
Information technology —
Database languages SQL —
Part 3:
Call-Level Interface (SQL/CLI)

INTERNATIONAL
STANDARD

ISO/IEC
9075-3

Sixth edition
2023-06

Reference number
ISO/IEC 9075-3:2023(E)

© ISO/IEC 2023

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii

ISO/IEC 9075-3:2023(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

© ISO/IEC 2023 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Contents Page

Foreword. ix

Introduction. xi

1 Scope. 1
2 Normative references. 2
3 Terms and definitions. 3
4 Concepts. 4
4.1 Notations and conventions. 4
4.1.1 Notations. 4
4.1.2 Specification of routine definitions. 4
4.2 Introduction to SQL/CLI. 4
4.3 Return codes. 8
4.4 Diagnostics areas in SQL/CLI. 9
4.4.1 Introduction to diagnostics areas in SQL/CLI. 9
4.4.2 Setting of ROW_NUMBER and COLUMN_NUMBER fields. 12
4.5 Miscellaneous characteristics. 12
4.5.1 Handles. 12
4.5.2 Null-terminated strings. 12
4.5.3 Null pointers. 13
4.5.4 Environment attributes. 13
4.5.5 Connection attributes. 13
4.5.6 Statement attributes. 14
4.5.7 CLI descriptor areas. 14
4.5.8 Obtaining diagnostics during multi-row fetch. 15
4.6 SQL-invoked routines. 16
4.6.1 Result sets returned by SQL-invoked procedures. 16
4.7 Cursors. 16
4.7.1 General description of cursors. 16
4.8 Client-server operation. 16

5 Lexical elements. 17
5.1 <token> and <separator>. 17

6 Call-Level Interface specifications. 18
6.1 <CLI routine>. 18
6.2 <CLI routine> invocation. 26
6.3 Implicit set connection. 29
6.4 Preparing a statement. 30
6.5 Executing a statement. 33
6.6 Implicit CLI prepared cursor. 35
6.7 Implicit CLI procedural result cursor. 37

© ISO/IEC 2023 – All rights reserved iii

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.8 Initial CLI cursor. 38
6.9 Implicit DESCRIBE USING clause. 39
6.10 Implicit EXECUTE USING and OPEN USING clauses. 45
6.11 Implicit CALL USING clause. 51
6.12 Fetching a rowset. 56
6.13 Implicit FETCH USING clause. 60
6.14 Character string retrieval. 66
6.15 Binary string retrieval. 68
6.16 Deferred parameter check. 70
6.17 Description of CLI item descriptor areas. 71
6.18 Other tables associated with CLI. 82
6.19 SQL/CLI data type correspondences. 106

7 SQL/CLI routines. 116
7.1 Introduction to SQL/CLI routines. 116
7.2 AllocConnect(). 116
7.3 AllocEnv(). 117
7.4 AllocHandle(). 118
7.5 AllocStmt(). 122
7.6 BindCol(). 123
7.7 BindParameter(). 125
7.8 Cancel(). 129
7.9 CloseCursor(). 131
7.10 ColAttribute(). 132
7.11 ColumnPrivileges(). 134
7.12 Columns(). 140
7.13 Connect(). 149
7.14 CopyDesc(). 153
7.15 DataSources(). 154
7.16 DescribeCol(). 156
7.17 Disconnect(). 158
7.18 EndTran(). 160
7.19 Error(). 164
7.20 ExecDirect(). 166
7.21 Execute(). 167
7.22 Fetch(). 168
7.23 FetchScroll(). 169
7.24 ForeignKeys(). 170
7.25 FreeConnect(). 182
7.26 FreeEnv(). 183
7.27 FreeHandle(). 184
7.28 FreeStmt(). 187
7.29 GetConnectAttr(). 189
7.30 GetCursorName(). 191
7.31 GetData(). 192
7.32 GetDescField(). 198
7.33 GetDescRec(). 200
7.34 GetDiagField(). 202

iv © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.35 GetDiagRec(). 211
7.36 GetEnvAttr(). 213
7.37 GetFeatureInfo(). 215
7.38 GetFunctions(). 218
7.39 GetInfo(). 219
7.40 GetLength(). 223
7.41 GetParamData(). 225
7.42 GetPosition(). 231
7.43 GetSessionInfo(). 233
7.44 GetStmtAttr(). 235
7.45 GetSubString(). 238
7.46 GetTypeInfo(). 240
7.47 MoreResults(). 244
7.48 NextResult(). 245
7.49 NumResultCols(). 246
7.50 ParamData(). 247
7.51 Prepare(). 252
7.52 PrimaryKeys(). 253
7.53 PutData(). 258
7.54 RowCount(). 261
7.55 SetConnectAttr(). 262
7.56 SetCursorName(). 264
7.57 SetDescField(). 266
7.58 SetDescRec(). 271
7.59 SetEnvAttr(). 273
7.60 SetStmtAttr(). 275
7.61 SpecialColumns(). 279
7.62 StartTran(). 286
7.63 TablePrivileges(). 288
7.64 Tables(). 293

8 Additional data manipulation rules. 300
8.1 Effect of opening a cursor. 300

9 Dynamic SQL. 301
9.1 <preparable dynamic cursor name>. 301

10 Status codes. 302
10.1 SQLSTATE. 302

11 Conformance. 305
11.1 Claims of conformance to SQL/CLI. 305
11.2 Additional conformance requirements for SQL/CLI. 305
11.3 Implied feature relationships of SQL/CLI. 305

AnnexA (informative) SQL conformance summary. 306
AnnexB (informative) Implementation-defined elements. 308
AnnexC (informative) Implementation-dependent elements. 329
AnnexD (informative) SQL optional feature taxonomy. 334
AnnexE (informative) Deprecated features. 335

© ISO/IEC 2023 – All rights reserved v

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

AnnexF (informative) Incompatibilities with ISO/IEC 9075:2016. 336
AnnexG (informative) Defect Reports not addressed in this edition of this document. 337
AnnexH (informative) Example header files. 338
H.1 C header file sqlcli.h. 338
H.2 COBOL library item SQLCLI. 349

Annex I (informative) Example C programs. 357
I.1 Introduction to Example C programs. 357
I.2 Create table, insert, select. 357
I.3 Interactive Query. 360
I.4 Providing long dynamic arguments at Execute time. 363

Index. 366

vi © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Tables

Table Page

1 Header fields in SQL/CLI diagnostics areas. 10
2 Status record fields in SQL/CLI diagnostics areas. 10
3 Supported calling conventions of SQL/CLI routines by language. 21
4 Abbreviated SQL/CLI generic names. 21
5 Fields in SQL/CLI row and parameter descriptor areas. 76
6 Codes used for implementation data types in SQL/CLI. 78
7 Codes used for application data types in SQL/CLI. 79
8 Codes associated with datetime data types in SQL/CLI. 80
9 Codes associated with <interval qualifier> in SQL/CLI. 80
10 Codes associated with <parameter mode> in SQL/CLI. 81
11 Codes associated with user-defined types in SQL/CLI. 81
12 Codes used for SQL/CLI diagnostic fields. 82
13 Codes used for SQL/CLI handle types. 83
14 Codes used for transaction termination. 84
15 Codes used for environment attributes. 84
16 Codes used for connection attributes. 84
17 Codes used for statement attributes. 84
18 Codes used for FreeStmt options. 85
19 Data types of attributes. 85
20 Codes used for SQL/CLI descriptor fields. 86
21 Ability to set SQL/CLI descriptor fields. 88
22 Ability to retrieve SQL/CLI descriptor fields. 90
23 SQL/CLI descriptor field default values. 93
24 Codes used for fetch orientation. 95
25 Multi-row fetch status codes. 95
26 Miscellaneous codes used in CLI. 95
27 Codes used to identify SQL/CLI routines. 96
28 Codes and data types for implementation information. 99
29 Codes and data types for session implementation information. 101
30 Values for TRANSACTION ISOLATION OPTION with StartTran. 101
31 Values for TRANSACTION ACCESS MODE with StartTran. 101
32 Codes used for concise data types. 101
33 Codes used with concise datetime data types in SQL/CLI. 103
34 Codes used with concise interval data types in SQL/CLI. 104
35 Concise codes used with datetime data types in SQL/CLI. 104
36 Concise codes used with interval data types in SQL/CLI. 104
37 Special parameter values. 105
38 Column types and scopes used with SpecialColumns. 105
39 SQL/CLI data type correspondences for Ada. 106
40 SQL/CLI data type correspondences for C. 107
41 SQL/CLI data type correspondences for COBOL. 108
42 SQL/CLI data type correspondences for Fortran. 110
43 SQL/CLI data type correspondences for M. 111
44 SQL/CLI data type correspondences for Pascal. 112
45 SQL/CLI data type correspondences for PL/I. 114
46 SQLSTATE class and subclass codes. 302
47 Implied feature relationships of SQL/CLI. 305

© ISO/IEC 2023 – All rights reserved vii

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

A.1 Feature definitions outside of Conformance Rules. 306
D.1 Feature taxonomy for optional features. 334

viii © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ISO/IEC 9075-3:2023(E)

© ISO/IEC 2023 – All rights reserved ix

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) form the specialized system for worldwide standardization. National bodies that are members
of ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, govern-
mental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are de-
scribed in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the dif-
ferent types of document should be noted. This document was drafted in accordance with the editorial
rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/ref-
docs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve the
use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any
claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC have
not received notice of (a) patent(s) which may be required to implement this document. However, imple-
menters are cautioned that this may not represent the latest information, which may be obtained from
the patent database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall not be
held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expres-
sions related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/fore-
word.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 32, Data management and interchange.

This sixth edition cancels and replaces the fifth edition (ISO/IEC 9075-3:2016), which has been techni-
cally revised. It also incorporates the Technical Corrigendum ISO/IEC 9075-3:2016/Cor.1:2022.

The main changes are as follows:

— improve the presentation and accuracy of the summaries of implementation-defined and implemen-
tation-dependent aspects of this document;

— introduction of several digital artifacts;

— alignment with updated ISO house style and other guidelines for creating standards.

This sixth edition of ISO/IEC 9075-3 is designed to be used in conjunction with the following editions of
other parts of the ISO/IEC 9075 series, all published 2023:

— ISO/IEC 9075-1, sixth edition;

— ISO/IEC 9075-2, sixth edition;

— ISO/IEC 9075-4, seventh edition;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ISO/IEC 9075-3:2023(E)

x © ISO/IEC 2023 – All rights reserved

— ISO/IEC 9075-9, fifth edition;

— ISO/IEC 9075-10, fifth edition;

— ISO/IEC 9075-11, fifth edition;

— ISO/IEC 9075-13, fifth edition;

— ISO/IEC 9075-14, sixth edition;

— ISO/IEC 9075-15, second edition;

— ISO/IEC 9075-16, first edition.

A list of all parts in the ISO/IEC 9075 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/national-
committees.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://www.iec.ch/national-committees
https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Introduction

The organization of this document is as follows:

1) Clause 1, “Scope”, specifies the scope of this document.

2) Clause 2, “Normative references”, identifies additional standards that, through reference in this
document, constitute provisions of this document.

3) Clause 3, “Terms and definitions”, defines the terms and definitions used in this document.

4) Clause 4, “Concepts”, presents concepts used in the definition of the Call-Level Interface.

5) Clause 5, “Lexical elements”, defines the lexical elements of the language.

6) Clause 6, “Call-Level Interface specifications”, defines facilities for using SQL through a Call-Level
Interface.

7) Clause 7, “SQL/CLI routines”, defines each of the routines that comprise the Call-Level Interface.

8) Clause 8, “Additional data manipulation rules”, defines additional rules for data manipulation.

9) Clause 9, “Dynamic SQL”, defines the SQL dynamic statements.

10) Clause 10, “Status codes”, defines values that identify the status of the execution of SQL-statements
and the mechanisms by which those values are returned.

11) Clause 11, “Conformance”, defines the criteria for conformance to this document.

12) Annex A, “SQL conformance summary”, is an informative Annex. It summarizes the conformance
requirements of the SQL language.

13) Annex B, “Implementation-defined elements”, is an informative Annex. It lists those features for
which the body of this document states that the syntax, themeaning, the returned results, the effect
on SQL-data and/or schemas, or other aspect is partly or wholly implementation-defined.

14) Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those features for
which the body of this document states that the syntax, themeaning, the returned results, the effect
on SQL-data and/or schemas, or other aspect is partly or wholly implementation-dependent.

15) AnnexD, “SQLoptional feature taxonomy”, is an informativeAnnex. It identifies the optional features
of the SQL language specified in this document by an identifier and a short descriptive name. This
taxonomy is used to specify conformance.

16) Annex E, “Deprecated features”, is an informative Annex. It lists features that the responsible
Technical Committee intends not to include in a future edition of this document.

17) Annex F, “Incompatibilities with ISO/IEC 9075:2016”, is an informative Annex. It lists incompatib-
ilities with the previous edition of this document.

18) Annex G, “Defect Reports not addressed in this edition of this document”, is an informative Annex.
It describes the Defect Reports that were known at the time of publication of this document. Each
of these problems is a problem carried forward from the previous edition of document. No new
problems have been created in the drafting of this edition of this document.

19) Annex H, “Example header files”, is an informative Annex. It provides examples of typical definition
files for application programs using the SQL Call-Level Interface.

20) Annex I, “Example C programs”, is an informative Annex. It provides examples of using the SQL Call-
Level Interface in the C programming language.

© ISO/IEC 2023 – All rights reserved xi

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

In the text of this document, Clauses and Annexes begin new odd-numbered pages, and in Clause 6, “Call-
Level Interface specifications”, through Clause 11, “Conformance”, Subclauses begin new pages. Any
resulting blank space is not significant.

xii © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

INTERNATIONAL STANDARD ISO/IEC 9075-3:2023(E)

Information technology— Database language SQL—

Part 3:
Call-Level Interface (SQL/CLI)

1 Scope

This document defines the structures and procedures that can be used to execute statements of the
database language SQL fromwithin an applicationwritten in a programming language in such away that
procedures used are independent of the SQL statements to be executed.

© ISO/IEC 2023 – All rights reserved 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content consti-
tutes requirements of this document. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 1539-1:2018, Information technology— Programming languages — Fortran— Part 1: Base
language

ISO/IEC1539-2:2000, Information technology—Programming languages—Fortran—Part 2: Varying
length character strings

ISO 1989:2014, Information technology— Programming languages — COBOL

ISO 6160:1979, Programming languages — PL/I (Endorsement of ANSI X3.53-1976)

ISO 7185:1990, Information technology— Programming languages — Pascal

ISO/IEC 8652:2012, Information technology— Programming languages — Ada

ISO/IEC8652:2012/Cor.1:2016, Information technology—Programming languages—Ada—Technical
Corrigendum 1

ISO/IEC 9075-1, Information technology— Database languages — SQL— Part 1: Framework
(SQL/Framework)

ISO/IEC 9075-2, Information technology— Database languages — SQL— Part 2: Foundation
(SQL/Foundation)

ISO/IEC 9075-11, Information technology— Database languages — SQL— Part 11: Information and
Definition Schemas (SQL/Schemata)

ISO/IEC 9899:2018, Information technology— Programming languages — C

ISO/IEC 10206:1991, Information technology— Programming languages — Extended Pascal

ISO/IEC 11756:1999, Information technology— Programming languages —M

2 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 9075-1, ISO/IEC 9075-2
and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— ISO Online browsing platform: available at https://www.iso.org/obp

— IEC Electropedia: available at https://www.electropedia.org/

3.1
data source
SQL-server that is part of the current SQL-connection

3.2
handle
CLI object returned by an SQL/CLI implementation when a CLI resource is allocated and used by an
SQL/CLI application to reference that CLI resource

3.3
pseudo-column
column that is part of a table but is not part of the descriptor for that table
Note 1 to entry: An example of such a pseudo-column is an implementation-defined row identifier.

3.4
rowset
one or more rows retrieved in a single invocation of the Fetch and FetchScroll routines

3.5
SQL/CLI application
application that invokes <CLI routine>s specified in this document

© ISO/IEC 2023 – All rights reserved 3

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://www.iso.org/obp
https://www.electropedia.org/
https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4 Concepts

This Clause modifies Clause 4, “Concepts”, in ISO/IEC 9075-2.

4.1 Notations and conventions
This Subclause modifies Subclause 4.1, “Notations and conventions”, in ISO/IEC 9075-2.

4.1.1 Notations

This Subclause modifies Subclause 4.1.1, “Notations”, in ISO/IEC 9075-2.

The notations used in this document are defined in ISO/IEC 9075-1.

The syntax defined in this document is available from the ISO website as a “digital artifact”. See
https://standards.iso.org/iso-iec/9075/-3/ed-6/en/ to download digital artifacts for
this document. To download the syntax defined in a plain-text format, select the file named
ISO_IEC_9075-3(E)_CLI.bnf.txt. To download the syntax defined in an XML format, select the
file named ISO_IEC_9075-3(E)_CLI.bnf.xml.

4.1.2 Specification of routine definitions

The routines in this document are specified in terms of the following characteristics.

— Function: A short statement of the purpose of the routine.

— Definition: The name of the routine and the name, mode, and data type of each of its parameters.

— General Rules: A specification of the run-time effect of the routine. Where more than one General
Rule is used to specify the effect of a routine, the required effect is that which would be obtained
by beginning with the first General Rule and applying the Rules in numeric sequence until a Rule
is applied that specifies or implies a change in sequence or termination of the application of the
Rules. Unless otherwise specifiedor implied by a specificRule that is applied, application of General
Rules terminates when the last in the sequence has been applied.

4.2 Introduction to SQL/CLI
This Subclause is modified by Subclause 4.11, “Introduction to SQL/CLI”, in ISO/IEC 9075-9.

TheCall-Level Interface (SQL/CLI) is a binding style for executing SQL statements. This documentprovides
specifications for routines that:

— allocate and deallocate resources;

— control connections to SQL-servers;

— execute SQL statements using mechanisms similar to dynamic SQL;

— obtain diagnostic information;

— control transaction termination;

— obtain information about the SQL/CLI implementation and the SQL-implementation.

A handle is a CLI object returned by an SQL/CLI implementation when a CLI resource is allocated; the
handle is usedby an SQL/CLI application to reference that CLI resource. TheAllocHandle routine allocates

4 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://standards.iso.org/iso-iec/9075/-3/ed-6/en/
https://standards.iso.org/iso-iec/9075/-3/ed-6/en/ISO_IEC_9075-3(E)_CLI.bnf.txt
https://standards.iso.org/iso-iec/9075/-3/ed-6/en/ISO_IEC_9075-3(E)_CLI.bnf.xml
https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

the resources tomanage an SQL-environment, an SQL-connection, a CLI descriptor area, or SQL-statement
processing; when invoked, it returns an environment handle, a connection handle, a descriptor handle,
or a statement handle, respectively. An SQL-connection is allocated in the context of an allocated SQL-
environment. CLI descriptor areas and SQL-statements are allocated in the context of an allocated SQL-
connection. The FreeHandle routine deallocates a specified resource. The AllocConnect, AllocEnv, and
AllocStmt routines can be used to allocate the resources to manage an SQL-connection, an SQL-environ-
ment, and SQL-statement processing, respectively, instead of using theAllocHandle routine. The FreeCon-
nect, FreeEnv, and FreeStmt routines can be used to deallocate the specific resource instead of using
FreeHandle.

Each allocated SQL-environment has an attribute that determines whether output character strings are
null-terminated by the SQL/CLI implementation. The SQL/CLI application can set the value of this
attribute by using the routine SetEnvAttr and can retrieve the current value of the attribute by using the
routine GetEnvAttr.

The Connect routine establishes an SQL-connection, which becomes the current SQL-connection. The
Disconnect routine terminates an established SQL-connection. Switching between established SQL-con-
nections occurs automatically whenever the SQL/CLI application switches processing to a dormant SQL-
connection, which then becomes the current SQL-connection.

The ExecDirect routine is used for a one-time execution of an SQL-statement. The Prepare routine is used
to prepare an SQL-statement for subsequent execution using the Execute routine. In all three cases, the
executed SQL-statement can contain dynamic parameters.

The interface for a description of dynamic parameters, dynamic parameter values, the result columns of
a <dynamic select statement> or <dynamic single row select statement>, and the target specifications
for the result columns is a CLI descriptor area. A CLI descriptor area for each type of interface is automat-
ically allocatedwhen an SQL-statement is allocated. The SQL/CLI applicationmay allocate additional CLI
descriptor areas and nominate them for use as the interface for the description of dynamic parameter
values or thedescriptionof target specificationsbyusing the routine SetStmtAttr. The SQL/CLI application
can determine the handle value of the CLI descriptor area currently being used for a specific interface by
using the routine GetStmtAttr. The GetDescField and GetDescRec routines enable information to be
retrieved from a CLI descriptor area. The CopyDesc routine enables the contents of a CLI descriptor area
to be copied to another CLI descriptor area.

When a <dynamic select statement> or <dynamic single row select statement> is prepared or executed
immediately, a description of the result columns is automatically provided in the applicable CLI imple-
mentation descriptor area. In this case, the SQL/CLI application may additionally retrieve information
by using theDescribeCol and/or the ColAttribute routine to obtain a description of a single result column
and by using the NumResultCols routine to obtain a count of the number of result columns. The SQL/CLI
application sets values in the CLI application descriptor area for the description of the corresponding
target specifications either explicitly, by using the routines SetDescField and SetDescRec, or implicitly,
by using the routine BindCol.

When an SQL-statement is prepared or executed immediately, a description of the dynamic parameters
is automatically provided in the applicable CLI implementationdescriptor area if this facility is supported
by the current SQL-connection. An attribute associated with the allocated SQL-connection indicates
whether this facility is supported. The value of the attribute may be retrieved using the routine GetCon-
nectAttr. Regardless of whether automatic description is supported, all dynamic input and input/output
parameters shall be defined in the application descriptor area before SQL-statement execution. This can
be done either explicitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the
routine BindParameter. The value of a dynamic input or input/output parameter may be established
before SQL-statement execution (immediate parameter value) ormaybe providedduring SQL-statement
execution (deferredparameter value). Its description in theCLI descriptor area determineswhichmethod
is in use. The ParamData routine is used to cycle through and process deferred input and input/output
parameter values. The PutData routine is used to provide the deferred values. The PutData routine also
enables the values of character string input and input/output parameters to be provided piece by piece.

© ISO/IEC 2023 – All rights reserved 5

ISO/IEC 9075-3:2023(E)
4.2 Introduction to SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Before a <call statement> is prepared or executed immediately, the SQL/CLI application may choose
whether or not to bind dynamic output parameters in the CLI application descriptor area. This can be
done either explicitly, by using the routines SetDescField and SetDescRec, or implicitly, by using the
routine BindParameter. After execution of the statement, values of unbound output and input/output
parameters can be individually retrieved using the GetParamData routine. The GetParamData routine
also enables the retrieval of the values of character andbinary string output and input/output parameters
to be accomplished piece by piece.

When a<dynamic select statement> or <dynamic single row select statement> is executed, a CLI prepared
cursor is implicitly declared and opened. The name of the cursor is determined by the cursor name
property associatedwith the allocated SQL-statement, which can be supplied by the SQL/CLI application
by using the routine SetCursorName. If a cursor name is not supplied by the SQL/CLI application, the
value of the cursor name property associated with the allocated SQL-statement is an implementation-
dependent (UV124) cursor name. The cursor nameproperty associatedwith the allocated SQL-statement
can be retrieved by using the GetCursorName routine. The operational sensitivity, scrollability, and
holdability properties of a CLI prepared cursor are determined by the CURSOR SENSITIVITY, CURSOR
SCROLLABLE, and CURSOR HOLDABLE attributes, respectively, of the allocated SQL-statement at the
time the CLI cursor is declared and opened. The SQL/CLI application can set the values of these attributes
by using the SetStmtAttr routine and can retrieve the current values of these attributes by using the
GetStmtAttr routine. The operational returnability property of a CLI prepared cursor is implementation-
defined (IV031).

The Fetch and FetchScroll routines are used to position an open CLI cursor on a row and to retrieve the
values of bound columns for that row. A bound column is one whose target specification in the specified
CLI descriptor area defines a location for the target value. The Fetch routine always positions the open
CLI cursor on the next row, whereas the FetchScroll routine may be used to position the open CLI cursor
on a specified row. The use of FetchScroll with a FetchOrientation other than NEXT is permitted only if
the operational scrollability property of the CLI cursor is SCROLL. The Fetch and FetchScroll routines
can also retrieve multiple rows in a single call; the set of rows thus retrieved is called a rowset. This is
accomplished by setting the ARRAY_SIZE field of the applicable application row descriptor to the desired
number of rows. Note that the single row fetch is just a special case of multi-row fetch, where the rowset
size is 1 (one).

Values for unbound columns can be individually retrieved by using the GetData routine. The GetData
routine also enables the retrieval of the values of character and binary string columns to be accomplished
piece by piece. The current row of a CLI cursor is a row of the current rowset indicated by the CURRENT
OF POSITION attribute of the allocated SQL-statement associated with the CLI cursor. The current row
can be deleted or updated by executing a <preparable dynamic delete statement: positioned> or a <pre-
parable dynamic update statement: positioned>, respectively, for that CLI cursor under a different
allocated SQL-statement to the one under which the CLI cursor was opened. The CloseCursor routine
enables a CLI cursor to be closed.

Result sets can be returned to the SQL/CLI application as a result of invoking the Execute or ExecDirect
routine, supplyinga statementhandlewhose current statement is a<call statement>. If the<call statement>
invokes an SQL-invoked procedure SIP that returns a non-empty result set sequence RSS, then a CLI
procedural result cursor is automatically associated with the statement handle. The result set of this CLI
procedural result cursor is the first result set of RSS. The SQL/CLI application can learn that a cursor has
been automatically opened by invoking NumResultCols to determine if the ColumnCount is positive. If
there is more than one result set in the result set sequence, then the others can be processed one at a
time or in parallel. To process the result sets one at a time, once the processing of a given result set is
complete, the MoreResults routine is used to determine whether there are additional result sets and, if
there are, to position theCLI procedural result cursor before thefirst row in thenext result set. To process
the result sets in parallel, the NextResult routine is used to determinewhether there are additional result
sets and, if there are, to position a CLI procedural result cursor associatedwith another statement handle
before the first row in the next result set.

6 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
4.2 Introduction to SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

When a CLI procedural result cursor is associated with a result set, the operational sensitivity, scrollab-
ility, and holdability properties of the CLI procedural result cursor are those of the result set as it was
received from the stored procedure. (The CURSOR SENSITIVITY, CURSOR SCROLLABLE, and CURSOR
HOLDABLEattributes of the allocated SQL-statement are ignored; using SetStmtAttr to set these attributes
has no effect on the corresponding operational properties of a CLI procedural result cursor.) The opera-
tional returnability property of a CLI procedural result cursor is implementation-defined (IV031). A CLI
procedural result cursor is not updatable. Otherwise, a CLI procedural result cursor is processed in the
same way as a CLI prepared cursor.

Special routines, called catalog routines are available to return result sets from the Information Schema.
These routines are described here.

— ColumnPrivileges: Returns a list of the privileges held on the columns whose names adhere to the
requested pattern(s) within a single specified table. Most of this information can also be obtained
by using the ExecDirect routine to issue an appropriate query on the COLUMN_PRIVILEGES view
of the Information Schema.

— Columns: Returns the column names and attributes for all columns whose names adhere to the
requested pattern(s). Most of this information can also be obtained by using the ExecDirect routine
to issue an appropriate query on the COLUMNS view of the Information Schema.

— ForeignKeys: Returns either the primary key of a single specified table together with the foreign
keys in all other tables that reference that primary key or the foreign keys of a single specified table
togetherwith all the primary andunique keys in all other tables that are referencedby those foreign
keys. Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the TABLE_CONSTRAINTS view and the REFERENTIAL_CONSTRAINTS view
of the Information Schema.

— PrimaryKeys: Returns a list of the columns that constitute the primary key of a single specified
table. Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the TABLE_CONSTRAINTS view and the KEY_COLUMN_USAGE view of the
Information Schema.

— SpecialColumns: Returns a list of the columns that can uniquely identify a particular row within a
single specified table. Most of this information can also be obtained by using the ExecDirect routine
to issue an appropriate query on the COLUMNS view of the Information Schema.

— Tables: Returns information about the tables whose names adhere to the requested pattern(s) and
type(s). Most of this information can also be obtained by using the ExecDirect routine to issue an
appropriate query on the TABLES view of the Information Schema.

— TablePrivileges: Returns a list of the privileges held on tableswhose names adhere to the requested
pattern(s). Most of this information can also be obtained by using the ExecDirect routine to issue
an appropriate query on the TABLE_PRIVILEGES view of the Information Schema.

These special routines are only available for a small portion of the metadata that is available in the
Information Schema. Other metadata (for example, that about SQL-invoked routines, triggers, and user-
defined types) can be obtainedby executing appropriate queries on the views of the Information Schema.

The GetPosition, GetLength, and GetSubString routines can each be used with its own independent
statement handle to access a string value at the server that is represented by a Large Object locator in
order to do any of the following.

— The GetPosition routine may be used to determine whether a given substring exists within that
string and, if it does, to obtain an integer value that indicates the starting position of the first
appearance of the given substring.

— The GetLength routine may be used to obtain the length of that string as an integer.

© ISO/IEC 2023 – All rights reserved 7

ISO/IEC 9075-3:2023(E)
4.2 Introduction to SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

— The GetSubString routine may be used to retrieve a portion of a string, or alternatively, to create a
new Large Object value at the server which is a portion of the string and to return a Large Object
locator that represents that value.

The Error, GetDiagField, and GetDiagRec routines obtain diagnostic information about the most recent
routine operating on a particular resource. The Error routine always retrieves information from the next
status record, whereas the GetDiagField and GetDiagRec routines may be used to retrieve information
from an identified status record.

The number of rows affected by the last executed SQL-statement can be obtained by using the RowCount
or GetDiagField routine.

An SQL-transaction is terminated by using the EndTran routine. An SQL-transaction is implicitly initiated
whenever a CLI routine is invoked that requires the context of an SQL-transaction andno SQL-transaction
is active. An SQL-transaction is explicitly started, and its characteristics set, by using the StartTran routine.

NOTE 1— Applications are prohibited from using the ExecDirect or Execute routines to execute <start transaction state-
ment>s, <commit statement>s, <rollback statement>s, and <release savepoint statement>s.

The Cancel routine is used to cancel the execution of a concurrently executing SQL/CLI routine; it is also
used to terminate the processing of deferred parameter values and the execution of the associated SQL-
statement.

09TheGetFeatureInfo, GetFunctions, GetInfo, GetSessionInfo, andGetTypeInfo routines are used to obtain
information about the SQL/CLI implementation. The DataSources routine returns a list of names that
identify SQL-servers to which the SQL/CLI application may be able to connect and returns a description
of each such SQL-server.

4.3 Return codes
The execution of a CLI routine causes one or more conditions to be raised. The status of the execution is
indicated by a code that is returned either as the result of invoking a CLI routine that is a CLI function or
as the value of the ReturnCode argument of a CLI routine that is a CLI procedure.

The return code values and meanings are described in the following list. If more than one return code is
possible, then the one appearing later in the list is the one returned.

— A value of 0 (zero) indicates Success. The CLI routine executed successfully.

— A value of 1 (one) indicates Success with information. The CLI routine executed successfully but
a completion condition was raised:warning (01000).

— A value of 100 indicates No data found. The CLI routine executed successfully but a completion
condition was raised: no data (02000).

— A value of 99 indicatesData needed. The CLI routine did not complete its execution because addi-
tional data is needed. An exception conditionwas raised:CLI-specific condition—dynamic parameter
value needed (HYHHG).

— A value of −1 (negative one) indicates Error. The CLI routine did not execute successfully. An
exception condition other than CLI-specific condition— invalid handle (HYHHH) or CLI-specific
condition— dynamic parameter value needed (HYHHG)was raised.

— A value of −2 indicates Invalid handle. The CLI routine did not execute successfully because an
exception condition was raised: CLI-specific condition— invalid handle (HYHHH).

After the execution of a CLI routine, the values of every output argument that corresponds to an output
parameterwhose value is not explicitly definedby this document is implementation-dependent (UV052).

In addition toproviding the return code, for all CLI routines other thanError, GetDiagField, andGetDiagRec,
the SQL/CLI implementation records information about completion conditions and about exception

8 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
4.2 Introduction to SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

conditions other than CLI-specific condition— invalid handle (HYHHH) in the diagnostics area associated
with the resource being utilized. The resource being utilized by a routine is the resource identified by its
input handle. In the case of CopyDesc, which takes two input handles, the resource being utilized is the
one identified by TargetDescHandle.

4.4 Diagnostics areas in SQL/CLI

4.4.1 Introduction to diagnostics areas in SQL/CLI

Eachdiagnostics area comprises header information consisting of fields that contain general information
relating to the routine that was executed and zero (0) or more status records containing information
about individual conditions that occurred during the execution of the CLI routine. A condition that causes
a status record to be generated is referred to as a status condition.

At the beginning of the execution of each CLI routine other than Error, GetDiagField, and GetDiagRec, the
diagnostics area for the resource being utilized is emptied. If the execution of such a routine does not
result in theexception conditionCLI-specific condition—invalidhandle (HYHHH)or theexception condition
CLI-specific condition— dynamic parameter value needed (HYHHG), then:

— header information is generated in the diagnostics area;

— if the routine’s return code indicates Success, then no status records are generated;

— if the routine’s return code indicates Success with information or Error, then one or more status
records are generated;

— if the routine’s return code indicatesNodata found, thenno status record is generated correspond-
ing to SQLSTATE value '02000' but there may be status records generated corresponding to SQL-
STATE value '02nnn', where 'nnn' is an implementation-defined (IC001) subclass code.

When Fetch or FetchScroll is invoked, the resulting rowset has one or more rows, and exceptions or
warnings are generated, then the corresponding records in the diagnostics area have the ROW_NUMBER
field set to the row number of the row in the rowset associated with the exceptions or warnings. If a
status record does not correspond to any row in the rowset, or the record is generated as a result of
calling a routine other than Fetch or FetchScroll, the ROW_NUMBER field is set to zero. The
COLUMN_NUMBERfield of the status record contains the columnnumber (if any) towhich this exception
or warning condition applies. If the status record does not apply to any column, then COLUMN_NUMBER
is set to zero.

Status records in the diagnostics area are ordered by ROW_NUMBER. If multiple status records are gen-
erated for the same ROW_NUMBER value, then the order in which the second and subsequent of those
status records appear is implementation-dependent (US025).Which of those status records appears first
is also implementation-dependent (US025), except that:

— status records corresponding to transaction rollback (40000) have precedence over status records
corresponding toother exceptions,which in turnhaveprecedenceover status records corresponding
to the completion condition no data (02000), which in turn have precedence over status records
corresponding to the completion conditionwarning (01000);

— apart from status records corresponding to an implementation-defined (IC001) no data (02000),
status records corresponding to an implementation-defined (IC001) condition that duplicates, in
whole or in part, a condition defined in this document shall not be the first status record.

The routines GetDiagField and GetDiagRec retrieve information from a diagnostics area. The SQL/CLI
application identifies which diagnostics area is to be accessed by providing the handle of the relevant
resource as an input argument. The routines return a result code but do not modify the identified dia-
gnostics area.

© ISO/IEC 2023 – All rights reserved 9

ISO/IEC 9075-3:2023(E)
4.3 Return codes

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

The Error routine also retrieves information from a diagnostics area. The Error routine retrieves the
status records in the identified diagnostics area one at a time but does not permit already processed
status records to be retrieved. Error returns a result code but does not modify the identified diagnostics
area.

TheRowCount routine retrieves theROW_COUNTfield fromthediagnosticsarea for the specifiedstatement
handle. RowCount returns a result code and may cause status records to be generated.

A CLI diagnostics area comprises the header fields specified under “Header fields” Table 1, “Header fields
in SQL/CLI diagnostics areas”, as well as zero (0) or more status records, each of which comprises the
fields specified under “Status record fields” Table 2, “Status record fields in SQL/CLI diagnostics areas”.

Table 1—Header fields in SQL/CLI diagnostics areas

Data typeField

CHARACTER VARYING (L1) 1DYNAMIC_FUNCTION

INTEGERDYNAMIC_FUNCTION_CODE

INTEGERMORE

INTEGERNUMBER

SMALLINTRETURNCODE

INTEGERROW_COUNT

INTEGERTRANSACTIONS_COMMITTED

INTEGERTRANSACTIONS_ROLLED_BACK

INTEGERTRANSACTION_ACTIVE

implementation-defined (IE017) data typeimplementation-defined (IE017)
header field

1Where L1 is an implementation-defined (IL035) integer not less than 254.

Table 2— Status record fields in SQL/CLI diagnostics areas

Data typeField

CHARACTER VARYING (L) 1CATALOG_NAME

CHARACTER VARYING (L1) 1CLASS_ORIGIN

CHARACTER VARYING (L) 1COLUMN_NAME

INTEGERCOLUMN_NUMBER

CHARACTER VARYING (L) 1CONDITION_IDENTIFIER

INTEGERCONDITION_NUMBER

10 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
4.4 Diagnostics areas in SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Data typeField

CHARACTER VARYING (L) 1CONNECTION_NAME

CHARACTER VARYING (L) 1CONSTRAINT_CATALOG

CHARACTER VARYING (L) 1CONSTRAINT_NAME

CHARACTER VARYING (L) 1CONSTRAINT_SCHEMA

CHARACTER VARYING (L) 1CURSOR_NAME

INTEGERMESSAGE_LENGTH

INTEGERMESSAGE_OCTET_LENGTH

CHARACTER VARYING (L1) 1MESSAGE_TEXT

INTEGERNATIVE_CODE

CHARACTER VARYING (L) 1PARAMETER_MODE

CHARACTER VARYING (L) 1PARAMETER_NAME

INTEGERPARAMETER_ORDINAL_POSITION

CHARACTER VARYING (L) 1ROUTINE_CATALOG

CHARACTER VARYING (L) 1ROUTINE_NAME

CHARACTER VARYING (L) 1ROUTINE_SCHEMA

INTEGERROW_NUMBER

CHARACTER VARYING (L) 1SCHEMA_NAME

CHARACTER VARYING (L) 1SERVER_NAME

CHARACTER (5)SQLSTATE

CHARACTER VARYING (L) 1SPECIFIC_NAME

CHARACTER VARYING (L1) 1SUBCLASS_ORIGIN

CHARACTER VARYING (L) 1TABLE_NAME

CHARACTER VARYING (L) 1TRIGGER_CATALOG

CHARACTER VARYING (L) 1TRIGGER_NAME

CHARACTER VARYING (L) 1TRIGGER_SCHEMA

© ISO/IEC 2023 – All rights reserved 11

ISO/IEC 9075-3:2023(E)
4.4 Diagnostics areas in SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Data typeField

implementation-defined (IE018) data typeimplementation-defined (IE018)
status field

1Where L is an implementation-defined (IL035) integer not less than 128 and L1 is an implementation-defined (IL035)
integer not less than 254.

All diagnostics area fields specified in other parts of the ISO/IEC 9075 series that are not included in this
table are not applicable to SQL/CLI.

4.4.2 Setting of ROW_NUMBER and COLUMN_NUMBER fields

Except where otherwise specified in this document, the ROW_NUMBER and COLUMN_NUMBER fields in
a status record are always 0 (zero).

4.5 Miscellaneous characteristics

4.5.1 Handles

The AllocHandle routine returns a handle that uniquely identifies the allocated resource. Although the
data type of a handle parameter is INTEGER, its value has no meaning in any other context and should
not be used as a numeric operand or modified in any way.

In general, if the related resource cannot be allocated, then a handle value of zero is returned. However,
even if a resource has been successfully allocated, processing of that resource can subsequently fail due
to memory constraints as follows:

— if additional memory is required but is not available, then an exception condition is raised: CLI-
specific condition—memory allocation error (HY001);

— if previously allocatedmemory cannot be accessed, then an exception condition is raised:CLI-specific
condition—memory management error (HY013).

NOTE 2—No diagnostic information is generated in this case.

The validity of a handle in a compilation unit other than the one in which the identified resource was
allocated is implementation-defined (IA139).

Specifying (the address of) a valid handle as the output handle for an invocation of AllocHandle does not
have the effect of reinitializing the identified resource. Instead, a new resource is allocated and a new
handle value overwrites the old one.

4.5.2 Null-terminated strings

An input character string providedby the SQL/CLI applicationmaybe terminated by the implementation-
defined (IV030) null character that terminates C character strings. If this technique is used, the application
may set the associated length argument to either the length of the string excluding the null terminator
or to −3, indicating NULL TERMINATED.

If the NULL TERMINATION attribute for the SQL-environment is True, then all output character strings
returned by the SQL/CLI implementation are terminated by the implementation-defined (IV030) null
character that terminates C character strings. If the NULL TERMINATION attribute is False, then output
character strings are not null-terminated.

12 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
4.4 Diagnostics areas in SQL/CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4.5.3 Null pointers

If the programming language of the invoking SQL/CLI application supports pointers, then the SQL/CLI
applicationmayprovide a zero-valuedpointer, referred to as a null pointer, in the following circumstances.

— In lieu of an output argument that is to receive the length of a returned character string. This
indicates that the SQL/CLI application wishes to prohibit the return of this information.

— In lieu of other output arguments where specifically allowed by this document. This indicates that
the SQL/CLI application wishes to prohibit the return of this information.

— In lieu of input arguments where specifically allowed by this document. The semantics of such a
specification depend on the context.

If the SQL/CLI applicationprovides anull pointer in anyother circumstances, thenanexception condition
is raised: CLI-specific condition— invalid use of null pointer (HY009).

If the NULL TERMINATION attribute for the SQL-environment is False, then specifying a zero buffer size
for an output argument is equivalent to specifying a null pointer for that output argument.

4.5.4 Environment attributes

Environment attributes are associated with each allocated SQL-environment and affect the behavior of
CLI functions in that SQL-environment.

The GetEnvAttr routine enables the SQL/CLI application to determine the current value of a specific
attribute. For attributes thatmaybe set by theuser, the SetEnvAttr routine enables the SQL/CLI application
to set the value of a specific attribute. Attribute values may be set by the SQL/CLI application whenever
there are no SQL-connections allocated within the SQL-environment.

Table 15, “Codes used for environment attributes”, and Table 19, “Data types of attributes”, in
Subclause 6.18, “Other tables associated with CLI”, indicate for each attribute its name, code value, data
type, possible values, and whether the attribute may be set using SetEnvAttr.

The NULL TERMINATION attribute determines whether output character strings are null-terminated by
the SQL/CLI implementation. The attribute is set to Truewhen an SQL-environment is allocated.

4.5.5 Connection attributes

Connection attributes are associated with each allocated SQL-connection and affect the behavior of CLI
functions operating in the context of that allocated SQL-connection.

The GetConnectAttr routine enables the SQL/CLI application to determine the current value of a specific
connection attribute. For connection attributes that may be set by the user, the SetConnectAttr routine
enables the SQL/CLI application to set the value of a specific connection attribute.

Table 16, “Codesused for connection attributes”, andTable 19, “Data types of attributes”, in Subclause6.18,
“Other tables associatedwith CLI”, indicate for each connection attribute its name, code value, data type,
possible values and whether the connection attribute may be set using SetConnectAttr.

The POPULATE IPD attribute determines whether the SQL/CLI implementation will populate the imple-
mentationparameter descriptorwith an itemdescriptor area for each<dynamic parameter specification>
when an SQL-statement is prepared or executed immediately. The POPULATE IPD attribute is automat-
ically set each time an SQL-connection is established for the allocated SQL-connection.

The SAVEPOINT NAME connection attribute specifies the savepoint to be referenced in an invocation of
the EndTran routine that uses the SAVEPOINT NAME ROLLBACK or SAVEPOINT NAME RELEASE Com-
pletionType, respectively. The SAVEPOINT NAME attribute is set to a zero-length string when the SQL-
connection is allocated.

© ISO/IEC 2023 – All rights reserved 13

ISO/IEC 9075-3:2023(E)
4.5 Miscellaneous characteristics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4.5.6 Statement attributes

Statement attributes are associated with each allocated SQL-statement and affect the processing of SQL-
statements under that allocated SQL-statement.

The GetStmtAttr routine enables the SQL/CLI application to determine the current value of a specific
statement attribute. For statement attributes thatmay be set by the user, the SetStmtAttr routine enables
the SQL/CLI application to set the value of a specific statement attribute.

Table 17, “Codes used for statement attributes”, andTable 19, “Data types of attributes”, in Subclause 6.18,
“Other tables associated with CLI”, indicate for each statement attribute its name, code value, data type,
possible values, and whether the statement attribute may be set by using SetStmtAttr.

The APD HANDLE statement attribute is the value of the handle of the current application parameter
descriptor for the allocated SQL-statement. The statement attribute is set to the value of the handle of
the automatically allocated application parameter descriptor when the SQL-statement is allocated.

TheARDHANDLE statement attribute is the value of the handle of the current application rowdescriptor
for the allocated SQL-statement. The statement attribute is set to the value of the handle of the automat-
ically allocated application row descriptor when the SQL-statement is allocated.

The IPDHANDLEstatement attribute is thevalueof thehandleof the implementationparameterdescriptor
associated with the allocated SQL-statement. The statement attribute is set to the value of the handle of
the automatically allocated implementation parameter descriptor when the SQL-statement is allocated.

The IRD HANDLE statement attribute is the value of the handle of the implementation row descriptor
associated with the allocated SQL-statement. The statement attribute is set to the value of the handle of
the automatically allocated implementation row descriptor when the SQL-statement is allocated.

The CURSOR SCROLLABLE statement attribute determines the scrollability of the CLI prepared cursor
implicitly declaredwhenExecute or ExecDirect are invoked. The statement attribute is set toNONSCROL-
LABLE when the SQL-statement is allocated.

The CURSOR SENSITIVITY statement attribute determines the sensitivity to changes of the CLI prepared
cursor implicitly declared when Execute or ExecDirect are invoked. The statement attribute is set to
ASENSITIVE when the SQL-statement is allocated.

The CURSOR HOLDABLE statement attribute determines the holdability of the CLI prepared cursor
implicitly declaredwhen Execute or ExecDirect are invoked. The statement attribute is set to HOLDABLE
or NONHOLDABLE when the statement is allocated, depending on the values of the CURSOR COMMIT
BEHAVIOR item used by the GetInfo routine.

Whether or not a CLI cursor is returnable is implementation-defined (IA140).

The statement attribute CURRENT OF POSITION identifies the row in the rowset to which a positioned
update or delete operation applies. This is set to 1 (one) when an SQL-statement is initially allocated. It
is reset to 1 (one) whenever Fetch or FetchScroll are successfully executed when the ARRAY_SIZE is 1
(one) or the cursor is scrollable; otherwise, it is set to an implementation-defined (IA161) value indicating
the current row within the rowset.

The NEST DESCRIPTOR statement attribute determines whether nested descriptor items are permitted
in a CLI descriptor. Nested descriptor items are used to describe ROW, ARRAY, andMULTISET data types.
The statement attribute is set to FALSE when the SQL-statement is allocated.

4.5.7 CLI descriptor areas

A CLI descriptor area provides an interface for a description of <dynamic parameter specification>s,
<dynamicparameter specification>values, result columnsof <dynamic select statement>s and<dynamic
select statement>s, or <target specification>s for the result columns.

14 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
4.5 Miscellaneous characteristics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Each descriptor area comprises header fields and zero or more item descriptor areas. The header fields
are specified inTable 5, “Fields in SQL/CLI rowandparameter descriptor areas”. Theheaderfields include
a COUNTfield that indicates the number of itemdescriptor areas and an ALLOC_TYPE field that indicates
whether the CLI descriptor area was allocated by the user or automatically allocated by the SQL/CLI
implementation.

The header fields include ARRAY_SIZE, ARRAY_STATUS_POINTER, and ROWS_PROCESSED_POINTER.
These three fields are used to support the fetching of multiple rows with one invocation of Fetch or
FetchScroll.

Each CLI item descriptor area consists of the fields specified following “Status record fields” in Table 5,
“Fields in SQL/CLI row and parameter descriptor areas”.

The CLI descriptor areas for the four interface types are referred to as an implementation parameter
descriptor (IPD), an application parameter descriptor (APD), an implementation row descriptor (IRD), and
an application rowdescriptor (ARD), respectively. IPDs and IRDs are collectively knownas implementation
descriptor areas; APDs and ARDs are collectively known as application descriptor areas.

When an SQL-statement is allocated, a CLI descriptor area of each type is automatically allocated by the
SQL/CLI implementation. The ALLOC_TYPE fields for these CLI descriptor areas are set to indicate
AUTOMATIC. A CLI descriptor area allocated by the user has its ALLOC_TYPE field set to indicate USER,
and can only be used as an APD or ARD. The handle values of the IPD, IRD, current APD, and current ARD
are attributes of the allocated SQL-statement. The SQL/CLI application can determine the current values
of these attributes by using the routine GetStmtAttr. The current APD and ARD are initially the automat-
ically-allocatedAPDandARD, respectively, but can subsequently be changedby changing the correspond-
ing attribute value using the routine SetStmtAttr.

The routines GetDescField and GetDescRec enable information to be retrieved from a specified CLI
descriptor area. The routines SetDescField and SetDescRec enable information to be set in specified CLI
descriptor areas except an IRD. The routine BindCol implicitly sets information in the current ARD. The
routine BindParameter implicitly sets information in the current APD and the current IPD. The CopyDesc
routine enables the contents of any CLI descriptor area to be copied to specified CLI descriptor areas
except an IRD.

NOTE 3—Although there is no need to set a DATA_POINTERfield in the IPD to alignwith the consistency check that applies
in the case of an APD or ARD, setting this field causes the item descriptor area to be validated.

4.5.8 Obtaining diagnostics during multi-row fetch

When Fetch or FetchScroll is used to fetch a rowset, exceptions or warnings may be raised during the
retrieval of one or more rows in the rowset. The status of each row (that is, information about whether
that row in the rowset was successfully retrieved or not) is available in the array addressed by the
ARRAY_STATUS_POINTER field of the applicable IRD. The cardinality of this array is the same as the
ARRAY_SIZE field of the corresponding ARD. For each row in the rowset, the corresponding element of
this array has one of the following values, which are defined in Table 25, “Multi-row fetch status codes”.

— A value of 0 (zero) indicates Row success, meaning that the row was fetched successfully.

— Avalueof 6 indicatesRowsuccesswith information,meaning that the rowwas fetched successfully,
but a completion condition was raised:warning (01000).

— A value of 3 indicates No row, meaning that there is no row at this position in the rowset. This
condition occurs when a partial rowset is retrieved because the result set ended.

— A value of 5 indicates Row error, meaning that the row was not fetched successfully and an
exception condition was raised.

EachRowsuccesswith informationorRowErrorgeneratesoneormore status records in thediagnostics
area. The ROW_NUMBER field for each status record has the value of the row position within the rowset
to which this status record corresponds.

© ISO/IEC 2023 – All rights reserved 15

ISO/IEC 9075-3:2023(E)
4.5 Miscellaneous characteristics

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4.6 SQL-invoked routines
This Subclause modifies Subclause 4.35, “SQL-invoked routines”, in ISO/IEC 9075-2.

4.6.1 Result sets returned by SQL-invoked procedures

This Subclause modifies Subclause 4.35.6, “Result sets returned by SQL-invoked procedures”, in ISO/IEC
9075-2.

Insert into the 7th paragraph, after the last list item:

— The current rowset, consisting of a contiguous subsequence of the sequence of rows. The current
rowsetmaybeanempty subsequence locatedbefore a specific row, or anempty subsequence located
after the last row of the sequence of rows.

NOTE 4— The position of the result set is a position within the current rowset of the result set, as indicated by the
SQL-statement attribute CURRENT OF POSITION. If the value of this attribute does not indicate a row of the result
set, then there is no current row.

4.7 Cursors
This Subclause modifies Subclause 4.40, “Cursors”, in ISO/IEC 9075-2.

4.7.1 General description of cursors

This Subclause modifies Subclause 4.40.1, “General description of cursors”, in ISO/IEC 9075-2.

Insert after the 3rd paragraph: A CLI cursor is a cursor created by the SQL/CLI implementation and
associated with an allocated SQL-statement. If the allocated SQL-statement is processing a <dynamic
select statement> or a <dynamic single row select statement>, then the CLI cursor is aCLI prepared cursor.
If the CLI cursor is processing a result set returned by an SQL-invoked procedure, then the CLI cursor is
a CLI procedural result cursor.

Insert into the 5th paragraph, in the 1st list item, after the last list item:

— CLI procedural result.

Insert into the 5th paragraph, in the 3rd list item, after the 2nd list item:

— If the cursor is a CLI cursor, then a <cursor name>.

Insert into the 5th paragraph, in the 4th list item, after the 5th list item:

— If the cursor is a CLI cursor, then the allocated SQL-statement associated with the cursor.

4.8 Client-server operation
This Subclause modifies Subclause 4.47, “Client-server operation”, in ISO/IEC 9075-2.

Insert after the 4th paragraph: If the execution of a CLI routine causes the implicit or explicit execution
of an<SQLprocedure statement>byanSQL-server, diagnostic information is passed in an implementation-
dependent (UW010)manner to the SQL-client and then into the appropriate diagnostics area. The effect
on diagnostic information of incompatibilities between the character repertoires supported by the SQL-
client and the SQL-server is implementation-dependent (UA051).

16 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
4.6 SQL-invoked routines

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

5 Lexical elements

This Clause modifies Clause 5, “Lexical elements”, in ISO/IEC 9075-2.

5.1 <token> and <separator>
This Subclause modifies Subclause 5.2, “<token> and <separator>”, in ISO/IEC 9075-2.

Function

Specify lexical units (tokens and separators) that participate in SQL language.

Format
<reserved word> ::=

!! All alternatives from ISO/IEC 9075-2

<non-reserved word> ::=
!! All alternatives from ISO/IEC 9075-2

Syntax Rules

No additional Syntax Rules.

Access Rules

No additional Access Rules.

General Rules

No additional General Rules.

Conformance Rules

No additional Conformance Rules.

© ISO/IEC 2023 – All rights reserved 17

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6 Call-Level Interface specifications

This Clause is modified by Clause 18, “Call-Level Interface specifications”, in ISO/IEC 9075-9.
This Clause is modified by Clause 19, “Call-Level Interface specifications”, in ISO/IEC 9075-14.
This Clause is modified by Clause 17, “Call-Level Interface specifications”, in ISO/IEC 9075-15.

6.1 <CLI routine>
This Subclause is modified by Subclause 18.1, “<CLI routine>”, in ISO/IEC 9075-9.

Function

Describe SQL/CLI routines in a generic fashion.

Format
09 <CLI routine> ::=
<CLI routine name> <CLI parameter list> [<CLI returns clause>]

<CLI routine name> ::=
<CLI name prefix> <CLI generic name>

<CLI name prefix> ::=
<CLI by-reference prefix>

| <CLI by-value prefix>

<CLI by-reference prefix> ::=
SQLR

<CLI by-value prefix> ::=
SQL

<CLI generic name> ::=
AllocConnect

| AllocEnv
| AllocHandle
| AllocStmt
| BindCol
| BindParameter
| Cancel
| CloseCursor
| ColAttribute
| ColumnPrivileges
| Columns
| Connect
| CopyDesc
| DataSources
| DescribeCol
| Disconnect
| EndTran
| Error
| ExecDirect
| Execute
| Fetch
| FetchScroll

18 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

| ForeignKeys
| FreeConnect
| FreeEnv
| FreeHandle
| FreeStmt
| GetConnectAttr
| GetCursorName
| GetData
| GetDescField
| GetDescRec
| GetDiagField
| GetDiagRec
| GetEnvAttr
| GetFeatureInfo
| GetFunctions
| GetInfo
| GetLength
| GetParamData
| GetPosition
| GetSessionInfo
| GetStmtAttr
| GetSubString
| GetTypeInfo
| MoreResults
| NextResult
| NumResultCols
| ParamData
| Prepare
| PrimaryKeys
| PutData
| RowCount
| SetConnectAttr
| SetCursorName
| SetDescField
| SetDescRec
| SetEnvAttr
| SetStmtAttr
| SpecialColumns
| StartTran
| TablePrivileges
| Tables
| <implementation-defined CLI generic name>

<CLI parameter list> ::=
<left paren> <CLI parameter declaration>
 [{ <comma> <CLI parameter declaration> }...] <right paren>

<CLI parameter declaration> ::=
<CLI parameter name> <CLI parameter mode> <CLI parameter data type>

<CLI parameter name> ::=
!! See the Syntax Rules.

<CLI parameter mode> ::=
IN

| OUT
| DEFIN
| DEFOUT
| DEF

<CLI parameter data type> ::=
INTEGER

| SMALLINT

© ISO/IEC 2023 – All rights reserved 19

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

| ANY
| CHARACTER <left paren> <length> <right paren>

<CLI returns clause> ::=
RETURNS SMALLINT

<implementation-defined CLI generic name> ::=
!! See the Syntax Rules.

Syntax Rules

1) <CLI routine> is a pre-defined routine written in a programming language that is invoked by a
compilation unit of the same programming language. Let HL be that programming language.

2) <CLI routine> that contains a <CLI returns clause> is called a CLI function. A <CLI routine> that does
not contain a <CLI returns clause> is called a CLI procedure.

3) There shall be no <separator> between the <CLI name prefix> and the <CLI generic name>.

4) A <CLI parameter name> shall be a parameter name in the Definition section of the Subclause in
Clause 7, “SQL/CLI routines”, whose name is the <CLI generic name> of the <CLI routine name> of
the containing <CLI routine>.

5) For each CLI function CF, there is a corresponding CLI procedure CP, with the same <CLI routine
name>. The <CLI parameter list> for CP is the same as the <CLI parameter list> for CF but with the
following additional <CLI parameter declaration>:

ReturnCode OUT SMALLINT

6) HL shall support either the invocation of CF or the invocation of CP. It is implementation-defined
(IA178) which is supported.

7) Case:

a) If <CLI parameter mode> is IN, then the parameter is an input parameter. The value of an
input argument is established when a CLI routine is invoked.

b) If <CLI parameter mode> is OUT, then the parameter is an output parameter. The value of an
output argument is established when a CLI routine is executed.

c) If <CLI parameter mode> is DEFIN, then the parameter is a deferred input parameter. The
value of a deferred input argument for a CLI routine R is not established when R is invoked,
but subsequently during the execution of a related CLI routine.

d) If <CLI parameter mode> is DEFOUT, then the parameter is a deferred output parameter. The
value of a deferred output argument for a CLI routine R is not established by the execution of
R but subsequently by the execution of a related CLI routine.

e) If <CLI parameter mode> is DEF, then the parameter is a deferred parameter. The value of a
deferred argument for a CLI routineR is not establishedby the execution ofRbut subsequently
by the execution of a related CLI routine.

8) The value of an output, deferred output, deferred input, or deferred parameter is an address. It is
either a non-pointer host variable passed by reference or a pointer host variable passed by value.

9) Aby-value versionof a CLI routine is a version that expects eachof its non-character input parameters
to be provided as actual values. A by-reference version of a CLI routine is a version that expects each
of its input parameters to be provided as an address. By-value and by-reference versions of the CLI
routines shall be supported according toTable 3, “Supported calling conventions of SQL/CLI routines
by language”, for each of the languages identified in the first column of that table.

20 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Table 3— Supported calling conventions of SQL/CLI routines by language

By-referenceBy-valueLanguage

RequiredOptionalAda (ISO/IEC 8652:2012)

OptionalRequiredC (ISO/IEC 9899:2018)

RequiredOptionalCOBOL (ISO 1989:2014)

RequiredNot supportedFortran (ISO/IEC 1539-1:2018 and ISO/IEC 1539-2:2000)

RequiredOptionalM (ISO/IEC 11756:1999)

RequiredOptionalPascal (ISO 7185:1990 and ISO/IEC 10206:1991)

RequiredOptionalPL/I (ISO 6160:1979)

10) If a <CLI routine> is a by-reference routine, then its <CLI routine name> shall contain a <CLI by-
reference prefix>. Otherwise, its <CLI routine name> shall contain a <CLI by-value prefix>.

11) The <implementation-defined CLI generic name> for an implementation-defined (IV034) CLI
function shall be different from the <CLI generic name> of any other CLI function. The <implement-
ation-defined CLI generic name> for an implementation-defined (IV034) CLI procedure shall be
different from the <CLI generic name> of any other CLI procedure.

12) Every <CLI routine name> that cannot be used by an SQL/CLI implementation because of its length
or because it ismade identical to someother <CLI routinename>by truncation is effectively replaced
with an abbreviated name according to the following rules:

a) Any <CLI by-value prefix> remains unchanged.

b) Any <CLI by-reference prefix> is replaced by SQR.

c) The <CLI generic name> is replaced by an abbreviated version according to Table 4, “Abbre-
viated SQL/CLI generic names”.

Table 4— Abbreviated SQL/CLI generic names

AbbreviationGeneric Name

ACAllocConnect

AEAllocEnv

AHAllocHandle

ASAllocStmt

BCBindCol

BPBindParameter

CANCancel

CCCloseCursor

© ISO/IEC 2023 – All rights reserved 21

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

AbbreviationGeneric Name

COColAttribute

CPColumnPrivileges

COLColumns

CONConnect

CDCopyDesc

DSDataSources

DCDescribeCol

DISDisconnect

ETEndTran

ERError

EDExecDirect

EXExecute

FTFetch

FTSFetchScroll

FKForeignKeys

FCFreeConnect

FEFreeEnv

FHFreeHandle

FSFreeStmt

GCAGetConnectAttr

GCNGetCursorName

GDAGetData

GDFGetDescField

GDRGetDescRec

GXFGetDiagField

GXRGetDiagRec

GEAGetEnvAttr

GFIGetFeatureInfo

22 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

AbbreviationGeneric Name

GFUGetFunctions

GIGetInfo

GLNGetLength

GPDGetParamData

GPOGetPosition

GSIGetSessionInfo

GSAGetStmtAttr

GSBGetSubString

GTIGetTypeInfo

MRMoreResults

NRNextResult

NRCNumResultCols

PRDParamData

PRPrepare

PKPrimaryKeys

PTDPutData

RCRowCount

SCASetConnectAttr

SCNSetCursorName

SDFSetDescField

SDRSetDescRec

SEASetEnvAttr

SSASetStmtAttr

SCSpecialColumns

STNStartTran

TPTablePrivileges

TABTables

© ISO/IEC 2023 – All rights reserved 23

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

AbbreviationGeneric Name

implementation-defined (IV034) abbreviationimplementation-
defined (IV034) CLI
routine

13) Let CR be a <CLI routine> and letRN be its <CLI routine name>. LetRNU be the value of UPPER(RN).

Case:

a) IfHL supports case sensitive routine names, then the name used for the invocation of CR shall
be RN.

b) IfHLdoesnot support <simple Latin lower-case letter>s, then thenameused for the invocation
of CR shall be RNU.

c) If HL does not support case sensitive routine names, then the name used for the invocation
of CR shall be RN or RNU.

14) Letoperative data type correspondence tablebe thedata type correspondence table forHLas specified
in Subclause 6.19, “SQL/CLI data type correspondences”. Refer to the two columns of the operative
data type correspondence table as the “SQL data type column” and the “host data type column”.

15) Let TI, TS, TC, and TV be the types listed in the host data type column for the rows that contains
INTEGER, SMALLINT, CHARACTER(L) and CHARACTER VARYING(L), respectively, in the SQL data
type column.

a) If TS is “None”, then let TS = TI.

b) If TC is “None”, then let TC = TV.

c) For each parameter P,

Case:

i) If theCLI parameter data type is INTEGER, then the typeof the corresponding argument
shall be TI.

ii) If the CLI parameter data type is SMALLINT, then the type of the corresponding argu-
ment shall be TS.

iii) If the CLI parameter data type is CHARACTER(L), then the type of the corresponding
argument shall be TC.

iv) If the CLI parameter data type is ANY, then

Case:

1) If HL is C, then the type of the corresponding argument shall be “void *”.

2) Otherwise, the type of the corresponding argument shall be a type (other than
“None”) listed in the host data type column.

d) If the CLI routine is a CLI function, then the type of the returned value is TS.

Access Rules

None.

24 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

General Rules

1) The rules for invocation of a <CLI routine> are specified in Subclause 6.2, “<CLI routine> invocation”.

Conformance Rules

1) Without Feature C001, “CLI routine invocation in Ada”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in Ada.

2) Without Feature C002, “CLI routine invocation in C”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in C.

3) Without Feature C003, “CLI routine invocation in COBOL ”, a conforming SQL/CLI application shall
not contain an invocation of a <CLI routine> written in COBOL.

4) Without Feature C004, “CLI routine invocation in Fortran”, a conforming SQL/CLI application shall
not contain an invocation of a <CLI routine> written in Fortran.

5) Without Feature C005, “CLI routine invocation inMUMPS ”, a conforming SQL/CLI application shall
not contain an invocation of a <CLI routine> written in M.

6) Without Feature C006, “CLI routine invocation in Pascal”, a conforming SQL/CLI application shall
not contain an invocation of a <CLI routine> written in Pascal.

7) Without Feature C007, “CLI routine invocation in PL/I”, a conforming SQL/CLI application shall not
contain an invocation of a <CLI routine> written in PL/I.

© ISO/IEC 2023 – All rights reserved 25

ISO/IEC 9075-3:2023(E)
6.1 <CLI routine>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.2 <CLI routine> invocation

Function

Specify the rules for invocation of a <CLI routine>.

Format

No additional Format items.

Syntax Rules

1) Let HL be the programming language of the invoking host program.

2) A CLI function or CLI procedure is invoked by the HLmechanism for invoking functions or proced-
ures, respectively.

3) Let RNM be the <CLI routine name> of the <CLI routine> invoked by the host program and let RN
be the SQL/CLI routine identified by RNM. The number of arguments provided in the invocation
shall be the same as the number of <CLI parameter declaration>s for RN.

4) Let DA be the data type of the i-th argument in the invocation and let DP be the <CLI parameter
data type> of the i-th <CLI parameter declaration> of RN. DA shall be the HL equivalent of DP as
specified by the rules of Subclause 6.1, “<CLI routine>”.

Access Rules

None.

General Rules

1) If the value of any input argument provided by the host program is not a value of the data type of
the parameter, or if the value of any output argument resulting from the execution of the <CLI
routine> is not a value supported by the SQL/CLI application for that parameter, then the effect is
implementation-defined (IA179).

2) Let GRN be the <CLI generic name> of RN.

3) When the <CLI routine> is called by the SQL/CLI application:

a) The values of all input arguments to RN are established.

b) Case:

i) If RN is a CLI routine with a statement handle as an input parameter, RN has no
accompanying handle type parameter, and GRN is not Error, then:

1) If the statement handle does not identify an allocated SQL-statement, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).
Otherwise, let Sbe the allocatedSQL-statement identifiedby the statementhandle.

2) If GRN is not Cancel, then the diagnostics area associated with S is emptied.

3) Let C be the allocated SQL-connection with which S is associated.

26 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.2 <CLI routine> invocation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4) If there is no established SQL-connection associated with C, then an exception
condition is raised: connection exception— connection does not exist (08003).
Otherwise, let EC be the established SQL-connection associated with C.

5) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3,
“Implicit set connection”, are applied with EC as dormant SQL-connection.

6) If GRN is neither Cancel nor ParamData nor PutData and there is a deferred
parameter number associated with S, then an exception condition is raised: CLI-
specific condition— function sequence error (HY010).

7) RN is invoked.

ii) If RN is a CLI routine with a descriptor handle as an input parameter and RN has no
accompanying handle type parameter and GRN is not CopyDesc, then:

1) If the descriptor handle does not identify an allocated CLI descriptor area, then
an exception condition is raised:CLI-specific condition— invalid handle (HYHHH).
Otherwise, let D be the allocated CLI descriptor area identified by the descriptor
handle.

2) The diagnostics area associated with D is emptied.

3) Let C be the allocated SQL-connection with which D is associated.

4) If there is no established SQL-connection associated with C, then an exception
condition is raised: connection exception— connection does not exist (08003).
Otherwise, let EC be the established SQL-connection associated with C.

5) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3,
“Implicit set connection”, are applied with EC as dormant SQL-connection.

6) RN is invoked.

iii) Otherwise, RN is invoked.

4) Case:

a) If RN is a CLI function, then:

i) The values of all output arguments are established.

ii) Let RC be the return value.

b) If RN is a CLI procedure, then:

i) The values of all output arguments are established except for the argument associated
with the ReturnCode parameter.

ii) Let RC be the argument associated with the ReturnCode parameter.

5) Case:

a) If RN did not complete execution because it requires more input data, then:

i) RC is set to indicate Data needed.

ii) An exception condition is raised: CLI-specific condition— dynamic parameter value
needed (HYHHG).

b) If RN executed successfully, then:

© ISO/IEC 2023 – All rights reserved 27

ISO/IEC 9075-3:2023(E)
6.2 <CLI routine> invocation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Either a completion condition is raised: successful completion (00000), or a completion
condition is raised:warning (01000), or a completion condition is raised: no data
(02000).

i)

ii) Case:

1) If a completion condition is raised: successful completion (00000), then RC is set
to indicate Success.

2) If a completion condition is raised:warning (01000), then RC is set to indicate
Success with information.

3) If a completion condition is raised: no data (02000), then RC is set to indicate No
data found.

c) If RN did not execute successfully, then:

i) All changes made to SQL-data or schemas by the execution of RN are canceled.

ii) One or more exception conditions are raised as determined by the General Rules of
this and other Subclauses of this document or by implementation-defined (IA180)
rules.

iii) Case:

1) If anexceptioncondition is raised:CLI-specific condition—invalidhandle (HYHHH),
then RC is set to indicate Invalid handle.

2) Otherwise, RC is set to indicate Error.

6) Case:

a) If GRN is neither Error nor GetDiagField nor GetDiagRec, and RC indicates neither Invalid
handle nor Data needed, then diagnostic information resulting from the execution of RN is
placed into the appropriate diagnostics area as specified in Subclause 4.3, “Return codes”, and
Subclause 4.4, “Diagnostics areas in SQL/CLI”.

b) Otherwise, no diagnostics area is updated.

Conformance Rules

None.

28 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.2 <CLI routine> invocation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.3 Implicit set connection

Function

Specify the rules for an implicit SET CONNECTION statement.

Subclause Signature

“Implicit set connection” [General Rules] (
 Parameter: “dormant SQL-connection”
)

dormant SQL-connection— an existing SQL-connection.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let DC be the dormant SQL-connection in an application of the General Rules of this Subclause.

2) If an SQL-transaction is active for the current SQL-connectionand support for FeatureC008, “Multiple
server transactions in CLI” is not provided, then an exception condition is raised: feature not sup-
ported—multiple server transactions (0A001).

3) If DC cannot be selected, then an exception condition is raised: connection exception— connection
failure (08006).

4) The current SQL-connection CC and current SQL-session become a dormant SQL-connection and a
dormant SQL-session, respectively. The SQL-session context for CC is preserved and is not affected
in any way by operations performed over the selected SQL-connection.

NOTE 5— The SQL-session context is defined in Subclause 4.45, “SQL-sessions”, in ISO/IEC 9075-2.

5) DCbecomes the current SQL-connectionand theSQL-sessionassociatedwithDCbecomes the current
SQL-session. The SQL-session context is restored to the same state as at the timeDCbecamedormant.

NOTE 6— The SQL-session context information is defined in Subclause 4.45, “SQL-sessions”, in ISO/IEC 9075-2.

6) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is set
to that of the current SQL-connection.

7) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

No additional Conformance Rules.

© ISO/IEC 2023 – All rights reserved 29

ISO/IEC 9075-3:2023(E)
6.3 Implicit set connection

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.4 Preparing a statement

Function

Prepare a statement.

Subclause Signature

“Preparing a statement” [General Rules] (
 Parameter: “ALLOCATED STATEMENT”,
 Parameter: “TEXT LENGTH”,
 Parameter: “STATEMENT TEXT”,
 Parameter: “INVOKER”
)

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

TEXT LENGTH— the length of STATEMENT TEXT, or the NULL TERMINATED indication (-3).

STATEMENT TEXT— the text of an SQL-statement to be prepared for execution.

INVOKER—acharacter string identifying the Subclause that invoked this Subclause (e.g., 'ExecDirect',
'Prepare', or 'ParamData').

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let S be the ALLOCATED STATEMENT, let TL be the TEXT LENGTH, let ST be the STATEMENT TEXT,
and let INV be the INVOKER in an application of the General Rules of this Subclause.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Case:

a) If TL is not negative, then let L be TL.

b) If TL indicates NULL TERMINATED, then let L be the number of octets of ST that precede the
implementation-defined (IV030) null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

4) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition— invalid string length
or buffer length (HY090).

30 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.4 Preparing a statement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) Otherwise, let P be the first L octets of ST.

5) If P is a <preparable dynamic delete statement: positioned> or a <preparable dynamic update
statement: positioned>, then let CN be the cursor name referenced by P. Let C be the allocated SQL-
connectionwithwhich S is associated. If CN is not the name of a CLI cursor associatedwith another
allocated SQL-statement associated with C, then an exception condition is raised: invalid cursor
name (34000).

6) If at least one of the following is true, then an exception condition is raised: syntax error or access
rule violation (42000).

a) P does not conform to the Format, Syntax Rules or Access Rules for a <preparable statement>
or P is a <start transaction statement>, a <commit statement>, a <rollback statement>, or a
<release savepoint statement>.

NOTE 7— See Table 39, “SQL-statement codes”, in ISO/IEC 9075-2 for the list of <preparable statement>s.
Some other parts of the ISO/IEC 9075 series have corresponding tables that define additional codes repres-
enting statements defined by those parts of ISO/IEC 9075.

b) P contains a <simple comment>.

c) P contains a <dynamic parameter specification> whose data type is undefined as determined
by the rules specified in Subclause 20.7, “<prepare statement>”, in ISO/IEC 9075-2.

7) Thedata type of every <dynamic parameter specification> contained inP is determinedby the rules
specified in Subclause 20.7, “<prepare statement>”, in ISO/IEC 9075-2.

8) Let DTGN be the default transform group name and TFL be the list of user-defined type
name—transform group name pairs used to identify the group of transform functions for every
user-defined type that is referenced in P. DTGN and TFL are not affected by the execution of a <set
transform group statement> after P is prepared.

9) The following objects associated with S are destroyed:

a) Every prepared statement.

b) The cursor declaration descriptor every cursor instance descriptor of every CLI cursor.

c) Every select source.

d) If INV is “Prepare”, then every executed statement.

If a cursor associated with S is destroyed, then so are all prepared statements that reference that
cursor.

10) P is prepared.

11) If INV is “Prepare”, then the prepared statement is associated with S.

12) If P is a <dynamic select statement> or a <dynamic single row select statement>, then P becomes
the select source associated with S.

13) TheGeneral Rules of Subclause6.9, “ImplicitDESCRIBEUSINGclause”, are appliedwith SS as SOURCE
and S as ALLOCATED STATEMENT.

14) The validity of a prepared statement in an SQL-transaction different from the one in which the
statement was prepared is implementation-defined (IA181).

15) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

© ISO/IEC 2023 – All rights reserved 31

ISO/IEC 9075-3:2023(E)
6.4 Preparing a statement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

32 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.4 Preparing a statement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.5 Executing a statement

Function

Execute a statement.

Subclause Signature

“Executing a statement” [General Rules] (
 Parameter: “ALLOCATED STATEMENT”,
 Parameter: “PREPARED STATEMENT”,
 Parameter: “INVOKER”
)

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

PREPARED STATEMENT— an SQL-statement that has been prepared for dynamic execution.

INVOKER—acharacter string identifying the Subclause that invoked this Subclause (e.g., 'ExecDirect',
'Prepare', or 'ParamData').

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let S be the ALLOCATED STATEMENT, let P be the PREPARED STATEMENT, and let INV be the
INVOKER in an application of the General Rules of this Subclause.

2) P is executed as follows.

Case:

a) If P is a <dynamic select statement> or a <dynamic single row select statement>, then the
General Rules of Subclause 6.6, “Implicit CLI prepared cursor”, are applied with P as SELECT
SOURCE, S as ALLOCATED STATEMENT, and INV as INVOKER

b) Otherwise:

i) If INV is not “ParamData”, then General Rules of Subclause 6.10, “Implicit EXECUTE
USING and OPEN USING clauses”, are applied with EXECUTE as TYPE, P as SOURCE,
and S as ALLOCATED STATEMENT.

NOTE8—When this Subclause is invoked fromParamData, Subclause6.10, “Implicit EXECUTEUSING
and OPEN USING clauses”, must have been previously invoked.

ii) Case:

1) If P is a <preparable dynamic delete statement: positioned>, then:

© ISO/IEC 2023 – All rights reserved 33

ISO/IEC 9075-3:2023(E)
6.5 Executing a statement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Let CR be the cursor referenced by P and let SCR be the allocated SQL-
statement associated with CR.

A)

B) LetTTbe the implicit or explicit <target table> ofP, as definedby the Syntax
Rules for <preparable dynamic delete statement: positioned>.

C) The General Rules of Subclause 15.6, “Effect of a positioned delete”, in
ISO/IEC 9075-2, are applied with CR as CURSOR, P as STATEMENT, and TT
as TARGET. For the purposes of the application of these Rules, the row in
CR identified by SCR’s CURRENT OF POSITION statement attribute is the
current row of CR.

D) If the execution of P deleted the current row of CR, then the effect on the
fetched row, if any, associatedwith SCR is implementation-defined (IA182).

2) If P is a <preparable dynamic update statement: positioned>, then:

A) Let CR be the cursor referenced by P and let SCR be the allocated SQL-
statement associated with CR.

B) Let SCL be the <set clause list> contained in P.

C) LetTTbe the implicit or explicit <target table> ofP, as definedby the Syntax
Rules for <preparable dynamic update statement: positioned>.

D) The General Rules of Subclause 15.7, “Effect of a positioned update”, in
ISO/IEC 9075-2, are applied with CR as CURSOR, SCL as SET CLAUSE LIST,
P as STATEMENT, and TT as TARGET. For the purposes of the application
of these Rules, the row in CR identified by SCR’s CURRENT OF POSITION
statement attribute is the current row of CR.

E) If the execution of P updated the current row of CR, then the effect on the
fetched row, if any, associatedwith SCR is implementation-defined (IA183).

3) Otherwise, the results of the execution are the same as if the statement were
contained in an<externally-invokedprocedure>andexecuted; thesearedescribed
in Subclause 13.3, “<externally-invoked procedure>”, in ISO/IEC 9075-2.

iii) If P is a <call statement>, then:

1) The General Rules of Subclause 6.11, “Implicit CALL USING clause”, are applied
with P as SOURCE and S as ALLOCATED STATEMENT.

2) If the result set sequence RSS of the SQL-invoked procedure that was invoked by
the <call statement> is non-empty, then the General Rules of Subclause 6.7,
“Implicit CLI procedural result cursor”, are applied with S as ALLOCATED
STATEMENT and RSS as RESULT SET SEQUENCE.

3) Let R be the value of the ROW_COUNT field from the diagnostics area associated with S.

4) R becomes the row count associated with S.

5) If P executed successfully, then every executed statement associated with S is destroyed and P
becomes the executed statement associated with S.

6) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

34 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.5 Executing a statement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.6 Implicit CLI prepared cursor

Function

Specify the cursor declaration descriptor and cursor instance descriptor of a CLI prepared cursor.

Subclause Signature

“Implicit CLI prepared cursor” [General Rules] (
 Parameter: “SELECT SOURCE”,
 Parameter: “ALLOCATED STATEMENT”,
 Parameter: “INVOKER”
)

SELECT SOURCE— the text of the declaration of a cursor that is to be dynamically opened.

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

INVOKER—acharacter string identifying the Subclause that invoked this Subclause (e.g., 'ExecDirect',
'Prepare', or 'ParamData').

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let SS be the SELECT SOURCE, let AS be the ALLOCATED STATEMENT, and let INV be the INVOKER
in an application of the General Rules of this Subclause.

2) If there is no CLI cursor associated with AS, then the General Rules of Subclause 6.8, “Initial CLI
cursor”, are applied with AS as ALLOCATED STATEMENT.

3) Let CID be the cursor instance descriptor of the cursor associatedwithAS, and let CDD be the cursor
declaration descriptor of CID.

4) The kind of cursor in CID is set to CLI prepared cursor.

5) The declared properties of the cursor declaration descriptor of CID are set as follows:

a) The cursor’s declared sensitivity is

Case:

i) If the value of the CURSOR SENSITIVITY attribute of AS is INSENSITIVE, then INSENS-
ITIVE.

ii) If the value of the CURSOR SENSITIVITY attribute of AS is SENSITIVE, then SENSITIVE.

iii) Otherwise, ASENSITIVE.

b) The cursor’s declared scrollability is

© ISO/IEC 2023 – All rights reserved 35

ISO/IEC 9075-3:2023(E)
6.6 Implicit CLI prepared cursor

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

i) If the value of the CURSOR SCROLLABLE attribute of AS is SCROLLABLE, then SCROLL.

ii) Otherwise, NO SCROLL.

c) The cursor’s declared holdability is

Case:

i) If the value of the CURSORHOLDABLE attribute of AS is HOLDABLE, thenWITHHOLD.

ii) Otherwise, WITHOUT HOLD.

d) The cursor’s declared returnability is implementation-defined (IV031).

6) If INV is not “ParamData”, then the General Rules of Subclause 6.10, “Implicit EXECUTE USING and
OPEN USING clauses”, are applied with OPEN as TYPE, SS as SOURCE, and AS as ALLOCATED
STATEMENT.

NOTE 9—When this Subclause is invoked from ParamData, Subclause 6.10, “Implicit EXECUTE USING and OPEN
USING clauses”, must have been previously invoked.

7) The General Rules of Subclause 8.1, “Effect of opening a cursor”, are applied with CID as CURSOR.
NOTE 10— In applying this Subclause, the values of <dynamic parameter specification>s are described by the
implementation parameter descriptor and application parameter descriptor of AS, as explained in Subclause 6.10,
“Implicit EXECUTE USING and OPEN USING clauses”.

8) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

36 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.6 Implicit CLI prepared cursor

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.7 Implicit CLI procedural result cursor

Function

Specify the cursor declarationdescriptor and cursor instancedescriptor of a CLI procedural result cursor.

Subclause Signature

“Implicit CLI procedural result cursor” [General Rules] (
 Parameter: “ALLOCATED STATEMENT”,
 Parameter: “RESULT SET SEQUENCE”
)

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

RESULT SET SEQUENCE— a descriptor for result set of a cursor.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let AS be the ALLOCATED STATEMENT and let RSS be the RESULT SET SEQUENCE in an application
of the General Rules of this Subclause.

2) If there is no CLI cursor associated with AS, then the General Rules of Subclause 6.8, “Initial CLI
cursor”, are applied with AS as ALLOCATED STATEMENT.

3) Let CID be the cursor instance descriptor of the cursor associatedwith AS and let CDD be the cursor
declaration descriptor of CID.

4) The kind of cursor in CID is set to CLI procedural result cursor.

5) If RSS is not empty, then the General Rules of Subclause 15.2, “Effect of receiving a result set”, in
ISO/IEC 9075-2, are applied with CID as CURSOR and RSS as RESULT SET SEQUENCE.

6) Let CS be the <cursor specification> in the result set descriptor of CID.

7) The General Rules of Subclause 6.9, “Implicit DESCRIBE USING clause”, are applied with CS as
SOURCE and AS as ALLOCATED STATEMENT.

8) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 37

ISO/IEC 9075-3:2023(E)
6.7 Implicit CLI procedural result cursor

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.8 Initial CLI cursor

Function

Create the initial cursor declaration descriptor and cursor instance descriptor of a CLI cursor.

Subclause Signature

“Initial CLI cursor” [General Rules] (
 Parameter: “ALLOCATED STATEMENT”
)

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let AS be the ALLOCATED STATEMENT in an application of the General Rules of this Subclause.

2) A cursor declaration descriptor CDD is created as follows:

a) The kind of cursor is undefined.

b) The provenance of the cursor is the SQL-session identifier of AS.

c) The name of the cursor is the cursor name property associated with AS.

d) The cursor’s origin is AS.

e) The cursor’s declared properties are undefined.

3) A cursor instance descriptor CID is created, as follows:

a) The cursor declaration descriptor is CDD.

b) The SQL-session identifier is the SQL-session identifier of AS.

c) The cursor’s state is closed.

4) CID is the CLI cursor associated with AS.

5) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

38 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.8 Initial CLI cursor

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.9 Implicit DESCRIBE USING clause
This Subclause is modified by Subclause 18.2, “Implicit DESCRIBE USING clause”, in ISO/IEC 9075-9.

Function

Specify the rules for an implicit DESCRIBE USING clause.

Subclause Signature

“Implicit DESCRIBE USING clause” [General Rules] (
 Parameter: “SOURCE”,
 Parameter: “ALLOCATED STATEMENT”
)

SOURCE—the source text of the SQL-statement that is to bedescribed in the SQL-statementdescriptor
identified by ALLOCATED STATEMENT.

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

General Rules

1) Let S be the SOURCE and let AS be the ALLOCATED STATEMENT in an application of the General
Rules of this Subclause.

2) Let IRD and IPD be the implementation row descriptor and implementation parameter descriptor,
respectively, associated with AS.

3) Let HL be the programming language of the invoking host program.

4) The value of DYNAMIC_FUNCTIONandDYNAMIC_FUNCTION_CODE in IRD and IPD are respectively
a character string representation of the prepared statement and a numeric code that identifies the
type of the prepared statement.

5) A representation of the column descriptors of the <select list> columns for the prepared statement
is stored in IRD as follows:

a) Case:

i) If there is a select source associated with AS, then:

1) Let TBL be the table defined by S and let D be the degree of TBL.

Case:

A) If the value of the statement attribute NEST DESCRIPTOR is True, then let
NSi, 1 (one) ≤ i ≤ D, be the number of subordinate descriptors of the
descriptor for the i-th column of T.

B) Otherwise, let NSi, 1 (one) ≤ i ≤ D, be 0 (zero).

2) TOP_LEVEL_COUNT is set toD. IfD is 0 (zero), then let TD be 0 (zero); otherwise,

let TD be . COUNT is set to TD.

3) Let SL be the collection of <select list> columns of TBL.

© ISO/IEC 2023 – All rights reserved 39

ISO/IEC 9075-3:2023(E)
6.9 Implicit DESCRIBE USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4) Case:

A) If some subset of SL is the primary key of TBL, then KEY_TYPE is set to 1
(one).

B) If some subset of SL is the preferred key of TBL, then KEY_TYPE is set to 2.

C) Otherwise, KEY_TYPE is set to 0 (zero).

ii) Otherwise:

1) Let D be 0 (zero). Let TD be 0 (zero).

2) KEY_TYPE is set to 0 (zero).

b) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor
areas are set so that the i-th item descriptor area contains the descriptor of the j-th column
of TBL such that:

i) The descriptor for the first such column is assigned to the first descriptor area.

ii) The descriptor for the j+1-th column is assigned to the i+NSj+1-th itemdescriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is True, then the implicitly
ordered subordinate descriptors for the j-th column are assigned to contiguous item
descriptor areas starting at the i+1-th item descriptor area.

c) Thedescriptor of a column consists of values for LEVEL, TYPE, NULLABLE,NAME,UNNAMED,
KEY_MEMBER, and other fields depending on the value of TYPE as described below. Those
fields andfields that arenot applicable for a particular value of TYPEare set to implementation-
dependent (UV041) values. The DATA_POINTER, INDICATOR_POINTER, and
OCTET_LENGTH_POINTER fields are not relevant in this case.

i) If the item descriptor area is set to a descriptor that is immediately subordinate to
anotherwhose LEVELvalue is somevalue k, then LEVEL is set to k+1; otherwise, LEVEL
is set to 0 (zero).

ii) TYPE is set to a code as shown in Table 6, “Codes used for implementation data types
in SQL/CLI”, indicating the data type of the column or subordinate descriptor.

iii) Case:

1) If the value of LEVEL is 0 (zero), then:

A) If the resulting column is possibly nullable, thenNULLABLE is set to 1 (one);
otherwise NULLABLE is set to 0 (zero).

B) If the column name is implementation-dependent, then NAME is set to the
implementation-dependent (UV042) name of the column and UNNAMED
is set to 1 (one); otherwise, NAME is set to the <derived column> name for
the column and UNNAMED is set to 0 (zero).

C) Case:

I) If a <select list> column C is a member of a primary or preferred key
of TBL, then KEY_MEMBER is set to 1 (one).

II) Otherwise, KEY_MEMBER is set to 0 (zero).

2) Otherwise:

A) NULLABLE is set to 1 (one).

40 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.9 Implicit DESCRIBE USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

B) Case:

I) If the item descriptor area describes a field of a row type, then

Case:

1) If the name of the field is implementation-dependent, then
NAME is set to the implementation-dependent (UV042) name
of the field and UNNAMED is set to 1 (one).

2) Otherwise, NAME is set to the name of the field andUNNAMED
is set to 0 (zero).

II) Otherwise, UNNAMED is set to 1 (one) and NAME is set to an imple-
mentation-dependent (UV042) value.

C) KEY_MEMBER is set to 0 (zero).

iv) Case:

1) If TYPE indicates a <character string type>, then LENGTH is set to the length or
maximum length in characters of the character string. OCTET_LENGTH is set to
themaximum possible length in octets of the character string. IfHL is C, then the
lengths specified in LENGTH and OCTET_LENGTH do not include the implemen-
tation-defined (IV030) null character that terminates a C character string.
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME are set to the <character set name> of the character string’s
character set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLA-
TION_NAME are set to the <collation name> of the character string’s collation.

2) If TYPE indicates a <binary string type>, then LENGTH and OCTET_LENGTH are
both set to the length or maximum length in octets of the binary string.

3) If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set
to the precision and scale of the exact numeric.

4) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the
precision of the approximate numeric.

5) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions
of the datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in
Table 8, “Codes associated with datetime data types in SQL/CLI”, to indicate the
specific datetime data type, and PRECISION is set to the <time precision> or
<timestamp precision> as applicable.

6) If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the
interval type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with <interval qualifier> in SQL/CLI”, to indicate the specific
<interval qualifier>, DATETIME_INTERVAL_PRECISION is set to the <interval
leading field precision>, and PRECISION is set to the <interval fractional seconds
precision>, if applicable.

7) If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length
in octets of the reference type, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, andSCOPE_NAMEare set to thequalifiednameof the reference-
able base table.

© ISO/IEC 2023 – All rights reserved 41

ISO/IEC 9075-3:2023(E)
6.9 Implicit DESCRIBE USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

8) If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, andSPECIFIC_TYPE_NAMEare set to the<user-defined
type name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set
to the CURRENT_TRANSFORM_GROUP_FOR_TYPE for the user-defined type.
USER_DEFINED_TYPE_CODE is set to a code as specified in Table 11, “Codes
associated with user-defined types in SQL/CLI”, to indicate the category of the
user-defined type.

9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) 09 If TYPE indicates ARRAY, then CARDINALITY is set to themaximum cardinality
of the array type.

6) Let C be the allocated SQL-connection with which AS is associated.

7) If POPULATE IPD for C is False, then no further rules of this Subclause are applied.

8) If POPULATE IPD for C is True, then a descriptor for the <dynamic parameter specification>s for
the prepared statement is stored in IPD as follows:

a) Let D be the number of <dynamic parameter specification>s in S.

Case:

i) If the value of the statement attribute NEST DESCRIPTOR is True, then let NSi,
1 (one) ≤ i ≤ D, be the number of subordinate descriptors of the descriptor for the i-th
input dynamic parameter.

ii) Otherwise, let NSi, 1 (one) ≤ i ≤ D, be 0 (zero).

b) TOP_LEVEL_COUNT is set to D. If D is 0 (zero), then let TD be 0 (zero); otherwise, let TD be

. COUNT is set to TD.

NOTE 11— The KEY_TYPE field is not relevant in this case.

c) If TD is zero, then no item descriptor areas are set. Otherwise, the first TD item descriptor
areas are set so that the i-th item descriptor area contains a descriptor of the j-th <dynamic
parameter specification> such that:

i) The descriptor for the first such <dynamic parameter specification> is assigned to the
first descriptor area.

ii) The descriptor for the j+1-th <dynamic parameter specification> is assigned to the
i+NSj+1-th item descriptor area.

iii) If the value of the statement attribute NEST DESCRIPTOR is True, then the implicitly
ordered subordinate descriptors for the j-th <dynamic parameter specification> are
assigned to contiguous itemdescriptor areas starting at the i+1-th itemdescriptor area.

d) The descriptor of a <dynamic parameter specification> consists of values for LEVEL, TYPE,
NULLABLE, NAME, UNNAMED, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION,
PARAMETER_SPECIFIC_CATALOG, PARAMETER_SPECIFIC_SCHEMA, PARAMETER_SPE-
CIFIC_NAME, andotherfieldsdependingon the valueof TYPEasdescribedbelow. Thosefields
and fields that are not applicable for a particular value of TYPE are set to implementation-
dependent (UV041) values. The DATA_POINTER, INDICATOR_POINTER,
OCTET_LENGTH_POINTER, RETURNED_CARDINALITY_POINTER, and KEY_MEMBER fields
are not relevant in this case.

42 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.9 Implicit DESCRIBE USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

i) If the item descriptor area is set to a descriptor that is immediately subordinate to
anotherwhose LEVELvalue is somevalue k, then LEVEL is set to k+1; otherwise, LEVEL
is set to 0 (zero).

ii) TYPE is set to a code as shown in Table 6, “Codes used for implementation data types
in SQL/CLI”, indicating the data type of the <dynamic parameter specification> or
subordinate descriptor.

iii) NULLABLE is set to 1 (one).
NOTE 12— This indicates that the <dynamic parameter specification> can have the null value.

iv) KEY_MEMBER is set to 0 (zero).

v) UNNAMED is set to 1 (one) andNAME is set to an implementation-dependent (UV042)
value.

vi) Case:

1) If TYPE indicates a <character string type>, then LENGTH is set to the length or
maximum length in characters of the character string. OCTET_LENGTH is set to
themaximum possible length in octets of the character string. IfHL is C, then the
lengths specified in LENGTH and OCTET_LENGTH do not include the implemen-
tation-defined (IV030) null character that terminates a C character string.
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME are set to the <character set name> of the character string’s
character set. COLLATION_CATALOG, COLLATION_SCHEMA, and COLLA-
TION_NAME are set to the <collation name> of the character string’s collation.

2) If TYPE indicates a <binary string type>, then LENGTH and OCTET_LENGTH are
both set to the length or maximum length in octets of the binary string.

3) If TYPE indicates an <exact numeric type>, then PRECISION and SCALE are set
to the precision and scale of the exact numeric.

4) If TYPE indicates an <approximate numeric type>, then PRECISION is set to the
precision of the approximate numeric.

5) If TYPE indicates a <datetime type>, then LENGTH is set to the length in positions
of the datetime type, DATETIME_INTERVAL_CODE is set to a code as specified in
Table 8, “Codes associated with datetime data types in SQL/CLI”, to indicate the
specific datetime data type, and PRECISION is set to the <time precision> or
<timestamp precision> as applicable.

6) If TYPE indicates INTERVAL, then LENGTH is set to the length in positions of the
interval type, DATETIME_INTERVAL_CODE is set to a code as specified in Table 9,
“Codes associated with <interval qualifier> in SQL/CLI”, to indicate the specific
<interval qualifier>, DATETIME_INTERVAL_PRECISION is set to the <interval
leading field precision>, and PRECISION is set to the <interval fractional seconds
precision>, if applicable.

7) If TYPE indicates REF, then LENGTH and OCTET_LENGTH are set to the length
in octets of the reference type, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the
<user-defined type name> of the <reference type>, and SCOPE_CATALOG,
SCOPE_SCHEMA, andSCOPE_NAMEare set to thequalifiednameof the reference-
able base table.

8) If TYPE indicates USER-DEFINED TYPE, then USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME are set to the

© ISO/IEC 2023 – All rights reserved 43

ISO/IEC 9075-3:2023(E)
6.9 Implicit DESCRIBE USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

<user-defined type name> of the user-defined type. SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, andSPECIFIC_TYPE_NAMEare set to the<user-defined
type name> of the user-defined type and CURRENT_TRANSFORM_GROUP is set
to the CURRENT_TRANSFORM_GROUP_FOR_TYPE <user-defined type name>.

9) If TYPE indicates ROW, then DEGREE is set to the degree of the row type.

10) 09 If TYPE indicates ARRAY, then CARDINALITY is set to themaximum cardinality
of the array type.

9) If LEVEL is 0 (zero) and the prepared statement being described is a <call statement>, then:

a) Let SR be the subject routine for the <routine invocation> of the <call statement>.

b) Let Dx be the x-th <dynamic parameter specification> simply contained in an SQL argument
Ay of the <call statement>.

c) Let Py be the y-th SQL parameter of SR.

NOTE 13—A Pwhose <parameter mode> is IN can be a <value expression> that contains zero, one, or more
<dynamic parameter specification>s. Thus:

— every Dxmaps to one and only one Py;

— several Dx instances can map to the same Py;

— there can be Py instances that have no Dx instances that map to them.

d) The PARAMETER_MODE value in the descriptor for each Dx is set to the value from Table 10,
“Codes associatedwith <parametermode> in SQL/CLI”, that indicates the <parametermode>
of Py.

e) The PARAMETER_ORDINAL_POSITION value in the descriptor for eachDx is set to the ordinal
position of Py.

f) ThePARAMETER_SPECIFIC_CATALOG,PARAMETER_SPECIFIC_SCHEMA,andPARAMETER_SPE-
CIFIC_NAME values in the descriptor for each Dx is set to the values that identify the catalog,
schema, and specific name of SR.

10) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

44 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.9 Implicit DESCRIBE USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.10 Implicit EXECUTE USING and OPEN USING clauses

Function

Specify the rules for an implicit EXECUTE USING clause and an implicit OPEN USING clause.

Subclause Signature

“Implicit EXECUTE USING and OPEN USING clauses” [General Rules] (
 Parameter: “TYPE”,
 Parameter: “SOURCE”,
 Parameter: “ALLOCATED STATEMENT”
)

TYPE— the kind of execution that is intended: 'OPEN' or 'EXECUTE'.

SOURCE—the source text of the SQL-statement that is to bedescribed in the SQL-statementdescriptor
identified by ALLOCATED STATEMENT.

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let T be the TYPE, let S be the SOURCE, and let AS be the ALLOCATED STATEMENT in an application
of the General Rules of this Subclause.

2) Let IPD, ARD, and APD be the current implementation parameter descriptor, current application
row descriptor, and current application parameter descriptor, respectively, for AS.

3) Let C be the allocated SQL-connection with which S is associated.

4) IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specifica-
tion> values, respectively, for the statement being executed. Let D be the number of <dynamic
parameter specification>s in S. Let NAPD be the value of COUNT for APD and let NIPD be the value
of COUNT for IPD.

a) If NAPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count (07008).

b) If NIPD is less than zero, then an exception condition is raised: dynamic SQL error — invalid
descriptor count (07008).

c) IfNIPD is less thanD, then an exception condition is raised: dynamic SQL error— using clause
does not match dynamic parameter specifications (07001).

d) LetNIDAL be the number of item descriptor areas in IPD for which LEVEL is 0 (zero). IfNIDAL
is greater than D, then it is implementation-defined (IA083) whether an exception condition

© ISO/IEC 2023 – All rights reserved 45

ISO/IEC 9075-3:2023(E)
6.10 Implicit EXECUTE USING and OPEN USING clauses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

is raised: dynamic SQL error — using clause does not match dynamic parameter specifications
(07001).

e) If the first NIPD item descriptor areas of IPD are not valid as specified in Subclause 6.17,
“Description of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL
error — using clause does not match dynamic parameter specifications (07001).

f) Let AD be the minimum of NAPD and NIPD.

g) For each of the first AD item descriptor areas of APD, if TYPE indicates DEFAULT, then:

i) Let TP, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the corresponding item descriptor area of IPD.

ii) Thedata type, precision, and scale of thedescribed<dynamicparameter specification>
value (or part thereof, if the item descriptor area is a subordinate descriptor) are set
to TP, P, and SC, respectively, for the purposes of this invocation only.

h) If the first AD item descriptor areas of APD are not valid as specified in Subclause 6.17,
“Description of CLI item descriptor areas”, then an exception condition is raised: dynamic SQL
error — using clause does not match dynamic parameter specifications (07001).

i) For the first AD item descriptor areas in APD:

i) If the number of item descriptor areas in which the value of LEVEL is 0 (zero) is not D,
then an exception condition is raised: dynamic SQL error—using clause does notmatch
dynamic parameter specifications (07001).

ii) If all of the following are true, then an exception condition is raised: dynamic SQL error
— using clause does not match dynamic parameter specifications (07001).

1) The value of the host variable addressed by INDICATORPOINTER is not negative.

2) At least one of the following is true:

A) TYPEdoesnot indicateROWand the itemdescriptor area is not subordinate
to an itemdescriptor area forwhich the valueof thehost variable addressed
by the INDICATOR POINTER is not negative.

B) TYPE indicates ARRAY or ARRAY LOCATOR.

C) TYPE indicates MULTISET or MULTISET LOCATOR.

3) The value of the host variable addressed by DATA_POINTER is not a valid value
of the data type represented by the item descriptor area.

j) For each of the first AD item descriptor areas ADIDA in APD:

i) If the OCTET_LENGTH_POINTER field of ADIDA has the same non-zero value as the
INDICATOR_POINTER field of IDA, then SHARE is true for ADIDA; otherwise, SHARE is
false for ADIDA.

Case:

1) If SHARE is true forADIDA and the value of the commonly addressedhost variable
is the appropriate 'Code' for SQL NULL DATA in Table 26, “Miscellaneous codes
used in CLI”, then NULL is true for ADIDA.

2) If SHARE is false for ADIDA, INDICATOR_POINTER is not zero, and the value of
the host variable addressed by INDICATOR_POINTER is the appropriate 'Code'
for SQL NULL DATA in Table 26, “Miscellaneous codes used in CLI”, then NULL is
true for ADIDA.

46 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.10 Implicit EXECUTE USING and OPEN USING clauses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

3) Otherwise, NULL is false for ADIDA.

ii) If NULL is false for ADIDA, OCTET_LENGTH_POINTER is not 0 (zero), and the value of
the host variable addressed byOCTET_LENGTH_POINTER is the appropriate 'Code' for
SQLNULLDATA in Table 26, “Miscellaneous codes used in CLI”, thenDEFERRED is true
for ADIDA; otherwise, DEFERRED is false for ADIDA.

k) If all of the following are true for any item descriptor area in the first AD item descriptor areas
ofAPD, then an exception condition is raised:dynamic SQL error—using clause does notmatch
dynamic parameter specifications (07001).

i) DEFERRED is true for the item descriptor area.

ii) Either of the following is true:

1) The value of LEVEL is zero and TYPE indicates ROW, ARRAY, or MULTISET.

2) LEVEL is greater than 0 (zero).
NOTE 14— This rule states that a parameter whose type is ROW, ARRAY, or MULTISET has to be
bound; it cannot be a deferred parameter.

l) For each itemdescriptor areawhoseLEVEL is 0 (zero) and for eachof its subordinatedescriptor
areas, if any, for which DEFERRED is false in the first AD item descriptor areas of APD and
whose corresponding<dynamicparameter specification>has a<parametermode>of PARAM
MODE IN or PARAMMODE INOUT, refer to the corresponding <dynamic parameter specific-
ation> value as an immediate parameter value and refer to the corresponding <dynamic
parameter specification> as an immediate parameter.

m) Let IDA be the i-th item descriptor area of APDwhose LEVEL value is 0 (zero). Let SDT be the
data type represented by IDA. The associated value of IDA, denoted by SV, is defined as follows.

Case:

i) If NULL is true for IDA, then SV is the null value.

ii) If TYPE indicates ROW, then SV is a row whose type is SDT and whose field values are
the associated values of the immediately subordinate descriptor areas of IDA.

iii) Otherwise:

1) Let V be the value of the host variable addressed by DATA_POINTER.

2) Case:

A) If TYPE indicates CHARACTER, then

Case:

I) If OCTET_LENGTH_POINTER is zero or if OCTET_LENGTH_POINTER
is not zero and the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, then let L
be the number of characters of V that precede the implementation-
defined (IV030) null character that terminates a C character string.

II) Otherwise, let Q be the value of the host variable addressed by
OCTET_LENGTH_POINTER and let L be the number of characters
wholly contained in the first Q octets of V.

B) Otherwise, let L be zero.

3) Let SV be Vwith effective data type SDT, as represented by the length value L and
by the values of the TYPE, PRECISION, and SCALE fields.

© ISO/IEC 2023 – All rights reserved 47

ISO/IEC 9075-3:2023(E)
6.10 Implicit EXECUTE USING and OPEN USING clauses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

n) LetTDTbe the effective data type of the i-th immediate parameter as represented by the values
of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in
the i-th itemdescriptor area of IPD forwhich the LEVELvalue is 0 (zero), and all its subordinate
descriptor areas.

o) Let SDT be the effective data type of the i-th bound parameter as represented by the values
of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in
the corresponding item descriptor area of APD for which the LEVEL is 0 (zero), and all its
subordinate descriptor areas.

p) Case:

i) If SDT is a locator type, then let TV be the value SV.

ii) If SDT and TDT are predefined types, then:

1) Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, and there is an implementation-defined (IA184)
conversion from type SDT to type TDT, then that implementation-defined
(IA184) conversion is effectively performed, converting SV to typeTDT, and
the result is the value TV of the i-th bound target.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast spe-
cification>”, in ISO/IEC9075-2, then an exception condition is raised:
dynamic SQL error—data type transform function violation (0700B).

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th
bound target.

2) LetUDT be the effective data type of the actual i-th immediate parameter, defined
to be the data type represented by the values of the TYPE, LENGTH, PRECISION,
SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION,
CHARACTER_SET_CATALOG,CHARACTER_SET_SCHEMA,CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and
SCOPE_NAME fields that would automatically be set in the corresponding item
descriptor area of IPD if POPULATE IPD was True for C.

3) Case:

48 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.10 Implicit EXECUTE USING and OPEN USING clauses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, and there is an implementation-defined (IA184)
conversion from type SDT to type UDT, then that implementation-defined
(IA184) conversion is effectively performed, converting SV to typeUDT and
the result is the value TV of the i-th immediate parameter.

B) Otherwise:

I) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast spe-
cification>”, in ISO/IEC9075-2, then an exception condition is raised:
dynamic SQL error—data type transform function violation (0700B).

II) The <cast specification>

CAST (TV AS UDT)

is effectively performed and the result is the value of the i-th imme-
diate parameter.

iii) If SDT is a predefined type and TDT is a user-defined type, then:

1) Let DT be the data type identified by TDT.

2) If the current SQL-session has a group name corresponding to the user-defined
name of DT, then let GN be that group name; otherwise, let GN be the default
transform group name associated with the current SQL-session.

3) TheSyntaxRulesof Subclause9.33, “Determinationof a to-sql function”, in ISO/IEC
9075-2, are applied with DT as TYPE and GN as GROUP; let TSF be the TO-SQL
FUNCTION returned from the application of those Syntax Rules.

Case:

A) If there is an applicable to-sql function TSF and TSF is an SQL-invoked
method, then let TSFPT be the declared type of the second SQL parameter
of TSF; otherwise, let TSFPT be the declared type of the first SQL parameter
of TSF.

Case:

I) If TSFPT is compatible with SDT, then

Case:

1) IfTSF is an SQL-invokedmethod, thenTSF is effectively invoked
with the value returned by the function invocation:

DT()

as the first parameter and SV as the second parameter. The
result of evaluating the expression TSF(DT(), SV) is the value
of the i-th immediate parameter.

© ISO/IEC 2023 – All rights reserved 49

ISO/IEC 9075-3:2023(E)
6.10 Implicit EXECUTE USING and OPEN USING clauses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

2) Otherwise, TSF is effectively invoked with SV as the first para-
meter. The result of evaluating the expression TSF(SV) is the
value of the i-th immediate parameter.

II) Otherwise, an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

B) Otherwise, an exception condition is raised: dynamic SQL error—data type
transform function violation (0700B).

q) If DEFERRED is true for at least one of the first AD item descriptor areas of APD, then:

i) Let PN be the parameter number associated with the first such item descriptor area.

ii) PN becomes the deferred parameter number associated with AS.

iii) If T is 'EXECUTE', then S becomes the statement source associated with AS.

iv) An exception condition is raised: CLI-specific condition— dynamic parameter value
needed (HYHHG).

5) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

50 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.10 Implicit EXECUTE USING and OPEN USING clauses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.11 Implicit CALL USING clause

Function

Specify the rules for an implicit CALL USING clause.

Subclause Signature

“Implicit CALL USING clause” [General Rules] (
 Parameter: “SOURCE”,
 Parameter: “ALLOCATED STATEMENT”
)

SOURCE— the source text of the SQL-statement that is described in the SQL-statement descriptor
identified by ALLOCATED STATEMENT.

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let S be the SOURCE and let AS be the ALLOCATED STATEMENT in an application of the General
Rules of this Subclause.

2) Let IPD and APD be the current implementation parameter descriptor and current application row
descriptor, respectively, for AS.

3) IPD and APD describe the <dynamic parameter specification>s and <dynamic parameter specifica-
tion> values, respectively, for the <call statement> being executed. LetDbe the number of <dynamic
parameter specification>s in S.

a) Let AD be the value of the COUNT field of APD. If AD is less than zero, then an exception condi-
tion is raised: dynamic SQL error — invalid descriptor count (07008).

b) For each itemdescriptor area in theAPDwhoseLEVEL is 0 (zero) in thefirstAD itemdescriptor
areas of APD, and for all of their subordinate descriptor areas, refer to a <dynamic parameter
specification> value whose corresponding item descriptor areas have a non-zero
DATA_POINTER value and whose corresponding <dynamic parameter specification> has a
<parametermode> of PARAMMODEOUTor PARAMMODE INOUTas a bound target and refer
to the corresponding <dynamic parameter specification> as a bound parameter.

c) If any item descriptor area corresponding to a bound target in the first AD item descriptor
areas of APD is not valid as specified in Subclause 6.17, “Description of CLI item descriptor
areas”, then an exception condition is raised: dynamic SQL error—using clause does notmatch
target specifications (07002).

© ISO/IEC 2023 – All rights reserved 51

ISO/IEC 9075-3:2023(E)
6.11 Implicit CALL USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

d) Let SDT be the effective data type of the i-th bound parameter as represented by the values
of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in
the i-th item descriptor area of IPD for which the LEVEL is 0 (zero) and all of its subordinate
descriptor areas. Let SV be the value of the output parameter, with data type SDT.

e) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the i-th bound
parameter whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG,
SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in the corresponding item
descriptor area of IPD.

f) Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,
INDICATOR_POINTER,andOCTET_LENGTH_POINTERfields, respectively, in the itemdescriptor
area ofAPD corresponding to the i-th bound target (or part thereof, if the itemdescriptor area
is a subordinate descriptor).

g) Case:

i) If TYPE indicates CHARACTER, then:

1) Let UT be the code value corresponding to CHARACTER VARYING as specified in
Table 6, “Codes used for implementation data types in SQL/CLI”.

2) LetLVbe the implementation-defined (IL006)maximum length for aCHARACTER
VARYING data type.

ii) Otherwise, let UT be TYPE and let LV be 0 (zero).

h) Let TDT be the effective data type of the i-th bound target as represented by the type UT, the
length value LV, and the values of the PRECISION, SCALE, CHARACTER_SET_CATALOG,
CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_ CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields in the corresponding item descriptor area of APD
for which the LEVEL is 0 (zero) and all its subordinate descriptor areas.

i) Case:

i) If TDT is a locator type, then

Case:

1) If SV is not the null value, then a locator L that uniquely identifies SV is generated
and the value TV of the i-th bound target is set to an implementation-dependent
(UV043) four-octet value that represents L.

2) Otherwise, the value TV of the i-th bound target is the null value.

ii) If SDT and TDT are predefined types, then

Case:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>”,
in ISO/IEC 9075-2, and there is an implementation-defined (IA184) conversion
from type SDT to typeTDT, then that implementation-defined (IA184) conversion

52 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.11 Implicit CALL USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

is effectively performed, converting SV to type TDT, and the result is the value TV
of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — data type transform function violation (0700B).

B) The <cast specification>

CAST (SV AS TDT)

is effectively performedand the result is the valueTVof the i-th bound target.

iii) If SDT is a user-defined type and TDT is a predefined data type, then:

1) Let DT be the data type identified by SDT.

2) If the current SQL-session has a group name corresponding to the user-defined
name of DT, then let GN be that group name; otherwise, let GN be the default
transform group name associated with the current SQL-session.

3) The Syntax Rules of Subclause 9.31, “Determination of a from-sql function”, in
ISO/IEC 9075-2, are applied with DT as TYPE and GN as GROUP; let FSF be the
FROM-SQL FUNCTION returned from the application of those Syntax Rules.

Case:

A) If there is an applicable from-sql function, then let FSFRT be the <returns
data type> of FSF.

Case:

I) If FSFRT is compatible with TDT, then the from-sql function TSF is
effectively invoked with SV as its input parameter and the result of
evaluating TSF(SV) is the value TV of the i-th bound target.

II) Otherwise, an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

B) Otherwise, an exception condition is raised: dynamic SQL error—data type
transform function violation (0700B).

j) Let IDA be the top-level item descriptor area corresponding to the i-th output parameter.

k) Case:

i) If TYPE indicates ROW, then

Case:

1) If TV is the null value, then

Case:

A) If IP is a null pointer for IDA or for any of the subordinate descriptor areas
of IDA that are not subordinate to an item descriptor area whose type
indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR,

© ISO/IEC 2023 – All rights reserved 53

ISO/IEC 9075-3:2023(E)
6.11 Implicit CALL USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

then an exception condition is raised: data exception— null value, no
indicator parameter (22002).

B) Otherwise, the value of the host variable addressed by IP for IDA, and those
in all subordinate descriptor areas of IDA that are not subordinate to an
item descriptor area whose TYPE indicates ARRAY, ARRAY LOCATOR,
MULTISET, or MULTISET LOCATOR are set to the appropriate 'Code' for
SQL NULL DATA in Table 26, “Miscellaneous codes used in CLI”, and the
values of variables addressed byDP and LP are implementation-dependent
(UV044).

2) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the value
of the i-th field of TV by applying GR 3)k) to the i-th subordinate descriptor area
of IDA as IDA, the value of i-th field of TV as TV, the value of the i-th field of SV as
SV, and the data type of the i-th field of SV as SDT.

ii) Otherwise,

Case:

1) If TV is the null value, then

Case:

A) If IP is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter (22002).

B) Otherwise, the value of the host variable addressed by IP is set to the
appropriate 'Code' for SQL NULL DATA in Table 26, “Miscellaneous codes
used in CLI”, and the values of the host variables addressed by DP and LP
are implementation-dependent (UV044).

2) Otherwise:

A) If IP is not a null pointer, then the value of the host variable addressed by
IP is set to 0 (zero).

B) Case:

I) IfTYPE indicates CHARACTERor CHARACTERLARGEOBJECT, then:

1) IfTV is a zero-length character string, then it is implementation-
defined (IA084)whetherornot anexceptioncondition is raised:
data exception— zero-length character string (2200F).

2) The General Rules of Subclause 6.14, “Character string
retrieval”, are applied with DP as TARGET, TV as VALUE, OL as
TARGETOCTETLENGTH, andLP asRETURNEDOCTETLENGTH.

II) If TYPE indicates BINARY LARGE OBJECT, then the General Rules of
Subclause 6.15, “Binary string retrieval”, are applied with DP as
TARGET, TV as VALUE, OL as TARGET OCTET LENGTH, and LP as
RETURNED OCTET LENGTH.

III) IfTYPE indicatesARRAY,ARRAYLOCATOR,MULTISET, orMULTISET
LOCATORand if RETURNED_CARDINALITY_POINTER is not 0 (zero),
then the value of the host variable addressed by RETURNED_CAR-
DINALITY_POINTER is set to the cardinality of TV.

IV) Otherwise, the value of the host variable addressed by DP is set to
TV.

54 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.11 Implicit CALL USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

4) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 55

ISO/IEC 9075-3:2023(E)
6.11 Implicit CALL USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.12 Fetching a rowset

Function

Specify the rules for fetching a rowset.

Subclause Signature

“Fetching a rowset” [General Rules] (
 Parameter: “ALLOCATED STATEMENT”,
 Parameter: “FETCH ORIENTATION”,
 Parameter: “FETCH OFFSET”
)

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

FETCHORIENTATION—acharacter string specifying the fetch orientation to be applied, as indicated
in Table 24, “Codes used for fetch orientation”.

FETCH OFFSET— an integer specifying the fetch offset to be applied when the implicit FETCH is
performed.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let S be the ALLOCATED STATEMENT, let FO be the FETCH ORIENTATION, and let OS be the FETCH
OFFSET in an application of the General Rules of this Subclause.

2) If there is no executed statement associatedwith S, then an exception condition is raised:CLI-specific
condition— function sequence error (HY010).

3) If there is no open CLI cursor associatedwith S, then an exception condition is raised: invalid cursor
state (24000); otherwise, let CR be the open CLI cursor associated with S and let T be the table
associated with CR.

4) If FO is not one of the code values in Table 24, “Codes used for fetch orientation”, then an exception
condition is raised: CLI-specific condition— invalid fetch orientation (HY106).

5) If the operational scrollability property of CR is NO SCROLL, and FO does not indicate NEXT, then
an exception condition is raised: CLI-specific condition— invalid fetch orientation (HY106).

6) Let ARD be the current application row descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

7) Let AD be the value of the COUNT field in the header of ARD.

8) For each item descriptor area in ARDwhose LEVEL is 0 (zero) in the first AD item descriptor areas
of ARD, and for all of their subordinate descriptor areas, refer to a <target specification> whose

56 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.12 Fetching a rowset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

corresponding item descriptor area has a non-zero value of DATA_POINTER as a bound target and
refer to the corresponding <select list> column as a bound column.

9) Let BC be the number of bound columns.

10) For all i, 1 (one) ≤ i ≤ BC:

a) Let IDA be the item descriptor area of ARD corresponding to the i-th bound target and let TT
be the value of the TYPE field of IDA.

b) If TT indicates DEFAULT, then:

i) Let IRD be the implementation row descriptor associated with S.

ii) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively,
for the item descriptor area of IRD corresponding to the i-th bound column.

iii) The data type, precision, and scale of the <target specification> described by IDA are
effectively set to CT, P, and SC, respectively, for the purposes of this fetch only.

11) Case:

a) If FO indicates ABSOLUTE or RELATIVE, then let J be OS.

b) If FO indicates NEXT or FIRST, then let J be +1.

c) If FO indicates PRIOR or LAST, then let J be −1 (negative one).

12) Let R be the rowset on which CR is positioned and let AS be the value of the ARRAY_SIZE field in
the header of ARD.

13) Let Tt be a result set of the same degree as T.

Case:

a) If FO indicates ABSOLUTE, FIRST, or LAST, then let Tt contain all rows of T, preserving their
order in T.

b) If FO indicates NEXT, or indicates RELATIVE with a positive value of J, then

Case:

i) If T is empty or if R contains the last row of T, then let Tt be a table of no rows.

ii) If CR is positioned before the start of the result set, then let Tt contain all rows of T,
preserving their order in T.

iii) Otherwise, let Tt contain all rows of T after the last row of R, preserving their order in
T.

c) If FO indicates PRIOR or indicates RELATIVE with a negative value of J, then

Case:

i) If T is empty or if R contains the first row of T, then let Tt be a table of no rows.

ii) If CR is positioned after the end of the result set, then let Tt contain all rows of T, pre-
serving their order in T.

iii) Otherwise, let Tt contain all rows of T before the first row of R, preserving their order
in T.

d) If FO indicates RELATIVE with a zero value of J, then

© ISO/IEC 2023 – All rights reserved 57

ISO/IEC 9075-3:2023(E)
6.12 Fetching a rowset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

i) If R is not empty, then let Tt be a result set comprising all the rows in R and all the rows
of T after the last row of R, preserving their order in T.

ii) Otherwise, let Tt be an empty table.

14) Let N be the number of rows in Tt. If J is positive, then let K be J. If J is negative, then let K be N+J+1.
If J is zero, then let K be 1 (one).

15) Case:

a) If K is greater than 0 (zero), then

Case:

i) If (K + AS - 1) is greater than N, then

Case:

1) If J is less than 0 (zero), then

Case:

A) If (K + AS - 1) is greater than the number of rows in T, then CR is positioned
on the rowset that has all the rows in T.

B) Otherwise, CR is positioned on the rowset whose first row is the K-th row
of T; that rowset has AS rows.

2) Otherwise, if K is less than N, then CR is positioned on the rowset that has all the
rows in Tt.

ii) Otherwise, CR is positioned on the rowset whose first row is the K-th row of Tt; that
rowset has AS rows.

b) If K is less than 0 (zero), but the absolute value of K is less than or equal to AS, then

Case:

i) If AS is greater than the number of rows in T, then CR is positioned on the rowset that
has all the rows in T.

ii) Otherwise, CR is positioned on the rowset that has the first AS rows in T.

c) Otherwise, no SQL-data values are assigned and a completion condition is raised: no data
(02000).

Case:

i) If FO indicates RELATIVE with J equal to zero, then the position of CR is unchanged.

ii) If FO indicates NEXT, indicates ABSOLUTE or RELATIVE with K greater than N, or
indicates LAST, then CR is positioned after the last row.

iii) Otherwise, FO indicates PRIOR, FIRST, or ABSOLUTE or RELATIVE with K not greater
than N and CR is positioned before the first row.

No further rules of this Subclause are applied.

16) Let NR be the rowset on which CR is positioned. Let ASP and RPP be the values of the
ARRAY_STATUS_POINTER and ROWS_PROCESSED_POINTER fields respectively in the header of
the IRD of S.

58 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.12 Fetching a rowset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

17) If RPP is not a null pointer, then set the value of the host variable addressed by RPP to 0 (zero).

18) Let ROWS_DERIVED be 0 (zero).

19) Let RS be the number of rows in NR.

For RN, 1 (one) ≤ RN ≤ RS, let R be the RN-th row of NR.

Case:

a) If an exception condition is raised during derivation of any <derived column> associatedwith
R and ASP is not a null pointer, then set the RN-th element of ASP to 5 (indicatingRow error).
For all status records that result from the application of this Rule, the ROW_NUMBER field is
set to RN and the COLUMN_NUMBER field is set to the appropriate column number, if any.

b) Otherwise the row R is fetched and ROWS_DERIVED is incremented by 1 (one).

20) Case:

a) If ROWS_DERIVED is greater than 0 (zero), then:

i) Let SS be the select source associated with S.

ii) NR becomes the fetched rowset associated with S.

iii) The General Rules of Subclause 6.13, “Implicit FETCH USING clause”, are applied with
SS as SOURCE, RS as ROWS, and S as ALLOCATED STATEMENT; let RA be the
ROWS_ASSIGNED returned from the application of those General Rules.

Case:

1) If RA is greater than 0 (zero), RA is less than AS, and ASP is not 0 (zero), then set
the RA+1-th through AS-th elements of ASP to 3 (indicatingNo row). If RA is less
thanAS, then a completion condition is raised:warning. IfRPP is not a null pointer,
then the value of the host variable addressed by RPP is set to the value of RA.

2) If RA is 0 (zero), then the values of all bound targets are implementation-
dependent (UV053) and CR remains positioned on NR.

b) Otherwise, the values of all bound targets are implementation-dependent (UV053) and CR
remains positioned on R.

21) If ROWS_DERIVED is greater than 0 (zero) and RA is greater than 0 (zero), then the value of the
CURRENT OF POSITION attribute of S is set to

Case:

a) If AS is 1 (one) or if CR is scrollable, then 1 (one).

b) Otherwise, an implementation-defined (IV211) value indicating the current row in the rowset.

22) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 59

ISO/IEC 9075-3:2023(E)
6.12 Fetching a rowset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.13 Implicit FETCH USING clause

Function

Specify the rules for an implicit FETCH USING clause.

Subclause Signature

“Implicit FETCH USING clause” [General Rules] (
 Parameter: “SOURCE”,
 Parameter: “ROWS”,
 Parameter: “ALLOCATED STATEMENT”
) Returns: “ROWS_ASSIGNED”

SOURCE—the source text of the SQL-statement that is to bedescribed in the SQL-statementdescriptor
identified by ALLOCATED STATEMENT.

ROWS— an integer value indicating the number of rows to be fetched.

ALLOCATED STATEMENT— an allocated SQL-statement descriptor.

ROWS_ASSIGNED— the number of rows that were fetched as a result of invoking this subclause
using this signature.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let Sbe the SOURCE, letRSbe theROWS, and letASbe theALLOCATEDSTATEMENT in an application
of the General Rules of this Subclause. The result of the application of this Subclause is returned as
ROWS_ASSIGNED.

2) Let RA be 0 (zero).

3) Let IRD and ARD be the current implementation row descriptor and current application row
descriptor, respectively, associated with AS.

4) IRD and ARD describe the <select list> columns and <target specification>s, respectively, for the
column values that are to be retrieved. Let D be the degree of the table defined by S.

a) Let AD be the value of the COUNT field of ARD. If AD is less than zero, then an exception con-
dition is raised: dynamic SQL error — invalid descriptor count (07008).

b) For each item descriptor area in ARDwhose LEVEL is 0 (zero) in the first AD item descriptor
areas ofARD, and for all of their subordinate descriptor areas, refer to a <target specification>
whose corresponding itemdescriptor areashave anon-zeroDATA_POINTERas abound target
and refer to the corresponding <select list> column as a bound column.

60 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.13 Implicit FETCH USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

c) If any item descriptor area corresponding to a bound target in the first AD item descriptor
areas of ARD is not valid as specified in Subclause 6.17, “Description of CLI item descriptor
areas”, then an exception condition is raised: dynamic SQL error—using clause does notmatch
target specifications (07002).

d) Let SDT be the effective data type of the i-th bound column as represented by the values of
the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTER-
VAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in
the i-th itemdescriptor area of IRDwhoseLEVEL is 0 (zero) andall of its subordinate descriptor
areas.

e) If TYPE indicatesUSER-DEFINEDTYPE, then let themost specific typeof the i-th bound column
whose value is SV be represented by the values of the SPECIFIC_TYPE_CATALOG, SPE-
CIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAMEfields in the corresponding itemdescriptor
area of IRD.

f) Let TYPE, OL, DP, IP, and LP be the values of the TYPE, OCTET_LENGTH, DATA_POINTER,
INDICATOR_POINTER,andOCTET_LENGTH_POINTERfields, respectively, in the itemdescriptor
area ofARD corresponding to the i-th bound target (or part thereof, if the itemdescriptor area
is a subordinate descriptor).

g) Let ASP be the value of the ARRAY_STATUS_POINTER field in IRD.

h) ForRN ranging from1 (one) throughRS, if theRN-th rowof the rowset has been fetched, then:

i) Let SV be the value of the <select list> column, with data type SDT.

ii) Let DPE, IPE, and LPE be the addresses of the RN-th element of the arrays addressed
by DP, IP, and LP, respectively.

iii) Case:

1) If TYPE indicates CHARACTER, then:

A) Let UT be the code value corresponding to CHARACTER VARYING as spe-
cified in Table 6, “Codes used for implementation data types in SQL/CLI”.

B) Let LV be the implementation-defined (IL006) maximum length for a
CHARACTER VARYING data type.

2) Otherwise, let UT be TYPE and let LV be 0 (zero).

iv) Let TDT be the effective data type of the i-th bound target as represented by the type
UT, the lengthvalueLV, and thevaluesof thePRECISION, SCALE,CHARACTER_SET_CATA-
LOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields in the item descriptor area of ARDwhose LEVEL is 0 (zero) and all of its subor-
dinate descriptor areas.

v) Let LTDT be the data type on the last fetch of the i-th bound target, if any. If any of the
following is true, then is implementation-defined (IA188)whether or not an exception
condition is raised:dynamic SQL error—data type transform function violation (0700B).

1) LTDT and TDT both identify a binary large object type and only one of LTDT and
TDT is a binary large object locator.

2) LTDT and TDT both identify a character large object type and only one of LTDT
and TDT is a character large object locator.

© ISO/IEC 2023 – All rights reserved 61

ISO/IEC 9075-3:2023(E)
6.13 Implicit FETCH USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

3) LTDT and TDT both identify an array type and only one of LTDT and TDT is an
array locator.

4) LTDT and TDT both identify a multiset type and only one of LTDT and TDT is a
multiset locator.

5) LTDT and TDT both identify a user-defined type and only one of LTDT and TDT
is a user-defined type locator.

vi) Case:

1) If TDT is a locator type, then;

A) If SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value TV of the i-th bound target is set to an implemen-
tation-dependent (UV043) four-octet value that represents L.

B) Otherwise, the value TV of the i-th bound target is the null value.

2) If SDT and TDT are predefined types, then

Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, and there is an implementation-defined (IA184)
conversion from type SDT to type TDT, then that implementation-defined
(IA184) conversion is effectively performed, converting SV to typeTDT, and
the result is the value TV of the i-th bound target.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast spe-
cification>”, in ISO/IEC9075-2, then an exception condition is raised:
dynamic SQL error—data type transform function violation (0700B).

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th
bound target.

For every status record that results from the application of this Rule,
the ROW_NUMBERfield is set toRN and the COLUMN_NUMBERfield
is set to i. If ASP is not a null pointer, then the RN-th element of the
array addressed by ASP is set to:

1) If there were completion conditions:warning (01000) raised
during the application of this Rule, then 6 (indicating Row
success with information).

2) If therewere exception conditions raisedduring the application
of this Rule, then 5 (indicating Row error).

III) The <cast specification>

62 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.13 Implicit FETCH USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CAST (SV AS TDT)

is effectively performed and the result is the value TV of the i-th
bound target.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-
defined name of DT, then let GN be that group name; otherwise, let GN be
the default transform group name associatedwith the current SQL-session.

C) The Syntax Rules of Subclause 9.31, “Determination of a from-sql function”,
in ISO/IEC 9075-2, are applied with DT as TYPE and GN as GROUP; let FSF
be the FROM-SQL FUNCTION returned from the application of those Syntax
Rules.

Case:

I) If there is an applicable from-sql function, then let FSFRT be the
<returns data type> of FSF.

Case:

1) If FSFRT is compatible with TDT, then the from-sql function
TSF is effectively invoked with SV as its input parameter and
the result of evaluatingTSF(SV) is the valueTV of the i-th bound
target.

2) Otherwise, an exception condition is raised: dynamic SQL error
— data type transform function violation (0700B).

II) Otherwise, an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

vii) Let IDA be the top-level item descriptor area corresponding to the i-th bound column.

viii) Case:

1) If TYPE indicates ROW, then

Case:

A) If TV is the null value, then

Case:

I) If IPE is a null pointer for IDAor for eachof the subordinate descriptor
areas of IDA that are not subordinate to an item descriptor area
whose type indicates ARRAY, ARRAY LOCATOR, MULTISET, or
MULTISET LOCATOR, then an exception condition is raised: data
exception— null value, no indicator parameter (22002).

II) Otherwise, the value of the host variable addressed by IPE for IDA,
and that in all subordinate descriptor areas of IDA that are not sub-
ordinate to an item descriptor area whose TYPE indicates ARRAY,
ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, is set to the
appropriate 'Code' for SQL NULL DATA in Table 26, “Miscellaneous
codes used in CLI”, and the values of variables addressed byDPE and
LPE are implementation-dependent (UV044).

© ISO/IEC 2023 – All rights reserved 63

ISO/IEC 9075-3:2023(E)
6.13 Implicit FETCH USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

B) Otherwise, the i-th subordinate descriptor area of IDA is set to reflect the
value of the i-th field of TV by applying GR 4)h)viii) to the i-th subordinate
descriptor area of IDA as IDA, the value of i-th field of TV as TV, the value of
the i-th field of SV as SV, and the data type of the i-th field of SV as SDT.

2) Otherwise,

Case:

A) If TV is the null value, then

Case:

I) If IPE is a null pointer, then an exception condition is raised: data
exception— null value, no indicator parameter (22002).

II) Otherwise, the value of the host variable addressed by IPE is set to
the appropriate 'Code' for SQL NULL DATA in Table 26, “Miscel-
laneous codes used in CLI”, and the values of the host variables
addressedbyDPE and LPE are implementation-dependent (UV044).

B) Otherwise:

I) If IPE is not a null pointer, then the value of the host variable
addressed by IPE is set to 0 (zero).

II) Case:

1) IfTYPE indicates CHARACTERor CHARACTERLARGEOBJECT,
then:

a) IfTV is a zero-length character string, then it is implemen-
tation-defined (IA084) whether or not an exception con-
dition is raised: data exception— zero-length character
string (2200F).

b) The General Rules of Subclause 6.14, “Character string
retrieval”, are applied with DPE as TARGET, TV as VALUE,
OL as TARGET OCTET LENGTH, and LPE as RETURNED
OCTET LENGTH.

c) For every status record that results from the application
of the preceding Subrule, the ROW_NUMBER field is set
to RN and the COLUMN_NUMBER field is set to i. If ASP is
not a null pointer, then the RN-th element of the array
addressed by ASP is set to:

i) If there were completion conditions:warning
(01000) raised during the application of the pre-
ceding Subrule, then 6 (indicating Row success
with information).

ii) If there were exception conditions raised during
the application of the preceding Subrule, then 5
(indicating Row error).

2) IfTYPE indicatesBINARY,BINARYVARYING, orBINARYLARGE
OBJECT, then theGeneralRulesof Subclause6.15, “Binary string
retrieval”, are applied with DPE as TARGET, TV as VALUE, OL
as TARGET OCTET LENGTH, and LPE as RETURNED OCTET
LENGTH.

64 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.13 Implicit FETCH USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

For every status record that results from the application of this
Rule, the ROW_NUMBER field is set to RN and the
COLUMN_NUMBER field is set to i. If ASP is not a null pointer,
then the RN-th element of the array addressed by ASP is set to:

a) If there were completion conditions:warning (01000)
raised during the application of this Rule, then 6 (indicat-
ing Row success with information).

b) If there were exception conditions raised during the
application of this Rule, then 5 (indicating Row error).

3) If TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or
MULTISET LOCATOR, and if RETURNED_CARDINAL-
ITY_POINTER is not a null pointer, then the value of the host
variable addressed by RETURNED_CARDINALITY_POINTER is
set to the cardinality of TV.

4) Otherwise, the value of the host variable addressed by DPE is
set to TV and the value of the host variable addressed by LPE
is implementation-dependent (UV044).

3) If there were no exception conditions raised during the application of this Rule,
then:

A) RA is incremented by 1 (one).

B) If ASP is not a null pointer, then set the RN-th element of the array pointed
to by ASP to 0 (zero, indicating Row success).

5) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause,
which receives RA as ROWS_ASSIGNED.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 65

ISO/IEC 9075-3:2023(E)
6.13 Implicit FETCH USING clause

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.14 Character string retrieval

Function

Specify the rules for retrieving character string values.

Subclause Signature

“Character string retrieval” [General Rules] (
 Parameter: “TARGET”,
 Parameter: “VALUE”,
 Parameter: “TARGET OCTET LENGTH”,
 Parameter: “RETURNED OCTET LENGTH”
)

TARGET— an SQL-data site where the result of character string retrieval is to be placed.

VALUE— an SQL-data value.

TARGET OCTET LENGTH— the length in octets of TARGET.

RETURNED OCTET LENGTH— a pointer to a host variable receiving the length in octets of VALUE,
or a null pointer.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let T be the TARGET, let V be the VALUE, let TL be the TARGET OCTET LENGTH, and let RL be the
RETURNED OCTET LENGTH in an application of the General Rules of this Subclause.

2) If TL is not greater than zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

3) Let L be the length in octets of V.

4) If RL is not a null pointer, then the value of the host variable addressed by RL is set to L.

5) Case:

a) If null termination is False for the current SQL-environment, then

Case:

i) If L is not greater than TL, then the first L octets of T are set to V and the values of the
remaining octets of T are implementation-dependent (UV046).

ii) Otherwise, T is set to the first TL octets of V and a completion condition is raised:
warning— string data, right truncation (01004).

66 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.14 Character string retrieval

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) Otherwise, let NB be the length in octets of a null terminator in the character set of T.

Case:

i) If L is not greater than (TL−NB), then the first (L+NB) octets of T are set to V concaten-
ated with a single implementation-defined (IV030) null character that terminates a C
character string. The values of the remaining characters of T are implementation-
dependent (UV046).

ii) Otherwise,T is set to thefirst (TL−NB) octets ofV concatenatedwith a single implemen-
tation-defined (IV030) null character that terminates a C character string and a com-
pletion condition is raised:warning— string data, right truncation (01004).

6) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 67

ISO/IEC 9075-3:2023(E)
6.14 Character string retrieval

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.15 Binary string retrieval

Function

Specify the rules for retrieving binary string values.

Subclause Signature

“Binary string retrieval” [General Rules] (
 Parameter: “TARGET”,
 Parameter: “VALUE”,
 Parameter: “TARGET OCTET LENGTH”,
 Parameter: “RETURNED OCTET LENGTH”
)

TARGET— an SQL-data site where the result of binary string retrieval is to be placed.

VALUE— an SQL-data value.

TARGET OCTET LENGTH— the length in octets of TARGET.

RETURNED OCTET LENGTH— a pointer to a host variable receiving the length in octets of VALUE,
or a null pointer.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let T be the TARGET, let V be the VALUE, let TL be the TARGET OCTET LENGTH, and let RL be the
RETURNED OCTET LENGTH in an application of the General Rules of this Subclause.

2) If TL is not greater than zero (0), then an exception condition is raised: CLI-specific condition—
invalid string length or buffer length (HY090).

3) Let L be the length in octets of V.

4) If RL is not a null pointer, then RL is set to L.

5) Case:

a) If L is not greater than TL, then the first L octets of T are set to V and the values of the
remaining octets of T are implementation-dependent (UV046).

b) Otherwise, T is set to the first TL octets of V and a completion condition is raised:warning—
string data, right truncation (01004).

6) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

68 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.15 Binary string retrieval

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 69

ISO/IEC 9075-3:2023(E)
6.15 Binary string retrieval

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.16 Deferred parameter check

Function

Check for the existence of deferred dynamic parameters when accessing a CLI descriptor.

Subclause Signature

“Deferred parameter check” [General Rules] (
 Parameter: “DESCRIPTOR AREA”
)

DESCRIPTOR AREA— an allocated dynamic descriptor area.

Syntax Rules

None.

Access Rules

None.

General Rules

1) Let DA be the DESCRIPTOR AREA in an application of the General Rules of this Subclause. .

2) Let C be the allocated SQL-connection with which DA is associated.

3) Let L1 be the set of all allocated SQL-statements associated with C.

4) Let L2 be the set of all allocated SQL-statements in L1which have an associated deferred parameter
number.

5) Let L3 be the set of all CLI descriptor areas that are either the current application parameter
descriptor for, or the implementation parameter descriptor associated with, an allocated SQL-
statement in L2.

6) If DA is contained in L3, then an exception condition is raised: CLI-specific condition— function
sequence error (HY010).

7) Evaluation of the General Rules is terminated and control is returned to the invoking Subclause.

Conformance Rules

None.

70 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.16 Deferred parameter check

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.17 Description of CLI item descriptor areas
This Subclause is modified by Subclause 18.3, “Description of CLI item descriptor areas”, in ISO/IEC 9075-9.

Function

Specify the identifiers, data types and codes for fields used in CLI item descriptor areas.

Syntax Rules

1) A CLI item descriptor area comprises the fields specified in Table 5, “Fields in SQL/CLI row and
parameter descriptor areas”.

2) Given a CLI item descriptor area IDA in which the value of LEVEL is some value N, the immediately
subordinate descriptor areas of IDA are those CLI item descriptor areas inwhich the value of LEVEL
is N+1 and whose position in the CLI descriptor area follows that of IDA and precedes that of any
CLI item descriptor area in which the value of LEVEL is less than N+1. The subordinate descriptor
areas of IDA are those CLI item descriptor areas that are immediately subordinate descriptor areas
of IDA or that are subordinate descriptor areas of a CLI item descriptor area that is immediately
subordinate to IDA.

3) Given a data type DT and its descriptor DE, the immediately subordinate descriptors of DE are
defined to be

Case:

a) If DT is ROW, then the field descriptors of the fields of DT. The i-th immediately subordinate
descriptor is the descriptor of the i-th field of DT.

b) If DT is ARRAY or MULTISET, then the descriptor of the associated element type of DT. The
subordinate descriptors of DE are those descriptors that are immediately subordinate
descriptors of DE or that are subordinate descriptors of a descriptor that is immediately
subordinate to DE.

4) Given a descriptor DE, let SDEj represent its j-th immediately subordinate descriptor. There is an
implied ordering of the subordinate descriptors of DE, such that:

a) SDE1 is in the first ordinal position.

b) The ordinal position of SDEj+1 is K+NS+1, where K is the ordinal position of SDEj andNS is the
number of subordinate descriptors of SDEj. The implicitly ordered subordinate descriptors
of SDEj occupy contiguous ordinal positions starting at position K+1.

5) Let IDA be an item descriptor area in an implementation parameter descriptor. IDA is valid if and
only if all of the following are true:

a) TYPE is one of the code values in Table 6, “Codes used for implementation data types in
SQL/CLI”.

b) If LEVEL is 0 (zero) for IDA, then letTLC be the value of TOP_LEVEL_COUNTof the implement-
ationparameter descriptor associatedwith IDA. IDA shall be one of exactlyTLC itemdescriptor
areas in the implementation parameter descriptor.

c) Exactly one of the following is true:

i) TYPE indicates CHARACTERor CHARACTERVARYING, or CHARACTERLARGEOBJECT
and LENGTH is a valid length value for a <character string type>.

© ISO/IEC 2023 – All rights reserved 71

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) TYPE indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT and LENGTH is
a valid length value for a <binary string type>.

iii) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

iv) TYPE indicatesDECIMALandPRECISIONandSCALEare validprecisionand scale values
for the DECIMAL data type.

v) TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.

vi) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

vii) TYPE indicates DECFLOAT and PRECISION is a valid precision value for the DECFLOAT
data type.

viii) TYPE indicates BOOLEAN.

ix) TYPE indicates a <datetime type>, DATETIME_INTERVAL_CODE is one of the code
values in Table 8, “Codes associated with datetime data types in SQL/CLI”, and PRECI-
SION is a valid precision value for the <time precision> or <timestamp precision> of
the indicated datetime data type.

x) TYPE indicates an <interval type>, DATETIME_INTERVAL_CODE is one of the code
values in Table 9, “Codes associated with <interval qualifier> in SQL/CLI”, to indicate
the <interval qualifier> of the interval data type, DATETIME_INTERVAL_PRECISION is
a valid <interval leading field precision>, and PRECISION is a valid precision value for
<interval fractional seconds precision>, if applicable.

xi) TYPE indicates USER-DEFINED TYPE.

xii) TYPE indicates REF.

xiii) TYPE indicates ROW, the value N of DEGREE is a valid value for the degree of a row
type, there are exactly N immediately subordinate descriptor areas of IDA, and those
item descriptor areas are valid.

xiv) 09TYPE indicates ARRAY or ARRAY LOCATOR, the value of CARDINALITY is a valid
value for themaximum cardinality of an array, there is exactly one immediately subor-
dinate descriptor area of IDA, and that item descriptor area is valid.

xv) TYPE indicates an implementation-defined (IE002) data type.

6) Let HL be the programming language of the invoking host program. Let operative data type corres-
pondence tablebe thedata type correspondence table forHL as specified in Subclause6.19, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspondence
table as the SQL data type column and the host data type column.

7) A CLI item descriptor area in a CLI descriptor area that is not an implementation row descriptor is
consistent if and only if all of the following are true:

a) TYPE indicates DEFAULT or is one of the code values in Table 7, “Codes used for application
data types in SQL/CLI”.

b) All of the following are true:

i) TYPE is one of the code values in Table 7, “Codes used for application data types in
SQL/CLI”.

ii) TYPE is neither ROW, ARRAY, nor MULTISET.

72 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) The row that contains the SQL data type corresponding to TYPE in the SQL data type
column of the operative data type correspondence table does not contain “None” in
the host data type column.

c) Exactly one of the following is true:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

ii) TYPE indicatesDECIMALandPRECISIONandSCALEare validprecisionand scale values
for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

iv) 09TYPE indicates DEFAULT, CHARACTER, CHARACTER LARGE OBJECT, CHARACTER
LARGEOBJECTLOCATOR,BINARY,BINARYVARYING,BINARYLARGEOBJECT, BINARY
LARGE OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION,
USER-DEFINED TYPE LOCATOR, or REF.

v) TYPE indicatesROWand,whereN is the value of theDEGREEfield in the corresponding
item descriptor area in the implementation parameter descriptor, there are exactly N
immediately subordinate descriptor areas of IDA, and those item descriptor areas are
valid.

vi) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item
descriptor area is valid.

vii) TYPE indicates an implementation-defined (IE002) data type.

8) Let IDA be a CLI item descriptor area in an application parameter descriptor. Let IDA1 be the cor-
responding item descriptor area in the implementation parameter descriptor.

9) If theOCTET_LENGTH_POINTERfieldof IDAhas thesamenon-zerovalueas the INDICATOR_POINTER
field of IDA, then SHARE is true for IDA; otherwise, SHARE is false for IDA.

10) Case:

a) If SHARE is true and the value of the commonly addressed host variable is the appropriate
'Code' for SQL NULL DATA in Table 26, “Miscellaneous codes used in CLI”, then NULL is true
for IDA.

b) If SHARE is false, INDICATOR_POINTER is not zero, and the value of the host variable addressed
by INDICATOR_POINTER is the appropriate 'Code' for SQL NULL DATA in Table 26, “Miscel-
laneous codes used in CLI”, then NULL is true for IDA.

c) Otherwise, NULL is false for IDA.

11) IfNULL is false, OCTET_LENGTH_POINTER is not zero, and the value of the host variable addressed
by OCTET_LENGTH_POINTER the appropriate 'Code' for DATAATEXEC in Table 26, “Miscellaneous
codes used in CLI”, then DEFERRED is true for IDA; otherwise, DEFERRED is false for IDA.

12) IDA is valid if and only if:

a) TYPE is one of the code values in Table 7, “Codes used for application data types in SQL/CLI”,
and at least one of the following is true:

i) TYPE is ROW, ARRAY, or MULTISET.

© ISO/IEC 2023 – All rights reserved 73

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) The row of the operative data type correspondences table that contains the SQL data
type corresponding to the value of TYPE in the SQL data type column does not contain
'None' in the host data type column.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor
areas in the implementation parameter descriptor.

c) Exactly one of the following is true:

i) TYPE indicates CHARACTER, CHARACTER LARGEOBJECT, BINARY, BINARY VARYING,
or BINARY LARGE OBJECT, and at least one of the following is true:

1) NULL is true.

2) DEFERRED is true.

3) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAMMODE INOUT, the value V of the host variable addressed by
OCTET_LENGTH_POINTER is greater than zero, and the number of characters
wholly contained in the first V octets of the host variable addressed by
DATA_POINTER is a valid length value for a CHARACTER, CHARACTER LARGE
OBJECT, BINARY, BINARY VARYING, or BINARY LARGE OBJECT data type, as
indicated by TYPE.

4) OCTET_LENGTH_POINTER is not zero, PARAMETER_MODE in IDA1 is PARAM
MODE IN or PARAMMODE INOUT, the value of the host variable addressed by
OCTET_LENGTH_POINTER indicates NULL TERMINATED, and the number of
characters of the value of the host variable addressed by DATA_POINTER that
precede the implementation-defined (IV030) null character that terminates a C
character string is a valid length value for a CHARACTER, CHARACTER LARGE
OBJECT, BINARY, BINARY VARYING, or BINARY LARGE OBJECT data type, as
indicated by TYPE.

5) OCTET_LENGTH_POINTER is zero, PARAMETER_MODE in IDA1 is PARAMMODE
IN or PARAMMODE INOUT, and the number of characters of the value of the host
variable addressed by DATA_POINTER that precede the implementation-defined
(IV030) null character that terminates a C character string is a valid length value
for a CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY VARYING, or
BINARY LARGE OBJECT data type, as indicated by TYPE.

6) PARAMETER_MODE in IDA1 is PARAMMODE OUT.

ii) TYPE indicates CHARACTER LARGE OBJECT LOCATOR, BINARY LARGE OBJECT LOC-
ATOR, or USER-DEFINED TYPE LOCATOR and at least one of the following is true:

1) NULL is true.

2) DEFERRED is true.

iii) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

iv) TYPE indicatesDECIMALandPRECISIONandSCALEare validprecisionand scale values
for the DECIMAL data type.

v) TYPE indicates SMALLINT, INTEGER, BIGINT, REAL, or DOUBLE PRECISION.

vi) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

74 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

vii) TYPE indicates REF and one of the following is true:

1) NULL is true.

2) DEFERRED is true.

viii) TYPE indicatesROWand,whereN is the value of theDEGREEfield in the corresponding
item descriptor area in the implementation parameter descriptor, there are exactly N
immediately subordinate descriptor areas of IDA, and those item descriptor areas are
valid.

ix) 09TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item
descriptor area is valid.

x) TYPE indicates an implementation-defined (IE002) data type.

d) At least one of the following is true:

i) DATA_POINTER is zero and NULL is true.

ii) DATA_POINTER is zero and DEFERRED is true.

iii) DATA_POINTER is not zero and exactly one of the following is true:

1) NULL is true.

2) DEFERRED is true.

3) PARAMETER_MODE in IDA1 is PARAMMODE IN or PARAMMODE INOUT and
the value of the host variable addressed by DATA_POINTER is a valid value of the
data type indicated by TYPE.

4) PARAMETER_MODE in IDA1 is PARAMMODE OUT.

13) A CLI item descriptor area in an application row descriptor is valid if and only if:

a) TYPE is one of the code values in Table 7, “Codes used for application data types in SQL/CLI”,
and at least one of the following is true:

i) TYPE is ROW, ARRAY, or MULTISET.

ii) The row of the operative data type correspondences table that contains the SQL data
type corresponding to the value of TYPE in the SQL data type column does not contain
'None' in the host data type column.

b) If LEVEL is 0 (zero) for IDA, then let TLC be the value of TOP_LEVEL_COUNT in the application
parameter descriptor associated with IDA. IDA shall be one of exactly TLC item descriptor
areas in the implementation parameter descriptor.

c) Exactly one of the following is true:

i) TYPE indicates NUMERIC and PRECISION and SCALE are valid precision and scale
values for the NUMERIC data type.

ii) TYPE indicatesDECIMALandPRECISIONandSCALEare validprecisionand scale values
for the DECIMAL data type.

iii) TYPE indicates FLOAT and PRECISION is a valid precision value for the FLOAT data
type.

iv) 09TYPE indicates CHARACTER, CHARACTER LARGE OBJECT, CHARACTER LARGE
OBJECTLOCATOR,BINARY,BINARYVARYING,BINARYLARGEOBJECT, BINARYLARGE

© ISO/IEC 2023 – All rights reserved 75

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

OBJECT LOCATOR, SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION, USER-
DEFINED TYPE LOCATOR, or REF.

v) TYPE indicatesROWand,whereN is the value of theDEGREEfield in the corresponding
item descriptor area in the implementation parameter descriptor, there are exactly N
immediately subordinate descriptor areas of IDA, and those item descriptor areas are
valid.

vi) TYPE indicates ARRAY, ARRAY LOCATOR, MULTISET, or MULTISET LOCATOR, there
is exactly 1 (one) immediately subordinate descriptor area of IDA, and that item
descriptor area is valid.

vii) TYPE indicates an implementation-defined (IE002) data type.

14) Table 5, “Fields in SQL/CLI row and parameter descriptor areas”, specifies the codes associated
with user-defined types in SQL/CLI.

Table 5— Fields in SQL/CLI row and parameter descriptor areas

Data TypeField

SMALLINTALLOC_TYPE

INTEGERARRAY_SIZE

host variable address of INTEGERARRAY_STATUS_POINTER

SMALLINTCOUNT

CHARACTER VARYING(L) 1DYNAMIC_FUNCTION

INTEGERDYNAMIC_FUNCTION_CODE

SMALLINTKEY_TYPE

host variable address of INTEGERROWS_PROCESSED_POINTER

SMALLINTTOP_LEVEL_COUNT

implementation-defined (IE019) data typeimplementation-defined(IE019)headerfield

INTEGERCARDINALITY

CHARACTER VARYING(L) 1CHARACTER_SET_CATALOG

CHARACTER VARYING(L) 1CHARACTER_SET_NAME

CHARACTER VARYING(L) 1CHARACTER_SET_SCHEMA

CHARACTER VARYING(L) 1COLLATION_CATALOG

CHARACTER VARYING(L) 1COLLATION_NAME

CHARACTER VARYING(L) 1COLLATION_SCHEMA

76 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Data TypeField

CHARACTER VARYING(L1) 1CURRENT_TRANSFORM_GROUP

host variable addressDATA_POINTER

SMALLINTDATETIME_INTERVAL_CODE

SMALLINTDATETIME_INTERVAL_PRECISION

INTEGERDEGREE

host variable address of INTEGERINDICATOR_POINTER

SMALLINTKEY_MEMBER

INTEGERLENGTH

INTEGERLEVEL

CHARACTER VARYING(L) 1NAME

SMALLINTNULLABLE

INTEGEROCTET_LENGTH

host variable address of INTEGEROCTET_LENGTH_POINTER

SMALLINTPARAMETER_MODE

SMALLINTPARAMETER_ORDINAL_POSITION

CHARACTER VARYING(L) 1PARAMETER_SPECIFIC_CATALOG

CHARACTER VARYING(L) 1PARAMETER_SPECIFIC_NAME

CHARACTER VARYING(L) 1PARAMETER_SPECIFIC_SCHEMA

SMALLINTPRECISION

host variable address of INTEGERRETURNED_CARDINALITY_POINTER

SMALLINTSCALE

CHARACTER VARYING(L) 1SCOPE_CATALOG

CHARACTER VARYING(L) 1SCOPE_NAME

CHARACTER VARYING(L) 1SCOPE_SCHEMA

CHARACTER VARYING(L) 1SPECIFIC_TYPE_CATALOG

CHARACTER VARYING(L) 1SPECIFIC_TYPE_NAME

© ISO/IEC 2023 – All rights reserved 77

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Data TypeField

CHARACTER VARYING(L) 1SPECIFIC_TYPE_SCHEMA

SMALLINTTYPE

SMALLINTUNNAMED

CHARACTER VARYING(L) 1USER_DEFINED_TYPE_CATALOG

SMALLINTUSER_DEFINED_TYPE_CODE

CHARACTER VARYING(L) 1USER_DEFINED_TYPE_NAME

CHARACTER VARYING(L) 1USER_DEFINED_TYPE_SCHEMA

implementation-defined (IE019) data typeimplementation-defined (IE019) item field

1Where L is an implementation-defined (IL036) integer not less than 128, and L1 is the implementation-defined (IL036)
maximum length for the <general value specification> CURRENT_TRANSFORM_GROUP_FOR_TYPE.

Access Rules

None.

General Rules

1) Table 6, “Codes used for implementationdata types in SQL/CLI”, specifies the codes associatedwith
the SQL data types used in implementation descriptor areas.

Table 6— Codes used for implementation data types in SQL/CLI

CodeData Type

50ARRAY

25BIGINT

60BINARY

30BINARY LARGE OBJECT

61BINARY VARYING

16BOOLEAN

1 (one)CHARACTER

40CHARACTER LARGE OBJECT

12CHARACTER VARYING

78 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeData Type

9DATE, TIME, TIMEWITH TIME ZONE, TIMESTAMP,
or TIMESTAMPWITH TIME ZONE

26DECFLOAT

3DECIMAL

8DOUBLE PRECISION

6FLOAT

4INTEGER

10INTERVAL

55MULTISET

2NUMERIC

7REAL

20REF

19ROW

5SMALLINT

17User-defined type

< 0 (zero)implementation-defined (IE002) data type

2) Table 7, “Codes used for application data types in SQL/CLI”, specifies the codes associated with the
SQL data types used in application descriptor areas.

Table 7— Codes used for application data types in SQL/CLI

CodeData Type

< 0 (zero)implementation-defined (IE002) data type

51ARRAY LOCATOR

25BIGINT

60BINARY

30BINARY LARGE OBJECT

31BINARY LARGE OBJECT LOCATOR

61BINARY VARYING

1 (one)CHARACTER

© ISO/IEC 2023 – All rights reserved 79

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeData Type

40CHARACTER LARGE OBJECT

41CHARACTER LARGE OBJECT LOCATOR

26DECFLOAT

3DECIMAL

8DOUBLE PRECISION

6FLOAT

4INTEGER

56MULTISET LOCATOR

2NUMERIC

7REAL

20REF

5SMALLINT

18User-defined type LOCATOR

3) Table 8, “Codes associated with datetime data types in SQL/CLI”, specifies the codes associated
with the datetime data types allowed in SQL/CLI.

Table 8— Codes associated with datetime data types in SQL/CLI

CodeDatetime Data Type

1 (one)DATE

2TIME

4TIMEWITH TIME ZONE

3TIMESTAMP

5TIMESTAMPWITH TIME ZONE

4) Table 9, “Codes associatedwith <interval qualifier> in SQL/CLI”, specifies the codes associatedwith
<interval qualifier>s for interval data types in SQL/CLI.

Table 9— Codes associated with <interval qualifier> in SQL/CLI

CodeInterval qualifier

3DAY

80 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeInterval qualifier

8DAY TO HOUR

9DAY TO MINUTE

10DAY TO SECOND

4HOUR

11HOUR TO MINUTE

12HOUR TO SECOND

5MINUTE

13MINUTE TO SECOND

2MONTH

6SECOND

1 (one)YEAR

7YEAR TO MONTH

5) Table 10, “Codes associated with <parameter mode> in SQL/CLI”, specifies the codes associated
with the SQL parameter modes.

Table 10— Codes associated with <parameter mode> in SQL/CLI

CodeParameter mode

1 (one)PARAMMODE IN

2PARAMMODE INOUT

4PARAMMODE OUT

Table 11— Codes associated with user-defined types in SQL/CLI

CodeUser-defined Type

1 (one)DISTINCT

2STRUCTURED

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 81

ISO/IEC 9075-3:2023(E)
6.17 Description of CLI item descriptor areas

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.18 Other tables associated with CLI
This Subclause is modified by Subclause 18.4, “Other tables associated with CLI”, in ISO/IEC 9075-9.

The tables contained in this Subclause are used to specify the codes used by the various CLI routines.

Table 12— Codes used for SQL/CLI diagnostic fields

TypeCodeField

Status18CATALOG_NAME

Status8CLASS_ORIGIN

Status21COLUMN_NAME

Status-1247COLUMN_NUMBER

Status25CONDITION_IDENTIFIER

Status14CONDITION_NUMBER

Status10CONNECTION_NAME

Status15CONSTRAINT_CATALOG

Status17CONSTRAINT_NAME

Status16CONSTRAINT_SCHEMA

Status22CURSOR_NAME

Header7DYNAMIC_FUNCTION

Header12DYNAMIC_FUNCTION_CODE

Status23MESSAGE_LENGTH

Status24MESSAGE_OCTET_LENGTH

Status6MESSAGE_TEXT

Header13MORE

Status5NATIVE_CODE

Header2NUMBER

Status37PARAMETER_MODE

Status26PARAMETER_NAME

Status38PARAMETER_ORDINAL_POSITION

Header1 (one)RETURNCODE

Status27ROUTINE_CATALOG

82 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

TypeCodeField

Status29ROUTINE_NAME

Status28ROUTINE_SCHEMA

Header3ROW_COUNT

Status-1248ROW_NUMBER

Status19SCHEMA_NAME

Status11SERVER_NAME

Status30SPECIFIC_NAME

Status4SQLSTATE

Status9SUBCLASS_ORIGIN

Status20TABLE_NAME

Header36TRANSACTION_ACTIVE

Header34TRANSACTIONS_COMMITTED

Header35TRANSACTIONS_ROLLED_BACK

Status31TRIGGER_CATALOG

Status33TRIGGER_NAME

Status32TRIGGER_SCHEMA

Header< 0 (zero) 1implementation-defined (IE020)
diagnostics header field

Status< 0 (zero) 1implementation-defined (IE020)
diagnostics status field

1 Except for values in this table that are less than 0 (zero).

Table 13— Codes used for SQL/CLI handle types

CodeHandle type

2CONNECTION HANDLE

4DESCRIPTOR HANDLE

1 (one)ENVIRONMENT HANDLE

3STATEMENT HANDLE

© ISO/IEC 2023 – All rights reserved 83

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeHandle type

< 1 (one) or > 100implementation-defined (IE020)
handle type

Table 14— Codes used for transaction termination

CodeTermination type

0 (zero)COMMIT

1 (one)ROLLBACK

2SAVEPOINT NAME ROLLBACK

4SAVEPOINT NAME RELEASE

6COMMIT AND CHAIN

7ROLLBACK AND CHAIN

< 0 (zero)implementation-defined (IV039)
termination type

Table 15— Codes used for environment attributes

May be setCodeAttribute

Yes10001NULL TERMINATION

implementation-defined (IV039)≥ 0 (zero),
except values
given above

implementation-defined (IV039)
environment attribute

Table 16— Codes used for connection attributes

May be setCodeAttribute

No10001POPULATE IPD

Yes10027SAVEPOINT NAME

implementation-defined (IV039)≥ 0 (zero),
except values
given above

implementation-defined (IV039)
connection attribute

Table 17— Codes used for statement attributes

May be setCodeAttribute

Yes10011APD HANDLE

84 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

May be setCodeAttribute

Yes10010ARD HANDLE

No10013IPD HANDLE

No10012IRD HANDLE

Yes10027CURRENT OF POSITION

Yes-3CURSOR HOLDABLE

Yes-1CURSOR SCROLLABLE

Yes-2CURSOR SENSITIVITY

Yes10014METADATA ID

Yes10029NEST DESCRIPTOR

implementation-defined (IV039)≥ 0 (zero),
except values
given above

implementation-defined (IV039)
statement attribute

Table 18— Codes used for FreeStmt options

CodeOption

0 (zero)CLOSE CURSOR

1 (one)FREE HANDLE

2UNBIND COLUMNS

3UNBIND PARAMETERS

4REALLOCATE

Table 19—Data types of attributes

ValuesData typeAttribute

0 (False) 1 (True)INTEGERNULL TERMINATION

0 (False) 1 (True)INTEGERPOPULATE IPD

Handle valueINTEGERAPD HANDLE

Handle valueINTEGERARD HANDLE

Handle valueINTEGERIPD HANDLE

Handle valueINTEGERIRD HANDLE

© ISO/IEC 2023 – All rights reserved 85

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ValuesData typeAttribute

Integer value denoting the current row in the
rowset

INTEGERCURRENT OF POSITION

0 (NONHOLDABLE) 1 (HOLDABLE)INTEGERCURSOR HOLDABLE

0 (NONSCROLLABLE) 1 (SCROLLABLE)INTEGERCURSOR SCROLLABLE

0 (ASENSITIVE) 1 (INSENSITIVE) 2 (SENSITIVE)INTEGERCURSOR SENSITIVITY

0 (FALSE) 1 (TRUE)INTEGERMETADATA ID

0 (FALSE) 1 (TRUE)INTEGERNEST DESCRIPTOR

Not specifiedCHARACTERSAVEPOINT NAME

Table 20— Codes used for SQL/CLI descriptor fields

TypeSQL Item Descriptor NameCodeField

Header(Not applicable)1099ALLOC_TYPE

Header(Not applicable)20ARRAY_SIZE

Header(Not applicable)21ARRAY_STATUS_POINTER

ItemCARDINALITY1040CARDINALITY

ItemCHARACTER_SET_CATALOG1018CHARACTER_SET_CATALOG

ItemCHARACTER_SET_NAME1020CHARACTER_SET_NAME

ItemCHARACTER_SET_SCHEMA1019CHARACTER_SET_SCHEMA

ItemCOLLATION_CATALOG1015COLLATION_CATALOG

ItemCOLLATION_NAME1017COLLATION_NAME

ItemCOLLATION_SCHEMA1016COLLATION_SCHEMA

HeaderCOUNT1001COUNT

Item(Not applicable)1039CURRENT_TRANSFORM_GROUP

ItemDATA1010DATA_POINTER

ItemDATETIME_INTERVAL_CODE1007DATETIME_INTERVAL_CODE

ItemDATETIME_INTERVAL_PRECISION26DATETIME_INTERVAL_PRECISION

ItemDEGREE1041DEGREE

HeaderDYNAMIC_FUNCTION1031DYNAMIC_FUNCTION

86 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

TypeSQL Item Descriptor NameCodeField

HeaderDYNAMIC_FUNCTION_CODE1032DYNAMIC_FUNCTION_CODE

ItemINDICATOR1009INDICATOR_POINTER

ItemKEY_MEMBER1030KEY_MEMBER

HeaderKEY_TYPE1029KEY_TYPE

ItemLENGTH1003LENGTH

ItemLEVEL1042LEVEL

ItemNAME1011NAME

ItemNULLABLE1008NULLABLE

ItemOCTET_LENGTH1013OCTET_LENGTH

ItemBoth OCTET_LENGTH (input) and
RETURNED_OCTET_LENGTH(output)

1004OCTET_LENGTH_POINTER

ItemPARAMETER_MODE1021PARAMETER_MODE

ItemPARAMETER_ORDINAL_POSITION1022PARAMETER_ORDINAL_POSITION

ItemPARAMETER_SPECIFIC_CATALOG1023PARAMETER_SPECIFIC_CATALOG

ItemPARAMETER_SPECIFIC_NAME1025PARAMETER_SPECIFIC_NAME

ItemPARAMETER_SPECIFIC_SCHEMA1024PARAMETER_SPECIFIC_SCHEMA

ItemPRECISION1005PRECISION

ItemRETURNED_CARDINALITY1043RETURNED_CARDINALITY_POINTER

Header(Not applicable)34ROW_PROCESSED_POINTER

ItemSCALE1006SCALE

ItemSCOPE_CATALOG1033SCOPE_CATALOG

ItemSCOPE_NAME1034SCOPE_NAME

ItemSCOPE_SCHEMA1035SCOPE_SCHEMA

Item(Not applicable)1036SPECIFIC_TYPE_CATALOG

Item(Not applicable)1038SPECIFIC_TYPE_NAME

Item(Not applicable)1037SPECIFIC_TYPE_SCHEMA

HeaderTOP_LEVEL_COUNT1044TOP_LEVEL_COUNT

ItemTYPE1002TYPE

© ISO/IEC 2023 – All rights reserved 87

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

TypeSQL Item Descriptor NameCodeField

ItemUNNAMED1012UNNAMED

ItemUSER_DEFINED_TYPE_CATALOG1026USER_DEFINED_TYPE_CATALOG

ItemUSER_DEFINED_TYPE_NAME1028USER_DEFINED_TYPE_NAME

ItemUSER_DEFINED_TYPE_SCHEMA1027USER_DEFINED_TYPE_SCHEMA

ItemUSER_DEFINED_TYPE_CODE1045USER_DEFINED_TYPE_CODE

Headerimplementation-defined (IV041)
descriptor header field

0 (zero)
through
999, or
≥ 1200,
exclud-
ing val-
ues
defined
in this
table

implementation-defined (IV041)
descriptor header field

Itemimplementation-defined (IV041)
descriptor item field

0 (zero)
through
999, or
≥ 1200,
exclud-
ing val-
ues
defined
in this
table

implementation-defined (IV041)
descriptor item field

Table 21— Ability to set SQL/CLI descriptor fields

May be set

IPDAPDIRDARDField

No1NoNoNoALLOC_TYPE

NoNoARRAY_SIZE

ARRAY_STATUS_POINTER

NoNoNoCARDINALITY

NoCHARACTER_SET_CATALOG

NoCHARACTER_SET_NAME

NoCHARACTER_SET_SCHEMA

88 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

May be set

IPDAPDIRDARDField

NoCOLLATION_CATALOG

NoCOLLATION_NAME

NoCOLLATION_SCHEMA

NoCOUNT

NoNoNoNoCURRENT_TRANSFORM_GROUP

NoDATA_POINTER

NoDATETIME_INTERVAL_CODE

NoDATETIME_INTERVAL_PRECISION

NoNoNoDEGREE

NoNoNoNoDYNAMIC_FUNCTION

NoNoNoNoDYNAMIC_FUNCTION_CODE

NoNoINDICATOR_POINTER

NoNoNoNoKEY_MEMBER

NoNoNoNoKEY_TYPE

NoLENGTH

NoLEVEL

NoNAME

NoNULLABLE

NoOCTET_LENGTH

NoNoOCTET_LENGTH_POINTER

NoNoNoPARAMETER_MODE

NoNoNoPARAMETER_ORDINAL_POSITION

NoNoNoPARAMETER_SPECIFIC_CATALOG

NoNoNoPARAMETER_SPECIFIC_NAME

NoNoNoPARAMETER_SPECIFIC_SCHEMA

NoPRECISION

NoNoRETURNED_CARDINALITY_POINTER

© ISO/IEC 2023 – All rights reserved 89

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

May be set

IPDAPDIRDARDField

NoNoROWS_PROCESSED_POINTER

NoSCALE

NoSCOPE_CATALOG

NoSCOPE_NAME

NoSCOPE_SCHEMA

NoNoNoNoSPECIFIC_TYPE_CATALOG

NoNoNoNoSPECIFIC_TYPE_NAME

NoNoNoNoSPECIFIC_TYPE_SCHEMA

NoTOP_LEVEL_COUNT

NoTYPE

NoUNNAMED

NoUSER_DEFINED_TYPE_CATALOG

NoUSER_DEFINED_TYPE_NAME

NoUSER_DEFINED_TYPE_SCHEMA

NoNoNoNoUSER_DEFINED_TYPE_CODE

IDIDIDIDimplementation-defined (IE019) descriptor header
field

IDIDIDIDimplementation-defined(IE019)descriptor itemfield

1Where “No”means that the descriptor field is not settable, “ID”means that it is implementation-defined (IV040)whether
or not the descriptor field is settable, and the absence of any notation means that the descriptor field is settable.

Table 22— Ability to retrieve SQL/CLI descriptor fields

May be retrieved

IPDAPDIRDARDField

PSALLOC_TYPE

NoNoARRAY_SIZE

ARRAY_STATUS_POINTER

NoPSNoCARDINALITY

90 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

May be retrieved

IPDAPDIRDARDField

PSCHARACTER_SET_CATALOG

PSCHARACTER_SET_NAME

PSCHARACTER_SET_SCHEMA

PSCOLLATION_CATALOG

PSCOLLATION_NAME

PSCOLLATION_SCHEMA

PSCOUNT

PSCURRENT_TRANSFORM_GROUP

No1NoDATA_POINTER

PSDATETIME_INTERVAL_CODE

PSDATETIME_INTERVAL_PRECISION

NoPSNoDEGREE

NoNoDYNAMIC_FUNCTION

NoNoDYNAMIC_FUNCTION_CODE

NoNoINDICATOR_POINTER

NoNoPSNoKEY_MEMBER

NoNoPSNoKEY_TYPE

PSLENGTH

PSLEVEL

PSNAME

PSNULLABLE

PSOCTET_LENGTH

NoNoOCTET_LENGTH_POINTER

NoNoPSNoPARAMETER_MODE

NoNoPSNoPARAMETER_ORDINAL_POSITION

NoNoPSNoPARAMETER_SPECIFIC_CATALOG

© ISO/IEC 2023 – All rights reserved 91

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

May be retrieved

IPDAPDIRDARDField

NoNoPSNoPARAMETER_SPECIFIC_NAME

NoNoPSNoPARAMETER_SPECIFIC_SCHEMA

PSPRECISION

NoNoRETURNED_CARDINALITY_POINTER

NoNoROWS_PROCESSED_POINTER

PSSCALE

PSSCOPE_CATALOG

PSSCOPE_NAME

PSSCOPE_SCHEMA

PSSPECIFIC_TYPE_CATALOG

PSSPECIFIC_TYPE_NAME

PSSPECIFIC_TYPE_SCHEMA

PSTOP_LEVEL_COUNT

PSTYPE

PSUNNAMED

PSUSER_DEFINED_TYPE_CATALOG

PSUSER_DEFINED_TYPE_NAME

PSUSER_DEFINED_TYPE_SCHEMA

PSUSER_DEFINED_TYPE_CODE

IDIDIDIDimplementation-defined (IV041) descriptor header
field

IDIDIDIDimplementation-defined (IV041) descriptor item
field

1Where “No” means that the descriptor field is not retrievable, PSmeans that the descriptor field is retrievable from the
IRD only when a prepared or executed statement is associated with the IRD, the absence of any notation means that the
descriptor field is retrievable, and “ID” means that it is implementation-defined (IV042) whether or not the descriptor
field is retrievable.

92 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Table 23— SQL/CLI descriptor field default values

Default values

IPDAPDIRDARDField

AUTOMATICAUTOMATIC
or USER

AUTOMATICAUTOMATIC
or USER

ALLOC_TYPE

1 (one)1 (one)ARRAY_SIZE

NullNullNullNullARRAY_STATUS_POINTER

CARDINALITY

CHARACTER_SET_CATALOG

CHARACTER_SET_NAME

CHARACTER_SET_SCHEMA

COLLATION_CATALOG

COLLATION_NAME

COLLATION_SCHEMA

0 (zero) 10 (zero)COUNT

CURRENT_TRANSFORM_GROUP

NullNullDATA_POINTER

DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_PRECISION

DEGREE

DYNAMIC_FUNCTION

DYNAMIC_FUNCTION_CODE

NullNullINDICATOR_POINTER

KEY_MEMBER

KEY_TYPE

LENGTH

0 (zero)0 (zero)LEVEL

NAME

NULLABLE

© ISO/IEC 2023 – All rights reserved 93

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Default values

IPDAPDIRDARDField

OCTET_LENGTH

NullNullOCTET_LENGTH_POINTER

PARAMETER_MODE

PARAMETER_ORDINAL_POSITION

PARAMETER_SPECIFIC_CATALOG

PARAMETER_SPECIFIC_NAME

PARAMETER_SPECIFIC_SCHEMA

PRECISION

NullNullRETURNED_CARDINALITY_POINTER

NullNullROWS_PROCESSED_POINTER

SCALE

SCOPE_CATALOG

SCOPE_NAME

SCOPE_SCHEMA

SPECIFIC_TYPE_CATALOG

SPECIFIC_TYPE_NAME

SPECIFIC_TYPE_SCHEMA

0 (zero)0 (zero)TOP_LEVEL_COUNT

DEFAULTDEFAULTTYPE

UNNAMED

USER_DEFINED_TYPE_CATALOG

USER_DEFINED_TYPE_NAME

USER_DEFINED_TYPE_SCHEMA

USER_DEFINED_TYPE_CODE

IDIDIDIDimplementation-defined (IV041)
descriptor header field

IDIDIDIDimplementation-defined (IV041)
descriptor item field

94 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Default values

IPDAPDIRDARDField

1Where “Null” means that the descriptor field’s default value is a null pointer, the absence of any notation means that
the descriptor field’s default value is initially undefined, “ID” means that the descriptor field’s default value is implemen-
tation-defined (IW059), and every other value specifies the descriptor field’s default value.

Table 24— Codes used for fetch orientation

CodeFetch Orientation

1 (one)NEXT

2FIRST

3LAST

4PRIOR

5ABSOLUTE

6RELATIVE

Table 25—Multi-row fetch status codes

Return codeReturn code
meaning

0 (zero)Row success

6Row success with
information

5Row error

3No row

Table 26—Miscellaneous codes used in CLI

IndicatesCodeContext

AUTOMATIC1
(one)

Allocation type

USER2Allocation type

FALSE, NONSCROLLABLE, ASENSITIVE, NONULLS, NONHOLD-
ABLE

0
(zero)

Attribute value

TRUE, SCROLLABLE, INSENSITIVE, NULLABLE, HOLDABLE1
(one)

Attribute value

© ISO/IEC 2023 – All rights reserved 95

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

IndicatesCodeContext

SENSITIVE2Attribute value

ALL TYPES0
(zero)

Data type

APD TYPE-99Data type

ARD TYPE-99Data type

DEFAULT99Data type

INITIALLY DEFERRED5Deferrable constraints

INITIALLY IMMEDIATE6Deferrable constraints

NOT DEFERRABLE7Deferrable constraints

NULL TERMINATED-3Input string length

SQL NULL DATA-1Input or output data

DATA AT EXEC-2Parameter length

CASCADE0
(zero)

Referential Constraint

RESTRICT1
(one)

Referential Constraint

SET DEFAULT4Referential Constraint

SET NULL2Referential Constraint

NO ACTION3Referential Constraint

Table 27— Codes used to identify SQL/CLI routines

CodeGeneric Name

1 (one)AllocConnect

2AllocEnv

1001AllocHandle

3AllocStmt

4BindCol

72BindParameter

5Cancel

96 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeGeneric Name

1003CloseCursor

6ColAttribute

56ColumnPrivileges

40Columns

7Connect

1004CopyDesc

57DataSources

8DescribeCol

9Disconnect

1005EndTran

10Error

11ExecDirect

12Execute

13Fetch

1021FetchScroll

60ForeignKeys

14FreeConnect

15FreeEnv

1006FreeHandle

16FreeStmt

1007GetConnectAttr

17GetCursorName

43GetData

1008GetDescField

1009GetDescRec

1010GetDiagField

1011GetDiagRec

1012GetEnvAttr

© ISO/IEC 2023 – All rights reserved 97

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeGeneric Name

1027GetFeatureInfo

44GetFunctions

45GetInfo

1022GetLength

1025GetParamData

1023GetPosition

1028GetSessionInfo

1014GetStmtAttr

1024GetSubString

47GetTypeInfo

61MoreResults

73NextResult

18NumResultCols

48ParamData

19Prepare

65PrimaryKeys

49PutData

20RowCount

1016SetConnectAttr

21SetCursorName

1017SetDescField

1018SetDescRec

1019SetEnvAttr

1020SetStmtAttr

52SpecialColumns

74StartTran

70TablePrivileges

54Tables

98 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeGeneric Name

< 0 (zero), or 400 through 1299, or ≥ 2000implementation-
defined (IV054) CLI
routine

Table 28— Codes and data types for implementation information

Data TypeCodeInformation Type

CHARACTER(1)10003CATALOG NAME

CHARACTER(254)10004COLLATING SEQUENCE

SMALLINT23CURSOR COMMIT BEHAVIOR

CHARACTER(128)2DATA SOURCE NAME

CHARACTER(254)17DBMS NAME

CHARACTER(254)18DBMS VERSION

INTEGER26DEFAULTTRANSACTIONISOLATION

SMALLINT28IDENTIFIER CASE

SMALLINT34MAXIMUMCATALOGNAMELENGTH

SMALLINT30MAXIMUMCOLUMNNAME LENGTH

SMALLINT97MAXIMUM COLUMNS IN GROUP BY

SMALLINT99MAXIMUM COLUMNS IN ORDER BY

SMALLINT100MAXIMUM COLUMNS IN SELECT

SMALLINT101MAXIMUM COLUMNS IN TABLE

SMALLINT1 (one)MAXIMUM CONCURRENT ACTIVIT-
IES

SMALLINT31MAXIMUM CURSOR NAME LENGTH

SMALLINT0 (zero)MAXIMUM DRIVER CONNECTIONS

SMALLINT10005MAXIMUM IDENTIFIER LENGTH

SMALLINT32MAXIMUM SCHEMA NAME LENGTH

SMALLINT20000MAXIMUM STATEMENT OCTETS

SMALLINT20001MAXIMUM STATEMENT OCTETS
DATA

© ISO/IEC 2023 – All rights reserved 99

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Data TypeCodeInformation Type

SMALLINT20002MAXIMUM STATEMENT OCTETS
SCHEMA

SMALLINT35MAXIMUM TABLE NAME LENGTH

SMALLINT106MAXIMUM TABLES IN SELECT

SMALLINT107MAXIMUM USER NAME LENGTH

SMALLINT85NULL COLLATION

CHARACTER(1)90ORDER BY COLUMNS IN SELECT

CHARACTER(1)14SEARCH PATTERN ESCAPE

CHARACTER(128)13SERVER NAME

CHARACTER(254)94SPECIAL CHARACTERS

SMALLINT46TRANSACTION CAPABLE

INTEGER72TRANSACTION ISOLATION OPTION

implementation-defined (IE021) data typeimplemen-
tation-
defined
(IE021) code

implementation-defined (IE021)
information type

CHARACTER(L1) or INTEGER21000
through
24999

SQL-implementation information

INTEGER25000
through
29999

SQL sizing information

CHARACTER(L1) or INTEGER11000
through
14999

implementation-defined (IE021)
implementation information

INTEGER15000
through
19999

implementation-defined (IE021) siz-
ing information

1 L is the implementation-defined (IL006) maximum length of a variable-length character string.

NOTE 15— Additional implementation information items are defined in Subclause 7.50, “SQL_IMPLEMENTATION_INFO
base table”, in ISO/IEC 9075-11.

Additional sizing items are defined in Subclause 7.51, “SQL_SIZING base table”, in ISO/IEC 9075-11.

100 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Table 29— Codes and data types for session implementation information

<general value specification>Data TypeCodeInformation Type

USER and CURRENT_USERCHARACTER(L1)47CURRENT USER

CURRENT_DEFAULT_TRANS-
FORM_GROUP

CHARACTER(L1)20004CURRENT DEFAULT
TRANSFORMGROUP

CURRENT_PATHCHARACTER(L1)20005CURRENT PATH

CURRENT_ROLECHARACTER(L1)20006CURRENT ROLE

SESSION_USERCHARACTER(L1)20007SESSION USER

SYSTEM_USERCHARACTER(L1)20008SYSTEM USER

CURRENT_CATALOGCHARACTER(L1)20009CURRENT CATALOG

CURRENT_SCHEMACHARACTER(L1)20010CURRENT SCHEMA

1Where L is the implementation-defined (IL016) maximum length of the corresponding <general value specification>.

Table 30— Values for TRANSACTION ISOLATION OPTION with StartTran

ValueInformation Type

1 (one)READ UNCOMMITTED

2READ COMMITTED

4REPEATABLE READ

8SERIALIZABLE

Table 31— Values for TRANSACTION ACCESS MODE with StartTran

ValueInformation Type

1 (one)READ ONLY

2READWRITE

Table 32— Codes used for concise data types

CodeData Type

< 0 (zero)implementation-defined(IE002)data
type

© ISO/IEC 2023 – All rights reserved 101

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeData Type

1 (one)CHARACTER

1 (one)CHAR

2NUMERIC

3DECIMAL

3DEC

4INTEGER

4INT

5SMALLINT

6FLOAT

7REAL

8DOUBLE

26DECFLOAT

60BINARY

61BINARY VARYING

61VARBINARY

12CHARACTER VARYING

12CHAR VARYING

12VARCHAR

16BOOLEAN

17User-defined type

19ROW

20REF

25BIGINT

30BINARY LARGE OBJECT

30BLOB

40CHARACTER LARGE OBJECT

40CLOB

50ARRAY

102 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeData Type

55MULTISET

91DATE

92TIME

93TIMESTAMP

94TIMEWITH TIME ZONE

95TIMESTAMPWITH TIME ZONE

101INTERVAL YEAR

102INTERVAL MONTH

103INTERVAL DAY

104INTERVAL HOUR

105INTERVAL MINUTE

106INTERVAL SECOND

107INTERVAL YEAR TO MONTH

108INTERVAL DAY TO HOUR

109INTERVAL DAY TO MINUTE

110INTERVAL DAY TO SECOND

111INTERVAL HOUR TO MINUTE

112INTERVAL HOUR TO SECOND

113INTERVAL MINUTE TO SECOND

Table 33— Codes used with concise datetime data types in SQL/CLI

Datetime Interval CodeData Type CodeConcise Data Type Code

1 (one)991

2992

3993

4994

5995

© ISO/IEC 2023 – All rights reserved 103

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Table 34— Codes used with concise interval data types in SQL/CLI

Datetime Interval CodeData Type CodeConcise Data Type Code

1 (one)10101

210102

310103

410104

510105

610106

710107

810108

910109

1010110

1110111

1210112

1310113

Table 35— Concise codes used with datetime data types in SQL/CLI

Concise CodeDatetime Interval Code

911 (one)

922

933

944

955

Table 36— Concise codes used with interval data types in SQL/CLI

CodeDatetime Interval Code

1011 (one)

1022

1033

104 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CodeDatetime Interval Code

1044

1055

1066

1077

1088

1099

11010

11111

11212

11313

Table 37— Special parameter values

Data TypeValueValue Name

CHARACTER(1)'%'ALL CATALOGS

CHARACTER(1)'%'ALL SCHEMAS

CHARACTER(1)'%'ALL TYPES

Table 38— Column types and scopes used with SpecialColumns

IndicatesCodeContext

BEST ROWID1
(one)

Special Column Type

SCOPE CURRENT ROW0
(zero)

Scope of Row Id

SCOPE TRANSACTION1
(one)

Scope of Row Id

SCOPE SESSION2Scope of Row Id

PSEUDO UNKNOWN0
(zero)

Pseudo Column Flag

NOT PSEUDO1
(one)

Pseudo Column Flag

PSEUDO2Pseudo Column Flag

© ISO/IEC 2023 – All rights reserved 105

ISO/IEC 9075-3:2023(E)
6.18 Other tables associated with CLI

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

6.19 SQL/CLI data type correspondences
This Subclause is modified by Subclause 18.5, “SQL/CLI data type correspondences”, in ISO/IEC 9075-9.
This Subclause is modified by Subclause 19.1, “SQL/CLI data type correspondences”, in ISO/IEC 9075-14.
This Subclause is modified by Subclause 17.1, “SQL/CLI data type correspondences”, in ISO/IEC 9075-15.

Function

Specify the SQL/CLI data type correspondences for SQL data types and host language types associated
with the requiredparametermechanisms, as shown inTable 3, “Supported calling conventions of SQL/CLI
routines by language”.

Tables

In the following tables (Table 39, “SQL/CLI data type correspondences for Ada”, Table 40, “SQL/CLI data
type correspondences for C”, Table 41, “SQL/CLI data type correspondences for COBOL”, Table 42,
“SQL/CLI data type correspondences for Fortran”, Table 43, “SQL/CLI data type correspondences for M”,
Table 44, “SQL/CLI data type correspondences for Pascal”, and Table 45, “SQL/CLI data type correspond-
ences for PL/I”) letPbe <precision>, Sbe <scale>, Lbe <length>,Tbe <time fractional seconds precision>,
and Q be <interval qualifier>.

Table 39— SQL/CLI data type correspondences for Ada

Ada Data TypeSQL Data Type

NoneARRAY

SQL_STANDARD.INTARRAY LOCATOR

SQL_STANDARD.BIGINTBIGINT

SQL_STANDARD.CHAR, with P'LENGTH of LBINARY (L)

SQL_STANDARD.CHAR, with P'LENGTH of LBINARY LARGE OBJECT (L)

SQL_STANDARD.INTBINARY LARGE OBJECT LOC-
ATOR

SQL_STANDARD.CHAR, with P'LENGTH of LBINARY VARYING (L)

SQL_STANDARD.BOOLEANBOOLEAN

SQL_STANDARD.CHAR, with P'LENGTH of LCHARACTER (L)

SQL_STANDARD.CHAR, with P'LENGTH of LCHARACTERLARGEOBJECT(L)

SQL_STANDARD.INTCHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

106 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Ada Data TypeSQL Data Type

NoneDECIMAL(P,S)

SQL_STANDARD.DOUBLE_PRECISIONDOUBLE PRECISION

NoneFLOAT(P)

SQL_STANDARD.INTINTEGER

NoneINTERVAL(Q)

NoneMULTISET

SQL_STANDARD.INTMULTISET LOCATOR

NoneNUMERIC(P,S)

SQL_STANDARD.REALREAL

SQL_STANDARD.CHAR, with P'LENGTH of LREF

NoneROW

SQL_STANDARD.SMALLINTSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUser-defined type

SQL_STANDARD.INTUser-defined type LOCATOR

Table 40— SQL/CLI data type correspondences for C

C Data TypeSQL Data Type

NoneARRAY

longARRAY LOCATOR

long longBIGINT

char, with length LBINARY (L)

char, with length LBINARY LARGE OBJECT (L)

longBINARY LARGE OBJECT LOC-
ATOR

char, with length LBINARY VARYING (L)

shortBOOLEAN

© ISO/IEC 2023 – All rights reserved 107

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

C Data TypeSQL Data Type

char, with length (L+1)*k 1CHARACTER (L)

char, with length (L+1)*k 1CHARACTERLARGEOBJECT(L)

longCHARACTER LARGE OBJECT
LOCATOR

char, with length (L+1)*k 1CHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

NoneDECIMAL(P,S)

doubleDOUBLE PRECISION

NoneFLOAT(P)

longINTEGER

NoneINTERVAL(Q)

NoneMULTISET

longMULTISET LOCATOR

NoneNUMERIC(P,S)

floatREAL

char, with length LREF

NoneROW

shortSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUser-defined type

longUser-defined type LOCATOR

1 k is the length in units of C char of the largest character in the character set associated with the SQL data type.

Table 41— SQL/CLI data type correspondences for COBOL

COBOL Data TypeSQL Data Type

NoneARRAY

108 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

COBOL Data TypeSQL Data Type

PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined (IV035)

ARRAY LOCATOR

PICTURE S9(BPI) USAGE BINARY, where BPI is implementation-
defined (IV035)

BIGINT

alphanumeric, with length LBINARY (L)

alphanumeric, with length LBINARY LARGE OBJECT (L)

PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined (IV035)

BINARY LARGE OBJECT LOC-
ATOR

alphanumeric, with length LBINARY VARYING (L)

PICTURE XBOOLEAN

alphanumeric, with length LCHARACTER (L)

alphanumeric, with length LCHARACTERLARGEOBJECT(L)

PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined (IV035)

CHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

NoneDECIMAL(P,S)

NoneDOUBLE PRECISION

NoneFLOAT(P)

PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined (IV035)

INTEGER

NoneINTERVAL(Q)

NoneMULTISET

PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined (IV035)

MULTISET LOCATOR

USAGE DISPLAY SIGN LEADING SEPARATE, with PICTURE as spe-
cified 1

NUMERIC(P,S)

NoneREAL

alphanumeric, with length LREF

NoneROW

© ISO/IEC 2023 – All rights reserved 109

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

COBOL Data TypeSQL Data Type

PICTURE S9(SPI) USAGE BINARY, where SPI is implementation-
defined (IV035)

SMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUser-defined type

PICTURE S9(PI) USAGE BINARY, where PI is implementation-
defined (IV035)

User-defined type LOCATOR

1 Case:

1) If S = P, then a PICTUREwith an 'S' followed by a 'V' followed by P '9's.

2) If P > S > 0 (zero), then a PICTUREwith an 'S' followed by P-S '9's followed by a 'V' followed by S '9's.

3) If S = 0 (zero), then a PICTUREwith an 'S' followed by P '9's optionally followed by a 'V'.

Table 42— SQL/CLI data type correspondences for Fortran

Fortran Data TypeSQL Data Type

NoneARRAY

INTEGERARRAY LOCATOR

NoneBIGINT

CHARACTER, with length LBINARY (L)

CHARACTER, with length LBINARY LARGE OBJECT (L)

INTEGERBINARY LARGE OBJECT LOC-
ATOR

CHARACTER, with length LBINARY VARYING (L)

LOGICALBOOLEAN

CHARACTER, with length LCHARACTER (L)

CHARACTER, with length LCHARACTERLARGEOBJECT(L)

INTEGERCHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

NoneDECIMAL(P,S)

110 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Fortran Data TypeSQL Data Type

DOUBLE PRECISIONDOUBLE PRECISION

NoneFLOAT(P)

INTEGERINTEGER

NoneINTERVAL(Q)

NoneMULTISET

INTEGERMULTISET LOCATOR

NoneNUMERIC(P,S)

REALREAL

CHARACTER, with length LREF

NoneROW

NoneSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUser-defined type

INTEGERUser-defined type LOCATOR

Table 43— SQL/CLI data type correspondences for M

M Data TypeSQL Data Type

NoneARRAY

characterARRAY LOCATOR

NoneBIGINT

characterBINARY (L)

characterBINARY LARGE OBJECT (L)

characterBINARY LARGE OBJECT LOC-
ATOR

characterBINARY VARYING (L)

NoneBOOLEAN

NoneCHARACTER (L)

© ISO/IEC 2023 – All rights reserved 111

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

MData TypeSQL Data Type

characterCHARACTERLARGEOBJECT(L)

characterCHARACTER LARGE OBJECT
LOCATOR

character with maximum length LCHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

characterDECIMAL(P,S)

NoneDOUBLE PRECISION

NoneFLOAT(P)

characterINTEGER

NoneINTERVAL(Q)

NoneMULTISET

characterMULTISET LOCATOR

characterNUMERIC(P,S)

characterREAL

characterREF

NoneROW

NoneSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUser-defined type

characterUser-defined type LOCATOR

Table 44— SQL/CLI data type correspondences for Pascal

Pascal Data TypeSQL Data Type

NoneARRAY

INTEGERARRAY LOCATOR

NoneBIGINT

112 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Pascal Data TypeSQL Data Type

PACKED ARRAY[1..L] OF CHARBINARY (L)

PACKED ARRAY[1..L] OF CHARBINARY LARGE OBJECT (L), L >
1 (one)

INTEGERBINARY LARGE OBJECT LOC-
ATOR

PACKED ARRAY[1..L] OF CHARBINARY VARYING (L)

BOOLEANBOOLEAN

CHARCHARACTER (1)

PACKED ARRAY[1..L] OF CHARCHARACTER (L), L > 1 (one)

PACKED ARRAY[1..L] OF CHARCHARACTERLARGEOBJECT(L),
L > 1 (one)

INTEGERCHARACTER LARGE OBJECT
LOCATOR

NoneCHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

NoneDECIMAL(P,S)

NoneDOUBLE PRECISION

NoneFLOAT(P)

INTEGERINTEGER

NoneINTERVAL(Q)

NoneMULTISET

INTEGERMULTISET LOCATOR

NoneNUMERIC(P,S)

REALREAL

PACKED ARRAY[1..L] OF CHARREF, L > 1 (one)

NoneROW

NoneSMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

© ISO/IEC 2023 – All rights reserved 113

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Pascal Data TypeSQL Data Type

NoneUser-defined type

INTEGERUser-defined type LOCATOR

Table 45— SQL/CLI data type correspondences for PL/I

PL/I Data TypeSQL Data Type

NoneARRAY

FIXED BINARY(PI), where PI is implementation-defined (IV036)ARRAY LOCATOR

FIXED BINARY(BPI), where BPI is implementation-defined
(IV036)

BIGINT

CHARACTER(L)BINARY (L)

CHARACTER(L) VARYINGBINARY LARGE OBJECT (L)

FIXED BINARY(PI), where PI is implementation-defined (IV036)BINARY LARGE OBJECT LOC-
ATOR

CHARACTER(L) VARYINGBINARY VARYING (L)

BIT(1)BOOLEAN

CHARACTER(L)CHARACTER (L)

CHARACTER(L) VARYINGCHARACTERLARGEOBJECT(L)

FIXED BINARY(PI), where PI is implementation-defined (IV036)CHARACTER LARGE OBJECT
LOCATOR

CHARACTER(L) VARYINGCHARACTER VARYING (L)

NoneDATE

NoneDECFLOAT(P)

FIXED DECIMAL(P,S)DECIMAL(P,S)

NoneDOUBLE PRECISION

FLOAT BINARY (P)FLOAT(P)

FIXED BINARY(PI), where PI is implementation-defined (IV036)INTEGER

NoneINTERVAL(Q)

NoneMULTISET

FIXED BINARY(PI), where PI is implementation-defined (IV036)MULTISET LOCATOR

114 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

PL/I Data TypeSQL Data Type

NoneNUMERIC(P,S)

NoneREAL

CHARACTER VARYING (L)REF

NoneROW

FIXED BINARY(SPI),whereSPI is implementation-defined(IV036)SMALLINT

NoneTIME(T)

NoneTIMESTAMP(T)

NoneUser-defined type LOCATOR

FIXED BINARY(PI), where PI is implementation-defined (IV036)User-defined type

© ISO/IEC 2023 – All rights reserved 115

ISO/IEC 9075-3:2023(E)
6.19 SQL/CLI data type correspondences

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7 SQL/CLI routines

This Clause is modified by Clause 19, “SQL/CLI routines”, in ISO/IEC 9075-9.

7.1 Introduction to SQL/CLI routines
Subclause 6.1, “<CLI routine>”, defines a generic CLI routine. This Subclause describes the individual CLI
routines in alphabetical order.

For convenience, the variable <CLI name prefix> is omitted and the <CLI generic name> is used for the
descriptions. For presentation purposes (and purely arbitrarily), the routines are presented as functions
rather than as procedures.

7.2 AllocConnect()

Function

Allocate an SQL-connection and assign a handle to it.

Definition

AllocConnect (
 EnvironmentHandle IN INTEGER,
 ConnectionHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) AllocHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE, with EH as
the value of InputHandle and with ConnectionHandle as OutputHandle.

Conformance Rules

None.

116 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.3 AllocEnv()

Function

Allocate an SQL-environment and assign a handle to it.

Definition

AllocEnv (
 EnvironmentHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) AllocHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE, with zero
as the value of InputHandle, and with EnvironmentHandle as OutputHandle.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 117

ISO/IEC 9075-3:2023(E)
7.3 AllocEnv()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.4 AllocHandle()

Function

Allocate a resource and assign a handle to it.

Definition

AllocHandle (
 HandleType IN SMALLINT,
 InputHandle IN INTEGER,
 OutputHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let IH be the value of InputHandle.

2) If HT is not one of the code values in Table 13, “Codes used for SQL/CLI handle types”, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

3) Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i) If the maximum number of SQL-environments that can be allocated at one time has
already been reached, then an exception condition is raised: CLI-specific condition—
limit on number of handles exceeded (HY014). A skeleton SQL-environment is allocated
and is assigned a unique value that is returned in OutputHandle.

ii) Case:

1) If thememory requirements tomanage an SQL-environment cannot be satisfied,
thenOutputHandle is set to zero and an exception condition is raised:CLI-specific
condition—memory allocation error (HY001).

NOTE16—Nodiagnostic information is generated in this case as there is no valid environment
handle that can be used in order to obtain diagnostic information.

2) If the resources to manage an SQL-environment cannot be allocated for imple-
mentation-defined (IC010) reasons, then an implementation-defined (IC010)
exception condition is raised. A skeleton SQL-environment is allocated and is
assigned a unique value that is returned in OutputHandle.

3) Otherwise, the resources to manage an SQL-environment are allocated and are
referred to as an allocated SQL-environment. The allocated SQL-environment is
assigned a unique value that is returned in OutputHandle.

b) If HT indicates CONNECTION HANDLE, then:

i) If IH does not identify an allocated SQL-environment or if it identifies an allocated
skeleton SQL-environment, thenOutputHandle is set to zero andan exception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

ii) Let E be the allocated SQL-environment identified by IH.

iii) The diagnostics area associated with E is emptied.

118 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.4 AllocHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iv) If the maximum number of SQL-connections that can be allocated at one time has
already been reached, then OutputHandle is set to zero and an exception condition is
raised: CLI-specific condition— limit on number of handles exceeded (HY014).

v) Case:

1) If the memory requirements to manage an SQL-connection cannot be satisfied,
thenOutputHandle is set to zero and an exception condition is raised:CLI-specific
condition—memory allocation error (HY001).

2) If the resources tomanage an SQL-connection cannot be allocated for implemen-
tation-defined (IC009) reasons, then OutputHandle is set to zero and an imple-
mentation-defined (IC009) exception condition is raised.

3) Otherwise, the resources to manage an SQL-connection are allocated and are
referred to as an allocated SQL-connection. The allocated SQL-connection is
associatedwithE and is assigned aunique value that is returned inOutputHandle.

c) If HT indicates STATEMENT HANDLE, then:

i) If IH does not identify an allocated SQL-connection, then OutputHandle is set to zero
and an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

ii) Let C be the allocated SQL-connection identified by IH.

iii) The diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set
to zero and an exception condition is raised: connection exception— connection does
not exist (08003). Otherwise, let EC be the established SQL-connection associatedwith
C.

v) If themaximumnumber of SQL-statements that canbe allocated at one timehas already
been reached, then OutputHandle is set to zero and an exception condition is raised:
CLI-specific condition— limit on number of handles exceeded (HY014).

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3,
“Implicit set connection”, are applied with EC as dormant SQL-connection.

vii) If the memory requirements to manage an SQL-statement cannot be satisfied, then
OutputHandle is set to zero and an exception condition is raised: CLI-specific condition
—memory allocation error (HY001).

viii) If the resources to manage an SQL-statement cannot be allocated for implementation-
defined (IC009) reasons, then OutputHandle is set to zero and an implementation-
defined (IC009) exception condition is raised.

ix) The resources to manage an SQL-statement are allocated and are referred to as an
allocated SQL-statement. The allocated SQL-statement is associated with C and is
assigned a unique value that is returned in OutputHandle.

x) The following CLI descriptor areas are automatically allocated and associatedwith the
allocated SQL-statement:

1) An implementation parameter descriptor.

2) An implementation row descriptor.

3) An application parameter descriptor.

4) An application row descriptor.

© ISO/IEC 2023 – All rights reserved 119

ISO/IEC 9075-3:2023(E)
7.4 AllocHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

For each of these descriptor areas, theALLOC_TYPEfield is set to indicate AUTOMATIC.
For each of these descriptor areas, fields with non-blank entries in Table 23, “SQL/CLI
descriptor field default values”, are set to the specified default values. All other fields
in the CLI item descriptor areas are initially undefined.

xi) The statement attributes of the allocated SQL statement are set as follows:

1) The automatically allocated application parameter descriptor becomes the value
of the APDHANDLE attribute for the allocated SQL-statement and the automatic-
ally allocated application row descriptor becomes the value of the ARD HANDLE
attribute for the allocated SQL-statement.

2) The automatically allocated implementation parameter descriptor becomes the
value of the IPD HANDLE attribute for the allocated SQL-statement and the
automatically allocated implementation rowdescriptor becomes the value of the
IRD HANDLE attribute for the allocated SQL-statement.

3) The CURSOR SCROLLABLE attribute is set to NONSCROLLABLE.

4) The CURSOR SENSITIVITY attribute is set to ASENSITIVE.

5) The CURSOR HOLDABLE attribute is set to NONHOLDABLE.

6) The CURRENT OF POSITION attribute is set to 1 (one).

7) The NEST DESCRIPTOR attribute is set to FALSE.

xii) The cursor name property associated with the allocated SQL-statement is set to a
unique implementation-dependent (UV124) name that has the prefix 'SQLCUR' or the
prefix 'SQL_CUR'.

d) If HT indicates DESCRIPTOR HANDLE, then:

i) If IH does not identify an allocated SQL-connection then OutputHandle is set to zero
and an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

ii) Let C be the allocated SQL-connection identified by IH.

iii) The diagnostics area associated with C is emptied.

iv) If there is no established SQL-connection associated with C, then OutputHandle is set
to zero and an exception condition is raised: connection exception— connection does
not exist (08003). Otherwise, let EC be the established SQL-connection associatedwith
C.

v) If the maximum number of CLI descriptor areas that can be allocated at one time has
already been reached, then OutputHandle is set to zero and an exception condition is
raised: CLI-specific condition— limit on number of handles exceeded (HY014).

vi) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3,
“Implicit set connection”, are applied with EC as dormant SQL-connection.

vii) Case:

1) If thememory requirements tomanage a CLI descriptor area cannot be satisfied,
thenOutputHandle is set to zero and an exception condition is raised:CLI-specific
condition—memory allocation error (HY001).

2) If the resources to manage a CLI descriptor area cannot be allocated for imple-
mentation-defined (IC009) reasons, then OutputHandle is set to zero and an
implementation-defined (IC009) exception condition is raised.

120 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.4 AllocHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

3) Otherwise, the resources to manage a CLI descriptor area are allocated and are
referred to as an allocated CLI descriptor area. The allocated CLI descriptor area
is associated with C and is assigned a unique value that is returned in Out-
putHandle. The ALLOC_TYPE field of the allocated CLI descriptor area is set to
indicate USER. Other fields of the allocated CLI descriptor area are set to the
default values for an ARD specified in Table 23, “SQL/CLI descriptor field default
values”. Fields in theCLI itemdescriptor areas not set to a default value are initially
undefined.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 121

ISO/IEC 9075-3:2023(E)
7.4 AllocHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.5 AllocStmt()

Function

Allocate an SQL-statement and assign a handle to it.

Definition

AllocStmt (
 ConnectionHandle IN INTEGER,
 StatementHandle OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) AllocHandle is implicitly invoked with HandleType indicating STATEMENT HANDLE, with CH as
the value of InputHandle, and with StatementHandle as OutputHandle.

Conformance Rules

None.

122 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.5 AllocStmt()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.6 BindCol()

Function

Describe a target specification or array of target specifications.

Definition

BindCol (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 TargetType IN SMALLINT,
 TargetValue DEFOUT ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind DEFOUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let HV be the value of the handle of the current application row descriptor for S.

3) Let ARD be the allocated CLI descriptor area identified by HV and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

4) Let CN be the value of ColumnNumber.

5) IfCN is less than1 (one), then anexception condition is raised:dynamic SQL error— invalid descriptor
index (07009).

6) If CN is greater than N, then

Case:

a) If the memory requirements to manage the larger ARD cannot be satisfied, then an exception
condition is raised: CLI-specific condition—memory allocation error (HY001).

b) Otherwise, the TOP_LEVEL_COUNT field of ARD is set to CN and the COUNT field of ARD is
incremented by 1 (one).

7) Let TT be the value of TargetType.

8) Let HL be the programming language of the invoking host program. Let operative data type corres-
pondence tablebe thedata type correspondence table forHL as specified in Subclause6.19, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspondences
table as the SQL data type column and the host data type column.

9) If exactly one of the following is true, then an exception condition is raised: CLI-specific condition
— invalid data type in application descriptor (HY003).

a) TT does not indicate DEFAULT and is not one of the code values in Table 7, “Codes used for
application data types in SQL/CLI”.

b) TT is one of the code values in Table 7, “Codes used for application data types in SQL/CLI”,
but the row that contains the corresponding SQL data type in the SQL data type column of the
operative data type correspondence table contains 'None' in the host data type column.

© ISO/IEC 2023 – All rights reserved 123

ISO/IEC 9075-3:2023(E)
7.6 BindCol()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

10) Let BL be the value of BufferLength.

11) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

12) Let IDA be the item descriptor area of ARD specified by CN.

13) If an exception condition is raised in any of the following General Rules, then the TYPE,
OCTET_LENGTH, LENGTH, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER
fields of IDA are set to implementation-dependent (UV059) values and the value of COUNT for ARD
is unchanged.

14) The data type of the <target specification> described by IDA is set to TT.

15) The length in octets of the <target specification> described by IDA is set to BL.

16) The length in characters or positions of the <target specification> described by IDA is set to the
maximum number of characters or positions that may be represented by the data type TT.

17) The address of the host variable or array of host variables that is to receive a value or values for
the <target specification> or <target specification>s described by IDA is set to the address of Tar-
getValue. If TargetValue is a null pointer, then the address is set to 0 (zero).

18) The address of the <indicator variable> or array of <indicator variable>s associated with the host
variable or host variables addressed by the DATA_POINTER field of IDA is set to the address of
StrLen_or_Ind.

19) The address of the host variable or array of host variables that is to receive the returned length (in
characters) of the <target specification> or <target specification>s described by IDA is set to the
address of StrLen_or_Ind.

20) Restrictions on the differences allowed betweenARD and IRD are implementation-defined (IE009),
except as specified in the General Rules of Subclause 6.13, “Implicit FETCH USING clause”, and the
General Rules of Subclause 7.31, “GetData()”.

Conformance Rules

None.

124 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.6 BindCol()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.7 BindParameter()

Function

Describe a dynamic parameter specification and its value.

Definition

BindParameter (
 StatementHandle IN INTEGER,
 ParameterNumber IN SMALLINT,
 InputOutputMode IN SMALLINT,
 ValueType IN SMALLINT,
 ParameterType IN SMALLINT,
 ColumnSize IN INTEGER,
 DecimalDigits IN SMALLINT,
 ParameterValue DEF ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind DEF INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let HV be the value of the handle of the current application parameter descriptor for S.

3) Let APD be the allocated CLI descriptor area identified by HV and let N2 be the value of the
TOP_LEVEL_COUNT field of APD.

4) Let PN be the value of ParameterNumber.

5) IfPN is less than1 (one), thenanexception condition is raised:dynamic SQL error— invalid descriptor
index (07009).

6) Let IOM be the value of InputOutputMode.

7) If IOM is not one of the code values in Table 10, “Codes associated with <parameter mode> in
SQL/CLI”, then an exception condition is raised: CLI-specific condition— invalid parameter mode
(HY105).

8) Let VT be the value of ValueType.

9) Let HL be the programming language of the invoking host program. Let operative data type corres-
pondence tablebe thedata type correspondence table forHL as specified in Subclause6.19, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspondence
table as the SQL data type column and the host data type column.

10) If exactly one of the following is true, then an exception condition is raised: CLI-specific condition
— invalid data type in application descriptor (HY003).

a) VT does not indicate DEFAULT and is not one of the code values in Table 7, “Codes used for
application data types in SQL/CLI”.

b) VT is one of the code values in Table 7, “Codes used for application data types in SQL/CLI”,
but the row that contains the corresponding SQL data type in the SQL data type column of the
operative data type correspondence table contains 'None' in the host data type column.

11) Let PT be the value of ParameterType.

© ISO/IEC 2023 – All rights reserved 125

ISO/IEC 9075-3:2023(E)
7.7 BindParameter()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

12) If PT is not one of the code values in Table 32, “Codes used for concise data types”, then an exception
condition is raised: CLI-specific condition— invalid data type (HY004).

13) Let IPD be the implementation parameter descriptor associated with S and let N1 be the value of
the TOP_LEVEL_COUNT field of IPD.

14) If PN is greater than N1, then

Case:

a) If the memory requirements to manage the larger IPD cannot be satisfied, then an exception
condition is raised: CLI-specific condition—memory allocation error (HY001).

b) Otherwise, the TOP_LEVEL_COUNT field of IPD is set to PN and the COUNT field of APD is
incremented by 1 (one).

15) If PN is greater than N2, then

Case:

a) If the memory requirements to manage the larger APD cannot be satisfied, then an exception
condition is raised: CLI-specific condition—memory allocation error (HY001).

b) Otherwise, the TOP_LEVEL_COUNT field of APD is set to PN and the COUNT field of APD is
incremented by 1 (one).

16) Let IDA1 be the item descriptor area of IPD specified by PN.

17) Let CS be the value of ColumnSize, let DD be the value of DecimalDigits, and let BL be the value of
BufferLength.

18) Case:

a) If PT is one of the values listed in Table 33, “Codes used with concise datetime data types in
SQL/CLI”, then:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to a
code shown in the Data Type Code column of Table 33, “Codes used with concise date-
time data types in SQL/CLI”, indicating the concise data type code.

ii) The datetime interval code of the <dynamic parameter specification> described by
IDA1 is set to a code shown in the Datetime Interval Code column in Table 33, “Codes
used with concise datetime data types in SQL/CLI”, indicating the concise data type
code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1
is set to CS.

iv) Case:

1) If the datetime interval code of the <dynamic parameter specification> indicates
DATE, then the time fractional seconds precision of the <dynamic parameter
specification> described by IDA1 is set to zero.

2) Otherwise, the time fractional seconds precision of the <dynamic parameter
specification> described by IDA1 is set to DD.

b) If PT is one of the values listed in Table 34, “Codes used with concise interval data types in
SQL/CLI”, then:

126 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.7 BindParameter()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

The data type of the <dynamic parameter specification> described by IDA1 is set to a
code shown in the Data Type Code column of Table 34, “Codes used with concise
interval data types in SQL/CLI”, indicating the concise data type code.

i)

ii) The datetime interval code of the <dynamic parameter specification> described by
IDA1 is set to a code shown in the Datetime Interval Code column in Table 34, “Codes
usedwith concise interval data types in SQL/CLI”, indicating the concise data type code.
Let DIC be that code.

iii) The length (in positions) of the <dynamic parameter specification> described by IDA1
is set to CS.

iv) Let LS be 0 (zero).

v) If IOM is PARAMMODE IN or PARAMMODE INOUT, ParameterValue is not a null
pointer, and BL is greater than zero, then:

1) Let PV be the value of ParameterValue.

2) Let FC be the value of

SUBSTR (PV FROM 1 FOR 1)

3) If FC is <plus sign> or <minus sign>, then let LS be 1 (one).

vi) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval fractional secondsprecisionof the<dynamicparameter
specification> described by IDA1 is set to DD. If DD is 0 (zero), then let DP be 0
(zero); otherwise, let DP be 1 (one).

2) Otherwise, the interval fractional seconds precision of the <dynamic parameter
specification> described by IDA1 is set to zero.

vii) Case:

1) If DIC indicates YEAR TOMONTH, DAY TO HOUR, HOUR TOMINUTE or MINUTE
TO SECOND, then let IL be 3.

2) If DIC indicates DAY TO MINUTE or HOUR TO SECOND, then let IL be 6.

3) If DIC indicates DAY TO SECOND, then let IL be 9.

4) Otherwise, let IL be zero.

viii) Case:

1) If DIC indicates SECOND, DAY TO SECOND, HOUR TO SECOND, or MINUTE TO
SECOND, then the interval leading field precision of the <dynamic parameter
specification> described by IDA1 is set to CS−IL−DD−DP−LS.

2) Otherwise, the interval leadingfieldprecisionof the<dynamicparameter specific-
ation> described by IDA1 is set to CS−IL−LS.

c) Otherwise:

i) The data type of the <dynamic parameter specification> described by IDA1 is set to PT.

ii) If PT indicates a character string type, then the length (in characters) of the <dynamic
parameter specification> described by IDA1 is set to CS.

© ISO/IEC 2023 – All rights reserved 127

ISO/IEC 9075-3:2023(E)
7.7 BindParameter()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) If PT indicates a numeric type, then the precision of the <dynamic parameter specific-
ation> described by IDA1 is set to CS.

iv) If PT indicates a numeric type, then the scale of the <dynamic parameter specification>
described by IDA1 is set to DD.

19) Let IDA2 be the item descriptor area of APD specified by PN.

20) If an exception condition is raised in any of the following General Rules, then:

a) The TYPE, LENGTH, PRECISION, and SCALE fields of IDA1 are set to implementation-
dependent (UV045) values and the values of the TOP_LEVEL_COUNT and COUNTfields of IPD
are unchanged.

b) The TYPE, DATA_POINTER, INDICATOR_POINTER, and OCTET_LENGTH_POINTER fields of
IDA2 are set to implementation-dependent (UV045) values and the values of the
TOP_LEVEL_COUNT and COUNT fields of APD are unchanged.

21) The parameter mode of the <dynamic parameter specification> described by IDA2 is set to IOM.

22) The data type of the <dynamic parameter specification> described by IDA2 is set to VT.

23) The address of the host variable that is to provide a value for the <dynamic parameter specification>
value described by IDA2 is set to the address of ParameterValue. If ParameterValue is a null pointer,
then the address is set to 0 (zero).

24) The address of the <indicator variable> associated with the host variable addressed by the
DATA_POINTER field of IDA2 is set to the address of StrLen_or_Ind.

25) The address of the host variable that is to define the length (in octets) of the <dynamic parameter
specification> value described by IDA2 is set to the address of StrLen_or_Ind.

26) If IOM is PARAMMODE OUT or PARAMMODE INOUT and BL is not greater than zero, then an
exception condition is raised: CLI-specific condition— invalid string length or buffer length (HY090).

27) The length in octets of the <dynamic parameter specification> value described by IDA2 is set to BL.

28) If IOM is PARAMMODE IN or PARAMMODE INOUT, ParameterValue is not a null pointer, and BL
is greater than 0 (zero), then let PV be the value of the <dynamic parameter specification> value
described by IDA2.

29) Restrictions on the differences allowed betweenAPD and IPD are implementation-defined (IE008),
except as specified in the General Rules of Subclause 6.10, “Implicit EXECUTE USING and OPEN
USING clauses”, Subclause 6.11, “Implicit CALL USING clause”, and the General Rules of
Subclause 7.50, “ParamData()”.

Conformance Rules

None.

128 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.7 BindParameter()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.8 Cancel()

Function

Attempt to cancel execution of a CLI routine.

Definition

Cancel (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is a CLI routine concurrently operating on S, then:

i) Let RN be the routine name of the concurrent CLI routine.

ii) Let C be the allocated SQL-connection with which S is associated.

iii) LetECbe the established SQL-connection associatedwithC and let SSbe the SQL-server
associated with EC.

iv) SS is requested to cancel the execution of RN.

v) If SS rejects the cancellation request, then an exception condition is raised: CLI-specific
condition— server declined the cancellation request (HY018).

vi) If SS accepts the cancellation request, then a completion condition is raised: successful
completion (00000).

NOTE 17—Acceptance of the request does not guarantee that the execution of RNwill be cancelled.

vii) If SS succeeds in canceling the execution of RN, then an exception condition is raised
for RN: CLI-specific condition— operation cancelled (HY008).

NOTE18—Canceling the execution ofRNdoes not destroy diagnostic information already generated
by its execution.

NOTE 19— The method of passing control between concurrently operating programs is implementation-
dependent.

b) If there is a deferred parameter number associated with S, then:

i) The diagnostics area associated with S is emptied.

ii) The deferred parameter number is removed from association with S.

iii) Any statement source associated with S is removed from association with S.

c) Otherwise:

i) The diagnostics area associated with S is emptied.

ii) A completion condition is raised: successful completion (00000).

© ISO/IEC 2023 – All rights reserved 129

ISO/IEC 9075-3:2023(E)
7.8 Cancel()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

130 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.8 Cancel()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.9 CloseCursor()

Function

Close a cursor.

Definition

CloseCursor (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associatedwith S, then an exception condition is raised:CLI-specific
condition— function sequence error (HY010).

3) Case:

a) If there is no open CLI cursor associated with S, then an exception condition is raised: invalid
cursor state (24000).

b) Otherwise:

i) Let CR be the CLI cursor associatedwith S. The General Rules of Subclause 15.4, “Effect
of closing a cursor”, in ISO/IEC 9075-2, are applied with CR as CURSOR and DESTROY
as DISPOSITION.

ii) Any fetched row associated with S is removed from association with S.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 131

ISO/IEC 9075-3:2023(E)
7.9 CloseCursor()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.10 ColAttribute()

Function

Get a column attribute.

Definition

ColAttribute (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 FieldIdentifier IN SMALLINT,
 CharacterAttribute OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT,
 NumericAttribute OUT INTEGER)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared or executed statement associated with S, then an exception condition is
raised: CLI-specific condition— function sequence error (HY010).

3) Let IRD be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of IRD.

4) Let FI be the value of FieldIdentifier.

5) If FI is not one of the code values in Table 20, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition— invalid descriptor field identifier (HY091).

6) Let CN be the value of ColumnNumber.

7) LetTYPEbe the value of theType column in the rowof Table 20, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

8) Let FDT be the value of the Data Type column in the row of Table 5, “Fields in SQL/CLI row and
parameter descriptor areas”, whose Field column contains the value of the Field column in the row
of Table 20, “Codes used for SQL/CLI descriptor fields”, that contains FI.

9) If TYPE is 'ITEM', then:

a) If N is zero, then an exception condition is raised: dynamic SQL error — prepared statement
not a cursor specification (07005).

b) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index (07009).

c) If CN is greater than N, then a completion condition is raised: no data (02000).

d) Let IDA be the item descriptor area of IRD specified by the CN-th descriptor area in IRD for
which LEVEL is 0 (zero).

132 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.10 ColAttribute()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

e) LetDT andDICbe the values of the TYPE andDATETIME_INTERVAL_CODEfields, respectively,
for IDA.

10) If TYPE is 'HEADER', then:

a) If CN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index (07009).

b) If CN is greater than N, then a completion condition is raised: no data (02000).

c) Let CN be 0 (zero).

11) Let DH be the handle that identifies IRD.

12) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which
LEVEL is 0 (zero).

Case:

a) If FDT indicates character string, then let the information be retrieved from IRD by implicitly
executing GetDescField as follows:

GetDescField (DH, RI, FI,
 CharacterAttribute, BufferLength, StringLength)

b) Otherwise,

Case:

i) If FI indicates TYPE, then

Case:

1) If DT indicates a <datetime type>, then NumericAttribute is set to the concise
code value corresponding to the datetime interval code value DIC as defined in
Table 35, “Concise codes used with datetime data types in SQL/CLI”.

2) If DT indicates INTERVAL, then NumericAttribute is set to the concise code value
corresponding to the datetime interval code value DIC as defined in Table 36,
“Concise codes used with interval data types in SQL/CLI”.

3) Otherwise, NumericAttribute is set to DT.

ii) Otherwise, let the information be retrieved from IRD by implicitly executing Get-
DescField as follows:

GetDescField (DH, RI, FI,
 NumericAttribute, BufferLength, StringLength)

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 133

ISO/IEC 9075-3:2023(E)
7.10 ColAttribute()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.11 ColumnPrivileges()

Function

Return a result set that contains a list of the privileges held on the columns whose names adhere to the
requested pattern or patterns within a single specified table stored in the Information Schema of the
connected data source.

Definition

ColumnPrivileges (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 ColumnName IN CHARACTER(L4),
 NameLength4 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, and L4 has a maximum value equal to the implementation-defined (IL006)
maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let COLUMN_PRIVILEGES_QUERY be a table, with the definition:

CREATE TABLE COLUMN_PRIVILEGES_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 GRANTOR CHARACTER VARYING(128),
 GRANTEE CHARACTER VARYING(128) NOT NULL,
 PRIVILEGE CHARACTER VARYING(128) NOT NULL,
 IS_GRANTABLE CHARACTER VARYING(3))

6) COLUMN_PRIVILEGES_QUERY contains a row for each privilege in SS’s Information Schema
COLUMN_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature 'Information
Schema metadata constrained by privileges in CLI').

b) Case:

134 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.11 ColumnPrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

i) If the value of SUP is 1 (one), then COLUMN_PRIVILEGES_QUERY contains a row for
each privilege in SS’s Information Schema COLUMN_PRIVILEGES view.

ii) Otherwise, COLUMN_PRIVILEGES_QUERY contains a row for each privilege in SS’s
Information Schema COLUMN_PRIVILEGES view that meets implementation-defined
(IW004) authorization criteria.

7) For each row of COLUMN_PRIVILEGES_QUERY:

a) If the SQL-implementation does not support catalog names, then TABLE_CAT is the null value;
otherwise, the value of TABLE_CAT in COLUMN_PRIVILEGES_QUERY is the value of the
TABLE_CATALOG column in the COLUMN_PRIVILEGES view in the Information Schema.

b) ThevalueofTABLE_SCHEMinCOLUMN_PRIVILEGES_QUERY is thevalueof theTABLE_SCHEMA
column in the COLUMN_PRIVILEGES view.

c) The value of TABLE_NAME in COLUMN_PRIVILEGES_QUERY is the value of the TABLE_NAME
column in the COLUMN_PRIVILEGES view.

d) The value of COLUMN_NAME in COLUMN_PRIVILEGES_QUERY is the value of the
COLUMN_NAME column in the COLUMN_PRIVILEGES view.

e) The value of GRANTOR in COLUMN_PRIVILEGES_QUERY is the value of the GRANTOR column
in the COLUMN_PRIVILEGES view.

f) The value of GRANTEE in COLUMN_PRIVILEGES_QUERY is the value of the GRANTEE column
in the COLUMN_PRIVILEGES view.

g) The value of PRIVILEGE in COLUMN_PRIVILEGES_QUERY is the value of the PRIVILEGE_TYPE
column in the COLUMN_PRIVILEGES view.

h) Thevalueof IS_GRANTABLE inCOLUMN_PRIVILEGES_QUERY is the valueof the IS_GRANTABLE
column in the COLUMN_PRIVILEGES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3, and
NameLength4, respectively.

9) Let CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of CatalogName, SchemaName, TableName,
and ColumnName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table 28, “Codes and data types for implementation information”, is 'Y', then an exception
condition is raised: CLI-specific condition— invalid use of null pointer (HY009).

b) If SchemaName is a null pointer or if ColumnName is a null pointer, then an exception condition
is raised: CLI-specific condition— invalid use of null pointer (HY009).

11) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition— invalid
use of null pointer (HY009).

12) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
is set to zero. If TableName is a null pointer, thenNL3 is set to zero. If ColumnName is a null pointer,
then NL4 is set to zero.

13) Case:

a) If NL1 is not negative, then let L be NL1.

© ISO/IEC 2023 – All rights reserved 135

ISO/IEC 9075-3:2023(E)
7.11 ColumnPrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let CATVAL be the first L octets of CatalogName.

14) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let SCHVAL be the first L octets of SchemaName.

15) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let TBLVAL be the first L octets of TableName.

16) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let COLVAL be the first L octets of ColumnName.

17) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

136 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.11 ColumnPrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.

2) Otherwise,

© ISO/IEC 2023 – All rights reserved 137

ISO/IEC 9075-3:2023(E)
7.11 ColumnPrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

A) If SUBSTRING(TRIM('COLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('COLVAL') FROM CHAR_LENGTH(TRIM('COLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('COLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('COLVAL')) - 2)

and let COLSTR be the character string:

COLUMN_NAME = 'TEMPSTR'

B) Otherwise, let COLSTR be the character string:

UPPER(COLUMN_NAME) = UPPER('COLVAL')

b) Otherwise:

i) Let SPC be the Code value from Table 28, “Codes and data types for implementation
information”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

iii) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise, letCATSTR
be the character string:

TABLE_CAT = 'CATVAL' AND

iv) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise, let SCHSTR
be the character string:

TABLE_SCHEM = 'SCHVAL' AND

v) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise, letTBLSTR
be the character string:

TABLE_NAME = 'TBLVAL' AND

vi) If the value ofNL4 is zero, then letCOLSTRbe a zero-length string; otherwise, letCOLSTR
be the character string:

COLUMN_NAME LIKE 'COLVAL' ESCAPE 'ESC' AND

18) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || COLSTR || ' ' || 1=1

19) Let STMT be the character string:

SELECT *
FROM COLUMN_PRIVILEGES_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, PRIVILEGE

20) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

138 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.11 ColumnPrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 139

ISO/IEC 9075-3:2023(E)
7.11 ColumnPrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.12 Columns()

Function

Based on the specified selection criteria, return a result set that contains information about columns of
tables stored in the information schemas of the connected data source.

Definition

Columns (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 ColumnName IN CHARACTER(L4),
 NameLength4 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, and L4 has a maximum value equal to the implementation-defined (IL006)
maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let COLUMNS_QUERY be a table, with the definition:

CREATE TABLE COLUMNS_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 DATA_TYPE SMALLINT NOT NULL,
 TYPE_NAME CHARACTER VARYING(128) NOT NULL,
 COLUMN_SIZE INTEGER,
 BUFFER_LENGTH INTEGER,
 DECIMAL_DIGITS SMALLINT,
 NUM_PREC_RADIX SMALLINT,

NULLABLE SMALLINT NOT NULL,
 REMARKS CHARACTER VARYING(254),
 COLUMN_DEF CHARACTER VARYING(254),
 SQL_DATA_TYPE SMALLINT NOT NULL,
 SQL_DATETIME_SUB INTEGER,
 CHAR_OCTET_LENGTH INTEGER,
 ORDINAL_POSITION INTEGER NOT NULL,
 IS_NULLABLE CHARACTER VARYING(254),
 CHAR_SET_CAT CHARACTER VARYING(128),
 CHAR_SET_SCHEM CHARACTER VARYING(128),
 CHAR_SET_NAME CHARACTER VARYING(128),
 COLLATION_CAT CHARACTER VARYING(128),

140 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

 COLLATION_SCHEM CHARACTER VARYING(128),
COLLATION_NAME CHARACTER VARYING(128),

 UDT_CAT CHARACTER VARYING(128),
 UDT_SCHEM CHARACTER VARYING(128),
 UDT_NAME CHARACTER VARYING(128),
 DOMAIN_CAT CHARACTER VARYING(128),
 DOMAIN_SCHEM CHARACTER VARYING(128),
 DOMAIN_NAME CHARACTER VARYING(128),
 SCOPE_CAT CHARACTER VARYING(128),
 SCOPE_SCHEM CHARACTER VARYING(128),

SCOPE_NAME CHARACTER VARYING(128),
 MAX_CARDINALITY INTEGER,
 DTD_IDENTIFIER CHARACTER VARYING(128),
 IS_SELF_REF CHARACTER VARYING(128),

UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME))

6) COLUMNS_QUERY contains a row for each column described by SS’s Information Schema COLUMNS
view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature 'Information
Schema metadata constrained by privileges in CLI').

b) Case:

i) If the value of SUP is 1 (one), then COLUMNS_QUERY contains a row for each row
describing a column in SS’s Information Schema COLUMNS view.

ii) Otherwise, COLUMNS_QUERY contains a row for each row describing a column in SS’s
Information Schema COLUMNS view that meets implementation-defined (IW089)
authorization criteria.

7) For each row of COLUMNS_QUERY:

a) The value of TABLE_CAT in COLUMNS_QUERY is the value of the TABLE_CATALOG column in
the COLUMNS view. If SS does not support catalog names, then TABLE_CAT is set to the null
value.

b) The value of TABLE_SCHEM in COLUMNS_QUERY is the value of the TABLE_SCHEMA column
in the COLUMNS view.

c) The value of TABLE_NAME in COLUMNS_QUERY is the value of the TABLE_NAME column in
the COLUMNS view.

d) The value of COLUMN_NAME in COLUMNS_QUERY is the value of the COLUMN_NAME column
in the COLUMNS view.

e) The value of DATA_TYPE in COLUMNS_QUERY is determined by the values of the DATA_TYPE
and INTERVAL_TYPE columns in the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
DATA_TYPE in COLUMNS_QUERY is the appropriate “Code” from Table 32, “Codes used
for concise data types”, that matches the interval specified in the INTERVAL_TYPE
column in the COLUMNS view.

ii) Otherwise, the value of DATA_TYPE in COLUMNS_QUERY is the appropriate “Code”
from Table 32, “Codes used for concise data types”, that matches the value specified in
the DATA_TYPE column in the COLUMNS view.

f) The value of TYPE_NAME in COLUMNS_QUERY is an implementation-defined (IV068) value
that is the character string by which the data type is known at the data source.

© ISO/IEC 2023 – All rights reserved 141

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

g) The value of COLUMN_SIZE in COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'CHARACTER', 'CHARACTER
VARYING', 'CHARACTER LARGE OBJECT', 'BINARY', 'BINARY VARYING' or 'BINARY
LARGE OBJECT', then the value is that of the CHARACTER_MAXIMUM_LENGTH in the
same row of the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is 'DECIMAL' or 'NUMERIC', then the
value is that of the NUMERIC_PRECISION column in the same row of the COLUMNS
view.

iii) If the value of DATA_TYPE in the COLUMNS view is 'SMALLINT', 'INTEGER', 'BIGINT',
'FLOAT', 'DECFLOAT', 'REAL', or 'DOUBLEPRECISION', then thevalue is implementation-
defined (IV067).

iv) If the value of DATA_TYPE in the COLUMNS view is 'DATE', 'TIME', 'TIMESTAMP', 'TIME
WITHTIMEZONE', or 'TIMESTAMPWITHTIMEZONE', then thevalueofCOLUMN_SIZE
is that determinedby SR41), in Subclause 6.1, “<data type>”, in ISO/IEC9075-2,where
the value of <time fractional seconds precision> is the value of the DATETIME_PRECI-
SION column in the same row of the COLUMNS view.

v) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
COLUMN_SIZE is that determined by the General Rules of Subclause 10.1, “<interval
qualifier>”, in ISO/IEC 9075-2, where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in
the same row of the COLUMNS view.

2) The value of <interval leading field precision> is the value of the INTERVAL_PRE-
CISION column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the
NUMERIC_PRECISION column in the same row of the COLUMNS view.

vi) If the value of DATA_TYPE in the COLUMNS view is 'REF', then the value is the length
in octets of the reference type.

vii) Otherwise, the value is implementation-dependent (UV054).

h) The value of BUFFER_LENGTH in COLUMNS_QUERY is implementation-defined (IV066).
NOTE20—ThepurposeofBUFFER_LENGTH inCOLUMNS_QUERY is to record thenumberof octets transferred
for the column with a Fetch routine, a FetchScroll routine, or a GetData routine when the TYPE field in the
application row descriptor indicates DEFAULT. This length excludes a null terminator, if one exists.

i) The value of DECIMAL_DIGITS in COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNSview is one of 'DATE', 'TIME', 'TIMESTAMP',
'TIMEWITH TIME ZONE', or 'TIMESTAMPWITH TIME ZONE', then the value of
DECIMAL_DIGITS inCOLUMNS_QUERY is thevalueof theDATETIME_PRECISIONcolumn
in the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is one of 'NUMERIC', 'DECIMAL',
'SMALLINT', 'INTEGER', or 'BIGINT', then the value of DECIMAL_DIGITS in
COLUMNS_QUERY is the value of the NUMERIC_SCALE column in the COLUMNS view.

iii) Otherwise, the value of DECIMAL_DIGITS in COLUMNS_QUERY is the null value.

142 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

j) The value of NUM_PREC_RADIX in COLUMNS_QUERY is the value of the NUMERIC_PRECI-
SION_RADIX column in the COLUMNS view.

k) If the value of the IS_NULLABLE column in the COLUMNS view is 'NO', then the value of NUL-
LABLE in COLUMNS_QUERY is set to the appropriate “Code” for NO NULLS in Table 26, “Mis-
cellaneous codes used in CLI”; otherwise it is set to the appropriate “Code” for NULLABLE
from Table 26, “Miscellaneous codes used in CLI”.

l) The value ofREMARKS inCOLUMNS_QUERY is an implementation-defined (IV057)description
of the column.

m) The value of COLUMN_DEF in COLUMNS_QUERY is the value of the COLUMN_DEFAULT column
in the COLUMNS view.

n) The value of SQL_DATETIME_SUB in COLUMNS_QUERY is determined by the value of the
DATA_TYPE column in the same row of the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate “Code” for the one
of the data types 'DATE', 'TIME', 'TIMESTAMP', 'TIMEWITH TIME ZONE', or
'TIMESTAMPWITH TIME ZONE' from Table 32, “Codes used for concise data types”,
then the value is the matching “Datetime Interval Code” from Table 33, “Codes used
with concise datetime data types in SQL/CLI”.

ii) If the value of DATA_TYPE in the COLUMNS view is the appropriate “Code” for one of
the INTERVAL data types from Table 32, “Codes used for concise data types”, then the
value is thematching “Datetime Interval Code” fromTable34, “Codesusedwith concise
interval data types in SQL/CLI”.

iii) Otherwise, the value is the null value.

o) The value of CHAR_OCTET_LENGTH in COLUMNS_QUERY is the value of the CHARAC-
TER_OCTET_LENGTH column in the COLUMNS view.

p) The value of ORDINAL_POSITION in COLUMNS_QUERY is the value of the ORDINAL_POSITION
column in the COLUMNS view.

q) The value of IS_NULLABLE in COLUMNS_QUERY is the value of the IS_NULLABLE column in
the COLUMNS view.

r) The value of SQL_DATA_TYPE in COLUMNS_QUERY is determined by the value of the
DATA_TYPE column in the same row of the COLUMNS view.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is the appropriate “Code” for one of
the data types 'DATE', 'TIME', 'TIMESTAMP', 'TIMEWITHTIMEZONE', or 'TIMESTAMP
WITH TIME ZONE', from Table 32, “Codes used for concise data types”, then the value
is the matching “Code” from Table 6, “Codes used for implementation data types in
SQL/CLI”.

ii) If the value of DATA_TYPE in the COLUMNS view is the appropriate “Code” for one of
the INTERVAL data types from Table 32, “Codes used for concise data types”, then the
value is the matching “Code” from Table 6, “Codes used for implementation data types
in SQL/CLI”.

iii) Otherwise, the value is the same as the value of DATA_TYPE in COLUMNS_QUERY.

© ISO/IEC 2023 – All rights reserved 143

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

s) ThevalueofCHAR_SET_CAT inCOLUMNS_QUERY is thevalueof theCHARACTER_SET_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then CHAR_SET_CAT is
set to the null value.

t) The value of CHAR_SET_SCHEM in COLUMNS_QUERY is the value of the CHARAC-
TER_SET_SCHEMA column in the COLUMNS view.

u) Thevalueof CHAR_SET_NAME inCOLUMNS_QUERY is the valueof theCHARACTER_SET_NAME
column in the COLUMNS view.

v) The value of COLLATION_CAT in COLUMNS_QUERY is the value of the COLLATION_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then COLLATION_CAT
is set to the null value.

w) Thevalue of COLLATION _SCHEM inCOLUMNS_QUERY is the value of theCOLLATION_SCHEMA
column in the COLUMNS view.

x) The value of COLLATION_NAME in COLUMNS_QUERY is the value of the COLLATION_NAME
column in the COLUMNS view.

y) ThevalueofUDT_CAT inCOLUMNS_QUERY is the valueof theUSER_DEFINED_TYPE_CATALOG
column in the COLUMNS view. If SS does not support catalog names, then UDT_CAT is set to
the null value.

z) The value of UDT_SCHEM in COLUMNS_QUERY is the value of the
USER_DEFINED_TYPE_SCHEMA column in the COLUMNS view.

aa) The value of UDT_NAME in COLUMNS_QUERY is the value of the USER_DEFINED_TYPE_NAME
column in the COLUMNS view.

ab) The value of DOMAIN_CAT in COLUMNS_QUERY is the value of theDOMAIN_CATALOG column
in the COLUMNS view. If SS does not support catalog names, then DOMAIN_CAT is set to the
null value.

ac) The value of DOMAIN_SCHEM in COLUMNS_QUERY is the value of the DOMAIN_SCHEMA
column in the COLUMNS view.

ad) The value of DOMAIN_NAME in COLUMNS_QUERY is the value of the DOMAIN_NAME column
in the COLUMNS view.

ae) The value of SCOPE_CAT in COLUMNS_QUERY is the value of the SCOPE_CATALOG column in
the COLUMNS view. If SS does not support catalog names, then SCOPE_CAT is set to the null
value.

af) The value of SCOPE_SCHEM in COLUMNS_QUERY is the value of the SCOPE_SCHEMA column
in the COLUMNS view.

ag) The value of SCOPE_NAME in COLUMNS_QUERY is the value of the SCOPE_NAME column in
the COLUMNS view.

ah) The value ofMAX_CARDINALITY in COLUMNS_QUERY is the value of theMAXIMUM_CARDIN-
ALITY column in the COLUMNS view.

ai) The value of DTD_IDENTIFIER in COLUMNS_QUERY is the value of the DTD_IDENTIFIER
column in the COLUMNS view.

aj) The value of IS_SELF_REF in COLUMNS_QUERY is the value of the IS_SELF_REFERENCING
column in the COLUMNS view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3, and
NameLength4, respectively.

144 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

9) Let CATVAL, SCHVAL, TBLVAL, and COLVAL be the values of CatalogName, SchemaName, TableName,
and ColumnName, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table 28, “Codes and data types for implementation information”, is 'Y', then an exception
condition is raised: CLI-specific condition— invalid use of null pointer (HY009).

b) If SchemaName is a null pointer, or if TableName is a null pointer, or if ColumnName is a null
pointer, then an exception condition is raised: CLI-specific condition— invalid use of null
pointer (HY009).

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
is set to zero. If TableName is a null pointer, thenNL3 is set to zero. If ColumnName is a null pointer,
then NL4 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of ColumnName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

© ISO/IEC 2023 – All rights reserved 145

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let COLVAL be the first L octets of ColumnName.

16) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH (TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH (TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

146 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

iv) Case:

1) If the value of NL4 is zero, then let COLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('COLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('COLVAL') FROM CHAR_LENGTH(TRIM('COLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('COLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('COLVAL')) - 2)

and let COLSTR be the character string:

COLUMN_NAME = 'TEMPSTR'

B) Otherwise, let COLSTR be the character string:

UPPER(COLUMN_NAME) = UPPER('COLVAL')

b) Otherwise:

i) Let SPC be the Code value from Table 28, “Codes and data types for implementation
information”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

iii) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise, letCATSTR
be the character string:

TABLE_CAT = 'CATVAL' AND

iv) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise, let SCHSTR
be the character string:

TABLE_SCHEM LIKE 'SCHVAL' ESCAPE 'ESC' AND

NOTE 21—The pattern value specified in the string to the right of LIKE can use the escape character
that is indicated by the value of the SEARCH PATTERN ESCAPE information type from Table 28,
“Codes and data types for implementation information”.

v) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise, letTBLSTR
be the character string:

© ISO/IEC 2023 – All rights reserved 147

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

TABLE_NAME LIKE 'TBLVAL' ESCAPE 'ESC' AND

NOTE 22—The pattern value specified in the string to the right of LIKE can use the escape character
that is indicated by the value of the SEARCH PATTERN ESCAPE information type from Table 28,
“Codes and data types for implementation information”.

vi) If the value ofNL4 is zero, then letCOLSTRbe a zero-length string. Otherwise, letCOLSTR
be the character string:

COLUMN_NAME = 'COLVAL' AND

17) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' ||
TBLSTR || ' ' || COLSTR || ' ' || 1=1

18) Let STMT be the character string:

SELECT *
FROM COLUMNS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

19) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

Conformance Rules

None.

148 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.12 Columns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.13 Connect()

Function

Establish a connection.

Definition

Connect (
 ConnectionHandle IN INTEGER,
 ServerName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 UserName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 Authentication IN CHARACTER(L3),
 NameLength3 IN SMALLINT)

RETURNS SMALLINT

where:

— L1 has a maximum value of 128.

— L2has amaximumvalue equal to the implementation-defined (IL006)maximumlengthof a variable-
length character string.

— L3 and has an implementation-defined (IL037) maximum value.

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) If an SQL-transaction is active for the current SQL-connectionand support for FeatureC008, “Multiple
server transactions in CLI” is not provided, then an exception condition is raised: feature not sup-
ported—multiple server transactions (0A001).

3) If there is an established SQL-connection associated with C, then an exception condition is raised:
connection exception— connection name in use (08002).

4) Case:

a) If ServerName is a null pointer, then let NL1 be zero.

b) Otherwise, let NL1 be the value of NameLength1.

5) Case:

a) If NL1 is not negative, then let L1 be NL1.

© ISO/IEC 2023 – All rights reserved 149

ISO/IEC 9075-3:2023(E)
7.13 Connect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) If NL1 indicates NULL TERMINATED, then let L1 be the number of octets of ServerName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

6) Case:

a) If L1 is zero, then let 'DEFAULT' be the value of SN.

b) If L1 is greater than 128, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

c) Otherwise, let SN be the first L1 octets of ServerName.

7) Let E be the allocated SQL-environment with which C is associated.

8) Case:

a) If UserName is a null pointer, then let NL2 be zero.

b) Otherwise, let NL2 be the value of NameLength2.

9) Case:

a) If NL2 is not negative, then let L2 be NL2.

b) If NL2 indicates NULL TERMINATED, then let L2 be the number of Octets of UserName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

10) Case:

a) If Authentication is a null pointer, then let NL3 be zero.

b) Otherwise, let NL3 be the value of NameLength3.

11) Case:

a) If NL3 is not negative, then let L3 be NL3.

b) If NL3 indicates NULL TERMINATED, then let L3 be the number of octets of Authentication
that precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

12) Case:

a) If the value of SN is 'DEFAULT', then:

i) If L2 is not zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

ii) If L3 is not zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

150 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.13 Connect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) If an establisheddefault SQL-connection is associatedwith an allocated SQL-connection
associated with E, then an exception condition is raised: connection exception— con-
nection name in use (08002).

b) Otherwise:

i) If L2 is zero, then let UN be an implementation-defined (ID039) <user identifier>.

ii) If L2 is non-zero, then:

1) Let UV be the first L2 octets of UserName and let UN be the result of

TRIM (BOTH ' ' FROM 'UV')

2) If UN does not conform to the Format and Syntax Rules of a <user identifier>,
then an exception condition is raised: invalid authorization specification (28000).

3) If UN does not conform to any implementation-defined (IA185) restrictions on
its value, then an exception condition is raised: invalid authorization specification
(28000).

iii) Case:

1) If L3 is not zero, then let AU be the first L3 octets of Authentication.

2) Otherwise, let AU be an implementation-defined (ID040) authentication string,
whose length may be zero.

13) Case:

a) If the value of SN is 'DEFAULT', then the default SQL-session is initiated and associated with
the default SQL-server. The method by which the default SQL-server is determined is imple-
mentation-defined (IW069).

b) Otherwise, an SQL-session is initiated and associated with the SQL-server identified by SN.
Themethod bywhich SN is used to determine the appropriate SQL-server is implementation-
defined (IW070).

14) If an SQL-session is successfully initiated, then:

a) The current SQL-connectionand current SQL-session, if any, becomeadormant SQL-connection
and a dormant SQL-session respectively. The SQL-session context information is preserved
and is not affected in any way by operations performed over the initiated SQL-connection.

NOTE 23— The SQL-session context information is defined in Subclause 4.45, “SQL-sessions”, in ISO/IEC
9075-2.

b) The initiated SQL-sessionbecomes the current SQL-session and the SQL-connectionestablished
to that SQL-session becomes the current SQL-connection and is associated with C.

NOTE 24— If an SQL-session is not successfully initiated, then the current SQL-connection and current SQL-
session, if any, remain unchanged.

15) If the SQL-client cannot establish the SQL-connection, then an exception condition is raised: connec-
tion exception— SQL-client unable to establish SQL-connection (08001).

16) If the SQL-server rejects the establishment of the SQL-connection, then an exception condition is
raised: connection exception— SQL-server rejected establishment of SQL-connection (08004).

NOTE25—AU andUN are used by the SQL-server, alongwith other implementation-dependent values, to determine
whether to accept or reject the establishment of an SQL-session.

17) The SQL-server for the subsequent execution of SQL-statements via CLI routine invocations is set
to the SQL-server identified by SN.

© ISO/IEC 2023 – All rights reserved 151

ISO/IEC 9075-3:2023(E)
7.13 Connect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

18) The SQL-session user identifier and the current user identifier are set toUN. The current role name
is set to the null value.

Conformance Rules

None.

152 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.13 Connect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.14 CopyDesc()

Function

Copy a CLI descriptor.

Definition

CopyDesc (
 SourceDescHandle IN INTEGER,
 TargetDescHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If SourceDescHandle does not identify an allocated CLI descriptor area, then an exception
condition is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise, let SD be the CLI descriptor area identified by SourceDescHandle.

2) Case:

a) If TargetDescHandle does not identify an allocated CLI descriptor area, then an exception
condition is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let TD be the CLI descriptor area identified by TargetDescHandle.

ii) The diagnostics area associated with TD is emptied.

3) TheGeneralRulesof Subclause6.16, “Deferredparameter check”, are appliedwith SDasDESCRIPTOR
AREA.

4) TheGeneralRulesof Subclause6.16, “Deferredparameter check”, are appliedwithTDasDESCRIPTOR
AREA.

5) IfTD is an implementation rowdescriptor, thenanexception condition is raised:CLI-specific condition
— cannot modify an implementation row descriptor (HY022).

6) Let AT be the value of the ALLOC_TYPE field of TD.

7) The contents of TD are replaced by a copy of the contents of SD.

8) The ALLOC_TYPE field of TD is set to AT.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 153

ISO/IEC 9075-3:2023(E)
7.14 CopyDesc()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.15 DataSources()

Function

Get server name(s) that the SQL/CLI application can connect to, along with description information, if
available.

Definition

DataSources (
 EnvironmentHandle IN INTEGER,
 Direction IN SMALLINT,
 ServerName OUT CHARACTER(L1),
 BufferLength1 IN SMALLINT,
 NameLength1 OUT SMALLINT,
 Description OUT CHARACTER(L2),
 BufferLength2 IN SMALLINT,
 NameLength2 OUT SMALLINT)

RETURNS SMALLINT

where L1 and L2 have maximum values equal to the implementation-defined (IL006) maximum length
of a variable-length character string.

General Rules

1) Let EH be the value of EnvironmentHandle.

2) If EH does not identify an allocated SQL-environment or if it identifies an allocated skeleton SQL-
environment, then an exception condition is raised:CLI-specific condition— invalid handle (HYHHH).

3) Let E be the allocated SQL-environment identified by EH. The diagnostics area associated with E is
emptied.

4) Let BL1 and BL2 be the values of BufferLength1 and BufferLength2, respectively.

5) Let D be the value of Direction.

6) If D is not either the code value for NEXT or the code value for FIRST in Table 24, “Codes used for
fetch orientation”, then an exception condition is raised: CLI-specific condition— invalid retrieval
code (HY103).

7) Let SN1, SN2, SN3, etc., be an ordered set of the names of SQL-servers to which the SQL/CLI applic-
ationmight be eligible to connect (where themechanismused to establish this set is implementation-
defined (IW072)).

NOTE26— SN1, SN2, SN3, etc., are the names that an SQL/CLI applicationwould use in invocations of Connect, rather
than the “actual” names of the SQL-servers.

8) LetD1,D2,D3, etc., be strings describing the SQL-servers namedby SN1, SN2, SN3, etc. (again provided
via an implementation-defined (IW073) mechanism).

9) Case:

a) If D indicates FIRST, or if DataSources has never been successfully called on EH, or if the pre-
vious call to DataSources on EH raised a completion condition: no data (02000), then:

i) If there are no entries in the set SN1, SN2, SN3, etc., then a completion condition is raised:
no data (02000) and no further rules for this Subclause are applied.

154 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.15 DataSources()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with
ServerName as TARGET, SN1 as VALUE, BL1 as TARGET OCTET LENGTH, and
NameLength1 as RETURNED OCTET LENGTH.

iii) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with
DescriptionasTARGET,D1 asVALUE,BL2 asTARGETOCTETLENGTH, andNameLength2
as RETURNED OCTET LENGTH.

b) Otherwise:

i) Let SNnbe the ServerNamevalue thatwas returnedon the previous call toDataSources
on EH.

ii) If there is no entry in the set after SNn, then a completion condition is raised: no data
(02000) and no further rules for this subclause are applied.

iii) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with
ServerName as TARGET, SNn+1 as VALUE, BL1 as TARGET OCTET LENGTH, and
NameLength1 as RETURNED OCTET LENGTH.

iv) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with
Description as TARGET, Dn+1 as VALUE, BL2 as TARGET OCTET LENGTH, and
NameLength2 as RETURNED OCTET LENGTH.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 155

ISO/IEC 9075-3:2023(E)
7.15 DataSources()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.16 DescribeCol()

Function

Get column attributes.

Definition

DescribeCol (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 ColumnName OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 NameLength OUT SMALLINT,
 DataType OUT SMALLINT,
 ColumnSize OUT INTEGER,
 DecimalDigits OUT SMALLINT,
 Nullable OUT SMALLINT)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no prepared or executed statement associated with S, then an exception condition is
raised: CLI-specific condition— function sequence error (HY010).

3) Let IRD be the implementation row descriptor associated with S and let N be the value of the
TOP_LEVEL_COUNT field of IRD.

4) If N is zero, then an exception condition is raised: dynamic SQL error — prepared statement not a
cursor specification (07005).

5) Let CN be the value of ColumnNumber.

6) If CN is less than 1 (one) or greater thanN, then an exception condition is raised: dynamic SQL error
— invalid descriptor index (07009).

7) Let RI be the number of the descriptor record in IRD that is the CN-th descriptor area for which
LEVEL is 0 (zero). Let C be the <select list> column described by the item descriptor area of IRD
specified by RI.

8) Let BL be the value of BufferLength.

9) Information is retrieved from IRD:

a) Case:

i) If the data type of C is datetime, then DataType is set to the value of the Code column
fromTable35, “Concise codesusedwithdatetimedata types in SQL/CLI”, corresponding
to the datetime interval code of C.

ii) If the data type of C is interval, then DataType is set to the value of the Code column
fromTable 36, “Concise codes usedwith interval data types in SQL/CLI”, corresponding
to the datetime interval code of C.

156 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.16 DescribeCol()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) Otherwise, DataType is set to the data type of C.

b) Case:

i) If the data type of C is character string, then ColumnSize is set to the maximum length
in octets of C.

ii) If the data type of C is exact numeric or approximate numeric, then ColumnSize is set
to the maximum length of C in decimal digits.

iii) If the data type of C is datetime or interval, then ColumnSize is set to the length in
positions of C.

iv) If the data type of C is a reference type, then ColumnSize is set to the length in octets
of that reference type.

v) Otherwise, ColumnSize is set to an implementation-dependent (UV125) value.

c) Case:

i) If the data type of C is exact numeric, then DecimalDigits is set to the scale of C.

ii) If the data type of C is datetime, thenDecimalDigits is set to the time fractional seconds
precision of C.

iii) If the data typeofC is interval, thenDecimalDigits is set to the interval fractional seconds
precision of C.

iv) Otherwise, DecimalDigits is set to an implementation-dependent (UV126) value.

d) If C is known not null, then Nullable is set to 1 (one); otherwise, Nullable is set to 0 (zero).

e) The name associated with C is retrieved. If C has an implementation-dependent name, then
the value retrieved is the implementation-dependent (UV122) name for C; otherwise, the
value retrieved is the <derived column> name of C. Let V be the value retrieved. The General
Rules of Subclause6.14, “Character string retrieval”, are appliedwithColumnNameasTARGET,
V as VALUE, BL as TARGET OCTET LENGTH, and NameLength as RETURNED OCTET LENGTH.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 157

ISO/IEC 9075-3:2023(E)
7.16 DescribeCol()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.17 Disconnect()

Function

Terminate an established connection.

Definition

Disconnect (
 ConnectionHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception— connection does not exist (08003).

b) Otherwise, let EC be the established SQL-connection associated with C.

3) Let L1 be a list of the allocated SQL-statements associated with C. Let L2 be a list of the allocated
CLI descriptor areas associated with C.

4) If EC is active, then

Case:

a) If any allocated SQL-statement in L1has a deferredparameter number associatedwith it, then
an exception condition is raised: CLI-specific condition— function sequence error (HY010).

b) Otherwise, an exception condition is raised: invalid transaction state—active SQL-transaction
(25001).

5) For every allocated SQL-statement AS in L1:

a) Let SH be the StatementHandle that identifies AS.

b) FreeHandle is implicitly invoked with HandleType indicating STATEMENTHANDLE andwith
SH as the value of Handle.

NOTE 27— Any diagnostic information generated by the invocation is associated with C and not with AS.

6) For every allocated CLI descriptor area AD in L2:

a) Let DH be the DescriptorHandle that identifies AD.

158 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.17 Disconnect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) FreeHandle is implicitly invokedwithHandleType indicatingDESCRIPTORHANDLE andwith
DH as the value of Handle.

NOTE 28— Any diagnostic information generated by the invocation is associated with C and not with AD.

7) Let CC be the current SQL-connection.

8) The SQL-session associated with EC is terminated. EC is terminated, regardless of exception condi-
tions that might occur during the disconnection process, and is no longer associated with C.

9) If any error is detected during the disconnection process, then a completion condition is raised:
warning— disconnect error (01002).

10) If EC and CCwere the same SQL-connection, then there is no current SQL-connection. Otherwise,
CC remains the current SQL-connection.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 159

ISO/IEC 9075-3:2023(E)
7.17 Disconnect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.18 EndTran()

Function

Terminate an SQL-transaction.

Definition

EndTran (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 CompletionType IN SMALLINT)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 13, “Codes used for SQL/CLI handle types”, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

3) Case:

a) If HT indicates STATEMENT HANDLE, then

Case:

i) IfHdoes not identify an allocated SQL-statement, then an exception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise, an exception condition is raised: CLI-specific condition— invalid attribute
identifier (HY092).

b) If HT indicates DESCRIPTOR HANDLE, then

Case:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise, an exception condition is raised: CLI-specific condition— invalid attribute
identifier (HY092).

c) If HT indicates CONNECTION HANDLE, then

Case:

i) IfHdoesnot identify an allocated SQL-connection, then an exception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise:

1) Let C be the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

3) If C has an associated established SQL-connection that is active, then let L1 be a
list containing C; otherwise, let L1 be an empty list.

160 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.18 EndTran()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

d) If HT indicates ENVIRONMENT HANDLE, then

Case:

i) IfH does not identify an allocated SQL-environment or if it identifies an allocated SQL-
environment that is a skeletonSQL-environment, thenanexception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) Let L be a list of the allocated SQL-connections associated with E. Let L1 be a list
of the allocated SQL-connections in L that have an associated established SQL-
connection that is active.

4) Let CT be the value of CompletionType.

5) If CT is not one of the code values in Table 14, “Codes used for transaction termination”, then an
exception condition is raised: CLI-specific condition— invalid transaction operation code (HY012).

6) If L1 is empty, then no further rules of this Subclause are applied.

7) If the current SQL-transaction is part of an encompassing transaction that is controlled by an agent
other than the SQL-agent, then an exception condition is raised: invalid transaction termination
(2D000).

8) Let L2 be a list of the allocated SQL-statements associated with allocated SQL-connections in L1.

9) If any of the allocated SQL-statements in L2 has an associated deferred parameter number, then an
exception condition is raised: CLI-specific condition— function sequence error (HY010).

10) Let L3 be a list of the open CLI cursors associated with allocated SQL-statements in L2.

11) If CT indicates COMMIT, COMMIT AND CHAIN, ROLLBACK, or ROLLBACK AND CHAIN, then:

a) Case:

i) If CT indicates COMMIT or COMMIT AND CHAIN, then let LOC be the list of all non-
holdable cursors in L3.

ii) Otherwise, let LOC be the list of all cursors in L3.

b) For OC ranging over all CLI cursors in LOC:

i) Let S be the allocated SQL-statement with which OC is associated.

ii) The General Rules of Subclause 15.4, “Effect of closing a cursor”, in ISO/IEC 9075-2,
are applied with OC as CURSOR and DESTROY as DISPOSITION.

iii) Any fetched row associated with S is removed from association with S.

12) If CT indicates COMMIT or COMMIT AND CHAIN, then:

a) If an atomic execution context is active, then anexception condition is raised: invalid transaction
termination (2D000).

b) For every temporary table associated with the current SQL-transaction that specifies the ON
COMMITDELETEoption and thatwas updated by the current SQL-transaction, the invocation
of EndTran with CT indicating COMMIT is effectively preceded by the execution of a <delete

© ISO/IEC 2023 – All rights reserved 161

ISO/IEC 9075-3:2023(E)
7.18 EndTran()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

statement: searched> that specifies DELETE FROM T, where T is the <table name> of that
temporary table.

c) Theeffects specified in theGeneralRulesof Subclause17.4, “<set constraintsmodestatement>”,
in ISO/IEC 9075-2, occur as if the statement SET CONSTRAINTS ALL IMMEDIATE were
executed.

d) Case:

i) If any constraint is not satisfied, then all changes to SQL-data or schemas that were
madeby the current SQL-transaction are canceled andanexception condition is raised:
transaction rollback— integrity constraint violation (40002).

ii) If the execution of any <triggered SQL statement> is unsuccessful, then all changes to
SQL-data or schemas thatweremade by the current SQL-transaction are cancelled and
an exception condition is raised: transaction rollback— triggered action exception
(40004).

iii) If any other error preventing commitment of the SQL-transaction has occurred, then
all changes to SQL-data or schemas thatweremade by the current SQL-transaction are
canceled and an exception condition is raised: transaction rollback (40000)with an
implementation-defined (IC008) subclass value.

iv) Otherwise, all changes to SQL-data or schemas that were made by the current SQL-
transaction are made accessible to all concurrent and subsequent SQL-transactions.

e) Every savepoint established in the current SQL-transaction is destroyed.

f) Every valid non-holdable locator value is marked invalid.

g) The current SQL-transaction is terminated. If CT indicates COMMIT AND CHAIN, then a new
SQL-transaction is initiatedwith the same accessmode and isolation level as the SQL-transac-
tion just terminated. Any branch transactions of the SQL-transaction are initiated with the
same accessmode and isolation level as the corresponding branch of the SQL-transaction just
terminated.

13) If CT indicates SAVEPOINT NAME RELEASE, then:

a) IfHT is not CONNECTIONHANDLE, then an exception condition is raised:CLI-specific condition
— invalid handle (HYHHH).

b) Let SP be the value of the SAVEPOINT NAME connection attribute of C.

c) If SP does not specify a savepoint established within the current SQL-transaction, then an
exception condition is raised: savepoint exception— invalid specification (3B001).

d) The savepoint identified by SP and all savepoints established by the current SQL-transaction
subsequent to the establishment of SP are destroyed.

14) If CT indicates ROLLBACK or ROLLBACK AND CHAIN, then:

a) If an atomic execution context is active, then anexception condition is raised: invalid transaction
termination (2D000).

b) All changes to SQL-data or schemas that were made by the current SQL-transaction are can-
celed.

c) Every savepoint established in the current SQL-transaction is destroyed.

d) Every valid locator value is marked invalid.

162 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.18 EndTran()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

e) The current SQL-transaction is terminated. If CT indicates ROLLBACKANDCHAIN, then a new
SQL-transaction is initiatedwith the same accessmode and isolation level as the SQL-transac-
tion just terminated. Any branch transactions of the SQL-transaction are initiated with the
same accessmode and isolation level as the corresponding branch of the SQL-transaction just
terminated.

15) If CT indicates SAVEPOINT NAME ROLLBACK, then:

a) IfHT is not CONNECTIONHANDLE, then an exception condition is raised:CLI-specific condition
— invalid handle (HYHHH).

b) Let SP be the value of the SAVEPOINT NAME connection attribute of C.

c) If SP does not specify a savepoint established within the current SQL-transaction, then an
exception condition is raised: savepoint exception— invalid specification (3B001).

d) If an atomic execution context is active and SP specifies a savepoint established before the
beginning of the most recent atomic execution context, then an exception condition is raised:
savepoint exception— invalid specification (3B001).

e) Anychanges toSQL-dataor schemas thatweremadeby thecurrent SQL-transactionsubsequent
to the establishment of SP are canceled.

f) All savepoints established by the current SQL-transaction subsequent to the establishment
of SP are destroyed.

g) Every valid locator that was generated in the current SQL-transaction subsequent to the
establishment of SP is marked invalid.

h) For every open CLI cursor OC in L3 that was opened subsequent to the establishment of SP:

i) Let S be the allocated SQL-statement with which OC is associated.

ii) The General Rules of Subclause 15.4, “Effect of closing a cursor”, in ISO/IEC 9075-2,
are applied with CR as CURSOR and DESTROY as DISPOSITION.

iii) Any fetched row associated with OC is removed from association with S.

i) The status of all open CLI cursors in L3 that were opened by the current SQL-transaction
before the establishment of SP is implementation-defined (IA168).

NOTE 29— The current SQL-transaction is not terminated, and there is no other effect on the SQL-data or
schemas.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 163

ISO/IEC 9075-3:2023(E)
7.18 EndTran()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.19 Error()

Function

Return diagnostic information.

Definition

Error (
 EnvironmentHandle IN INTEGER,
 ConnectionHandle IN INTEGER,
 StatementHandle IN INTEGER,
 Sqlstate OUT CHARACTER(5),
 NativeError OUT INTEGER,
 MessageText OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 TextLength OUT SMALLINT)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Case:

a) If StatementHandle identifies an allocated SQL-statement, then let IH be the value of State-
mentHandle and let HT be the code value for STATEMENT HANDLE from Table 13, “Codes
used for SQL/CLI handle types”.

b) If StatementHandle is zero and ConnectionHandle identifies an allocated SQL-connection,
then let IH be the value of ConnectionHandle and let HT be the code value for CONNECTION
HANDLE from Table 13, “Codes used for SQL/CLI handle types”.

c) If ConnectionHandle is zero andEnvironmentHandle identifies an allocated SQL-environment,
then let IHbe the value of EnvironmentHandle and letHTbe the code value for ENVIRONMENT
HANDLE from Table 13, “Codes used for SQL/CLI handle types”.

d) Otherwise, an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

2) Let R be the most recently executed CLI routine, other than Error, GetDiagField, or GetDiagRec, for
which IHwas passed as a value of an input handle.

NOTE 30— The GetDiagField, GetDiagRec and Error routines can cause exception or completion conditions to be
raised, but they do not cause status records to be generated.

3) Let N be the number of status records generated by the execution of R. Let AP be the number of
status records generated by the execution of R already processed by Error. If N is zero or AP equals
N then a completion condition is raised: no data (02000), Sqlstate is set to '00000', the values of
NativeError, MessageText, and TextLength are set to implementation-dependent (UV058) values,
and no further rules of this Subclause are applied.

4) Let SR be the first status record generated by the execution of R not yet processed by Error. Let RN
be the number of the status record SR. Information is retrieved by implicitly executing GetDiagRec
as follows:

 GetDiagRec (HT, IH, RN, Sqlstate,
 NativeError, MessageText, BufferLength, TextLength)

164 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.19 Error()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

5) Add SR to the list of status records generated by the execution of R already processed by Error.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 165

ISO/IEC 9075-3:2023(E)
7.19 Error()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.20 ExecDirect()

Function

Execute a statement directly.

Definition

ExecDirect (
 StatementHandle IN INTEGER,
 StatementText IN CHARACTER(L),
 TextLength IN INTEGER)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let TL be the value of TextLength.

3) Let ST be the value of StatementText.

4) The General Rules of Subclause 6.4, “Preparing a statement”, are applied with S as ALLOCATED
STATEMENT, TL as TEXT LENGTH, ST as STATEMENT TEXT, and “ExecDirect” as INVOKER.

5) The General Rules of Subclause 6.5, “Executing a statement”, are applied with S as ALLOCATED
STATEMENT, P as PREPARED STATEMENT, and “ExecDirect” as INVOKER.

Conformance Rules

None.

166 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.20 ExecDirect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.21 Execute()

Function

Execute a prepared statement.

Definition

Execute (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is noprepared statement associatedwith S, then an exception condition is raised:CLI-specific
condition— function sequence error (HY010). Otherwise, let P be the statement that was prepared.

3) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

4) The General Rules of Subclause 6.5, “Executing a statement”, are applied with S as ALLOCATED
STATEMENT, P as PREPARED STATEMENT, and “Execute” as INVOKER.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 167

ISO/IEC 9075-3:2023(E)
7.21 Execute()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.22 Fetch()

Function

Fetch the next rowset of a CLI cursor.

Definition

Fetch (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) The General Rules of Subclause 6.12, “Fetching a rowset”, are applied with S as ALLOCATED
STATEMENT, NEXT as FETCH ORIENTATION, and 1 (one) as FETCH OFFSET.

Conformance Rules

None.

168 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.22 Fetch()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.23 FetchScroll()

Function

Position a CLI cursor on the specified rowset and retrieve values from that rowset.

Definition

FetchScroll (
 StatementHandle IN INTEGER,
 FetchOrientation IN SMALLINT,
 FetchOffset IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let FO be the value of FetchOrientation.

3) Let OS be the value of FetchOffset.

4) The General Rules of Subclause 6.12, “Fetching a rowset”, are applied with S as ALLOCATED
STATEMENT, FO as FETCH ORIENTATION, and OS as FETCH OFFSET.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 169

ISO/IEC 9075-3:2023(E)
7.23 FetchScroll()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.24 ForeignKeys()

Function

Return a result set that contains information about foreign keys either in or referencing a single specified
table stored in the Information Schema of the connected data source. The result set contains information
about either:

— the primary key of a single specified table together with the foreign keys in all other tables that
reference that primary key;

— the foreign keys of a single specified table together with the primary or unique keys to which they
refer.

Definition

ForeignKeys (
 StatementHandle IN INTEGER,
 PKCatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 PKSchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 PKTableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 FKCatalogName IN CHARACTER(L4),
 NameLength4 IN SMALLINT,
 FKSchemaName IN CHARACTER(L5),
 NameLength5 IN SMALLINT,
 FKTableName IN CHARACTER(L6),
 NameLength6 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, L4, L5, and L6has amaximumvalue equal to the implementation-defined (IL006)
maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let FOREIGN_KEYS_QUERY be a table, with the definition:

CREATE TABLE FOREIGN_KEYS_QUERY (
 UK_TABLE_CAT CHARACTER VARYING(128),
 UK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
 UK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
 UK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
 FK_TABLE_CAT CHARACTER VARYING(128),
 FK_TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,
 FK_TABLE_NAME CHARACTER VARYING(128) NOT NULL,
 FK_COLUMN_NAME CHARACTER VARYING(128) NOT NULL,
 ORDINAL_POSITION SMALLINT NOT NULL,
 UPDATE_RULE SMALLINT,

170 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

 DELETE_RULE SMALLINT,
 FK_NAME CHARACTER VARYING(128),
 UK_NAME CHARACTER VARYING(128),
 DEFERABILITY SMALLINT,
 UNIQUE_OR_PRIMARY CHARACTER(7))

6) Let PKN and FKN be the value of PKTableName and FKTableName, respectively.

7) Case:

a) If CHAR_LENGTH(PKN) = 0 (zero) and CHAR_LENGTH(FKN) ≠ 0 (zero), then the result set
returneddescribes all the foreign keys (if any) of the specified table, anddescribes the primary
or unique keys to which they refer.

i) Let FKS represent the set of rows formed by a natural inner join on the values in the
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns
between the rows in SS’s Information SchemaREFERENTIAL_CONSTRAINTS view and
the matching rows in SS’s Information Schema TABLE_CONSTRAINTS view.

ii) Let UK represent the row in SS’s Information Schema TABLE_CONSTRAINTS view that
defines the primary or unique key referenced by an individual foreign key in FKS. This
row is obtained by matching the values in the UNIQUE_CONSTRAINT_CATALOG,
UNIQUE_CONSTRAINT_SCHEMA, and UNIQUE_CONSTRAINT_NAME columns in a row
of FKS to the values in the CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME columns in TABLE_CONSTRAINTS.

iii) LetFK_COLS represent the set of rows in SS’s InformationSchemaKEY_COLUMN_USAGE
view that define the columns within an individual foreign key row in FKS.

iv) Let FKS_COLS represent the set of rows in the combination of all FK_COLS sets.

v) LetUK_COLS represent the set of rows in SS’s InformationSchemaKEY_COLUMN_USAGE
view that define the columns within an individual UK.

vi) Let UKS_COLS represent the set of rows in the combination of all UK_COLS sets.

vii) Let XKS_COLS represent the set of extended rows formed by the inner equijoin of
FKS_COLS and UKS_COLSmatching CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,
CONSTRAINT_NAME, and POSITION_IN_UNIQUE_CONSTRAINT in FKS_COLS with
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME, and
ORDINAL_POSITION in UKS_COLS, respectively.

Let FKS_COLS_NAME be the name of each column of FKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from FKS_COLS are respectively 'F_'
|| FKS_COLS_NAME.

Let UKS_COLS_NAME be the name of each column of UKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from UKS_COLS are respectively 'U_'
|| UKS_COLS_NAME.

viii) FOREIGN_KEYS_QUERY contains a row for each row in XKS_COLSwhere:

1) Let SUPbe the value of Supported that is returnedby the executionof GetFeature-
Info with FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to
the feature 'Information Schema metadata constrained by privileges in CLI').

2) Case:

A) If the value of SUP is 1 (one), then FOREIGN_KEYS_QUERY contains a row
for each column of all the foreign keys within a specific table in SS’s
Information Schema TABLE_CONSTRAINTS view.

© ISO/IEC 2023 – All rights reserved 171

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

B) Otherwise, FOREIGN_KEYS_QUERY contains a row for each columnof all the
foreign keys within a specific table in SS’s Information Schema
TABLE_CONSTRAINTS view in accordance with implementation-defined
(IW075) authorization criteria.

ix) For each row of FOREIGN_KEYS_QUERY:

1) If the SQL-implementation does not support catalog names, then UK_TABLE_CAT
is set to the null value; otherwise, the value of UK_TABLE_CAT in FOR-
EIGN_KEYS_QUERY is the value of the U_TABLE_CATALOG column in XKS_COLS.

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
U_TABLE_SCHEMA column in XKS_COLS.

3) The value of UK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
U_TABLE_NAME column in XKS_COLS.

4) The value of UK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
U_COLUMN_NAME column in XKS_COLS.

5) If the SQL-implementation does not support catalog names, then UK_TABLE_CAT
is set to the null value; otherwise, the value of FK_TABLE_CAT in FOR-
EIGN_KEYS_QUERY is the value of the F_TABLE_CATALOG column in XKS_COLS.

6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_SCHEMA column in XKS_COLS.

7) The value of FK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_NAME column in XKS_COLS.

8) The value of FK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
F_COLUMN_NAME column in XKS_COLS.

9) The value of ORDINAL_POSITION in FOREIGN_KEYS_QUERY is the value of the
F_ORDINAL_POSITION column in XKS_COLS.

10) The value of UPDATE_RULE in FOREIGN_KEYS_QUERY is determined by the value
of the UPDATE_RULE column in XKS_COLS as follows:

A) Let UR be the value in the UPDATE_RULE column.

B) IfUR is 'CASCADE', then the valueofUPDATE_RULE is the code for CASCADE
in Table 26, “Miscellaneous codes used in CLI”.

C) If UR is 'RESTRICT', then the value of UPDATE_RULE is the code for
RESTRICT in Table 26, “Miscellaneous codes used in CLI”.

D) If UR is 'SET NULL', then the value of UPDATE_RULE is the code for SET
NULL in Table 26, “Miscellaneous codes used in CLI”.

E) If UR is 'NO ACTION', then the value of UPDATE_RULE is the code for NO
ACTION in Table 26, “Miscellaneous codes used in CLI”.

F) If UR is 'SET DEFAULT', then the value of UPDATE_RULE is the code for SET
DEFAULT in Table 26, “Miscellaneous codes used in CLI”.

11) The value of DELETE_RULE in FOREIGN_KEYS_QUERY is determined by the value
of the DELETE_RULE column in XKS_COLS as follows:

A) Let DR be the value in the DELETE_RULE column.

172 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

B) IfDR is 'CASCADE', then the value ofDELETE_RULE is the code for CASCADE
in Table 26, “Miscellaneous codes used in CLI”.

C) IfDR is 'RESTRICT', then thevalueofDELETE_RULE is the code forRESTRICT
in Table 26, “Miscellaneous codes used in CLI”.

D) If DR is 'SET NULL', then the value of DELETE_RULE is the code for SET
NULL in Table 26, “Miscellaneous codes used in CLI”.

E) If DR is 'NO ACTION', then the value of DELETE_RULE is the code for NO
ACTION in Table 26, “Miscellaneous codes used in CLI”.

F) If DR is 'SET DEFAULT', then the value of DELETE_RULE is the code for SET
DEFAULT in Table 26, “Miscellaneous codes used in CLI”.

12) The value of FK_NAME in FOREIGN_KEYS_QUERY is the value of the CON-
STRAINT_NAME column in XKS_COLS.

13) The value of UK_NAME in FOREIGN_KEYS_QUERY is the value of the
UNIQUE_CONSTRAINT_NAME column in XKS_COLS.

14) If there are no implementation-defined (IW076)mechanisms for setting the value
ofDEFERABILITY inFOREIGN_KEYS_QUERY to the value of the code for INITIALLY
DEFERRED or to the value of the code for INITIALLY IMMEDIATE in Table 26,
“Miscellaneous codes used in CLI”, then the value of DEFERABILITY in FOR-
EIGN_KEYS_QUERY is the code for NOTDEFERRABLE in Table 26, “Miscellaneous
codes used in CLI”; otherwise, the value of DEFERABILITY in FOR-
EIGN_KEYS_QUERY can be the code for INITIALLY DEFERRED, the value of the
code for INITIALLY IMMEDIATE, or the code for NOT DEFERRABLE in Table 26,
“Miscellaneous codes used in CLI”.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS_QUERY is 'UNIQUE' if the
foreign key references a UNIQUE key and 'PRIMARY' if the foreign key references
a primary key.

x) LetNL1,NL2, andNL3be the values ofNameLength4,NameLength5, andNameLength6,
respectively.

xi) Let CATVAL, SCHVAL, and TBLVAL be the values of FKCatalogName, FKSchemaName,
and FKTableName, respectively.

xii) If the METADATA ID attribute of S is TRUE, then:

1) If FKCatalogName is a null pointer and the value of the CATALOG NAME inform-
ation type fromTable 28, “Codes anddata types for implementation information”,
Y, then an exception condition is raised: CLI-specific condition— invalid use of
null pointer (HY009).

2) If FKSchemaName is a null pointer or if FKTableName is a null pointer, then an
exception condition is raised: CLI-specific condition— invalid use of null pointer
(HY009).

xiii) If FKCatalogName is a null pointer, then NL1 is set to zero. If FKSchemaName is a null
pointer, then NL2 is set to zero. If FKTableName is a null pointer, then NL3 is set to
zero.

xiv) Case:

1) If NL1 is not negative, then let L be NL1.

© ISO/IEC 2023 – All rights reserved 173

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

2) If NL1 indicates NULL TERMINATED, then let L be the number of octets of
FKCatalogName that precede the implementation-defined (IV030) null character
that terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

Let CATVAL be the first L octets of FKCatalogName.

xv) Case:

1) If NL2 is not negative, then let L be NL2.

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of FKS-
chemaName that precede the implementation-defined (IV030) null character
that terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

Let SCHVAL be the first L octets of FKSchemaName.

xvi) Case:

1) If NL3 is not negative, then let L be NL3.

2) If NL3 indicates NULL TERMINATED, then let L be the number of octets of FKT-
ableName that precede the implementation-defined (IV030) null character that
terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

Let TBLVAL be the first L octets of FKTableName.

xvii) Case:

1) If the METADATA ID attribute of S is TRUE, then:

A) Case:

I) If the value of NL1 is zero, then let CATSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('CATVAL') FROM
CHAR_LENGTH(TRIM('CATVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

FK_TABLE_CAT = 'TEMPSTR' AND

2) Otherwise, let CATSTR be the character string:

UPPER(FK_TABLE_CAT) = UPPER('CATVAL') AND

174 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

B) Case:

I) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('SCHVAL') FROM
CHAR_LENGTH(TRIM('SCHVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

FK_TABLE_SCHEM = 'TEMPSTR' AND

2) Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER('SCHVAL') AND

C) Case:

I) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('TBLVAL') FROM
CHAR_LENGTH(TRIM('TBLVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

FK_TABLE_NAME = 'TEMPSTR' AND

2) Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER('TBLVAL') AND

2) Otherwise:

A) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise,
let CATSTR be the character string:

FK_TABLE_CAT = 'CATVAL' AND

B) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise,
let SCHSTR be the character string:

FK_TABLE_SCHEM = 'SCHVAL' AND

C) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise,
let TBLSTR be the character string:

© ISO/IEC 2023 – All rights reserved 175

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

FK_TABLE_NAME = 'TBLVAL' AND

xviii) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

xix) Let STMT be the character string:

SELECT *
FROM FOREIGN_KEYS_QUERY
WHERE PRED
ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

xx) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the
value of StatementText, and the length of STMT as the value of TextLength.

b) If CHAR_LENGTH(PKN) ≠ 0 (zero) and CHAR_LENGTH(FKN) = 0 (zero), then the result set
returned contains a description of the primary key (if any) of the specified table togetherwith
the descriptions of foreign keys in all other tables that reference that primary key.

i) Let PKS represent the set of rows in SS’s Information Schema TABLE_CONSTRAINTS
view where the value of CONSTRAINT_TYPE is 'PRIMARY KEY'.

ii) Let X represent the set of rows formed by a natural inner join on the values in the
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns
between the rows in SS’s Information SchemaREFERENTIAL_CONSTRAINTS view and
the matching rows in SS’s Information Schema TABLE_CONSTRAINTS view.

iii) Let FKS represent the rows defining the foreign keys that reference an individual
primary key in PKS. These rows are obtained by matching the values of CON-
STRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns in a
row of PKS to the values in the UNIQUE_CONSTRAINT_CATALOG, UNIQUE_CON-
STRAINT_SCHEMA, and UNIQUE_CONSTRAINT_NAME columns in X.

iv) Let FKSS represent the set of rows in the combination of all FKS sets.

v) LetPK_COLS represent the set of rows in SS’s InformationSchemaKEY_COLUMN_USAGE
view that define the columns within an individual primary key row in PKS.

vi) Let PKS_COLS represent the set of rows in the combination of all PK_COLS sets.

vii) LetFK_COLS represent the set of rows in SS’s InformationSchemaKEY_COLUMN_USAGE
view that define the columns within an individual foreign key in FKSS.

viii) Let FKS_COLS represent the set of rows in the combination of all FK_COLS sets.

ix) Let XKS_COLS represent the set of extended rows formed by the inner equijoin of
PKS_COLS and UKS_COLSmatching CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA,
CONSTRAINT_NAME, and ORDINAL_POSITION of PKS_COLSwith CONSTRAINT_CATA-
LOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME, and POSITION_IN_UNIQUE_CON-
STRAINT of FKS_COLS, respectively.

Let PKS_COLS_NAME be the name of each column of PKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from PKS_COLS are respectively 'P_'
|| UKS_COLS_NAME.

Let FKS_COLS_NAME be the name of each column of FKS_COLS considered in turn; the
names of the columns of XKS_COLS originating from FKS_COLS are respectively 'F_'
|| FKS_COLS_NAME.

x) FOREIGN_KEYS_QUERY contains a row for each row in XKS_COLSwhere:

176 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Let SUPbe the value of Supported that is returnedby the executionof GetFeature-
Info with FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to
the feature 'Information Schema metadata constrained by privileges in CLI').

1)

2) Case:

A) If the value of SUP is 1 (one), then FOREIGN_KEYS_QUERY contains one or
more rows describing the foreign keys that reference the primary key of a
specific table in SS’s Information Schema TABLE_CONSTRAINTS view.

B) Otherwise, FOREIGN_KEYS_QUERY contains a row for each columnof all the
foreign keys that reference the primary key of a specific table in SS’s
Information Schema TABLE_CONSTRAINTS view in accordance with
implementation-defined (IW075) authorization criteria.

xi) For each row of FOREIGN_KEYS_QUERY:

1) If the SQL-implementation does not support catalog names, then UK_TABLE_CAT
is set to the null value; otherwise, the value of UK_TABLE_CAT in FOR-
EIGN_KEYS_QUERY is the value of the P_TABLE_CATALOG column in XKS_COLS.

2) The value of UK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
P_TABLE_SCHEMA column in XKS_COLS.

3) The value of UK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
P_TABLE_NAME column in XKS_COLS.

4) The value of UK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
P_COLUMN_NAME column in XKS_COLS.

5) If the SQL-implementation does not support catalog names, then UK_TABLE_CAT
is set to the null value; otherwise, the value of UK_TABLE_CAT in FOR-
EIGN_KEYS_QUERY is the value of the F_TABLE_CATALOG column in XKS_COLS.

6) The value of FK_TABLE_SCHEM in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_SCHEMA column in XKS_COLS.

7) The value of FK_TABLE_NAME in FOREIGN_KEYS_QUERY is the value of the
F_TABLE_NAME column in XKS_COLS.

8) The value of FK_COLUMN_NAME in FOREIGN_KEYS_QUERY is the value of the
F_COLUMN_NAME column in XKS_COLS.

9) The value of ORDINAL_POSITION in FOREIGN_KEYS_QUERY is the value of the
F_ORDINAL_POSITION column in XKS_COLS.

10) The value of UPDATE_RULE in FOREIGN_KEYS_QUERY is determined by the value
of the UPDATE_RULE column in XKS_COLS as follows.

A) Let UR be the value in the UPDATE_RULE column.

B) IfUR is 'CASCADE', then the valueofUPDATE_RULE is the code for CASCADE
in Table 26, “Miscellaneous codes used in CLI”.

C) If UR is 'RESTRICT', then the value of UPDATE_RULE is the code for
RESTRICT in Table 26, “Miscellaneous codes used in CLI”.

D) If UR is 'SET NULL', then the value of UPDATE_RULE is the code for SET
NULL in Table 26, “Miscellaneous codes used in CLI”.

E) If UR is 'NO ACTION', then the value of UPDATE_RULE is the code for NO
ACTION in Table 26, “Miscellaneous codes used in CLI”.

© ISO/IEC 2023 – All rights reserved 177

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

F) If UR is 'SET DEFAULT', then the value of UPDATE_RULE is the code for SET
DEFAULT in Table 26, “Miscellaneous codes used in CLI”.

11) The value of DELETE_RULE in FOREIGN_KEYS_QUERY is determined by the value
of the DELETE_RULE column in XKS_COLS.

A) Let DR be the value in the DELETE_RULE column.

B) IfDR is 'CASCADE', then the value ofDELETE_RULE is the code for CASCADE
in Table 26, “Miscellaneous codes used in CLI”.

C) IfDR is 'RESTRICT', then thevalueofDELETE_RULE is the code forRESTRICT
in Table 26, “Miscellaneous codes used in CLI”.

D) If DR is 'SET NULL', then the value of DELETE_RULE is the code for SET
NULL in Table 26, “Miscellaneous codes used in CLI”.

E) If DR is 'NO ACTION', then the value of DELETE_RULE is the code for NO
ACTION in Table 26, “Miscellaneous codes used in CLI”.

F) If DR is 'SET DEFAULT', then the value of DELETE_RULE is the code for SET
DEFAULT in Table 26, “Miscellaneous codes used in CLI”.

12) The value of FK_NAME in FOREIGN_KEYS_QUERY is the value of the CON-
STRAINT_NAME column in XKS_COLS.

13) The value of UK_NAME in FOREIGN_KEYS_QUERY is the value of the
UNIQUE_CONSTRAINT_NAME column in XKS_COLS.

14) If there are no implementation-defined (IW076)mechanisms for setting the value
ofDEFERABILITY inFOREIGN_KEYS_QUERY to the value of the code for INITIALLY
DEFERRED or to the value of the code for INITIALLY IMMEDIATE in Table 26,
“Miscellaneous codes used in CLI”, then the value of DEFERABILITY in FOR-
EIGN_KEYS_QUERY is the code for NOTDEFERRABLE in Table 26, “Miscellaneous
codes used in CLI”; otherwise, the value of DEFERABILITY in FOR-
EIGN_KEYS_QUERY can be the code for INITIALLY DEFERRED, the value of the
code for INITIALLY IMMEDIATE, or the code for NOT DEFERRABLE in Table 26,
“Miscellaneous codes used in CLI”.

15) The value of UNIQUE_OR_PRIMARY in FOREIGN_KEYS_QUERY is 'PRIMARY'.

xii) LetNL1,NL2, andNL3be the values ofNameLength1,NameLength2, andNameLength3,
respectively.

xiii) Let CATVAL, SCHVAL, and TBLVAL be the values of PKCatalogName, PKSchemaName,
and PKTableName, respectively.

xiv) If the METADATA ID attribute of S is TRUE, then:

1) If PKCatalogName is a null pointer and the value of the CATALOG NAME inform-
ation type fromTable 28, “Codes anddata types for implementation information”,
Y, then an exception condition is raised: CLI-specific condition— invalid use of
null pointer (HY009).

2) If PKSchemaName is a null pointer or if PKTableName is a null pointer, then an
exception condition is raised: CLI-specific condition— invalid use of null pointer
(HY009).

xv) If PKCatalogName is a null pointer, then NL1 is set to zero. If PKSchemaName is a null
pointer, then NL2 is set to zero. If PKTableName is a null pointer, then NL3 is set to
zero.

178 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

xvi) Case:

1) If NL1 is not negative, then let L be NL1.

2) If NL1 indicates NULL TERMINATED, then let L be the number of octets of
PKCatalogName that precede the implementation-defined (IV030)null character
that terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

Let CATVAL be the first L octets of PKCatalogName.

xvii) Case:

1) If NL2 is not negative, then let L be NL2.

2) If NL2 indicates NULL TERMINATED, then let L be the number of octets of PKS-
chemaName that precede the implementation-defined (IV030) null character
that terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

Let SCHVAL be the first L octets of PKSchemaName.

xviii) Case:

1) If NL3 is not negative, then let L be NL3.

2) If NL3 indicates NULL TERMINATED, then let L be the number of octets of PKT-
ableName that precede the implementation-defined (IV030) null character that
terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

Let TBLVAL be the first L octets of PKTableName.

xix) Case:

1) If the METADATA ID attribute of S is TRUE, then:

A) Case:

I) If the value of NL1 is zero, then let CATSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('CATVAL') FROM
CHAR_LENGTH(TRIM('CATVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH (TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

FK_TABLE_CAT = 'TEMPSTR' AND

2) Otherwise, let CATSTR be the character string:

© ISO/IEC 2023 – All rights reserved 179

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

UPPER(FK_TABLE_CAT) = UPPER('CATVAL') AND

B) Case:

I) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('SCHVAL') FROM
CHAR_LENGTH(TRIM('SCHVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH (TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

FK_TABLE_SCHEM = 'TEMPSTR' AND

2) Otherwise, let SCHSTR be the character string:

UPPER(FK_TABLE_SCHEM) = UPPER('SCHVAL') AND

C) Case:

I) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

II) Otherwise,

Case:

1) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if
SUBSTRING(TRIM('TBLVAL') FROM
CHAR_LENGTH(TRIM('TBLVAL')) FOR 1) = '"', then let
TEMPSTR be the value obtained from evaluating:

SUBSTRING (TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH (TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

FK_TABLE_NAME = 'TEMPSTR' AND

2) Otherwise, let TBLSTR be the character string:

UPPER(FK_TABLE_NAME) = UPPER('TBLVAL') AND

2) Otherwise:

A) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise,
let CATSTR be the character string:

FK_TABLE_CAT = 'CATVAL' AND

B) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise,
let SCHSTR be the character string:

FK_TABLE_SCHEM = 'SCHVAL' AND

180 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

C) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise,
let TBLSTR be the character string:

FK_TABLE_NAME = 'TBLVAL' AND

xx) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

xxi) Let STMT be the character string:

SELECT *
FROM FOREIGN_KEYS_QUERY
WHERE PRED
ORDER BY FK_TABLE_CAT, FK_TABLE_SCHEM, FK_TABLE_NAME, ORDINAL_POSITION

xxii) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the
value of StatementText, and the length of STMT as the value of TextLength.

c) If CHAR_LENGTH(PKN) ≠ 0 (zero) and CHAR_LENGTH(FKN) ≠ 0 (zero), then the result of the
routine is implementation-defined (IV058).

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 181

ISO/IEC 9075-3:2023(E)
7.24 ForeignKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.25 FreeConnect()

Function

Deallocate an SQL-connection.

Definition

FreeConnect (
 ConnectionHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let CH be the value of ConnectionHandle.

2) FreeHandle is implicitly invoked with HandleType indicating CONNECTION HANDLE and with CH
as the value of Handle.

Conformance Rules

None.

182 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.25 FreeConnect()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.26 FreeEnv()

Function

Deallocate an SQL-environment.

Definition

FreeEnv (
 EnvironmentHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let EH be the value of EnvironmentHandle.

2) FreeHandle is implicitly invoked with HandleType indicating ENVIRONMENT HANDLE and with
EH as the value of Handle.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 183

ISO/IEC 9075-3:2023(E)
7.26 FreeEnv()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.27 FreeHandle()

Function

Free a resource.

Definition

FreeHandle (
 HandleType IN SMALLINT,
 Handle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 13, “Codes used for SQL/CLI handle types”, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

3) Case:

a) If HT indicates ENVIRONMENT HANDLE, then:

i) If H does not identify an allocated SQL-environment, then an exception condition is
raised: CLI-specific condition— invalid handle (HYHHH).

ii) Let E be the allocated SQL-environment identified by H.

iii) The diagnostics area associated with E is emptied.

iv) If an allocated SQL-connection is associated with E, then an exception condition is
raised: CLI-specific condition— function sequence error (HY010).

v) E is deallocated and all its resources are freed.

b) If HT indicates CONNECTION HANDLE, then:

i) IfHdoesnot identify an allocated SQL-connection, then an exception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Let C be the allocated SQL-connection identified by H.

iii) The diagnostics area associated with C is emptied.

iv) If an established SQL-connection is associated with C, then an exception condition is
raised: CLI-specific condition— function sequence error (HY010).

v) C is deallocated and all its resources are freed.

c) If HT indicates STATEMENT HANDLE, then:

i) IfHdoes not identify an allocated SQL-statement, then an exception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Let S be the allocated SQL-statement identified by H.

iii) The diagnostics area associated with S is emptied.

184 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.27 FreeHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iv) Let C be the allocated SQL-connection with which S is associated and let EC be the
established SQL-connection associated with C.

v) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3,
“Implicit set connection”, are applied with EC as dormant SQL-connection.

vi) If there is a deferred parameter number associatedwith S, then an exception condition
is raised: CLI-specific condition— function sequence error (HY010).

vii) If there is an open CLI cursor CR associated with S, then:

1) TheGeneral Rules of Subclause 15.4, “Effect of closing a cursor”, in ISO/IEC9075-
2, are applied with CR as CURSOR and DESTROY as DISPOSITION.

2) Any fetched row associated with S is removed from association with S.

viii) If there is a CLI cursor CR associated with S, then the cursor instance descriptor and
cursor declaration descriptor of CR are destroyed.

ix) The automatically allocated CLI descriptor areas associatedwith S are deallocated and
all their resources are freed.

x) S is deallocated and all its resources are freed.

d) If HT indicates DESCRIPTOR HANDLE, then:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition— invalid handle (HYHHH).

ii) Let D be the allocated CLI descriptor area identified by H.

iii) The diagnostics area associated with D is emptied.

iv) Let C be the allocated SQL-connection with which D is associated and let EC be the
established SQL-connection associated with C.

v) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3,
“Implicit set connection”, are applied with EC as dormant SQL-connection.

vi) The General Rules of Subclause 6.16, “Deferred parameter check”, are applied with D
as DESCRIPTOR AREA.

vii) Let AT be the value of the ALLOC_TYPE field of D.

viii) IfAT indicates AUTOMATIC, then an exception condition is raised:CLI-specific condition
— invalid use of automatically-allocated descriptor handle (HY017).

ix) Let L1 be a list of allocated SQL-statements associatedwith C forwhichD is the current
application rowdescriptor. For each allocated SQL-statement S in L1, the automatically-
allocated application rowdescriptor associatedwith Sbecomes the current application
row descriptor for S.

x) Let L2 be a list of allocated SQL-statements associatedwith C forwhichD is the current
application parameter descriptor. For each allocated SQL-statement S in L2, the auto-
matically-allocated application parameter descriptor associated with S becomes the
current application parameter descriptor for S.

xi) D is deallocated and all its resources are freed.

© ISO/IEC 2023 – All rights reserved 185

ISO/IEC 9075-3:2023(E)
7.27 FreeHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

186 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.27 FreeHandle()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.28 FreeStmt()

Function

Deallocate an SQL-statement.

Definition

FreeStmt (
 StatementHandle IN INTEGER,
 Option IN SMALLINT)

RETURNS SMALLINT

General Rules

1) Let SH be the value of StatementHandle and let S be the allocated SQL-statement identified by SH.

2) Let OPT be the value of Option.

3) If OPT is not one of the codes in Table 18, “Codes used for FreeStmt options”, then an exception
condition is raised: CLI-specific condition— invalid attribute identifier (HY092).

4) Let ARD be the current application row descriptor for S and let RC be the value of the COUNT field
of ARD.

5) Let APD be the current application parameter descriptor for S and let PC be the value of the COUNT
field of APD.

6) Case:

a) If OPT indicates CLOSE CURSOR and there is an open CLI cursor associated with S, then:

i) The General Rules of Subclause 15.4, “Effect of closing a cursor”, in ISO/IEC 9075-2,
are applied with CR as CURSOR and DESTROY as DISPOSITION.

ii) Any fetched row associated with S is removed from association with S.

b) If OPT indicates FREE HANDLE, then FreeHandle is implicitly invoked with HandleType
indicating STATEMENT HANDLE and with SH as the value of Handle.

c) IfOPT indicates UNBIND COLUMNS, then for each of the first RC item descriptor areas of ARD,
the value of the DATA_POINTER field is set to zero.

d) If OPT indicates UNBIND PARAMETERS, then for each of the first PC item descriptor areas of
APD, the value of the DATA_POINTER field is set to zero.

e) If OPT indicates REALLOCATE, then the following objects associated with S are destroyed:

i) Any prepared statement.

ii) Any CLI cursor.

iii) Any select source.

iv) Any executed statement.

and the original automatically allocated descriptors are associated with the allocated SQL-
statementwith their original default values as described in theGeneral Rules of Subclause 7.4,
“AllocHandle()”.

© ISO/IEC 2023 – All rights reserved 187

ISO/IEC 9075-3:2023(E)
7.28 FreeStmt()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

188 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.28 FreeStmt()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.29 GetConnectAttr()

Function

Get the value of an SQL-connection attribute.

Definition

GetConnectAttr (
 ConnectionHandle IN INTEGER,
 Attribute IN INTEGER,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 16, “Codes used for connection attributes”, then an
exception condition is raised: CLI-specific condition— invalid attribute identifier (HY092).

4) If A indicates POPULATE IPD, then

Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception— connection does not exist (08003).

b) Otherwise:

i) If POPULATE IPD for C is True, then Value is set to 1 (one).

ii) If POPULATE IPD for C is False, then Value is set to 0 (zero).

5) If A indicates SAVEPOINT NAME, then:

a) Let BL be the value of BufferLength.

b) Let AV be the value of the SAVEPOINT NAME connection attribute.

c) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with Value as
TARGET, AV as VALUE, BL as TARGET OCTET LENGTH, and StringLength as RETURNED OCTET
LENGTH.

6) If A specifies an implementation-defined (IV053) connection attribute, then

Case:

© ISO/IEC 2023 – All rights reserved 189

ISO/IEC 9075-3:2023(E)
7.29 GetConnectAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

a) If the data type for the connection attribute is specified in Table 19, “Data types of attributes”,
as INTEGER, then Value is set to the value of the implementation-defined (IV053) connection
attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined (IV053) connection attribute.

iii) TheGeneral Rules of Subclause 6.14, “Character string retrieval”, are appliedwithValue
asTARGET,AV asVALUE,BL asTARGETOCTETLENGTH, and StringLength asRETURNED
OCTET LENGTH.

Conformance Rules

None.

190 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.29 GetConnectAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.30 GetCursorName()

Function

Get the cursor name property associated with an allocated SQL-statement.

Definition

GetCursorName (
 StatementHandle IN INTEGER,
 CursorName OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 NameLength OUT SMALLINT)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let CN be the cursor name property associated with S.

3) Let BL be the value of BufferLength.

4) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with CursorName as
TARGET, CN as VALUE, BL as TARGET OCTET LENGTH, and NameLength as RETURNED OCTET
LENGTH.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 191

ISO/IEC 9075-3:2023(E)
7.30 GetCursorName()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.31 GetData()

Function

Retrieve a column value.

Definition

GetData (
 StatementHandle IN INTEGER,
 ColumnNumber IN SMALLINT,
 TargetType IN SMALLINT,
 TargetValue OUT ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no fetched rowset associated with S, then an exception condition is raised: CLI-
specific condition— function sequence error (HY010).

b) If the fetched rowset associatedwith S is empty, then a completion condition is raised: no data
(02000), TargetValue andStrLen_or_Ind are set to implementation-dependent (UV057) values,
and no further rules of this Subclause are applied.

c) Otherwise, let R be the fetched rowset associated with S.

3) Let ARD be the current application row descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of ARD.

4) Let AS be the value of the ARRAY_SIZE field in the header of ARD. Let P be the value of the attribute
CURRENT OF POSITION of S.

5) Let CR be the CLI cursor associated with S.

6) IfP is greater thanAS, theP-th row inRhas not been fetched, or the operational scrollability property
of CR is NO SCROLL andAS is greater than 1 (one), then an exception condition is raised: CLI-specific
condition— invalid cursor position (HY109).

7) Let FR be the P-th row of R.

8) Let D be the degree of the table defined by the select source associated with S.

9) If N is less than zero, then an exception condition is raised: dynamic SQL error— invalid descriptor
count (07008).

10) Let CN be the value of ColumnNumber.

11) If CN is less than 1 (one) or greater thanD, then an exception condition is raised: dynamic SQL error
— invalid descriptor index (07009).

12) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of ARD for which
LEVEL is 0 (zero) and the value of TYPE is neither ROW, ARRAY, nor MULTISET, then let BCN be

192 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.31 GetData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

the column number associated with such an item descriptor area and let HBCN be the value of
MAX(BCN). Otherwise, let HBCN be zero.

13) Let IDA be the itemdescriptor area ofARD specified by CN. If the value of TYPE in IDA is either ROW,
ARRAY, or MULTISET, or if the LEVEL of IDA is greater than 0 (zero), then an exception condition
is raised: dynamic SQL error — invalid descriptor index (07009).

NOTE 31—GetData cannot be called to retrieve the data corresponding to a subordinate descriptor record such as,
for example, from an individual field of a ROW type.

14) If CN is not greater than HBCN, then

Case:

a) If the DATA_POINTER field of IDA is not zero, then an exception condition is raised: dynamic
SQL error — invalid descriptor index (07009).

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined (IA186) whether
an exception condition is raised: dynamic SQL error — invalid descriptor index (07009).

NOTE 32— This implementation-defined (IA186) feature determines whether columns before the highest
bound column can be accessed by GetData.

15) If there is a fetched column number associated with FR, then let FCN be that column number; oth-
erwise, let FCN be zero.

NOTE 33— “fetched column number” is the ColumnNumber value used with the previous invocation (if any) of the
GetData routine with FR. See the General Rules later in this Subclause where this value is set.

16) Case:

a) If FCN is greater than zero and CN is not greater than FCN, then it is implementation-defined
(IA187) whether an exception condition is raised: dynamic SQL error — invalid descriptor
index (07009).

NOTE 34— This implementation-defined (IA187) feature determines whether GetData can only access
columns in ascending column number order.

b) If FCN is less than zero, then:

i) Let AFCN be the absolute value of FCN.

ii) Case:

1) If CN is less than AFCN, then it is implementation-defined (IA187) whether an
exception condition is raised: dynamic SQL error — invalid descriptor index
(07009).

NOTE 35— This implementation-defined (IA187) feature determines whether GetData can
only access columns in ascending column number order.

2) If CN is greater than AFCN, then let FCN be AFCN.

17) Let T be the value of TargetType.

18) Let HL be the programming language of the invoking host program. Let operative data type corres-
pondence tablebe thedata type correspondence table forHL as specified in Subclause6.19, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspondence
table as the SQL data type column and the host data type column.

19) If exactly one of the following is true, then an exception condition is raised: CLI-specific condition
— invalid data type in application descriptor (HY003).

a) T indicates neitherDEFAULTnorARDTYPEand is not oneof the code values inTable 7, “Codes
used for application data types in SQL/CLI”.

© ISO/IEC 2023 – All rights reserved 193

ISO/IEC 9075-3:2023(E)
7.31 GetData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) T is one of the code values in Table 7, “Codes used for application data types in SQL/CLI”, but
the row that contains the corresponding SQL data type in the SQL data type column of the
operative data type correspondence table contains 'None' in the host data type column.

20) If T does not indicate ARD TYPE, then the data type of the <target specification> described by IDA
is set to T.

21) Let IRD be the implementation row descriptor associated with S.

22) If the value of the TYPE field of IDA indicates DEFAULT, then:

a) Let CT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively, for the
CN-th item descriptor area of IRD for which LEVEL is 0 (zero).

b) The data type, precision, and scale of the <target specification> described by IDA are set to
CT, P, and SC, respectively, for the purposes of this GetData invocation only.

23) If IDA is not valid as specified in Subclause 6.17, “Description of CLI item descriptor areas”, then an
exception condition is raised: dynamic SQL error—using clause does notmatch target specifications
(07002).

24) Let TT be the value of the TYPE field of IDA.

25) Case:

a) If TT indicates CHARACTER, then:

i) LetUTbe the codevalue corresponding toCHARACTERVARYINGas specified inTable 6,
“Codes used for implementation data types in SQL/CLI”.

ii) Let CL be the implementation-defined (IL006) maximum length for a CHARACTER
VARYING data type.

b) Otherwise, let UT be TT and let CL be zero.

26) Case:

a) If FCN is less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then AFCN becomes the fetched column number
associatedwith the fetched row associatedwith S and an exception condition is raised:
dynamic SQL error — invalid descriptor index (07009).

ii) Otherwise, let FL, DV, and DL be the fetched length, data value and data length,
respectively, associatedwithFCN and letTVbe the result of the<string value function>:

SUBSTRING (DV FROM (FL+1))

b) Otherwise:

i) Let FL be zero.

ii) Let SDT be the effective data type of the CN-th <select list> column as represented by
the values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME, SCOPE_CATALOG,
SCOPE_SCHEMA, and SCOPE_NAME fields in the CN-th item descriptor area of IRD. Let
SV be the value of the <select list> column, with data type SDT.

194 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.31 GetData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) If TYPE indicates USER-DEFINED TYPE, then let the most specific type of the CN-th
<select list> column whose value is SV be represented by the values of the SPE-
CIFIC_TYPE_CATALOG, SPECIFIC_TYPE_SCHEMA, and SPECIFIC_TYPE_NAME fields in
the corresponding item descriptor area of IRD.

iv) Let TDT be the effective data type of the CN-th <target specification> as represented
by the type UT, the length value CL, and the values of the PRECISION, SCALE, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME
fields of IDA.

v) Let LTDT be the data type on the last retrieval of the CN-th <target specification>, if
any. If exactly one of the following is true, then it is implementation-defined (IA188)
whether or not exception condition is raised: dynamic SQL error—data type transform
function violation (0700B).

1) If LTDT and TDT both identify a binary large object type and only one of LTDT
and TDT is a binary large object locator.

2) If LTDT and TDT both identify a character large object type and only one of LTDT
and TDT is a character large object locator.

3) If LTDT and TDT both identify an array type and only one of LTDT and TDT is an
array locator.

4) If LTDT and TDT both identify a multiset type and only one of LTDT and TDT is a
multiset locator.

5) If LTDT and TDT both identify a user-defined type and only one of LTDT and TDT
is a user-defined type locator.

vi) Case:

1) If TDT is a locator type, then

Case:

A) If SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value TV of the CN-th <target specification> is set to an
implementation-dependent (UV043) four-octet value that represents L.

B) Otherwise, the value TV of the CN-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then

Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, and there is an implementation-defined (IA184)
conversion from type SDT to type TDT, then that implementation-defined
(IA184) conversion is effectively performed, converting SV to typeTDT, and
the result is the value TV of the CN-th <target specification>.

B) Otherwise:

I) If the <cast specification>

© ISO/IEC 2023 – All rights reserved 195

ISO/IEC 9075-3:2023(E)
7.31 GetData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast spe-
cification>”, in ISO/IEC9075-2, then an exception condition is raised:
dynamic SQL error—data type transform function violation (0700B).

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and the result is the value TV of the CN-th
<target specification>.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-
defined name of DT, then let GN be that group name; otherwise, let GN be
the default transform group name associatedwith the current SQL-session.

C) The Syntax Rules of Subclause 9.31, “Determination of a from-sql function”,
in ISO/IEC 9075-2, are applied with DT as TYPE and GN as GROUP; let FSF
be the FROM-SQL FUNCTION returned from the application of those Syntax
Rules.

Case:

I) If there is an applicable from-sql function, then let FSFRT be the
<returns data type> of FSF.

Case:

1) If FSFRT is compatible with TDT, then the from-sql function
TSF is effectively invoked with SV as its input parameter and
the <return value> is the valueTV of the CN-th <target specific-
ation>.

2) Otherwise, an exception condition is raised: dynamic SQL error
— data type transform function violation (0700B).

II) Otherwise, an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

27) CN becomes the fetched column number associated with the fetched row associated with S.

28) If TV is the null value, then

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception— null
value, no indicator parameter (22002).

b) Otherwise, StrLen_or_Ind is set to the appropriate “Code” for SQL NULL DATA in Table 26,
“Miscellaneous codes used in CLI”, and the value of TargetValue is implementation-dependent
(UV056).

29) Let OL be the value of BufferLength.

30) If null termination is True for the current SQL-environment, then let NB be the length in octets of
a null terminator in the character set of the i-th bound target; otherwise let NB be 0 (zero).

196 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.31 GetData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

31) If TV is not the null value, then:

a) StrLen_or_Ind is set to 0 (zero).

b) Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then TargetValue is set to TV.

ii) Otherwise:

1) If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined
(IA189) whether or not an exception condition is raised: data exception—
zero-length character string (2200F).

B) TheGeneral Rules of Subclause6.14, “Character string retrieval”, are applied
with TargetValue as TARGET, TV as VALUE, OL as TARGET OCTET LENGTH,
and StrLen_or_Ind as RETURNED OCTET LENGTH.

2) If TT is BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the General
Rules of Subclause 6.15, “Binary string retrieval”, are applied with TargetValue
as TARGET, TV as VALUE, OL as TARGET OCTET LENGTH, and StrLen_of_Ind as
RETURNED OCTET LENGTH.

3) If FCN is not less than zero, then let DV be TV and let DL be the length of TV in
octets.

4) Let FL be (FL+OL−NB).

5) If FL is less than DL, then −CN becomes the fetched column number associated
with the fetched row associated with S and FL, DV and DL become the fetched
length, data value, and data length, respectively, associated with the fetched
column number.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 197

ISO/IEC 9075-3:2023(E)
7.31 GetData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.32 GetDescField()

Function

Get a field from a CLI descriptor area.

Definition

GetDescField (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 FieldIdentifier IN SMALLINT,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of
the COUNT field of D.

2) Let FI be the value of FieldIdentifier.

3) If FI is not one of the code values in Table 20, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition— invalid descriptor field identifier (HY091).

4) Let RN be the value of RecordNumber.

5) LetTYPEbe the value of theType column in the rowof Table 20, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

6) TheGeneral Rules of Subclause6.16, “Deferredparameter check”, are appliedwithD asDESCRIPTOR
AREA.

7) If TYPE is 'ITEM', then:

a) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index (07009).

b) If RN is greater than N, then a completion condition is raised: no data (02000).

8) IfD is an implementation row descriptor, then let S be the allocated SQL-statement associated with
D.

9) LetMBR be the value of the May Be Retrieved column in the row of Table 22, “Ability to retrieve
SQL/CLI descriptor fields”, that contains FI and the column that contains the descriptor type D.

10) IfMBR is 'PS' and there is no prepared or executed statement associated with S, then an exception
condition is raised: CLI-specific condition— associated statement is not prepared (HY007).

11) IfMBR is 'No', then an exception condition is raised: CLI-specific condition— invalid descriptor field
identifier (HY091).

12) If FI indicates a descriptor field whose value is the initially undefined value created when the
descriptor was created, then an exception condition is raised: CLI-specific condition— invalid
descriptor field identifier (HY091).

198 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.32 GetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

13) Let IDA be the item descriptor area of D specified by RN.

14) If TYPE is 'HEADER', then header information from the descriptor area D is retrieved as follows.

Case:

a) If FI indicates COUNT, then the value retrieved is N.

b) If FI indicates ALLOC_TYPE, then the value retrieved is the allocation type for D.

c) If FI indicates an implementation-defined (IE019) descriptor header field, then the value
retrieved is the value of the implementation-defined (IE019) descriptor headerfield identified
by FI.

d) Otherwise, ifFI indicates a descriptor headerfielddefined inTable 20, “Codesused for SQL/CLI
descriptor fields”, then the value retrieved is the value of the descriptor header field identified
by FI.

15) If TYPE is 'ITEM', then item information from the descriptor area D is retrieved as follows.

Case:

a) IfFI indicates an implementation-defined(IE019)descriptor itemfield, then thevalue retrieved
is the value of the implementation-defined (IE019) descriptor item field of IDA identified by
FI.

b) Otherwise, if FI indicates a descriptor item field defined in Table 20, “Codes used for SQL/CLI
descriptor fields”, then the value retrieved is the value of the descriptor item field of IDA
identified by FI.

16) Let V be the value retrieved.

17) If FI indicates a descriptor field whose row in Table 5, “Fields in SQL/CLI row and parameter
descriptor areas”, contains a Data Type that is not CHARACTER VARYING, then Value is set to V and
no further rules of this Subclause are applied.

18) Let BL be the value of BufferLength.

19) If FI indicates a descriptor field whose row in Table 5, “Fields in SQL/CLI row and parameter
descriptor areas”, contains a Data Type that is CHARACTER VARYING, then the General Rules of
Subclause 6.14, “Character string retrieval”, are applied with Value as TARGET, V as VALUE, BL as
TARGET OCTET LENGTH, and StringLength as RETURNED OCTET LENGTH.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 199

ISO/IEC 9075-3:2023(E)
7.32 GetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.33 GetDescRec()

Function

Get commonly-used fields from a CLI descriptor area.

Definition

GetDescRec (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 Name OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 NameLength OUT SMALLINT,
 Type OUT SMALLINT,
 SubType OUT SMALLINT,
 Length OUT INTEGER,
 Precision OUT SMALLINT,
 Scale OUT SMALLINT,
 Nullable OUT SMALLINT)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of
the COUNT field of D.

2) TheGeneral Rules of Subclause6.16, “Deferredparameter check”, are appliedwithD asDESCRIPTOR
AREA.

3) Let RN be the value of RecordNumber.

4) Case:

a) If RN is less than 1 (one), then an exception condition is raised: dynamic SQL error — invalid
descriptor index (07009).

b) Otherwise, if RN is greater than N, then a completion condition is raised: no data (02000).

5) If D is an implementation row descriptor associated with an allocated SQL-statement S and there
is no prepared or executed statement associated with S, then an exception condition is raised: CLI-
specific condition— associated statement is not prepared (HY007).

6) Let ITEM be the <dynamic parameter specification> or <select list> column (or part thereof, if the
item descriptor area of D is a subordinate descriptor) described by the item descriptor area of D
specified by RN.

7) Let BL be the value of BufferLength.

8) Information is retrieved from D:

a) If Type is not a null pointer, then Type is set to the value of the TYPE field of ITEM.

b) If SubType is not a null pointer, then SubType is set to the value of the DATETIME_INTER-
VAL_CODE field of ITEM.

200 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.33 GetDescRec()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

c) If Length is not a null pointer, then Length is set to value of the OCTET_LENGTH field of ITEM.

d) If Precision is not a null pointer, then Precision is set to the value of the PRECISION field of
ITEM.

e) If Scale is not a null pointer, then Scale is set to the value of the SCALE field of ITEM.

f) If Nullable is not a null pointer, thenNullable is set to the value of theNULLABLEfield of ITEM.

g) If Name is not a null pointer, then

Case:

i) If null termination is False for the current SQL-environment and BL is zero, then no
further rules of this Subclause are applied.

ii) Otherwise:

1) The value retrieved is the value of the NAME field of ITEM.

2) Let V be the value retrieved.

3) TheGeneral Rules of Subclause 6.14, “Character string retrieval”, are appliedwith
Name as TARGET, V as VALUE, BL as TARGET OCTET LENGTH, and NameLength
as RETURNED OCTET LENGTH.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 201

ISO/IEC 9075-3:2023(E)
7.33 GetDescRec()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.34 GetDiagField()

Function

Get information from a CLI diagnostics area.

Definition

GetDiagField (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 RecordNumber IN SMALLINT,
 DiagIdentifier IN SMALLINT,
 DiagInfo OUT ANY,
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType.

2) If HT is not one of the code values in Table 13, “Codes used for SQL/CLI handle types”, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

3) Case:

a) If HT indicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-
environment, then an exception condition is raised: CLI-specific condition— invalid handle
(HYHHH).

b) IfHT indicates CONNECTIONHANDLE andHandle does not identify an allocated SQL-connec-
tion, then an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

c) IfHT indicates STATEMENTHANDLEandHandledoesnot identify an allocated SQL-statement,
then an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

d) IfHT indicatesDESCRIPTORHANDLEandHandle does not identify an allocatedCLI descriptor
area, then an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

4) Let DI be the value of DiagIdentifier.

5) If DI is not one of the code values in Table 12, “Codes used for SQL/CLI diagnostic fields”, then an
exception condition is raised: CLI-specific condition— invalid attribute value (HY024).

6) Let TYPE be the value of the Type column in the row that contains DI in Table 12, “Codes used for
SQL/CLI diagnostic fields”.

7) Let RN be the value of RecordNumber.

8) Let R be the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or Error, for
which Handle was passed as the value of an input handle and letN be the number of status records
generated by the execution of R.

NOTE 36— The GetDiagRec, GetDiagField, and Error routines can cause exception or completion conditions to be
raised, but they do not cause diagnostic information to be generated.

9) If TYPE is 'STATUS', then:

202 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

If RN is less than 1 (one), then an exception condition is raised: invalid condition number
(35000).

a)

b) If RN is greater thanN, then a completion condition is raised: no data (02000), and no further
rules of this Subclause are applied.

10) If DI indicates ROW_COUNT and R is neither Execute nor ExecDirect, then an exception condition
is raised: CLI-specific condition— invalid attribute identifier (HY092).

11) IfTYPE is 'HEADER', thenheader information from thediagnostics area associatedwith the resource
identified by Handle is retrieved.

a) If DI indicates NUMBER, then the value retrieved is N.

b) If DI indicates DYNAMIC_FUNCTION, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is
a zero-length string.

ii) Otherwise, the value retrieved is the character identifier of the SQL-statement being
prepared or executed by R. The value DYNAMIC_FUNCTION values are specified in
Table 39, “SQL-statement codes”, in ISO/IEC 9075-2.

NOTE 37— Additional valid DYNAMIC_FUNCTION values are defined in some other parts of the
ISO/IEC 9075 series.

c) If DI indicates DYNAMIC_FUNCTION_CODE, then

Case:

i) If no SQL-statement was being prepared or executed by R, then the value retrieved is
0 (zero).

ii) Otherwise, the value retrieved is the integer identifier of the SQL-statement being
prepared or executed by R. The value DYNAMIC_FUNCTION_CODE values are specified
in Table 39, “SQL-statement codes”, in ISO/IEC 9075-2.

NOTE 38— Additional valid DYNAMIC_FUNCTION_CODE values are defined in some other parts of
the ISO/IEC 9075 series.

d) If DI indicates RETURNCODE, then the value retrieved is the code indicating the basic result
of the execution of R. Subclause 4.3, “Return codes”, specifies the code values and their
meanings.

NOTE 39— The value retrieved will never indicate Invalid handle or Data needed, since no diagnostic
information is generated if this is the basic result of the execution of R.

e) If DI indicates ROW_COUNT, the value retrieved is the number of rows affected as the result
of executing a <delete statement: searched>, <insert statement>, <merge statement>, or
<update statement: searched> as a direct result of the executionof the SQL-statement executed
by R. Let S be the <delete statement: searched>, <insert statement>, <merge statement>, or
<update statement: searched>. Let T be the table identified by the <table name> directly
contained in S.

Case:

i) If S is an <insert statement>, then the value retrieved is the number of rows inserted
into T.

ii) If S is a <merge statement>, then let TR1 be the <target table> immediately contained
in S, let TR2 be the <table reference> immediately contained in S, and let SC be the

© ISO/IEC 2023 – All rights reserved 203

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

<search condition> immediately contained in S. If <merge correlationname> is specified,
letMCN be “AS <merge correlation name>”; otherwise, letMCN be a zero-length string.

Case:

1) If S contains a <merge when matched clause> and does not contain a <merge
when not matched clause>, then the value retrieved is effectively derived by
executing the statement:

SELECT COUNT (*)
FROM TR1 MCN, TR2
WHERE SC

before the execution of S.

2) If S contains a <merge when notmatched clause> and does not contain a <merge
whenmatched clause>, then the value retrieved is effectively derivedby executing
the statement:

(SELECT COUNT(*)
FROM TR1 MCN
RIGHT OUTER JOIN

TR2
ON SC)

-
(SELECT COUNT (*)

FROM TR1 MCN, TR2
WHERE SC)

before the execution of S.

3) If S contains both a <merge when matched clause> and a <merge when not
matched clause>, then the value retrieved is effectively derived by executing the
statement:

SELECT COUNT(*)
FROM TR1 MCN

RIGHT OUTER JOIN
TR2
ON SC

before the execution of S.

iii) If S is a <delete statement: searched> or an <update statement: searched>, then

Case:

1) If S does not contain a <search condition>, then the value retrieved is the cardin-
ality of T before the execution of S.

2) Otherwise, let SC be the <search condition> directly contained in S. The value
retrieved is effectively derived by executing the statement:

SELECT COUNT(*)
FROM T
WHERE SC

before the execution of S.

iv) The value retrieved following the execution by R of an SQL-statement that does not
directly result in the execution of a <delete statement: searched>, <insert statement>,
<merge statement>, or <update statement: searched> is implementation-dependent
(UV127).

204 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

f) If DI indicates MORE, then the value retrieved is

Case:

i) If more conditions were raised during execution of R than have been stored in the
diagnostics area, then 1 (one).

ii) If all the conditions that were raised during execution of R have been stored in the
diagnostics area, then 0 (zero).

g) If DI indicates TRANSACTIONS_COMMITTED, then the value retrieved is the number of SQL-
transactions that have been committed since the most recent time at which the diagnostics
area for HTwas emptied.

NOTE 40— See the General Rules of Subclause 13.3, “<externally-invoked procedure>”, in ISO/IEC 9075-2.
TRANSACTIONS_COMMITTED indicates the number of SQL-transactions that were committed during the
invocation of an external routine.

h) IfDI indicates TRANSACTIONS_ROLLED_BACK, then the value retrieved is the number of SQL-
transactions that have been rolled back since the most recent time at which the diagnostics
area for HTwas emptied.

NOTE 41— See the General Rules of Subclause 13.3, “<externally-invoked procedure>”, in ISO/IEC 9075-2.
TRANSACTIONS_ROLLED_BACK indicates the number of SQL-transactions that were rolled back during the
invocation of an external routine.

i) IfDI indicates TRANSACTION_ACTIVE, then the value retrieved is 1 (one) if an SQL-transaction
is currently active and is 0 (zero) if an SQL-transaction is not currently active.

NOTE 42— TRANSACTION_ACTIVE indicates whether an SQL-transaction is active upon return from an
external routine.

j) If DI indicates an implementation-defined (IE017) diagnostics header field, then the value
retrieved is the value of the implementation-defined (IE017) diagnostics header field.

12) IfTYPE is 'STATUS', then information from theRN-th status record in the diagnostics area associated
with the resource identified by Handle is retrieved.

a) If DI indicates CONDITION_NUMBER, then the value retrieved is RN.

b) If DI indicates SQLSTATE, then the value retrieved is the SQLSTATE value corresponding to
the status condition.

c) IfDI indicates NATIVE_CODE, then the value retrieved is the implementation-defined (IV059)
native error code corresponding to the status condition.

d) If DI indicates MESSAGE_TEXT, then the value retrieved is

Case:

i) If the value of SQLSTATE corresponds to external routine invocation exception (39000),
external routine exception (38000), or warning (01000), then the message text item of
the SQL-invoked routine that raised the exception condition.

ii) Otherwise, an implementation-defined (IV060) character string.
NOTE 43— An SQL-implementation can provide <space>s or a zero-length string or a character
string that describes the status condition.

e) If DI indicates MESSAGE_LENGTH, then the value retrieved is the length in characters of the
character string value of MESSAGE_TEXT corresponding to the status condition.

f) If DI indicates MESSAGE_OCTET_LENGTH, then the value retrieved is the length in octets of
the character string value of MESSAGE_TEXT corresponding to the status condition.

© ISO/IEC 2023 – All rights reserved 205

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

g) If DI indicates CLASS_ORIGIN, then the value retrieved is the identification of the naming
authority that defined the class code of the SQLSTATE value corresponding to the status
condition. That value shall be 'ISO 9075' if the class code is fully defined in Subclause 24.1,
“SQLSTATE”, in ISO/IEC 9075-2 or Subclause 10.1, “SQLSTATE”, and shall be an implemen-
tation-defined (IV025) character stringother than 'ISO9075' for every implementation-defined
(IV025) class code.

h) If DI indicates SUBCLASS_ORIGIN, then the value retrieved is the identification of the naming
authority that defined the subclass code of the SQLSTATE value corresponding to the status
condition. That value shall be 'ISO 9075' if the subclass code is fully defined in Subclause 24.1,
“SQLSTATE”, in ISO/IEC 9075-2, or Subclause 10.1, “SQLSTATE”, and shall be an implemen-
tation-defined (IV026) character stringother than 'ISO9075' for every implementation-defined
(IV026) subclass code.

i) If DI indicates CURSOR_NAME, CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CON-
STRAINT_NAME, CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME, PARA-
METER_MODE,PARAMETER_NAME,PARAMETER_ORDINAL_POSITION,ROUTINE_CATALOG,
ROUTINE_SCHEMA,ROUTINE_NAME,SPECIFIC_NAME,TRIGGER_CATALOG,TRIGGER_SCHEMA,
or TRIGGER_NAME, then the values retrieved are

Case:

i) If the value of SQLSTATE corresponds towarning— cursor operation conflict (01001),
then the value of CURSOR_NAME is the name of the cursor that caused the completion
condition to be raised.

ii) If the value of SQLSTATE corresponds to integrity constraint violation (23000), transac-
tion rollback— integrity constraint violation (40002), or triggered data change violation
(27000), then:

1) The values of CONSTRAINT_CATALOG and CONSTRAINT_SCHEMA are the
<catalog name> and the <unqualified schema name> of the <schema name> of
the schema containing the constraint or assertion. The value of CON-
STRAINT_NAME is the <qualified identifier> of the constraint or assertion.

2) Case:

A) If the violated integrity constraint is a table constraint, then the value of
TABLE_NAME is the <qualified identifier> of the table TBL in which the
table constraint is contained.

Case:

I) If TBL is a declared local temporary table, then the values of CATA-
LOG_NAME and SCHEMA_NAME are spaces and 'MODULE', respect-
ively.

II) Otherwise, the values of CATALOG_NAME and SCHEMA_NAME are
the <catalog name> and the <unqualified schema name> of the
<schema name> of TBL, respectively.

B) If the violated integrity constraint is an assertion and if only one table ref-
erenced by the assertion has beenmodified as a result of executing the SQL-
statement, then the values of CATALOG_NAME, SCHEMA_NAME, and
TABLE_NAME are the <catalog name>, the <unqualified schema name> of
the <schema name>, and the <qualified identifier>, respectively, of the
modified table.

C) Otherwise, the values of CATALOG_NAME, SCHEMA_NAME, and
TABLE_NAME are <space>s.

206 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) If the value of SQLSTATE corresponds to syntax error or access rule violation (42000),
then:

1) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the
<catalog name>, the <unqualified schema name> of the <schema name> of the
schema that contains the table that caused the syntax error or the access rule
violation and the <qualified identifier>, respectively. If TABLE_NAME refers to a
declared local temporary table, then CATALOG_NAME is <space>s and
SCHEMA_NAME contains 'MODULE'.

2) If the syntax error or the access rule violation was for an inaccessible column,
then thevalueofCOLUMN_NAME is the<columnname>of that column.Otherwise,
the value of COLUMN_NAME is <space>s.

iv) If the value of SQLSTATE corresponds to invalid cursor state (24000), then the value of
CURSOR_NAME is the name of the CLI cursor that is in the invalid state.

v) If the value of SQLSTATE corresponds to with check option violation (44000), then the
values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the <catalog name>
and the<unqualified schemaname>of the<schemaname>of the schema that contains
the view that caused the violation of the WITH CHECK OPTION, and the <qualified
identifier> of that view, respectively.

vi) If the value of SQLSTATE does not correspond to syntax error or access rule violation
(42000), then:

1) If the values of CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, and
COLUMN_NAME identify a column for which no privileges are granted to the
enabled authorization identifiers, then the value of COLUMN_NAME is replaced
by a zero-length string.

2) If the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME identify a
table forwhich no privileges are granted to the enabled authorization identifiers,
then the values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are
replaced by a zero-length string.

3) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME identify a <table constraint> for some tableT and if noprivileges
for T are granted to the enabled authorization identifiers, then the values of
CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME are
replaced by a zero-length string.

4) If the values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME identify an assertion contained in some schema S and if the
owner of S is not included in the set of enabled authorization identifiers, then the
values of CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, and CON-
STRAINT_NAME are replaced by a zero-length string.

vii) If the value of SQLSTATE corresponds to triggered action exception (09000), to trans-
action rollback— triggered action exception (40004), or to triggered data change viola-
tion (27000) that was caused by a trigger, then:

1) ThevaluesofTRIGGER_CATALOGandTRIGGER_SCHEMAare the<catalogname>
and the <unqualified schema name>, respectively, of the <schema name> of the
schema containing the trigger. The value of TRIGGER_NAME is the <qualified
identifier> of the <trigger name> of the trigger.

2) The values of CATALOG_NAME, SCHEMA_NAME, and TABLE_NAME are the
<catalog name>, the <unqualified schema name> of the <schema name>, and the

© ISO/IEC 2023 – All rights reserved 207

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

<qualified identifier> of the <table name>, respectively, of the table onwhich the
trigger is defined.

viii) If the value of SQLSTATE corresponds to external routine invocation exception (39000),
or to external routine exception (38000), then:

1) ThevaluesofROUTINE_CATALOGandROUTINE_SCHEMAare the<catalogname>
and the <unqualified schema name>, respectively,of the <schema name> of the
schema containing the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name> of the SQL-invoked
routine, respectively.

3) Case:

A) If the condition is related to some parameter Pi of the SQL-invoked routine,
then:

I) The value of PARAMETER_MODE is the <parameter mode> of Pi.

II) The value of PARAMETER_ORDINAL_POSITION is the value of i.

III) The value of PARAMETER_NAME is a zero-length string.

B) Otherwise:

I) The value of PARAMETER_MODE is a zero-length string.

II) The value of PARAMETER_ORDINAL_POSITION is 0 (zero).

III) The value of PARAMETER_NAME is a zero-length string.

ix) If the value of SQLSTATE corresponds to data exception— numeric value out of range
(22003), data exception— invalid character value for cast (22018), data exception—
string data, right truncation (22001), data exception— interval field overflow (22015),
integrity constraint violation (23000), orwarning—stringdata, right truncation (01004),
and the conditionwas raised as the result of an assignment to an SQLparameter during
an SQL-invoked routine invocation, then:

1) ThevaluesofROUTINE_CATALOGandROUTINE_SCHEMAare the<catalogname>
and <unqualified schema name>, respectively, of the <schema name> of the
schema containing the SQL-invoked routine.

2) The values of ROUTINE_NAME and SPECIFIC_NAME are the <identifier> of the
<routine name> and the <identifier> of the <specific name>, respectively, of the
SQL-invoked routine.

3) If the condition is related to some parameter Pi of the SQL-invoked routine, then:

A) The value of PARAMETER_MODE is the <parameter mode> of Pi.

B) The value of PARAMETER_ORDINAL_POSITION is the value of i.

C) If an <SQL parameter name>was specified for the SQL parameterwhen the
SQL-invoked routine was created, then the value of PARAMETER_NAME is
the <SQL parameter name> of that SQL parameter, Pi; otherwise, the value
of PARAMETER_NAME is a zero-length string.

j) If DI indicates SERVER_NAME or CONNECTION_NAME, then the values retrieved are

208 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

i) If R is Connect, then the name of the SQL-server explicitly or implicitly referenced by
R and the implementation-defined (IV061) connection name associatedwith that SQL-
server reference, respectively.

ii) IfR is Disconnect, then the nameof the SQL-server and the associated implementation-
defined (IV061) connection name, respectively, associated with the allocated SQL-
connection referenced by R.

iii) If the status condition was caused by the application of the General Rules of
Subclause 6.3, “Implicit set connection”, then the name of the SQL-server and the
implementation-defined (IV062) connection name, respectively, associated with the
dormant SQL-connection specified in the application of that Subclause.

iv) If the status condition was raised in an SQL-session, then the name of the SQL-server
and the implementation-defined (IV063) connection name, respectively, associated
with the SQL-session in which the status condition was raised.

v) Otherwise, zero-length strings.

k) If DI indicates CONDITION_IDENTIFIER, then the value retrieved is

Case:

i) If the value of SQLSTATE corresponds to unhandled user-defined exception (45000),
then the <condition name> of the user-defined exception.

ii) Otherwise, a zero-length string.

l) If FI indicates ROW_NUMBER, then the value retrieved is the number of the row in the rowset
to which this status record corresponds. If the status record does not correspond to a partic-
ular row, then the value retrieved is 0 (zero).

m) If FI indicates COLUMN_NUMBER, then the value retrieved is the number of the column to
which this status record corresponds. If the status record does not correspond to a particular
column, then the value retrieved is 0 (zero).

n) If DI indicates an implementation-defined (IE018) diagnostics status field, then the value
retrieved is the value of the implementation-defined (IE018) diagnostics status field.

13) Let V be the value retrieved.

14) IfDI indicates a diagnostics fieldwhose row inTable 1, “Headerfields in SQL/CLI diagnostics areas”,
or Table 2, “Status record fields in SQL/CLI diagnostics areas”, contains a Data Type that is neither
CHARACTER nor CHARACTER VARYING, then DiagInfo is set to V and no further rules of this Sub-
clause are applied.

15) Let BL be the value of BufferLength.

16) If BL is not greater than zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

17) Let L be the length in octets of V.

18) If StringLength is not a null pointer, then StringLength is set to L.

19) Case:

a) If null termination is False for the current SQL-environment, then

Case:

© ISO/IEC 2023 – All rights reserved 209

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

i) If L is not greater than BL, then the first L octets of DiagInfo are set to V and the values
of the remaining octets of DiagInfo are implementation-dependent (UV046).

ii) Otherwise, DiagInfo is set to the first BL octets of V.

b) Otherwise, let k be the number of octets in a null terminator in the character set of DiagInfo
and let the phrase “implementation-defined (IV030) null character that terminates a C char-
acter string” imply k octets, all of whose bits are 0 (zero).

Case:

i) If L is not greater than (BL−k), then the first (L+k) octets of DiagInfo are set to V concat-
enated with a single implementation-defined (IV030) null character that terminates a
C character string. The values of the remaining characters of DiagInfo are implemen-
tation-dependent (UV046).

ii) Otherwise, DiagInfo is set to the first (BL−k) octets of V concatenated with a single
implementation-defined (IV030) null character that terminates a C character string.

Conformance Rules

None.

210 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.34 GetDiagField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.35 GetDiagRec()

Function

Get commonly-used information from a CLI diagnostics area.

Definition

GetDiagRec (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 RecordNumber IN SMALLINT,
 Sqlstate OUT CHARACTER(5),
 NativeError OUT INTEGER,
 MessageText OUT CHARACTER(L),
 BufferLength IN SMALLINT,
 TextLength OUT SMALLINT)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let HT be the value of HandleType.

2) If HT is not one of the code values in Table 13, “Codes used for SQL/CLI handle types”, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

3) Case:

a) If HT indicates ENVIRONMENT HANDLE and Handle does not identify an allocated SQL-
environment, then an exception condition is raised: CLI-specific condition— invalid handle
(HYHHH).

b) IfHT indicates CONNECTIONHANDLE andHandle does not identify an allocated SQL-connec-
tion, then an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

c) IfHT indicates STATEMENTHANDLEandHandledoesnot identify an allocated SQL-statement,
then an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

d) IfHT indicatesDESCRIPTORHANDLEandHandle does not identify an allocatedCLI descriptor
area, then an exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

4) Let RN be the value of RecordNumber.

5) Let R be the most recently executed CLI routine, other than GetDiagRec, GetDiagField, or Error, for
which Handle was passed as the value of an input handle and letN be the number of status records
generated by the execution of R.

NOTE 44— The GetDiagRec, GetDiagField, and Error routines can cause exception or completion conditions to be
raised, but they do not cause diagnostic information to be generated.

6) If RN is less than 1 (one), then an exception condition is raised: invalid condition number (35000).

7) If RN is greater thanN, then a completion condition is raised: no data (02000), and no further rules
of this Subclause are applied.

8) Let BL be the value of BufferLength.

© ISO/IEC 2023 – All rights reserved 211

ISO/IEC 9075-3:2023(E)
7.35 GetDiagRec()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

9) Information from the RN-th status record in the diagnostics area associated with the resource
identified by Handle is retrieved.

a) If Sqlstate is not a null pointer, then Sqlstate is set to the SQLSTATE value corresponding to
the status condition.

b) If NativeError is not a null pointer, then NativeError is set to the implementation-defined
(IV064) native error code corresponding to the status condition.

c) If MessageText is not a null pointer, then

Case:

i) If null termination is False for the current SQL-environment and BL is zero, then no
further rules of this Subclause are applied.

ii) Otherwise, an implementation-defined (IV065) character string is retrieved. LetMT
be the implementation-defined (IV065) character string that is retrieved and let L be
the length in octets ofMT. If BL is not greater than zero, then an exception condition
is raised: CLI-specific condition— invalid string length or buffer length (HY090). If Tex-
tLength is not a null pointer, then TextLength is set to L.

Case:

1) If null termination is False for the current SQL-environment, then

Case:

A) If L is not greater than BL, then the first L octets of MessageText are set to
MT and the values of the remaining octets of MessageText are implemen-
tation-dependent (UV046).

B) Otherwise, MessageText is set to the first BL octets ofMT.

2) Otherwise, let k the number of octets in a null terminator in the character set of
MessageText and let the phrase “implementation-defined (IV030) null character
that terminates a C character string” imply k octets, all of whose bits are 0 (zero).

Case:

A) If L is not greater than (BL−k), then the first (L+k) octets of MessageText
are set toMT concatenated with a single implementation-defined (IV030)
null character that terminates a C character string. The values of the
remaining characters of MessageText are implementation-dependent
(UV046).

B) Otherwise, MessageText is set to the first (BL−k) octets ofMT concatenated
with a single implementation-defined (IV030)null character that terminates
a C character string.

NOTE 45—An SQL-implementation can provide <space>s, a zero-length string, or a character string
that describes the status condition.

Conformance Rules

None.

212 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.35 GetDiagRec()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.36 GetEnvAttr()

Function

Get the value of an SQL-environment attribute.

Definition

GetEnvAttr (
 EnvironmentHandle IN INTEGER,
 Attribute IN INTEGER,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies an
allocated skeletonSQL-environment, thenanexceptioncondition is raised:CLI-specific condition
— invalid handle (HYHHH).

b) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.

ii) The diagnostics area associated with E is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 15, “Codes used for environment attributes”, then an
exception condition is raised: CLI-specific condition— invalid attribute identifier (HY092).

4) If A indicates NULL TERMINATION, then

Case:

a) If null termination for E is True, then Value is set to 1 (one).

b) If null termination for E is False, then Value is set to 0 (zero).

5) If A specifies an implementation-defined (IV052) environment attribute, then

Case:

a) If the data type for the environment attribute is specified inTable 19, “Data types of attributes”,
as INTEGER, thenValue is set to the value of the implementation-defined (IV052) environment
attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined (IV052) environment attribute.

© ISO/IEC 2023 – All rights reserved 213

ISO/IEC 9075-3:2023(E)
7.36 GetEnvAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) TheGeneral Rules of Subclause 6.14, “Character string retrieval”, are appliedwithValue
asTARGET,AV asVALUE,BL asTARGETOCTETLENGTH, and StringLength asRETURNED
OCTET LENGTH.

Conformance Rules

None.

214 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.36 GetEnvAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.37 GetFeatureInfo()

Function

Get information about features supported by the SQL/CLI implementation.

Definition

GetFeatureInfo (
 ConnectionHandle IN INTEGER,
 FeatureType IN CHARACTER(L1),
 FeatureTypeLength IN SMALLINT,
 FeatureId IN CHARACTER(L2),
 FeatureIdLength IN SMALLINT,
 SubFeatureId IN CHARACTER(L3),
 SubFeatureIdLength IN SMALLINT,
 Supported OUT SMALLINT)

RETURNS SMALLINT

whereL1,L2, andL3has amaximumvalueequal to the implementation-defined(IL006)maximumlength
of a variable-length character string.

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception— connection does not exist (08003).

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3, “Implicit set con-
nection”, are applied with EC as dormant SQL-connection.

4) Let FTL be the value of FeatureTypeLength.

5) Case:

a) If FTL is not negative, then let L be FTL.

b) If FTL indicates NULL TERMINATED, then let L be the number of octets of FeatureType that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

6) Case:

© ISO/IEC 2023 – All rights reserved 215

ISO/IEC 9075-3:2023(E)
7.37 GetFeatureInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

If L is zero, then an exception condition is raised: CLI-specific condition— invalid string length
or buffer length (HY090).

a)

b) Otherwise, let FTV be the first L octets of FeatureType and let FT be the value of

TRIM (BOTH ' ' FROM 'FTV')

7) If FT is other than 'FEATURE' or 'SUBFEATURE', then an exception condition is raised: CLI-specific
condition— invalid attribute value (HY024).

8) Let FIL be the value of FeatureIdIdLength.

9) Case:

a) If FIL is not negative, then let L be FIL.

b) IfFIL indicatesNULLTERMINATED, then letLbe thenumberof octets of FeatureId that precede
the implementation-defined (IV030) null character that terminates a C character string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

10) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition— invalid string length
or buffer length (HY090).

b) Otherwise, let FIV be the first L octets of FeatureId and let FI be the value of

TRIM (BOTH ' ' FROM 'FIV')

11) Case:

a) If FT is 'SUBFEATURE', then:

i) Let SFIL be the value of SubFeatureIdLength.

ii) Case:

1) If SFIL is not negative, then let L be SFIL.

2) If SFIL indicates NULL TERMINATED, then let L be the number of octets of Sub-
FeatureId that precede the implementation-defined (IV030) null character that
terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

iii) Case:

1) If L is zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

2) Otherwise, let SFIV be the first L octets of SubFeatureId and let SFI be the value
of

TRIM (BOTH ' ' FROM 'SFIV')

b) Otherwise, let SFI be a character string consisting of a single space.

12) If there is no row in the INFORMATION_SCHEMA.SQL_FEATURES view with TYPE equal to FT,
FEATURE_ID equal to FI, and SUB_FEATURE_ID equal SFI, then an exception condition is raised:
CLI-specific condition— invalid attribute value (HY024).

216 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.37 GetFeatureInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

13) Let SH be an allocated statement handle on C.

14) Let STMT be the character string:

SELECT IS_SUPPORTED
FROM INFORMATION_SCHEMA.SQL_FEATURES
WHERE TYPE = 'FT'
AND FEATURE_ID = 'FI'
AND SUB_FEATURE_ID = 'SFI'

15) Let IS be the single column value returned by the implicit invocation of ExecDirect with SH as the
value of StatementHandle, STMT as the value of StatementText, and the length of STMT as the value
of TextLength.

16) If a status condition, such as connection failure, is caused by the implicit execution of ExecDirect,
then:

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetFeatureInfo returns the same return code that was returned by the
implicit invocation of ExecDirect and no further Rules of this Subclause are applied.

17) If the value of IS is 'YES', then Supported is set to 1 (one); otherwise, Supported is set to 0 (zero).

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 217

ISO/IEC 9075-3:2023(E)
7.37 GetFeatureInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.38 GetFunctions()

Function

Determine whether a CLI routine is supported.

Definition

GetFunctions (
 ConnectionHandle IN INTEGER,
 FunctionId IN SMALLINT,
 Supported OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception— connection does not exist (08003).

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3, “Implicit set con-
nection”, are applied with EC as dormant SQL-connection.

4) Let FI be the value of FunctionId.

5) If FI is not one of the codes in Table 27, “Codes used to identify SQL/CLI routines”, then an exception
condition is raised: CLI-specific condition— invalid FunctionId specified (HY095).

6) If FI identifies a CLI routine that is supported by the SQL/CLI implementation, then Supported is
set to 1 (one); otherwise, Supported is set to 0 (zero). Table 27, “Codes used to identify SQL/CLI
routines”, specifies the codes used to identify the CLI routines defined in this document.

Conformance Rules

None.

218 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.38 GetFunctions()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.39 GetInfo()
This Subclause is modified by Subclause 19.3, “GetInfo()”, in ISO/IEC 9075-9.

Function

Get information about the SQL/CLI implementation.

Definition

GetInfo (
 ConnectionHandle IN INTEGER,
 InfoType IN SMALLINT,
 InfoValue OUT ANY,
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception— connection does not exist (08003).

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3, “Implicit set con-
nection”, are applied with EC as dormant SQL-connection.

4) Several General Rules in this Subclause cause implicit invocation of ExecDirect. If a status condition,
such as a connection failure, is caused by such implicit invocation of ExecDirect, then:

a) The status records returned by ExecDirect are returned on ConnectionHandle.

b) This invocation of GetInfo returns the same return code that was returned by the implicit
invocation of ExecDirect and no further Rules of this Subclause are applied.

5) Let IT be the value of InfoType.

6) If IT is not one of the codes in Table 28, “Codes and data types for implementation information”,
then an exception condition is raised: CLI-specific condition— invalid information type (HY096).

7) Let SS be the SQL-server associated with EC.

8) Refer to a component of the SQL-client that is responsible for communicating with one or more
SQL-servers as a driver.

© ISO/IEC 2023 – All rights reserved 219

ISO/IEC 9075-3:2023(E)
7.39 GetInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

9) Let SH be an allocated statement handle on C.

10) Case:

a) 09 If IT indicates any of the following:

— MAXIMUM COLUMN NAME LENGTH

— MAXIMUM COLUMNS IN GROUP BY

— MAXIMUM COLUMNS IN ORDER BY

— MAXIMUM COLUMNS IN SELECT

— MAXIMUM COLUMNS IN TABLE

— MAXIMUM CONCURRENT ACTIVITIES

— 09MAXIMUM CURSOR NAME LENGTH

— MAXIMUM DRIVER CONNECTIONS

— MAXIMUM IDENTIFIER LENGTH

— MAXIMUM SCHEMA NAME LENGTH

— MAXIMUM STATEMENT OCTETS DATA

— MAXIMUM STATEMENT OCTETS SCHEMA

— MAXIMUM STATEMENT OCTETS

— MAXIMUM TABLE NAME LENGTH

— MAXIMUM TABLES IN SELECT

— MAXIMUM USER NAME LENGTH

— MAXIMUM CATALOG NAME LENGTH

then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE SIZING_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the length
of STMT as the value of TextLength.

b) If IT indicates any of the following:

— CATALOG NAME

— COLLATING SEQUENCE

— CURSOR COMMIT BEHAVIOR

— DATA SOURCE NAME

— DBMS NAME

— DBMS VERSION

220 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.39 GetInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

— NULL COLLATION

— SEARCH PATTERN ESCAPE

— SERVER NAME

— SPECIAL CHARACTERS

then:

i) Let STMT be the character string:

SELECT CHARACTER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the length
of STMT as the value of TextLength.

c) If IT indicates any of the following:

— DEFAULT TRANSACTION ISOLATION

— IDENTIFIER CASE

— TRANSACTION CAPABLE

then:

i) Let STMT be the character string;

SELECT INTEGER_VALUE
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the length
of STMT as the value of TextLength.

d) If IT ≥ 21000 and IT ≤ 24999, or if IT ≥ 11000 and IT ≤ 14999, then:

i) Let STMT be the character string;

SELECT COALESCE (CHARACTER_VALUE, INTEGER_VALUE)
FROM INFORMATION_SCHEMA.SQL_IMPLEMENTATION_INFO
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the length
of STMT as the value of TextLength.

e) If IT ≥ 25000 and IT ≤ 29999, or if IT ≥ 15000 and IT ≤ 19999, then:

i) Let STMT be the character string;

SELECT SUPPORTED_VALUE
FROM INFORMATION_SCHEMA.SQL_SIZING
WHERE IMPLEMENTATION_INFO_ID = IT

ii) Let V be the single column value returned by the implicit invocation of ExecDirect with
SH as the value of StatementHandle, STMT as the value of StatementText, and the length
of STMT as the value of TextLength.

© ISO/IEC 2023 – All rights reserved 221

ISO/IEC 9075-3:2023(E)
7.39 GetInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

11) Let BL be the value of BufferLength.

12) Case:

a) If the data type of V is character string, then the General Rules of Subclause 6.14, “Character
string retrieval”, are applied with InfoValue as TARGET, V as VALUE, BL as TARGET OCTET
LENGTH, and StringLength as RETURNED OCTET LENGTH.

b) Otherwise, InfoValue is set to V.

Conformance Rules

None.

222 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.39 GetInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.40 GetLength()

Function

Retrieve the length of the string value represented by a Large Object locator.

Definition

GetLength(
 StatementHandle IN INTEGER,
 LocatorType IN SMALLINT,
 Locator IN INTEGER,
 StringLength OUT INTEGER,
 IndicatorValue OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associatedwith S, then an exception condition is raised: CLI-specific
condition— function sequence error (HY010).

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BINARY
LARGE OBJECT LOCATOR from Table 7, “Codes used for application data types in SQL/CLI”, then
an exception condition is raised: CLI-specific condition— invalid attribute value (HY024).

4) Let LL be the Large Object locator value in Locator.

5) If LL is not a valid Large Object locator, then an exception condition is raised: locator exception—
invalid specification (0F001).

6) Let TL be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistent with TL (e.g., a CHARACTER LARGE OBJECT LOCATOR
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

8) Let SV be the string value that is represented by LL.

9) Case:

a) If SV contains the null value, then

Case:

i) If IndicatorValue is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter (22002).

ii) Otherwise:

1) IndicatorValue is set to the appropriate “Code” for SQL NULL DATA in Table 26,
“Miscellaneous codes used in CLI”.

2) The value of StringLength is implementation-dependent (UV056).

b) Otherwise:

i) IndicatorValue is set to 0 (zero).

© ISO/IEC 2023 – All rights reserved 223

ISO/IEC 9075-3:2023(E)
7.40 GetLength()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) IfTL is CHARACTERLARGEOBJECT, then StringLength is set to the length in characters
of SV.

iii) If TL is BINARY LARGE OBJECT, then StringLength is set to the length in octets of SV.

Conformance Rules

None.

224 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.40 GetLength()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.41 GetParamData()

Function

Retrieve the value of a dynamic output parameter.

Definition

GetParamData (
 StatementHandle IN INTEGER,
 ParameterNumber IN SMALLINT,
 TargetType IN SMALLINT,
 TargetValue OUT ANY,
 BufferLength IN INTEGER,
 StrLen_or_Ind OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed SQL-statement associated with S, then an exception condition is raised: CLI-
specific condition— function sequence error (HY010); otherwise, let P be the SQL-statement that
was prepared.

3) If P is not a <call statement>, then an exception condition is raised: CLI-specific condition— function
sequence error (HY010).

4) Let APD be the current application parameter descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of APD.

5) If N is less than zero, then an exception condition is raised: dynamic SQL error— invalid descriptor
count (07008).

6) Let PN be the value of ParameterNumber.

7) If PN is less than 1 (one) or greater thanN, then an exception condition is raised: dynamic SQL error
— invalid descriptor index (07009).

8) If DATA_POINTER is non-zero for at least one of the first N item descriptor areas of APD for which
the TYPE value is neither ROW, ARRAY, nor MULTISET, then let BPN be the parameter number
associated with such an item descriptor area and let HBPN be the value of MAX(BPN). Otherwise,
let HBPN be 0 (zero).

9) Let IDA be the itemdescriptor area ofAPD specified by PN. If the value of TYPE of IDA is either ROW,
ARRAY, or MULTISET, or if LEVEL of IDA is greater than 0 (zero), then an exception condition is
raised: dynamic SQL error — invalid descriptor index (07009).

NOTE 46— GetParamData cannot be called to retrieve the data corresponding to a subordinate descriptor record
such as, for example, from an individual field of a ROW type.

10) Let IDA1 be the item descriptor area of IPD specified by PN.

11) Let PM be the value of PARAMETER_MODE in IDA1.

12) If PM is PARAMMODE IN then an exception condition is raised: dynamic SQL error — invalid
descriptor index (07009).

13) If PN is not greater than HBPN, then

© ISO/IEC 2023 – All rights reserved 225

ISO/IEC 9075-3:2023(E)
7.41 GetParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

a) If the DATA_POINTER field of IDA is not zero, then an exception condition is raised: dynamic
SQL error — invalid descriptor index (07009).

b) If the DATA_POINTER field of IDA is zero, then it is implementation-defined (IA190) whether
an exception condition is raised: dynamic SQL error — invalid descriptor index (07009).

NOTE47—This implementation-defined (IA190) feature determineswhether parameters before the highest
bound parameter can be accessed by GetParamData.

14) If there is a fetched parameter number associated with S, then let FPN be that parameter number;
otherwise, let FPN be zero.

NOTE 48— “fetched parameter number” is the ParameterNumber value used with the previous invocation (if any)
of the GetParamData routine with S. See the General Rules later in this Subclause where this value is set.

15) Case:

a) If FPN is greater than zero and PN is not greater than FPN, then it is implementation-defined
(IA191) whether an exception condition is raised: dynamic SQL error — invalid descriptor
index (07009).

NOTE49—This implementation-defined(IA191) featuredetermineswhetherGetParamData canonly access
parameters in ascending parameter number order.

b) If FPN is less than zero, then:

i) Let AFPN be the absolute value of FPN.

ii) Case:

1) If PN is less than AFPN, then it is implementation-defined (IA191) whether an
exception condition is raised: dynamic SQL error — invalid descriptor index
(07009).

NOTE50—This implementation-defined (IA191) feature determineswhether GetParamData
can only access parameters in ascending parameter number order.

2) If PN is greater than AFPN, then let FPN be AFPN.

16) Let T be the value of TargetType.

17) Let HL be the programming language of the invoking host program. Let operative data type corres-
pondence tablebe thedata type correspondence table forHL as specified in Subclause6.19, “SQL/CLI
data type correspondences”. Refer to the two columns of the operative data type correspondence
table as the SQL data type column and the host data type column.

18) If exactly one of the following is true, then an exception condition is raised: CLI-specific condition
— invalid data type in application descriptor (HY003).

a) T indicates neitherDEFAULTnorAPDTYPEand is not one of the code values inTable 7, “Codes
used for application data types in SQL/CLI”.

b) T is one of the code values in Table 7, “Codes used for application data types in SQL/CLI”, but
the row that contains the corresponding SQL data type in the SQL data type column of the
operative data type correspondence table contains 'None' in the host data type column.

19) If T does not indicate APD TYPE, then the data type of the <target specification> described by IDA
is set to T.

20) Let IPD be the implementation parameter descriptor associated with S.

21) If the value of the TYPE field of IDA indicates DEFAULT, then:

226 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.41 GetParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Let PT, P, and SC be the values of the TYPE, PRECISION, and SCALE fields, respectively, for the
PN-th item descriptor area of IPD for which LEVEL is 0 (zero).

a)

b) The data type, precision, and scale of the <target specification> described by IDA are set to
PT, P, and SC, respectively, for the purposes of this GetParamData invocation only.

22) If IDA is not valid as specified in Subclause 6.17, “Description of CLI item descriptor areas”, then an
exception condition is raised: dynamic SQL error—using clause does notmatch target specifications
(07002).

23) Let TT be the value of the TYPE field of IDA.

24) Case:

a) If TT indicates CHARACTER, then:

i) LetUTbe the codevalue corresponding toCHARACTERVARYINGas specified inTable 6,
“Codes used for implementation data types in SQL/CLI”.

ii) Let CL be the implementation-defined (IL006) maximum length for a CHARACTER
VARYING data type.

b) Otherwise, let UT be TT and let CL be zero.

25) Case:

a) If FPN is less than zero, then

Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then AFPN becomes the fetched parameter
number associated with S and an exception condition is raised: dynamic SQL error —
invalid descriptor index (07009).

ii) Otherwise, let FL, DV, and DL be the fetched length, data value and data length,
respectively, associatedwithFPN and letTVbe the result of the<string value function>:

SUBSTRING (DV FROM (FL+1))

b) Otherwise:

i) Let FL be zero.

ii) Let SDT be the effective data type of the PCN-th <select list> column as represented by
the values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARAC-
TER_SET_SCHEMA, CHARACTER_SET_NAME, USER_DEFINED_TYPE_CATALOG,
USER_DEFINED_TYPE_SCHEMA, and USER_DEFINED_TYPE_NAME fields in the PN-th
item descriptor area of IPD. Let SV be the value of the parameter, with data type SDT.

iii) Let TDT be the effective data type of the PN-th <target specification> as represented
by the type UT, the length value CL, and the values of the PRECISION, SCALE, CHARAC-
TER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, and
USER_DEFINED_TYPE_NAME fields of IDA.

iv) Case:

1) If TDT is a locator type, then

Case:

© ISO/IEC 2023 – All rights reserved 227

ISO/IEC 9075-3:2023(E)
7.41 GetParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

A) If SV is not the null value, then a locator L that uniquely identifies SV is
generated and the value ofTV of the i-th bound target is set to an implemen-
tation-dependent (UV043) four-octet value that represents L.

B) Otherwise, the value TV of the PN-th <target specification> is the null value.

2) If SDT and TDT are predefined data types, then

Case:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, and there is an implementation-defined (IA184)
conversion from type SDT to type TDT, then that implementation-defined
(IA184) conversion is effectively performed, converting SV to typeTDT, and
the result is the value TV of the PN-th <target specification>.

B) Otherwise:

I) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast spe-
cification>”, in ISO/IEC9075-2, then an exception condition is raised:
dynamic SQL error—data type transform function violation (0700B).

II) The <cast specification>

CAST (SV AS TDT)

is effectively performed, and is the value TV of the PN-th <target
specification>.

3) If SDT is a user-defined type and TDT is a predefined data type, then:

A) Let DT be the data type identified by SDT.

B) If the current SQL-session has a group name corresponding to the user-
defined name of DT, then let GN be that group name; otherwise, let GN be
the default transform group name associatedwith the current SQL-session.

C) The Syntax Rules of Subclause 9.31, “Determination of a from-sql function”,
in ISO/IEC 9075-2, are applied with DT as TYPE and GN as GROUP; let FSF
be the FROM-SQL FUNCTION returned from the application of those Syntax
Rules.

Case:

I) If there is an applicable from-sql function, then let FSFRT be the
<returns data type> of FSF.

Case:

1) If FSFPT is compatible with TDT, then the from-sql function
TSF is effectively invoked with SV as its input parameter and
the <return value> is the valueTV of the CN-th <target specific-
ation>.

228 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.41 GetParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

2) Otherwise, an exception condition is raised: dynamic SQL error
— data type transform function violation (0700B).

II) Otherwise, an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

26) PN becomes the fetched parameter number associated with S.

27) If TV is the null value, then

Case:

a) If StrLen_or_Ind is a null pointer, then an exception condition is raised: data exception— null
value, no indicator parameter (22002).

b) Otherwise, StrLen_or_Ind is set to the appropriate “Code” for SQL NULL DATA in Table 26,
“Miscellaneous codes used in CLI”, and the value of TargetValue is implementation-dependent
(UV056).

28) Let OL be the value of BufferLength.

29) If null termination is True for the current SQL-environment, then let NB be the length in octets of
a null terminator in the character set of the i-th bound target; otherwise let NB be 0 (zero).

30) If TV is not the null value, then:

a) StrLen_or_Ind is set to 0 (zero).

b) Case:

i) If TT does not indicate CHARACTER, CHARACTER LARGE OBJECT, BINARY, BINARY
VARYING, or BINARY LARGE OBJECT, then TargetValue is set to TV.

ii) Otherwise:

1) If TT is CHARACTER or CHARACTER LARGE OBJECT, then:

A) If TV is a zero-length character string, then it is implementation-defined
(IA086) whether or not an exception condition is raised: data exception—
zero-length character string (2200F).

B) TheGeneral Rules of Subclause6.14, “Character string retrieval”, are applied
with TargetValue as TARGET, TV as VALUE, OL as TARGET OCTET LENGTH,
and StrLen_or_Ind as RETURNED OCTET LENGTH.

2) If TT is BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the General
Rules of Subclause 6.15, “Binary string retrieval”, are applied with TargetValue
as TARGET, TV as VALUE, OL as TARGET OCTET LENGTH, and StrLen_or_Ind as
RETURNED OCTET LENGTH.

3) If FCN is not less than zero, then let DV be TV and let DL be the length of TV in
octets.

4) Let FL be (FL+OL−NB).

5) If FL is less thanDL, then −PN becomes the fetched parameter number associated
with the fetched parameter associated with S and FL, DV and DL become the
fetched length, data value, and data length, respectively, associated with the
fetched parameter number.

© ISO/IEC 2023 – All rights reserved 229

ISO/IEC 9075-3:2023(E)
7.41 GetParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

230 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.41 GetParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.42 GetPosition()

Function

Retrieve the starting position of a string valuewithin another string value, where the second string value
is represented by a Large Object locator.

Definition

GetPosition(
 StatementHandle IN INTEGER,
 LocatorType IN SMALLINT,
 SourceLocator IN INTEGER,
 SearchLocator IN INTEGER,
 SearchLiteral IN ANY,
 SearchLiteralLength IN INTEGER,
 FromPosition IN INTEGER,
 LocatedAt OUT INTEGER,
 IndicatorValue OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associatedwith S, then an exception condition is raised: CLI-specific
condition— function sequence error (HY010).

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BINARY
LARGE OBJECT LOCATOR from Table 7, “Codes used for application data types in SQL/CLI”, then
an exception condition is raised: CLI-specific condition— invalid attribute identifier (HY092).

4) Let SRCL be the Large Object locator value in SourceLocator.

5) If SRCL is not a valid Large Object locator, then an exception condition is raised: locator exception
— invalid specification (0F001).

6) Let SRCT be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistentwith SRCT (e.g., a CHARACTERLARGEOBJECTLOCATOR
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

8) Case:

a) If SRCL represents the null value, then

Case:

i) If IndicatorValue is a null pointer, then an exception condition is raised: data exception
— null value, no indicator parameter (22002).

ii) Otherwise, IndicatorValue is set to the appropriate “Code” for SQL NULL DATA in
Table 26, “Miscellaneous codes used in CLI”, the value of all other output arguments is
implementation-dependent (UV056), andno further rules of this Subclause are applied.

b) Otherwise:

i) IndicatorValue is set to 0 (zero).

© ISO/IEC 2023 – All rights reserved 231

ISO/IEC 9075-3:2023(E)
7.42 GetPosition()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) Let SRCV be the actual value that is represented by SRCL.

9) Let SLL be the value of SearchLiteralLength.

10) Case:

a) If SLL is equal to zero, then:

i) Let SCHL be the Large Object locator value in SearchLocator.

ii) If SCHL is not a valid Large Object locator, then an exception condition is raised: locator
exception— invalid specification (0F001).

iii) Let SCHT be the actual data type of the Large Object string on the server.

iv) If the value of LocatorType is not consistent with SCHT, then an exception condition is
raised: dynamic SQL error — data type transform function violation (0700B).

v) If SCHL represents the null value, then an exception condition is raised: CLI-specific
condition— invalid attribute value (HY024).

vi) Let SCHV be the actual value that is represented by SCHL.

b) Otherwise,

Case:

i) If SearchLiteral is a null pointer, then an exception condition is raised: CLI-specific
condition— invalid attribute value (HY024).

ii) Otherwise, let SCHV be the value of that literal.

11) Let FP be the value of FromPosition. Let SRCVL be the length of SRCV (in characters if SRCV is a
character string and in octets if SRCV is a binary string).

12) If FP is less than 1 (one) or greater than SRCVL, then an exception condition is raised: CLI-specific
condition— invalid attribute value (HY024).

13) If FP is greater than 1 (one), then let SRCV be the value of

SUBSTRING (SRCV FROM FP)

14) Case:

a) If SRCV contains a stringMV of contiguous characters (if SRCV is a character string) or contigu-
ous octets (if SRCV is a binary string) that is the same as the string of characters or octets (as
appropriate) in SCHV then LocatedAt is set to the starting position (in characters or octets, as
appropriate) of the first occurrence ofMVwithin SRCV.

b) Otherwise, LocatedAt is set to 0 (zero).

Conformance Rules

None.

232 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.42 GetPosition()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.43 GetSessionInfo()

Function

Get information about <general value specification>s supported by the implementation.

Definition

GetSessionInfo(
 ConnectionHandle IN INTEGER,
 InfoType IN SMALLINT,
 InfoValue OUT ANY,
 BufferLength IN SMALLINT,
 StringLength OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Case:

a) If there is no established SQL-connection associated with C, then an exception condition is
raised: connection exception— connection does not exist (08003).

b) Otherwise, let EC be the established SQL-connection associated with C.

3) If EC is not the current SQL-connection, then the General Rules of Subclause 6.3, “Implicit set con-
nection”, are applied with EC as dormant SQL-connection.

4) Let IT be the value of InfoType.

5) If IT is not one of the codes in Table 29, “Codes and data types for session implementation inform-
ation”, then an exception condition is raised: CLI-specific condition— invalid information type
(HY096).

6) Let GVS be the value of <general value specification> in the same row as IT in Table 29, “Codes and
data types for session implementation information”.

7) Let SH be an allocated statement handle on C.

8) Let STMT be the character string:

SELECT UNIQUE GVS
FROM INFORMATION_SCHEMA.TABLES -- any table would do
WHERE 1 = 1 -- any predicate that is TRUE would do

9) V is set to the single column value returned by the implicit invocation of ExecDirect with SH as the
value of StatementHandle, STMT as the value of StatementText, and the length of STMT as the value
of TextLength.

© ISO/IEC 2023 – All rights reserved 233

ISO/IEC 9075-3:2023(E)
7.43 GetSessionInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

10) If a status condition, such as connection failure, is caused by the implicit invocation of ExecDirect,
then:

a) The status records returned by ExecDirect on SH are returned on ConnectionHandle.

b) This invocation of GetSessionInfo returns the same return code that was returned by the
implicit invocation of ExecDirect and no further Rules of this Subclause are applied.

11) Let BL be the value of BufferLength.

12) The General Rules of Subclause 6.14, “Character string retrieval”, are applied with InfoValue as
TARGET,V asVALUE,BL asTARGETOCTETLENGTH, and StringLength asRETURNEDOCTETLENGTH.

Conformance Rules

None.

234 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.43 GetSessionInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.44 GetStmtAttr()

Function

Get the value of an SQL-statement attribute.

Definition

GetStmtAttr (
 StatementHandle IN INTEGER,
 Attribute IN INTEGER,
 Value OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let A be the value of Attribute.

3) IfA is not one of the code values in Table 17, “Codes used for statement attributes”, then an exception
condition is raised: CLI-specific condition— invalid attribute identifier (HY092).

4) Case:

a) IfA indicatesAPD_HANDLE, thenValue is set to thehandle of the current applicationparameter
descriptor for S.

b) If A indicates ARD_HANDLE, then Value is set to the handle of the current application row
descriptor for S.

c) If A indicates IPD_HANDLE, then Value is set to the handle of the implementation parameter
descriptor associated with S.

d) IfA indicates IRD_HANDLE, thenValue is set to thehandleof the implementation rowdescriptor
associated with S.

e) If A indicates CURSOR SCROLLABLE, then

Case:

i) If the SQL/CLI implementation supports CLI scrollable cursors, then

Case:

1) If the value of the CURSOR SCROLLABLE attribute of S is NONSCROLLABLE, then
Value is set to the code value forNONSCROLLABLE fromTable 26, “Miscellaneous
codes used in CLI”.

2) If the value of theCURSORSCROLLABLEattribute of S is SCROLLABLE, thenValue
is set to the code value for SCROLLABLE from Table 26, “Miscellaneous codes
used in CLI”.

ii) Otherwise, an exception condition is raised: CLI-specific condition— optional feature
not implemented (HYC00).

f) If A indicates CURSOR SENSITIVITY, then

© ISO/IEC 2023 – All rights reserved 235

ISO/IEC 9075-3:2023(E)
7.44 GetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

i) If the SQL/CLI implementation supports CLI cursor sensitivity, then

Case:

1) If the value of the CURSOR SENSITIVITY attribute of S is ASENSITIVE, then Value
is set to the code value for ASENSITIVE fromTable 26, “Miscellaneous codes used
in CLI”.

2) If the value of the CURSOR SENSITIVITY attribute of S is INSENSITIVE, then Value
is set to the code value for INSENSITIVE from Table 26, “Miscellaneous codes
used in CLI”.

3) If the value of the CURSOR SENSITIVITY attribute of S is SENSITIVE, then Value
is set to the code value for SENSITIVE from Table 26, “Miscellaneous codes used
in CLI”.

ii) Otherwise, an exception condition is raised: CLI-specific condition— optional feature
not implemented (HYC00).

g) If A indicates METADATA ID, then

Case:

i) If the METADATA ID attribute for S has been set by the SetStmtAttr routine, then Value
is set to the code value of that attribute from Table 19, “Data types of attributes”.

ii) Otherwise, Value is set to the code value for FALSE fromTable 26, “Miscellaneous codes
used in CLI”.

h) If A indicates CURSOR HOLDABLE, then

Case:

i) If the SQL/CLI implementation supports CLI cursor sensitivity, then

Case:

1) If the value of the CURSOR HOLDABLE attribute of S is NONHOLDABLE, then the
Value is set to the code value for NONHOLDABLE from Table 26, “Miscellaneous
codes used in CLI”.

2) If the value of the CURSORHOLDABLE attribute of S is HOLDABLE, then the Value
is set to the code value for HOLDABLE from Table 26, “Miscellaneous codes used
in CLI”.

3) Otherwise, an exception condition is raised: CLI-specific condition— invalid
attribute value (HY024).

ii) Otherwise, an exception condition is raised: CLI-specific condition— optional feature
not implemented (HYC00).

i) If A indicates CURRENT OF POSITION, then

Case:

i) If there is no fetched rowset associated with S, then an exception condition is raised:
invalid cursor state (24000).

ii) Otherwise, Value is set to the current position within the fetched rowset associated
with S.

236 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.44 GetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

j) If A indicates NEST DESCRIPTOR, then

Case:

i) If the NEST DESCRIPTOR attribute for S has been set by the SetStmtAttr routine, then
Value is set to the code value of that attribute from Table 19, “Data types of attributes”.

ii) Otherwise, VALUE is set to the code value for FALSE from Table 26, “Miscellaneous
codes used in CLI”.

5) If A specifies an implementation-defined (IV051) statement attribute, then

Case:

a) If the data type for the statement attribute is specified in Table 19, “Data types of attributes”,
as INTEGER, then Value is set to the value of the implementation-defined (IV051) statement
attribute.

b) Otherwise:

i) Let BL be the value of BufferLength.

ii) Let AV be the value of the implementation-defined (IV051) statement attribute.

iii) TheGeneral Rules of Subclause 6.14, “Character string retrieval”, are appliedwithValue
asTARGET,AV asVALUE,BL asTARGETOCTETLENGTH, and StringLength asRETURNED
OCTET LENGTH.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 237

ISO/IEC 9075-3:2023(E)
7.44 GetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.45 GetSubString()

Function

Either retrieve a portion of a string value that is represented by a Large Object locator or create a Large
Object value at the server and retrieve a Large Object locator for that value.

Definition

GetSubString(
 StatementHandle IN INTEGER,
 LocatorType IN SMALLINT,
 SourceLocator IN INTEGER,
 FromPosition IN INTEGER,
 ForLength IN INTEGER,
 TargetType IN SMALLINT,
 TargetValue OUT ANY,
 BufferLength IN INTEGER,
 StringLength OUT INTEGER,
 IndicatorValue OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is a prepared statement associatedwith S, then an exception condition is raised: CLI-specific
condition— function sequence error (HY010).

3) If the value of LocatorType is not that of either CHARACTER LARGE OBJECT LOCATOR or BINARY
LARGE OBJECT LOCATOR from Table 7, “Codes used for application data types in SQL/CLI”, then
an exception condition is raised: CLI-specific condition— invalid attribute value (HY024).

4) Let SRCL be the Large Object locator value in SourceLocator.

5) If SRCL is not a valid Large Object locator, then an exception condition is raised: locator exception
— invalid specification (0F001).

6) Let SRCT be the actual data type of the Large Object string on the server.

7) If the value of LocatorType is not consistentwith SRCT (e.g., a CHARACTERLARGEOBJECTLOCATOR
for a BINARY LARGE OBJECT value), then an exception condition is raised: dynamic SQL error —
data type transform function violation (0700B).

8) Let TT be the value of TargetType.

9) IfTT is not equal to oneof the values for CHARACTER, CHARACTERLARGEOBJECT, BINARY, BINARY
VARYING, BINARY LARGE OBJECT, CHARACTER LARGE OBJECT LOCATOR, or BINARY LARGE
OBJECT LOCATOR from Table 7, “Codes used for application data types in SQL/CLI”, then an
exception condition is raised: CLI-specific condition— invalid attribute value (HY024).

10) If SRCL is the null value, then

Case:

a) If IndicatorValue is a null pointer, then an exception condition is raised: data exception— null
value, no indicator parameter (22002).

238 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.45 GetSubString()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) Otherwise, IndicatorValue is set to the value of the “Code” for SQL NULL DATA from Table 26,
“Miscellaneouscodesused inCLI”, thevaluesof all otheroutput arguments are implementation-
dependent (UV056), and no further rules of this Subclause are applied.

11) Let OL be the value of BufferLength.

12) If SRCL is not the null value, then:

a) IndicatorValue is set to 0 (zero).

b) Let SRCV be the large object value that is represented by SRCL.

c) If SRCV is a character string, then let SRCVL be the length of SRCV in characters; if SRCV is a
binary string, then let SRCVL be the length of SRCV in octets.

d) Let FP be the value of FromPosition and let FL be the value of ForLength.

e) If at least oneof the following is true, thenanexception condition is raised:CLI-specific condition
— invalid attribute value (HY024).

i) FP is less than 1 (one).

ii) FL is less than 1 (one).

iii) FP+FL−1 is greater than SRCVL.

f) Let RV be the value of the string that starts at position FP and ends at position FP+FL−1 in
SRCV (where the positions are in characters or octets, as appropriate).

g) Let RVL be the number of octets in RV.

h) Case:

i) If TT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

1) If RV is a zero-length character string, then it is implementation-defined (IA085)
whether or not an exception condition is raised: data exception— zero-length
character string (2200F).

2) TheGeneral Rules of Subclause 6.14, “Character string retrieval”, are appliedwith
TargetValue as TARGET, RV as VALUE, OL as TARGET OCTET LENGTH, and RVL as
RETURNED OCTET LENGTH.

ii) If TT indicates BINARY, BINARY VARYING, or BINARY LARGEOBJECT, then the General
Rules of Subclause 6.15, “Binary string retrieval”, are applied with TargetValue as
TARGET, RV as VALUE, OL as TARGET OCTET LENGTH, and RVL as RETURNED OCTET
LENGTH.

iii) Otherwise, set TargetValue to the value of a Large Object locator that represents the
value RV at the server.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 239

ISO/IEC 9075-3:2023(E)
7.45 GetSubString()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.46 GetTypeInfo()

Function

Get information about one or all of the predefined data types supported by the SQL/CLI implementation.

Definition

GetTypeInfo (
 StatementHandle IN INTEGER,
 DataType IN SMALLINT)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let D be the value of DataType.

4) If D is not the code value corresponding to ALL TYPES in Table 26, “Miscellaneous codes used in
CLI”, and is not one of the code values in Table 32, “Codes used for concise data types”, then an
exception condition is raised: CLI-specific condition— invalid data type (HY004).

5) Let C be the allocated SQL-connection with which S is associated.

6) Let EC be the established SQL-connection associatedwith C and let SS be the SQL-server associated
with EC.

7) Let TYPE_INFO be a table, with a definition and description as specified below, that contains a row
for each predefined data type supported by SS. For all supported predefined data types for which
more thanonename is supported, it is implementation-defined(IA088)whetherTYPE_INFO contains
a single row or a row for each supported name.

CREATE TABLE TYPE_INFO (
 TYPE_NAME CHARACTER VARYING(128) NOT NULL

PRIMARY KEY,
 DATA_TYPE SMALLINT NOT NULL,
 COLUMN_SIZE INTEGER,
 LITERAL_PREFIX CHARACTER VARYING(128),
 LITERAL_SUFFIX CHARACTER VARYING(128),
 CREATE_PARAMS CHARACTER VARYING(128)

CHARACTER SET SQL_TEXT,
NULLABLE SMALLINT NOT NULL
CHECK (NULLABLE IN (0, 1, 2)),

 CASE_SENSITIVE SMALLINT NOT NULL
CHECK (CASE_SENSITIVE IN (0, 1)),

 SEARCHABLE SMALLINT NOT NULL
CHECK (SEARCHABLE IN (0, 1, 2, 3)),

 UNSIGNED_ATTRIBUTE SMALLINT
CHECK (UNSIGNED_ATTRIBUTE IN (O, 1)

OR UNSIGNED_ATTRIBUTE IS NULL),
 FIXED_PREC_SCALE SMALLINT NOT NULL

CHECK (FIXED_PREC_SCALE IN (O, 1)),
 AUTO_UNIQUE_VALUE SMALLINT NOT NULL

CHECK (AUTO_UNIQUE_VALUE IN (O, 1)),
 LOCAL_TYPE_NAME CHARACTER VARYING(128)

CHARACTER SET SQL_TEXT,

240 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.46 GetTypeInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

 MINIMUM_SCALE INTEGER,
 MAXIMUM_SCALE INTEGER,
 SQL_DATA_TYPE SMALLINT NOT NULL,
 SQL_DATETIME_SUB SMALLINT

CHECK (SQL_DATETIME_SUB IN
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13)

OR SQL_DATETIME_SUB IS NULL),
 NUM_PREC_RADIX INTEGER,
 INTERVAL_PRECISION SMALLINT)

8) The description of the table TYPE_INFO is:

a) The value of TYPE_NAME is the name of the data type. If multiple names are supported for
this data type and TYPE_INFO contains only a single row for this data type, then it is imple-
mentation-defined (IV202) which of the names is in TYPE_NAME.

b) The value of DATA_TYPE is the code value for the predefined data type as defined in Table 32,
“Codes used for concise data types”.

c) The value of COLUMN_SIZE is:

i) The null value if the data type has neither a length nor a precision.

ii) The maximum length in characters for a character string type.

iii) The maximum or fixed precision, as appropriate, for a numeric data type.

iv) The maximum or fixed length in positions, as appropriate, for a datetime or interval
data type.

v) An implementation-defined (IV203) value for an implementation-defined (IE002) data
type that has a length or a precision.

d) The value of LITERAL_PREFIX is the character string that shall precede the data type value
when a <literal> of this data type is specified. The value of LITERAL_PREFIX is the null value
if no such string is required.

e) Thevalueof LITERAL_SUFFIX is the character string that shall follow thedata typevaluewhen
a <literal> of this data type is specified. The value of LITERAL_SUFFIX is the null value if no
such string is required.

f) The value of CREATE_PARAMS is a comma-separated list of specifiable attributes for the data
type in theorder inwhich the attributesmaybe specified. The attributes <length>, <precision>,
<scale>, and <time fractional seconds precision> appear in the list as LENGTH, PRECISION,
SCALE, andPRECISION, respectively. The appearance of attributes in implementation-defined
(IE002) data types is implementation-defined (IV209).

g) The value of NULLABLE is 1 (one).

h) The value of CASE_SENSITIVE is 1 (one) if the data type is a character string type and the
default collation for its implementation-defined (IV210) implicit character set would result
in a case sensitive comparisonwhen two values with this data type are compared. Otherwise,
the value of CASE_SENSITIVE is 0 (zero).

i) Refer to the <comparison predicate>, <between predicate>, <in predicate>, <null predicate>,
<quantified comparison predicate>, and <match predicate> as the basic predicates. If the data
type canbe thedata typeof anoperand in the<like predicate>, then letV1be1 (one); otherwise
let V1 be 0 (zero). If the data type can be the data type of a column of a <row value constructor
predicand> immediately contained in a basic predicate, then let V2 be 2; otherwise let V2 be
0 (zero). The value of SEARCHABLE is (V1+V2).

j) The value of UNSIGNED_ATTRIBUTE is

© ISO/IEC 2023 – All rights reserved 241

ISO/IEC 9075-3:2023(E)
7.46 GetTypeInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

i) If the data type is unsigned, then 1 (one).

ii) If the data type is signed, then 0 (zero).

iii) If a sign is not applicable to the data type, then the null value.

k) The value of FIXED_PREC_SCALE is

Case:

i) If the data type is an exact numeric with a fixed precision and scale, then 1 (one).

ii) Otherwise, 0 (zero).

l) The value of AUTO_UNIQUE_VALUE is

Case:

i) If a column of this data type is set to a value unique among all rows of that column
when a row is inserted, then 1 (one).

ii) Otherwise, 0 (zero).

m) ThevalueofLOCAL_TYPE_NAMEisan implementation-defined(IV056) localizedrepresentation
of the name of the data type, intended primarily for display purposes. The value of
LOCAL_TYPE_NAME is the null value if a localized representation is not supported.

n) The value of MINIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.

ii) The minimum value of the scale for a data type that has a scale.

iii) The minimum value of the fractional seconds precision for a data type that has a frac-
tional seconds precision.

o) The value of MAXIMUM_SCALE is:

i) The null value if the data type has neither a scale nor a fractional seconds precision.

ii) The maximum value of the scale for a data type that has a scale.

iii) The maximum value of the fractional seconds precision for a data type that has a frac-
tional seconds precision.

p) The value of SQL_DATA_TYPE is the code value for the predefined data type as defined in
Table 6, “Codes used for implementation data types in SQL/CLI”.

q) The value of SQL_DATETIME_SUB is

Case:

i) If the data type is a datetime type, then the code value for the datetime type as defined
in Table 8, “Codes associated with datetime data types in SQL/CLI”.

ii) If the data type is an interval type, then the code value for the interval type as defined
in Table 9, “Codes associated with <interval qualifier> in SQL/CLI”.

iii) Otherwise, the null value.

r) The value of NUM_PREC_RADIX is

Case:

242 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.46 GetTypeInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

i) If the value of PRECISION is the value of a precision, then the radix of that precision.

ii) Otherwise, the null value.

s) The value of SQL_INTERVAL_PRECISION is

Case:

i) If the data type is an interval type, then <interval leading field precision>.

ii) Otherwise, the null value.

9) Case:

a) If D is the code value corresponding to ALL TYPES in Table 26, “Miscellaneous codes used in
CLI”, then let P be the character string

SELECT *
FROM TYPE_INFO
ORDER BY DATA_TYPE

b) Otherwise, let P be the character string

SELECT *
FROM TYPE_INFO
WHERE DATA_TYPE = d

10) ExecDirect is implicitly invokedwith S as the value of StatementHandle,P as the value of Statement-
Text, and the length of P as the value of TextLength.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 243

ISO/IEC 9075-3:2023(E)
7.46 GetTypeInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.47 MoreResults()

Function

Determine whether there are more result sets available on a statement handle and, if there are, initialize
processing for those result sets.

Definition

MoreResults (
 StatementHandle IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed SQL-statement associated with S, then a completion condition is raised: no
data— no additional result sets returned (02001).

3) Case:

a) If there is noCLI cursor associatedwith S and there exists an implementation-defined (IA098)
capability to support that situation, then implementation-defined (IA098) rules are evaluated
and no further General Rules of this Subclause are evaluated.

b) If there is no CLI cursor associated with S, then an exception condition is raised: CLI-specific
condition— function sequence error (HY010).

c) Otherwise, let CR be the CLI cursor associated with S.

4) If CR is currently open, then:

a) TheGeneral Rules of Subclause 15.4, “Effect of closing a cursor”, in ISO/IEC9075-2, are applied
with CR as CURSOR and DESTROY as DISPOSITION.

b) Any fetched row associated with S is removed from association with S.

5) Let RSS be the result set sequence that was returned by the executed statement associated with S.

6) Case:

a) If RSS is not empty, then:

i) The General Rules of Subclause 6.7, “Implicit CLI procedural result cursor”, are applied
with S as ALLOCATED STATEMENT and RSS as RESULT SET SEQUENCE.

ii) A completion condition is raised: successful completion (00000).

b) Otherwise, a completion condition is raised: no data— no additional result sets returned
(02001).

Conformance Rules

None.

244 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.47 MoreResults()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.48 NextResult()

Function

Determine whether there are more result sets available on a statement handle and, if there are, initialize
processing for the next result set on a separate statement handle.

Definition

NextResult (
 StatementHandle1 IN INTEGER,
 StatementHandle2 IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S1 be the allocated SQL-statement identified by StatementHandle1.

2) If there is no executed SQL-statement associated with S1, then a completion condition is raised: no
data— no additional result sets returned (02001).

3) Let S2 be the allocated SQL-statement identified by StatementHandle2.

4) If there is a prepared statement associatedwith S2, then an exception condition is raised:CLI-specific
condition— function sequence error (HY010).

5) Let RSS be the result set sequence that was returned by the executed statement associated with S1.

6) Case:

a) If RSS is not empty, then:

i) The General Rules of Subclause 6.7, “Implicit CLI procedural result cursor”, are applied
with S2 as ALLOCATED STATEMENT and RSS as RESULT SET SEQUENCE.

ii) A completion condition is raised: successful completion (00000).

b) Otherwise, a completion condition is raised: no data— no additional result sets returned
(02001).

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 245

ISO/IEC 9075-3:2023(E)
7.48 NextResult()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.49 NumResultCols()

Function

Get the number of result columns.

Definition

NumResultCols (
 StatementHandle IN INTEGER,
 ColumnCount OUT SMALLINT)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no prepared or executed statement associated with S, then an exception condition
is raised: CLI-specific condition— function sequence error (HY010).

b) Otherwise, letDbe the implementation rowdescriptor associatedwith S and letNbe the value
of the TOP_LEVEL_COUNT field of D.

3) ColumnCount is set to N.

Conformance Rules

None.

246 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.49 NumResultCols()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.50 ParamData()

Function

Process a deferred parameter value.

Definition

ParamData (
 StatementHandle IN INTEGER,
 Value OUT ANY)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no deferred parameter number associated with S, then an exception condition is
raised: CLI-specific condition— function sequence error (HY010).

b) Otherwise, let DPN be the deferred parameter number associated with S.

3) Let APD be the current application parameter descriptor for S and let N be the value of the
TOP_LEVEL_COUNT field of APD.

4) For each of the first N item descriptor areas NIDA in APD:

a) If the OCTET_LENGTH_POINTER field of NIDA has the same non-zero value as the INDIC-
ATOR_POINTER field of IDA, then SHARE is true for NIDA; otherwise, SHARE is false for NIDA.

Case:

i) If SHARE is true forNIDA and the value of the commonly addressed host variable is the
appropriate “Code” for SQLNULLDATA in Table 26, “Miscellaneous codes used in CLI”,
then NULL is true for NIDA.

ii) If SHARE is false for NIDA, INDICATOR_POINTER is not zero, and the value of the host
variable addressed by INDICATOR_POINTER is the appropriate “Code” for SQL NULL
DATA in Table 26, “Miscellaneous codes used in CLI”, then NULL is true for NIDA.

iii) Otherwise, NULL is false for NIDA.

b) If NULL is false for NIDA, OCTET_LENGTH_POINTER is not 0 (zero), and the value of the host
variable addressed by OCTET_LENGTH_POINTER is the appropriate “Code” for SQL NULL
DATA in Table 26, “Miscellaneous codes used in CLI”, then DEFERRED is true for NIDA; other-
wise, DEFERRED is false for NIDA.

5) For each item descriptor area for which DEFERRED is true in the first N item descriptor areas of
APD for which LEVEL is 0 (zero), refer to the corresponding <dynamic parameter specification>
value as a deferred parameter value.

6) Let IDA be the DPN-th item descriptor area of APD and let PT and DP be the values of the TYPE and
DATA_POINTER fields, respectively, of IDA.

7) If there is no parameter value associated with DPN, then

© ISO/IEC 2023 – All rights reserved 247

ISO/IEC 9075-3:2023(E)
7.50 ParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

a) If there is a DATA_POINTER value associated with DPN, then an exception condition is raised:
CLI-specific condition— function sequence error (HY010).

b) Otherwise:

i) Value is set to DP.

ii) DP becomes the DATA_POINTER value associated with DPN.

iii) An exception condition is raised: CLI-specific condition— dynamic parameter value
needed (HYHHG).

8) Let IPD be the implementation parameter descriptor associated with S.

9) Let C be the allocated SQL-connection with which S is associated.

10) Let V be the parameter value associated with DPN.

11) Case:

a) If V is not the null value, then:

i) Case:

1) If PT indicates CHARACTER, then:

A) LetLObe theparameter length associatedwithDPN and letLbe thenumber
of characters of Vwholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined (IL001) maximum length value
for the CHARACTER data type, then an exception condition is raised: CLI-
specific condition— invalid string length or buffer length (HY090).

2) If PT indicates CHARACTER LARGE OBJECT, then:

A) LetLObe theparameter length associatedwithDPN and letLbe thenumber
of characters of Vwholly contained in the first LO octets of V.

B) If L exceeds the implementation-defined (IL002) maximum length value
for the CHARACTER LARGE OBJECT data type, then an exception condition
is raised: CLI-specific condition— invalid string length or buffer length
(HY090).

3) If PT indicates BINARY, then:

A) Let LO be the parameter length associated with DPN and let L be the min-
imum of LO and the length of V in octets.

B) If L exceeds the implementation-defined (IL003) maximum length value
for the BINARY data type, then an exception condition is raised: CLI-specific
condition— invalid string length or buffer length (HY090).

4) If PT indicates BINARY VARYING, then:

A) Let LO be the parameter length associated with DPN and let L be the min-
imum of LO and the length of V in octets.

B) If L exceeds the implementation-defined (IL007) maximum length value
for the BINARY VARYING data type, then an exception condition is raised:
CLI-specific condition— invalid string length or buffer length (HY090).

248 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.50 ParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

5) If PT indicates BINARY LARGE OBJECT, then:

A) Let LO be the parameter length associated with DPN and let L be the min-
imum of LO and the length of V in octets.

B) If L exceeds the implementation-defined (IL004) maximum length value
for the BINARY LARGE OBJECT data type, then an exception condition is
raised:CLI-specific condition— invalid string length or buffer length (HY090).

6) Otherwise, let L be zero.

ii) Let SV be Vwith effective data type SDT as represented by the length value L and by
the values of the TYPE, PRECISION, and SCALE fields of IDA.

b) Otherwise, let SV be the null value.

12) Let TDT be the effective data type of theDPN-th <dynamic parameter specification> as represented
by the values of the TYPE, LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATE-
TIME_INTERVAL_PRECISION, CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARAC-
TER_SET_NAME, USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA,
USER_DEFINED_TYPE_NAME, SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields of the
DPN-th item descriptor area of IPD.

13) Let SDT be the effective data type of theDPN-th parameter as represented by the values of the TYPE,
LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields in the corresponding item descriptor
area of APD.

14) Case:

a) If SDT is a locator type, then let TV be the value SV.

b) If SDT and TDT are predefined types, then

i) Case:

1) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>”,
in ISO/IEC 9075-2, and there is an implementation-defined (IA184) conversion
from type SDT to typeTDT, then that implementation-defined (IA184) conversion
is effectively performed, converting SV to type TDT, and the result is the value TV
of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (SV AS TDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — data type transform function violation (0700B).

B) Let TV be the value obtained, with data type TDT, by effectively performing
the <cast specification>

CAST (SV AS TDT)

© ISO/IEC 2023 – All rights reserved 249

ISO/IEC 9075-3:2023(E)
7.50 ParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

NOTE 51— It is implementation-dependent whether the establishment of TV occurs
at this time or during the preceding invocation of PutData.

ii) Let UDT be the effective data type of the actual DPN-th <dynamic parameter specifica-
tion>, defined to be the data type represented by the values of the TYPE, LENGTH,
PRECISION, SCALE, DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, and SCOPE_NAME fields that would automatically
be set in the DPN-th item descriptor area of IPD if POPULATE IPD was True for C.

iii) Case:

1) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specification>”,
in ISO/IEC 9075-2, and there is an implementation-defined (IA184) conversion
from type SDT to typeUDT, then that implementation-defined (IA184) conversion
is effectively performed, converting SV to type UDT, and the result is the value
TV of the i-th bound target.

2) Otherwise:

A) If the <cast specification>

CAST (TV AS UDT)

does not conform to the Syntax Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, then an exception condition is raised: dynamic
SQL error — data type transform function violation (0700B).

B) If the <cast specification>

CAST (TV AS UDT)

does not conform to the General Rules of Subclause 6.13, “<cast specifica-
tion>”, in ISO/IEC 9075-2, then an exception condition is raised in accord-
ance with the General Rules of Subclause 6.13, “<cast specification>”, in
ISO/IEC 9075-2.

C) The <cast specification>

CAST (TV AS UDT)

is effectively performed and is the value of the DPN-th dynamic parameter.

15) Let PN be the parameter number associated with a deferred parameter value and let HPN be the
value of MAX(PN).

16) If DPN is not equal to HPN, then:

a) Let NPN be the lowest value of PN for which DPN < NPN ≤ HPN.

b) Let DP be the value of the DATA_POINTER field of the NPN-th item descriptor area of APD for
which LEVEL is 0 (zero).

c) NPN becomes the deferred parameter number associated with S and DP becomes the
DATA_POINTER value associated with the deferred parameter number.

d) An exception condition is raised: CLI-specific condition— dynamic parameter value needed
(HYHHG).

250 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.50 ParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

17) If DPN is equal to HPN, then:

a) DPN is removed from association with S.

b) Case:

i) If there is a select source associated with S, then let SS be the select source associated
with S.

ii) Otherwise:

1) Let SS be the statement source associated with S.

2) SS is removed from association with S.

c) TheGeneral Rules of Subclause 6.5, “Executing a statement”, are appliedwith S asALLOCATED
STATEMENT, P as PREPARED STATEMENT, and “ParamData” as INVOKER.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 251

ISO/IEC 9075-3:2023(E)
7.50 ParamData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.51 Prepare()

Function

Prepare a statement.

Definition

Prepare (
 StatementHandle IN INTEGER,
 StatementText IN CHARACTER(L),
 TextLength IN INTEGER)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let TL be the value of TextLength.

3) Let ST be the value of StatementText.

4) The General Rules of Subclause 6.4, “Preparing a statement”, are applied with S as ALLOCATED
STATEMENT, ST as STATEMENT TEXT, TL as TEXT LENGTH, and “Prepare” as INVOKER, resulting
in P.

5) P is prepared and the prepared statement is associated with S.

Conformance Rules

None.

252 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.51 Prepare()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.52 PrimaryKeys()

Function

Return a result set that contains a list of the column names that comprise the primary key for a single
specified table stored in the information schemas of the connected data source.

Definition

PrimaryKeys (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT)

RETURNS SMALLINT

where eachofL1,L2, andL3has amaximumvalue equal to the implementation-defined (IL006)maximum
length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let PRIMARY_KEYS_QUERY be a table, with the definition:

CREATE TABLE PRIMARY_KEYS_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 ORDINAL_POSITION SMALLINT NOT NULL,
 PK_NAME CHARACTER VARYING(128))

6) Let PKS represent the set of rows in SS’s Information Schema TABLE_CONSTRAINTS view where
the value of CONSTRAINT_TYPE is 'PRIMARY KEY'.

7) Let PK_COLS represent the set of rows that define the columns within an individual primary key
row in PKS. These rows are formed by a natural inner join on the values in the CONSTRAINT_CATA-
LOG, CONSTRAINT_SCHEMA, and CONSTRAINT_NAME columns between a row in PKS and the
matching row or rows in SS’s Information Schema KEY_COLUMN_USAGE view.

8) Let PKS_COLS represent the set of rows in the combination of all PK_COLS sets.

9) PRIMARY_KEYS_QUERY contains a row for each row in PKS_COLSwhere:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature 'Information
Schema metadata constrained by privileges in CLI').

© ISO/IEC 2023 – All rights reserved 253

ISO/IEC 9075-3:2023(E)
7.52 PrimaryKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) Case:

i) If the value of SUP is 1 (one), then PRIMARY_KEYS_QUERY contains a row for each
column of the primary key for a specific table in SS’s Information Schema
TABLE_CONSTRAINTS view.

ii) Otherwise, PRIMARY_KEYS_QUERY contains a row for each column of the primary key
for a specific table inSS’s InformationSchemaTABLE_CONSTRAINTSview inaccordance
with implementation-defined (IW063) authorization criteria.

10) For each row of PRIMARY_KEYS_QUERY:

a) If the SQL-implementation does not support catalog names, then TABLE_CAT is set to the null
value; otherwise, the value of TABLE_CAT in PRIMARY_KEYS_QUERY is the value of the
TABLE_CATALOG column in PKS.

b) The value of TABLE_SCHEM in PRIMARY_KEYS_QUERY is the value of the TABLE_SCHEMA
column in PKS.

c) The value of TABLE_NAME in PRIMARY_KEYS_QUERY is the value of the TABLE_NAME column
in PKS.

d) The value of COLUMN_NAME in PRIMARY_KEYS_QUERY is the value of the COLUMN_NAME
column in PKS_COLS.

e) The value of ORDINAL_POSITION in PRIMARY_KEYS_QUERY is the value of the
ORDINAL_POSITION column in PKS_COLS.

f) The value of PK_NAME in PRIMARY_KEYS_QUERY is the value of the CONSTRAINT_NAME
column in PKS.

11) LetNL1,NL2, andNL3be the values ofNameLength1,NameLength2, andNameLength3, respectively.

12) Let CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and TableName,
respectively.

13) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table28, “Codesanddata types for implementation information”,Y, thenanexception condition
is raised: CLI-specific condition— invalid use of null pointer (HY009).

b) If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condition
— invalid use of null pointer (HY009).

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition— invalid
use of null pointer (HY009).

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
is set to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

254 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.52 PrimaryKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Let CATVAL be the first L octets of CatalogName.

17) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let SCHVAL be the first L octets of SchemaName.

18) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let TBLVAL be the first L octets of TableName.

19) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

© ISO/IEC 2023 – All rights reserved 255

ISO/IEC 9075-3:2023(E)
7.52 PrimaryKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise:

i) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise, letCATSTR
be the character string:

TABLE_CAT = 'CATVAL' AND

ii) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise, let SCHSTR
be the character string:

TABLE_SCHEM = 'SCHVAL' AND

iii) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise, letTBLSTR
be the character string:

TABLE_NAME = 'TBLVAL' AND

20) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

21) Let STMT be the character string:

SELECT *

256 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.52 PrimaryKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

FROM PRIMARY_KEYS_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, ORDINAL_POSITION

22) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 257

ISO/IEC 9075-3:2023(E)
7.52 PrimaryKeys()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.53 PutData()

Function

Provide a deferred parameter value.

Definition

PutData (
 StatementHandle IN INTEGER,
 Data IN ANY,
 StrLen_or_Ind IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Case:

a) If there is no deferred parameter number associated with S, then an exception condition is
raised: CLI-specific condition— function sequence error (HY010).

b) Otherwise, let DPN be the deferred parameter number associated with S.

3) If there is no DATA_POINTER value associatedwith DPN, then an exception condition is raised: CLI-
specific condition— function sequence error (HY010).

4) Let APD be the current application parameter descriptor for S.

5) Let PT be the value of the TYPE field of the DPN-th item descriptor area of APD for which LEVEL is
0 (zero).

6) Let IV be the value of StrLen_or_Ind.

7) If there is aparameter value associatedwithDPN andPTdoesnot indicateCHARACTER, CHARACTER
LARGE OBJECT, BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then an exception is raised:
CLI-specific condition— non-string data cannot be sent in pieces (HY019).

8) Case:

a) If IV is the appropriate “Code” for SQL NULL DATA in Table 26, “Miscellaneous codes used in
CLI”, then let V be the null value.

b) If PT indicates CHARACTER or CHARACTER LARGE OBJECT, then:

i) Case:

1) If IV is not negative, then let L be IV.

2) If IV indicates NULL TERMINATED, then let L be the number of octets in the
charactersofData thatprecede the implementation-defined(IV030)null character
that terminates a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

ii) Let V be the first L octets of Data.

258 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.53 PutData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

c) If PT indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then:

i) Case:

1) If IV is not negative, then let L be IV.

2) Otherwise, an exception condition is raised: CLI-specific condition— invalid
attribute value (HY024).

ii) Let V be the first L octets of Data.

d) Otherwise, let V be the value of Data.

9) If V is not a valid value of the data type indicated by PT, then an exception condition is raised:
dynamic SQL error — using clause does not match dynamic parameter specifications (07001).

10) If there is no parameter value associated with DPN, then:

a) V becomes the parameter value associated with DPN.

b) If V is not the null value and PT indicates CHARACTER, CHARACTER LARGE OBJECT, BINARY,
BINARYVARYING, orBINARYLARGEOBJECT, thenLbecomes theparameter length associated
with DPN.

11) If there is a parameter value associated with DPN, then

Case:

a) If V is the null value, then:

i) DPN is removed from association with S.

ii) Any statement source associated with S is removed from association with S.

iii) An exception condition is raised: CLI-specific condition—attempt to concatenate a null
value (HY020).

b) Otherwise:

i) Let PV be the parameter value associated with DPN.

ii) Case:

1) If PV is the null value, then:

A) DPN is removed from association with S.

B) Any statement source associated with S is removed from association with
S.

C) An exception condition is raised:CLI-specific condition—attempt to concat-
enate a null value (HY020).

2) Otherwise:

A) Let PL be the parameter length associated with DPN.

B) Let NV be the result of the <string value function>

PV || V

C) NV becomes the parameter value associatedwithDPN and (PL+L) becomes
the parameter length associated with DPN.

© ISO/IEC 2023 – All rights reserved 259

ISO/IEC 9075-3:2023(E)
7.53 PutData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Conformance Rules

None.

260 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.53 PutData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.54 RowCount()

Function

Get the row count.

Definition

RowCount (
 StatementHandle IN INTEGER,
 RowCount OUT INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If there is no executed statement associatedwith S, then an exception condition is raised:CLI-specific
condition— function sequence error (HY010).

3) RowCount is set to the value of the row count associated with S.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 261

ISO/IEC 9075-3:2023(E)
7.54 RowCount()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.55 SetConnectAttr()

Function

Set the value of an SQL-connection attribute.

Definition

SetConnectAttr(
 ConnectionHandle IN INTEGER,
 Attribute IN INTEGER,
 Value IN ANY,
 StringLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If ConnectionHandledoesnot identify anallocatedSQL-connection, thenanexception condition
is raised: CLI-specific condition— invalid handle (HYHHH).

b) Otherwise:

i) Let C be the allocated SQL-connection identified by ConnectionHandle.

ii) The diagnostics area associated with C is emptied.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 16, “Codes used for connection attributes”, or if A is one
of the code values in Table 16, “Codes used for connection attributes”, but the row that contains A
contains 'No' in the “Maybe set” column, then an exception condition is raised:CLI-specific condition
— invalid attribute identifier (HY092).

4) If A indicates SAVEPOINT NAME, then:

a) Let SL be the value of StringLength.

b) Case:

i) If SL is not negative, then let L be SL.

ii) If SL indicates NULL TERMINATED, then let L be the number of octets of Value that
precede the implementation-defined (IV030) null character that terminates a C char-
acter string.

iii) Otherwise, an exception condition is raised: CLI-specific condition— invalid string
length or buffer length (HY090).

c) The SAVEPOINT NAME attribute of C is set to the first L octets of Value.

5) If A specifies an implementation-defined (IV053) connection attribute, then

Case:

a) If the data type for the connection attribute is specified as INTEGER in Table 19, “Data types
of attributes”, then the connection attribute is set to the value of Value.

262 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.55 SetConnectAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value
that precede the implementation-defined (IV030) null character that terminates
a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

iii) The connection attribute is set to the first L octets of Value.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 263

ISO/IEC 9075-3:2023(E)
7.55 SetConnectAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.56 SetCursorName()

Function

Set the cursor name property associated with an allocated SQL-statement.

Definition

SetCursorName (
 StatementHandle IN INTEGER,
 CursorName IN CHARACTER(L),
 NameLength IN SMALLINT)

RETURNS SMALLINT

whereLhas amaximumvalue equal to the implementation-defined (IL006)maximum lengthof a variable-
length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let NL be the value of NameLength.

4) Case:

a) If NL is not negative, then let L be NL.

b) If NL indicates NULL TERMINATED, then let L be the number of octets of CursorName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

5) Case:

a) If L is zero, then an exception condition is raised: CLI-specific condition— invalid string length
or buffer length (HY090).

b) Otherwise, let N be the number of whole characters in the first L octets of CursorName and
let NO be the number of octets occupied by those N characters. If NO ≠ L, then an exception
condition is raised: invalid cursor name (34000); otherwise, let CV be the first L octets of
CursorName and let TCN be the value of

TRIM (BOTH ' ' FROM 'CV')

6) LetML be the maximum length in characters allowed for an <identifier> as specified in the Syntax
Rules of Subclause 5.4, “Names and identifiers”, in ISO/IEC 9075-2, and let TCNL be the length in
characters of TCN.

7) Case:

a) If TCNL is greater thanML, then CN is set to the firstML characters of TCN and a completion
condition is raised:warning— string data, right truncation (01004).

264 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.56 SetCursorName()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

b) Otherwise, CN is set to TCN.

8) IfCNdoesnot conform to theFormat andSyntaxRules of an<identifier>, then an exception condition
is raised: invalid cursor name.

9) LetCbe the allocated SQL-connectionwithwhich S is associated and let SCbe the<search condition>:

CN LIKE 'SQL_CUR%' ESCAPE '\' OR CN LIKE 'SQLCUR%'

If SC is True or if CN is identical to the value of any cursor name associated with an allocated SQL-
statement associated with C, then an exception condition is raised: invalid cursor name (34000).

10) CN becomes the value of the cursor name property associated with S.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 265

ISO/IEC 9075-3:2023(E)
7.56 SetCursorName()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.57 SetDescField()

Function

Set a field in a CLI descriptor area.

Definition

SetDescField (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 FieldIdentifier IN SMALLINT,
 Value IN ANY,
 BufferLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of
the COUNT field of D.

2) TheGeneral Rules of Subclause6.16, “Deferredparameter check”, are appliedwithD asDESCRIPTOR
AREA.

3) Let FI be the value of FieldIdentifier.

4) If FI is not one of the code values in Table 20, “Codes used for SQL/CLI descriptor fields”, then an
exception condition is raised: CLI-specific condition— invalid descriptor field identifier (HY091).

5) Case:

a) If the ALLOC_TYPE field of descriptor D is USER and D is not being used as the current ARD
or current APD of any statement handle, then let DT be ARD.

b) Otherwise, let DT be the type of the descriptor D.

6) LetMBS be the value of the May Be Set column in the row of Table 21, “Ability to set SQL/CLI
descriptor fields”, that contains FI and in the column that contains the descriptor type DT.

7) IfMBS is 'No', then an exception condition is raised: CLI-specific condition— invalid descriptor field
identifier (HY091).

8) Let RN be the value of RecordNumber.

9) LetTYPEbe the value of theType column in the rowof Table 20, “Codes used for SQL/CLI descriptor
fields”, that contains FI.

10) If TYPE is 'ITEM' and RN is less than 1 (one), then an exception condition is raised: dynamic SQL
error — invalid descriptor index (07009).

11) Let IDA be the item descriptor area of D specified by RN.

12) If an exception condition is raised in any of the following General Rules, then all fields of IDA for
which specific values were provided in the invocation of SetDescField are set to implementation-
dependent (UV049) values and the value of COUNT for D is unchanged.

13) Information is set in D:

Case:

266 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.57 SetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

a) If FI indicates COUNT, then

Case:

i) If the memory requirements to manage the CLI descriptor area cannot be satisfied,
then an exception condition is raised: CLI-specific condition—memory allocation error
(HY001).

ii) Otherwise, the count of the number of itemdescriptor areas is set to the value of Value.

b) If FI indicates ARRAY_SIZE, then the value of the ARRAY_SIZE header field of descriptor D is
set to Value.

c) If FI indicates ARRAY_STATUS_POINTER, then the value of the ARRAY_STATUS_POINTER
header field of descriptor D is set to the address of Value. If Value is a null pointer, then the
address is set to 0 (zero).

d) IfFI indicatesROWS_PROCESSED_POINTER, then thevalueof theROWS_PROCESSED_POINTER
header field of descriptor D is set to the address of Value. If Value is a null pointer, then the
address is set to 0 (zero).

e) If FI indicates OCTET_LENGTH_POINTER, then the value of the OCTET_LENGTH_POINTER
field of IDA is set to the address of Value.

f) If FI indicates DATA_POINTER, then the value of the DATA_POINTER field of IDA is set to the
address of Value. If Value is a null pointer, then the address is set to 0 (zero).

g) If FI indicates INDICATOR_POINTER, then the value of the INDICATOR_POINTER field of IDA
is set to the address of Value.

h) If FI indicates RETURNED_CARDINALITY_POINTER, then the value for the RETURNED_CAR-
DINALITY_POINTER field of IDA is set to the address of Value.

i) If FI indicates CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, or CHARAC-
TER_SET_NAME, then:

i) Let BL be the value of BufferLength.

ii) Case:

1) If BL is not negative, then let L be BL.

2) If BL indicates NULL TERMINATED, then let L be the number of octets of Value
that precedes the implementation-defined (IV030) null character that terminates
a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

iii) Case:

1) If L is zero, then an exception condition is raised: CLI-specific condition— invalid
string length or buffer length (HY090).

2) Otherwise, let FV be the first l octets of Value and let TFV be the value of

TRIM (BOTH ' ' FROM 'FV')

iv) LetML be the maximum length in characters allowed for an <identifier> as specified
in the Syntax Rules of Subclause 5.4, “Names and identifiers”, in ISO/IEC 9075-2, and
let TFVL be the length in characters of TFV.

© ISO/IEC 2023 – All rights reserved 267

ISO/IEC 9075-3:2023(E)
7.57 SetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

v) Case:

1) If TFVL is greater thanML, then FV is set to the firstML characters of TFV and a
completion condition is raised:warning— string data, right truncation (01004).

2) Otherwise, FV is set to TFV.

vi) Case:

1) IfFI indicates CHARACTER_SET_CATALOGandFVdoesnot conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid
catalog name (3D000).

2) If FI indicates CHARACTER_SET_SCHEMAand FVdoes not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid
schema name (3F000).

3) If FI indicates CHARACTER_SET_NAME and FV does not conform to the Format
and Syntax Rules of an <identifier>, then an exception condition is raised: invalid
character set name (2C000).

vii) The value of the field of IDA identified by FI is set to the value of FV.

j) Otherwise, the value of the field of IDA identified by FI is set to the value of Value.

14) If FI indicates LEVEL, then:

a) If RI is 1 (one) and value is not 0 (zero), then an exception condition is raised: dynamic SQL
error — invalid LEVEL value (0700E).

b) If RI is greater than 1 (one), then let PIDA be IDA’s immediately preceding item descriptor
area and let K be its LEVEL value.

i) If Value is K+1 and TYPE in PIDA does not indicate ROW, ARRAY, ARRAY LOCATOR,
MULTISET, or MULTISET LOCATOR, then an exception condition is raised: dynamic
SQL error — invalid LEVEL value (0700E).

ii) If Value is greater than K+1, then an exception condition is raised: dynamic SQL error
— invalid LEVEL value (0700E).

iii) If value is less than K+1, then let OIDAi be the i-th item descriptor area to which PIDA
is subordinate andwhose TYPE field indicates ROW. LetNSi be the number of immedi-
ately subordinate descriptor areas of OIDAi between OIDAi and IDA, and let Di be the
value of DEGREE of OIDAi.

1) For each OIDAiwhose LEVEL value is greater than V, if Di is not equal toNSi, then
anexception condition is raised:dynamic SQLerror—invalid LEVELvalue (0700E).

2) If K is not 0 (zero), then let OIDAi be the OIDAjwhose LEVEL value is K. If there
exists no such OIDAj or Dj is not greater than NSj, then an exception condition is
raised: dynamic SQL error — invalid LEVEL value (0700E).

c) The value of LEVEL in IDA is set to Value.

15) If TYPE is 'ITEM' and RN is greater than N, then the COUNT field of D is set to RN.

16) If FI indicates TYPE, LENGTH, OCTET_LENGTH, PRECISION, SCALE, DATETIME_INTERVAL_CODE,
DATETIME_INTERVAL_PRECISON, PARAMETER_MODE, PARAMETER_ORDINAL_POSITION,
PARAMETER_SPECIFIC_CATALOG,PARAMETER_SPECIFIC_SCHEMA,PARAMETER_SPECIFIC_NAME,
CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, CHARACTER_SET_NAME,

268 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.57 SetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

USER_DEFINED_TYPE_CATALOG, USER_DEFINED_TYPE_SCHEMA, USER_DEFINED_TYPE_NAME,
SCOPE_CATALOG, SCOPE_SCHEMA, or SCOPE_NAME, then the DATA_POINTER field of IDA is set to
zero.

17) If FI indicates DATA_POINTER, and Value is not a null pointer, and IDA is not consistent as specified
in Subclause 6.17, “Description of CLI item descriptor areas”, then an exception condition is raised:
CLI-specific condition— inconsistent descriptor information (HY021).

18) Let V be the value of Value.

19) If FI indicates TYPE, then:

a) All the other fields of IDA are set to implementation-dependent (UV128) values.

b) Case:

i) IfV indicates CHARACTER, CHARACTERVARYINGorCHARACTERLARGEOBJECT then
the CHARACTER_SET_CATALOG, CHARACTER_SET_SCHEMA, and CHARAC-
TER_SET_NAME fields of IDA are set to the values for the default character set name
for the SQL-session and the LENGTH field of IDA is set to themaximumpossible length
in characters of the indicated data type.

ii) If V indicates BINARY, BINARY VARYING, or BINARY LARGE OBJECT, then the LENGTH
field of IDA is set to the maximum possible length in octets of the indicated data type.

iii) If V indicates a <datetime type>, then the PRECISION field of IDA is set to 0 (zero).

iv) If V indicates INTERVAL, then the DATETIME_INTERVAL_PRECISION field of IDA is set
to 2.

v) If V indicates NUMERIC or DECIMAL, then the SCALE field of IDA is set to 0 (zero) and
the PRECISION field of IDA is set to the implementation-defined (ID015) default value
for the precision of the NUMERIC data types or is set to the implementation-defined
(ID016) default value for the precision of the DECIMAL data types, respectively.

vi) If V indicates SMALLINT, INTEGER, or BIGINT, then the SCALE field of IDA is set to 0
(zero) and the PRECISION field of IDA is set to the implementation-defined (IV131)
value for the precision of the SMALLINT, INTEGER, or BIGINT data types, respectively.

vii) If V indicates FLOAT, then the PRECISION field of IDA is set to the implementation-
defined (ID062) default value for the precision of the FLOAT data type.

viii) If V indicates REAL or DOUBLE PRECISION, then the PRECISION field of IDA is set to
the implementation-defined (IV129) value for the precision of the REAL PRECISION
or set to the implementation-defined (IV130) value for the precision of the DOUBLE
PRECISION data types, respectively.

ix) If V indicates DECFLOAT, then the PRECISION field of IDA is set to the implementation-
defined (ID062) default value for the precision of the DECFLOAT data type.

x) If V indicates an implementation-defined (IW060) data type, then an implementation-
defined (IW060) set of fields of IDA are set to implementation-defined (IW060) default
values.

xi) Otherwise, an exception condition is raised: CLI-specific condition— invalid data type
(HY004).

20) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates a <datetime type>,
then:

© ISO/IEC 2023 – All rights reserved 269

ISO/IEC 9075-3:2023(E)
7.57 SetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

All the fields of IDA other than DATETIME_INTERVAL_CODE and TYPE are set to implemen-
tation-dependent (UV128) values.

a)

b) Case:

i) If V indicates DATE, TIME, or TIMEWITH TIME ZONE, then the PRECISION field of IDA
is set to 0 (zero).

ii) If V indicates TIMESTAMPor TIMESTAMPWITHTIME ZONE, then the PRECISIONfield
of IDA is set to 6.

21) If FI indicates DATETIME_INTERVAL_CODE and the TYPE field of IDA indicates INTERVAL, then
the DATETIME_INTERVAL_PRECISION field of IDA is set to 2 and

a) If V indicates DAY TO SECOND, HOUR TO SECOND,MINUTE TO SECOND, or SECOND, then the
PRECISION field of IDA is set to 6.

b) Otherwise, the PRECISION field of IDA is set to 0 (zero).

22) Restrictions on the differences allowed between implementation and application parameter
descriptors are implementation-defined (IE008), except as specified in the General Rules of
Subclause 6.10, “Implicit EXECUTE USING and OPEN USING clauses”, in the General Rules of
Subclause 6.11, “Implicit CALL USING clause”, and in the General Rules of Subclause 7.50, “Param-
Data()”. Restrictionson thedifferencesbetween the implementationandapplication rowdescriptors
are implementation-defined (IE009), except as specified in the General Rules of Subclause 6.13,
“Implicit FETCH USING clause”, and the General Rules of Subclause 7.31, “GetData()”.

Conformance Rules

None.

270 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.57 SetDescField()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.58 SetDescRec()

Function

Set commonly-used fields in a CLI descriptor area.

Definition

SetDescRec (
 DescriptorHandle IN INTEGER,
 RecordNumber IN SMALLINT,
 Type IN SMALLINT,
 SubType IN SMALLINT,
 Length IN INTEGER,
 Precision IN SMALLINT,
 Scale IN SMALLINT,
 Data DEF ANY,
 StringLength DEF INTEGER,
 Indicator DEF INTEGER)

RETURNS SMALLINT

General Rules

1) Let D be the allocated CLI descriptor area identified by DescriptorHandle and let N be the value of
the COUNT field of D.

2) TheGeneral Rules of Subclause6.16, “Deferredparameter check”, are appliedwithD asDESCRIPTOR
AREA.

3) IfD is an implementation rowdescriptor, then an exception condition is raised:CLI-specific condition
— cannot modify an implementation row descriptor (HY022).

4) Let RN be the value of RecordNumber.

5) IfRN is less than1 (one), thenanexception condition is raised:dynamic SQL error— invalid descriptor
index (07009).

6) If RN is greater than N, then

Case:

a) If the memory requirements to manage the larger CLI descriptor area cannot be satisfied,
thenanexception condition is raised:CLI-specific condition—memoryallocation error (HY001).

b) Otherwise, the COUNT field of D is set to RN.

7) Let IDA be the item descriptor area of D specified by RN.

8) Information is set in D as follows:

a) The data type, precision, scale, and datetime data type of the item described by IDA are set to
the values of Type, Precision, Scale, and SubType, respectively.

b) Case:

i) If D is an implementation parameter descriptor, then the length (in characters or posi-
tions, as appropriate) of the item described by IDA is set to the value of Length.

ii) Otherwise, the length in octets of the itemdescribedby IDA is set to the value of Length.

© ISO/IEC 2023 – All rights reserved 271

ISO/IEC 9075-3:2023(E)
7.58 SetDescRec()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

c) If StringLength is not a null pointer, then the address of the host variable that is to provide
the length of the item described by IDA, or that is to receive the returned length in octets of
the item described by IDA, is set to the address of StringLength.

d) The address of the host variable that is to provide a value for the item described by IDA, or
that is to receive a value for the item described by IDA, is set to the address of Data. If Data is
a null pointer, then the address is set to 0 (zero).

e) If Indicator is not a null pointer, then the address of the <indicator variable> associated with
the item described by IDA is set to the address of Indicator.

9) If Data is not a null pointer and IDA is not consistent as specified in Subclause 6.17, “Description of
CLI itemdescriptor areas”, then an exception condition is raised:CLI-specific condition— inconsistent
descriptor information (HY021).

10) If an exception condition is raised, then all fields of IDA for which specific values were provided in
the invocation of SetDescRec are set to implementation-dependent (UV055) values and the value
of the COUNT field of D is unchanged.

11) Restrictions on the differences allowed between implementation and application parameter
descriptors are implementation-defined (IE008), except as specified in the General Rules of
Subclause 6.10, “Implicit EXECUTE USING and OPEN USING clauses”, in the General Rules of
Subclause 6.11, “Implicit CALL USING clause”, and in the General Rules of Subclause 7.50, “Param-
Data()”. Restrictionson thedifferencesbetween the implementationandapplication rowdescriptors
are implementation-defined (IE009), except as specified in the General Rules of Subclause 6.13,
“Implicit FETCH USING clause”, and the General Rules of Subclause 7.31, “GetData()”.

Conformance Rules

None.

272 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.58 SetDescRec()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.59 SetEnvAttr()

Function

Set the value of an SQL-environment attribute.

Definition

SetEnvAttr (
 EnvironmentHandle IN INTEGER,
 Attribute IN INTEGER,
 Value IN ANY,
 StringLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Case:

a) If EnvironmentHandle does not identify an allocated SQL-environment or if it identifies an
allocated skeletonSQL-environment, thenanexceptioncondition is raised:CLI-specific condition
— invalid handle (HYHHH).

b) Otherwise:

i) Let E be the allocated SQL-environment identified by EnvironmentHandle.

ii) The diagnostics area associated with E is emptied.

2) If there are allocated SQL-connections associatedwith E, then an exception condition is raised: CLI-
specific condition— attribute cannot be set now (HY011).

3) Let A be the value of Attribute.

4) If A is not one of the code values in Table 15, “Codes used for environment attributes”, then an
exception condition is raised: CLI-specific condition— invalid attribute identifier (HY092).

5) If A indicates NULL TERMINATION, then

Case:

a) If Value indicates TRUE, then null termination for E is set to True.

b) If Value indicates FALSE, then null termination for E is set to False.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid attribute value
(HY024).

6) If A specifies an implementation-defined (IV052) environment attribute, then

Case:

a) If the data type for the environment attribute is specified as INTEGER in Table 19, “Data types
of attributes”, then the environment attribute is set to the value of Value.

b) Otherwise:

i) Let SL be the value of StringLength.

© ISO/IEC 2023 – All rights reserved 273

ISO/IEC 9075-3:2023(E)
7.59 SetEnvAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value
that precede the implementation-defined (IV030) null character that terminates
a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

iii) The environment attribute is set to the first L octets of Value.

Conformance Rules

None.

274 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.59 SetEnvAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.60 SetStmtAttr()

Function

Set the value of an SQL-statement attribute.

Definition

SetStmtAttr (
 StatementHandle IN INTEGER,
 Attribute IN INTEGER,
 Value IN ANY,
 StringLength IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) Let A be the value of Attribute.

3) If A is not one of the code values in Table 17, “Codes used for statement attributes”, or if A is one of
the code values in Table 17, “Codes used for statement attributes”, but the row that contains A
contains 'No' in the “Maybe set” column, then an exception condition is raised:CLI-specific condition
— invalid attribute identifier (HY092).

4) Let V be the value of Value.

5) Case:

a) If A indicates APD_HANDLE, then:

i) Case:

1) IfVdoes not identify an allocated CLI descriptor area, then an exception condition
is raised: CLI-specific condition— invalid attribute value (HY024).

2) Otherwise, letDAbe the CLI descriptor area identifiedbyV and letATbe the value
of the ALLOC_TYPE field for DA.

ii) Case:

1) If AT indicates AUTOMATIC but DA is not the application parameter descriptor
associated with S, then an exception condition is raised: CLI-specific condition—
invalid use of automatically-allocated descriptor handle (HY017).

2) Otherwise, DA becomes the current application parameter descriptor for S.

b) If A indicates ARD_HANDLE, then:

i) Case:

1) IfVdoes not identify an allocated CLI descriptor area, then an exception condition
is raised: CLI-specific condition— invalid attribute value (HY024).

2) Otherwise, letDAbe the CLI descriptor area identifiedbyV and letATbe the value
of the ALLOC_TYPE field for DA.

ii) Case:

© ISO/IEC 2023 – All rights reserved 275

ISO/IEC 9075-3:2023(E)
7.60 SetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

1) IfAT indicatesAUTOMATICbutDA is not the application rowdescriptor associated
with S, then an exception condition is raised: CLI-specific condition— invalid use
of automatically-allocated descriptor handle (HY017).

2) Otherwise, DA becomes the current application row descriptor for S.

c) If A indicates CURSOR SCROLLABLE, then

Case:

i) If the SQL/CLI implementation supports scrollable cursors, then:

1) If an open CLI cursor is associated with S, then an exception condition is raised:
CLI-specific condition— attribute cannot be set now (HY011).

2) Case:

A) If V indicates NONSCROLLABLE, then the CURSOR SCROLLABLE attribute
of S is set to NONSCROLLABLE.

B) If V indicates SCROLLABLE, then the CURSOR SCROLLABLE attribute of S
is set to SCROLLABLE.

C) Otherwise, an exception condition is raised: CLI-specific condition— invalid
attribute value (HY024).

ii) Otherwise, an exception condition is raised: CLI-specific condition— optional feature
not implemented (HYC00).

d) If A indicates CURSOR SENSITIVITY, then

Case:

i) If the SQL/CLI implementation supports cursor sensitivity, then

Case:

1) If an open CLI cursor is associated with S, then an exception condition is raised:
CLI-specific condition— attribute cannot be set now (HY011).

2) Case:

A) If V indicates ASENSITIVE, then the CURSOR SENSITIVITY attribute of S is
set to ASENSITIVE.

B) If V indicates INSENSITIVE, then the CURSOR SENSITIVITY attribute of S is
set to INSENSITIVE.

C) If V indicates SENSITIVE, then the CURSOR SENSITIVITY attribute of S is
set to SENSITIVE.

D) Otherwise, an exception condition is raised: CLI-specific condition— invalid
attribute value (HY024).

ii) Otherwise, an exception condition is raised: CLI-specific condition— optional feature
not implemented (HYC00).

e) If A indicates METADATA ID, then

Case:

i) If V indicates FALSE, then the METADATA ID attribute of S is set to FALSE.

ii) If V indicates TRUE, then the METADATA ID attribute of S is set to TRUE.

276 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.60 SetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

iii) Otherwise, an exception condition is raised: CLI-specific condition— invalid attribute
value (HY024).

f) If A indicates CURSOR HOLDABLE, then

Case:

i) If the SQL/CLI implementation supports cursor holdability, then

Case:

1) If an open CLI cursor is associated with S, then an exception condition is raised:
CLI-specific condition— attribute cannot be set now (HY011).

2) Case:

A) If V indicates NONHOLDABLE, then the CURSOR HOLDABLE attribute of S
is set to NONHOLDABLE.

B) If V indicates HOLDABLE, then the CURSOR HOLDABLE attribute of S is set
to HOLDABLE.

C) Otherwise, an exception condition is raised: CLI-specific condition— invalid
attribute value (HY024).

ii) Otherwise, an exception condition is raised: CLI-specific condition— optional feature
not implemented (HYC00).

g) If A indicates CURRENT OF POSITION, then

Case:

i) If there is no openCLI cursorCR associatedwith S, then an exception condition is raised:
invalid cursor state (24000).

ii) If V is greater than the ARRAY_SIZE field of the application row descriptor associated
with S, then an exception condition is raised: CLI-specific condition— row value out of
range (HY107).

iii) If the operational scrollability property ofCR is not SCROLL, then an exception condition
is raised: CLI-specific condition— invalid cursor position (HY109).

iv) Otherwise, the current row within the fetched rowset associated with S is set to V.

h) If A indicates NEST DESCRIPTOR, then

Case:

i) If there is a prepared statement associated with StatementHandle, then an exception
condition is raised: CLI-specific condition— function sequence error (HY010).

ii) Otherwise,

Case:

1) If V indicates FALSE, then the NEST DESCRIPTOR attribute of S is set to FALSE.

2) If V indicates TRUE, then the NEST DESCRIPTOR attribute of S is set to TRUE.

3) Otherwise, an exception condition is raised: CLI-specific condition— invalid
attribute value (HY024).

6) If A specifies an implementation-defined (IV051) statement attribute, then

© ISO/IEC 2023 – All rights reserved 277

ISO/IEC 9075-3:2023(E)
7.60 SetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

Case:

a) If the data type for the statement attribute is specified as INTEGER in Table 19, “Data types
of attributes”, then the statement attribute is set to the value of Value.

b) Otherwise:

i) Let SL be the value of StringLength.

ii) Case:

1) If SL is not negative, then let L be SL.

2) If SL indicates NULL TERMINATED, then let L be the number of octets of Value
that precede the implementation-defined (IV030) null character that terminates
a C character string.

3) Otherwise, an exception condition is raised:CLI-specific condition— invalid string
length or buffer length (HY090).

iii) The statement attribute is set to the first L octets of Value.

Conformance Rules

None.

278 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.60 SetStmtAttr()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.61 SpecialColumns()

Function

Return a result set that contains a list of columns the combined values of which can uniquely identify a
particular row within a single specified table described by the Information Schemas of the connected
data source.

Definition

SpecialColumns (
 StatementHandle IN INTEGER,
 IdentifierType IN SMALLINT,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 Scope IN SMALLINT,
 Nullable IN SMALLINT)

RETURNS SMALLINT

where eachofL1,L2, andL3has amaximumvalue equal to the implementation-defined (IL006)maximum
length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let SPECIAL_COLUMNS_QUERY be a table, with the definition:

CREATE TABLE SPECIAL_COLUMNS_QUERY (
SCOPE SMALLINT,
COLUMN_NAME CHARACTER VARYING(128) NOT NULL,

 DATA_TYPE SMALLINT NOT NULL,
 TYPE_NAME CHARACTER VARYING(128) NOT NULL,
 COLUMN_SIZE INTEGER,
 BUFFER_LENGTH INTEGER,
 DECIMAL_DIGITS SMALLINT,
 PSEUDO_COLUMN SMALLINT)

6) SPECIAL_COLUMNS_QUERY contains a row for each column that is part of a set of columns that can
be used to best uniquely identify a rowwithin the tables listed in SS’s Information Schema TABLES
view. Some tables are not permitted to have such a set of columns. Some tables may have more
thanone such set, inwhich case it is implementation-dependent (UA041) as towhich set of columns
is chosen. It is implementation-dependent (UA043) as to whether a column identified for a given
table is a pseudo-column.

© ISO/IEC 2023 – All rights reserved 279

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature 'Information
Schema metadata constrained by privileges in CLI').

b) Case:

i) If the value of SUP is 1 (one), then Table 28, “Codes and data types for implementation
information”, is 'Y', then SPECIAL_COLUMNS_QUERY contains a row for each identifying
column in SS’s Information Schema COLUMNS view and each implementation-
dependent (UA043) pseudo-column.

ii) Otherwise, SPECIAL_COLUMNS_QUERY contains a row for each identifying column in
SS’s InformationSchemaCOLUMNSviewandeach implementation-dependent (UA043)
pseudo-column in accordance with implementation-defined (IW058) authorization
criteria.

7) If the value of IdentifierType is other than the code for BEST ROWID in Table 38, “Column types
and scopes used with SpecialColumns”, or an implementation-defined (IE001) extension to that
table, then an exception condition is raised: CLI-specific condition— column type out of range
(HY097).

8) If the value of Scope is other than the code SCOPECURRENTROW, SCOPETRANSACTION, or SCOPE
SESSION in Table 38, “Column types and scopes usedwith SpecialColumns”, or an implementation-
defined (IE001) extension to that table, then an exception condition is raised: CLI-specific condition
— scope out of range (HY098).

9) If the value of Nullable is other than the code for NO NULLS or NULLABLE in Table 38, “Column
types and scopes used with SpecialColumns”, then an exception condition is raised: CLI-specific
condition— nullable type out of range (HY099).

10) For each row of SPECIAL_COLUMNS_QUERY:

a) Thevalueof SCOPE in SPECIAL_COLUMNS_QUERY is either the code for oneof SCOPECURRENT
ROW, SCOPE TRANSACTION, or SCOPE SESSION from Table 38, “Column types and scopes
usedwith SpecialColumns”, or it is a value froman implementation-defined (IE001) extension
to that table, determined as follows.

Case:

i) If the value that uniquely identifies a row is only guaranteed to be validwhile positioned
on that row, then the code is that for SCOPE CURRENT ROW.

ii) If the value that uniquely identifies a row is only guaranteed to be valid for the current
transaction, then the code is that for SCOPE TRANSACTION.

iii) If the value that uniquely identifies a row is only guaranteed to be valid for the current
SQL-session, then the code is that for SCOPE SESSION.

iv) Otherwise, the value is taken from the implementation-defined (IE001) extension to
Table 38, “Column types and scopes used with SpecialColumns”.

b) The value of COLUMN_NAME in SPECIAL_COLUMNS_QUERY is the value of theCOLUMN_NAME
column in the COLUMNS view.

c) The value of DATA_TYPE in SPECIAL_COLUMNS_QUERY is derived from the values of the
DATA_TYPE and INTERVAL_TYPE columns in the COLUMNS view as follows.

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
DATA_TYPE in SPECIAL_COLUMNS_QUERY is the appropriate Code from Table 32,

280 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

“Codes used for concise data types”, that matches the interval specified in the INTER-
VAL_TYPE column in the COLUMNS view.

ii) Otherwise, the value of DATA_TYPE in SPECIAL_COLUMNS_QUERY is the appropriate
Code from Table 32, “Codes used for concise data types”, that matches the data type
specified in the DATA_TYPE column in the COLUMNS view.

d) The value of TYPE_NAME in SPECIAL_COLUMNS_QUERY is an implementation-defined (IV050)
value that is the character string by which the data type is known at the data source.

e) The value of COLUMN_SIZE in SPECIAL_COLUMNS_QUERY is

Case:

i) If the value of DATA_TYPE in the COLUMNS view is 'CHARACTER', 'CHARACTER
VARYING', 'CHARACTER LARGE OBJECT', 'BINARY', 'BINARY VARYING', or 'BINARY
LARGE OBJECT', then the value is that of the CHARACTER_MAXIMUM_LENGTH in the
same row of the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is 'DECIMAL' or 'NUMERIC', then the
value is that of the NUMERIC_PRECISION column in the same row of the COLUMNS
view.

iii) If the value of DATA_TYPE in the COLUMNS view is 'SMALLINT', 'INTEGER', 'BIGINT',
'FLOAT', 'DECFLOAT', 'REAL', or 'DOUBLEPRECISION', then thevalue is implementation-
defined (IV046).

iv) If the value of DATA_TYPE in the COLUMNS view is 'DATE', 'TIME', 'TIMESTAMP', 'TIME
WITHTIMEZONE', or 'TIMESTAMPWITHTIMEZONE', then thevalueofCOLUMN_SIZE
is that derived from SR 41), in Subclause 6.1, “<data type>”, of ISO/IEC 9075-2, where
thevalueof <time fractional secondsprecision> is thevalueof theNUMERIC_PRECISION
column in the same row of the COLUMNS view.

v) If the value of DATA_TYPE in the COLUMNS view is 'INTERVAL', then the value of
COLUMN_SIZE is that derived from the General Rules of Subclause 10.1, “<interval
qualifier>”, of ISO/IEC 9075-2, where:

1) The value of <interval qualifier> is the value of the INTERVAL_TYPE column in
the same row of the COLUMNS view.

2) The value of <interval leading field precision> is the value of the INTERVAL_PRE-
CISION column in the same row of the COLUMNS view.

3) The value of <interval fractional seconds precision> is the value of the
NUMERIC_PRECISION column in the same row of the COLUMNS view.

vi) If the value of DATA_TYPE in the COLUMNS view is 'REF', then the value is the length
in octets of the reference type.

vii) Otherwise, the value is implementation-dependent (UV054).

f) The value of BUFFER_LENGTH in SPECIAL_COLUMNS_QUERY is implementation-defined
(IV047).

NOTE 52— The purpose of BUFFER_LENGTH is to record the number of octets transferred for the column
with a Fetch routine, a FetchScroll routine, or a GetData routine when the TYPE field in the application row
descriptor indicates DEFAULT. This length excludes a null terminator, if one exists.

g) The value of DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is:

Case:

© ISO/IEC 2023 – All rights reserved 281

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

i) If the value of DATA_TYPE in the COLUMNSview is one of 'DATE', 'TIME', 'TIMESTAMP',
'TIMEWITH TIME ZONE', or 'TIMESTAMPWITH TIME ZONE', then the value of
DECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is the value of the DATETIME_PRECI-
SION column in the COLUMNS view.

ii) If the value of DATA_TYPE in the COLUMNS view is one of 'NUMERIC', 'DECIMAL',
'SMALLINT', 'INTEGER', or 'BIGINT', then the value of DECIMAL_DIGITS in SPE-
CIAL_COLUMNS_QUERY is the value of the NUMERIC_SCALE column in the COLUMNS
view.

iii) Otherwise, the valueofDECIMAL_DIGITS in SPECIAL_COLUMNS_QUERY is thenull value.

h) The value of PSEUDO_COLUMN in SPECIAL_COLUMNS_QUERY is the code for one of PSEUDO
UNKNOWN, NOT PSEUDO, or PSEUDO from Table 38, “Column types and scopes used with
SpecialColumns”. The algorithmused to set this value is implementation-dependent (UA044).

11) LetNL1,NL2, andNL3be the values ofNameLength1,NameLength2, andNameLength3, respectively.

12) Let CATVAL, SCHVAL, TBLVAL, SCPVAL, and NULVAL be the values of CatalogName, SchemaName,
and TableName, Scope, and Nullable respectively.

13) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table 28, “Codes and data types for implementation information”, is 'Y', then an exception
condition is raised: CLI-specific condition— invalid use of null pointer (HY009).

b) If SchemaName is a null pointer, then an exception condition is raised: CLI-specific condition
— invalid use of null pointer (HY009).

14) If TableName is a null pointer, then an exception condition is raised: CLI-specific condition— invalid
use of null pointer (HY009).

15) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
is set to zero. If TableName is a null pointer, then NL3 is set to zero.

16) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let CATVAL be the first L octets of CatalogName.

17) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let SCHVAL be the first L octets of SchemaName.

282 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

18) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let TBLVAL be the first L octets of TableName.

19) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

© ISO/IEC 2023 – All rights reserved 283

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise,

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise:

i) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise, letCATSTR
be the character string:

TABLE_CAT = 'CATVAL' AND

ii) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise, let SCHSTR
be the character string:

TABLE_SCHEM = 'SCHVAL' AND

iii) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise, letTBLSTR
be the character string:

TABLE_NAME = 'TBLVAL' AND

20) Let the value of SCPSTR be the character string:

SCOPE >= SCPVAL

21) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || SCPSTR

22) Case:

a) If NULVAL is equal to the code for NO NULLS in Table 26, “Miscellaneous codes used in CLI”,
and any of the rows selected by the above querywould describe a column for which the value
of IS_NULLABLE column in the COLUMNS view is 'YES', then let STMT be the character string:

SELECT *
FROM SPECIAL_COLUMNS_QUERY
WHERE 1 = 2 -- select no rows
ORDER BY SCOPE

b) Otherwise, let STMT be the character string:

SELECT *
FROM SPECIAL_COLUMNS_QUERY
WHERE PRED
ORDER BY SCOPE

284 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

23) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 285

ISO/IEC 9075-3:2023(E)
7.61 SpecialColumns()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.62 StartTran()

Function

Explicitly start an SQL-transaction and set its characteristics.

Definition

StartTran (
 HandleType IN SMALLINT,
 Handle IN INTEGER,
 AccessMode IN INTEGER,
 IsolationLevel IN INTEGER)

RETURNS SMALLINT

General Rules

1) Let HT be the value of HandleType and let H be the value of Handle.

2) If HT is not one of the code values in Table 13, “Codes used for SQL/CLI handle types”, then an
exception condition is raised: CLI-specific condition— invalid handle (HYHHH).

3) Case:

a) If HT indicates STATEMENT HANDLE, then

Case:

i) IfHdoes not identify an allocated SQL-statement, then an exception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise, an exception condition is raised: CLI-specific condition— invalid attribute
identifier (HY092).

b) If HT indicates DESCRIPTOR HANDLE, then

Case:

i) If H does not identify an allocated CLI descriptor area, then an exception condition is
raised: CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise, an exception condition is raised: CLI-specific condition— invalid attribute
identifier (HY092).

c) If HT indicates CONNECTION HANDLE, then

Case:

i) IfHdoesnot identify an allocated SQL-connection, then an exception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise:

1) Let C be the allocated SQL-connection identified by H.

2) The diagnostics area associated with C is emptied.

3) Case:

286 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.62 StartTran()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

If there isnoestablishedSQL-connectionassociatedwithC, thenanexception
condition is raised: connection exception—connectiondoes not exist (08003).

A)

B) Otherwise, let EC be the established SQL-connection associated with C.

4) If C has an associated established SQL-connection that is active, then let L1 be a
list containing EC; otherwise, let L1 be an empty list.

d) If HT indicates ENVIRONMENT HANDLE, then

Case:

i) IfH does not identify an allocated SQL-environment or if it identifies an allocated SQL-
environment that is a skeletonSQL-environment, thenanexception condition is raised:
CLI-specific condition— invalid handle (HYHHH).

ii) Otherwise:

1) Let E be the allocated SQL-environment identified by H.

2) The diagnostics area associated with E is emptied.

3) Let L be a list of the allocated SQL-connections associated with E. Let L1 be a list
of the allocated SQL-connections in L that have an associated established SQL-
connection that is active.

4) If an SQL-transaction is currently active on any of the SQL-connections contained in L1, then an
exception condition is raised: invalid transaction state — active SQL-transaction (25001).

5) Let AM be the value for AccessMode. If AM is not one of the codes in Table 31, “Values for TRANS-
ACTIONACCESSMODEwith StartTran”, then an exception condition is raised: CLI-specific condition
— invalid attribute identifier (HY092).

6) Let IL be the value for IsolationLevel. If IL is not one of the codes in Table 30, “Values for TRANSAC-
TION ISOLATIONOPTIONwithStartTran”, thenanexception condition is raised:CLI-specific condition
— invalid attribute identifier (HY092).

7) Let TXN be the SQL-transaction that is started by this invocation of the StartTran routine.

8) If READ ONLY is specified by AM, then the access mode of TXN is set to read-only. If READWRITE
is specified by AM, then the access mode of TXN is set to read-write.

9) The isolation level of TXN is set to an implementation-defined (IV222) isolation level that will not
exhibit any of the phenomena that the isolation level indicatedbyTILwouldnot exhibit, as specified
in Table 11, “SQL-transaction isolation levels and the three phenomena”, in ISO/IEC 9075-2.

10) TXN is started in each SQL-connection contained in L1.

Conformance Rules

None.

© ISO/IEC 2023 – All rights reserved 287

ISO/IEC 9075-3:2023(E)
7.62 StartTran()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.63 TablePrivileges()

Function

Return a result set that contains a list of the privileges held on the tables whose names adhere to the
requested pattern(s) within tables described by the Information Schemas of the connected data source.

Definition

TablePrivileges (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT)

RETURNS SMALLINT

where eachofL1,L2, andL3has amaximumvalue equal to the implementation-defined (IL006)maximum
length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let TABLE_PRIVILEGES_QUERY be a table, with the definition:

CREATE TABLE TABLE_PRIVILEGES_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128) NOT NULL,

TABLE_NAME CHARACTER VARYING(128) NOT NULL,
 GRANTOR CHARACTER VARYING(128) NOT NULL,
 GRANTEE CHARACTER VARYING(128) NOT NULL,
 PRIVILEGE CHARACTER VARYING(128) NOT NULL,
 IS_GRANTABLE CHARACTER VARYING(3) NOT NULL,
 WITH_HIERARCHY CHARACTER VARYING(254) NOT NULL)

6) TABLE_PRIVILEGES_QUERY contains a row for each privilege in SS’s Information Schema
TABLE_PRIVILEGES view where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature 'Information
Schema metadata constrained by privileges in CLI').

b) Case:

i) If the value of SUP is 1 (one), then TABLE_PRIVILEGES_QUERY contains a row for each
privilege in SS’s Information Schema TABLE_PRIVILEGES view.

288 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.63 TablePrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

ii) Otherwise, TABLE_PRIVILEGES_QUERY contains a row for each privilege in SS’s
Information Schema TABLE_PRIVILEGES view that meets implementation-defined
(IW057) authorization criteria.

7) For each row of TABLE_PRIVILEGES_QUERY:

a) If the SQL-implementation does not support catalog names, then TABLE_CAT is the null value;
otherwise, the value of TABLE_CAT in TABLE_PRIVILEGES_QUERY is the value of the
TABLE_CATALOG column in the TABLE_PRIVILEGES view in the Information Schema.

b) The value of TABLE_SCHEM in TABLE_PRIVILEGES_QUERY is the value of the TABLE_SCHEMA
column in the TABLE_PRIVILEGES view.

c) The value of TABLE_NAME in TABLE_PRIVILEGES_QUERY is the value of the TABLE_NAME
column in the TABLE_PRIVILEGES view.

d) The value of GRANTOR in TABLE_PRIVILEGES_QUERY is the value of the GRANTOR column in
the TABLE_PRIVILEGES view.

e) The value of GRANTEE in TABLE_PRIVILEGES_QUERY is the value of the GRANTEE column in
the TABLE_PRIVILEGES view.

f) The value of PRIVILEGE in TABLE_PRIVILEGES_QUERY is the value of the PRIVILEGE_TYPE
column in the TABLE_PRIVILEGES view.

g) The value of IS_GRANTABLE in TABLE_PRIVILEGES_QUERY is the value of the IS_GRANTABLE
column in the TABLE_PRIVILEGES view.

h) The value of WITH_HIERARCHY in TABLE_PRIVILEGES_QUERY is the value of the
WITH_HIERARCHY column in the TABLE_PRIVILEGES view.

8) LetNL1,NL2, andNL3be the values ofNameLength1,NameLength2, andNameLength3, respectively.

9) Let CATVAL, SCHVAL, and TBLVAL be the values of CatalogName, SchemaName, and TableName,
respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table 28, “Codes and data types for implementation information”, is 'Y', then an exception
condition is raised: CLI-specific condition— invalid use of null pointer (HY009).

b) If SchemaName is a null pointer or if TableName is a null pointer, then an exception condition
is raised: CLI-specific condition— invalid use of null pointer (HY009).

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
is set to zero. If TableName is a null pointer, then NL3 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let CATVAL be the first L octets of CatalogName.

13) Case:

© ISO/IEC 2023 – All rights reserved 289

ISO/IEC 9075-3:2023(E)
7.63 TablePrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

If NL2 is not negative, then let L be NL2.a)

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If the METADATA ID attribute of S is TRUE, then:

i) Case:

1) If the value of NL1 is zero, then let CATSTR be a zero-length string.

2) Otherwise:

Case:

A) If SUBSTRING(TRIM('CATVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('CATVAL') FROM CHAR_LENGTH(TRIM('CATVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('CATVAL') FROM 2
FOR CHAR_LENGTH(TRIM('CATVAL')) - 2)

and let CATSTR be the character string:

TABLE_CAT = 'TEMPSTR' AND

B) Otherwise, let CATSTR be the character string:

UPPER(TABLE_CAT) = UPPER('CATVAL') AND

ii) Case:

1) If the value of NL2 is zero, then let SCHSTR be a zero-length string.

2) Otherwise:

Case:

A) If SUBSTRING(TRIM('SCHVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('SCHVAL') FROM CHAR_LENGTH(TRIM('SCHVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

290 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.63 TablePrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

SUBSTRING(TRIM('SCHVAL') FROM 2
FOR CHAR_LENGTH(TRIM('SCHVAL')) - 2)

and let SCHSTR be the character string:

TABLE_SCHEM = 'TEMPSTR' AND

B) Otherwise, let SCHSTR be the character string:

UPPER(TABLE_SCHEM) = UPPER('SCHVAL') AND

iii) Case:

1) If the value of NL3 is zero, then let TBLSTR be a zero-length string.

2) Otherwise:

Case:

A) If SUBSTRING(TRIM('TBLVAL') FROM 1 FOR 1) = '"' and if SUB-
STRING(TRIM('TBLVAL') FROM CHAR_LENGTH(TRIM('TBLVAL')) FOR 1)
= '"', then let TEMPSTR be the value obtained from evaluating:

SUBSTRING(TRIM('TBLVAL') FROM 2
FOR CHAR_LENGTH(TRIM('TBLVAL')) - 2)

and let TBLSTR be the character string:

TABLE_NAME = 'TEMPSTR' AND

B) Otherwise, let TBLSTR be the character string:

UPPER(TABLE_NAME) = UPPER('TBLVAL') AND

b) Otherwise:

i) Let SPC be the Code value from Table 28, “Codes and data types for implementation
information”, that corresponds to the Information Type SEARCH PATTERN ESCAPE in
that same table.

ii) Let ESC be the value of InfoValue that is returned by the execution of GetInfo() with
the value of InfoType set to SPC.

iii) If the value ofNL1 is zero, then letCATSTRbe a zero-length string; otherwise, letCATSTR
be the character string:

TABLE_CAT = 'CATVAL' AND

iv) If the value ofNL2 is zero, then let SCHSTRbe a zero-length string; otherwise, let SCHSTR
be the character string:

TABLE_SCHEM LIKE 'SCHVAL' ESCAPE 'ESC' AND

v) If the value ofNL3 is zero, then letTBLSTRbe a zero-length string; otherwise, letTBLSTR
be the character string:

TABLE_NAME LIKE 'TBLVAL' ESCAPE 'ESC' AND

16) Let PRED be the result of evaluating:

CATSTR || ' ' || SCHSTR || ' ' || TBLSTR || ' ' || 1=1

© ISO/IEC 2023 – All rights reserved 291

ISO/IEC 9075-3:2023(E)
7.63 TablePrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

17) Let STMT be the character string:

SELECT *
FROM TABLE_PRIVILEGES_QUERY
WHERE PRED
ORDER BY TABLE_CAT, TABLE_SCHEM, TABLE_NAME, PRIVILEGE

18) ExecDirect is implicitly invoked with S as the value of StatementHandle, STMT as the value of
StatementText, and the length of STMT as the value of TextLength.

Conformance Rules

None.

292 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.63 TablePrivileges()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

7.64 Tables()

Function

Based on the specified selection criteria, return a result set that contains information about tables
described by the Information Schema of the connected data source.

Definition

Tables (
 StatementHandle IN INTEGER,
 CatalogName IN CHARACTER(L1),
 NameLength1 IN SMALLINT,
 SchemaName IN CHARACTER(L2),
 NameLength2 IN SMALLINT,
 TableName IN CHARACTER(L3),
 NameLength3 IN SMALLINT,
 TableType IN CHARACTER(L4),
 NameLength4 IN SMALLINT)

RETURNS SMALLINT

where each of L1, L2, L3, and L4 has a maximum value equal to the implementation-defined (IL006)
maximum length of a variable-length character string.

General Rules

1) Let S be the allocated SQL-statement identified by StatementHandle.

2) If an open CLI cursor is associated with S, then an exception condition is raised: invalid cursor state
(24000).

3) Let C be the allocated SQL-connection with which S is associated.

4) Let EC be the established SQL-connection associated with C and let SS be the SQL-server on that
connection.

5) Let TABLES_QUERY be a table with the definition:

CREATE TABLE TABLES_QUERY (
 TABLE_CAT CHARACTER VARYING(128),
 TABLE_SCHEM CHARACTER VARYING(128),

TABLE_NAME CHARACTER VARYING(128),
 TABLE_TYPE CHARACTER VARYING(254),
 REMARKS CHARACTER VARYING(254),
 SELF_REF_COLUMN CHARACTER VARYING(128),
 REF_GENERATION CHARACTER VARYING(254),
 UDT_CAT CHARACTER VARYING(128),
 UDT_SCHEM CHARACTER VARYING(128),
 UDT_NAME CHARACTER VARYING(128),

UNIQUE (TABLE_CAT, TABLE_SCHEM, TABLE_NAME))

6) TABLES_QUERY contains a row for each table described by SS’s Information Schema TABLES view
where:

a) Let SUP be the value of Supported that is returned by the execution of GetFeatureInfo with
FeatureType = 'FEATURE' and FeatureId = 'C041' (corresponding to the feature 'Information
Schema metadata constrained by privileges in CLI').

b) Case:

© ISO/IEC 2023 – All rights reserved 293

ISO/IEC 9075-3:2023(E)
7.64 Tables()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

i) If the value of SUP is 1 (one), then TABLES_QUERY contains a row for each row
describing a table in SS’s Information Schema TABLES view for which the connected
UserName has selection privileges.

ii) Otherwise, TABLES_QUERY contains a row for each row describing a table in SS’s
Information Schema TABLES view that meets implementation-defined (IW056)
authorization criteria.

7) The description of the table TABLES_QUERY is:

a) The value of TABLE_CAT in TABLES_QUERY is the value of the TABLE_CATALOG column in
the TABLES view. If SS does not support catalog names, then TABLE_CAT is set to the null
value.

b) The value of TABLE_SCHEM in TABLES_QUERY is the value of the TABLE_SCHEMA column in
theTABLESview. ThevalueofTABLE_NAME inTABLES_QUERY is the valueof theTABLE_NAME
column in the TABLES view.

c) The value of TABLE_TYPE in TABLES_QUERY is determined by the values of the TABLE_TYPE
column in the TABLES view.

Case:

i) If the value of TABLE_TYPE in the TABLES view is 'VIEW', then

Case:

1) If the defined view is within the Information Schema itself, then the value of
TABLE_TYPE in TABLES_QUERY is set to 'SYSTEM TABLE'.

2) Otherwise, the value of TABLE_TYPE in TABLES_QUERY is set to 'VIEW'.

ii) If the value of TABLE_TYPE in the TABLES view is 'BASE TABLE', then the value of
TABLE_TYPE in TABLES_QUERY is set to 'TABLE'.

iii) If the value of TABLE_TYPE in the TABLES view is 'GLOBAL TEMPORARY' or 'LOCAL
TEMPORARY', then the value of TABLE_TYPE in TABLES_QUERY is set to that value.

iv) Otherwise, the value of TABLE_TYPE in TABLES_QUERY is an implementation-defined
(IE022) value.

d) The value of REMARKS in TABLES_QUERY is an implementation-defined (IV044) description
of the table.

e) The value of SELF_REF_COLUMN in TABLES_QUERY is the value of the SELF_REFEREN-
CING_COLUMN_NAME column in the TABLES view.

f) ThevalueofREF_GENERATION inTABLES_QUERY is thevalueof theREFERENCE_GENERATION
column in the TABLES view.

g) The value of UDT_CAT in TABLES_QUERY is the value of the USER_DEFINED_TYPE_CATALOG
column in the TABLES view.

h) ThevalueofUDT_SCHEMAinTABLES_QUERY is thevalueof theUSER_DEFINED_TYPE_SCHEMA
column in the TABLES view.

i) The value of UDT_NAME in TABLES_QUERY is the value of the USER_DEFINED_TYPE_NAME
column in the TABLES view.

8) Let NL1, NL2, NL3, and NL4 be the values of NameLength1, NameLength2, NameLength3, and
NameLength4, respectively.

294 © ISO/IEC 2023 – All rights reserved

ISO/IEC 9075-3:2023(E)
7.64 Tables()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

9) Let CATVAL, SCHVAL,TBLVAL, andTYPVAL be the values of CatalogName, SchemaName, TableName,
and TableType, respectively.

10) If the METADATA ID attribute of S is TRUE, then:

a) If CatalogName is a null pointer and the value of the CATALOG NAME information type from
Table 28, “Codes and data types for implementation information”, is 'Y', then an exception
condition is raised: CLI-specific condition— invalid use of null pointer (HY009).

b) If SchemaName is a null pointer or if TableName is a null pointer, then an exception condition
is raised: CLI-specific condition— invalid use of null pointer (HY009).

11) If CatalogName is a null pointer, then NL1 is set to zero. If SchemaName is a null pointer, then NL2
is set to zero. If TableName is a null pointer, then NL3 is set to zero. If TableType is a null pointer,
then NL4 is set to zero.

12) Case:

a) If NL1 is not negative, then let L be NL1.

b) If NL1 indicates NULL TERMINATED, then let L be the number of octets of CatalogName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let CATVAL be the first L octets of CatalogName.

13) Case:

a) If NL2 is not negative, then let L be NL2.

b) If NL2 indicates NULL TERMINATED, then let L be the number of octets of SchemaName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let SCHVAL be the first L octets of SchemaName.

14) Case:

a) If NL3 is not negative, then let L be NL3.

b) If NL3 indicates NULL TERMINATED, then let L be the number of octets of TableName that
precede the implementation-defined (IV030) null character that terminates a C character
string.

c) Otherwise, an exception condition is raised: CLI-specific condition— invalid string length or
buffer length (HY090).

Let TBLVAL be the first L octets of TableName.

15) Case:

a) If NL4 is not negative, then let L be NL4.

b) If NL4 indicates NULL TERMINATED, then let L be the number of octets of TableType that
precede the implementation-defined (IV030) null character that terminates a C character
string.

© ISO/IEC 2023 – All rights reserved 295

ISO/IEC 9075-3:2023(E)
7.64 Tables()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 90
75

-3:
20

23

https://iecnorm.com/api/?name=2b0a91323b887ca0f67f878f84889552

	Contents
	Tables
	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Concepts
	4.1 Notations and conventions
	4.1.1 Notations
	4.1.2 Specification of routine definitions

	4.2 Introduction to SQL/CLI
	4.3 Return codes
	4.4 Diagnostics areas in SQL/CLI
	4.4.1 Introduction to diagnostics areas in SQL/CLI
	4.4.2 Setting of ROW_NUMBER and COLUMN_NUMBER fields

	4.5 Miscellaneous characteristics
	4.5.1 Handles
	4.5.2 Null-terminated strings
	4.5.3 Null pointers
	4.5.4 Environment attributes
	4.5.5 Connection attributes
	4.5.6 Statement attributes
	4.5.7 CLI descriptor areas
	4.5.8 Obtaining diagnostics during multi-row fetch

	4.6 SQL-invoked routines
	4.6.1 Result sets returned by SQL-invoked procedures

	4.7 Cursors
	4.7.1 General description of cursors

	4.8 Client-server operation

	5 Lexical elements
	5.1 <token> and <separator>

	6 Call-Level Interface specifications
	6.1 <CLI routine>
	6.2 <CLI routine> invocation
	6.3 Implicit set connection
	6.4 Preparing a statement
	6.5 Executing a statement
	6.6 Implicit CLI prepared cursor
	6.7 Implicit CLI procedural result cursor
	6.8 Initial CLI cursor
	6.9 Implicit DESCRIBE USING clause
	6.10 Implicit EXECUTE USING and OPEN USING clauses
	6.11 Implicit CALL USING clause
	6.12 Fetching a rowset
	6.13 Implicit FETCH USING clause
	6.14 Character string retrieval
	6.15 Binary string retrieval
	6.16 Deferred parameter check
	6.17 Description of CLI item descriptor areas
	6.18 Other tables associated with CLI
	6.19 SQL/CLI data type correspondences

	7 SQL/CLI routines
	7.1 Introduction to SQL/CLI routines
	7.2 AllocConnect()
	7.3 AllocEnv()
	7.4 AllocHandle()
	7.5 AllocStmt()
	7.6 BindCol()
	7.7 BindParameter()
	7.8 Cancel()
	7.9 CloseCursor()
	7.10 ColAttribute()
	7.11 ColumnPrivileges()
	7.12 Columns()
	7.13 Connect()
	7.14 CopyDesc()
	7.15 DataSources()
	7.16 DescribeCol()
	7.17 Disconnect()
	7.18 EndTran()
	7.19 Error()
	7.20 ExecDirect()
	7.21 Execute()
	7.22 Fetch()
	7.23 FetchScroll()
	7.24 ForeignKeys()
	7.25 FreeConnect()
	7.26 FreeEnv()
	7.27 FreeHandle()
	7.28 FreeStmt()
	7.29 GetConnectAttr()
	7.30 GetCursorName()
	7.31 GetData()
	7.32 GetDescField()
	7.33 GetDescRec()
	7.34 GetDiagField()
	7.35 GetDiagRec()
	7.36 GetEnvAttr()
	7.37 GetFeatureInfo()
	7.38 GetFunctions()
	7.39 GetInfo()
	7.40 GetLength()
	7.41 GetParamData()
	7.42 GetPosition()
	7.43 GetSessionInfo()
	7.44 GetStmtAttr()
	7.45 GetSubString()
	7.46 GetTypeInfo()
	7.47 MoreResults()
	7.48 NextResult()
	7.49 NumResultCols()
	7.50 ParamData()
	7.51 Prepare()
	7.52 PrimaryKeys()
	7.53 PutData()
	7.54 RowCount()
	7.55 SetConnectAttr()
	7.56 SetCursorName()
	7.57 SetDescField()
	7.58 SetDescRec()
	7.59 SetEnvAttr()
	7.60 SetStmtAttr()
	7.61 SpecialColumns()
	7.62 StartTran()
	7.63 TablePrivileges()
	7.64 Tables()

	8 Additional data manipulation rules
	8.1 Effect of opening a cursor

	9 Dynamic SQL
	9.1 <preparable dynamic cursor name>

	10 Status codes
	10.1 SQLSTATE

	11 Conformance
	11.1 Claims of conformance to SQL/CLI
	11.2 Additional conformance requirements for SQL/CLI
	11.3 Implied feature relationships of SQL/CLI

	A SQL conformance summary
	B Implementation-defined elements
	C Implementation-dependent elements
	D SQL optional feature taxonomy
	E Deprecated features
	F Incompatibilities with ISO/IEC 9075:2016
	G Defect Reports not addressed in this edition of this document
	H Example header files
	H.1 C header file sqlcli.h
	H.2 COBOL library item SQLCLI

	I Example C programs
	I.1 Introduction to Example C programs
	I.2 Create table, insert, select
	I.3 Interactive Query
	I.4 Providing long dynamic arguments at Execute time

	Index
	C081455e_foreword.pdf
	Foreword

