of the RTSE.

8.2.1.1 DSAShadowBind onto RT-OPEN

The **DSAShadowBind** is mapped onto the **RT-OPEN** service of the RTSE. The use of the parameters of the **RT-OPEN** service is qualified in the following subclauses.

8.2.1.1.1 Mode

This parameter shall be supplied by the initiator of the association in the **RT-OPEN** request primitive, and shall have the value "normal mode".

8.2.1.1.2 Application context name

The initiator of the association shall propose either the reliableShadowSupplierInitiatedAC application context or the reliableShadowConsumerInitiatedAC application context in the RT-OPEN request primitive.

8.2.1.1.3 User-data

The mapping of the bind-operation onto the user-data parameter of the **RT-OPEN** request primitive is defined in ITU-T Rec. X.880 | ISO/IEC 9072-1.

8.2.1.1.4 Presentation Context Definition List

The initiator of the association shall supply the Presentation Context Definition List in the RT-OPEN request primitive which shall contain the ACSE abstract-syntax (id-as-acse) and the DISP abstract-syntax that includes the RTSE (id-as-directoryReliableShadowAS).

8.2.1.1.5 Initial turn

This parameter shall be supplied by the initiator of the association in the RT-OPEN request primitive, and shall have the value "association-initiator".

8.2.1.1.6 Application Entity Title and Presentation Address

These parameters shall be supplied by the initiator and the responder of the association in the RT-OPEN request primitive (Application Entity Title is optionally supplied).

8.2.1.2 DSAShadowUnbind onto RT-CLOSE

The DSAShadowUnbind is mapped onto the RT-CLOSE service of the RTSE.

8.2.2 Mapping onto ROSE

The shadowSupplierASE and the shadowConsumerASE services are mapped onto the RO-INVOKE, RO-RESULT, RO-ERROR, RO-REJECT-U and RO-REJECT-P services of the ROSE. The mapping of the abstract-syntax notation of these DISP ASEs onto the ROSE services is as defined in ITU-T Rec. X.880 | ISO/IEC 9072-1.

ROSE is the user of the RT-TRANSFER, RT-TURN-PLEASE, RT-TURN-GIVE, RT-P-ABORT and RT-U-ABORT services of the RTSE. The use of the RTSE services by the ROSE is defined in ITU-T Rec. X.882 | ISO/IEC 9072-2.

8.2.2.1 Managing the turn

ITU-T Rec. X.881 | ISO/IEC 9072-2 defines the use by the ROSE of the RT-TURN-PLEASE and RT-TURN-GIVE services of the RTSE to manage the turn.

The values of the priority parameter of the RT-TURN-PLEASE service used by the ROSE to request the turn are as follows:

- Priority zero is the highest priority, and is reserved for the action of releasing the association by the initiator.
- Priority one is used by the ROSE to provide the RO-REJECT-U and RO-ERROR services of the ROSE.
- Priority two is used by the ROSE to provide the **RO-RESULT** service of the ROSE.
- Priority three is used by the ROSE to provide the **RO-INVOKE** service of the ROSE.

9 Conformance

This clause defines the requirements for conformance to this Directory Specification.

9.1 Conformance by DUAs

A DUA implementation claiming conformance to this Directory Specification shall satisfy the requirements specified in 9.1.1 through 9.1.3.

9.1.1 Statement requirements

The following shall be stated:

- The operations of the directoryAccessAC application-context that the DUA is capable of invoking for which conformance is claimed.
- The security-level(s) for which conformance is claimed (none, simple, strong).
- The extensions listed in the table of 7.3.1 of ITU-T Rec. X.511 | ISO/IEC 9594-3, that the DUA is c) capable of initiating for which conformance is claimed.

9.1.2 Static requirements

A DUA shall:

- have the capability of supporting the directoryAccessAC application context as defined by its abstract syntax in clause 7;
- conform to the extensions for which conformance was claimed in 9.1.1, c).

9.1.3 **Dynamic Requirements**

A DUA shall:

- conform to the mapping onto used services defined in clause 8;
- shall conform to the rules of extensibility procedures defined in 7.5.1. b)

9.2 Conformance by DSAs

A DSA implementation claiming conformance to this Directory Specification shall satisfy the requirements specified in 9.2.1 through 9.2.3.

9.2.1 Statement requirements

The following shall be stated:

- The application-contexts for which conformance is claimed: directoryAccessAC, directorySystemAC, directory Operational Binding Management AC, or a combination of these. A DSA that claims conformance to the directoryOperationalBindingManagementAC in support of hierarchical operational bindings shall also support the directorySystemAC. If a DSA is such that knowledge of it has been disseminated, causing knowledge references to the DSA to be held in other DSAs outside of its own DMD, then it shall claim conformance to the directorySystemAC.
 - NOTE 1 An application context shall not be divided except as stated herein; in particular, conformance shall not be claimed to particular operations.
- The operational binding types for which conformance is claimed: shadowOperationalBindingID, specificHierarchicalBindingID, non-specificHierarchicalBindingID, or a combination of these. A DSA that claims conformance to the shadowOperationalBindingID shall support one or more of the application contexts for shadow suppliers and/or shadow consumers indicated in 9.3 and 9.4.
- c) Whether or not the DSA is capable of acting as a first-level DSA, as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4.
- If conformance is claimed to the directorySystemAC application-context, whether or not the chained mode of operation is supported, as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4.
- The security-level(s) for which conformance is claimed (none, simple, strong). e)

- f) The selected attribute types defined in ITU-T Rec. X.520 | ISO/IEC 9594-6, and any other attribute types, for which conformance is claimed and whether for attributes based on the syntax **DirectoryString**, conformance is claimed for the **UNIVERSAL STRING** choice.
- g) The selected object classes defined in ITU-T Rec. X.520 | ISO/IEC 9594-7, and any other object classes, for which conformance is claimed.
- h) The extensions listed in the table of 7.3.1 of ITU-T Rec. X.511 | ISO/IEC 9594-3, that the DSA is capable of responding to for which conformance is claimed.
- i) Whether conformance is claimed for collective attributes as defined in 8.8 of ITU-T Rec. X.501 | ISO/IEC 9594-2 and 7.6, 7.8.2 and 9.2.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3.
- j) Whether conformance is claimed for hierarchical attributes as defined in 7.6, 7.8.2 and 9.2.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3.
- k) The operational attribute types defined in ITU-T Rec. X.501 | ISO/IEC 9594-2 and any other operational attribute types for which conformance is claimed.
- 1) Whether conformance is claimed for return of alias names as described in 7.7.1 of ITUT Rec. X.511 | ISO/IEC 9594-3.
- m) Whether conformance is claimed for indicating that returned entry information is complete, as described in 7.7.6 of ITU-T Rec. X.511 | ISO/IEC 9594-3.
- n) Whether conformance is claimed for modifying the object class attribute to add and/or remove values identifying auxiliary object classes, as described in 11.3.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3.
- o) Whether conformance is claimed to Basic Access Control.
- p) Whether conformance is claimed to Simplified Access Control.
- q) Whether the DSA is capable of administering the subschema for its portion of the DIT, as defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.
 - NOTE 2 The capability to administer a subschema shall not be divided; specifically, the capability to administer particular subschema definitions shall not be claimed.
- r) The selected name bindings defined in ITU-TRec. X.521 | ISO/IEC 9594-7 and any other name bindings, for which conformance is claimed.
- s) Whether the DSA is capable of administering collective attributes, as defined in ITU-T Rec. X.501 | ISO/IEC 9594-2.

9.2.2 Static requirements

A DSA shall:

- a) have the capability of supporting the application-contexts for which conformance is claimed as defined by their abstract syntax in clause 7;
- b) have the capability of supporting the information framework defined by its abstract syntax in ITU-T Rec. X 501 ISO/IEC 9594-2;
- c) conform to the minimal knowledge requirements defined in ITU-T Rec. X.518 | ISO/IEC 9594-4;
- d) if conformance is claimed as a first-level DSA, conform to the requirements support of the root context, as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4;
- e) have the capability of supporting the attribute types for which conformance is claimed; as defined by their abstract syntaxes;
- f) have the capability of supporting the object classes for which conformance is claimed, as defined by their abstract syntaxes;
- g) conform to the extensions for which conformance was claimed in 9.2.1 h);
- h) if the capability to administer subschema as defined in ITU-T Rec. X.501 | ISO/IEC 99594-2 is claimed, the DSA shall be able to do this administration;
- i) if conformance is claimed for collective attributes, have the capability of performing the related procedures defined in 7.6, 7.8.2 and 9.2.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3;
- j) if conformance is claimed for hierarchical attributes, have the capability of performing the related procedures defined in 7.6, 7.8.2 and 9.2.2 of ITU-T Rec. X.511 | ISO/IEC 9594-3;

- k) have the capability of supporting the operational attribute types for which conformance is claimed;
- if conformance is claimed to Basic Access Control, have the capability of holding ACI items that conform to the definitions of Basic Access Control;
- m) if conformance is claimed to Simplified Access Control, have the capability of holding ACI items that conform to the definitions of Simplified Access Control.

9.2.3 Dynamic requirements

A DSA shall:

- a) Conform to the mapping onto used services defined in clause 8.
- b) Conform to the procedures for distributed operation of the Directory related to referrals, as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4.
- c) If conformance is claimed to the **directoryAccessAC** application-context, conform to the procedures of ITU-T Rec. X.518 | ISO/IEC 9594-4 as they relate to the referral mode of the DAP.
- d) If conformance is claimed to the **directorySystemAC** application-context, conform to the referral mode of interaction, as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4.
- e) If conformance is claimed to the chained mode of interaction, conform to the chained mode of interaction, as defined in ITU-T Rec. X.518 | ISO/IEC 9594-4.
 - NOTE Only in this case is it necessary for a DSA to be capable of mvoking operations of the directorySystemAC.
- f) Conform to the rules of extensibility procedures defined in 7.5.2.
- g) If conformance is claimed to Basic Access Control, have the capability of protecting information within the DSA in accordance with the procedures of Basic Access Control.
- h) If conformance is claimed to Simplified Access Control, have the capability of protecting information within the DSA in accordance with the procedures of Simplified Access Control.
- i) If conformance is claimed for the **shadowOperationalBindingID**, conform to the procedures of ITU-T Rec. X.525 | ISO/IEC 9594-9 and ITU-T Rec. X.501 | ISO/IEC 9594-2 as they relate to the DOP.
- j) If conformance is claimed for the specificHierarchicalBindingID, conform to the procedures of ITU-T Rec. X.518 | ISO/IEC 9594-4 and ITU-T X.501 | ISO/IEC 9594-2 as they relate to specific hierarchical operational bindings.
- k) If conformance is claimed for the **non-specificHierarchicalBindingID**, conform to the procedures of ITU-T Rec. X.518 | ISO/IEC 9594-4 and ITU-T Rec. X.501 | ISO/IEC 9594-2 as they relate to non-specific hierarchical operational bindings.

9.3 Conformance by a shadow supplier

A DSA implementation claiming conformance to this Directory Specification in the role of shadow supplier shall satisfy the requirements specified in 9.3.1 through 9.3.3.

9.3.1 Statement requirements

The following shall be stated:

- a) The application context(s) for which conformance is claimed as a shadow supplier: shadowSupplierInitiatedAC, shadowConsumerInitiatedAC, reliableShadowSupplierInitiatedAC and reliableShadowConsumerInitiatedAC.
 - A DSA implementation shall, at a minimum, support either the **shadowSupplierInitiatedAC** or the **shadowConsumerInitiatedAC**. If the DSA supports the **shadowSupplierInitiatedAC**, it may optionally support the **reliableShadowSupplierInitiatedAC**. If the DSA supports the **shadowConsumerInitiatedAC** it may optionally support the **reliableShadowConsumerInitiatedAC**.
- b) The security-level(s) for which conformance is claimed (none, simple, strong).
- c) To which degree the **UnitOfReplication** is supported. Specifically, which (if any) of the following optional features are supported:
 - Entry filtering on ObjectClass;
 - Selection/Exclusion of attributes via AttributeSelection;
 - The inclusion of subordinate knowledge in the replicated area;
 - The inclusion of extended knowledge in addition to subordinate knowledge.

9.3.2 Static requirements

A DSA shall:

- a) have the capability of supporting the application-context(s) for which conformance is claimed as defined in their abstract syntax in clause 7;
- b) provide support for modifyTimestamp and createTimestamp operational attributes.

9.3.3 Dynamic requirements

A DSA shall:

- a) conform to the mapping onto used services defined in clause 8;
- b) conform to the procedures of ITU-T Rec. X.525 | ISO/IEC 9594-9 as they relate to the DISP.

9.4 Conformance by a shadow consumer

A DSA implementation claiming conformance to this Directory Specification as a shadow consumer shall satisfy the requirements specified in 9.4.1 through 9.4.3.

9.4.1 Statement requirements

The following shall be stated:

- a) the application context(s) for which conformance is claimed as a shadow supplier: shadowSupplierInitiatedAC, shadowConsumerInitiatedAC, reliableShadowSupplierInitiatedAC and reliableShadowConsumerInitiatedAC.
 - A DSA implementation shall, at a minimum, support either the **shadowSupplierInitiatedAC** or the **shadowConsumerInitiatedAC**. If the DSA supports the **shadowSupplierInitiatedAC**, it may optionally support the **reliableShadowSupplierInitiatedAC**. If the DSA supports the **shadowConsumerInitiatedAC** it may optionally support the **reliableShadowConsumerInitiatedAC**.
- b) the security-level(s) for which conformance is claimed (none, simple, strong);
- c) whether the DSA can act as a secondary shadow supplier (i.e. participate in secondary shadowing as an intermediate DSA);
- d) whether the DSA supports shadowing of overlapping units of replication.

9.4.2 Static requirements

A DSA shall:

- a) have the capability of supporting the application-context(s) for which conformance is claimed as defined in their abstract syntax in clause 7;
- provide support for modifyTimestamp and createTimestamp operational attributes if overlapping units of replication is supported;
- c) provide support for the **copyShallDo** service control.

9.4.3 Dynamic requirements

A DSA shall:

- a) conform to the mapping onto used services defined in clause 8;
- b) conform to the procedures of ITU-T Rec. X.525 | ISO/IEC 9594-9 as they relate to the DISP.

Annex A

DAP in ASN.1

(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type and value definitions contained in this Directory Specification, in the form of the ASN.1 module, "DirectoryAccessProtocol".

```
DirectoryAccessProtocol {joint-iso-ccitt ds(5) module(1) dap(11) 2}
DEFINITIONS::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.
IMPORTS
      directoryAbstractService, protocolObjectIdentifiers
            FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}
      ROS-OBJECT-CLASS, CONTRACT, OPERATION-PACKAGE, CONNECTION-PACKAGE,
      Code, OPERATION
            FROM Remote-Operations-Information-Objects
                          {joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}
      ROS{}, Bind{}, Unbind{}, InvokeId
            FROM Remote-Operations-Generic-ROS-PDUs
                          {joint-iso-ccitt remote-operations(4) generic-ROS-PDUs(6) version1(0)}
      APPLICATION-CONTEXT
            FROM Remote-Operations-Information-Objects-extensions {joint-iso-ccitt
                          remote-operations(4) informationObjects-extensions(8) version1(0)}
      acse, pData
            FROM Remote-Operations-Realisations
                          {joint-iso-ccitt remote-operations(4) realisations(9) version1(0)}
      acse-abstract-syntax
            FROM Remote-Operations-Abstract-Syntaxes {joint-iso-ccitt remote-operations(4)
                          remoteOperationsAabstractSyntaxes(12) version1(0)}
      id-ac-directoryAccessAC, id-rosObject-dua, id-rosObject-directory, id-rosObject-dapDSA,
      id-contract-dap, id-package-dapConnection, id-package-read, id-package-search,
      id-package-modify, id-as-directoryAccessAS
            FROM ProtocolObjectIdentifiers protocolObjectIdentifiers
      directoryBind, directoryUnbind, read, compare, abandon, list, search, addEntry, removeEntry,
      modifyEntry, modifyDN
            FROM DirectoryAbstractService directoryAbstractService ;
-- application contexts --
directoryAccessAC
                          APPLICATION-CONTEXT
      CONTRACT
                                         dapContract
      ESTABLISHED BY
                                         acse
      INFORMATION TRANSFER BY
      ABSTRACT SYNTAXES
                                         { acse-abstract-syntax | directoryAccessAbstractSyntax }
      APPLICATION CONTEXT NAME id-ac-directoryAccessAC }
-- ROS objects --
                   ROS-OBJECT-CLASS ::=
dua
                                                {
      INITIATES
                          { dapContract }
                          id-rosObject-dua }
```

```
ROS-OBJECT-CLASS ::=
directory
                                             {
     RESPONDS
                         { dapContract }
     ID
                         id-rosObject-directory }
                  ROS-OBJECT-CLASS ::=
dap-dsa
                                                 {
     RESPONDS
                         { dapContract }
     ID
                         id-rosObject-dapDSA }
-- contracts --
dapContract CONTRACT
     CONNECTION
                                dapConnectionPackage
     INITIATOR CONSUMER OF { readPackage | searchPackage | modifyPackage }
                                id-contract-dap }
-- connection package --
                                                          PDF of ISOIIEC 959A.5: 1995
                         CONNECTION-PACKAGE
dapConnectionPackage
                                                         ::=
     BIND
                         directoryBind
     UNBIND
                         directoryUnbind
     ID
                         id-package-dapConnection }
-- read package --
                         OPERATION-PACKAGE
readPackage
                                { read | compare | abandon }
     CONSUMER INVOKES
                                 id-package-read }
-- search package --
searchPackage
                         OPERATION-PACKAGE
     CONSUMER INVOKES
                                 { list | search }
     ID
                                 id-package-search }
-- modify Package --
modifyPackage
                         OPERATION-PACKAGE
     CONSUMER INVOKES
                                 { addEntry | removeEntry | modifyEntry | modifyDN }
     ID
                                 id-package-modify
-- abstract syntaxes --
                                 ABSTRACT-SYNTAX
directoryAccessAbstractSyntax
                                                                 {
     DAP-PDUs
                         id-as-directoryAccessAS }
     IDENTIFIED BY
DAP-PDUs ::=
                  CHOICE {
                  ROS { { DAP-InvokeIDSet }, { DAP-Invokable }, { DAP-Returnable } },
     basicRos
                  Bind {directoryBind },
     bind
                  Unbind { directoryUnbind }}
     unbind
DAP-InvokeIDSet
                                 ::=
                                       InvokeId (ALL EXCEPT absent:NULL)
DAP-Invokable
                  OPERATION
                                ::=
                                       { read | compare | abandon
                                       | list | search
                                       | addEntry | removeEntry | modifyEntry | modifyDN }
DAP-Returnable
                  OPERATION
                                       { read | compare | abandon
                                       | list | search
                                       | addEntry | removeEntry | modifyEntry | modifyDN }
```

-- remote operation codes --

id-opcode-read	Code	::=	local: 1
id-opcode-compare Code	::=	local: 2	
id-opcode-abandon Code	::=	local: 3	
id-opcode-list	Code	::=	local: 4
id-opcode-search	Code	::=	local: 5
id-opcode-addEntryCode	::=	local : 6	
id-opcode-removeEntry	Code	::=	local: 7
id-opcode-modifyEntry	Code	::=	local: 8
id-opcode-modifyDN	Code	::=	local:9

-- remote error codes --

id-errcode-attributeError	Code	::=	local: 1
id-errcode-nameError	Code	::=	local: 2
id-errcode-serviceError	Code	::=	local: 3
id-errcode-referral	Code	::=	local: 4
id-errcode-abandoned	Code	::=	local: 5
id-errcode-securityError	Code	::=	local: 6
id-errcode-abandonFailed	Code	::=	local: 7
id-errcode-updateError	Code	::=	local:8

-- remote error code for DSP --

id-errcode-dsaReferral

END

ECHORN.COM. Click to view the full PDF of 150 III.

Annex B

DSP in ASN.1

(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the ASN.1 type and value definitions contained in this Dirrectory Specification, in the form of the ASN.1 module, "DirectorySystemProtocol".

```
DirectorySystemProtocol {joint-iso-ccitt ds(5) module(1) dsp(12) 2}
DEFINITIONS::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for use in the other ASN.1 modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.
IMPORTS
      distributedOperations, protocolObjectIdentifiers
            FROM UsefulDefinitions {joint-iso-ccitt ds(5) module(1) usefulDefinitions(0) 2}
      ROS-OBJECT-CLASS, CONTRACT, OPERATION-PACKAGE, CONNECTION-PACKAGE,
      Code, OPERATION
            FROM Remote-Operations-Information-Objects
                         {joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}
      ROS{}, Bind{}, Unbind{}, InvokeId
            FROM Remote-Operations-Generic-ROS-PDUs
                         {joint-iso-ccitt remote-operations(4) generic-ROS-PDUs(6) version1(0)}
      APPLICATION-CONTEXT
            FROM Remote-Operations-Information-Objects-extensions {joint-iso-ccitt
                         remote-operations(4) informationObjects-extensions(8) version1(0)}
      acse, pData
            FROM Remote-Operations-Realisations
                         {joint-iso-ccitt remote-operations(4) realisations(8) version1(0)}
      acse-abstract-syntax
            FROM Remote-Operations-Abstract-Syntaxes {joint-iso-ccitt remote-operations(4)
                         remoteOperationsAabstractSvntaxes(12) version1(0)}
      id-ac-directorySystemAC, id-rosObject-dspDSA, id-contract-dsp,
      id-package-dspConnection, id-package-chainedRead, id-package-chainedSearch,
      id-package-chainedModify, id-as-directorySystemAS
            FROM ProtocolObjectIdentifiers protocolObjectIdentifiers
      dSABind, dSAUnbind, chainedRead, chainedCompare, chainedAbandon, chainedList,
      chainedSearch, chainedAddEntry, chainedRemoveEntry, chainedModifyEntry,
      chainedModifyDN
            FROM DistributedOperations distributedOperations;
-- application contexts --
directorySystemAC
                          APPLICATION-CONTEXT
      CONTRACT
                                         dspContract
      ESTABLISHED BY
                                         acse
      INFORMATION TRANSFER BY
                                         pData
                                         { acse-abstract-syntax | directorySystemAbstractSyntax }
      ABSTRACT SYNTAXES
      APPLICATION CONTEXT NAME id-ac-directorySystemAC }
-- ROS objects --
                   ROS-OBJECT-CLASS ::=
dsp-dsa
                                                   {
      BOTH
                   { dspContract }
      ID
                          id-rosObject-dspDSA }
```

```
-- contracts --
dspContract CONTRACT
                                       ::=
     CONNECTION
                         dspConnectionPackage
     OPERATIONS OF
                         { chainedReadPackage | chainedSearchPackage | chainedModifyPackage }
                         id-contract-dsp }
-- connection package --
dspConnectionPackage
                         CONNECTION-PACKAGE
                                                                 {
     BIND
                         dSABind
      UNBIND
                         dSAUnbind
      ID
                         id-package-dspConnection }
-- chained read package --
                                                                JE OF ISOILE OF SALES A SOSIE
chainedReadPackage
                         OPERATION-PACKAGE
     OPERATIONS
                         { chainedRead | chainedCompare | chainedAbandon }
     ID
                         id-package-chainedRead }
-- chained search package --
chainedSearchPackage
                         OPERATION-PACKAGE
                                                         ::=
     OPERATIONS
                         { chainedList | chainedSearch }
     ID
                         id-package-chainedSearch }
-- chained modify package --
chainedModifyPackage
                         OPERATION-PACKAGE::=
     OPERATIONS
                         { chainedAddEntry | chainedRemoveEntry
                         | chainedModifyEntry | chainedModifyDN }
     ID
                         id-package-chainedModify }
-- abstract syntaxes --
directorySystemAbstractSyntax
                                 ABSTRACT-SYNTAX
     DSP-PDUs
     IDENTIFIED BY
                         id-as-directorySystemAS }
DSP-PDUs ::=
                  CHOICE {
                  ROS { {DSP-InvokeIDSet }, { DSP-Invokable }, { DSP-Returnable } },
      basicRos
                  Bind { dSABind },
      hind
      unbind
                  Unbind { dSAUnbind }}
DSP-InvokeIDSet
                                       InvokeId (ALL EXCEPT absent:NULL)
DSP-Invokable
                  OPERATION
                                       { chainedRead | chainedCompare | chainedAbandon
                                       | chainedList | chainedSearch
                                       | chainedAddEntry | chainedRemoveEntry | chainedModifyEntry
                                             | chainedModifyDN }
DSP-Returnable
                                       { chainedRead | chainedCompare | chainedAbandon
                                       | chainedList | chainedSearch
                                       | chainedAddEntry | chainedRemoveEntry | chainedModifyEntry
                                             | chainedModifyDN }
END
```

Annex C

DISP in ASN.1

(This annex forms an integral part of this Recommendation | International Standard)

This annex includes all of the relevant ASN.1 type and value definitions contained in this Directory Specification in the form of the ASN.1 module, **DirectoryInformationShadowProtocol**.

```
DirectoryInformationShadowProtocol {joint-iso-ccitt ds(5) module(1) disp(16) 2}
DEFINITIONS ::=
BEGIN
-- EXPORTS All --
-- The types and values defined in this module are exported for use in the other ASN. I modules contained
-- within the Directory Specifications, and for the use of other applications which will use them to access
-- Directory services. Other applications may use them for their own purposes, but this will not constrain
-- extensions and modifications needed to maintain or improve the Directory service.
IMPORTS
      directoryShadowAbstractService, protocolObjectIdentifiers
            FROM UsefulDefinitions (ioint-iso-ccitt ds(5) module(1) usefulDefinitions(0)2
      ROS-OBJECT-CLASS, CONTRACT, OPERATION-PACKAGE, CONNECTION-PACKAGE,
      Code, OPERATION
            FROM Remote-Operations-Information-Objects
                         {joint-iso-ccitt remote-operations(4) informationObjects(5) version1(0)}
      ROS{}, Bind{}, Unbind{}, InvokeId
            FROM Remote-Operations-Generic-ROS-PDUs
                          {joint-iso-ccitt remote-operations(4) generic-ROS-PDUs(6) version1(0)}
      APPLICATION-CONTEXT
            FROM Remote-Operations-Information-Objects-extensions {joint-iso-ccitt
                         remote-operations(4) informationObjects-extensions(8) version1(0)}
      acse, pData, association-by-RTSE, transfer-by-RTSE
            FROM Remote-Operations-Realisations
                          {joint-iso-ccitt remote-operations(4) realisations(9) version1(0)}
      acse-abstract-syntax
            FROM Remote-Operations-Abstract-Syntaxes (joint-iso-ccitt remote-operations(4)
                         remoteOperationsAabstractSyntaxes(12) version1(0)}
      id-ac-shadowSupplierInitiatedAC, id-ac-shadowConsumerInitiatedAC,
      id-ac-reliableShadowSupplierInitiatedAC, id-ac-reliableShadowConsumerInitiatedAC,
      id-rosObject-initiatingConsumerDSA, id-rosObject-respondingSupplierDSA,
      id-rosObject-initiatingSupplierDSA, id-rosObject-respondingConsumerDSA,
      id-contract-shadowConsumer, id-contract-shadowSupplier, id-package-dispConnection,
      id-package-shadowConsumer, id-package-shadowSupplier, id-as-directoryShadowAS,
      id-as-directoryReliableShadowAS, id-as-reliableShadowBindingAS
            FROM ProtocolObjectIdentifiers protocolObjectIdentifiers
      dSAShadowBind, dSAShadowUnbind, requestShadowUpdate, updateShadow,
      coordinateShadowUpdate
            FROM DirectoryShadowAbstractService directoryShadowAbstractService
      RTSE-apdus
            FROM Reliable-Transfer-APDUs {joint-iso-ccitt reliable-transfer(3) apdus(0)};
-- application contexts --
                                         APPLICATION-CONTEXT ::=
                                                                             {
shadowSupplierInitiatedAC
      CONTRACT
                                         shadow Supplier Contract
      ESTABLISHED BY
                                         pData
      INFORMATION TRANSFER BY
      ABSTRACT SYNTAXES
                                         { acse-abstract-syntax | directoryShadowAbstractSyntax }
```

APPLICATION CONTEXT NAME id-ac-shadowSupplierInitiatedAC }

```
shadowConsumerInitiatedAC
                                    APPLICATION-CONTEXT ::=
     CONTRACT
                                    shadowConsumerContract
     ESTABLISHED BY
                                    acse
     INFORMATION TRANSFER BY
                                    pData
     ABSTRACT SYNTAXES
                                    { acse-abstract-syntax | directoryShadowAbstractSyntax }
     APPLICATION CONTEXT NAME id-ac-shadowConsumerInitiatedAC }
reliableShadowSupplierInitiatedAC
                                    APPLICATION-CONTEXT ::=
     CONTRACT
                                    shadowSupplierContract
     ESTABLISHED BY
                                    association-by-RTSE
     INFORMATION TRANSFER BY
                                    transfer-by-RTSE
     ABSTRACT SYNTAXES
                                    { acse-abstract-syntax
                                    | reliableShadowBindingAbstractSyntax
                                    | directoryReliableShadowAbstractSyntax }
     APPLICATION CONTEXT NAME id-ac-reliableShadowSupplierInitiatedAC }
                                                           OF OF ISOILE OF OR A.S. 1995
reliable Shadow Consumer Initiated AC\\
                                    APPLICATION-CONTEXT ::=
     CONTRACT
                                    shadowConsumerContract
     ESTABLISHED BY
                                    association-by-RTSE
     INFORMATION TRANSFER BY
                                    transfer-by-RTSE
     ABSTRACT SYNTAXES
                                    { acse-abstract-syntax
                                    | reliableShadowBindingAbstractSyntax
                                    | directoryReliableShadowAbstractSyntax }
     APPLICATION CONTEXT NAME id-ac-reliableShadowConsumerInitiatedAC }
-- ROS objects --
initiating-consumer-dsa
                              ROS-OBJECT-CLASS ::=
     INITIATES
                       { shadowConsumerContract }
     ID
                       id-rosObject-initiatingConsumerDSA }
responding-supplier-dsa
                              ROS-OBJECT-CLASS ::=
     RESPONDS
                       { shadowConsumerContract }
     ID
                       id-rosObject-respondingSupplierDSA
initiating-supplier-dsa
                               ROS-OBJECT-CLASS
                                                             {
     INITIATES
                       { shadowSupplierContract }
     ID
                       id-rosObject-initiatingSupplierDSA }
                       ROS-OBJECT-CLASS ::=
responding-consumer-dsa
     RESPONDS
                       { shadowSupplierContract }
     ID
                       id-rosObject-respondingConsumerDSA }
-- contracts --
                               CONTRACT ::= {
shadowConsumerContract
     CONNECTION
                                     dispConnectionPackage
     INITIATOR CONSUMER OF
                                     { shadowConsumerPackage }
                                     id-contract-shadowConsumer }
shadowSupplierContract
                                     CONTRACT ::= {
     CONNECTION
                                     dispConnectionPackage
     RESPONDER CONSUMER OF
                                     { shadowSupplierPackage }
                                     id-contract-shadowSupplier }
-- connection package --
dispConnectionPackage
                       CONNECTION-PACKAGE ::=
     BIND
                       dSAShadowBind
     UNBIND
                       dSAShadowUnbind
     ID
                       id-package-dispConnection }
-- packages --
CONSUMER INVOKES
                               { requestShadowUpdate }
     SUPPLIER INVOKES { updateShadow }
     ID
                               kid-package-shadowConsumer }
```

```
shadowSupplierPackage
                                 OPERATION-PACKAGE ::=
                                                                 {
     SUPPLIER INVOKES { coordinateShadowUpdate
                                 | updateShadow }
                                 id-package-shadowSupplier }
-- abstract syntaxes --
directoryShadowAbstractSyntax
                                              ABSTRACT-SYNTAX
                                                                         ::=
     DISP-PDUs
     IDENTIFIED BY
                         id-as-directoryShadowAS }
directoryReliableShadowAbstractSyntax ABSTRACT-SYNTAX ::=
                                                                 {
     Reliable-DISP-PDUs
     IDENTIFIED BY
                        id-as-directoryReliableShadowAS }
reliableShadowBindingAbstractSyntax
                                             ABSTRACT-SYNTAX
     ReliableShadowBinding-PDUs
     IDENTIFIED BY
                         id-as-reliableShadowBindingAS }
                                       ROS { { DISP-InvokeIDSet }, { DISP-Invokable } CHOICE {
DISP-PDUs
                                 ::=
     basicROS
                  ROS { { DISP-InvokeIDSet }, { DISP-Invokable }, {DISP-Returnable } },
     bind
                  Bind { dSAShadowBind },
                  Unbind { dSAShadowUnbind }}
     unbind
Reliable-DISP-PDUs
                                 ::=
ReliableShadowBinding-PDUs
     rTS
                         RTSE-apdus,
     bind
                  Bind { dSAShadowBind },
     unbind
                  Unbind { dSAShadowUnbind }}
DISP-InvokeIDSet ::=
                         InvokeId (ALL EXCEPT absent:NULL)
                                              { requestShadowUpdate | updateShadow
DISP-Invokable
                         OPERATION ::=
                                             | coordinateShadowUpdate }
DISP-Returnable
                         OPERATION ::=
                                             { requestShadowUpdate | updateShadow
                                             | coordinateShadowUpdate }
-- remote operation codes --
id-opcode-requestShadowUpdate Code
                                             local: 1
                                       Code ::=
id-opcode-updateShadow
                                                    local: 2
id-opcode-coordinateShadowUpdate
                                       Code ::=
                                                    local: 3
-- remote error codes --
id-errcode-shadowError
                                       Code ::=
                                                    local: 1
END
```