INTERNATIONAL ISO/IEC
STANDARD 8824-1

Third edition
2002-12-15

Information technology — Abstra
Syntax Notation One (ASN:1):
Specification of basicnotation

)
[

Technologies de l'information =~ Notation de syntaxe abstyraite
numéro un (ASN.1): Spécification de la notation de base

Reference number

ISO/IEC 8824-1:2002(E)
S . © ISO/IEC 2002

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© [ISO/IEC 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published by ISO in 2003

Published in Switzerland

i © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

Introduction
1 Scope
2

Normative references

ISO/IEC 8824-1:2002(E)

CONTENTS

2.1 Identical Recommendations | International Standardsccoecvevieriiriierieniece e
2.2 Additional TEIETENCES . .c.veviiiriiiiieiieiteie ettt sttt ettt et s be s
DIETINITIONS ...ttt ettt bbbt ettt et e bt s bt b e e bt e bt et et e b et et et bbb eae
3.1 Information object SPECITICALION.eiuieriieriieieeieciiee ettt
3.2 CONSIAINT SPECTIICATIONuviiiiiiiiieiiiiieeeieiitieeeeeeeesenneeereeesessnnesseesesssssnnsssseesssssmnnssseessssssmnnesees
3.3 Parameterization of ASN.1 SPecifiCationccceeouerierieniiiiiierceneee e (e
3.4 Structure for identification of Organizations...........cccceereereererieiieneeneee e S
3.5 Universal Multiple-Octet Coded Character Set (UCS)cooeiviiiiniiniiiiieeee b
3.6 Additional definItionS.cc.eiiiiiiiiiii ettt s b e en
ADDIEVIALIONS ...ttt ettt ettt st sae et ettt e eeeesbeesbeenbeeneesnee s Fhae dyfaeseeenueenaeenneans
INOTALION ...ttt ettt h bt et et e b st e bt e st estem e et e besseebeebeeseene e gman s bttt sbeebeeaeenneneenees
5.1 GENETAL..c.uiiiiiiiiieiiiicieee e e o Tt
5.2 ProdUCHIONS......ccueririiriiiiniirieeiteteteestese ettt ettt st ettt et nes
5.3 The alternative COIECHIONSc..eeuerueeieiiiiieniirierierieeieeceet el ettt ettt
54 Non-spacing iNdIiCALOTc.cccveriereerieriieiierierieneeseeeeeeee Seee e ereeresaesteesseessessesseesseesseessennns
5.5 Example of @ productionccecveciirieiienienieeie e 5h ettt
5.6 Layoub..cccoooiiiiiiiiiiicicceeeeeeeeeee e N e e e e
5.7 RECUISION w.ueiiiiiiiiieiiieeiieeieeecieeeveeeeieesveeeveesnes 3o anareessseessseessseessseessseessseessseessssessseessseassseenes
5.8 References to permitted sequences of lexical IEIMScc.everereririererieieieeceeeeie e
5.9 References to a 1eXiCal TTEIMeccvueeeiieryome e eriieeeiie et e ereeeete e e e sreesebeesebeestreestaeereeeraeereeens
5.10 Short-hand NOTALIONSccvierrreiieeee e e ettt eeteeestteesteeesteeeteeesreeeseesreessseesseessseessreassseenes
5.11 Value references and the typing of VAIUES.........ccccoeviririiiiiiiniinienneeecec e
The ASN.1 model of type eXtENSION ... 0T ei ittt sttt ettt s e e e e e ens
Extensibility requirements on encoO@MZ TULES.c.ooiriririeieieieieee et
TAZS ¢ttt g ettt et b et et st st e b e sbeeenee s
Use 0f the ASNLT NOtAtION. .ol iiiiiiiiiiie ettt sttt
The ASN.T CharaCter SEB... ..coverterterterieeiietet ettt ettt sttt eb ettt st st st sb et ebe et enae e
ASN.T 1EXICAL TEOIMIS... c. veeiieeiiieiiie ettt et ettt e et e et e et e e tbeeaeeetbeeaeeebbeessaeesbaeenseeensaeenseessseesnseensses
L1.1 0 Generaliubesoouiiiiiiie ettt ettt ettt
| 1 4T 1o (3 150 1 (61 SO RSRR
8 T (4 (3113 1) ¢SSR
11,4, SVAIUE TEICTEICES ...ttt ettt ettt ettt e bt e b e b e aeeeeesneeeae
L1757 MOAUIE TRIBTEICES ...ttt ettt sttt et ettt ettt et e e sbeesbeenaeeneeeee
116 Comments

11.7 EMPLy 1eXICAl TEOIM ..ovviiiiiieiicie ettt ettt st e b etaestsete e b e esbasssesnaesseennes
T1.8 INUITIDETS ...ttt bt a et ettt b e eb e eb e e st et e b et e ebesbeebeent et enbesbeebeeneenee
11,9 REAI MUMDETS. ..c..cuiiiiiiitiitt ettt ettt ettt et b e st b e bt ebe et e et et e ebe e enee
L1.10 BINATY SIINEZS c..eevvieeviiiieieieriieieeteeeteeteesteesseesseesaesseesseessesssesssesssesseesseassesssesssessesssesssesssesssesseeses
11.11 XML DIiNary SN IEEIMcuveevrerireiiereeeerientiesteetesaestesseesseesseessesssesseessesssesssesseessesssesssesssesses
11,12 HeXad@CIMAL STIIMNESvevieieiieieiesiieieeteeteeteette bt ebeesteseaesseesseesseensesssesseesseenseensenssenssessaensennses
11.13 XML hexadecimal String IteIM.......c.ccvereerieerierierierteesieertesresseeteeseeesresseesseesseessessaesseessesssessnes
L1.14 Character StIINES.....cueecververererriereeteeeesteeteesesssessaesseessessesssesssesseesseassesssesssenseensesssesssesssessesnses
11.15 XML character String iteIMNccceeuierueerieeiierieseerteesteetesteesseeseesresseesseesseessesssesseessesssesssesseenses
11.16 AssSignment 1eXICal 1Occveriieiieiieiiecieieee ettt e et e et esaessaesteesseessesssessaeseennes
T1.17 RANEZE SEPATALOTeeeuiieitieiieeeiiee ettt ettt e st e et e st e sttt e sabeesateesabeesateesabeesaseessbeesabeesnseenseeens
L1.18 EILPSIS ceoeeeiieieeieeite st ete et st et ettt et et e bt e e em e seeesseeseenseeneesmeesseenseaneeenseeneanseeseeseennes

© ISO/IEC 2002 — All rights reserved

O O O© O O O O 0 0 0 0 1 W W WD N~ — —

e e = Ty =y
W N D= O O

e e e e e e e B e N e
NoRENoRRNREN BN e e M) Te NN NV, BNV, RV, BNV, IRV, B0, R SN SN S

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

11.19 Left VErsion DIACKELSccveiiieiiee ettt e et e e e e e e e e e e eeaneeeeenreeeeenneeeeennnes
11.20 Right Version DIACKELS........c.coiriiiiririieeieieteereeter ettt et sttt sa e e

1121 X
11.22 X

ML end tag SEATT TEEINLeeutieitieiie ittt sttt ettt ce sttt e st e et e st e e bt et e eseesbeesbeebeeneesaeesneeeneenneans
ML SINGIe tag @Nd TEEIM.......eeitieiiiiiiie ittt ettt ettt ettt et e eneeeaeen

11.23 XML DOOIEAN trUE TEEIM ...ttt ettt ettt ettt b ettt e e et e e bt e beebeemaeeseesaeeneeeneeenes
11.24 XML b00lean falSe TEIM.......eeuieiiieieiieie ettt ettt et e sae b et e e e e neeenes
11.25 XML tag names fOr ASN.L fFPES .. .eeuuieuieitieiieteee ettt ettt ettt ettt et e e ee e s seeseeeneeeeeenee
11.26 Single character [eXiCal TERIMSueeuiiuieriiiieie ettt ettt et sae et et s esaeeneeenes
11.27 RESEIVEA WOTAS ...ttt sttt ettt b e bt e st e st e st et et e seeebesbe et e ese e st ensenteabesneeneens

JAY (e L0 (S (< e L 1o) SRR

Referencing type and Value dEFINITIONS ..coc...ueveeeeeeeeeiiieieeeeeeeiieeeeeseeenseeesesseeennseeessssesennsseessssmmmnnseesesssmmmnns

Notation

Assignir]

Definiti
Notatiorl
Notatior]
Notation
Notation
Notatior
Notatior
Notatiorl
Notatior]
Notation
Notation
Notatior
Notatiorl
Notatiorl
Notatior]
Notation
Notation
Notatior
Notatior
The chaf
Notatior]
Definitid

to support references to ASN.1 COMPONENLSeevieriererrieriieiieieeteeieseesreesesaeseesseesseessesssegrated
G tyPES ANA VAIUES ..ottt ettt s o Ty B Je e
N OF tyPeS ANA VAIUES ..ottt S e
for the Do0lean tyPeccveiiiiieiiieceeee e L e e
FOr the INEEEET LYPEC....viceiirieiietieieeeesteee ettt re v b essesseesreesseessessne s Sf T e e e enne
for the enUMETAtEd tYPEecveriieiieieiiectere ettt se ey Seath et esessaesanesaeenseenns
FOI The TEAL LYPEC...cuvieiieeiieiieetieteeeee ettt TN T e et sseensessaesnnesaeenseenns
TOr the DItSIIING EYPE -.eviviieriieiieieeiieteeterteee ettt ag T ettt ettt et et sae e
TOr the OCtELSIIING LY P ...eeueeeeietieiiete ettt e T ettt ettt eete e ete st e saeesaeeneeenee
TOr the MUILEYPE .o T ettt ettt ettt et e e e ee e
TOI SCQUEINCE LYPES ..uvveviiniieiiieiiecieeieete ettt ereete st serenseenseetsesseeseesseessesssessseseessesssesasesseenseenns
FOT SEQUENCE-0T LY PCS c.vieuiieiiieiieeiieieeie ettt e Dot e e esteesseessessaenseenseesseessessaesseensesssessnesseensennns
TOL SCLLYPES c.vvevveeeieeeiereeie et erenieeieere e ere o3 e te sttt et e et e st esseenbeesbeesaessaensaesseensesseesanesaeenseenns
FOT SEE-OF EYPES .ttt e ettt ettt et st b et b e st ebe ettt sa e
TOr ChOICE TYPES..meieeiieeeiieiieieeeneee e e
TOT SCIECTION EYPS .. ettt s ettt ettt ettt et e st e e ea e es e et e e bt e nbeemeesseesaeemeesneesaeesaeeneeenes
TOL tAZZEA LYPES 1uvvevieieenee et ottt ettt ettt ettt e b e e sbeeta e ta e be e b e enbeeraesaeesaeereenns
fOr the 0bJECt IAENtITTIET LY P .M e ieieeie ettt ettt ettt be e e e sae e seesbeeseessesseesnnesaeenseenns
for the relative object IdeNtIfIer tYPEoevvievieierieiieieeeee et
for the embedded-IAV EYPEcoeveriririeiet ettt
TOI the EXEEIMAL TFPEC...eneeeeietietieie ettt ettt ettt a et e e et e e see s bt e beemteeneesaeesaeeneeenee
ACTRT STIITIZAYPES .. ettt eteeteetteete ettt ettt et et et ea et e teabesbeebeebeeateseeaeen b e s e b e abeebeebeeaeebeeneentesenteabesaea
TOr CRALACLET STIINE LYPES ..vevvieerieeiieiieitiesieete et et ettt e et eeteesbeesbeetsesseebeesseessessaesaeessesssesssesaeenseenns

n of(restricted Character StrING tYPESevieruieciieieeierierie e ete sttt ste e see e esseeaeseesseessesseesseesseenns

Naming

characters and collections defined in ISO/IEC 10646-1cooovevoueiiiiiiieieiiiieeeeeeeeieeeeeeeeeeeeeen

CanoniCal OTAEr OF CHATACTETSvvviiiiiiieceeieee ettt e e e et e e e e e e e et eeeeessessnasateeeessessnsasseeessessnnnes

Definition of unrestricted character String tYPEScceerueeierierieieeieet ettt e e

Notation for types defined in ClAauSES 42 10 44ocuieirieieeieceecieete ettt ettt b e eaae e e sreesbeesseessesneens

Generali

<10 18910 1 (=TT USRI

UNIVETSAL TIINIE ..ottt e eeee e e et e e et e e e eaaeeeeeaaeeeeeseeeeeenareeeesseeeateeeeeennnseseeseeesantreeeennnns

The ODJECT AESCIIPLOT LYPE ...eveutimritirtietieieeitetet sttt ettt ettt ettt st b et e st et e b sae st s bt sbe et e st ensenneaenbenaees

CONSLIAINEA TYPES ...ttt ettt ettt ettt st e b ettt sttt s bt ebeebt et e b e nae st e s b sae et e eaeeaeensenaenbenaeas

Element

Subtype

e Ay 1T otz 2) s BTSSP

1< 1S 101 115 SRR

L B € <) 1<) - | BTSRRI
47.2 SINEGIE VAIUCeiiieii ettt sttt ettt e st et e et eesbeesaessaesaesseessesnsessaesseeseenseesseassenssenseens
473 CONtAINCA SUDLYPE ...veeviiiieiieieiiesiterie et eteete st eteeste et e staesteesbeesseessessaesseesseassesssesssesssenseessenssenssenseens

19
19
19
20
20
20
20
21
22

22
26
27
28
30
32
33
34
35
36
37
38
38
42
44
45
45
47
48
49
50
51
53
54
55
55
59
62
62
64
64
65
65
66
67

69
69
70
70

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

474 ValUE RANEZEcouiiiiiiiiriiieieeete ettt sttt et a et st sh ettt ettt et be et et ee s

47.5 SIZ8 CONSLIAINEveeuiieiiieiieetieteete et ette s ee st et et e e teeeeesate st eateesseeseesseenseenseensesseesseeseenseensesneesseenseenseans

476 TYPE COMNSIIAMNEeeuiiiiiiitietiete ettt ettt ettt e ete st ee st e e bt e et ea e e ese et e e bt emteeseeeaeebeenseemseemeesneesaeesseenseenseans

47.7 Permitted ALIPRADEL........coiiiiiiie ettt st sae e e e en

47.8 INNET SUDLYPINEeeiiiitieie ettt ettt e st et et e a e es e s bt e bt e bt emteemeesmeesseesseeneeenneens

47.9 Pattern CONSTIAINT......eeiuiiitietietiete ettt ettt ettt ce st e e bt et ea e ete e et e e bt en bt enteeaeesseeabeeseenaesmeesaeesseenseenneans

48 The eXtENSION MATKETotiiiieiieie ettt ettt ee et e b e bt e bt et e s st e sbe et e e et enteeneeeseesseesbeenbeeneeeneeenes
49 The eXCePtioN TAENMEITTETc..iiuiiieieiet ettt ettt sttt be et b et e st et et e e besbeebeeneentennens
ANNEX A — ASN.T FCZUIAT CXPICSSIONSvvrruverereriierteetieteereetesstesseesseesessesssesseesseesseesseassesssessesssesssesssesseessesssessesses
AT DEIINIHION c.eutetietieieet ettt b e st b et b et e bbbt e bbbt et e e be bbbt eat e e entes

A2 Mt a0 Al A O S e,
Annex|B — Rules for Type and Value CompatibDility..........ccceeeerierienieiinierieieeeeeeeeee e e A e
B.1 The need for the value mapping concept (Tutorial introduction)...........cccceeeeevvevrrccmmideeesfererennnne

B.2 Value mMapPings.....ccccooeereeriieieeiesiesieeieeie st siee et eeeee e sieeseeeeeeneesseesneesseessesDig et eneeseenseneeenieens

B.3 Identical type definitions.........cooeeiiiiiiiiiiie et D et

B.4 Specification of value mappingsccooceevveineniienieninieneeneeeneeseene e e e e

B.5 Additional value mappings defined for the character string types,....deveiiiiiieiencencc e

B.6 Specific type and value compatibility requirements.............ccceeeeevee s Seeriieenieneenceneeneeses e

B.7 EXAMPIES ..eiiiiiiiiieiieeet e e g N Bt es et ebeeteennesneesneesneens|eneeenieens
Annex|C — Assigned object identifier values..........ccoevvevierieniiececcieiienee e e e
C.1 Object identifiers assigned in this Recommendation | Intetnational Standardc.ccoccoeifeencnn.

C.2 Object identifiers in the ASN.1 and encoding rules standards............ccceeeevercierceeneeneecencen e
Annex|D — Assignment of object identifier component Values ..mbdeeeeeereeiieiieienieieeieeieee e e
D.1 Root assignment of object identifier component.values............ccooeeevverieciincienienieeieeieneeneefeevenieens

D.2 ITU-T assignment of object identifier comp@nent valuesccceeeveveerenenenicncncnccereeceeneefervenenne

D.3 ISO assignment of object identifier companent values..........cceceecvevvenenenenenicnenenccereecneneervenenes

D.4 Joint assignment of object identifier component values............cccecveevereneneneniencncnrcereeceneeerenenne
Annex|E — Examples and hntscoeoeeeeieea ittt sttt sse e sneseesnees | eneneennes
E.1 Example of a personnel record. =t .o it e

E.1.1 Informal description of Personnel Record.........cccoooeviiiieiiniiiiniiiicenceees e

E.1.2 ASN.1 description of the record StrUCtUIe.........cceeveeiirierieiiereeeeiesceneeneesee e

E.2 Guidelines for use of the NOLAtIONccoeiiiiiriiiiiieieieieeee et

E.2.1 BOO0IaN .27 ettt e

E2.2 TIEREEE ..ottt sttt ettt st s |

E23 BNUMETALEA ...ttt s fae e e

E2.4 RIBAL ...ttt bbbttt b e et

E.2.5 B SN, ¢ttt ettt e e

E26 OCEEE SEIINE ...ttt ettt sttt sttt sae st be et ebe et et esne st etenaes e sbeeuaenne

E.2.7 UniversalString, BMPString and UTF8Stringc.cccccevevenvenveneniencnieneeneeceenen b

E.2.10 Sequence and SEqUENCE-OFccceerieiiieiieierieiieieeiesceeeee et see e seeeeeseee e | e

E2.11 Set and Set-0fcooieiiiieiieieeee ettt e | e

E212 Tageed 0Ol

E.2.13 CROICE ..ottt ettt ettt ettt ettt et eeae e bt e bt e bt e bt et e eaeesbeenaeeteenteens

E.2.14 SELECHON LYPE . .eeutieiiiitietieieetieet ettt ettt ettt ettt sttt se st e st et e e seesbeebeeaeeneeneensentens

E2.16 EmMDBedded-PaV ...ccvieeiieiiiiiiiieieeie ettt ettt e neeneenne e

E.2.17 EXEEIMAL ..ottt ea ettt b e et eb et een

E.2.18 INSTANCE-OT..c.ietiiiiiieiieiteee ettt eb ettt st b et

E.2.19 Relative Object Identifier........coiviiiririiieieeieie ettt

E.3 1dentifying abStract SYMEAXESceeeeierierierieriirierteeteeiteit ettt sttt st ettt ettt st s bt sbeeaeeseenneneens
1 0 0Tt USSP
Annex F — Tutorial annex on ASN.1 Character StrNEScccerieererieienienieninene sttt sttt eeeeeenees
F.1 Character string SUPPOIt i ASN.L ...ooiuiiiiiiiiiet ettt st sttt eaeesee e ene

F.2 The UniversalString, UTF8String and BMPString tyPes......ceerueroeerienieiieiericerie e

F.3 OnISO/IEC 10646-1 conformance reqUIrSMENtSccceerueeueeierienienieenieeeeseeesieeseeeeeeneeeneesseenaeens

F.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance.............ccceeeereeneeeneeneeneennene

F.5 Adopted subsets as parameters of the abstract SYNtaxccceeviriiiieiiiiiie e

© ISO/IEC 2002 — All rights reserved

71
71
72
72
72
73

73
75

77
77
77

80
80
82
83
85
85
86
87

89
89
&9

91
91
91
92
92

93
93
93
93
94
95
95
95
96
97
98
99

100

102

104

105

107

108

108

108

109

109

110

113
113
113
114
114
115

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

F.6 The CHARACTER STRING tYPE ...ccueeieieieieieiesieetieieetieitetetessessessessesseessessessessassessessessssssessensenses 115
Annex G — Tutorial annex on the ASN.1 model of type eXtENSIONc.eeereririeieierierieneneeereee e 116
[2 B €))7) USSP 116

G.2 Meaning Of VEIrSION NMUIMDETScccuiitieriieitieteeteette st et et etesateseeeste e bt eaeeeseesseebeenseentesmeesaeesseenseeneesnes 117

G.3 Requirements on encOdING TUIESccueeiiiiiiiiiieie ettt ettt st e sbe e eaeeeee 118

G.4 Combination of (possibly extensible) CONSIIAINESc.ccveervieierrieriiereiiesieereeee s esreeaeeee e eaeeene e 118

G4.1 11 (T (<) OO OO USSP 118

G.4.2 Serial application 0f CONSLIAINTSceevieriieiiiieieeie ettt reeseseaeaeas 118

G433 Use 0f Set arithimELiC......eveieiiiiiei ittt 119

G.4.4 Use of the Contained SUbtype NOtAtIONccvivierrierieeiieieeieseeie e eee e ens 120

Annex H — Summary of the ASN.1 notation

... 121

vi

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

Fore

ISO (the International Organization for Standardization) and

ISO/IEC 8824-1:2002(E)

word

IEC (the International EI

ectrotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental

and n
technd

Internd

The n

Standards adopted by the joint technical committee are circulated to national bodies for voting.

an Intg

Attenti
rights.

ISO/IB
Subco
ITU-T.

This f{
techni
ISO/IE
ISO/IE

ISO/IB
Notati

P

P
P
P

pn is drawn to the possibility that some of the elements of this decument may be the su

n-governmental, In liaison with SO and IEC, also take part in the work. In the field
logy, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

tional Standards are drafted in accordance with the rules given in the ISO/IEC Directives,

rnational Standard requires approval by at least 75 % of the national bodies casting a vot

ISO and IEC shall not be held responsible for identifying any ¢r-all such patent rights.

C 8824-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Informatio
mmittee SC 6, Telecommunications and information,exchange between systems, in coll
The identical text is published as ITU-T Rec. X.680.
hird edition cancels and replaces the second edition (ISO/IEC 8824-1:1998), whi
cally revised. It also incorporates théo Amendments [ISO/IEC 8824-1:1998/Am(
C 8824-1:1998/Amd.2:2000 and the, ““Technical Corrigenda
C 8824-1:1998/Cor.2:2002, ISO/IEC 8824-1:1998/Cor.3:2002 and ISO/IEC 8824-1:1998/

C 8824 consists of the following_parts, under the general title Information technology — A
bnn One (ASN.1):

art 1: Specification of basic notation
art 2: Information object specification
art 3: Constraint Specification

hrt 4. Pafameterization of ASN.1 specifications

of information

Part 2.

ain task of the joint technical committee is to prepare International Standards. Draft International

Publication as

aY

.

bject of patent

n technology,

aboration with

ch has been
.1:2000 and

ISO/IEC 8824-1:1998/Cor.1:1999,

Cor.4:2002.

bstract Syntax

© ISO/IEC 2002 — All rights reserved

vii

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

Introduction

This Recommendation | International Standard presents a standard notation for the definition of data types and values. A
data type (or type for short) is a category of information (for example, numeric, textual, still image or video
information). A data value (or value for short) is an instance of such a type. This Recommendation | International
Standard defines several basic types and their corresponding values, and rules for combining them into more complex
types and values.

In some protocol architectures, each message is specified as the binary value of a sequence of octets. However,
standards-writers need to define quite complex data types to carry their messages, without concern for their binary
representation. In order to specify these data types, they require a notation that does not necessarily determine the
representation of each value. ASN.1 is such a notation. This notation is supplemented by the specification of one or
more algorithms called encodmg rules that determme the value of the octets that carry the appl1cat10n semantlcs (called
the transfer synte 2 X693 |
ISO/IEC 88254 acked
Encoding Rule

4 spe01fy three fam111es of standardlzed encodlng rules called Baszc Encodmg Rules (BER) A
(PER), and XML Encoding Rules (XER).

Some users wi cause
they need to re
layout of the
ISO/IEC 8825-
specify the abs
the bits on the

for some parts

sh to redefine their legacy protocols using ASN.1, but cannot use standardized encoding rtles b¢
ain their existing binary representations. Other users wish to have more complete control over thg exact
bits on the wire (the transfer syntax). These requirements are addressed by, 'TTU-T Rec. X692 |
B which specifies an Encoding Control Notation (ECN) for ASN.1. ECN enables-designers to fofmally
ract syntax of a protocol using ASN.1, but to then (if they so wish) take c¢mplete or partial confrol of
vire by writing an accompanying ECN specification (which may referencétandardized Encoding|Rules
f the encoding).

A very general technique for defining a complicated type at the abstract level, is\te’ define a small number of
types by definipg all possible values of the simple types, then combining these-simple types in various ways. Sd
the ways of defiining new types are as follows:

a)

imple
me of

biven an (ordered) list of existing types, a value can beformed as an (ordered) sequence of valug
rom each of the existing types; the collection of all pessible values obtained in this way is a new t
the existing types in the list are all distinct, this méchanism can be extended to allow omission of
alues from the list);

s, one
pe (if
some

A

b) alues,

in this

biven an unordered set of (distinct) existing types, a value can be formed as an (unordered) set of ¥
ne from each of the existing types; the collection of all possible unordered sets of values obtained
vay is a new type (the mechanism can again be extended to allow omission of some values);

3

biven a single existing type, a valueean be formed as an (ordered) list or (unordered) set of zero,
more values of the existing type;the collection of all possible lists or sets of values obtained in th
S a new type;

bne or
1 s way

]

| values

piven a list of (distinct) types, a value can be chosen from any one of them; the set of all possible
btained in this way is«a.niew type;

e) nship

biven a type, a new ‘type can be formed as a subset of it by using some structure or order relati
imong the values.

An important a
providing una
the notation s

spect of combining types in this way is that encoding rules should recognize the combining cons|
biguous, encodings of the collection of values of the basic types. Thus, every basic type defined]
cified in this Recommendation | International Standard is assigned a fag to aid in the unamb

tructs,
using
guous

encoding of values.

Tags are mainly ifended for machine use, and are not essential for the human notation defined in this Recommendation
| International Standard. Where, however, it is necessary to require that certain types be distinct, this is expressed by
requiring that they have distinct tags. The allocation of tags is therefore an important part of the use of this notation, but
(since 1994) it is possible to specify the automatic allocation of tags.

NOTE 1 — Within this Recommendation | International Standard, tag values are assigned to all simple types and construction

mechanisms. The restrictions placed on the use of the notation ensure that tags can be used in transfer for unambiguous
identification of values.

An ASN.1 specification will initially be produced with a set of fully defined ASN.1 types. At a later stage, however, it
may be necessary to change those types (usually by the addition of extra components in a sequence or set type). If this is
to be possible in such a way that implementations using the old type definitions can interwork with implementations
using the new type definitions in a defined way, encoding rules need to provide appropriate support. The ASN.1
notation supports the inclusion of an extension marker on a number of types. This signals to encoding rules the intention
of the designer that this type is one of a series of related types (i.e., versions of the same initial type) called an extension
series, and that the encoding rules are required to enable information transfer between implementations using different
types that are related by being part of the same extension series.

viii © ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

Clauses 10 to 31 (inclusive) define the simple types supported by ASN.1, and specify the notation to be used for
referencing simple types and for defining new types using them. Clauses 10 to 31 also specify notations to be used for
specifying values of types defined using ASN.1. Two value notations are provided. The first is called the basic ASN.1
value notation, and has been part of the ASN.1 notation since its first introduction. The second is called the XML
ASN.1 Value Notation, and provides a value notation using Extensible Markup Language (XML).

NOTE 2 — The XML Value Notation provides a means of representing ASN.1 values using XML. Thus, an ASN.1 type
definition also specifies the structure and content of an XML element. This makes ASN.1 a simple schema language for XML.

Clauses 33 to 34 (inclusive) define the types supported by ASN.1 for carrying within them the complete encoding
of ASN.1 types.

Clauses 35 to 40 (inclusive) define the character string types.

Clauses 41 to 44 (inclusive) define certain types which are considered to be of general utility, but which require no

additi
Claus

Clausq
to be
their v

Claus
handlj

Annex
expres

nat encoding Tules.
s 45 to 47 (inclusive) define a notation which enables subtypes to be defined from the values-of)a

b 48 defines a notation which allows ASN.1 types specified in a "version 1" specification to/be ide
extended in "version 2", and for additions made in subsequent versions to be separately listed and
ersion number.

b 49 defines a notation which allows ASN.1 type definitions to contain anndication of the
ng if encodings are received for values which lie outside those specified in-the/current standardize

A forms an integral part of this Recommendation | InternationalStandard, and specifies
sions.

arent type.

ntified as likely
identified with

intended error
i definition.

IASN.1 regular

Anney B forms an integral part of this Recommendation | InternationalStandard, and specifies rules for{type and value
compatibility.

Anney C forms an integral part of this Recommendation | International Standard, and records object identifier and
object|descriptor values assigned in the ASN.1 series of Recommendations | International Standards.

Annex D does not form an integral part of this Recommendation | International Standard, and describ¢s the top-level
arcs of the registration tree for object identifiers.

Annex E does not form an integral part of this Recommendation | International Standard, and provide$ examples and
hints ¢n the use of the ASN.1 notation.

Anne¥ F does not form an integral part‘of this Recommendation | International Standard, and proyides a tutorial
on ASN.1 character strings.

Annexy G does not form an integfal,'part of this Recommendation | International Standard, and providgs a tutorial on
the A$N.1 model of type extension.

Anney H does not form anyintegral part of this Recommendation | International Standard, and provifles a summary
of ASN.1 using the notation of clause 5.

© ISO/IEC 2002 — All rights reserved

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

Information technology —
Abstract Syntax Notation One (ASN.1):
Specification of basic notation

1 S

This Reco
(ASN.1) th|

This Recorl

The ASN.]
The ASN.]

2 N
The follow

constitute provisions of this Recommendation |International Standard. At the time of publication, the editio

were valid
Recommen
edition of
valid Inter
valid ITU-]

2.1 I

cope

mmendation | International Standard provides a standard notation called Abstract Syntax Ng
at is used for the definition of data types, values, and constraints on data types.

hmendation | International Standard:

defines a number of simple types, with their tags, and specifies a notation fop referencing thes
for specifying values of these types;

defines mechanisms for constructing new types from more basic\types, and specifies a 1
defining such types and assigning them tags, and for specifying yalues of these types;

within ASN.1.

notation can be applied whenever it is necessary to define‘the abstract syntax of information.

notation is referenced by other standards which define.encoding rules for the ASN.1 types.

Normative references

ing Recommendations and International“Standards contain provisions which, through reference
All Recommendations and Standdrds are subject to revision, and parties to agreements ba

he Recommendations and Standards listed below. Members of IEC and ISO maintain registers
ational Standards. ThewTelecommunication Standardization Bureau of the ITU maintains a list
' Recommendations-

dentical Recommendations | International Standards

CCITA“Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information technology — Op
Interconnection — Procedures for the operation of OSI Registration Authorities: General J
(plus amendments).

tation One

e types and

otation for

defines character sets (by reference to other Recommendations and/or International Standands) for use

n this text,
1s indicated
ed on this

dation | International Standatd.are encouraged to investigate the possibility of applying the most recent

f currently
f currently

en Systems
rocedures:

ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology — Absi

act Syntax

Notation One (ASN.1): Information object specification.

ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology — Abstract Syntax

Notation One (ASN.1): Constraint specification.

ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology — Abstract Syntax

Notation One (ASN.1): Parameterization of ASN.1 specifications.

ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology — ASN.

1 encoding

Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished

Encoding Rules (DER).

ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology — ASN.

rules: Specification of Packed Encoding Rules (PER).

ITU-T Recommendation X.692 (2002) | ISO/IEC 8825-3:2002, Information technology — ASN.

rules: Specification of Encoding Control Notation (ECN).

ITU-T Rec. X.680 (07/2002)

1 encoding

1 encoding

1

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

2.2

3 I
For the pur
3.1 I
This Recon
a
b
c
d
e
3.2 ((

ITU-T Recommendation X.693 (2001) | ISO/IEC 8825-4:2002, Information technology — ASN.
rules: XML Encoding Rules (XER).

Additional references

ITU-R Recommendation TF.460-5 (1997), Standard-frequency and time-signal emissions.

1 encoding

CCITT Recommendation T.100 (1988), International information exchange for interactive videotex.

ITU-T Recommendation T.101 (1994), International interworking for videotex services.

ISO International Register of Coded Character Sets to be used with Escape Sequences.
ISO/IEC 646:1991, Information technology — ISO 7-bit coded character set for information int
ISO/IEC 2022:1994, Information technology — Character code structure and extension techniq
ISO/IEC 6523:1998, Data interchange — Structures for the identification of organizations.

NOTE 2

— The reference to a document within this Recommendation J International Standard does not give it, as 4
document, the status of a Recommendation or International Standard.,

pefinitions
poses of this Recommendation | International Standard, the following definitions apply.

nformation object specification

hmendation | International Standard uses the following terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2:

[onistraint specification

ISO/IEC 7350:1991, Information technology — Registration of repertoires of graphic char
ISO/IEC 10367.

ISO 8601:2000, Data elements and interchange formats — Information interchange —|Repre.
dates and times.

ISO/IEC 10646-1:2000, Information technology — Universal Multiple-Octet Coded Chq
(UCS) — Part 1: Architecture and Basic Multilingual Plane.
The Unicode Standard, Version 3.2.0:2002. The Unicode Consortium,, (Reading, MA, Addiso

NOTE 1 — The above reference is included because it provides names for eofitrol characters.
W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recom
Copyright © [6 October 2000] World Wide Web Consortium)(Massachusetts Institute of 1

Institut National de Recherche en Informatique (et en Automatique, Keio
http://www.w3.0rg/TR/2000/REC-xmi-20001006.

information object;
information objecticlass;
information,object set;
instance‘of'type;

objeetclass field type.

erchange.

ues.

icters from
entation of
racter Set

n-Wesley)

mendation,
lechnology,
[/niversity),

stand-alone

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3:

3.3

a)
b)

component relation constraint;

table constraint.

Parameterization of ASN.1 specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:

a)

parameterized type;

b) parameterized value.

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

34

ISO/IEC 8824-

Structure for identification of organizations

This Recommendation | International Standard uses the following terms defined in ISO/IEC 6523:

3.5

a) issuing organization;
b) organization code;
¢) International Code Designator.

Universal Multiple-Octet Coded Character Set (UCS)

This Recommendation | International Standard uses the following terms defined in ISO/IEC 10646-1:

3.6

3.6.1
data.

a) Basic Multilingual Plane (BMP);
b) cell;

¢) combining character;

d) graphic symbol;

1:2002 (E)

group;

limited subset;
plane;

row;

selected subset.

— =0 o

Additional definitions

NOTE — Annex F provides a more complete description of the term abstract character:

3.6.2

apstract value: A value whose definition is based only,on/the type used to carry some

independerjtly of how it is represented in any encoding.

NOTE - Examples of abstract values are the values of the integer type, the boolean type, a character string type,
which is|a sequence (or a choice) of an integer and a boolean.

3.6.3 ASN.1 character set: The set of characters, specified in clause 10, used in the ASN.1 notation.

3.64 ASN.1 specification: A collection of one or more ASN.1 modules.

3.6.5 aksociated type: A type which is used only-for defining the value and subtype notation for a type.
NOTE S

there mgy be a significant difference between how the type is defined in ASN.1 and how it is encoded. Associated
appear i user specifications.

3.6.6

the encofing of the abstract value that is embedded.

3.6.7
3.6.8

bloolean types-A simple type with two distinguished values.

NOTE - The information will normally include some or all of the following items:

3.6.9

3.6.10
encoded.

3.6.11

apstract character: An abstract value which is used for the organizationy.eontrol or representatiop of textual

semantics,

or of a type

Associated types are defined in this Recommendation | International Standard when it is necessary to makg it clear that

types do not

biitstring type: A simple type-whose distinguished values are an ordered sequence of zero, one or thore bits.

NOTE -
without
embeddd

Where there is a need to\earry embedded encodings of an abstract value, the use of a bitstring (or an octdtstring) type
a contents constraint (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11) is deprecated. Otherwise, the use of the
d-pdv type (see clause-33) provides a more flexible mechanism, allowing the announcement of the abstract gyntax and of

character-property: The set of information associated with a cell in a table defining a character repertoire.

a) a graphic symbol;
b) a character name;
c) the definition of functions associated with the character when used in particular environments;

d) whether it represents a digit;
e) an associated character differing only in (upper/lower) case.

character abstract syntax: Any abstract syntax whose values are specified as the set of character strings of
zero, one or more characters from some specified collection of characters.

character repertoire: The characters in a character set without any implication on how such characters are

character string types: Simple types whose values are strings of characters from some defined character set.

ITU-T Rec. X.680 (07/2002)

3

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

3.6.12 character transfer syntax: Any transfer syntax for a character abstract syntax.

NOTE — ASN.1 does not support character transfer syntaxes which do not encode all character strings as an integral multiple
of 8 bits.

3.6.13 choice types: Types defined by referencing a list of distinct types; each value of the choice type is derived
from the value of one of the component types.

3.6.14 component type: One of the types referenced when defining a CHO CE, SET, SEQUENCE, SET OF, or
SEQUENCE CF.

3.6.15 constraint: A notation which can be used in association with a type, to define a subtype of that type.

3.6.16 contents constraint: A constraint on a bit string or octet string type that specifies either that the contents are
to be an encoding of a specified ASN.1 type, or that specified procedures are to be used to produce and process the
contents.

3.6.17 cpmtrot characters CAracters appearing i SOINE CHaractel Tepertoiles Uiat mave beel giver ajname (and
perhaps a defined function in relation to certain environments) but which have not been assigned a graphic,dymbol, and
which are ot spacing characters.

NOTE | HORIZONTAL TABULATION (9) and LINE FEED (10) are examples of control characters that have begn assigned a
formattihg function in a printing environment. DATA LINK ESCAPE (16) is an example of a control character that has been
assigned a function in a communication environment.

3.6.18 (oordinated Universal Time (UTC): The time scale maintained by the Buréau International|de 1'Heure
(Internatiomal Time Bureau) that forms the basis of a coordinated dissemination of standard frequencies and time signals.
NOTE 1| - The source of this definition is ITU-R Rec. TF.460-5. ITU-R has also defined\th¢ acronym for Coordinated Universal
Time as[UTC.

NOTE 2 — UTC and Greenwich Mean Time (GMT) are two alternative time\Standards which for most practifal purposes
determirje the same time.

3.6.19 e|ement: A value of a governing type or an information-~object of a governing information opject class,
distinguablp from all other values of the same type or information objeets of the same class, respectively.

3.6.20 e|ement set: A set of elements, all of which are ;valpes of a governing type, or information gbjects of a
governing ¢lass.
NOTE — Governing class is defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4.7.

3.6.21 embedded-pdv type: A type whose set of values is formally the union of the sets of values in pll possible
abstract syntaxes. This type can be used in an ASN:1 specification that wishes to carry in its protocol an abptract value
whose typg may be defined externally to that ASN.1 specification. It carries an identification of the abstract[syntax (the
type) of th¢ abstract value being carried, aswell as an identification of the encoding rules used to encode that abstract
value.

3.6.22 epcoding: The bit-pattern resulting from the application of a set of encoding rules to an abstract value.

3.6.23 (ASN.1) encoding rules: Rules which specify the representation during transfer of the values of ASN.1 types.
Encoding rples also enable the yalues to be recovered from the representation, given knowledge of the type.

NOTE + For the purpese, ‘of specifying encoding rules, the various referenced type (and value) notations, which|can provide
alternatiye notations for-built-in types (and values), are not relevant.

3.6.24 epumerated types: Simple types whose values are given distinct identifiers as part of the type notation.

3.6.25 extension addition: One of the added notations in an extension series. For set, sequence and choice|types, each
extension addition is the addition of either a single extension addition group or a single component type. For kenumerated
types it is the addition of a single further enumeration. For a constraint it is the addition of (only) one subtype element.

NOTE - Extension additions are both textually ordered (following the extension marker) and logically ordered (having increasing
enumeration values, and, in the case of CHO CE alternatives, increasing tags).

3.6.26 extension addition group: One or more components of a set, sequence or choice type grouped within version
brackets. An extension addition group is used to clearly identify the components of a set, sequence or choice type that were
added in a particular version of an ASN.1 module, and can identify that version with a simple integer.

3.6.27 extension addition type: A type contained within an extension addition group or a single component type that is
itself an extension addition (in such a case it is not contained within an extension addition group).

3.6.28 extensible constraint: A subtype constraint with an extension marker at the outer level, or that is extensible
through the use of set arithmetic with extensible sets of values.

3.6.29 extension insertion point (or insertion point): The location within a type definition where extension additions
are inserted. This location is the end of the type notation of the immediately preceding type in the extension series if there is

4 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

a single ellipsis in the type definition, or immediately before the second ellipsis if there is an extension marker pair in the
definition of the type.

NOTE - There can be at most one insertion point within the components of any choice, sequence, or set type.

3.6.30 extension marker: A syntactic flag (an ellipsis) that is included in all types that form part of an extension
series.

3.6.31 extension marker pair: A pair of extension markers between which extension additions are inserted.

3.6.32 extension-related: Two types that have the same extension root, where one was created by adding zero or
more extension additions to the other.

3.6.33 extension root: An extensible type that is the first type in an extension series. It carries either the extension
marker with no additional notation other than comments and white-space between the extension marker and the matching
"1" or ")", or an extension marker pair with no additional notation other than a single comma, comments and white-space
between the extension markers.

NOTE Oty am eXIension Toot CalT be te TSt type (T Il CXIEISIOIT SeTies.

3.6.34 ektension series: A series of ASN.1 types which can be ordered in such a way that each successive type in the
series is formed by the addition of text at the extension insertion point.

3.6.35 ektensible type: A type with an extension marker, or to which an extensible constraint has been applied.

3.6.36 ekternal reference: A type reference, value reference, information object class_reference, informgtion object
reference, ¢r information object set reference (which may be parameterized), that is definéd in some other module than
the one in hich it is being referenced, and which is being referred to by prefixing the.module name to thel referenced
item.

HXAMPLE — Modul eNarre. TypeRef er ence

3.6.37 ekternal type: A type which is a part of an ASN.1 specification that carries a value whose type may be
defined externally to that ASN.1 specification. It also carries an identifi¢ation of the type of the value being cdrried.

3.6.38 false: One of the distinguished values of the boolean typ€ (see also "true").

3.6.39 governing (type); governor: A type definition or«eference which affects the interpretation of a| part of the
ASN.1 syntax, requiring that part of the ASN.1 syntax to reference values in the governing type.

3.6.40 identical type definitions: Two instances of the ASN.1 "Type" production (see clause 16) are| defined as
identical type definitions if, after performing the transformations specified in Annex B, they are identical ordgred lists of
identical lekical items (see clause 11).

3.6.41 imnteger type: A simple type with,distinguished values which are the positive and negative whole numbers,
including zero (as a single value).

NOTE + When particular encoding rules)limit the range of an integer, such limitations are chosen so as not to affect any user
of ASN.JI.

3.6.42 l¢xical item: A named\sequence of characters from the ASN.1 character set, specified in clause 1|1, which is
used in foIning the ASN.1 notation.

3.6.43 odule: Oneprmore instances of the use of the ASN.1 notation for type, value, value set, information object
class, information object, and information object set (as well as the parameterized variant of those), encapsylated using
the ASN.1 module-notation (see clause 12).

NOTE - The terms information object class (etc.) are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, and parame¢terization is
specified in FTU-T Rec. X.683 | ISO/IEC 8824-4.

3.6.44 null type: A simple type consisting of a single value, also called null.

3.6.45 object: A well-defined piece of information, definition, or specification which requires a name in order to
identify its use in an instance of communication.

NOTE — Such an object may be an information object as defined in ITU-T Rec. X.681 | ISO/IEC 8824-2.

3.6.46 object descriptor type: A type whose distinguished values are human-readable text providing a brief
description of an object (see 3.6.45).

NOTE — An object descriptor value is usually associated with a single object. Only an object identifier value unambiguously
identifies an object.

3.6.47 object identifier: A globally unique value associated with an object to unambiguously identify it.

3.6.48 object identifier type: A simple type whose values are the set of all object identifiers allocated in accordance
with the rules of ITU-T Rec. X.660 | ISO/IEC 9834 series.

ITU-T Rec. X.680 (07/2002) 5

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — The rules of ITU-T Rec. X.660 | ISO/IEC 9834-1 permit a wide range of authorities to independently associate object
identifiers with objects.

3.6.49 octetstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more
octets, each octet being an ordered sequence of eight bits.

3.6.50 open systems interconnection: An architecture for computer communication which provides a number of
terms which are used in this Recommendation | International Standard preceded by the abbreviation "OSI".

NOTE — The meaning of such terms can be obtained from the ITU-T Rec. X.200 series and equivalent ISO/IEC Standards if
needed. The terms are only applicable if ASN.1 is used in an OSI environment.

3.6.51 open type notation: An ASN.1 notation used to denote a set of values from more than one ASN.1 type.

NOTE 1 — The term "open type" is used synonymously with "open type notation" in the body of this Recommendation |
International Standard.

NOTE 2 — All ASN.1 encoding rules provide unambiguous encodings for the values of a single ASN.1 type. They do not
necessarily provide unambiguous encodings for "open type notation", which carries values from ASN.1 types that are not
normally determined at specification time. Knowledge of the type of the value being encoded in the "open type|notation" is
needed Qefore the abstract value for that field can be unambiguously determined.

NOTE B — The only notation in this Recommendation | International Standard which is an open type notation is the
"Object(lassFieldType" specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 14, where the "FieldName" denotes|either a type
field or 4 variable-type value field.

3.6.52 parent type (of a subtype): The type that is being constrained when defining agubtype, and which governs
the subtypd notation.

NOTE - The parent type may itself be a subtype of some other type.

3.6.53 production: A part of the formal notation (also called grammar or Backus-Naur Form, BNF) usedl to specify
ASN.1.

3.6.54 rpgal type: A simple type whose distinguished values (specified i clause 20) are members of thq set of real
numbers.

3.6.55 rpcursive definition (of a type): A set of ASN.1 definifions which cannot be reordered so that all types used
in a constryction are defined before the definition of the construction.
NOTE - Recursive definitions are allowed in ASN.1: the user of the notation has the responsibility for ensuring thatthose values

(of the rgsulting types) which are used have a finite representation and that the value set associated with the type contains at least
one value.

3.6.56 rglative object identifier: A value whichidentifies an object by its position relative to some known object
identifier (3ee 3.6.47).

3.6.57 rElative object identifier type:“A. simple type whose values are the set of all possible reldtive object
identifiers.

3.6.58 rpstricted character string type: A character string type whose characters are taken from a fixgd character
repertoire ifentified in the type specification.

3.6.59 sglection types: Types defined by reference to a component type of a choice type, and whose| values are
precisely the values of that'\component type.

3.6.60 sequence types: Types defined by referencing a fixed, ordered list of types (some of which may pe declared
to be optional); eachwalue of the sequence type is an ordered list of values, one from each component type.

NOTE -+ Where' a component type is declared to be optional, a value of the sequence type need not contain a yalue of that
compon¢nttype.

3.6.61 sequence-of types: Types defined by referencing a single component type; each value in the sequence-of type
is an ordered list of zero, one or more values of the component type.

3.6.62 serial application (of constraints): The application of a constraint to a parent type which is already
constrained.

3.6.63 set arithmetic: The formation of new sets of values or information objects using the operations of union,
intersection and set difference (use of EXCEPT) as specified in 46.2.

NOTE - The result of serial application of constraints is not covered by the term "set arithmetic".

3.6.64 set types: Types defined by referencing a fixed, unordered, list of types (some of which may be declared to be
optional); each value in the set type is an unordered list of values, one from each component type.

NOTE — Where a component type is declared to be optional, a value of the set type need not contain a value of that component
type.

6 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

3.6.65 set-of types: Types defined by referencing a single component type; each value in the set-of type is an
unordered list of zero, one or more values of the component type.

3.6.66 simple types: Types defined by directly specifying the set of their values.

3.6.67 spacing character: A character in a character repertoire which is intended for inclusion with graphic
characters in the printing of a character string but which is represented in the physical rendition by empty space; it is not
normally considered to be a control character (see 3.6.17).

NOTE - There may be a single spacing character in the character repertoire, or there may be multiple spacing characters with
varying widths.

3.6.68 subtype (of a parent type): A type whose values are a subset (or the complete set) of the values of some
other type (the parent type).

3.6.69 tag: A type denotation which is associated with every ASN.1 type.

3.6.71 tagging: Replacing the existing (possibly the default) tag of a type by a specified tag.

3.6.72 transfer syntax: The set of bit strings used to exchange the abstract values in anpabstract synfax, usually
obtained by application of encoding rules to an abstract syntax.

NOTE - The term "transfer syntax" is synonymous with "encoding".
3.6.73 true: One of the distinguished values of the boolean type (see also "false")
3.6.74 type: A named set of values.

3.6.75 type reference name: A name associated uniquely with a type within some context.

NOTE - Reference names are assigned to the types defined in this Recommendation | International Standard; these arp universally
availabl¢ within ASN.1. Other reference names are defined in othep~-Recommendations | International Standafds, and are
applicable only in the context of that Recommendation | International Standard.

3.6.76 unrestricted character string type: A type whose abstract values are values from a character abstfact syntax,
together wjth an identification of the character abstract syntax and of the character transfer syntax to be|used in its
encoding.

3.6.77 er (of ASN.1): The individual or organization that defines the abstract syntax of a particulpr piece of
information using ASN.1.

3.6.78 lue mapping: A 1-1 relationship\between values in two types that enables a reference to ope of those
values to be used as a reference to the othercvalue. This can, for example, be used in specifying subtypes and default
values (see|Annex B).
3.6.79 :Elue reference name: A name associated uniquely with a value within some context.
3.6.80 lue set: A collection)of values of a type. Semantically equivalent to a subtype.

3.6.81 version brackets;A pair of adjacent left and right brackets ("[[" or "]] ") used to delineate the start and end of an
extension afddition groupl_The pair of left brackets can optionally be followed by a number giving a version nutpber for the
extension afldition group:

3.8.82 version number: A number which can be associated with a version bracket (see G.1.8).

NOTE - A'yersion number cannot be added to an extension addition which is not part of an extension addition group, nor to

extensioradditionsto-any typeother thamrchotce; sequermnce; orset:

3.6.83 white-space: Any formatting action that yields a space on a printed page, such as spaces or tabs.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.l Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
BMP Basic Multilingual Plane
DCC Data Country Code
DNIC Data Network Identification Code

ITU-T Rec. X.680 (07/2002) 7

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

ECN Encoding Control Notation of ASN.1

ICD International Code Designator

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITU-T International Telecommunication Union — Telecommunication Standardization Sector
OID Object Identifier

OSI Open Systems Interconnection

PER Packed Encoding Rules of ASN.1

ROA Recognized Operating Agency

ucCs Universal Multiple-Octet Coded Character Set
TC Coordinated Universal Time.

XML Extensible Markup Language

5 Notation

5.1 General

5.1.1 Tlhe ASN.1 notation consists of a sequence of characters from the ASN.1 character set specified in ¢lause 10.
5.1.2 Hach use of the ASN.1 notation contains characters from the ASN.} character set grouped into lekical items.
Clause 11 gpecifies all the sequences of characters forming lexical items, and names each item.

5.1.3 Tlhe ASN.1 notation is specified in clause 12 (and following clauses) by specifying and naming those
sequences pf lexical items which form valid instances of the ASN. Lfiotation, and by specifying the ASN.1 spmantics of
each sequence.

514 In order to specify the permitted sequences of lexicakitems, this Recommendation | International Stpndard uses
a formal ndtation defined in the following subclauses.

5.2 Broductions
5.21 All lexical items are named (see claus€l 1), and permitted sequences of lexical items are named.

5.2.2 A new (more complex) permitted-sequence of lexical items is defined by means of a production. This uses the
names of lgxical items and of permitted sequences of lexical items and forms a new named permitted sequende of lexical
items.

523 Hach production consists of the following parts, on one or several lines, in order:

a name for thewnew permitted sequence of lexical items;

o

b) the characters

c) onelor more alternative sequences of lexical items, as defined in 5.3, separated by the characterl

5.2.4 A sequence of lexical items is present in the new permitted sequence of lexical items if it is present in one or
more of the alternatives. The new permitted sequence of lexical items is referenced in this Recommendation |
International Standard by the name in 5.2.3 a) above.

NOTE - If the same sequence of lexical items appears in more than one alternative, any semantic ambiguity in the resulting
notation is resolved by associated text.
5.3 The alternative collections

53.1 Each alternative in a production (see 5.2.3.c) is specified by a list of names. Each name is either the name of a
lexical item, or is the name of a permitted sequence of lexical items defined and named by some other production.

5.3.2 The permitted sequence of lexical items defined by each alternative consists of all sequences obtained by
taking any one of the sequences (or the lexical item) associated with the first name, in combination with (and followed

8 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

by) any one of the sequences (or lexical item) associated with the second name, in combination with (and followed by)
any one of the sequences (or lexical item) associated with the third name, and so on up to and including the last name (or
lexical item) in the alternative.

5.4 Non-spacing indicator

If the non-spacing indicator "&" (AMPERSAND) is inserted between these items in production sequences, then the
lexical item that precedes it and the lexical item that follows it shall not be separated by white-space.

NOTE - This indicator is only used in productions that describe the XML value notation. For example, it is used to specify that
the lexical item "<" is to be immediately followed by an XML tag name.

5.5 Example of a production

5.5.1 The production:

ExampleProduction ::=
bstring
| hstring
| "{ " IdentifierList "} "

associates the name "ExampleProduction" with the following sequences of lexical items:

o

any "bstring" (a lexical item); or

o

any "hstring" (a lexical item); or

c) any sequence of lexical items associated with "IdentifierList", preceded by a "{ " and followed py a "} ".
NOTE —"{" and "} " are the names of lexical items containing the'single characters { and } (see 11.26).

55.2 In this example, "IdentifierList" would be defined by a furtherpreduction, either before or after the|production
defining "HxampleProduction".

5.6 Layout

Each prodiiction used in this Recommendation | Internatiétial Standard is preceded and followed by an gmpty line.
Empty lines do not appear within productions. The production may be on a single line, or may be spread gver several
lines. Layojt is not significant.

5.7 Recursion

The produgtions in this Recommendation:}International Standard are frequently recursive. In this case the productions
are to be cqntinuously reapplied until no_new sequences are generated.

NOTE + In many cases, such reapplication results in an infinite set of permitted sequences of lexical items. Some|or all of the
sequencgs in the set may themselves contain an unbounded number of lexical items. This is not an error.

5.8 References to.permitted sequences of lexical items

This Recommendationy} International Standard references a permitted sequence of lexical items (part of [the ASN.1
notation) Ry referencing the name that appears before the "::=" in a production; the name is surrounfled by the
QUOTATION MARK (34) character (") to distinguish it from natural language text, unless it appears gs part of a
production

5.9 References to a lexical item

This Recommendation | International Standard references a lexical item by using the name of the lexical item; when the
name appears in natural language text, and could be confused with such text, then it is surrounded by the QUOTATION
MARK (34) character (").

5.10 Short-hand notations

In order to make productions more concise and more readable, the following short-hand notations are used in the
definition of permitted sequences of lexical items in this Recommendation | International Standard and also in ITU-T
Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4:

a) An asterisk (*) following two names, "A" and "B", denotes the "empty" lexical item (see 11.7), or one of
the permitted sequences of lexical items associated with "A", or an alternating series of one of the

ITU-T Rec. X.680 (07/2002) 9

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

sequences of lexical items associated with "A" and one of the sequences of lexical items associated with

"B", both starting and finishing with one associated with "A". Thus:
C::=AB*
is equivalent to:
C ::=D | empty
D::=A|ABD
"D" being an auxiliary name not appearing elsewhere in the productions.
EXAMPLE - "C ::= A B *" is the shorthand notation for the following alternatives of C:
empty

A
ABA

A-R-A- A

NOTE -

5.11 A

5.11.1 T
can be usq
mechanism
Thus, a refj

5112 Ij
where moi

LN DI\ DN

ABABABA

E::=AB+
is equivalent to:
E::=A|ABE
EXAMPLE —"E ::= A B +" is the shorthand notation for the following alternatives of E:

A

ABA
ABABA
ABABABA

A question mark (?) following a name denotes‘¢ither the "empty" lexical item (see 11.7) or
sequence of lexical items associated with "A!'<Thus:

F:=A?
is equivalent to:

F ::==empty | A
These short-hand notations take preécedence over the juxtaposition of lexical items in production sequences (

alue references and the typing of values

he ASN.1 value assighment notation enables a name to be given to a value of a specified type.
d wherever a geference to that value is needed. Annex B describes and specifies the valy

erence to thedfirst value can be used wherever a reference to a value in the second type is required.

1 the body of the ASN.1 standards normal English text is used to specify legality (or otherwise) o
e than’one type is involved. These legality specifications generally require that two or mot

A plus sign (+) is similar to the asterisk in a), except that the "empty" lexical item isjexcluded. [Thus:

A permitted

ee 5.2.2).

This name
e mapping

that allows.avvalue reference name for a value of one type to identify a value of a second (similar) type.

[constructs
e types be

"compatibl

"> "For example, the type nsed in defining a value reference is required to be "compatibl¢

with" the

governing type when the value reference is used. The normative Annex B uses the value mapping concept to give a

precise stat

ement about whether any given ASN.1 construct is legal or not.

6 The ASN.1 model of type extension

When decoding an extensible type, a decoder may detect:

a) the absence of expected extension additions in a sequence or set type; or

10

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

b) the presence of arbitrary unexpected extension additions above those defined (if any) in a sequence or set
type, or of an unknown alternative in a choice type, or an unknown enumeration in an enumerated type, or
of an unexpected length or value of a type whose constraint is extensible.

In formal terms, an abstract syntax defined by the extensible type X contains not only the values of type X, but also the
values of all types that are extension-related to X. Thus, the decoding process never signals an error when either of the
above situations (a or b) is detected. The action that is taken in each situation is determined by the ASN.1 specifier.

NOTE - Frequently the action will be to ignore the presence of unexpected additional extensions, and to use a default value or a
"missing" indicator for expected extension additions that are absent.

Unexpected extension additions detected by a decoder in an extensible type can later be included in a subsequent
encoding of that type (for transmission back to the sender, or to some third party), provided that the same transfer syntax
is used on the subsequent transmission.

7 KExtensibility requirements on encoding rules

NOTE - These requirements apply to standardized encoding rules. They do not apply to encoding rules defined ising ECN (see
ITU-T Rec. X.692 | ISO/IEC 8825-3).

7.1 All ASN.1 encoding rules shall allow the encoding of values of an extensible type X.in such a wgy that they
can be dedoded using an extensible type Y that is extension-related to X. Further, the encoding rules shall allow the
values that|were decoded using Y to be re-encoded (using Y) and decoded using a third extensible type Z that {s extension
related to Y| (and hence X also).

NOTE — Types X, Y and Z may appear in any order in the extension series.

If a value df an extensible type X is encoded and then relayed (directly or through-a’relaying application using extension-
related typg Z) to another application that decodes the value using extensibletype Y that is extension-related to X, then
the decodef using type Y obtains an abstract value composed of:

a) an abstract value of the extension root type;
b) an abstract value of each extension addition that is«présent in both X and V;

c) delimited encoding for each extension addition (if-any) that is in X but not in Y.

The encodjngs in ¢) shall be capable of being included\in a later encoding of a value of Y, if so requjred by the
application] That encoding shall be a valid encoding ofta value of X.

Tutorial ekample: If system A is using an extenSible root type (type X) that is a sequence type or a set type with an
extension dddition of an optional integer types While system B is using an extension-related type (type Y) that has two
extension gdditions where each is an optional integer type, then transmission by B of a value of Y which omits the
integer valfie of the first extension additien-and includes the second must not be confused by A with the predence of the
first (only)| extension addition of X thatit knows about. Moreover, A must be able to re-encode the value pf X with a
value pres¢nt for the first integer ‘type, followed by the second integer value received from B, if so requjired by the
application| protocol.

7.2 All ASN.1 encoding rules shall specify the encoding and decoding of the value of an enumerated| type and a
choice typg in such a way-that if a transmitted value is in the set of extension additions held in common by the encoder
and the dedoder, theri it'is successfully decoded; otherwise, it shall be possible for the decoder to delimit the ¢gncoding of
it and to id¢ntify it:as a value of an (unknown) extension addition.

7.3 AIYAXSN.1 encoding rules shall specify the encoding and decoding of types with extensible constra
a way that ansmttted-vattets-in-the-set-ofextenstonraddittonsheldtreemmonby rd-the-decoder, then
it is successfully decoded, otherwise it shall be possible for the decoder to delimit the encoding of and to identify it as a
value of an (unknown) extension addition.

nts in such

In all cases, the presence of extension additions shall not affect the ability to recognize later material when a type with an
extension marker is nested inside some other type.

NOTE 1 — All variants of the Basic Encoding Rules of ASN.1 and the Packed Encoding Rules of ASN.1 satisfy all these
requirements. Encoding rules defined using ECN do not necessarily satisfy all these requirements, but may do so.

NOTE 2 — PER and BER do not identify the version number in the encoding of an extension addition. Encodings specified using
ECN may or may not provide such identification.

ITU-T Rec. X.680 (07/2002) 11

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

8.2
8.3

8.4

Tags

A tag is specified by giving a class and a number within the class. The class is one of:

— universal;
— application;
— private;

— context-specific.

The number is a non-negative integer, specified in decimal notation.

Restrictions on tags assigned by the user of ASN.1 are specified in clause 30.

NOTE - Clause 30 includes the restriction that users of this notation are not allowed to explicitly specify universal class tags in
their ASN.1 specifications. There is no formal difference between use of tags from the other three classes. Where application
class tags are employed, a private or context-specific class tag could generally be applied instead, as a matter of user choice and

style. Tfe presence of the three classes is largely for historical reasons, but guidance is given in E.2.12 on the way

classes gre usually employed.

Internationpl Standard.

Tlable 1 summarizes the assignment of tags in the universal class which are specified in thi§ Recom|

Table 1 — Universal class tag assignments

in which the

mendation |

UNIVERSAL 0
UNIVERSAL 1
UNIVERSAL 2
UNIVERSAL 3
UNIVERSAL 4
UNIVERSAL 5
UNIVERSAL 6
UNIVERSAL 7
UNIVERSAL 8
UNIVERSAL 9
UNIVERSAL 10
UNIVERSAL 11
UNIVERSAL 12
UNIVERSAL 13
UNIVERSAL 14-15
UNIVERSAL 16
UNIVERSAL 17
UNIVERSAL 18-22, 25-30
UNIVERSAL 23-24

Reserved for use by the encoding rules
Boolean type

Integer type

Bitstring type

Octetstring type

Null type

Object identifier type

Object descriptor type

External type and Jnstance-of type
Real type

Enumerated type

Embedded-pdv type

UTF8String type

Relative object identifier type
Reserved for future editions of this Recommendation | International Stan
Sequence and Sequence-of types

Set and Set-of types

Character string types

Time types

lard

UNIVERSAL 31-... Reserved for addenda to this Recommendation | International Standard
8.5 Some encoding rules require a canonical order for tags. To provide uniformity, a canonical order for tags is
defined in &6-
8.6 The canonical order for tags is based on the outermost tag of each type and is defined as follows:

a) those elements or alternatives with universal class tags shall appear first, followed by those with
application class tags, followed by those with context-specific tags, followed by those with private class
tags;

b) within each class of tags, the elements or alternatives shall appear in ascending order of their tag numbers.

9 Use of the ASN.1 notation
9.1 The ASN.1 notation for a type definition shall be "Type" (see 16.1).
9.2 The ASN.1 notation for a value of a type shall be "Value" (see 16.7).

12

NOTE - It is not in general possible to interpret the value notation without knowledge of the type.

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

9.3 The ASN.1 notation for assigning a type to a type reference name shall be either "TypeAssignment” (see 15.1),
"ValueSetTypeAssignment" (see 15.6), "ParameterizedTypeAssignment” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2),
or "ParameterizedValueSetTypeAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

9.4 The ASN.1 notation for assigning a value to a value reference name shall be either "ValueAssignment"
(see 15.2) or "ParameterizedValueAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

9.5 The production alternatives of the notation "Assignment" shall only be used within the notation
"ModuleDefinition" (except as specified in NOTE 2 of 12.1).

10 The ASN.1 character set

10.1 A lexical item shall consist of a sequence of the characters listed in Table 2 except as specified in 10.2
and 10.3. In Table 2, characters are identified by the names they are given in ISO/IEC 10646-1.

Table 2 — ASN.1 characters

Ato Z (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z)
atoz (LATIN SMALL LETTER A to LATIN SMALL LETTER Z)
0to 9 (DIGIT ZERO to DIGIT 9)

! (EXCLAMATION MARK)
" (QUOTATION MARK)

& (AMPERSAND)
' (APOSTROPHE)
((LEFT PARENTHESIS)

) (RIGHT PARENTHESIS)
* (ASTERISK)
, (COMMA)

- (HYPHEN-MINUS)
. (FULL STOP)
/ (SOLIDUS)

(COLON)
; (SEMICOLON)
< (LESS-THAN SIGN)

(EQUALS SIGNy)
(GREATER-THAN SIGN)
(COMMEREJAL AT)

(LEFT SQUARE BRACKET)
(RIGHT SQUARE BRACKET)
(EIRCUMFLEX ACCENT)
(LOW LINE)

(LEFT CURLY BRACKET)
(VERTICAL LINE)

(RIGHT CURLY BRACKET)

>‘—"_‘@V

B —

NOTE — Where equivalent derivative standards are developed by national standards bodies, additional characters may appear in
the following lexical items:

— typereference (see 11.2);
— identifier (see 11.3);
— valuereference (see 11.4);

— modulereference (see 11.5).

When additional characters are introduced to accommodate a language in which the distinction between upper-case and lower-
case letters is without meaning, the syntactic distinction achieved by dictating the case of the first character of certain of the above
lexical items has to be achieved in some other way. This is to allow valid ASN.1 specifications to be written in various languages.

10.2 Where the notation is used to specify the value of a character string type, all characters for the defined
character set can appear in the ASN.1 notation, surrounded by the QUOTATION MARK (34) characters (") (see 11.14).

10.3 Additional (arbitrary) graphic symbols may appear in the "comment" lexical item (see 11.6).

ITU-T Rec. X.680 (07/2002) 13

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

10.4 There shall be no significance placed on the typographical style, size, colour, intensity, or other display
characteristics.

10.5 The upper and lower-case letters shall be regarded as distinct.

10.6 ASN.1 definitions can also contain white-space characters (see 11.1.6) between lexical items.

11 ASN.1 lexical items

11.1 General rules

11.1.1 The following subclauses specify the characters in lexical items. In each case the name of the lexical item is
given, together with the definition of the character sequences which form the lexical item.

11.1.2 he lexical items specilled in the subclauses of this clause 11 (except multiple-line "comment], "bstring",
"hstring" ahd "cstring") shall not contain white-space (see 11.6, 11.10, 11.12 and 11.14).

11.1.3 Thhe length of a line is not restricted.

11.1.4 Iexical items may be separated by one or more occurrences of white-space (see 1h1.6) or conjments (see
11.6) except when the non-spacing indicator "&" (see 5.4) is used. Within an "XMLTypedYalue" productior] (see 15.2),
white-spac¢ may appear between lexical items, but the "comment" lexical item shall not bé-present.

NOTE This is to avoid ambiguity resulting from the presence of adjacent hyphens or asterisk and solidus within an ['xmlcstring"
lexical ifem. Such characters never indicate the start of a "comment" lexical item when they appear within an "XMLTypedValue"
productipn.

11.1.5 A lexical item shall be separated from a following lexical item bysone or more instances of white-space or
comment if the initial character (or characters) of the following lexical item"is a permitted character (or chqracters) for
inclusion af the end of the characters in the earlier lexical item.

11.1.6 This Recommendation | International Standard uses the‘terms "newline", and "white-space". In rgpresenting
white-spac¢ and newline (end of line) in machine-readable specifications, any one or more of the following characters
may be us¢d in any combination (for each character, the character name and character code specified in The Unicode
Standard afe given):

For white-gpace:

ORIZONTAL TABULATION (9)
INE FEED (10)

ERTICAL TABULATION (119
(ORM FEED (12)

ARRIAGE RETURN«(13)

PACE (32)

wn O T <« = T

For newling:
HINE FEED\(10)

VWERTICAL TABULATION (11)
HORM FEED (12)

CARRIAGE RETURN (13)
NOTE — Any character or character sequence that is a valid newline is also a valid white-space.

11.2 Type references
Name of lexical item — typereference

11.2.1 A "typereference" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial
character shall be an upper-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately
followed by another hyphen.

NOTE — The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

11.2.2 A "typereference" shall not be one of the reserved character sequences listed in 11.27.

14 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

11.3 Identifiers
Name of lexical item — identifier

An "identifier" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial character
shall be a lower-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately followed by
another hyphen.

NOTE - The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

11.4 Value references
Name of lexical item — valuereference

A "valuereference" shall consist of the sequence of characters specified for an "identifier" in 11.3. In analysing an
instance of use of this notation, a "valuereference" is distinguished from an "identifier" by the context in which it
appears.

11.5 Module references
Name of lekical item — modulereference

A "modulefeference" shall consist of the sequence of characters specified for a "typereferenice?’in 11.2. In apalysing an
instance of| use of this notation, a "modulereference" is distinguished from a "typereference”" by the context|in which it
appears.

11.6 (omments
Name of lefical item — comment

11.6.1 A "comment" is not referenced in the definition of the ASNy} notation. It may, however, appear pt any time
between other lexical items, and has no syntactic significance.

NOTE - Nonetheless, in the context of a Recommendation | Interniational Standard that uses ASN.1, an ASN.1 cgmment may
contain pormative text related to the application semantics, or constraints on the syntax.

11.6.2 Thhe lexical item "comment" can have two forms:
a) One-line comments which begin with "= as defined in 11.6.3;

b) Multiple-line comments which beginiwith "/ *" as defined in 11.6.4.

11.6.3 Whenever a "comment" begins witha pair of adjacent hyphens, it shall end with the next pair pf adjacent
hyphens or) at the end of the line, whichéver occurs first. A comment shall not contain a pair of adjacent hyphens other
than the pdir which starts it and the pair,)if any, which ends it. If a comment beginning with "- - " includes the adjacent
characters |'/ *" or "*/ ", these have no special meaning and are considered part of the comment. The comment may
include graphic symbols which.ate not in the character set specified in 10.1 (see 10.3).

11.6.4 Whenever a "comment" begins with "/ *", it shall end with a corresponding "*/ ", whether this "*{" is on the
same line qr not. If another "/ *" is found before a "*/ ", then the comment terminates when a matching "*]" has been
found for gach "/ *"«~~If a comment beginning with "/ *" includes two adjacent hyphens "- - ", these hyphdns have no
special megning and.ate considered part of the comment. The comment may include graphic symbols which are not in
the charactgr sef specified in 10.1 (see 10.3).

NOTE - This/allows the user to comment parts of an ASN.1 module that already contain comments (whether they begin with "- -
or "/ *") by simply imsertmg "7~ at the beginning ol the part to be commented and "7 " at 1ts end, provided there are no character
string values within the part to be commented out that contain "/ *" or "*/ ".

"

11.7 Empty lexical item
Name of lexical item — empty

The "empty" item contains no characters. It is used in the notation of clause 5 when alternative sets of production
sequences are specified, to indicate that absence of all alternatives is possible.

11.8 Numbers
Name of lexical item — number

A "number" shall consist of one or more digits. The first digit shall not be zero unless the "number" is a single digit.

ITU-T Rec. X.680 (07/2002) 15

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — The "number" lexical item is always mapped to an integer value by interpreting it as decimal notation.

11.9 Real numbers
Name of lexical item — realnumber

A "realnumber" shall consist of an integer part that is a series of one or more digits, and optionally a decimal point (.).
The decimal point can optionally be followed by a fractional part which is one or more digits. The integer part, decimal
point or fractional part (whichever is last present) can optionally be followed by an e or E and an optionally-signed
exponent which is one or more digits. The leading digit of the exponent shall not be zero unless the exponent is a single
digit.

11.10 Binary strings

Name of lexical item — bstring

A "bstring'| shall consist of an arbitrary number (possibly zero) of the characters:
01

possibly intermixed with white-space, preceded by an APOSTROPHE (39) character (') andyfollowed by|the pair of
characters:

'B
HXAMPLE -' 01101100' B

Occurrencgs of white-space within a binary string lexical item have no significance!

11.11 XML binary string item
Name of it¢gm — xmlbstring

An "xmlbs}ring" shall consist of an arbitrary number (possibly:zero) of zeros, ones or white-space. Any white-space
characters that appear within a binary string item have no significance.

HXAMPLE - 01101100

This sequefce of characters is also a valid instance of *Xmlhstring" and "xmlcstring". In analysing an instan¢e of use of
this notation, an "xmlbstring" is distinguished from\an "xmlhstring" or "xmlcstring" by the context in which it appears.

11.12 Hexadecimal strings
Name of lekical item — hstring

11.12.1 An "hstring" shall consistiof an arbitrary number (possibly zero) of the characters:
ABCDEFO02123456789

possibly intermixed with.white-space, preceded by an APOSTROPHE (39) character (') and followed by|the pair of
characters:

'H
HXAMPLE —' AB0196' H

Occurrences of white-space within a hexadecimal string Iexical item have no significance.

11.12.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

11.13 XML hexadecimal string item
Name of item — xmlhstring

11.13.1 An "xmlhstring" shall consist of an arbitrary number (possibly zero) of the characters:
0123456789ABCDEFabcdef

or white-space. Any white-space characters that appear within a hexadecimal string item have no significance.
EXAMPLE — Ab0196

11.13.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

16 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

11.13.3 Some instances of "xmlhstring" are also valid instances of "xmlbstring" and "xmlcstring". In analysing an
instance of use of this notation, an "xmlhstring" is distinguished from an "xmlbstring" or "xmlcstring" by the context in
which it appears.

11.14 Character strings
Name of lexical item — cstring

11.14.1 A "cstring" shall consist of an arbitrary number (possibly zero) of graphic symbols and spacing characters
from the character set referenced by the character string type, preceded and followed by a QUOTATION MARK (34)
character ("). If the character set includes a QUOTATION MARK (34) character, this character (if present in the
character string being represented by the "cstring") shall be represented in the "cstring" by a pair of QUOTATION
MARK (34) characters on the same line with no intervening spacing character. The "cstring" may span more than one
line of text, in which case the character string being represented shall not include spacing characters in the position prior
to or follow ing the end of line in the "N‘rring" Anv qpm‘ing characters that appear immediately prinr to or f I]owing the
end of line[in the "cstring" have no significance.

NOTE 1 — The "cstring" can only be used to unambiguously represent (on a printed page) character stringsfor which every
charactel in the string being represented has either been assigned a graphic symbol, or is a spacing character, Wherg a character
string cqntaining control characters needs to be denoted in a printed representation, alternative ASN.1/syntax is ajailable (see
clause 3p).

NOTE 3 — The character string represented by a "cstring" consists of the characters associated’ with the graphic pymbols and
spacing [characters. Spacing characters immediately preceding or following any end of line ir-the "cstring" are ndt part of the
charactef string being represented (they are ignored). Where spacing characters are included in the "cstring", or wherg¢ the graphic
symbols|in the character repertoire are not unambiguous in a printed representation, the character string denoted by "Estring" may
be ambiguous in that printed representation.

EXAMPLE 1R B ™ #.

EXAMPLE 2 — The "cstring":

" ABCDE FCGH
I JK" " XYZ"

can be used to represent a character string value of type | A58t ri ng. The value represented consists of the chgracters:
ABCDE FCGH JK" XYZ

where the |precise number of spaces intended betwiéen E and F can be ambiguous in a printed represeftation if a
proportiondl spacing font (such as is used aboye) is used in the printed specification, or if the charactef repertoire
contains mfiltiple spacing characters of differentwidths.

11.14.2 When a character is a combining character (see Annex F) it shall be denoted in a printed representhtion of the
"cstring" ag an individual character. It shall not be overprinted with the characters with which it combines. (Tfhis ensures
that the order of combining characters ‘in the string value is unambiguously defined in the printed version.)

EXAMPLE — Lower case "e"‘and the accent combining character are two characters in ISO/IEC 10646-1, and thus a
corresponding "cstring" should’be printed as two characters and not as the single character é.

11.15 XML character string item

Name of it¢gm ~xmlcstring

11 151 Mol octeia ot 1 o11 VP £ oo it s ber—Lfaacsbl o) £ 4l 11 1ISOA-HC 10646 1
. . AT AT CSTIT S STarT COTISTS t—OT—arr—arortrar y - oot (POSSTOTy 20107~ 0T e TOTIO Wit oo U -

characters:
a) HORIZONTAL TABULATION (9);
b) LINE FEED (10);
c¢) CARRIAGE RETURN (13);

d) any character whose ISO/IEC 10646-1 character code is in the range 32 (20 hex) to 55295 (D7FF hex),
inclusive;

e) any character whose ISO/IEC 10646-1 character code is in the range 57344 (E000 hex) to 65533 (FFFD
hex), inclusive;

f) any character whose ISO/IEC 10646-1 character code is in the range 65536 (10000 hex) to 1114111
(10FFFF hex), inclusive.

ITU-T Rec. X.680 (07/2002) 17

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — Additional restrictions are imposed by the requirement that the "xmlcstring", in an instance of use, shall contain only
characters permitted by the governing character string type.

11.15.2 The characters "&" (AMPERSAND), "<" (LESS-THAN SIGN) or ">" (GREATER-THAN SIGN) shall
appear only as part of one of the character sequences specified in 11.15.4 or 11.15.5.

11.15.3 An "xmlcstring" is used to represent the value of a restricted character string (see 37.9), and can be used to
represent all combinations of ISO/IEC 10646-1 characters, either directly, or by using the escape sequences specified
below.

NOTE 1 — An "xmlcstring" cannot be used to represent characters that are not present in ISO/IEC 10646-1, such as some of the
control characters which can appear in Gener al St ri ng, nor can it represent characters which might be defined with ISO/IEC
10646-1 character codes above 10FFFF hex.

NOTE 2 — The characters LINE FEED (10) and CARRIAGE RETURN (13) and the pair CARRIAGE RETURN + LINE FEED
are not distinguished when processed by conforming XML processors.

11.15.4 If the characters "&" (AMPERSAND), "<" (LESS-THAN SIGN) or ">" (GREATER-THAN SIGN) are
present in gn abstract character string value being represented by "xmlcstring" (see 37.9), they shall be represgnted in the
"xmlcstring" by either

a) the escape sequences specified in 11.15.8; or

b) the escape sequences "&", "<" or ">" respectively. These escape sequénces shall jnot contain
white-space (see 11.1.6).

11.15.5 If a character with an ISO/IEC 10646-1 character code in column 1 of Table 3 is present in the abstract
character sfring value being represented by the "xmlcstring" (see 37.9), it shall be represented by the charactgr sequence
in column 2 of Table 3. These character sequences shall not contain white-space (see*11.1.6).

NOTE + This does not include characters with decimal character codes 9, 10, and 13, and all the letters in thgse character
sequencgs are lowercase.

Table 3 — Escape sequences for control characters in an "xmlcstring"

ISO/IEC 10646-1 "xmlcstring" ISO/IEC 10646-1 "xmlecstring"
chlaracter code representation character code representatipn
0 (0 hex) <nul/> 17 (11 hex) <dcl/>
1 (1 hex) <soh/> 18 (12 hex) <dc2/>
2 (2 hex) <stx/> 19 (13 hex) <dc3/>
3 (3 hey) <etx/> 20 (14 hex) <dc4/>
4 (4 hex) <eot/> 21 (15 hex) <nak/>
5 (5 hex) <eng/> 22 (16 hex) <syn/>
6 (6 hex) <ack/% 23 (17 hex) <etb/>
7 (7 hex) <bel/> 24 (18 hex) <can/>
8 (8 hex) <bs/> 25 (19 hex)
11 (B h¢x) <vt/> 26 (1A hex) <sub/>
12 (C h¢x) <ft/> 27 (1B hex) <esc/>
14 (E h¢x) <so/> 28 (1C hex) <is4/>
15 (F hgx) <si/> 29 (1D hex) <is3/>
16 (10 Hex) <dle/> 30 (1E hex) <is2/>
FtHtrex) 15t

11.15.6 When "xmlcstring" is used within an "XMLTypedValue" (see 15.2) forming part of an XER encoding (see
ITU-T Rec. X.693 | ISO/IEC 8825-4), it may contain adjacent HYPHEN-MINUS (45) characters. When used within an
instance of XML value notation in an ASN.1 module, it shall not contain two adjacent HYPHEN-MINUS characters. If
this character sequence is present in an abstract character string value being represented by the "xmlcstring” in an ASN.1
module, then at least one of the adjacent HYPHEN-MINUS characters shall be represented by the escape sequences
specified in 11.15.8.

11.15.7 When "xmlcstring" is used within an "XMLTypedValue" forming part of an XER encoding (see ITU-T Rec.
X.693 | ISO/IEC 8825-4), it may contain adjacent ASTERISK (42) and SOLIDUS (47) characters in any order. When
used within an instance of XML value notation in an ASN.1 module, it shall not contain adjacent ASTERISK and
SOLIDUS characters (in any order). If this character sequence is present in an abstract character string value being
represented by the "xmlcstring", then at least one of the adjacent ASTERISK and SOLIDUS characters shall be
represented by the escape sequences specified in 11.15.8.

18 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

11.15.8 Any character that can appear directly in an "xmlestring” can also be represented in the "xmlcstring" by an
escape sequence of the form "&#n;" (where n is the ISO/IEC 10646-1 character code in decimal notation) or of the form
"&#xn;" (where n is the ISO/IEC 10646-1 character code in hexadecimal notation). These escape sequences shall not
contain white-space (see 11.1.6).

NOTE 1 — Leading zeros are permitted in the decimal and hexadecimal values of "n" and both lowercase and uppercase letters
"A"-"F" can be used in the hexadecimal value.

NOTE 2 - If the escape sequences "&#n" and "&#xn" are used for ISO/IEC 10646-1 characters which are not in the Basic
Multilingual Plane (BMP), the value of "n" will be greater than 65535 (FFFF hex).

EXAMPLE — The "xmlcstring":
ABCDé FGH&H#XEE;JK&XYZ
can be used to represent a character string value of type UTF8String. The value represented consists of the characters:

ABCD¢ FGHiJK&XYZ

where the }Lrecise space characters between ¢ and F can be ambiguous in print media if a proportional spa¢ing font (such
as above) i used in the specification.

11.16 Assignment lexical item

Name of lekical item —": : =

This lexica] item shall consist of the sequence of characters:

NOTE - This sequence does not contain white-space (see 11.1.2).

11.17 Range separator

Name of lekical item —". .

This lexica] item shall consist of the sequence of characters:
NOTE - This sequence does not contain white-space (see 11.1.2).

11.18 Ellipsis

Name of lekical item —". . .

This lexica] item shall consist of the sequence of characters:
NOTE - This sequence does not contain white-space (see 11.1.2).

11.19 Ileft version brackets
Name of lekical item—~Y[T"

This lexica] itemrshall consist of the sequence of characters:

[
NOTE —Thisscquernce does TIot COMtailT WiTte=Space (See 1. 1.2).

11.20 Right version brackets
Name of lexical item — "]] "

This lexical item shall consist of the sequence of characters:

1]

NOTE - This sequence does not contain white-space (see 11.1.2).

11.21 XML end tag start item
Name of item — "</"

This item shall consist of the sequence of characters:

ITU-T Rec. X.680 (07/2002) 19

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

</

NOTE —

This sequence does not contain any white-space characters (see 11.1.2).

11.22 XML single tag end item

Name of item — "/>"

This item shall consist of the sequence of characters:

/>

NOTE —

This sequence does not contain any white-space characters (see 11.1.2).

11.23 XML boolean true item

Name of item — "true"

11.23.1 This item shall consist of the sequence of characters:
tfue
11.23.2 In analysing an instance of use of this notation, a "true" is distinguished from a "yaluerefere

"identifier"
NOTE

11.24 X
Name of it{

11.24.1 T
fi

11.24.2 i
"identifier"
NOTE

11.25 X
Name of it{

11.25.1 Th
to be used

11.25.2 T4l
types listed
sequence W
after these

11.25.3 1T

11.25.4 TE character sequence in the "xmlasnltypename" item for the "ObjectClassFieldType" a

"InstanceO|

by the context in which it appears.
This sequence does not contain any white-space characters (see 11.1.2).

(ML boolean false item
bm — "'false"

his item shall consist of the sequence of characters:

hlse

1 analyzing an instance of use of this notation, a "false" is distinguished from a "valuereferd

by the context in which it appears.
This sequence does not contain any white-space charaeters (see 11.1.2).

(ML tag names for ASN.1 types
bm — xmlasn1typename

s Recommendation | International Standard uses the item "xmlasnltypename" when ASN.1 built-
s XML tag names.

ble 4 lists the character sequences that are to form the "xmlasnltypename" for each of the AS]
in 16.2. The ASN.1 built-in type is identified in column 1 of Table 4 by its production name. T}
hich shall be used for)'xmlasnltypename" is identified in column 2 of Table 4, with no white-spa
Character sequences:

he "xmlasnd typename" for the "Useful Type"s (see 41.1) shall be the "typereference” used in their

ype'jare specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1 and Annex C.

nce" or an

nce" or an

n types are

N.1 built-in
e character
e before or

Hefinition.

hd for the

11.25.5 If 1

"Type" in the "TaggedType"

applied.

20

" ggcod e th 1 determi " Bpen

(see 30.1). If s is itself a "TaggedType", then this subclause 11.25.5 shall be

heA SN

ITU-T Rec. X.680 (07/2002)

ie" shall be
recursively

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Table 4 — Characters in xmlasnltypename

ASN.1 type production name

Characters in xmlasnltypename

BitStringType BIT _STRING
BooleanType BOOLEAN
ChoiceType CHOICE
EmbeddedPDVType SEQUENCE
EnumeratedType ENUMERATED
ExternalType SEQUENCE
InstanceOfType SEQUENCE
IntegerType INTEGER
NullType NULL

Obje¢tClassFietdType

See 1T O-T Rec- X 08T TISONEC 82421+ 10 anmad %11

Objeg¢tldentifierType

OBJECT_IDENTIFIER

OctetStringType OCTET _STRING

RealType REAL

RelatjveOIDType RELATIVE_OID
RestrjctedCharacterStringType The type name (e.g. | ABStri ng)
Sequ¢nceType SEQUENCE

SequenceOfType SEQUENCE_OF

SetType SET

SetOfType SET OF

TaggpdType See 11.25.5
UnrestrictedCharacterStringType SEQUENCE

11.26 Single character lexical items

Names of Igxical items —

"l (HYPEN-MINUS)

"'" (QUOTATION MARK)
" 1’(APOSTROPHE)

i QDAL

(oTrxXCLTy
n.n

N@
Hl"
H! "

nANn

A lexical item with any of the names listed above shall consist of the single character without the quotation marks.

ITU-T Rec. X.680 (07/2002)

21

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

11.27 Reserved words

Names of reserved words —

ABSENT ENCODED | NTEGER RELATI VE-A D
ABSTRACT- SYNTAX END | NTERSECTI ON SEQUENCE

ALL ENUVERATED 1 SC646Stri ng SET

APPLI CATI ON EXCEPT MAX Sl ZE

AUTOMVATI C EXPLICIT M N STRI NG

BEGA N EXPORTS M NUS- I NFI NI TY SYNTAX

BIT EXTENSI BI LI TY NULL T61String

BMPSt ri ng EXTERNAL Nurreri cString TAGS

BOCOLEAN FALSE CBJECT Tel etexString
BY FROM bj ect Descri pt or TRUE

CHARACTER General i zedTi me OCTET TYPE- | DENTI FI ER
CHO CE Ceneral String o UNI ON

CLASS GraphicString OPTI ONAL UNI QUE
COVPONENT I A5String PATTERN UNI VERSAL
COVPONENTS | DENTI FI ER PDV Universal String
CONSTRAI INED IMPLICT PLUS- I NFI NI TY UFCTi ne

CONTAI NI NG | MPLI ED PRESENT UTF8String
DEFAULT | MPORTS Printabl eString Vi deot exStri ng
DEFI NI TI ONS | NCLUDES PRI VATE Vi sibleString
EVBEDDED I NSTANCE REAL W TH

Lexical itejns with the above names shall consist of the sequenee of characters in the name, and are reservd

sequences.

NOTE 1]— White-space does not occur in these sequences.
NOTE 2 — The keywords CLASS, CONSTRAI NED, CONTAI\NI NG ENCODED, | NSTANCE, SYNTAX and UNI QUE are not

Recomnjendation | International Standard; they are”used in ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T R
ISO/TIE(8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4.

12

]

Nodule definition

12.1 A "ModuleDefinition" issgpecified by the following productions:

ModuleDefinition) ::=

Moduleldentifier
PEFRI'NI TI ONS

TagDefault
ExtensionDefault

". . _n

BEG N

Mnﬂnlnnnﬂ)
END

Moduleldentifier ::=

modulereference
Definitiveldentifier

Definitiveldentifier ::=
"{ " DefinitiveObjIdComponentList "} "

DefinitiveObjIdComponentList ::=
DefinitiveObjldComponent

empty

DefinitiveObjIdComponent DefinitiveObjldComponentList

22 ITU-T Rec. X.680 (07/2002)

d character

used in this
ec. X.682 |

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

DefinitiveObjldComponent ::=
NameForm
| DefinitiveNumberForm
| DefinitiveNameAndNumberForm

DefinitiveNumberForm ::= number
DefinitiveNameAndNumberForm ::= identifier '"("' DefinitiveNumberForm ") "

TagDefault ::=
EXPLICI T TAGS

| IMPLICI T TAGS
| AUTOVATI C TAGS
| empty

ExtensionDefault ::=

EXTENSI BI LI TY | MPLI ED
| empty

ModuleBody ::=
Exports Imports AssignmentList
| empty

Exports ::=
EXPORTS SymbolsExported ";"
| EXPORTS ALL";"
| empty

SymbolsExported ::=
SymbolList
| empty
Imports ::=
| MPORTS SymbolsImported ";"
| empty
SymbolsImported ::=

SymbolsFromModuleList
| empty

SymbolsFromModuleList ::=
SymbolsFromMgdule
| SymbolsFromModuleList SymbolsFromModule

SymbolsFromModule ::=
SymbolList FROMGlobalModuleReference

GlobalModuleReference ::=
modulereference Assignedldentifier

Assignedldentifier ::=
ObjectldentifierValue
| DefinedValue

i empty

SymbolList ::=
Symbol
| SymbolList "," Symbol

Symbol ::=
Reference
| ParameterizedReference

Reference ::=

typereference
valuereference
objectclassreference
objectreference
objectsetreference

ITU-T Rec. X.680 (07/2002) 23

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC

8824-1:2002 (E)

AssignmentList ::=
Assignment
| AssignmentList Assignment

Assignment ::=
TypeAssignment
| ValueAssignment
| XMLYValueAssignment
| ValueSetTypeAssignment
| ObjectClassAssignment
| ObjectAssignment
| ObjectSetAssignment
| Parameterized Assignment

NOTE 1 — The use of a "ParameterizedReference" in the "Exports" and "Imports" lists is specified in ITU-T Rec. X.683 |

ISO/IECR824-4

NOTE 2 — For examples (and for the definition in this Recommendation | International Standard of types witlt urfiversal class

tags), th¢ "ModuleBody" can be used outside of a "ModuleDefinition".
J — "TypeAssignment", "ValueAssignment", "XMLValueAssignment" and "ValueSetTypeAssignment" productions are
specified in clause 15.

NOTE

NOTE 4 — The value of "TagDefault" for the module definition affects only those types defined explicitly in the madule. It does

not affeqt the interpretation of imported types.

NOTE § - The character semicolon does not appear in the assignment list specification or any. ofiits subordinate productions, and

is reservpd for use by ASN.1 tool developers.

12.2

12.3

Tihe "TagDefault" is taken as EXPLI O T TAGSif it is "empty".
NOTE - Clause 30 gives the meaning of EXPLI O T TAGS, | MPLI O T TAGS, and AUTOVATI C TAGS.

When the AUTOVATI C TAGS alternative of "TagDefault" is selected, automatic tagging is said to [be selected

for the module, otherwise it is said to be not selected. Automatic tagginig’is a syntactical transformation which is applied

(with additjonal conditions) to the "ComponentTypeLists" and "AltetnativeTypeLists" productions occurring
f the module. This transformation is formally specified by 24.7 to 24.9, 26.3 and 28.2 to 28.5 regarding the
notations for sequence types, set types and choice types, respec¢tively.

definition

12.4

Tlhe EXTENSI BI LI TY | MPLI ED option is equiyalent to the textual insertion of an extension marke

within the

("...") in

the definitipn of each type in the module for which it is permitted. The location of the implied extension mprker is the
last position in the type where an explicitly specified’ extension marker is allowed. The absence of EXTENSI Bl LI TY

| MPLI ED

12.5

Tlhe "modulereference" appearihg in the "Moduleldentifier" production is called the module name.

theans that extensibility is only provided for those types within the module where an extension marker is
explicitly present.
NOTE HEXTENSI BI LI TY | MPLI ED affectsonly types. It has no effect on object sets and subtype constraints.

NOTE - The possibility of defining.a single ASN.1 module by the use of several occurrences of "ModuleBody" assighed the same
"modulefeference” was (arguably).permitted in earlier specifications. It is not permitted by this Recommendation | [nternational

Standard.

12.6

12.7

NOTE

Module namessshall be used only once (except as specified in 12.9) within the sphere of intg
definition gf the module’

If the "Definitiveldentifier" is not empty, the denoted object identifier value unambiguously ar
identifies the module being defined. No defined value may be used in defining the object identifier value.

— The’question of what changes to a module require a new "Definitiveldentifier" is not addressed in this Recorhmendation |

International Standard.

12.8

rest of the

d uniquely

If the "Assignedldentifier" is not empty, the "ObjectldentifierValue" and the "DefinedValue" alternatives
unambiguously and uniquely identify the module from which reference names are being imported. When the
"DefinedValue" alternative of "Assignedldentifier" is used, it shall be a value of type object identifier. Each
"valuereference" which textually appears within an "Assignedldentifier" shall satisfy one of the following rules:

a) It is defined in the "AssignmentList" of the module being defined, and all "valuereference"s which

textually appear on the right side of the assignment statement also satisfy this rule (rule "a")
rule (rule "b").

or the next

b) It appears as a "Symbol" in a "SymbolsFromModule" whose "Assignedldentifier" does not textually

contain any "valuereference"s.

NOTE - It is recommended that an object identifier be assigned so that others can unambiguously refer to the module.

24

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

12.9 The "GlobalModuleReference" in a "SymbolsFromModule" shall appear in the "ModuleDefinition" of another
module, except that if it includes a non-empty "Definitiveldentifier", the "modulereference" may differ in the two cases.

NOTE — A different "modulereference" from that used in the other module should only be used when symbols are to be imported
from two modules with the same name (the modules being named in disregard of 12.6). The use of alternative distinct names
makes these names available for use in the body of the module (see 12.15).

12.10 When both a "modulereference" and a non-empty "Assignedldentifier" are used in referencing a module, the
latter shall be considered definitive.

12.11 When the referenced module has a non-empty "Definitiveldentifier", the "GlobalModuleReference"
referencing that module shall not have an empty "AssignedIdentifier".

12.12 When the "SymbolsExported" alternative of "Exports" is selected:
a) each "Symbol" in "SymbolsExported" shall satisfy one and only one of the following conditions:

i) is only defined in the module being constructed; or

ii) appears exactly once in the "SymbolsImported" alternative of "Imports";

b) every "Symbol" to which reference from outside the module is appropriate shall be inclyded in the
"SymbolsExported" and only these "Symbol"s may be referenced from outside the module (subject to the
relaxation specified in 12.13); and

c) if there are no such "Symbol"s, then the empty alternative of "SymbolsExported” (not of "Exports") shall
be selected.

12.13 When either the "empty" alternative or the EXPORTS ALL alternative of "Exports" is selected, every "Symbol"
defined in|the module or imported by the module may be referenced from other ‘modules subject to thq restriction
specified i 12.12 a).

NOTE — The "empty" alternative of "Exports" is included for backwards compatibility.

12.14 Iglentifiers that appear in a "NamedNumberList", "Enumeratien" or "NamedBitList" are implicitly [exported if
the typeref¢rence that defines them is exported or appears as a compohent (or subcomponent) within an exported type.

12.15 When the "SymbolsImported" alternative of "Imports"-is'selected:

a) Each "Symbol" in "SymbolsFromModule" shall either be defined in the module body, or be present in the
"Imports" clause, of the module denoted<by the "GlobalModuleReference" in "SymbolsFromModule".
Importing a "Symbol" present in the "Imports" clause of the referenced module is only allowef if there is
only one occurrence of the "Symbaol'in that clause, and the "Symbol" is not defined in the| referenced
module.

NOTE 1 — This does not prohibit the same symbol name defined in two different modules from belng imported

into another module. However, if the same "Symbol" name appears more than once in the "Imports" clause of
module A, that "Symbel"name cannot be exported from A for import to another module B.

b) If the "SymbolsExported" alternative of "Exports" is selected in the definition of the module [denoted by

the "GlobalModuleReference" in "SymbolsFromModule" the "Symbol" shall appdar in its
"SymbolsExported”.

c) Only those "Symbol"s that appear amongst the "SymbolList" of a "SymbolsFromModule" maly appear as
the symbol in any "External<X>Reference" which has the "modulereference" denotpd by the
"GlobalModuleReference" of that "SymbolsFromModule" (where <X> is "Value", "Type'l, "Object",
"Objectclass”, or "Objectset").

d) .St there are no such "Symbol"s, then the "empty" alternative of "SymbolsImported" shall be selected.

NUITE — Al CIICCU OI (/) and da) ib Uldl tNC SUAICIIICIIU T VPFURT S, iIIlpliCb Uldl tne modauic Cannot COntain an
"External<X>Reference".

e) All the "SymbolsFromModule" in the "SymbolsFromModuleList" shall include occurrences of
"GlobalModuleReference" such that:

i) the "modulereference" in them are all different from each other and from the "modulereference"
associated with the referencing module; and

ii) the "Assignedldentifier", when non-empty, denotes object identifier values which are all different
from each other and from the object identifier value (if any) associated with the referencing module.

12.16 When the "empty" alternative of "Imports" is selected, the module may still reference "Symbols" defined in
other modules by means of an "External<X>Reference".
NOTE — The "empty" alternative of "Imports" is included for backwards compatibility.

ITU-T Rec. X.680 (07/2002) 25

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

12.17 Identifiers that appear in a "NamedNumberList", "Enumeration" or "NamedBitList" are implicitly imported if
the typereference that defines them is imported or appears as a component (or subcomponent) within an imported type.

12.18 A "Symbol" in a "SymbolsFromModule" may appear in "ModuleBody" as a "Reference". The
meaning associated with the "Symbol" is that which it has in the module denoted by the corresponding
"GlobalModuleReference".

12.19 Where the "Symbol" also appears in an "AssignmentList" (deprecated), or appears in one or more other
instances of "SymbolsFromModule", it shall only be used in an "External<X>Reference". Where it does not so appear, it
shall be used directly as a "Reference".

12.20 The various alternatives for "Assignment" are defined in the following clauses in this Recommendation |
International Standard, except as noted otherwise:

Assignment alternative Defining subclause

“FypeAssignmment* 151

"ValueAssignment" 15.2

"XMLValueAssignment" 15.2

"ValueSetTypeAssignment" 15.6

"ObjectClassAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.1
"ObjectAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2;-1111
"ObjectSetAssignment" ITU-T Rec. X.681 | ISO/IEC 8824<2; 12.1
"Parameterized Assignment" ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.1

The first symbol of every "Assignment" is one of the alternatives of "Reference", denoting the reference hame being
defined. Injno two assignments within an "AssignmentList" shall the reference names be the same.

13
13.1 Tlhe defined type and value productions:

Lo]

Referencing type and value definitions

DefinedType ::=
ExternalTypeReference
| Typereference
| ParameterizedType
| ParameterizedValueSetType

DefinedValue ::=
ExternalV.alueReference
| Valuereference
| ParameterizedValue

specify th¢ sequences~which shall be used to reference type and value definitions. The type idenfified by a
"ParameterjzedType/~and "ParameterizedValueSetType", and the value identified by a "Parameterized[Value" are
specified i ITU-T.Rec. X.683 | ISO/IEC 8824-4.

13.2 Tihe’NonParameterizedTypeName" production:

NonParameterizedTypeName ::=
ExternalTypeReference
| typereference
| xmlasnltypename

is used when an XML tag name is needed to represent an ASN.1 type.

13.3 The third alternative shall not be used as the "NonParameterizedTypeName" in the "XMLTypedValue" of
"XMLValueAssignment" (see 15.2) or of "XMLOpenTypeFieldVal" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6)
when the XML value notation is used in an ASN.1 module if the "xmlasnltypename" is "CHOICE", "ENUMERATED",
"SEQUENCE", "SEQUENCE_OF", "SET" or "SET_OF".
NOTE - This restriction is imposed in XML value notation used in an ASN.1 module because these "xmlasnltypename"s do not
define an ASN.1 type. The restriction is not present for use of this notation in encoding rules (such as XER, see ITU-T

Rec. X.693 | ISO/IEC 8825-4) because XML tags formed from "xmlasnltypename"s are not used to determine the types that are
being encoded.

26 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

13.4 Except as specified in 12.18, the "typereference", "valuereference", "ParameterizedType",
"ParameterizedValueSetType" or "ParameterizedValue" alternatives shall not be used unless the reference is within the
"ModuleBody" in which a type or value is assigned (see 15.1 and 15.2) to the "typereference" or "valuereference".

13.5 The "ExternalTypeReference" and "ExternalValueReference" shall not be used unless the corresponding
"typereference" or "valuereference":

a) has been assigned a type or value respectively (see 15.1 and 15.2); or

b) are present in the "Imports" clause,

within the "ModuleBody" used to define the corresponding "modulereference". Referencing a name in the "Imports"

clause of another module shall only be allowed if there is no more than one occurrence of the "Symbol" in that clause.
NOTE - This does not prohibit the same "Symbol" defined in two different modules from being imported into another module.
However, if the same "Symbol" appears more than once in the | MPORTS clause of a module A, then that "Symbol" cannot be
referenced using module A in an external reference.

13.6 An external reference shall be used in a module only to refer to a reference name which isydefined in a
different mpdule, and is specified by the following productions:

ExternalTypeReference ::=
modulereference
"non

typereference

ExternalValueReference ::=
modulereference
"N
valuereference

NOTE - Additional ~ external reference productions ("ExternalClassReference", "ExternalObjectRefergnce” and
"ExterndlObjectSetReference") are specified in ITU-T Rec. X.681 | ISO/IEE 8824-2.

13.7 When the referencing module is defined using the</'SymbolsImported" alternative of "Imports", the
"modulereference" in the external reference shall appear in the "GlobalModuleReference" of exactly pne of the
"SymbolsFromModule" in the "SymbolsImported". When ‘the referencing module is defined using the "empty"
alternative jof "Imports", the "modulereference” in the external reference shall appear in the "ModuleDefinifion" of the
module (different from the referencing module) where the\"Reference" is defined.

13.8 Where a "DefinedType" is used as (part of notation governed by a "Type" (for example, in a
"SubtypeCpnstraint") then the "DefinedType" shall be compatible with the governing "Type" as specifiefl in clause
B.6.2.

13.9 Hvery occurrence within an ASN.1 specification of a "DefinedValue" is governed by a "Type'|, and that
"DefinedValue" shall reference a valu¢ of a type that is compatible with the governing "Type" as gpecified in
clause B.6.p.

14 Notation to support references to ASN.1 components

14.1 Tlhere is a(réquirement for formal reference to components of ASN.1 types, values, etc. for many purposes.
One such ipstancéiistthe need to write text to identify a specific type within some ASN.1 module. This clauge defines a
notation which can be used to provide such references.

14.2 Thc IlULdLiUIl ClldbiCb dally COIIPOIICIIU Uf d SCL OI' SCUUCTICC 1ypc \Whibh ib CiLhCl IlldllddLUlﬁy O Optionally
present in the type) to be identified.

14.3 Any part of any ASN.1 type definition can be referenced by use of the "AbsoluteReference" syntactic
construct:

AbsoluteReference ::= " @' Moduleldentifier

ItemSpec

ItemSpec ::=
typereference
| ItemlId ". " Componentld

Itemld ::= ItemSpec

ITU-T Rec. X.680 (07/2002) 27

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Componentld ::=
identifier
| number

| "in

NOTE — The AbsoluteReference production is not used elsewhere in this Recommendation | International Standard. It is provided
for the purposes stated in 14.1.

14.4 The "Moduleldentifier" identifies an ASN.1 module (see 12.1).

14.5 When the first altenative of "Definitiveldentifier" is used as part of the "Moduleldentifier", the
"Definitiveldentifier" unambiguously and uniquely identifies the module from which a name is being referenced.

14.6 The "typereference" references any ASN.1 type defined in the module identified by "Moduleldentifier".

14.7 The "Componentld" in each "ItemSpec" identifies a component of the type which has been identified by the
"ItemlId". It shall be the last "Componentld" if the component it identifies is not a set, sequence, set-of, sequence-of, or
choice typq.

14.8 Tlhe "identifier" form of "Componentld" can be used if the parent "ItemId" is a set or seqiience fype, and is
required to|be one of the "identifier"s of the "NamedType" in the "ComponentTypeLists" of that set of sequence. It can
also be usefl if the "Itemld" identifies a choice type, and is then required to be one of the "identifier"s of a "NamedType"
in the "AltdrnativeTypeLists" of that choice type. It cannot be used in any other circumstance,

14.9 Tlhe number form of "Componentld" can be used only if the "ItemId" is a sequenée-of or set-of typd. The value
of the number identifies the instance of the type in the sequence-of or set-of, with/the/value "1" identifyipg the first
instance off the type. The value zero identifies a conceptual integer type componeiit, ¢hot explicitly present [in transfer)
that contaips a count of the number of instances of the type in the sequence-of.or set-of that are present in the value of
the enclosing type.

14.10 The "*" form of "Componentld" can be used only if the "Itemld” is a sequence-of or set-of. Any semantics
associated with the use of the "*" form of "Componentld" apply to alk€emponents of the sequence-of and setof.

NOTE - In the following example:

MDEFINITIONS ::= BEG N
T ::= SEQUENCE {
a BOCLEAN,
b SET OF | NTEGER
}
END

the components of "T" could be referenced by text outside an ASN.1 module (or in a comment), such as:
- if (GMT.b.0 is odd) (then:
(@M T.b.* shall be an odd integer)

which is|used to state that if the numbef of components in b is odd, all components of b must be odd.

15

15.1 A "typereference! ‘shall be assigned a type by the notation specified by the "TypeAssignment" prodyction:

NG

\ssigning types-and values

TypeAssignment ::=

typereference
"n. . —n

Type

The "typereference" shall not be an ASN.1 reserved word (see 11.27).

15.2 A "valuereference" shall be assigned a value by the notation specified by either the "ValueAssignment" or
"XMLValueAssignment" productions:

ValueAssignment ::=
valuereference

Type

"o —n

Value

28 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

XMLValueAssignment ::=
valuereference

XMLTypedValue

XMLTypedValue ::=
"<" & NonParameterizedTypeName '>"
XMLValue
"</" & NonParameterizedTypeName ">"
| "<" & NonParameterizedTypeName '"/>"

The value being assigned to the "valuereference" in the "ValueAssignment" is "Value", and is governed by "Type" and
shall be a notation for a value of the type defined by "Type" (as specified in 15.3). The value being assigned to the
"valuereference" in the "XMLValueAssignment" is "XMLValue" (see 16.7), and shall be a notation for a value of the
type defined by "NonParameterizedTypeName" (as specified in 15.4). If this is the "xmlasnltypename" item, then it

identifies t
15.3 "

154 "
(see 16.10)

15.5 T
instance of]

NOTE A
second 4

15.6 A
production

This notati
exactly the
word (see |

15.7 A

The value
clause 46).

15.8 T

e ASN.1 built-in type in the corresponding row of Table 4 (see also 13.3).
Value" is a notation for a value of a type as specified in 16.7.

XML Value" is a notation for a value of a type if "XMLValue" is an "XMLBuiltinValue’\notation

the "XMLValue" production is empty.

Iternative could not be used.

ValueSetTypeAssignment ::=
typereference

Type

"e.o—n
ValueSet

bn assigns to "typereference" the type defined as a subtype of the type denoted by "Type" and whi
values which are specified in or allowedby "ValueSet". The "typereference" shall not be an ASN
1.27), and may be referenced as a type. "ValueSet" is defined in 15.7.

value set governed by some typetshall be specified by the notation "ValueSet":

ValueSet ::="{" ElementSetSpecs "} "

set comprises all of thewalues, of which there shall be at least one, specified by "ElementSet
he "ValueSetTypeAssignment” production expands into:
typereférence
Type

". . —n

"{" ElementSetSpecs "} "

for the type

he second alternative of "XMLTypedValue" (use of an XML empty-element)fag) can be used only if an

If the "XMLValue" production was an "xmlcstring" containing only white-space; this would not be empty, and the

"typereference" can be assigned a value set by the notation specified by the "ValueSetTypeAssignment"

ch contains
.1 reserved

Bpecs” (see

For all purposes, including the application of encoding rules, this is defined to be exactly equivalent to the use of the
production:

typereference
": :H
Type
"(" ElementSetSpecs ") "

with the same "Type" and "ElementSetSpecs" specifications.

ITU-T Rec. X.680 (07/2002)

29

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

16 Definition of types and values

16.1 A type shall be specified by the notation "Type":

Type ::= BuiltinType | ReferencedType | ConstrainedType

16.2 The built-in types of ASN.1 are specified by the notation "BuiltinType", defined as follows:

BuiltinType ::=
BitStringType
| BooleanType
| CharacterStringType
| ChoiceType
| EmbeddedPDVType
| EnumeratedType
| ExternalType
| InstanceOfType
| IntegerType
| NullType
| ObjectClassFieldType
| ObjectldentifierType
| OctetStringType
| RealType
|
|
|
|
|

RelativeOIDType
SequenceType
SequenceOfType
SetType
SetOfType
TaggedType

The varioys "BuiltinType" notations are defined in the followifig Clauses (in this Recommendation | Ipternational
Standard upless otherwise stated):

BitStringType 21
BooleanType 17
CharacterStringType 36
ChoiceType 28
EmbeddedPDVType 33
EnumeratedType 19
ExternalType 34
InstanceOfType FTU-T Rec. X.681 | ISO/IEC 8824-2, Annex C
IntegerType 18
NullType 23
ObjectClassFieldType ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1
ObjectldentifierType 31
OctetStringLype 22
RealType 20
RelativeOIDType 32
SequenceType 24
SequenceOfType 25
SetFype 26
SetOfType 27
TaggedType 30
16.3 The referenced types of ASN.1 are specified by the notation "ReferencedType":
ReferencedType ::=
DefinedType

| UsefulType

| SelectionType

| TypeFromObject

| ValueSetFromObjects

The "ReferencedType" notation provides an alternative means of referring to some other type (and ultimately to a built-
in type). The various "ReferencedType" notations, and the way in which the type to which they refer is determined, are
specified in the following places in this Recommendation | International Standard unless otherwise stated:

30 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

DefinedType 13.1

UsefulType 41.1

SelectionType 29

TypeFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

ValueSetFromObjects ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

16.4 The "ConstrainedType" is defined in clause 45.

16.5 This Recommendation | International Standard requires the use of the notation "NamedType" in specifying the
components of the set types, sequence types and choice types. The notation for "NamedType" is:

NamedType ::= identifier Type

16.6 The "identifier" is used to unambiguously refer to components of a set type, sequence type or choice type in
the value notation, in inner subtype constraints and in component relation constraints (see ITU-T Rec. X.682 | ISO/IEC

8824-3). It

is not part of the type, and has no effect on the type.

16.7 A

16.8 I
tag, possib

tags, and any intervening white-space, can be replaced by a single: XML empty-element tag (<field1/>).

NOTE -
characte

16.9 V
"BuiltinVa

value of some type shall be specified by the notation "Value" or by the notation "XMLValue'

Value ::=
BuiltinValue
| ReferencedValue
| ObjectClassFieldValue

XMLValue ::=
XMLBuiltinValue
| XMLODbjectClassFieldValue
NOTE 1 — "ObjectClassFieldValue" and "XMLObjectClassFieldValue" are defined in ITU-T H
ISO/IEC 8824-2, 14.6.

NOTE 2 - "XMLValue" is only used in "XMLTypedValue?.

[any part of the "XMLValue" production results in an XyIL/ start-tag immediately followed by an|
y separated by white-space inserted as permitted by 11,134 (for example, <field1></field1>), thes

If any white-space character, except white-space ifiSerted as permitted by 11.1.4, is present between t
of the start tag and the initial "<" character of the end-tag, the condition above is not satisfied.

alues of the built-in types of ASN.1 cam,be specified by the notation "XMLBuiltinValue" (se
ue", defined as follows:

BuiltinValue ::=
BitStringValue
BooleanValue¢
CharacterStringValue
ChoiceValue
EmbeddedPDVValue
EnumeratedValue
ExternalValue
InstanceOfValue
IntegerValue
NullValue

lec. X.681 |

XML end-
 two XML

he final ">"

e 16.10) or

OctetStringValue
RealValue
RelativeOIDValue
SequenceValue
SequenceOfValue
SetValue
SetOfValue

I

I

I

I

I

I

I

|

I

| ObjectldentifierValue
I

I

I

I

I

I

I

| TaggedValue

Each of the various "BuiltinValue" notations is defined in the same subclause as the corresponding "BuiltinType"
notation, as listed in 16.2.

ITU-T Rec. X.680 (07/2002)

31

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

16.10 "XMLBuiltinValue" is defined as follows:

XMLBuiltinValue ::=

XMLBitStringValue
XMLBooleanValue
XMLCharacterStringValue
XMLChoiceValue
XMLEmbeddedPDVValue
XMLEnumeratedValue
XMLEXxternalValue
XMLInstanceOfValue
XMLIntegerValue

XMLODbjectIdentifierValue
XMI ﬂofe_tSh;i_n,gValnp

Each of th|
notation, as

16.11 T

The "Refer
built-in va|
determined
stated):

0
V

16.12 R
can be sped

16.13 T

"NamedValue", or when used.as part of an "XMLValue", by the notation "XMLNamedValue". These produd

where the '
NOTE -

I

I

I

I

I

I

I

| XMLNullValue
!

| XMLRealValue

| XMLRelativeOIDValue
| XMLSequenceValue

| XMLSequenceOfValue
| XMLSetValue

| XMLSetOfValue

| XMLTaggedValue

listed in 16.2 above.
he referenced values of ASN.1 are specified by the notation "ReferencedValue":

ReferencedValue ::=
DefinedValue
| ValueFromObject

encedValue" notation provides an alternative meanis’of referring to some other value (and ulti
ue). The various "ReferencedValue" notations{cand the way in which the value to which th
| are specified in the following places (in this* Recommendation | International Standard unles

efinedValue 13.1
alueFromObject ITU-T Reer-X.681 | ISO/IEC 8824-2, clause 15

egardless of whether or not-a.type is a "BuiltinType", "ReferencedType" or "ConstrainedType'
ified by either a "BuiltinValug" or "ReferencedValue" of that type.

he value of a typewreferenced using the "NamedType" notation shall be defined by th

NamedValue ::= identifier Value
XMLNamedValue ::= "<" & identifier ">" XMLValue "</" & identifier '">"

identifier" is the same as that used in the "NamedType" notation.
Th¢ “1dentifier" is part of the notation, it does not form part of the value itself. It is used to unambiguously

toof o set tune —seaguencetupe-orcholcetupe
compones 3 & P P

e various "XMLBuiltinValue" notations is defined in the same clauseas_ the corresponding "BuiltinType"

mately to a
ey refer is
5 otherwise

, 1ts values

e notation
tions are:

refer to the

16.14 The implied (see 12.4) or explicit presence of an extension marker (see clause 6) in the definition of a type has
no effect on the value notation. That is, the value notation for a type with an extension marker is exactly the same as if
the extension marker was absent.

NOTE — Subclause 46.8 prohibits value notation used in a subtype constraint from referencing a value that is not in the extension
root of the parent type.

17 Notation for the boolean type

17.1 The boolean type (see 3.6.7) shall be referenced by the notation "BooleanType":

BooleanType ::= BOOLEAN

17.2 The tag for types defined by this notation is universal class, number 1.

32

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

17.3 The value of a boolean type (see 3.6.73 and 3.6.38) shall be defined by the notation "BooleanValue", or when
used as an "XMLValue", by the notation "XMLBooleanValue". These productions are:

BooleanValue ::= TRUE | FALSE

XMLBooleanValue ::=
H<" & Htrue" ll/>"
| "<" & "falseﬂ "/>"

18 Notation for the integer type
18.1 The integer type (see 3.6.41) shall be referenced by the notation "IntegerType":

IntegerType ::=
| NTEGER

| | NTEGER "{ " NamedNumberList "} "

NamedNumberList ::=
NamedNumber
| NamedNumberList "," NamedNumber

NamedNumber ::=
identifier "'(" SignedNumber ") "
| identifier ""(" DefinedValue ") "

SignedNumber ::=

number
| "-" number
18.2 Tlhe second alternative of "SignedNumber" shall not be used-ifithe "number" is zero.
18.3 Tlhe "NamedNumberList" is not significant in the definition of a type. It is used solely in the value notation

specified i 18.9.

18.4 Tlhe "valuereference" in "DefinedValue" shall becoftype integer.

NOTE - Since an "identifier" cannot be used to specify the value associated with "NamedNumber", the "DefinedValye" can never
be misinterpreted as an "IntegerValue". Therefore in the following case

a INTEGER :: =1

TL ::= INTEGER { a(2) }

TR ::= INTEGER { a(3), b(a)-}
clT2 ::=Db

dT2 ::=a

¢ denotes the value 1, since it cannpt be a reference to the second nor the third occurrence of a, and d denotes the valye 3.

18.5 Tlhe value of each.\'SignedNumber" or "DefinedValue" appearing in the "NamedNumberLis}" shall be
different, ahd represents a distinguished value of the integer type.

18.6 Hach "identifier™ appearing in the "NamedNumberList" shall be different.
18.7 Tlhe orderof the "NamedNumber"s in the "NamedNumberList" is not significant.

18.8 Tlhe'tag for types defined by this notation is universal class, number 2.

18.9 The value of an integer type shall be defined by the notation "IntegerValue", or when used as an "XMLValue",
by the notation "XMLIntegerValue". These productions are:

IntegerValue ::=
SignedNumber
| identifier

XMLIntegerValue ::=
SignedNumber
| "<" & identifier "/>"

18.10 The "identifier" in "IntegerValue" and in "XMLIntegerValue" shall be one of the "identifier"s in the
"IntegerType" with which the value is associated, and shall represent the corresponding number.

NOTE — When referencing an integer value for which an "identifier" has been defined, use of the "identifier" form of
"IntegerValue" and "XMLIntegerValue" should be preferred.

ITU-T Rec. X.680 (07/2002) 33

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

18.11

Within an instance of value notation for an integer type with a "NamedNumberList", any occurrence of a name

that is both an "identifier" from the "NamedNumberList" and a reference name shall be interpreted as the "identifier".

r, the values
erationltem"

contiguous,
pntiguous.

dNumber".

d a distinct
' which are

ot otherwise

y defined

', the value
regardless

0
2

qual
qual

e that is an
fined in the
maller. For

19 Notation for the enumerated type
19.1 The enumerated type (see 3.6.24) shall be referenced by the notation "EnumeratedType":
EnumeratedType ::=
ENUVERATED "{ " Enumerations "} "
Enumerations ::=
RootEnumeration
| RootEnumeration "," '"..." ExceptionSpec
| RootEnumeration "," '"..." ExceptionSpec "," AdditionalEnumeration
RootEnumeration ::= Enumeration
AdditionalEnumeration ::= Enumeration
Enumeration ::= Enumerationltem | Enumerationltem "," Enumeration
Enumerationltem ::= identifier | NamedNumber
NOTE 1] — Each value of an "EnumeratedType" has an identifier which is associated with a distinct integer. Howeve
themselyes are not expected to have any integer semantics. Specifying the "NamedNumber"Jalternative of "Enum
provideq control of the representation of the value in order to facilitate compatible extensionis:
NOTE 2 — The numeric values inside the "NamedNumber"s in the "RootEnumeration" are not necessarily ordered o
and the umeric values inside the "NamedNumber"s in the "AdditionalEnumeration"-are ordered but not necessarily c
19.2 Hor each "NamedNumber", the "identifier" and the "SignedNumber" shall be distinct fromp all other
"identifier's and "SignedNumber"s in the "Enumeration". Subclauses 182 and 18.4 also apply to each "Name
19.3 Hach "Enumerationltem" (in an "EnumeratedType") whicl is an "identifier" is successively assigng
non-negatiye integer. For the "RootEnumeration", the successive integers starting with 0, but excluding any
employed ip "Enumerationltem"s which are "NamedNumber's, are assigned.
NOTE - An integer value is associated with an "Enumerationltem" to assist in the definition of encoding rules. It is 1
used in the ASN.1 specification.
19.4 The wvalue of each new "Enumerationltem" shall be greater than all previous]
"AdditionalEnumeration"s in the type.
19.5 When a "NamedNumber" is used-in-defining an "Enumerationltem" in the "AdditionalEnumeration|
associated ith it shall be different from the value of all previously defined "Enumerationltem"s (in this type
of whether|the previously defined "Enumierationltem"s occur in the enumeration root or not. For example:
A = ENUMERATED {@&;* b, ., ¢(0)} -- invalid, since both 'a'" and 'c' 9§
B ::= ENUMERATED\{a, b, ., C, d(2)} -- invalid, since both 'c' and 'd' e
g ::= ENUMERATED/{a, b(3), ., ¢c(1)} -- valid, 'c' =1
0O ::= ENUMERATED {a, b, ., ¢(2)} -- valid, 'c' =2
19.6 Tlhe value(associated with the first "Enumerationltem” in the "AdditionalEnumeration" alternativ
"identifier"| (not a<'"NamedNumber") shall be the smallest value for which an "Enumerationltem" is not de
"RootEnunpetatien" and all preceding "Enumerationltem"s in the "AdditionalEnumeration" (if any) are s
example, the following are all valid:
A ::= ENUMERATED {a, b, ..., c} --¢c =2
B ::= ENUVERATED {a, b, ¢(0), ..., d --d=3
C ::= ENUMERATED {a, b, ., ¢(3), d} --d=4
D ::= ENUVERATED {a, z(25), ..., d} - d=1
19.7 The enumerated type has a tag which is universal class, number 10.
19.8 The value of an enumerated type shall be defined by the notation "EnumeratedValue", or when used as an

"XMLValue", by the notation "XMLEnumeratedValue". These productions are:

19.9

EnumeratedValue ::= identifier

XMLEnumeratedValue ::= "<" & identifier "/>"

the "EnumeratedType" sequence with which the value is associated.

34

ITU-T Rec. X.680 (07/2002)

The "identifier" in "EnumeratedValue" and "XMLEnumeratedValue" shall be equal to that of an "identifier" in

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

19.10 Within an instance of value notation for an enumerated type, any occurrence of a name that is both an
"identifier" from the "Enumeration" and a reference name shall be interpreted as the "identifier".

20 Notation for the real type

20.1 The real type (see 3.6.54) shall be referenced by the notation "RealType":
RealType ::= REAL

20.2 The real type has a tag which is universal class, number 9.

20.3 The values of the real type are the values PLUS- | NFI NI TY and M NUS- | NFI NI TY together with the real
numbers capable of being specified by the following formula involving three integers, M, B and E:

M _x BE

where M ig called the mantissa, B the base, and E the exponent.

204 The real type has an associated type which is used to give precision to the definition ofithe abstra¢t values of
the real type and is also used to support the value and subtype notations of the real type.
NOTE + Encoding rules may define a different type which is used to specify encodings, or may/specify encodjngs without
reference to the associated type. In particular, the encoding in BER and PER provides a Binary~Coded Decimal (B(D) encoding
if "base| is 10, and an encoding which permits efficient transformation to and from hardware floating point reprgsentations if
"base" i 2.

20.5 Tlhe associated type for value definition and subtyping purposes is (with.normative comments):

SEQUENCE {

mant i ssa | NTEGER,

base | NTEGER (2| 10),

exponent I NTEGER
-- The associated mathematical real nunber is "nantissa"
-- multiplied by "base" raised to thepower "exponent”

}
NOTE 1] — Non-zero values represented by "base" 2 and by “base" 10 are considered to be distinct abstract values|even if they
evaluate|to the same real number value, and may carry different application semantics.
NOTE 2 — The notation REAL (W TH COVPONENTS, {»,%. , base (10)}) can be used to restrict the set of valugs to base 10
abstract palues (and similarly for base 2 abstract values).

NOTE 3 — This type is capable of carrying an,eXact finite representation of any number which can be stored in typical floating
point hagdware, and of any number with a finite character-decimal representation.

20.6 Tlhe value of a real type shall’be.defined by the notation "RealValue", or when used in an "XMLVajue", by the
notation "XYMLRealValue":

RealValue ::=
NumericRealValue
| SpecialRealValue

Numeri¢RealValue ::=
realnumber
| "-" realnumber
[SequenceValue -- Value of the associated sequence type

SpecialRealValue ::=
PLUS- I NFI NI TY
| M NUS- I NFI NI TY

The second and third alternatives of "NumericRealValue" shall not be used for zero values.

XMLRealValue ::=
XMLNumericRealValue | XMLSpecialRealValue

XMLNumericRealValue ::=
realnumber
| "-" realnumber

The second alternative of "XMLNumericRealValue" shall not be used for zero values.

ITU-T Rec. X.680 (07/2002) 35

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

XMLSpecialRealValue ::=
"<" & PLUS- INFINITY "/>" | "<" & M NUS- | NFI NI TY "/>"

20.7 When the "realnumber" notation is used it identifies the corresponding "base" 10 abstract value. If the
"RealType" is constrained to "base" 2, the "realnumber" identifies the "base" 2 abstract value corresponding either to the
decimal value specified by the "realnumber" or to a locally-defined precision if an exact representation is not possible.

21 Notation for the bitstring type

21.1 The bitstring type (see 3.6.6) shall be referenced by the notation "BitStringType":

21.2 T
NOTE

21.3 il

21.4 T
number of
with succeq

21.5 H
NOTE 1

NOTE 2
"Named

the last

21.6 T
1 bits other

21.7 V
arbitrarily
therefore e
0 bits.

21.8 T

BitStringType ::=
BI T STRI NG
| BIT STRING"{" NamedBitList "} "

NamedBitList ::=
NamedBit
| NamedBitList "," NamedBit

NamedBit ::=
identifier "(" number ") "
| identifier " (" DefinedValue ") "

he first bit in a bit string is called the leading bit. The final bit in a bit stringsiscalled the trailing bi
This terminology is used in specifying the value notation and in defining encoding'rules.

he "DefinedValue" shall be a reference to a non-negative value of type integer.

he value of each "number" or "DefinedValue" appearing in the"*NamedBitList" shall be differen
a distinguished bit in a bitstring value. The leading bit ef'the bit string is identified by the "nui
ding bits having successive values.

ach "identifier" appearing in the "NamedBitList" shallybe different.

— The order of the "NamedBit" production sequences injthe "NamedBitList" is not significant.

— Since an "identifier" that appears within the "NamedBitList" cannot be used to specify the value assod
Bit", the "DefinedValue" can never be misinterpreted as an "IntegerValue". Therefore in the following case:

a INTEGER ::= 1
T1 ::= INTEGER { a(2) }
T2 ::= BIT STRING { a(3), b(a) }

ccurrence of a denotes the valuel,\as it cannot be a reference to the second nor the third occurrence of a.

he presence of a "NamedBitList" has no effect on the set of abstract values of this type. Values
than the named bits are'‘permitted.

Vhen a "NamedBifList" is used in defining a bitstring type ASN.1 encoding rules are free to add

hsure that different semantics are not associated with such values which differ only in the numbe

his,type has a tag which is universal class, number 3.

21.9 T

t.

, and is the
mber" zero,

iated with a

containing

or remove)

any trailing Q_bits to (or from) values that are being encoded or decoded. Application desigpers should

r of trailing

iIsed as an

hesvalue of a l‘\ifcfﬁng fvpp shall be defined by the notation "]Qi‘erﬁ'ng\/a]nP"7 or_when

"XMLValue", by the notation "XMLBItStringValue". These productions are:

36

BitStringValue ::=
bstring
| hstring
| "{ " IdentifierList "} "
| l'{ " l'} "
| CONTAI Nl NG Value
IdentifierList ::=
identifier
| IdentifierList "," identifier

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

21.10

21.11
21.12

ISO/IEC 8824-1:2002 (E)

XMLBitStringValue ::=
XMLTypedValue
| Xmlbstring
| XMLIdentifierList
| empty

XMLIdentifierList ::=
"<" & identifier "/>"
| XMLIdentifierList "'<" & identifier "/>"

The "XMLTypedValue" alternative shall not be used unless the bitstring has a contents constraint which
includes an ASN.1 type and does not include an ENCODED BY. If this alternative is used, the "XMLTypedValue" shall
be a value of the ASN.1 type in the contents constraint.

The "XMLIdentifierList" alternative shall not be used unless the bitstring has a "NamedBitList".

Hach "identifier" in "BitStringValue" or "XMLBItStringValue" shall be the same as an "identi

"BitStringType" production sequence with which the value is associated.

21.13
21.14

Tlhe "empty" alternative denotes a bitstring with no bits.

It the bitstring has named bits, the "BitStringValue" or "XMLBItStringValue" netation denotes

value with|ones in the bit positions specified by the numbers corresponding to the "identifies"s, and with a

Z€ro.

NOTE - For a "BitStringType" that has a "NamedBitList", the "{" "} " production sequence in”"BitStringValue" and
in "XMIBitStringValue" are used to denote the bitstring which contains no one bits.

21.15

When using the "bstring" or "xmlbstring" notation, the leading bit of-the bitstring value is on the |

trailing bit pf the bitstring value is on the right.

21.16

When using the "hstring" notation, the most significant bit¢of each hexadecimal digit corresp

leftmost bi{ in the bitstring.

NOTE - This notation does not, in any way, constrain the way encoding rules place a bitstring into octets for transfer.

21.17 The "hstring" notation shall not be used unless the bitstring value consists of a multiple of four bits.
EXAMPLH

"JA98A' H
and

'11010100110001010' B

are alternatjive notations for the same bitstring value. If the type was defined using a "NamedBitList", the (sin

zero does 1f

the trailing|zero does form part efithe value, which is thus 16 bits in length.

21.18

Tlhe CONTAI NI NG ‘alternative can only be used if there is a contents constraint on the bitstring

includes CPNTAI NI NG. _Fhe'"Value" shall then be value notation for a value of the "Type" in the "Contents|
(see ITU-T|Rec. X.682{ISO/IEC 8824-3, clause 11).

NOTE -+ This valua¢hotation can never appear in a subtype constraint because ITU-T Rec. X.682 | ISO/IEC 8824-3

forbids

furthér jConstraints after a "ContentsConstraint”, and the above text forbids its use unless the gov

"ContenfsConsfraint".

21.19

fier" in the

a bitstring
1 other bits

the "empty"

eft, and the

nds to the

ble) trailing

ot form part of the value, which is thus 15 bits in length. If the type was defined without a "NanjedBitList",

type which
Constraint"

clause 11.3
ernor has a

The CONTAI NI NG alternative shall be used if there is a contents constraint on the bitstring type whi

contain ENCODED BY.

22
22.1

22.2
22.3

Notation for the octetstring type

The octetstring type (see 3.6.49) shall be referenced by the notation "OctetStringType":
OctetStringType ::= OCTET STRI NG

This type has a tag which is universal class, number 4.

The value of an octetstring type shall be defined by the notation "OctetStringValue", or when

"XMLValue", by the notation "XMLOctetStringValue". These productions are:

ITU-T Rec. X.680 (07/2002)

ch does not

used as an

37

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

224

22.5

22.6

the first od

contained

22.7

semi-octet

22.8

additional frailing zero hexadecimal digit. The "xmlhstring" shall not be an odd numberef hexadecimal digits.

22.9

includes C(
(see ITU-T

NOTE
forbids
"Conte

22.10
not contai

23
23.1

23.2
233

the notatio

24
24.1

38

OctetStringValue ::=
bstring
| hstring
| CONTAI Nl NG Value

XMLOctetStringValue ::=
XMLTypedValue
| xmlhstring

The "XMLTypedValue" alternative shall not be used unless the octetstring has a contents constraint which
includes an ASN.1 type and does not include an ENCODED BY. If this alternative is used, the "XMLTypedValue" shall
be a value of the ASN.1 type in the contents constraint.

In specifying the encoding rules for an octetstring, the octets are referenced by the terms first octet and trailing
octet, and the bits within an octet are referenced by the terms most significant bit and least significant bit.

V

d

W

I

T

n

T
n|

2

T
il

Vhen using the "bstring" notation, the left-most bit of the "bstring" notation shall be the most signi
tet of the octetstring value. If the "bstring" is not a multiple of eight bits, it shall be inferpfe
dditional zero trailing bits to make it the next multiple of eight.

Vhen using the "hstring" or "xmlhstring" notation, the left-most hexadecimal digit shall be the mos
bf the first octet.

" the "hstring" is an odd number of hexadecimal digits, it shall be interpretéd as if it contain

he CONTAI NI NG alternative can only be used if there is a contents ¢onstraint on the octetstring
DNTAI NI NG The "Value" shall then be value notation for a value.0f the "Type" in the "Contents
Rec. X.682 | ISO/IEC 8824-3, clause 11).

This value notation can never appear in a subtype constraint because ITTU-T Rec. X.682 | ISO/IEC 8824-3
further constraints after a "ContentsConstraint", and the above' text forbids its use unless the gov
sConstraint".

he CONTAI NI NG alternative shall be used if there is\arcontents constraint on the octetstring type
ENCODED BY.

lotation for the null type

he null type (see 3.6.44) shall be refeérenced by the notation "NullType":
NullType ::= NULL

his type has a tag which is universal class, number 5.

he value of a null type shall be referenced by the notation "NullValue", or when used as an "XMI
) "XMLNullValu¢".) These productions are:

NullValuge:= NULL
XMLNullValue ::= empty

ficant bit of
ted as if it

significant

ed a single

type which
Constraint"

clause 11.3
ernor has a

which does

Value", by

N

Notationm for sequence types

The notation for defining a sequence type (see 3.6.60) shall be the "SequenceType":

SequenceType ::=
SEQJE’\CE "{ i "} ”
| SEQUENCE '"{" ExtensionAndException OptionalExtensionMarker "} "
| SEQUENCE "{" ComponentTypeLists "}"

ExtensionAndException ::="..." | "..." ExceptionSpec
OptionalExtensionMarker ::="," ". .. " | empty

ComponentTypeLists ::=
RootComponentTypeList
| RootComponentTypeList "," ExtensionAndException ExtensionAdditions

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

OptionalExtensionMarker

| RootComponentTypeList "," ExtensionAndException ExtensionAdditions
ExtensionEndMarker "," RootComponentTypeList

| ExtensionAndException ExtensionAdditions ExtensionEndMarker ","
RootComponentTypeList

| ExtensionAndException ExtensionAdditions OptionalExtensionMarker

RootComponentTypeList ::= ComponentTypeList
ExtensionEndMarker ::="," ".. . "

ExtensionAdditions ::=
"," ExtensionAdditionList
| empty

ExtensionAdditionList ::=
ExtensionAddition
| ExtensionAdditionList "," ExtensionAddition

ExtensionAddition ::=
ComponentType
| ExtensionAdditionGroup

ExtensionAdditionGroup ::="[[" VersionNumber ComponentTypeList "]]"
VersionNumber ::= empty | number ": "

ComponentTypeList ::=
ComponentType
| ComponentTypeList "," ComponentType

ComponentType ::=
NamedType
| NamedType OPTI ONAL
| NamedType DEFAULT Value
| COVPONENTS OF Type

24.2 When the "ComponentTypeLists" production occurs within the definition of a module for which automatic
tagging is pelected (see 12.3), and none of the oc¢currences of "NamedType" in any of the first three altefnatives for
"ComponentType" contains a "TaggedType'()then automatic tagging transformation is selected for|the entire
"ComponentTypeLists", otherwise it is not.

NOTE []— The use of the "TaggedType"'retation within the definition of the list of components for a sequence type gives control

of tags fo the specifier, as opposed to\automatic assignment by the automatic tagging mechanism. Therefore, in the following

case:
T ::= SEQUENCE { a~\NTEGER b [1] BOOLEAN, ¢ OCTET STRI NG }
no autorhatic tagging is appliedto the list of components a, b, c, even if this definition of sequence type T occurs within a module
for which automatic tagging is selected.

NOTE 2 — Only thos¢ oceurrences of the "ComponentTypeLists" production appearing within a module where automatic tagging
is select¢d are candidates for transformation by automatic tagging.

24.3 Tlhe deécision to apply the automatic tagging transformation is taken individually for each oc¢urrence of
itFypeLists" and prior to the COMPONENTS OF transformation specified by 24.4. However, 4s specified
in 24.7 to 24-9--the-attomatie-tagsine-transformation-Gfapphed)is-appledufter-the-CovPENENFS—S—transformation.

B 55

NOTE - The effect of this is that the application of automatic tags is suppressed by tags explicitly present in the
"ComponentTypeLists", but not by tags present in the "Type" following COVPONENTS OF.

24.4 "Type" in the "COVPONENTS OF Type" notation shall be a sequence type. The "COMPONENTS OF Type"
notation shall be used to define the inclusion, at this point in the list of components, of all the component types of the
referenced type, except for any extension marker and extension additions that may be present in the "Type". (Only the
"RootComponentTypeList" of the "Type" in the "COMPONENTS OF Type" is included; extension markers and extension
additions, if any, are ignored by the "COVMPONENTS OF Type" notation.) Any subtype constraint applied to the
referenced type is ignored by this transformation.

NOTE - This transformation is logically completed prior to the satisfaction of the requirements in the following subclauses.

24.5 The following subclauses each identify a series of occurrences of "ComponentType" in either the root or the
extension additions or both. The rule of 24.5.1 shall apply to all such series.

ITU-T Rec. X.680 (07/2002) 39

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

24.5.1 Where there are one or more consecutive occurrences of "ComponentType" that are all marked OPTI ONAL or
DEFAULT, the tags of those "ComponentType"s and of any immediately following component type in the series shall be
distinct (see clause 30). If automatic tagging was selected, the requirement that tags be distinct applies only after
automatic tagging has been performed, and will always be satisfied.

24.5.2 Subclause 24.5.1 shall apply to the series of "ComponentType"s in the root.

24.5.3 Subclause 24.5.1 shall apply to the complete series of "ComponentType"s in the root or in the extension
additions, in the textual order of their occurrence in the type definition (ignoring all version brackets and ellipsis
notation). (See also 48.7.)

24.6 When the third or fourth alternative of "ComponentTypeLists" is used, all "ComponentType"s in extension
additions shall have tags which are distinct from the tags of the textually following "ComponentType"s up to and
including the first such "ComponentType" that is not marked OPTIONAL or DEFAULT in the trailing
"RootComponentTypeList", if any. (See also 48.7.)

24.7 Tlhe automatic tagging transformation of an occurrence of "ComponentTypeLists" is logically performed after
the transfgrmation specified by 24.4, but only if 24.2 determines that it shall apply to that\ocqurrence of
"ComponentTypeLists". Automatic tagging transformation impacts each "ComponentType"| of the
"ComponentTypeLists" by replacing the "Type" originally in the "NamedType" productionwith a replacement
"TaggedType" occurrence specified in 24.9.

24.8 If automatic tagging is in effect and the "ComponentType"s in the extensiom-foot have no tags, then no
"ComponentType" within the "ExtensionAdditionList" shall be a "TaggedType".

24.9 If automatic tagging is in effect, the replacement "TaggedType" is specified as follows:
a) the replacement "TaggedType" notation uses the "Tag Type" alternative;
the "Class" of the replacement "TaggedType" is empty (i.e., tagging is context-specific);

c) the "ClassNumber" in the replacement "TaggedType" isctag value zero for the first "CompongntType" in
the "RootComponentTypeList", one for the second, and so on, proceeding with increasing tag fumbers;

d) the "ClassNumber" in the replacement "TaggedType" of the first "ComponentType" in the
"ExtensionAdditionList" is zero if the "RootCemponentTypeList" is missing, else it is one greater than
the largest "ClassNumber" in the "RootCoriponentTypeList", with the next "ComponentType" in the
"ExtensionAdditionList" having a "ClassNumber" one greater than the first, and so on, procgeding with
increasing tag numbers;

e) the "Type" in the replacement "TaggedType" is the original "Type" being replaced.

NOTE 1| — The rules governing specification ofiimplicit tagging or explicit tagging for replacement "TaggedType"s pre provided
by 30.6] Automatic tagging is always implicit tagging unless the "Type" is a choice type or an open type n¢tation, or a
"DummyReference" (see ITU-T Rec. X.683ISO/IEC 8824-4, 8.3), in which case it is explicit tagging.

NOTE 2 — Once 24.7 is satisfied, the ‘tags of the components are completely determined, and are not modified evien when the
sequencg type is referenced in thedefinition of a component within another "ComponentTypeLists" for which automatic tagging
transformation applies. Thus, in.the\following case:
T ::= SEQIENCE {ya~ Ta, b Th, ¢ Tc}
E ::= SEQIEENCEN{.f1 E1, f2 T, f3 E3}
automatic tagging applied to the components of E never affects the tags attached to components a, b and ¢ of T, whatever the
tagging gnvironmeht of T. If T is defined in an automatic tagging environment and E is not in an automatic tagging ¢nvironment,
automatic tagging-is still applied to components a, b and ¢ of T.
NOTE 3]— When a sequence type appears as the "Type" in "COVPONENTS OF Type", each occurrence of "Component[ype" in it is
duplicat¢d\by-the application of 24.4 prior to the possible application of automatic tagging to the referencing sequencg type. Thus,
in the foltowing case:
T::= SEQIEENCE { a Ta, b SEQUENCE { b1 T1, b2 T2, b3 T3}, c¢ Tc}
W::= SEQUENCE { x W, COVPONENTSCOF T, y W }
the tags of a, b, and ¢ within T need not be the same as the tags of a, b, and ¢ within Wif Whas been defined in an automatic

tagging environment, but the tags of bl, b2 and b3 are the same in both T and W In other words, the automatic tagging
transformation is only applied once to a given "ComponentTypeLists".

NOTE 4 — Subtyping has no impact on automatic tagging.

NOTE 5 — When automatic tagging is in place, insertion of new components at any location other than the extension insertion
point (see 3.6.29) may result in changes to other components due to the side effect of modifying the tags thus causing
interworking problems with an older version of the specification.

24.10 If OPTI ONAL or DEFAULT are present, the corresponding value may be omitted from a value of the new type.

40 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

24.11 If DEFAULT occurs, the omission of a value for that type shall be exactly equivalent to the insertion of the value
defined by "Value", which shall be a value notation for a value of the type defined by "Type" in the "NamedType"
production sequence.

24.12 The value corresponding to an "ExtensionAdditionGroup" (all components together) is optional. However, if
such a value is present, then the value corresponding to the components within the bracketed "ComponentTypeList" that
are not marked OPTI ONAL or DEFAULT shall be present.

24.13 The "identifier"s in all "NamedType" production sequences of the "ComponentTypeLists" (together with those
obtained by expansion of COVPONENTS OF) shall all be distinct.

24.14 A value for a given extension addition type shall not be specified unless there are values specified for all
extension addition types not marked OPTI ONAL or DEFAULT that lie logically between the extension addition type and
the extension root.

NOTE 1 — Where the type has grown from the extension root (version 1) through version 2 to version 3 by the addition of
extensiofradditions;the—presence T encoding—of —amy—additiomrfronrversiomr—3-Tequiresthepresernce of amemgoding of all
addition$ in version 2 that are not marked OPTI ONAL or DEFAULT.

NOTE 2 - "ComponentType'"s that are extension additions but not contained within an "ExtensionAdditionGrfoup" should always
be encodled if they are not marked OPTI ONAL or DEFAULT, except when the abstract value is being relayed frem a sender that is
using an|earlier version of the abstract syntax in which the "ComponentType" is not defined.

NOTE 3] Use of the "ExtensionAdditionGroup" production is recommended because:
4) it can result in more compact encodings depending on the encoding rules (e.g., PER);

) the syntax is more precise in that it clearly indicates that a value of a type defined"in the "ExtensionAddifionList" and
not marked OPTI ONAL or DEFAULT should always be present in an encoding if the’extension addition group in which
it is defined is encoded (compare with Note 1);

¢) the syntax makes it clear which types in an "ExtensionAdditionList" must'as’a group be supported by an gpplication.

24.15 A "VersionNumber" shall be used only if all "ExtensionAdditions"s and "ExtensionAdditionAlternatives",
within the module are "ExtensionAdditionGroup"s or "ExtensionAdditionAdternativesGroup"s with "VersiopNumber'"s.
The "numbjer" in each "VersionNumber" of an "ExtensionAdditionGroup” shall be greater than or equal to twp, and shall
be greater than the "number" in any preceding "ExtensionAdditionGroup" within an insertion point.

NOTE 1| — The convention used here is that the specification with ne‘extension addition groups is version 1, thus the first added
extensioh addition group will have a number greater than or equal to 2. Where a single "ExtensionAddition" is npeded for an
"ExtensipnAdditions", an "ExtensionAdditionGroup" can be used with a single "ExtensionAddition".

NOTE 2 — The restrictions on use of "VersionNumber" apply only within a single module and impose no constraints|on imported
types.

24.16 All sequence types have a tag which is universal class, number 16.
NOTE - Sequence-of types have the same tag as\sequence types (see 25.2).

24.17 The notation for defining a.walue of a sequence type shall be "SequenceValue", or when fised as an
"XMLValyge", "XMLSequenceValue". \These productions are:

SequenceValue ::=
"{" €ComponentValueList "} "

| H{ ” "} "
ComponentValueList ::=

NamedValue
| ComponentValueList "," NamedValue

XMLSequenceValue ::=
XMLComponentValueList
| empty

XMLComponentValueList ::=
XMLNamedValue
| XMLComponentValueList XMLNamedValue

24.18 The"{" "}" or "empty" notation shall only be used if:

a) all "ComponentType" sequences in the "SequenceType" are marked DEFAULT or OPTI ONAL, and all
values are omitted; or

b) the type notation was SEQUENCE{ } .

ITU-T Rec. X.680 (07/2002) 41

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

24.19 There shall be one "NamedValue" or "XMLNamedValue" for each "NamedType" in the "SequenceType"
which is not marked OPTI ONAL or DEFAULT, and the values shall be in the same order as the corresponding
"NamedType" sequences.

25 Notation for sequence-of types
25.1 The notation for defining a sequence-of type (see 3.6.61) from another type shall be the "SequenceOfType".

SequenceOfType ::= SEQUENCE OF Type | SEQUENCE OF NamedType
NOTE - If an initial letter which is upper-case is needed for an XML tag name used in XML Value Notation for the
"SequenceOfType", then the first alternative should be used. (The XML tag name is then formed from the name of the "Type".)
25.2 All sequence-of types have a tag which is universal class, number 16.
NOTE - Sequence types have the same tag as sequence-of types (see 24.16).

25.3 Tlhe notation for defining a value of a sequence-of type shall be the "SequenceOfValue", or when| used as an
"XMLValyge", "XMLSequenceOfValue". These productions are:

SequenceOfValue ::=
"{" ValueList "} "
| "{" NamedValueList "} "

| "{ " "} "

ValueList ::=
Value
| ValueList "," Value

NamedValueList ::=
NamedValue
| NamedValueList "," NamedValue

XMLSequenceOfValue ::=
XMLYValueList
| XMLDelimitedItemList
| XMLSpaceSeparatedList
| empty

XMLValueList ::=
XMLValueOrEmpty
| XMLValueOrEnpty XMLValueList

XMLValueOrEmpty, ::=
XMLValue
| "<" & NonParameterizedTypeName "/>"

XMLSpaceSeparatedList ::=
XMLValueOrEmpty
| XMLValueOrEmpty " " XMLSpaceSeparatedList

XMLDelimitedItemList ::=
XMLDelimitedItem

1 NA LDl LYk 78 NALL Dol LV PN I it
| AV UTTIIIMTICUTICIIT ATV CTimmiCuT iCTIrTTS

XMLDelimitedItem ::=
"<" & NonParameterizedTypeName ">" XMLValue
"</" & NonParameterizedTypeName '">"
| "<" & identifier ">'" XMLValue "</" & identifier ">"

The "{" "}" or "empty" notation is used when the "SequenceOfValue" or "XMLSequenceOfValue" is an empty list.
NOTE 1 — Semantic significance may be placed on the order of these values.

NOTE 2 — The "XMLSpaceSeparatedList" production is not used in this Recommendation | International Standard, and is not
used in XML Value Notation. It is provided in order to allow specification of the use of "XMLSpaceSeparatedList" in encodings
of the "IntegerType", "RealType", "ObjectldentifierType", "RelativeOIDType", and the Gener al i zedTi me and UTCTi ne useful
types. It is also possible to specify use of "XMLValueList" instead of "XMLDelimitedItemList" for some instances of "SEQUENCE
OF SEQUENCE" and "SEQUENCE OF SET".

42 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

254 If the"XMLValue" for the component is "empty", then the second alternative of "XMLValueOrEmpty" shall
be chosen to represent that value of the component.

25.5 The "XMLValueList" or "XMLDelimitedItemList" productions shall be used in accordance with column 2 of
Table 5, where the "Type" of the component is listed in column 1.

Table 5 — "XMLSequenceOfValue" and "XMLSetOfValue" notation for ASN.1 types

ASN.1 type XML value notation

BitStringType XMLDelimitedItemList

BooleanType XMLValueList

CharacterStringType XMLDelimitedItemList

ChoiceType XMLValueList

ConstrainedType See 25 7

DefinddType See 25.9

EmbeddedPDVType XMLDelimitedItemList

EnumgratedType XMLValueList

External Type XMLDelimitedItemList

InstangeOfType See ITU-T Rec. X.681 | ISO/IEC 8824-2, C.9

IntegefType XMLDelimitedItemList

NullType XMLValueList

ObjectClassFieldType See ITU-T Rec. X.681 | ISO/IEC 8824-2, 4,10 and 14.11

ObjecfldentifierType XMLDelimitedItemList

OctetJtringType XMLDelimitedItemList

RealType XMLDelimitedItemList

RelatiyeOIDType XMLDelimitedItemList

SelectionType See 25.8

SequenceType XMLDelimitedItemDist

Seque]lceOfT ype XMLDelimitedifernList

SetType XMLDelimitedItemList

SetOfType XMLDelifnitedItemList

TaggefiType See 25.6

UsefulType (GeneralizedTime) XMLDelimitedItemList

UsefulType (UTCTime) XMLDelimitedItemList

UsefulType (ObjectDescriptor) XMLDelimitedItemList

TypeFromObject See ITU-T Rec. X.681 | ISO/IEC 8824-2, 15.6

Value$etFromObjects See ITU-T Rec. X.681 | ISO/IEC 8824-2, 15.6
25.6 It the "Typg“\‘of the component is a "TaggedType" then the type which detefmines the
"XMLSeqyenceOfValu€" notation shall be the "Type" in the "TaggedType" (see 30.1). If this is itself a "TaggedType",
then this sybclausg 25:6 shall be recursively applied.
25.7 If the—"Type" of the component is a "ConstrainedType" then the type which detefmines the
"XMLSequeneeOfValue" notation shall be the "Type" in the "ConstrainedType" (see 45.1). If this|is itself a

"ConstrainedType", then this subclause 25.7 shall be recursively applied.

25.8 If the "Type" of the component is a "SelectionType" then the type which determines the
"XMLSequenceOfValue" notation shall be the type referenced by the "SelectionType" (see clause 29).

25.9 If the "Type"of the component is a "DefinedType" then the type which determines the
"XMLSequenceOfValue" notation shall be the type referenced by the "DefinedType" (see 13.1).

25.10 The second alternative of "XMLDelimitedItem" shall be used if and only if the "SequenceOfType" contains
an "identifier", and the "identifier" in the "XMLDelimitedItem" shall be that "identifier".

25.11 If the first alternative of "XMLDelimitedItem" is used, then if the component of the sequence-of type (after
ignoring any tags) is a "typereference" or an "ExternalTypeReference", then the "NonParameterizedTypeName" shall be
that "typereference" or "ExternalTypeReference", otherwise it shall be the "xmlasnltypename" specified in Table 4
corresponding to the built-in type of the component.

ITU-T Rec. X.680 (07/2002) 43

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

25.12 If the first alternative of "SequenceOfType" is used, then the first alternative of "SequenceOfValue" shall be
used. Each "Value" in the "ValueList" of "SequenceOfValue", and each "XMLValue" in the alternatives of
"XMLSequenceOfValue" shall be of the type specified in the "SequenceOfType".

25.13 If the second alternative of "SequenceOfType" is used, then the second alternative of "SequenceOfValue"
shall be used, and each "NamedValue" in the "NamedValueList" shall contain a "Value" of the type specified in the
"NamedType" of the "SequenceOfType". The "identifier" in the "NamedValue"s shall be the "identifier" in the
"NamedType" of the "SequenceOfType".

26 Notation for set types
26.1 The notation for defining a set type (see 3.6.64) from other types shall be the "SetType":

SetType ::=
SET M
| SET"{" ExtensionAndException OptionalExtensionMarker "}"
| SET"{" ComponentTypeLists "}"

"ComponentTypeLists", "ExtensionAndException" and "OptionalExtensionMarker" are specified in'24.1.

26.2 "Type" in the "COMPONENTS OF Type" notation shall be a set type. The "COMPONENIS, OF Type" ndtation shall
be used to fefine the inclusion, at this point in the list of components, of all the componenttypes of the referpnced type,
except forl any extension marker and extension additions that may be preseit jin the "Type". [(Only the
"RootComponentTypeList" of the "Type" in the "COMPONENTS OF Type" is included; extension markers anfl extension
additions, |f any, are ignored by the "COWMPONENTS OF Type" notation.) Amy, subtype constraint applied to the
referenced [type is ignored by this transformation.

NOTE — This transformation is logically completed prior to the satisfaction of thg requirements in the following subclpuses.

26.3 Tlhe "ComponentType" types in a set type shall all have different tags (see clause 30). The tag df each new
"ComponentType" added to the "ExtensionAdditions" shall be caiepically greater (see 8.6) than those df the other
componentp in the "ExtensionAdditions".

NOTE - Where the "TagDefault" for the module in which this natatien appears is AUTOVATI C TAGS, this is achiev¢d regardless
of the adtual "ComponentType"s, as a result of the application of 24.7. (See also 48.7.)

26.4 Subclauses 24.2 and 24.7 to 24.13 also apply to set types.

26.5 All set types have a tag which is universalelass, number 17.
NOTE — Set-of types have the same tag as set types (see 27.2).

26.6 There shall be no semantics associdted with the order of values in a set type.

26.7 Tlhe notation for defining the jvalue of a set type shall be "SetValue", or when used as an "XMLValue",
"XMLSetMalue". These productions are:

SetValue ::=
"{ "\"ComponentValueList "} "

| "{ ", "} "

XMLiSetValue ::=
XMLComponentValueList

| empty

"ComponentvalueLlst and "AXMLComponentValueList™ are speciiied i 24.1/.

26.8 The "SetValue" and "XMLSetValue" shall only be "{" "}" and "empty" respectively if:

a) all "ComponentType" sequences in the "SetType" are marked DEFAULT or OPTI ONAL, and all values are
omitted; or

b) the type notation was SET{}.

26.9 There shall be one "NamedValue" or "XMLNamedValue" for each "NamedType" in the "SetType" which is
not marked OPTI ONAL or DEFAULT.

NOTE — These "NamedValue"s or "XMLNamedValue"s may appear in any order.

44 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

27 Notation for set-of types

27.1 The notation for defining a set-of type (see 3.6.65) from another type shall be the "SetOfType":

SetOfType ::=
SET OF Type
| SET OF NamedType

NOTE - If an initial letter which is upper-case is needed for an XML tag name used in XML Value Notation for the "SetOfType",
then the first alternative should be used. (The XML tag name is then formed from the name of the "Type".)

27.2 All set-of types have a tag which is universal class, number 17.
NOTE — Set types have the same tag as set-of types (see 26.5).

27.3 The notation for defining a value of a set-of type shall be the "SetOfValue", or when used as an "XMLValue",
"XMLSetOfValue". These productions are:

SetOfValue ::=
"{" ValueList "} "
| "{'" NamedValueList "} "
I "{ " "} "

XMLSetOfValue ::=
XMLYValueList
| XMLDelimitedItemList
| XMLSpaceSeparatedList
| empty

"ValueList[, "NamedValueList" and the alternatives of "XMLSetOfValue"\ar¢ specified in 25.3. The '{" "}" or
"empty" ndtation is used when the "SetOfValue" or "XMLSetOfValue" is anyempty list.
NOTE 1|- Semantic significance should not be placed on the order of these values.
NOTE 2]- Encoding rules are not required to preserve the order of thes¢ values.

NOTE 3 — The set-of type is not a mathematical set of values, thus,'as an example, for SET OF | NTEGER the valugs { 1 } and
{ 1 1]} are distinct.

274 If the first alternative of "SetOfType" is used, then the first alternative of "SetOfValue" shall be yised. Each
"Value" in the "ValueList" of "SetOfValue", and each "XMLValue" in the alternatives of "XMLSetOfValue'| shall be of
the type spgcified in the "SetOfType".

27.5 If the second alternative of "SetOfType" is used, then the second alternative of "SetOfValue" shall be used,
and each [NamedValue" sequence in the, ('NamedValueList" shall contain a "Value" of the type specified in the

"NamedType" of the "SetOfType". The."identifier" in the "NamedValue"s shall be the "identifier" in the "NpmedType"
of the "SetOQfType".

28

2

Notation for choice types

28.1 Tlhe notation for:defining a choice type (see 3.6.13) from other types shall be the "ChoiceType":
ChoiceType ::= CHO CE "{" AlternativeTypeLists "} "

AlternativeTypeLists ::=
RootAlternativeTypeList
| RootAlternativeTypeList ","
ExtensionAndException ExtensionAdditionAlternatives
OptionalExtensionMarker

RootAlternativeTypeList ::= AlternativeTypeList

ExtensionAdditionAlternatives ::=
""" ExtensionAdditionAlternativesList
| empty

ExtensionAdditionAlternativesList ::=
ExtensionAdditionAlternative
| ExtensionAdditionAlternativesList "," ExtensionAdditionAlternative

ITU-T Rec. X.680 (07/2002) 45

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

ExtensionAdditionAlternative ::=
ExtensionAdditionAlternativesGroup
| NamedType

ExtensionAdditionAlternativesGroup ::=
"[[" VersionNumber AlternativeTypeList '"]]"

AlternativeTypeList ::=

NamedType
| AlternativeTypeList "," NamedType
NOTE-"T ::= CHOCE { a A }"and Aare not the same type, and may be encoded differently by encoding rules.
28.2 When the "AlternativeTypeLists" production occurs within the definition of a module for which automatic

tagging is selected (see 12.3), and none of the occurrences of "NamedType" in any "AlternativeTypeList" contains a
"TaggedType", the automatic tagging transformation is selected for the entire "AlternativeTypeLists", otherwise it is not.

28.3 Tlhe types defined in the "AlternativeTypeList" productions in an "AlternativeTypeLists" shallhhaive distinct
tags (see clause 30, and 48.7). If automatic tagging was selected, the requirement that tags be distinct.applies only after
automatic tagging has been performed, and will always be satisfied.

28.4 If aufomatic tagging is in effect and the "NamedType"s in the extension root have no tags, then no "NpmedType"
within the [ExtensionAdditionAlternativesList" shall be a tagged type.

28.5 The gqutomatic tagging transformation impacts each "NamedType" of the "AlternativeTypeLists" by rgplacing the
"Type" originally in the "NamedType" production with a replacement "TaggedType'"s The replacement "TaggedType" is
specified a$ follows:

the replacement "TaggedType" notation uses the "Tag Type" alt€enative;
the "Class" of the replacement "TaggedType" is empty (i.e., tdgging is context-specific);

c) the "ClassNumber" in the replacement "TaggedType" is\tag value zero for the first "NamedT[ype" in the
"RootAlternativeTypeList", one for the second, and $0 on, proceeding with increasing tag numpers;

d) the "ClassNumber" in the replacement "TaggedType" of the first "NamedTypg" in the
"ExtensionAdditionAlternativesList" is one*\greater than the largest "ClassNumbef" in the
"RootAlternativeTypeList", with the next-"*NamedType" in the "ExtensionAdditionAlterpativesList"
having a "ClassNumber" one greater than the first, and so on, proceeding with increasing tag nhimbers;

e) the "Type" in the replacement "Tagge@Type" is the original "Type" being replaced.
NOTE 1]- The rules governing specification of implicit tagging or explicit tagging for replacement "TaggedType"s pre provided
by 30.6.| Automatic tagging is always implicit*tagging unless the "Type" is an untagged choice type or an untaggg¢d open type
notation] or an untagged "DummyReference™(see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3), in which case it is explidit tagging.
NOTE 2|- Once automatic tagging hasbeen applied, the tags of the components are completely determined, and are hot modified
even wHen the choice type is referenced in the definition of an alternative within another "AlternativeTypeListy" for which
automatic tagging transformation applies. Thus, in the following case:
T::=CHOCE{ a Ta;\b Th, ¢ Tc }

B::=cHoce {fi(F1, f2 T, 3 E3}

automatic tagging applied t6 the components of E never affects the tags attached to components a, b and ¢ of T, whatever the

tagging gnvironmentQf-T: If T is defined in an automatic tagging environment and E is not in an automatic tagging ¢nvironment,
automatic tagging is still applied to components a, b and ¢ of T.

NOTE 3|- Subtyping does not affect automatic tagging.

NOTE 4]—&Vhen automatic tagging is in place, insertion of new alternatives at any location other than the extensjon insertion
point (sqe 3.6.29) may result in changes to other alternatives due to the side effect of modifying the tags thus causing Interworking

problems with an older version of the specification.

28.5 "VersionNumber" is defined in 24.1, and the restrictions on consistent use of "VersionNumber" throughout a
module that are specified in 24.15 shall apply to the use of "number"s within this production.

28.6 The tag of each new "NamedType" added to the "ExtensionAdditionAlternativesList" shall be canonically
greater (see 8.6) than those of the other alternatives in the "ExtensionAdditionAlternativesList", and shall be the last
"NamedType" in the "ExtensionAdditionAlternativesList".

28.7 The choice type contains values which do not all have the same tag. (The tag depends on the alternative which
contributed the value to the choice type.)

28.8 When this type does not have an extension marker and is used in a place where this Recommendation |
International Standard requires the use of types with distinct tags (see 28.3), all possible tags of values of the choice
type shall be considered in such requirement. The following examples which assume that the "TagDefault" is not
AUTQOVATI C TAGS illustrate this requirement.

46 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

EXAMPLES

1 1= CHA CE {
B

NULL}

1= CHA CE {
[O] NULL,
[1] NuLL}

1= CHA CE {
B,
G

;.= CHO CE {
[0] NULL,
[1] NULL}

1= CHA CE {
[2] NULL,
[3] NULL}

ocoT» OQawWw OoT >

I ncorrect)
A = CHO CE {
B,
G
B ::= CHO CE {
[0] NULL,

e [1] NULL}

C::= CHO CE {
f [0] NULL,
g [1] NULL}

oo —~ @~ oaw

o

Examples | and 2 are correct uses of the notation. Example 3 is(incorrect without automatic tagging, as the tags for
types d and f are identical, as well as for e and g.

28.9 Tlhe "identifier"s of all "NamedType"s in the "AlternativeTypeLists" shall differ from those of the other
"NamedType"s in that list.

28.10 The notation for defining the value of a¢hoice type shall be the "ChoiceValue", or when psed as an
"XMLValyge", "XMLChoiceValue". These productions are:

ChoiceValue ::= identifier '"; "Value
XMLChoiceValue ::= "<'"& identifier ">" XMLValue "</" & identifier ">"

28.11 "Walue" or "XMLValue" shall be a notation for a value of the type in the "AlternativeTypeLists" that is named
by the "identifier".

29
29.1 Tlhe notatien for defining a selection type (see 3.6.59) shall be "SelectionType":

2

Notation for selection types

SelectionType ::= identifier ""<" Type

where "Type" denotes a choice type, and "identifier" is that of some "NamedType" appearing in the
"AlternativeTypeLists" of the definition of that choice type.

29.2 When "Type" denotes a constrained type, the selection is performed on the parent type, ignoring any subtype
constraint on the parent type.

29.3 Where the "SelectionType" is used as a "NamedType", the "identifier" of the "NamedType" is present, as well
as the "identifier" of the "SelectionType".

29.4 Where the "SelectionType" is used as a "Type", the "identifier" is retained and the type denoted is that of the
selected alternative.

29.5 The notation for a value of a selection type shall be the notation for a value of the type referenced by the
"SelectionType".

ITU-T Rec. X.680 (07/2002) 47

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

30 Notation for tagged types

A tagged type (see 3.6.70) is a new type which is isomorphic with an old type, but which has a different tag. The tagged
type is mainly of use where this Recommendation | International Standard requires the use of types with distinct tags
(see 24.5 to 24.6, 26.3 and 28.3). The use of a "TagDefault" of AUTOVATI C TAGS in a module allows this to be
accomplished without the explicit appearance of tagged type notation in that module.

NOTE — Where a protocol determines that values from several data types may be transmitted at any moment in time, distinct tags
may be needed to enable the recipient to correctly decode the value.

30.1 The notation for a tagged type shall be "TaggedType":

TaggedType ::=
Tag Type
| Tag | MPLI CI T Type
| Tag EXPLI CI T Type

Tag ::="[" Class ClassNumber "|"

ClassNumber ::=
number
| DefinedValue

Class ::=
UNI VERSAL
| APPLI CATI ON
| PRI VATE
| empty
30.2 The "valuereference" in "DefinedValue" shall be of type integer, and assigned a non-negative value

30.3 Tlhe new type is isomorphic with the old type, but has a tag'with class "Class" and number "ClagsNumber",
except when "Class" is "empty", in which case the tag is context-spéoific class and number is "ClassNumber"

304 Tlhe "Class" shall not be UNI VERSAL except for types defined in this Recommendation | Internationgl Standard.
NOTE 1]— Use of universal class tags are agreed from time-to-time by ITU-T and ISO.
NOTE 2|— Subclause E.2.12 contains guidance and hints on*stylistic use of tag classes.

30.5 All application of tags is either implicit¢tagging or explicit tagging. Implicit tagging indicateq, for those
encoding fules which provide the option, thatiexplicit identification of the original tag of the "Type" in the
"TaggedType" is not needed during transfer.

NOTE + It can be useful to retain the old tag~where this was universal class, and hence unambiguously identifies [the old type
without knowledge of the ASN.1 definition of the new type. Minimum transfer octets is, however, normally achievdd by the use
of | MPLI| Ol T. An example of an encodmg/using | MPLI CI T is given in ITU-T Rec. X.690 | ISO/IEC 8825-1.

30.6 Tlhe tagging construction.specifies explicit tagging if any of the following holds:
the "Tag EXPLI"CHT Type" alternative is used;

the "Tag dLype" alternative is used and the value of "TagDefault" for the module is either|f EXPLI CI T
TAGS ofiSempty;

c) the"Fag Type" alternative is used and the value of "TagDefault" for the module is | MPLI CI|T TAGS or
AUTOVATI C TAGS, but the type defined by "Type" is an untagged choice type, an untagged open type, or
ah untagged "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

The tagging construction specifies implicit tagging otherwise.

30.7 If the "Class" is "empty", there are no restrictions on the use of "Tag", other than those implied by the
requirement for distinct tags in 24.5 to 24.6, 26.3 and 28.3.

30.8 The | MPLI O T alternative shall not be used if the type defined by "Type" is an untagged choice type or an
untagged open type or an untagged "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

30.9 The notation for a value of a "TaggedType" shall be "TaggedValue", or when used as an "XMLValue",
"XMLTaggedValue". These productions are:

TaggedValue ::= Value
XMLTaggedValue ::= XMLValue

where "Value" or "XMLValue" is a notation for a value of the "Type" in the "TaggedType".

48 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — The "Tag" does not appear in this notation.

31 Notation for the object identifier type
31.1 The object identifier type (see 3.6.48) shall be referenced by the notation "ObjectldentifierType":

ObjectldentifierType ::=
OBJECT | DENTI FI ER

31.2 This type has a tag which is universal class, number 6.

31.3 The value notation for an object identifier shall be "ObjectldentifierValue", or when used as an "XMLValue",
"XMLObjectldentifierValue". These productions are:

ObjectldentifierValue ::=

20 c 0 . 3

Pas B S Pal PR SRR LN)
1 UUJIUCUHIPOICII LIS ¢

| "{" DefinedValue ObjldComponentsList "} "

ObjIdComponentsList ::=
ObjIdComponents
| ObjldComponents ObjldComponentsList

ObjldComponents ::=
NameForm
| NumberForm
| NameAndNumberForm
| DefinedValue

NameForm ::= identifier
NumberForm ::= number | DefinedValue

NameAndNumberForm ::=
identifier " (" NumberForm ") "

XMLObjectldentifierValue ::=
XMLObjldComponentList

XMLObjIdComponentList ::=
XMLObjIdComponent
| XMLObjldCompenent & ". " & XMLObjIdComponentList

XMLObjIdComponent :;=
NameForm
| XMLNumberForm
| XMLENameAndNumberForm

XMLNumberForm ::= number

XMLNameAndNumberForm ::=
identifier & "(" & XMLNumberForm & ") "

314 Tlhe\"valuereference" in "DefinedValue" of "NumberForm" shall be of type integer, and assighed a non-
negative vafae:

315 The "valuereference" in "DefinedValue" of "ObjectldentifierValue" shall be of type object identifier.

31.6 The "DefinedValue" of "ObjldComponents" shall be of type relative object identifier, and shall identify an
ordered set of arcs from some starting node in the object identifier tree to some later node in the object identifier tree.
The starting node is identified by the earlier "ObjldComponents"s, and later "ObjldComponents"s (if any) identify arcs
from the later node. The starting node is required to be neither the root, nor a node immediately beneath the root.

NOTE — A relative object identifier value has to be associated with a specific object identifier value so as to unambiguously

identify an object. Object identifier values are required (see 31.10) to have at least two components. This is why there is a
restriction on the starting node.

31.7 The "NameForm" shall be used only for those object identifier components whose numeric value and identifier
are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A to C (see also Annex D of this Recommendation |
International Standard), and shall be one of the identifiers specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A
to C. Where ITU-T Rec. X.660 | ISO/IEC 9834-1 specifies synonymous identifiers, any synonym may be used with the

ITU-T Rec. X.680 (07/2002) 49

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

same semantics. Where the same name is both an identifier specified in ITU-T Rec. X.660 | ISO/IEC 9834-1 and an
ASN.1 value reference within the module containing the "NameForm", the name within the object identifier value shall
be treated as an ITU-T Rec. X.660 | ISO/IEC 9834-1 identifier.

31.8 The "number" in the "NumberForm" and "XMLNumberForm" shall be the numeric value assigned to the
object identifier component.

31.9 The "identifier" in the "NameAndNumberForm" and "XMLNameAndNumberForm" shall be specified when a
numeric value is assigned to the object identifier component.

NOTE - The authorities allocating numeric values to object identifier components are identified in ITU-T Rec. X.660 |
ISO/IEC 9834-1.

31.10 The semantics associated with an object identifier value are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1.
NOTE — ITU-T Rec. X.660 | ISO/IEC 9834-1 requires that an object identifier value shall contain at least two arcs.

31.11 The significant part of the object identifier component is the "NameForm" or "NumberForm" or
"XMLNuntberForm" which it reduces to, and which provides the numeric value for the object identifier fomponent.
Except for| the arcs specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A to C (see also Annex D of this
Recommendation | International Standard), the numeric value of the object identifier component is always pfesent in an
instance of|object identifier value notation.

31.12 Where the "ObjectldentifierValue" includes a "DefinedValue" for an object identifier/ value, the list of object
identifier cpmponents to which it refers is prefixed to the components explicitly present in thé-value.

NOTE - ITU-T Rec. X.660 | ISO/IEC 9834-1 recommends that whenever an object identifier value is assigned t¢ identify an
object, an object descriptor value is also assigned.

EXAMPLES

With identifiers assigned as specified in ITU-T Rec. X.660 | ISO/IEC 9834-%, the values:

{| i so standard 8571 pci (1) }
and

{{1 08571 1}
would each identify an object, pci , defined in ISO 8571, as yyould
50. st andar d. 8571. pci (1)

and
1. 0.8571. 1

in an "XMLObjectldentifierValue".
With the fdllowing additional definition:
fit am OBJECT | DENTIENER ::= { iso standard 8571 }

the followipg value is equivalentto those above:

{| ftam pci ()}

32 Notation for the relative object identifier type
321

RelativeOIDType ::= RELATI VE- O D
32.2 This type has a tag which is universal class, number 13.

323 The value notation for a relative object identifier shall be "RelativeOIDValue", or when used as "XMLValue",
"XMLRelativeOIDValue". These productions are:

RelativeOIDValue ::=
"{ " RelativeOIDComponentsList "} "

RelativeOIDComponentsList ::=
RelativeOIDComponents
| RelativeOIDComponents RelativeOIDComponentsList

50 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

RelativeOIDComponents ::=
NumberForm
| NameAndNumberForm
| DefinedValue

XMLRelativeOIDValue ::=
XMLRelativeOIDComponentList

XMLRelativeOIDComponentList ::=
XMLRelativeOIDComponent
| XMLRelativeOIDComponent & ". " & XMLRelativeOIDComponentList

XMLRelativeOIDComponent ::=
XMLNumberForm
| XMLNameAndNumberForm

324 The productions "NumberForm", "NameAndNumberForm", "XMLNumberForm",
"XMLNanleAndNumberForm", and their semantics, are defined in subclauses 31.3 to 31.11.

32.5 Tlhe "DefinedValue" of "RelativeOIDComponents" shall be of type relative object identifier,/and shall identify
an ordered [set of arcs from some starting node in the object identifier tree to some later node in the object idgntifier tree.
The starting node is identified by the earlier "RelativeOIDComponents"s (if any), and later ""RelativeOIDComponents"s
(if any) ideptify arcs from the later nodes.

32.6 Tfhe first "RelativeOIDComponents" or "XMLRelativeOIDComponent" identifies one or more arcs| from some
starting nogle in the object identifier tree to some later node in the object identifier ti¢e” The starting point car] be defined
by commepts associated with the type definition. If there is no definition. ofthe starting node within|f comments
associated [with the type definition, then it needs to be transmitted as an“object identifier value in an [instance of
communicgtion (see E.2.19). The starting node is required to be neither the root, nor a node immediately peneath the
root.

NOTE —+ A relative object identifier value has to be associated with a,'specific object identifier value so as to unpmbiguously
identify |an object. Object identifier values are required (see 31.10) to have at least two components. This is why there is a
restrictign on the starting node.

EXAMPLH

With the fgllowing definitions:

thi sUni versity OBJECT | DENTI FI ER =
{i so menber-body ceuntry(29) universities(56) thisuni(32)}

fli rstgroup RELATI VE-O DNl : = {science-fac(4) maths-dept(3)}

or in XML |value notation:

thi sUniversity ::= XOBJECT_I| DENTI FI ER>1. 2. 29. 56. 32</ OBJECT_I| DENTI FI ER>
firstgroup ::=_<RELATI VE_QO D>4. 3</ RELATI VE_QO D>

the relative| object identifiers

relOD ARELATIVE-AD ::= {firstgroup roon(4) socket(6)}

or in XML |valug-netation:

ref@.D :: = <RELATI VE_Q D>4. 3. 4. 6</ RELATI VE_Q D>

can be used instead of the OBJECT IDENTIFIERvalue {1 2 29 56 32 4 3 4 6} if the current root
(known by the application or transmitted by the application) is t hi sUni versi ty.

33 Notation for the embedded-pdv type
33.1 The embedded-pdv type (see 3.6.21) shall be referenced by the notation "EmbeddedPDVType":
EmbeddedPDVType ::= EMBEDDED PDV

NOTE — The term "Embedded PDV" means an abstract value from a possibly different abstract syntax (essentially, the value and
encoding of a message defined in a separate — and identified — protocol) that is embedded in a message. Historically, it meant
"Embedded Presentation Data Value" from its use in the OSI Presentation Layer, but this expansion is not used today, and it
should be interpreted as "embedded value".

33.2 This type has a tag which is universal class, number 11.

ITU-T Rec. X.680 (07/2002) 51

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

333 The type consists of values representing:

a) an encoding of a single data value that may, but need not, be the value of an ASN.1 type; and

b) identification (separately or together) of:

1) an abstract syntax; and

2) the transfer syntax.

NOTE 1 — The data value may be the value of an ASN.1 type, or may, for example, be the encoding of a still image or a moving
picture. The identification consists of either one or two object identifiers, or (in an OSI environment) references an OSI
presentation context identifier which specifies the abstract and transfer syntaxes.

NOTE 2 — The identification of the abstract syntax and/or the encoding may also be determined by the application designer as a
fixed value, in which case it is not encoded in an instance of communication.

334 The embedded-pdv type has an associated type. This associated type is used to support the value and subtype
notations of the embedded-pdv type.

33.5 Tlhe associated type for value definition and subtyping, assuming an automatic tagging environmd
normative ¢omments):
SEQUENCE {
identification CHA CE {
synt axes SEQUENCE {
abstract OBJECT | DENTIFI ER,
transfer CBJECT | DENTTFI ER }
-- Abstract and transfer syntax object identifieéers --,
synt ax CBJECT_L\BENTI FI ER
-- A single object identifier for identificati'on of the abstract
-- and transfer syntaxes --,
presentation-context-id I(NTEGER
-- (Applicable only to OSI environnents)
-- The negotiated OSl presentatiomcontext identifies the
-- abstract and transfer syntaxes{--,
context - negotiation SEQUENCE {
present ati on-cont ext - i-d | NTEGER,
transf er-synt ax COBJECT | DENTI FI ER }
-- (Applicable only to @SI” environments)
-- Context-negotiation #nh progress, presentation-context-id
-- identifies only the abstract syntax
-- so the transfer~syntax shall be specified --,
transfer-synt ax CBJECT | DENTI FI ER
-- The type of-the value (for exanple, specification that it is
-- the val Ge)of an ASN. 1 type)
-- is fixed by the application designer (and hence known to both
-- senders and receiver). This
-- cdse'is provided primarily to support
-- (sel'ective-field-encryption (or other encoding
-\ transformations) of an ASN. 1 type --,
fi xed NULL
-- The data value is the value of a fixed ASN. 1 type (and hence
-- known to both sender
-- and receiver) -- 1},
u'at a= VCl: uc= UICDbI I pt Ul CAJ] Cbt nIJCDbI I pt Ul \’}-\T: G‘b‘:\L
-- This provides human-readabl e identification of the class of the
-- value --,
dat a- val ue OCTET STRING }
(WTH COVPONENTS {

dat a- val ue-descri ptor ABSENT })

nt, is (with

NOTE — The embedded-pdv type does not allow the inclusion of a dat a- val ue- descri pt or value. However, the definition of
the associated type provided here underlies the commonalities which exist between the embedded-pdv type, the external type and
the unrestricted character string type.

33.6 The presentation-context-id alternative is only applicable in an OSI environment, when the integer
value shall be an OSI presentation context identifier in the OSI defined context set. This alternative shall not be used

during OSI

52

context negotiation.

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

33.7 The cont ext - negoti ati on alternative is only applicable in an OSI environment, and shall only be used
during OSI context negotiation. The integer value shall be an OSI presentation context identifier proposed for addition
to the OSI defined context set. The object identifier t r ansf er - synt ax shall identify a proposed transfer syntax for that
OSI presentation context which is to be used to encode the value.

33.8 The notation for a value of the embedded-pdv type shall be the value notation for the associated type defined
in 33.5, where the value of the dat a- val ue component of type OCTET STRI NG represents an encoding using the
transfer syntax specified ini denti fi cati on.

EmbeddedPdvValue ::= SequenceValue
XMLEmbeddedPDVValue ::= XMLSequenceValue

EXAMPLE — If a single option is to be enforced, such as use of synt axes, then this can be done by writing:

EMBEDDED PDV (W TH COVPONENTS {

-- value of associated type defined i

-- value of associated type defined i

n 33.5
n33.5

identification (WTH COWONENTS {
syntaxes PRESENT }) })

34 Notation for the external type
34.1 Tlhe external type (see 3.6.37) shall be referenced by the notation "External Type™
ExternalType ::= EXTERNAL
34.2 Tfhis type has a tag which is universal class, number 8.
343 Tlhe type consists of values representing:
a) an encoding of a single data value that may, but need not{ ,be the value of an ASN.1 type; and
b) identification of:
1) an abstract syntax; and
2) the transfer syntax; and
c) (optionally) an object descriptor which provides a human-readable description of the category| of the data
value. The optional object descriptor~shall not be present unless explicitly permitted by comment
associated with use of the "ExternalType" notation.
NOTE —|Note 1 in 33.3 also applies to the externaltype.
344 Tlhe external type has an associated type. This type is used to give precision to the definition of the abstract
values of the external type and is also used to support the value and subtype notations of the external type.
NOTE + Encoding rules may define,a different type which is used to derive encodings, or may specify encodjngs without
referencg to any associated type.«Eor example, the encoding in BER uses a different sequence type for historical reas¢ns.
34.5 Tlhe associated type for value definition and subtyping, assuming an automatic tagging environmgnt, is (with
normative gomments):
SEQUENCE A
i dentification CHO CE {
synt axes SEQUENCE {
abstract OBJECT | DENTI FI ER,
transfer OBJECT | DENTI FI ER }
-- Abstract and transfer syntax object identifiers --,
synt ax OBJECT | DENTI FI ER

-- A single object identifier for identification of the abstract
-- and transfer syntaxes --,

presentation-context-id | NTEGER

-- (Applicable only to OSI environments)

-- The negotiated OSI presentation context identifies the
-- abstract and transfer syntaxes --,

cont ext - negoti ati on SEQUENCE {
presentation-context-id I NTECER,
transf er-synt ax CBJECT | DENTI FI ER }

ITU-T Rec. X.680 (07/2002)

53

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

-- (Applicable only to OSI environnents)

-- Context-negotiation in progress, presentation-context-id
-- identifies only the abstract syntax

-- so the transfer syntax shall be specified --,

transfer-synt ax CBJECT | DENTI FI ER

-- The type of the value (for exanple, specification that it is
-- the value of an ASN.1 type)

-- is fixed by the application designer (and hence known to both
-- sender and receiver). This

-- case is provided primarily to support

-- selective-field-encryption (or other encoding

-- transfornmations) of an ASN. 1 type --,

fixed NULL
-- The data value is the value of a fixed ASN.1 type (and hence
-- known to both sender

NOTE -
i dentif
associatg
type and

34.6 T

34.7 T
where the Y
specified i1

NOTE -
exact my

35 |

These type
repertoire g
A graphic
empty, or I

--_and recej \/pr) - - }

dat a- val ue- descri pt or hj ect Descri ptor OPTI ONAL
-- This provides hunan-readabl e identification of the class(of
-- the value --,

dat a- val ue OCTET STRING }

(W TH COVPONENTS {

i dentification (WTH COVPONENTS {

synt axes ABSENT,
transfer-synt ax ABSENT,
fixed ABSENLY)) 1})

For historical reasons, the external type does not allow the synt axes, transfer-syntax or fixed al
i cation. Application designers requiring these options should us¢” the embedded-pdv type. The defif
d type provided here underlies the commonalities which exist between the external type, the unrestricted ch
the embedded-pdv type.

he text of 33.6 and 33.7 also applies to the externaktype.

ralue of the dat a- val ue component of type OSTET STRI NGrepresents an encoding using the tray
i dentification.

ExternalValue ::= SequenceValue -- value of associated type defined in 34.

XMLExternalValue ::= XMLESequenceValue -- value of associated type defined in 34.

For historical reasons, encoding\tules are able to transfer embedded values in EXTERNAL whose encoding
Itiple of eight bits. Such values-Cannot be represented in value notation using the above associated type.

'he character string types

5 consist of{strings of characters from some specified character repertoire. It is normal to define
nd its encoding by use of cells in one or more tables, each cell corresponding to a character in thg
ymbol-and a character name are also usually assigned to each cell, although in some repertoires, d
avé names but no shapes (examples of cells with names but no shape include control characters s

ernatives of
pition of the
iracter string

he notation for a value of the external type shall\bé the value notation for the associated type defiped in 34.5,

sfer syntax

5
5

S are not an

a character
repertoire.
ells are left
ich as EOF

in ISO/IEQ

646 and spacing characters such as THIN-SPACE and EN-SPACE in ISO/IEC 10646-1).

In general, the information associated with a cell denotes a distinct abstract character in the repertoire even if that
information is null (no graphic symbol or name is assigned to that cell).

The ASN.1 basic value notation for character string types has three variants (which can be combined), specified formally

below:

a)

spacing characters; this is the "cstring" notation.

A representation of the characters in the string using assigned graphic symbols, possibly including

NOTE 1 — Such a representation can be ambiguous in a printed representation when the same graphic symbol is

used for more than one character in the repertoire.

NOTE 2 — Such a representation can be ambiguous in a printed representation when spacing characters of
different widths are present in the repertoire or the specification is printed with a proportional-spacing font.

b) A listing of the characters in the character string value by giving a series of ASN.1 value references that
have been assigned the character; a set of such value references is defined in the module

54

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1

ASN1- CHARACTER- MODULE in clause 38 for the ISO/IEC 10646-1 character repertoire a

:2002 (E)

nd for the

| A5St ri ng character repertoire; this form is not available for other character repertoires unless the user

assigns to such value references using the value notation described in a) above or ¢) below.

c) A listing of the characters in the character string value by identifying each abstract character by the

position of its cell in the character repertoire table(s); this form is available only for |
Uni versal String, UTF8St ri ng and BMPSt ri ng.

A5String,

The ASN.1 XML value notation for character string types uses the "xmlcstring" notation, which includes the ability to
use escape sequences for certain special characters, and for specification of characters using decimal or hexadecimal (see

11.15).

36
36.1

"RestrictedCharacterStringType" is the notation for a restricted character string type andi§ ‘defined in
"UnrestrictedCharacterStringType" is the notation for the unrestricted character string type-and is defined in 4

36.2

36.3

37

Notation for character string types

Thp notation-for rpf‘prpnr\ing a character cfﬂ'ng fypp (cpp 361]) shall be:

CharacterStringType ::=
RestrictedCharacterStringType
| UnrestrictedCharacterStringType

Tlhe notation for a character string value shall be:

CharacterStringValue ::=
RestrictedCharacterStringValue
| UnrestrictedCharacterStringValue

XMLCharacterStringValue ::=
XMLRestrictedCharacterStringValue
| XMLUnrestrictedCharacterStringValue

clause 37.
0.1.

The tag of each restricted character string type is specified in 37.1. The tag-of the unrestricted chatacter string
type is speg¢ified in 40.2.

"RestrictedCharacterStringValue" and "XMLRestricted€haracterStringValue" are defined in 37.8 and 37.9 r¢spectively.
"UnrestrictpdCharacterStringValue" and "XMLUntéstrictedCharacterStringValue" are notations for an ynrestricted
character sfring value and they are defined in 40:7.
Definition of restricted character string types
This clausg defines types whose\values are restricted to sequences of zero, one or more characters [from some
specified cpllection of characters. The notation for referencing a restricted character string typg shall be
"RestrictedCharacterString Typeé":
RestrictedCharacterStringType ::=
BWPSt ri ng
| General String
| G aphi cString
| | A5String
| | SO646St ri ng
| Nureri cString
| Printabl eString
| Tel etexString
| T61String
| Uni versal String
| UTF8St ri ng
| Vi deot exString
| Vi sibleString
Each "RestrictedCharacterStringType" alternative is defined by specifying:
a) the tag assigned to the type; and
b) aname (e.g., Nuneri cString) by which the type is referenced; and
ITU-T Rec. X.680 (07/2002) 55

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

c) the characters in the collection of characters used in defining the type, by reference to a table listing the
character graphics or by reference to a registration number in the ISO International Register of Coded
Character Sets (see ISO International Register of Coded Character Sets to be used with Escape
Sequences), or by reference to ISO/IEC 10646-1.
37.1 Table 6 lists the name by which each restricted character string type is referenced, the number of the universal

class tag assigned to the type, the defining registration number or table, or the defining text clause, and, where necessary,
identification of a Note relating to the entry in the table. Where a synonymous name is defined in the notation, this is
listed in parentheses.

Table 6 — List of restricted character string types

Universal

Defining registration number?, table number,

Name for referencing the type class number or ITU-T Rec. X.680 | ISO/IEC 8824-1 clause Notes
UTF8St g T Subctause 3716
Nurreri ¢String 18 Table 7 (Note 1)
PrintableString 19 Table 8 (Note 1)
Tel etexString (T61String) 20 6, 87, 102, 103, 106, 107, 126, 144, 1504153, 156, (Note 2)
164, 165, 168 + SPACE + DELETE
Vi deot €xStri ng 21 1, 13, 72, 73, 87, 89, 102, 108, 126/+128, 129, 144, (Note 3)
150, 153, 164, 165, 168 + SPACE + DELETE
I A5Strilng 22 1, 6 + SPACE + DELETE
G aphi ¢String 25 All G sets + SPACE
Vi si bl @String (I SC646Stri ng) 26 6 + SPACE
General String 27 All G and all Csets SPACE + DELETE
Uni ver $al String 28 See 37.6
BMPSt r il ng 30 See 37.15
a) The |defining registration numbers are listed in ISO International Register of Coded Character Sets to be used with Escape
Seqyences.
NOTE 1 —|The type-style, size, colour, intensity, or other display characteristics are not significant.
NOTE 2 —|Register entries 6 and 156 can be used instead*of 102 and 103.
NOTE 3 - The entries corresponding to these régistration numbers provide the functionality of CCITT Rec. T.100 fand ITU-T
Rec. T.101]].
37.2 Tlable 7 lists the characters which can appear in the Nuneri cString type and NunericString character

abstract sy]

htax.

Table 7 — NumericString

Name Graphic
Digits 0,1,..9
Space (space)

37.3 T

Nuneri ¢St ri ng character abstract syntax:

he following object identifier and object descriptor values are assigned to identify and describe the

{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l) nunericString(0) }

and

"NunericString character abstract syntax"

NOTE 1 — This object identifier value can be used in CHARACTER STRI NGvalues and in other cases where there is a need to carry
the identification of the character string type separate from the value.

NOTE 2 — A value of a Nurrer i ¢St ri ng character abstract syntax may be encoded by:

a)

b)

56

One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character transfer
syntax is identified by the object identifier associated with those rules in ISO/IEC 10646-1, Annex N.
The ASN.1 encoding rules for the built-in type Nuneri ¢St ri ng. In this case the character transfer syntax is identified
by the object identifier value {j oi nt-iso-itu-t asnl(1l) basic-encoding(1)}.

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

374 Table 8 lists the characters which can appear in the Pri nt abl eSt ri ng type and Pri nt abl eSt ri ng character
abstract syntax.

37.5 T
Pri nt abl ¢

{

and

NOTE 1

the idenfification of the character string type separate from the value.

NOTE 2}
a)

b)

37.6 il
ISO/IEC 1

37.7 U

NOTE -
characte

37.8 T

Table 8 — PrintableString

Name Graphic
Latin capital letters AB, ..Z
Latin small letters a,b,..z
Digits 0,1,..9
SPACE (space)
APOSTROPHE '
LEFT PARENTHESIS (
RIGHT PARENTHESIS)
PLUS SIGN +
COMMA ,
HYPHEN-MINUS -
FULL STOP
SOLIDUS /
COLON
EQUALS SIGN =
QUESTION MARK ?

he following object identifier and object descriptor valuesCare assigned to identify and d
St ri ng character abstract syntax:

joint-iso-itu-t asnl(1l) specification(0)_ characterStrings(1l) printableStri

Printabl eString character abstract syftax"
— This object identifier value can be used in CHARACTER STRI NG values and in other cases where there is a

— A value of a Pri nt abl eSt ri ng characterabstract syntax may be encoded by:

One of the rules given in ISO/IEC%10646-1 for encoding the abstract characters. In this case the charg
syntax is identified by the objectiidentifier associated with those rules in ISO/IEC 10646-1, Annex N.

The ASN.I encoding rules~for the built-in type Printabl eString. In this case the character transf
identified by the object identifier { joi nt-iso-itu-t asnl(1l) basic-encoding(1) }.

he characters whichScan appear in the Universal String type are any of the characters
646-1.

se of this type.invokes the conformance requirements specified in ISO/IEC 10646-1.

Clause 38-defines an ASN.1 module containing a number of subtypes of this type for the "Collections
s for subsets” defined in ISO/IEC 10646-1, Annex A.

he/'RestrictedCharacterStringValue" notation for the restricted character string types shall be "c

11.14), "Cl

escribe the

ng(1) }

heed to carry

cter transfer

er syntax is

hllowed by

of graphics

string” (see

naraeterStringList”, "Quadruple", or "Tuple". "Quadruple" is only capable of defining a charact|

er string of

length one, and can only be used in value notation for Uni ver sal Stri ng, UTF8St ri ng or BMPSt ri ng types. "Tuple" is
only capable of defining a character string of length one, and can only be used in value notation for | A5St ri ng types.

RestrictedCharacterStringValue ::=
cstring
| CharacterStringList
| Quadruple
| Tuple

CharacterStringList ::= "{" CharSyms "} "

CharSyms ::=
CharsDefn
| CharSyms "," CharsDefn

ITU-T Rec. X.680 (07/2002)

57

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

CharsDefn ::=
cstring
| Quadruple
| Tuple
| DefinedValue

Quadruple ::="{" Group "," Plane "," Row "," Cell "}"
Group ::= number
Plane ::= number
Row ::= number
Cell ::= number

Tuple 2="{" TableColumn "," TableRow "} "

TableColumn ::= number

TableRow ::= number

NOTE 1|— The "cstring" notation can only be used unambiguously on a medium capable of displaying the graphic symbols for the
charactefs which are present in the value. Conversely, if the medium has no such capability, the only ' means of unpmbiguously
specifyifig a character string value that uses such graphic symbols is by means of the "CharacterStringList" notation|, and only if
the type|is Uni versal String, UTF8String, BMPString or | A5Stri ng, and the "DefinedValue! alternative of "CharsDefn" is
used (se¢ 38.1.2).
NOTE 2 - Clause 38 defines a number of "valuereference"s which denote single characters\(strings of size 1) of typq BMPSt ri ng
(and herfce Uni ver sal String and UTF8St ri ng) and | A5Stri ng.
HXAMPLE — Suppose that one wishes to specify a value of "abcZdef" for a Uni ver sal St ri ng where the chgracter "2" is
npt representable on the available medium, this value can also be expressed as:

| MPORTS Basi cLatin, greekCapital LetterSi gma FROM ASNL- CHARACTER- MODULE
{ joint-iso-itu-t asnl(1l) specification(0) nodul es(0) is010646(0) };

M/Al phabet ::= Universal String (FROM(BasicLatin | greekCapital LetterS|gna))

nmystring MyAl phabet ::={ "abc" ,_greekCapital LetterSigma , "def" }

NOTE 3]- When specifying the value of a Uni ver sal St riyhg»UTF8St ri ng or BMPSt r i ng type, the "cstring" notatiqn should not
be used finless ambiguities arising from different graphic characters with similar shapes have been resolved.

HXAMPLE — The following "cstring" notation Should not be used because the graphic symbols 'H', 'O', 'P' and 'E' occur in
the BASIC LATIN, CYRILLIC and BASIC GREEK alphabets and thus are ambiguous.

| MPORTS BasicLatin, Cyritlic, BasicGeek FROM ASNL- CHARACTER- MODULE
{ joint-iso-itud~t asnl(1l) specification(0) nodul es(0) is010646(0) };

M/Al phabet ::= Uniyversal String (FROM (BasicLatin | Cyrillic | BasicG egk))
nystring M/Alphabet ::= "HOPE"

An alterpative unambiguous definition of nyst ri ng would be:
nystring ."M/Al phabet (Basi cLatin) ::= "HOPE"

Formally, nyst ri ngdsla'value reference to a value of a subset of MyAl phabet , but it can, by the value mapping rules|of Annex B,
be used wherever d value reference is needed to this value within MyAl phabet .

37.9 Tlhe "XMLRestrictedCharacterStringValue" notation is:

XMLRestrictedCharacterStringValue ::= xmlcstring

37.10 There are characters which cannot be directly represented in "xmlcstring". These shall be represented using the
escape sequences specified in 11.15.

NOTE - If the restricted character string value contains characters which are not ISO/IEC 10646-1 characters specified in 11.15.1,
these cannot be represented in "xmlcstring", and such values cannot be transferred using XML Encoding Rules (see ITU-T Rec.
X.693 | ISO/IEC 8825-4).

37.11 The "DefinedValue" in "CharsDefn" shall be a reference to a value of that type.

3712 The "number" in the "Plane", "Row" and "Cell" productions shall be less than 256, and in the "Group"
production it shall be less than 128.

37.13 The "Group" specifies a group in the coding space of the UCS, the "Plane" specifies a plane within the group,
the "Row" specifies a row within the plane, and the "Cell" specifies a cell within the row. The abstract character
identified by this notation is the abstract character for the cell specified by the "Group", "Plane", "Row", and "Cell"
values. In all cases, the set of permitted characters may be restricted by subtyping.

58 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — Application designers should consider carefully the conformance implications when using open-ended character string
types such as General String, G aphi cString, and Uni ver sal Stri ng without the application of constraints. Careful text on
conformance is also needed for bounded but large character string types such as Tel et exSt ri ng.

37.14 The "number" in the "TableColumn" production shall be in the range zero to seven, and the "number" in the
"TableRow" production shall be in the range zero to fifteen. The "TableColumn" specifies a column and the "TableRow"
specifies a row of a character code table in accordance with Figure 1 of ISO/IEC 2022. This notation is used only for
| A5St ri ng when the code table contains Register Entry 1 in columns 0 and 1 and Register Entry 6 in columns 2 to 7
(see the ISO International Register of Coded Character Sets to be used with Escape Sequences).

37.15 BMPStri ng is a subtype of Uni ver sal Stri ng that has its own unique tag and contains only the characters in
the Basic Multilingual Plane (those corresponding to the first 64K-2 cells, less cells whose encoding is used to address
characters outside the Basic Multilingual Plane) of ISO/IEC 10646-1. It has an associated type defined as:

Uni versal String (Bnp)

o a A a ARACT ») a e

where B : subtype of

Uni ver sal[St ri ng corresponding to the "BMP" collection name defined in ISO/IEC 10646-1, Annex A,
NOTE 1|- Since BMPSt r i ng is a built-in type, it is not defined in ASN1- CHARACTER- MODULE.
NOTE 2 — The purpose of defining BMPStri ng as a built-in type is to enable encoding rules (such as, BER) thaff do not take
account pf constraints to use 16-bit rather than 32-bit encodings.
NOTE 3|- In the value notation all BMPSt r i ng values are valid Uni ver sal Stri ng and UTF8St ri ng values.

37.16 UTF8String is synonymous with Uni versal String at the abstract leyel ‘and can be used wherever
Uni ver sal[St ri ng is used (subject to rules requiring distinct tags) but has a different’tag‘and is a distinct typg.

NOTE - The encoding of UTF8St ri ng used by BER and PER is different from that of-Uni*ver sal St ri ng, and for nost text will
be less vierbose.

38 Naming characters and collections defined in ISQ/IEC 10646-1

This claus¢ specifies an ASN.1 built-in module which contains“the definition of a value reference nanje for each
character ffom ISO/IEC 10646-1, where each name references a Uni ver sal Stri ng value of size 1. This rhodule also
contains the definition of a type reference name for each cellection of characters from ISO/IEC 10646-1, where each
name referg¢nces a subset of the Uni ver sal Stri ng type.

NOTE - These values are available for use in the value notation of the Uni ver sal Stri ng type and types derived fipm it. All of
the valug and type references defined in the module speeified in 38.1 are exported and must be imported by any module that uses
them.

38.1 Specification of the ASN.1 Module "ASN1-CHARACTER-MODULE"
The modulg is not printed here in full. Instead, the means by which it is defined is specified.

38.1.1 The module begins as follows:

ASNL- CHARACTER- MODULE { joint-iso-itu-t asnl(1l) specification(0) nodul es(0)
5010646(0) }

DEFI NIL.TRONS :: = BEA N

-- Al>of the value references and type references defined within this
--(mpdul e are inplicitly exported, and are available for inmport by any|nodul e.
«=I"SQ' | EC 646 control characters:

nul | A5String :: 0}
soh | A5String :: 11
stx |A5String ::
etx |A5String ::
eot | A5String ::
enq |A5String ::
ack |A5String ::

Lt R Late Rt Lt tere Raan Tarn) stnXata)
G WN
e e e

bel | ASString ::= , 1}
bs | A5String ::= , 8}
ht | ASString ::= , 9}
| f | A5String ::= , 10}
vt | ASString ::= {0, 11}
ff | A5String ::= {0, 12}
cr | ASString ::= {0, 13}
so | A5String ::= {0, 14}
Si | ASString ::= {0, 15}
dle IA5String ::={1, 0}
dcl IA5String ::= {1, 1}

ITU-T Rec. X.680 (07/2002) 59

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

dc2 IA5String ::= {1, 2}
dc3 IA5String ::= {1, 3}
dc4 IA5String ::= {1, 4}
nak | A5String ::= {1, 5}
syn 1A5String ::= {1, 6}
etb IA5String ::= {1, 7}
can | A5String ::= {1, 8}
em IASString ::= {1, 9}
sub IA5String ::= {1, 10}
esc IA5String ::= {1, 11}
is4d |IA5String ::= {1,12}
is3 IA5String ::= {1,13}
is2 |IA5String ::= {1, 14}
isl [IA5String ::= {1, 15}
del | A5String ::= {7,15}
38.1.2 Fﬁwwwmmmm@mmuw
ISO/IEC 1(646-1, the module includes a statement of the form:
<nanedcharacter> BMPString ::= <tabl ecell >
-I represents the character <isol0646nane>, see |SQ|EC 10646-1
where:
<i s010646nane> is the character name derived from one listed in ISO/IEG~10646-1;
b) <namedcharacter> is a string obtained by applying to <i so10646nanme> the procedures
38.2;
c) <tabl ecel | >is the glyph in the table cell in ISO/IEC 10646-1 corrésponding to the list entry
EXAMPLH
lfati nCapital LetterA BWPString ::= {0, 0, 0, _65}
-I represents the character LATIN CAPI TAL LEITER A, see | SO | EC 10646-1
greekCapital LetterSigma BMWString ::= {00, 3, 163}
-I represents the character GREEK CAPI TAL\LETTER S| GVA, see |SQ'| EC 10646-1
38.1.3 Hor each name for a collection of graphic characters specified in ISO/IEC 10646-1, Annex A, a s

included in[the module of the form:

where:

A

hanedcol | ectionstring> ::= BWSt# ng
(FROM (<alternativelist>))
-- represents the collection of characters <collectionstring>,
-- see | SO'| EC 1064621

<col | ecti onst rj hg> is the name for the collection of characters assigned in ISO/IEC 10646
<nanedcol | ect.i onst ri ng> is formed by applying to <col | ect i onst ri ng> the procedure

c) <alternativelist> is formed by using the <namedchar act er >s as generated in 38.2 for
characters specified by ISO/IEC 10646-1.

The resultipg type reference, <namedcol | ect i onst ri ng>, forms a limited subset. (See the tutorial in Anne

NOTE - A liinited subset is a list of characters in a specified subset. Contrast this to a selected subset, which is a
charactefsilisted in ISO/IEC 10646-1, Annex A, plus the BASIC LATIN collection.

EXAMPLE (partial)

60

4 and 25 of

pecified in

tatement is

L
of 38.3;
each of the

F)

collection of

space BMPStri ng = {0, 0, 0, 32}
excl amati onMark BMPStri ng = {0, 0, 0, 33}
quot ati onMark BMPStri ng = {0, 0, 0, 34}
e -- and so on
tilde BWPString = {0, 0, 0, 126}
Basi cLatin ::= BMPString

(FROM (space

| excl amati onMar k
quot at i onMar k
-- and so on

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

-- represents the collection of characters BASIC LATIN, see |ISQO | EC 10646- 1.
-- The ellipsis in this exanple is used for brevity and nmeans "and so on";
-- you cannot use this in an actual ASN 1 nodul e.

38.1.4 ISO/IEC 10646-1 defines three levels of implementation. By default all types defined in
ASNL1- CHARACTER- MODULE, except for Level 1 and Level 2 conform to implementation level 3, since such types have
no restriction on use of combining characters. Level 1 indicates that implementation level 1 is required, Level 2
indicates that implementation level 2 is required, and Level 3 indicates that implementation level 3 is required. Thus,
the following are defined in ASN1- CHARACTER- MODULE:

Level 1 ::= BWPString (FROM (ALL EXCEPT Conbi ni ngCharacters))
Level 2 ::= BMPString (FROM (ALL EXCEPT Conbi ni ngChar act er sType-2))
Level 3 ::= BMPString

NOTE 1 — Conbi ni ngChar acters and Conbi ni ngChar act er sType-2 are the <namedcollectionstring™>s corresponding to
"COMBINING CHARACTERS" and "COMBINING CHARACTERS B-2", respectively, defined in ISO/TEC 10646-1, Annex A.

NOTE 2 - Level 1 and Level 2 will be used either following an "IntersectionMark" (see clause 46) or as the only lcdnstraint in a
"ConstrdintSpec". (See E.2.7.1 for an example.)

NOTE 3| See F.2.5 for more information on this topic.

38.1.5 The module is terminated by the statement:
END

38.1.6 A user-defined equivalent of the example in 38.1.3 is:

BasicLatin ::= BMPString (FROM (space..tilde))
-- represents the collection of characters BASI C(LATIN,
-- see |SQ | EC 10646-1.

38.2 A <namedchar act er > is the string obtained by taking an <i so10646name> (see 38.1.2) and applying the
following dlgorithm:

a) each upper-case letter of the <i so10646name> is transformed into the corresponding lowerfcase letter,
unless the upper-case letter is preceded by a SPACE, in which case the upper-case lefter is kept
unchanged;

b) each digit and each HYPHEN-MINUS is kept unchanged;

c) each SPACE is deleted.

NOTE - The above algorithm, taken in conjunction\with the character naming guidelines in Annex K of ISO/IEC |0646-1 will
always rpsult in unambiguous value notation for every character name listed in ISO/IEC 10646-1.

EXAMPLE — The character from ISO/IEC-10646-1, row 0, cell 60, which is named "LESS-THAN SIGN" hnd has the
graphic representation "<" can be referenced using the "DefinedValue" of:
| ess-thanSi gn

38.3 A <nanedcol | ectilonstri ng> is the string obtained by taking <col | ecti onstring> and applying the
following dlgorithm:

a) each upper-case letter of the ISO/IEC 10646-1 collection name is transformed into the cofresponding
lower¢case letter, unless the upper-case letter is preceded by a SPACE or it is the first letter of the name,
in which case the upper-case letter is kept unchanged;

b)) {each digit and each HYPHEN-MINUS is kept unchanged;

¢ cacir SPACE Tsdetfeted:

EXAMPLES

1) The collection identified in Annex A of ISO/IEC 10646-1 as:
BASIC LATIN

has the ASN.1 type reference:
Basi cLatin

2) A character string type consisting of the characters in the BASIC LATIN collection, together with the BASIC
ARABIC collection, could be defined as follows:

ITU-T Rec. X.680 (07/2002) 61

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

M- Character-String ::= BWString (FROM (BasicLatin | BasicArabic))
NOTE - The above construction is necessary because the apparently simpler construction of:
M- Character-String ::= BWPString (BasiclLatin | BasicArabic)

would allow only strings which were entirely BASIC LATIN or BASIC ARABIC but not a mixture of both.

39 Canonical order of characters

39.1 For the purpose of "ValueRange" subtyping and for possible use by encoding rules, a canonical ordering of
characters is specified for Universal String, UTF8String, BMPString, NumericString, PrintableString,
Vi sibleString,and | A5String.

39.2 For the purpose of this clause only, a character is in one-to-one correspondence with a cell in a code table,
whether that cell has been assigned a character name or shape, and whether it is a control character or printing character,
combining [oT TON-COMDINING CNATacler.

393 Tlhe canonical order of an abstract character is defined by the canonical order of its value)in the 32-bit
representatjon of ISO/IEC 10646-1, with low numbers appearing first and high numbers appearing last'in thie canonical
order.

394 Hndpoints of "ValueRanges" within "PermittedAlphabet" notations (or individual.¢haracters) can be specified
using eithef the ASN.1 value reference defined in the module ASN1- CHARACTER- MODULE o1-(where the graghic symbol
is unambigpious in the context of the specification and the medium used to represent it) byygiving the graphic fymbol in a
"cstring" (ASNL- CHARACTER- MODULE is defined in 38.1) , or by use of the "Quadruple! or "Tuple" notation of 37.8.

39.6 For Nurreri cStri ng, the canonical ordering, increasing from left to right; is defined (see Table 7 of 37.2) as:
(§pace)0 1 2 3 4 5 6 7 8 9

The entire tharacter set contains precisely 11 characters. The endpointof a "ValueRange" (or individual characters) can
be specifieql using the graphic symbol in a "cstring".
NOTE - This order is the same as the order of the corresponding characters in the BASIC LATIN collection of ISO/IEC 10646-1.

39.7 For Pri nt abl eSt ri ng, the canonical ordering, inereasing from left to right and top to bottom, is defined (see
Table 8 of B7.4) as:

(PPACE) (APOSTROPHE) (LEFT PARENTHESIS) (RIGHT PARENTHESIS) (PLUS SIGN) (COMMA)
(HYPHEN-MINUS) (FULL STOP) (SOLIDUS) 0123456789 (COLON) (EQUAL SIGN) (QUESTION
MARK) ABCDEFGH JKLMNOPQRSTUMAKYZabcdef ghi j kI mopqr st uvwxyz

The entire fharacter set contains precisely (74 characters. The endpoint of a "ValueRange" (or individual chatacters) can
be specifieql using the graphic symbol in a*"cstring".

NOTE — This order is the same as the order of the corresponding characters in the BASIC LATIN collection of ISO/IEC 10646-1.

39.8 Hor Vi si bl eStrind, the canonical order of the cells is defined from the ISO/IEC 646 encoding (called
ISO 646 ENCODING) as follows:

(ISO 646 ENCODING) - 32
NOTE - That is, the canonical order is the same as the characters in cells 2/0-7/14 of the ISO/IEC 646 code table.

The entire fhardcter set contains precisely 95 characters. The endpoint of a "ValueRange" (or individual chatacters) can
be specifieql using the graphic symbol in a "cstring".

399 For | A5St ri ng, the canonical order of the cells is defined from the ISO/IEC 646 encoding as follows:
(ISO 646 ENCODING)

The entire character set contains precisely 128 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring" or an ISO 646 control character value reference defined in 38.1.1.

40 Definition of unrestricted character string types

This clause defines a type whose values are the values of any character abstract syntax. In an OSI environment, this
abstract syntax may be part of the OSI defined context set. Otherwise, it is referenced directly for each instance of use
of the unrestricted character string type.

NOTE 1 — A character abstract syntax (and one or more corresponding character transfer syntaxes) can be defined by any
organization able to allocate ASN.1 OBJECT | DENTI FI ERs.

62 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE 2 - Profiles produced by a community of interest will normally determine the character abstract syntaxes and character
transfer syntaxes that are to be supported for specific instances or groups of instances of CHARACTER STRI NG It will be usual in
OSI applications to include reference to supported syntaxes in an OSI Protocol Implementation Conformance Statement.

40.1 The wunrestricted character string type (see 3.6.76) shall be referenced by the notation
"UnrestrictedCharacterStringType":

UnrestrictedCharacterStringType ::= CHARACTER STRI NG
40.2 This type has a tag which is universal class, number 29.

40.3 The type consists of values representing:
a) acharacter string value that may, but need not, be the value of an ASN.1 character string type; and
b) identification (separately or together) of:

1) acharacter abstract syntax; and

2) the character transfer syntax.

40.4 Tlhe unrestricted character string type has an associated type. This associated type is used to.Supp¢rt its value
and subtypg notations.

40.5 The associated type for value definition and subtyping, assuming an automatic tagging environmgnt, is (with
normative ¢omments):
SEQUENCE {
identification CHA CE {
synt axes SEQUENCE {
abstract OBJECT | DENTI FI ER,
transfer QBJECT | DENTI FI ER }

-- Abstract and transfer syntax _object identifiers --,

synt ax OBJECT | DENTI FI ER
-- A single object identifiver/for identification of the
-- abstract and transfer syftaxes --,
presentation-context-id | NTEGER
-- (Applicable only toN\OSI environnents)
-- The negotiated OSlUpresentation context identifies the
-- abstract and transfer syntaxes --,

cont ext - negoti ati on SEQUENCE {
presentation-eontext-id | NTECGER,
transf er - syntiax OBJECT | DENTI FI ER }

-- (Applicable.onlry to CSl environments)

-- Context-negofiation in progress, presentation-context-id

-- identifisesvonly the

-- abstract=syntax, so the transfer syntax shall be specified --,

transférssynt ax CBJECT | DENTI FI ER

-- The type of the value (for exanple, specification that it is
-- the value of an ASN. 1 type) is fixed by the application
~-\\desi gner (and hence known to both sender and receiver). This
-> case is provided primarily to support

-- selective-field-encryption (or other encoding

-- transformations) of an ASN.1 type --,

fixed NULL
-- The data value is the value of a fixed ASN. 1 type (and hence
-- known to both sender and receiver) -- },

dat a- val ue-descri pt or Coj ect Descri ptor OPTI ONAL
-- This provides hunan-readabl e identification of the class of
-- the value --,

string-val ue OCTET STRI NG }

(W TH COVPONENTS {

dat a- val ue-descri ptor ABSENT })

NOTE — The unrestricted character string type does not allow the inclusion of a dat a- val ue- descri pt or value together with
the i dentification. However, the definition of the associated type provided here underlies the commonalities which exist
between the embedded-pdv type, the external type and the unrestricted character string type.

40.6 The text of 33.6 and 33.7 also applies to the unrestricted character string type.

ITU-T Rec. X.680 (07/2002) 63

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

40.7 The value notation shall be the value notation for the associated type, where the value of the stri ng-val ue
component of type OCTET STRI NGrepresents an encoding using the transfer syntax specified ini denti fi cati on.

UnrestrictedCharacterStringValue ::= SequenceValue -- value of associated type defined in 40.5

XMLUnrestrictedCharacterStringValue ::=

XMLSequenceValue -- value of associated type defined in 40.5

40.8 An example of the unrestricted character string type is given in E.2.8.

41 Notation for types defined in clauses 42 to 44

41.1 The notation for referencing a type defined in clauses 42 to 44 shall be:

UsefulType ::= typereference

where "typ
41.2 T

42 (
42.1 T
42.2 T
a
b
c
42.3 T

with the values of the Vi si bl eSt ri ng restricted to stfings of characters which are either

q

In case a),
case ¢), thg

coordinate

breference" is one of those defined in clauses 42 to 44 using the ASN.1 notation.

he tag of each "Useful Type" is specified in clauses 42 to 44.

beneralized time

his type shall be referenced by the name:

Ceneral i zedTi ne

he type consists of values representing:
a calendar date, as defined in ISO 8601; and

a time of day, to any of the precisions defined in ISO 8601, except for the hours value 24 whi
be used; and

the local time differential factor as defined in ISO8601.

he type is defined, using ASN.1, as follows:
CGeneralizedTine ::= [UNI VERSAL 24] IMPLICIT VisibleString

a string representing the calendar/date, as specified in ISO 8601, with a four-digit represent
year, a two-digit representation of the month and a two-digit representation of the day, wit
separators, followed by a-string representing the time of day, as specified in ISO 8601, withoul

provided for in ISO'8601); or
the characters in\a) above followed by an upper-case letter Z; or

the charactérs-in a) above followed by a string representing a local time differential, as
ISO 8601 without separators.

the time.shall represent the local time. In case b), the time shall represent coordinated univer:
part of°the string formed as in case a) represents the local time (t;), and the time differential

unwersal time to be determined as follows:

th shall not

htion of the
hout use of
[separators

other than decimal comma or decimal period (as provided for in ISO 8601), and with no termipating Z (as

pecified in

al time. In
ty) enables

coordinated universal time is t; — t;

EXAMPLES

Case a)

19851106210627. 3"

local time 6 minutes, 27.3 seconds after 9 pm on 6 November 1985.

Case b)

19851106210627. 3Z"

coordinated universal time as above.

Case ¢)

64

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

*19851106210627. 3- 0500"
local time as in example a), with local time 5 hours retarded in relation to coordinated universal time.

42.4 The tag shall be as defined in 42.3.

42.5 The value notation shall be the value notation for the Vi si bl eSt ri ng defined in 42.3.

43 Universal time

43.1 This type shall be referenced by the name:

UTCTi e
43.2 The type consists of values representing:
a) calendar date; and
b) time to a precision of one minute or one second; and
c) (optionally) a local time differential from coordinated universal time.
43.3 The type is defined, using ASN.1, as follows:

with the values of the Vi si bl eSt ri ng restricted to strings of characters which are the juxtaposition of:

a

The alternatives in b) above allow varying precisions iiithe specification of the time.

UTCTime ::= [UNIVERSAL 23] IMPLICIT VisibleString

the six digits YYMMDD where YY is the two low-order digits of thie’Christian year, MM i
(counting January as 01), and DD is the day of the month (01 to 3 ¥);and

either:

1) the four digits hhmm where hh is hour (00 to 23) and mm is minutes (00 to 59); or

2) the six digits hhmmss where hh and mm are as ind)yabove, and ss is seconds (00 to 59); a
either:

1) the character Z; or

2) one of the characters + or -, followed by-hhmm, where hh is hour and mm is minutes.

the month

In alternatiye c) 1), the time is coordinated universal time. In alternative c) 2), the time (t;) specified by a) and b) above

is the locdl time; the time differential (t;) Specified by c) 2) above enables the coordinated universal |time to be
determined) as follows:

(oordinated universal time,is\t{ — t
EXAMPLE 1 — If local time is #amron 2 January 1982 and coordinated universal time is 12 noon on 2 Januaiy 1982, the
value of UT|CTi ne is either of:

-{ "8201021200Z"; or

- "8201020700- 0500".
EXAMPLE 2 — Ifiloeal time is 7am on 2 January 2001 and coordinated universal time is 12 noon on 2 Januafy 2001, the
value of U1lCT i re/is either of:

— "0101020700- 0500".
43.4 The tag shall be as defined in 43.3.
43.5 The value notation shall be the value notation for the Vi si bl eSt ri ng defined in 43.3.
44 The object descriptor type
44.1 This type shall be referenced by the name:

Cbj ect Descri pt or
44.2 The type consists of human-readable text which serves to describe an object. The text is not an unambiguous
identification of the object, but identical text for different objects is intended to be uncommon.
ITU-T Rec. X.680 (07/2002) 65

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — It is recommended that an authority assigning values of type OBJECT | DENTI FI ERto an object should also assign values
of type Cbj ect Descri pt or to that object.

44.3 The type is defined, using ASN.1, as follows:
oj ectDescriptor ::= [UNVERSAL 7] IMPLICIT GraphicString
The G aphi ¢St ri ng contains the text describing the object.
44.4 The tag shall be as defined in 44.3.
44.5 The value notation shall be the value notation for the G- aphi ¢St ri ng defined in 44.3.

45 Constrained types

45.1 The "ConstrainedType" notation allows a constraint to be applied to a (parent) type, either to restrict its set of
values to some subtype of the parent or (within a set or sequence type) to specify that component relatiops apply to
values of the parent type and to values of some other component in the same set or sequence value. It alsp allows an
exception ifdentifier to be associated with a constraint.

ConstrainedType ::=
Type Constraint
| TypeWithConstraint

In the first|alternative, the parent type is "Type", and the constraint is specified by "€onstraint" as defined in 45.6. The
second altejnative is defined in 45.5.

45.2 When the "Constraint" notation follows a set-of or sequence-of typémnotation, it applies to the "Tlype" in the
(innermost) set-of or sequence-of notation, not to the set-of or sequence-of type:
NOTE - For example, in the following the constraint (SI ZE(1. . 64)) appli€s to'the Vi si bl eSt ri ng, not the SEQUENCE OF:

NanmesCOf Menber Nati ons ::= SEQUENCE CF Vi-sibl eString (SIZE(1..64))
45.3 When the "Constraint" notation follows the selection type notation, it applies to the choice type, and not to the
type of the|selected alternative. Such a constraint is ignored (see29.2).
NOTE - In the following example, the constraint (W TH COVRPONENTS {..., a ABSENT}) applies to the CHO CE type T, not to
the seledted SEQUENCE type, and has no effect on the values of V.
T ::= CHO CE {
a SEQUENCE {
a | NTEGER @GP ONAL,
b BOOLEAN
},
b NULL
}
V:i:=a < T(WTH COPONENTS {..., a ABSENT})
454 When the "Constraint" notation follows a "TaggedType" notation, the interpretation of the overall notation is

the same rdgardless of whether the "TaggedType" or the "Type" is considered as the parent type.

45.5 As a consequence of the interpretation specified in 45.2, special notation is provided to allow a constraint to be
applied to g set-of or sequence-of type. This is "TypeWithConstraint":

TypeWithConstraint ::=
SET Constraint OF Type

| SET SizeConstraint OF Type

| SEQUENCE Constraint OF Type

| SEQUENCE SizeConstraint OF Type
| SET Constraint OF NamedType
I
|
I

SET SizeConstraint OF NamedType
SEQUENCE Constraint OF NamedType
SEQUENCE SizeConstraint OF NamedType

In the first and second alternatives the parent type is "SET OF Type", while in the third and fourth it is "SEQUENCE OF
Type". In the fifth and sixth alternatives the parent type is "SET OF NamedType", and in the seventh and eighth is
"SEQUENCE OF NamedType". In the first, third, fifth and seventh alternatives, the constraint is "Constraint" (see 45.6),
while in the second, fourth, sixth and eighth it is "SizeConstraint" (see 47.5).

66 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — Although the "Constraint" alternatives encompass the corresponding "SizeConstraint" alternatives, the "SizeConstraint"
alternatives are provided for historical reasons.

45.6

A constraint is specified by the notation "Constraint":
Constraint ::="(" ConstraintSpec ExceptionSpec ") "

ConstraintSpec ::=
SubtypeConstraint
| GeneralConstraint

"ExceptionSpec" is defined in clause 49. Unless it is used in conjunction with an "extension marker" (see clause 48), it
shall only be present if the "ConstraintSpec" includes an occurrence of "DummyReference" (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.3) or is a "UserDefinedConstraint" (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 9). The
"GeneralConstraint" is defined in ITU-T Rec. X.682 | ISO/IEC 8824-3, 8.1.

45.7

Thenotation "thfvpp(“nncfrainf" is-the gpnpra]_pnﬁl’_\ncp "F]Pmpn‘rQPprpr‘q" notation (see clause 4.

SubtypeConstraint ::= ElementSetSpecs

In this confext, the elements are values of the parent type (the governor of the element set is the parent.type).
be at least ¢ne element in the set.

46
46.1

Klement set specification

Ih some notations a set of elements of some identified type or information/object class (the gover

specified. Ih such cases, the notation "ElementSetSpec" is used:

ElementSetSpecs ::=

RootElementSetSpec
| RootElementSetSpec "," "..."
| RootElementSetSpec "," "..." "," AdditionalElementSetSpec

RootElementSetSpec ::= ElementSetSpec
AdditionalElementSetSpec ::= ElementSetSpec

ElementSetSpec ::= Unions
| ALL Exclusions

Unions ::= Intersections
| UElems UnionMark'Intersections

UElems ::= Unions

Intersections ::= IntersectionElements
| IElems IntersectionMark IntersectionElements

IElems ::= Intersections
IntersectionElements ::= Elements | Elems Exclusions
Elems.::= Elements

Exelusions ::= EXCEPT Elements

There shall

hor) can be

— omomviark =" oNroN

IntersectionMark ::= "~" | | NTERSECTI ON

NOTE 1 — The caret character """ and the word | NTERSECTI ON are synonymous. The character "|" and the word UNI ON are
synonymous. It is recommended that, as a stylistic matter, either the characters or the words be used throughout a user
Specification. EXCEPT can be used with either style.

NOTE 2 — The order of precedence from highest to lowest is: EXCEPT, "7A", "|". Notice that ALL EXCEPT is specified so that it
cannot be interspersed with the other constraints without the use of parentheses around "ALL EXCEPT xxx".

NOTE 3 — Anywhere that "Elements" occurs, either a constraint without parentheses [e.g., | NTEGER (1. . 4)] or a parenthesized
subtype constraint [e.g., | NTEGER ((1..4 | 9))] can appear.

NOTE 4 — Note that two EXCEPT operators must have either "|", "", "(" or ")" separating them, so (A EXCEPT B EXCEPT C)
is not permitted. This must be changed to ((A EXCEPT B) EXCEPT C) or (A EXCEPT (B EXCEPT Q)).

NOTE 5 — Note that ((A EXCEPT B) EXCEPT C) is the same as (A EXCEPT (B | O)).

NOTE 6 — The elements that are referenced by "ElementSetSpecs" is the union of the elements referenced by the
"RootElementSetSpec" and "AdditionalElementSetSpec" (when present).

ITU-T Rec. X.680 (07/2002) 67

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE 7 — When the elements are information objects (i.e., the governor is an information object class), the notation
"ObjectSetElements" as defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.3 is used.

46.2

46.3

The elements forming the set are:

a) if the first alternative of the "ElementSetSpec" is selected, those specified in the "Unions" [see b)],
otherwise all elements of the governor except those specified in the "Elements" notation of the

"Exclusions";

b) if the first alternative of "Unions" is selected, then those specified in the "Intersections" [see c)], otherwise

those specified at least once either in the "UElems" or "Intersections";

c) if the first alternative of "Intersections" is selected, those specified in the "IntersectionElements" [see d)],

otherwise those specified by "[Elems" which also are specified by "IntersectionElements";

d) if the first alternative of "IntersectionElements" is selected, those specified in the "Elements'
those specified in the "Elems" except those specified in the "Exclusions".

', otherwise

e set of values 1s defined to be extensible 1f the following conditions hold:

a) for "Elements": there is an extension marker at the outer level;

b) for "Unions": at least one of the "UElems" is extensible;
c) for "Intersections": at least one of the "IElems" is extensible;

d) for "Exclusions": the set of elements preceding EXCEPT is extensible.

Otherwise, |the set of values is not extensible (see also G.4).

46.4

root valueg of the sets of values involved in the set arithmetic, as specified“ift 46.2. The extension addit
determined| by performing the set arithmetic using the root values augmented by the extension additions, for|
values invdlved in the set arithmetic, and then excluding values that wete determined to be root values.

46.5

Tlhe "Elements" notation is defined as follows:

Elements ::=
SubtypeElements
| ObjectSetElements
| "(" ElementSetSpec ") "

The elements specified by this notation are:

46.6

used when the governor.is_a' type, and the actual type involved will further constrain thd
possibilities. In this confext; the governor is referred to as the parent type.

b) As described in ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.10, if the "ObjectSetElements" notat]

This notation shathonly be used when the governor is an information object class.

c) Those specified by the "ElementSetSpec" if the third alternative is used.

When perforiing set arithmetic within a subtype constraint or a value set when the govern

extensible, [only abstra¢t values that are in the extension root of the governing type are used in the set arithm
case, all infstanceS;of value notation (including value references) used in set arithmetic are required to r
abstract value/ofithe extension root of the governing type. The end-points of a range constraint are required f
values that|are‘present in the extension root of the governing type, and the range specification as a whole re|
(and only) those values in the range that are within the extension root of the governing type.

46.7

NOTE - This applies even if all values of the parent are included in the root of the new constrained type.

If the set of values is extensible, the root values can be determined by performing the set arithmetid using only

ons can be
each set of

a) As described in clause 47 belowif the "SubtypeElements" alternative is used. This notation slpall only be

notational

lon is used.

ng type is
etic. In this
tference an
o reference
ferences all

When performing set arithmetic involving information object sets, all information objects are used in the set

arithmetic. If any of the information object sets contributing to the set arithmetic are extensible, or if there is an
extension marker at the outermost level of an "ElementSetSpecs", the result of the set arithmetic is extensible.

46.8

If a subtype constraint is serially applied to a parent type which is extensible through the application of an

extensible constraint, value notation used within it shall not reference values that are not in the extension root of the
parent type. The result of the second (serially applied) constraint is defined to be the same as if the constraint had been
applied to the parent type without its extension marker and possible extension additions.

68

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

EXAMPLE
Foo ::= INTEGER (1..6, ..., 73..80)
Bar ::= Foo (73) -- illegal
foo Foo ::= 73 -- legal since it is value notation for Foo, not part of a constraint

Bar is illegal since 73 is not in the extension root of Foo. If 73 had been in the extension root of Foo, the example
would have been legal, and Bar would have contained the single value of 73.

47 Subtype elements

47.1 General

A number of different forms of notation for "SubtypeElements" are provided. They are identified below, and their syntax
and semanfics are delined in the Tollowing subclauses. lable Y summarizes which notations can be appligqd to which
parent types.

SubtypeElements ::=
SingleValue

| ContainedSubtype

| ValueRange

| PermittedAlphabet

| SizeConstraint

| TypeConstraint

| InnerTypeConstraints

| PatternConstraint

ITU-T Rec. X.680 (07/2002) 69

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Table 9 — Applicability of subtype value sets

Type (or derived Single | Contained | Value Size Permitted Type Inner Pattern
from such a type by value subtype range constraint | alphabet | constraint | subtyping | constraint
tagging or subtyping)
Bit string Yes Yes No Yes No No No No
Boolean Yes Yes No No No No No No
Choice Yes Yes No No No No Yes No
Embedded-pdv Yes No No No No No Yes No
Enumerated Yes Yes No No No No No No
External Yes No No No No No Yes No
Instance-of Yes Yes No No No No Yes No
Integer Yes Yes Yes No No No No No
Null Yes Yes No No No No No No
Object clags field type Yes Yes No No No No No No
Object despriptor Yes Yes No Yes Yes No No No
Object identifier Yes Yes No No No No No No
Octet string Yes Yes No Yes No No No No
open type No No No No No Yes No No
Real Yes Yes Yes No No NoO Yes No
Relative olpject Yes? YesP No No No No No No
identifier
Re.stricted character Yes Yes Yes?) Yes Yeés No No Yes
string typep
Sequence Yes Yes No No No No Yes No
Sequence-pf Yes Yes No Yes No No Yes No
Set Yes Yes No Ne, No No Yes No
Set-of Yes Yes No Xes No No Yes No
Time type Yes Yes No No No No No No
Uqrestricte d character Yes No No Yes No No Yes No
string type
a) Allowfed only within the "PermittedAlphabet" of BMPString, |A5String, NumericString, PrintableString,
Vi sifjl eString, UTF8Stri ng and Uni versal Stri ng.
Y The sfarting node for all relative object ‘identifier types or values in constraints or valuesets shall be the same as the starting
node for the governor.
47.2 Single value
47.2.1 The "SingleValue" notation shall be:
SingleValue ::= Value
where "Valuelisthe value notation for the parent type.

47.2.2 A "SingleValue" specifies the single value of the parent type specified by "Value".

47.3 Contained subtype

47.3.1 The "ContainedSubtype" notation shall be:
ContainedSubtype ::= Includes Type
Includes ::= | NCLUDES | empty

The "empty" alternative of the "Includes" production shall not be used when "Type" in "ContainedSubtype" is the
notation for the null type.

47.3.2 A "ContainedSubtype" specifies all of the values in the root of the parent type that are also in the root of
"Type". "Type" is required to be derived from the same built-in type as the parent type.

70 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

47.3.3 The set of values referenced by an extensible "Type" used in a contained subtype constraint does not inherit
the extension marker from the "Type". Any values in "Type" that are not in the extension root of that type are ignored,
and do not contribute to the values of the constrained type.

NOTE - The use of an extensible "Type" does not in itself make the constrained type extensible.

47.4 Value range
47.4.1 The "ValueRange" notation shall be:
ValueRange ::= LowerEndpoint ". . ' UpperEndpoint

47.4.2 A "ValueRange" specifies the values in a range of values which are designated by specifying the values of the
endpoints of the range. This notation can only be applied to integer types, the "PermittedAlphabet" of certain restricted
character string types (1 A5String, NunericString, PrintableString, VisibleString, BMPString,
Uni versal String and UTF8St ri ng only) and real types. All values specified in the "ValueRange" are required to be
in the root pf the parent type.

NOTE — For the purpose of subtyping, PLUS- | NFI NI TY exceeds all real values and M NUS- | NFI NI TY is less than.all feal values.

47.4.3 Hach endpoint of the range is either closed (in which case that endpoint is specified) or opgn'(in whjch case the
endpoint is{not specified). When open, the specification of the endpoint includes a less-than symbol ("'<"):

LowerEndpoint ::= LowerEndValue | LowerEndValue "<"
UpperEndpoint ::= UpperEndValue | "<" UpperEndValue

47.4.4 An endpoint may also be unspecified, in which case the range extends in-that direction as far as the|parent type
allows:

LowerEndValue ::= Value | M N

UpperEndValue ::= Value | MAX
NOTE - When a "ValueRange" is used as a "Permitted Alphabet" constraint, "LowerEndValue" and "UpperEndValug" shall be of

size 1.
47.5 Size constraint
47.5.1 The "SizeConstraint" notation shall be:
SizeConstraint ::= S| ZE Constraint

47.5.2 A "SizeConstraint" can only be applied to bit string types, octet string types, character string types, pet-of types
or sequencg-of types.

47.5.3 The "Constraint" specifies ‘the permitted integer values for the length of the specified values, and takes the
form of any constraint which can‘be applied to the following parent type:

I NTEGER (0. MAX)

The "Consfraint" shall use.the "SubtypeConstraint" alternative of "ConstraintSpec".

47.5.4 The unit ofmeasure depends on the parent type, as follows:

Type Unit of measure
bitstrmg bit

octet string octet

character string character

set-of component value
sequence-of component value

NOTE — The count of the number of characters specified in this subclause for determining the size of a character string value shall
be clearly distinguished from a count of octets. The count of characters shall be interpreted according to the definition of the
collection of characters used in the type, in particular, in relation to references to the standards, tables or registration numbers in a
register which can appear in such a definition.

ITU-T Rec. X.680 (07/2002) 71

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

47.6
47.6.1

47.6.2

47.7
47.7.1

47.7.2

47.1.3

Type constraint
The "TypeConstraint" notation shall be:

TypeConstraint ::= Type

This notation is only applied to an open type notation and restricts the open type to values of "Type".

Permitted alphabet
The "PermittedAlphabet" notation shall be:

PermittedAlphabet ::= FROMConstraint

A "PermittedAlphabet" specifies all values which can be constructed using a sub-alphabet of the parent string.
This notation can only be applied to restricted character string types.

"SubtypeCopnstraint" alternative of "ConstraintSpec". The sub-alphabet includes precisely those characters'w
in one or more of the values of the parent string type which are allowed by the "Constraint".

47.7.4

If "Constraint" is extensible, then the set of values selected by the permitted alphabet cOnstraint is

The set of yalues in the root are those permitted by the root of "Constraint", and the extension additions are t
permitted By the root together with the extension-additions of "Constraint”, excluding thosg/values already in

47.8
47.8.1

47.8.2

Ipner subtyping
Tihe "InnerTypeConstraints" notation shall be:

InnerTypeConstraints ::=
W TH COVPONENT SingleTypeConstraint
| W TH COVPONENTS MultipleTypeConstraints

An "InnerTypeConstraints" specifies only those values'which satisfy a collection of constraints on t

and/or values of the components of the parent type. A value of the parent type is not specified unless it satisfi
constraints|expressed or implied (see 47.8.6). This notation“can be applied to the set-of, sequence-of, set, s

choice typgs.

NOTE - An "InnerTypeConstraints" applied to a set erésequence type is ignored by the COMPONENTS OF transformati

and 26.2)).

47.8.3

For the types which are defined in_terms of a single other (inner) type (set-of and sequence-of),

taking the form of a subtype value specification is provided. The notation for this is "SingleTypeConstraint":

SingleTypeConstraint ::= Constraint

The "Consfraint" defines a subtype of the single other (inner) type. A value of the parent type is specified if]|
each inner yalue belongs to theSubtype obtained by applying the "Constraint" to the inner type.

47.8.4

Hor the typeswhich are defined in terms of multiple other (inner) types (choice, set, and sequence

of constraifts on these\inner types can be provided. The notation for this is "MultipleTypeConstraints":

47.8.5

MultipleTypeConstraints ::=
FullSpecification

Tihe "Constraint" is any which could be applied to the parent type (see Table 9), except that it |shall use the

hich appear

extensible.
hose values
the root.

he presence
es all of the
quence and

bn (see 24.4

h constraint

and only if

, a number

Partia |Speciﬁcaﬁnn

FullSpecification ::="{" TypeConstraints "} "
PartialSpecification ::="{" "..." "," TypeConstraints "} "

TypeConstraints ::=
NamedConstraint
| NamedConstraint "," TypeConstraints

NamedConstraint ::=
identifier ComponentConstraint

The "TypeConstraints" contains a list of constraints on the component types of the parent type. For

a sequence

type, the constraints must appear in order. The inner type to which the constraint applies is identified by means of its
identifier. For a given component, there shall be at most one "NamedConstraint".

72

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

47.8.6 The "MultipleTypeConstraints" comprises either a "FullSpecification" or a "PartialSpecification". When
"FullSpecification" is used, there is an implied presence constraint of ABSENT on all inner types which can be
constrained to be absent (see 47.8.9) and which is not explicitly listed. Where "PartialSpecification” is employed, there
are no implied constraints, and any inner type can be omitted from the list.

47.8.7 A particular inner type may be constrained in terms of its presence (in values of the parent type), its value, or
both. The notation is "ComponentConstraint":

ComponentConstraint ::= ValueConstraint PresenceConstraint
47.8.8 A constraint on the value of an inner type is expressed by the notation "ValueConstraint":
ValueConstraint ::= Constraint | empty

The constraint is satisfied by a value of the parent type if and only if the inner value belongs to the subtype specified by
the "Constraint" applied to the inner type.

47.8.9 A constraint on the presence of an inner type shall be expressed by the notation "PresenceConstrain
PresenceConstraint ::= PRESENT | ABSENT | OPTI ONAL | empty
The meaning of these alternatives, and the situations in which they are permitted are defined in 47.8.9.1 to 47]8.9.3.

47.8.9.1 If the parent type is a sequence or set, a component type marked OPTI ONAL may beyconstrained to he PRESENT
(in which dase the constraint is satisfied if and only if the corresponding component value s present) or to be [ABSENT (in
which case| the constraint is satisfied if and only if the corresponding component value\is)absent) or to be OFTI ONAL (in
which case|no constraint is placed upon the presence of the corresponding componeit value).

47.8.9.2 If the parent type is a choice, a component type can be constrained t6-be”’ABSENT (in which case thf constraint
is satisfied|if and only if the corresponding component type is not used irthe value), or PRESENT (in which case the
constraint {s satisfied if and only if the corresponding component type,is used in the value); there shall be §t most one
PRESENT keyword in a "MultipleTypeConstraints".

NOTE - See E.4.6 for a clarifying example.

47.8.9.3 The meaning of an empty "PresenceConstraint".) depends on whether a "FullSpecificatjon
"PartialSpecification" is being employed:

or a

a) in a "FullSpecification", this is equivalent“to a constraint of PRESENT for a set or sequence |component
marked OPTI ONAL and imposes no further constraint otherwise;

b) in a "PartialSpecification", no constraint is imposed.

47.9 Pattern constraint
47.9.1 The "PatternConstraint" notation shall be:
PatternConstraint\::= PATTERN Value

47.9.2 "Malue" shall be a-Vcstring" of type Uni versal String (or a reference to such a character stjing) which
contains anf ASN.1 regulat expression as defined in Annex A. The "PatternConstraint" selects those values of the parent
type that sqtisfy the ASN.1 regular expression. The entire value shall satisfy the entire ASN.1 regular expressjon, i.e., the
"PatternCopstraint“~does not select values whose leading characters match the (entire) ASN.1 regular expression but
which conthinfurther trailing characters.

NOTE - "Value" is formally defined as a value of type Uni ver sal Stri ng, but the sets of values of type Uni ver sal|Stri ng and

UTF8St ri ng are the same (see 37.16). Thus a totally equivalent definition could have been to say that "Value" is a value of type
UTF8Stri ng.

48 The extension marker

NOTE - Like the constraint notation in general, the extension marker has no effect on some encoding rules of ASN.1, such as the
Basic Encoding Rules, but does on others, such as the Packed Encoding Rules. Its effect on encodings defined using ECN is
determined by the ECN specification.

48.1 The extension marker, ellipsis, is an indication that extension additions are expected. It makes no statement as
to how such additions should be handled other than that they shall not be treated as an error during the decoding process.

48.2 The joint use of the extension marker and an exception identifier (see clause 49) is both an indication that
extension additions are expected and also provides a means for identifying the action to be taken by the application if
there is a constraint violation. It is recommended that this notation be used in those situations where store and forward or

ITU-T Rec. X.680 (07/2002) 73

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

any other form of relaying is in use, so as to indicate (for example) that any unrecognized extension additions are to be
returned to the application for possible re-encoding and relaying.

48.3 The result of set arithmetic involving subtype constraints, value sets or information object sets that are
extensible is specified in clause 46.

48.4 If a type defined with an extensible constraint is referenced in a "ContainedSubtype", the newly defined type
does not inherit the extension marker or any of its extension additions (see 47.3.3). The newly defined type can be made
extensible by including an extension marker at the outermost level in its "ElementSetSpecs" (see also 46.3). For
example:

A ::= INTEGER (0..10, ..., 12) -- Ais extensible.

B ::= INTEGER (A) -- Bis inextensible and is constrained to 0-10.

C ::= INTECER (A .) -- Cis extensible and is constrained to 0-10.
48.5 If a type defined with an extensible constraint is further constrained with an "ElementSetSpecs", the resulting

type does rotTmierit the externsion marker TToT amy eXtension additions that Ty bepresemnt T tire former torstraint (see

46.8). For fexample:

A ::= INTEGER (0..10, ...) -- Ais extensible.
B::=A(2..5) -- Bis inextensible.
C::= A -- Cis extensible.
48.6 (omponents of a set, sequence or choice type that are constrained to be absent shath not be present], regardless

of whether|the set, sequence or choice type is an extensible type.
NOTE - Inner type constraints have no effect on extensibility.

For example:
A 1= SEQUENCE {
a | NTEGER
b BOCLEAN OPTI ONAL,
}
B::= A (WTH COVPONENTS {b ABSENT}.)

-- Bsis extensible, but 'b' shall not be
--present in any of its val ues.

48.7 Where this Recommendation | InternationalStandard requires distinct tags (see 24.5 to 24.6, 26.3 and 28.3),
the following transformation shall conceptually be applied before performing the check for tag uniqueness:

48.7.1 A new element or alternative (called‘the conceptually-added element, see 48.7.2) is conceptually added at the
extension ipisertion point if:

a) there are no extension matkers but extensibility is implied in the module heading, and then ap extension
marker is added andithe new element is added as the first addition after that extension marker; pr

b)) there is a single €xtension marker in a CHO CE or SEQUENCE or SET, and then the new element]is added at
the end of the'CHO CE or SEQUENCE or SET immediately prior to the closing brace; or

c) there are~two extension markers in a CHO CE or SEQUENCE or SET, and then the new element is added
immediately before the second extension marker.

48.7.2 This conceptually-added element is solely for the purposes of checking legality through the application of rules
requiring distinct tags (see 24.5 to 24.6, 26.3 and 28.3). It is conceptually-added affer the application of automatic

tagging (if kpphicable)-and-the-expansion-of COMPONENFS-CF-

P CT O T Tt Ot O S Pt oTOTT

48.7.3 The conceptually-added element is defined to have a tag which is distinct from the tag of all normal ASN.1
types, but which matches the tag of all such conceptually-added elements and matches the indeterminate tag of the open
type, as specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.2, Note 2.

NOTE - The rules concerning tag uniqueness relating to the conceptually added element and to the open type, together with the
rules requiring distinct tags (see 24.5 to 24.6, 26.3 and 28.3) are necessary and sufficient to ensure that:

a) any unknown extension addition can be unambiguously attributed to a single insertion point when a BER encoding is
decoded; and

b) unknown extension additions can never be confused with OPTI ONAL elements.
In PER the above rules are sufficient but are not necessary to ensure these properties. They are nonetheless imposed as rules
of ASN.1 to ensure independence of the notation from encoding rules.

48.7.4 If, with these conceptually-added elements, the rules requiring distinct types are violated, then the specification
has made illegal use of the extensibility notation.

74 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE — The purpose of the above rules is to make precise restrictions arising from the use of insertion points (particularly those
which are not at the end of SEQUENCEs or SETs or CHO CEs). The restrictions are designed to ensure that in BER, DER and CER it
is possible to attribute an unknown element received by a version 1 system unambiguously to a specific insertion point. This
would be important if the exception handling of such added elements was different for different insertion points.

48.8 Examples
48.8.1 Example 1

A= SET {
a A,
b CHO CE {
c C,
d D,
}
}

is legal, fo1 there is no ambiguity as any added material must be part of b.

48.8.2 Hxample 2

A = SET {
a A
b CHO CE {
c C,
d D,
},
d D
}

is illegal, for added material may be part of b, or may be at the outer level of A, and a version 1 system cannottell which.

48.8.3 Hxample 3

A = SET {
a A,
b CHO CE {
c C,
d oHOCE {
e E,
}
}

is also illegal, for added material may be part of b or d.

48.8.4 More complex examples can be constructed, with extensible choices inside extensible choices, of extensible
choices within elements)of a sequence marked OPTI ONAL or DEFAULT, but the above rules are necessary and gufficient to
ensure that{an element)not present in version 1 can be unambiguously attributed by a version 1 system to precisely one
insertion p@int.

49 The exception identifier

49.1 In a complex ASN.1 specification, there are a number of places where it is specifically recognized that
decoders have to handle material that is not completely specified in it. These cases arise in particular from use of a
constraint that is defined using a parameter of the abstract syntax (see ITU-T Rec. X.683 | ISO/IEC 8824-4, clause 10).

49.2 In such cases, the application designer needs to identify the actions to be taken when some implementation-
dependent constraint is violated. The exception identifier is provided as an unambiguous means of referring to parts of
an ASN.1 specification in order to indicate the actions to be taken. The identifier consists of a "! " character, followed by
an optional ASN.1 type and a value of that type. In the absence of the type, | NTEGER is assumed as the type of the value.

49.3 If an "ExceptionSpec" is present, it indicates that there is text in the body of the standard saying how to handle
the constraint violation associated with the "!' " character. If it is absent, then the implementors will either need to
identify text that describes the action that they are to take, or will take implementation-dependent action when a
constraint violation occurs.

ITU-T Rec. X.680 (07/2002) 75

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

49.4 The "ExceptionSpec" notation is defined as follows:
ExceptionSpec ::="! " Exceptionldentification | empty

Exceptionldentification ::=
SignedNumber
| DefinedValue
| Type ": " Value

The first two alternatives denote exception identifiers of type integer. The third alternative denotes an exception
identifier ("Value") of arbitrary type ("Type").

49.5 Where a type is constrained by multiple constraints, more than one of which has an exception identifier, the
exception identifier in the outermost constraint shall be regarded as the exception identifier for that type.

49.6 Where an exception marker is present on types that are used in set arithmetic, the exception identifier is
ignored an T T M D g constral SU

76 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

Al Definition

ISO/IEC 8824-1:2002 (E)

Annex A

ASN.1 regular expressions

(This annex forms an integral part of this Recommendation | International Standard)

A.1.1 An ASN.1 regular expression is a pattern that describes a set of strings whose format conforms to this pattern.
A regular expression is itself a string; it is constructed analogously to arithmetic expressions, by using various operators
to combine smaller expressions. The smallest expressions, which are (usually) made of one or two characters, are
placeholders that stand for a set of characters.

The regular expressions presented here are very similar to those o1 scripting languages [1Ke Ferl and 1o tho

Schema, where some other examples of use can be found.

A.1.2 Most characters, including all letters and digits, are regular expressions that match themselyes.

EXAMPLH
T

Al13 T
concatenat]

he regular expression " f r ed" matches only the string " f r ed" .

wo regular expressions may be concatenated; the resulting regular expression’ matches any string

ng two substrings that respectively match the concatenated subexpressioiis:

A2 Metacharacters

A21 A
meaning in
meaning is

[

metacharacter sequence (or metacharacter) is a set of one ¢r more contiguous characters that ha
the context of a regular expression. The following list‘contains all of the metacharacter sequg

explained in the following clauses.

]

Match any character in the set,where ranges are denoted by "- "
A """ after the opening bracket\complements the set which follows it.

se of XML

formed by

e a special
nces. Their

{lg, p, r, c} Quadruple which identifieS‘a character of ISO/IEC 10646-1 (see 37.8)
\IN{ nane} Match the named character (or any character of the named character set) 38.1
. Match any character’(unless it is one of the newline characters defined in 11.1.6)
\|d Match any digit,(equivalent to "[0- 9] ")

\|w Match any jalphanumeric character (equivalent to "[a- zA- Z0- 9] ")

\t Match.the’lHORIZONTAL TABULATION (9) character (see 11.1.6)
\|n Mateh/any one of the newline characters defined in 11.1.6

\Ir Match the CARRIAGE RETURN (13) character (see 11.1.6)

\|s Match any one of the white-space characters (see 11.1.6)

\|b atch a word boundary

\ (prefix) Quote the next metacharacter and cause it to be interpreted literally

\\ Match the REVERSE SOLIDUS (92) character "\ "

" Match the QUOTATION MARK (34) character (")

[(infix) Alternative between two expressions

(= Grouping of the-enclosed-expression

* (postfix) Match the previous expression zero, one or several times

+ (postfix) Match the previous expression one or several times

? (postfix) Match the previous expression once or not at all

#n (postfix) Match the previous expression exactly n times (where n is a single digit)
#(n) (postfix) Match the previous expression exactly n times

#(n,) (postfix) Match the previous expression at least n times

#(n, m (postfix) Match the previous expression at least n but not more than m times
#(,m (postfix) Match the previous expression not more than m times

NOTE 1 — The characters CIRCUMFLEX ACCENT (94) "»" and HYPHEN-MINUS (45) "- " are additional metacharacters in
certain positions of the string defined in A.2.2.

NOTE 2 — The value in round brackets after a character name in this annex is the decimal value of the character in ISO/IEC

10646-1.

ITU-T Rec. X.680 (07/2002)

77

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE 3 — This notation does not provide the metacharacters "*" and "$" to match the beginning and the end of a string
respectively. Hence a string shall match a regular expression in its entirety except if the latter includes ". *" at its beginning, at its
end or at both sides.

NOTE 4 — The following metacharacter sequences cannot contain white-space (see 11.1.6) unless the white-space appears
immediately prior to or following a newline:

{g.prc}
\ N{ name}
#n

#(n)
#(n,)
#(n, m)
#(, m)

If a regular expression contains a newline, any spacing characters that appear immediately prior to or following the newline have
no significance and match nothing (see 11.14.1).

A2.2
the list is

giving the|first and last characters, separated by a hyphen (according to the order relation defined in
metacharadter sequences, except "]" and "™ ", lose their special meaning inside a list., ,To includ

A list of characters enclosed by "[" and "] " matches any single character in that list. If the first g

haracter of

the caret """, then it matches any character which is not in the list. A range of characters may\be specified by

39.3). All
e a literal

CIRCUMHLEX ACCENT (94) """, place it anywhere except in the first position or precede it with a backslash. To

include a

literal CLQSING SQUARE BRACKET (93) "] ", place it first. If the first character inthe list is the caret "
characters |- " and "] " also match themselves when they immediately follow that caret. The metacharacte
defined in A.2.3, A.2.4, A.2.6 and A.2.7 can be used between the square brackets-where they keep their mean|

EXAMPLES

A23

are provided. A notation of the form " { group, plane, row, cell} " references a (single) character accor
"Quadruplg" production defined in 37.8.

A.2.4
reference

module. Al notation of the form "\ N{typereference}" matches any character of the referenced chars
"typereference" is a reference to a subtype of a "RestrictedCharacterStringType" which is defined in the curr
or is one of the "RestrictedCharacterStringType"s defined in clause 37.

NOTE

ASNL1- CHARACTER- MODULE (see 38.1) and imported into the current module (see 37.8).
EXAMPLES

A.25
A.2.6

78

literal HYPHEN-MINUS (45) "-", place it first or last in the list, or precede it with’a backslash. T

The regular expression " [0123456789] ", or equivalently " [O- 9}+" , matches any single digit.
The regular expression " [0] " matches any single charagter.except 0.
The regular expression " [\ d”. -1 " matches any single\digit, a caret, a hyphen or a period.

Tlo avoid any ambiguity between two ISO/IEC, 10646-1 characters which have the same glyph, tw

A notation of the form "\ N{ valuereference} " matches the referenced character if "valuereferg
th a restricted character string value-of size 1 (see clause 37) which is defined or imported in

- In particular, "valuereference" or "typereference" can be one of the references defined in

Tlhe regularexpression "\ N{ gr eekCapi t al Let t er Si gma} " matches GREEK CAPITAL LETTEHR

Tlhe regular expression "\ N{ Basi cLati n}" matches any (single) character of the BASIC LATI]
sgt.

o include a
", then the
sequences

Ing.

0 notations
ling to the

nce" is a
the current
cter set if
ent module,

the module

t SIGMA.

N character

"[\N{BasicLati n}\N{Cyrillic}\NBasicQeek}]+", or equivalently "(\N{Basi cLatin} |
\N{Cyrillic} | \N{BasicG eek})+", are regular expressions that match a string made of any (non null)

number of characters from the three character sets specified.

The period ". " matches any single character, unless it is one of the newline characters defined in 11

.1.6.

The symbol "\ d" is a synonym for "[0- 9] ", i.e., it matches any single digit. The symbol "\ t " matches the
HORIZONTAL TABULATION (9) character. The symbol "\ W' is a synonym for "[a- zA- Z0- 9] ", i.e., it matches any
single (lower-case or upper-case) character or any single digit.

EXAMPLE

The regular expression "\ w+(\ s\ w+) *\ . " matches a sentence made of at least one (alphanumeric)

word. The

words are separated by one white-space character as defined in 11.1.6. There is no white-space character

before the ending period.

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

A.2.7 The symbol "\ r " matches the CARRIAGE RETURN (13) character. The symbol "\ n" matches any one of the
newline characters defined in 11.1.6. The symbol "\ s" matches any one of the white-space characters defined in 11.1.6.
The symbol "\ b" matches the empty string at the beginning or at the end of a word.

EXAMPLE

The regular expression “. *\ bf r ed\ b. *" matches any string which includes the word " fred" (this word is
not only a series of four characters; it is delimited). Hence it matches strings like "fred" or "I am fred
the first",butnot strings like "My nane is freddy" or"l amafred | don't know how to spell
‘afraid !".

A.2.8 A character that normally functions as a metacharacter can be interpreted literally by prefixing it with a "\ ". If
the regular expression includes a QUOTATION MARK (34), this character shall be represented by a pair of
QUOTATION MARK characters.

EXAMPLES

The regular expression "\ . " matches the (single) string *. ", but not any string of any single charadfer.
Tlhe regular expression " """ matches the string which contains a single QUOTATION MARK.
Tlhe regular expression "\') " matches the string ") ".

The regular expression "\ a" matches the character " a" .
NOTE - The fourth example shows that the backslash is allowed to precede characters that arejnot metacharacters, but this use is
deprecated (because other metacharacters could be allowed in future versions of this Recorhendation | International Standard).

A.2.9 Two or more regular expressions may be joined by the infix operaton
matches anly string matching either subexpression.

NI n

. The resulting regular| expression

A.2.10 A regular expression may be followed by a repetition operator. “If the operator is "?", the preceding item is
optional and matched at most once. If the operator is "*", the preceding item will be matched zero or more tjmes. If the
operator is| "+", the preceding item will be matched one or morectimes. If the operator is of the form '|#(n)", the
preceding {tem is matched exactly n times; in this particular,case; the parentheses can be omitted if n congists of one
digit. If it s of the form "#(n,) ", the item is matched n or more times. If it is of the form "#(, m) ", the iten] is optional
and is matdhed at most m times. Finally, if it is of the form\"#(n, m) ", the item is matched at least n times, bjit not more
than m timgs.

NOTE 1t is illegal to use the metacharacters "*", "+!'(/}?" or "#" as the first character of a regular expression. It is glso illegal to
use the rhetacharacters "#" or "| " as the last character.of a regular expression.

EXAMPLES

A phone number like "555-1212" is matched by the regular expression "\ d#3-\d#4", or gquivalently
'\ d#(3) -\ d#(4)".

price in dollars like"$12345. 90" is matched by the regular expression "$\ d#(1,) (\.\d#(1,2))?".
ote that parentheges afe requested after the "#" symbol when it is followed by a range.

social security-number like " 123- 45- 5678" is matched by the regular expression "\ d#3- 2\ d#2{ ?\ d#4".

= > Z

A2.11 epetition'(see A.2.10) takes precedence over concatenation (see A.1.3), which in turn takes precqdence over
alternation|(see A.2.9). A whole subexpression may be enclosed in parentheses to override these precedence tules.

A.2.12 Whewa regular expression contains subexpressions in parentheses, each (non-quoted) opening pajrenthesis is
successively assigned a distinct (strictly positive) integer from the left to the right of the regular expression. Each
subexpression can then be referenced inside a comment with a notation like "\ 1", "\ 2" which uses the associated integer.
The empty subexpression "() " is not permitted.

EXAMPLE

"((\d#2) (\d#2) (\d#4))" -- \1 is a date in which \2 is the nonth, \3 the day
-- and \4 the year.

NOTE — There is a requirement for formal reference to subexpressions of a regular expression for many purposes. One such
instance is the need to write text to document the regular expression within the ASN.1 module. This is a notation which can be
used to provide such references. This notation is not used elsewhere in this Recommendation | International Standard.

ITU-T Rec. X.680 (07/2002) 79

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Annex B

Rules for type and value Compatibility

(This annex forms an integral part of this Recommendation | International Standard)

This annex is expected to be mainly of use to tool builders to ensure that they interpret the language identically. It is
present in order to clearly specify what is legal ASN.1 and what is not, and to be able to specify the precise value that
any value reference name identifies, and the precise set of values that any type or value set reference name identifies. It
is not intended to provide a definition of valid transformations of ASN.1 notations for any purpose other than those
stated above.

B.1 The need for the value mapping concept (tutorial introduction)
B.1.1 (jorsiderthe fottowimg ASN-Tdefimitions:

A ::= I NTEGCER

B ::=[1] |INTEGER

d::=[2] INTEGER (0..6,...)

O::=[2] INTEGER (0..6,...,7)

H::= INTEGER (7..20)

H ::= INTEGER {red(0), white(l), blue(2), green(3), purphe(4)}

aA: =3

bl B::=4

cfC::=5

dD::=6

eE: =7

fl F ::= green

B.1.2 I{ is clear that the value references a, b, ¢, d,\e, and f can be used in value notation governed by A B, C, D, E,
and F, respgctively. For example:

W::= SEQUENCE {wl A DEFAULT a}
and:

XA::=a
and:

Y::= Al..a)

are all valifl given the/definitions in B.1.1. If, however, A above were replaced by B, or C, or D, or E, or F| would the
resulting statements be)illegal? Similarly, if the value reference a above were replaced in each of these caseq by b, or c,
ord, or e, ¢r f, ar€the resulting statements legal?

B.1.3 A more sophisticated question would be to consider in each case replacement of the type refergnce by the
explicit texTTO THE TIgNT Of TS assSignment. Comnsider 10T example:

f INTEGER {red(0), white(l), blue(2), green(3), purple(4)} ::= green
W :: = SEQUENCE {
wl | NTEGER {red(0), white(1l), blue(2), green(3), purple(4)}
DEFAULT f}
X I NTEGER {red(0), white(1), blue(2), green(3), purple(4)} ::=f
Y ::= INTEGER {red(0), white(1), blue(2), green(3), purple(4)}(1..f)

Would the above be legal ASN.1?

B.1.4 Some of the above examples are cases which, even if legal (as most of them are — see later text), users would
be ill-advised to write similar text, as they are at the least obscure and at worst confusing. However, there are frequent
uses of a value reference to a value of some type (not necessarily just an | NTEGER type) as the default value for that type

80 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

with tagging or subtyping applied in the governor. The value mapping concept is introduced in order to provide a clear
and precise means of determining which constructs such as the above are legal.

B.1.5 Again, consider:

C::=[2] INTEGER (0..6,...)
E ::= I NTEGER (7..20)
F ::= INTECER {red(0), white(1), blue(2), green(3), purple(4)}

In each case a new type is being created. For F we can clearly identify a 1-1 correspondence between the values in it and
the values in the universal type | NTEGER. In the case of Cand E, we can clearly identify a 1-1 correspondence between
the values in them and a subset of the values in the universal type | NTEGER We call this relationship a value mapping
between values in the two types. Moreover, because values in F, C, and E all have (1-1) mappings to values of | NTEGER,

we can use these mappings to provide mappings between the values of F, C, and E themselves. This is illustrated for F
and Cin Figure B

Integer

Mappings

o red(0)
O blue(2)

O white(1) . Derived __ »
PE— .
O green(3) 2lappings

O purple(4)

T0732160-99
Figure B.1

B.1.6 Now when we have-a'value reference such as:
cfC::=5

to a value in C which'1S required in some context to identify a value in F, then, provided a value mapping exifts between

that value n Cland a (single) value in F, we can (and do) define c to be a legal reference to the value in F. This is

illustrated fmFigure B.2, where the value reference c is used to identify a value in F, and can be used in plac¢ of a direct
reference f T where we would otherwise have to define:

fl1F::=5

ITU-T Rec. X.680 (07/2002) 81

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

o red(0)
O blue(2)

o white(1)

®) green(.3.). .

O purple(4)

oS

J073217)0-99

Figure B.2

B.1.7 I{ should be noted that in some cases there will be values in one type (7 to-20.in A of B.1.1 for example) that
have value|mappings to values in another type (7 to 20 in E of B.1.1 for example), \but other values (21 upards of A)
that have np such mapping. A reference to such values in A would not provide.a\yalid reference to a value i E. (In this
example, the whole of E has a value mapping to a subset of A. In the general-ease, there may be a subset ¢f values in
both types that have mappings, with other values in both types that are unmapped.)

B.1.8 In the body of the ASN.1 standards, normal English text iS"used to specify legality in the above jand similar
cases. Subglause B.6 gives the precise requirements for legality andsshould be referenced whenever there is dloubt about
a complex fonstruction.
NOTE - The fact that value mappings are defined to exist between two occurrences of the "Type" construct permifts the use of
value references established using one "Type" construct to~identify values in another "Type" construct which if sufficiently
similar. [t allows dummy and actual parameters to be typediusing two textually separate "Type" constructs without [violating the
rules forl compatibility of dummy and actual parametersilt also allows fields of information object classes to be specified using
one "Type" construct and the corresponding value in,an-information object to be specified using a distinct "Type" corjstruct which
is sufficfently similar. (These examples are not intended to be exhaustive.) It is, however, recommended that advantpge be taken
of this fieedom only for simple cases such as SEQJENCE OF | NTEGER, or CHO CE {int INTEGER id OBJECT | DENTI FI ER},
and not for more complex "Type" constructs:

B.2 Value mappings

B.2.1 Tlhe underlying modelis\of types, as non-overlapping containers, that contain values, with every occurrence of
the ASN.1|"Type" construct defining a distinct new type (see Figures B.1 and B.2). This annex specifies when value
mappings gxist between such-types, enabling a reference to a value in one type to be used where a reference tp a value in
some other|type is needed.

EXAMPLE: Coasider:
A & = NTEGER

YTT=—TNTECER

Xand Y are type reference names (pointers) to two distinct types, but value mappings exist between these types, so any
value reference to a value of X can be used when governed by Y (for example, following DEFAULT).

B.2.2 In the set of all possible ASN.1 values, a value mapping relates a pair of values. The whole set of value
mappings is a mathematical relation. This relation possesses the following properties: it is reflexive (each ASN.1 value is
related to itself), it is symmetric (if a value mapping is defined to exist from a value x1 to a value x2, then there
automatically exists a value mapping from x2 to x1), and it is transitive (if there is a value mapping from a value x1
to x2, and a value mapping from x2 to x3, then there automatically exists a value mapping from x1 to x3).

B.2.3 Furthermore, given any two types X1 and X2, seen as sets of values, the set of value mappings from values
in X1 to values in X2 is a one-to-one relation, that is, for all values x1 in X1, and x2 in X2, if there is a value mapping
from x1 to x2, then:

a) there is no value mapping from x1 to another value in X2 different from x2; and

82 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

b)

ISO/IEC 8824-1:2002 (E)

there is no value mapping from any value in X1 (other than x1) to x2.

B.2.4 Where a value mapping exists between a value x1 and a value x2, a value reference to either one can
automatically be used to reference the other if so required by some governing type.

NOTE — The fact that value mappings are defined to exist between values in some "Type" constructs is solely for the purpose of
providing flexibility in the use of the ASN.1 notation. The existence of such mappings carries no implications whatsoever that the
two types carry the same application semantics, but it is recommended that ASN.1 constructs which would be illegal without
value mappings are used only if the corresponding types do indeed carry the same application semantics. Note that value
mappings will frequently exist in any large specification between two types that are identical ASN.1 constructs, but which carry
totally different application semantics, and where the existence of these value mappings is never used in determining the legality
of the total specification.

B.3 Identical type definitions

B.3.1 The concept of identical type definitions is used to enable value mappings to be defined between two instances

Of IVTypeH

T | <4l b | — 1 aladid 4] LS | el 141 11 RS N b
wiivil arc CItel IUTIitivar Ul bbllll\/lclll,ly SIHIIAL Uldl UL WUUIU llUlllldll_y CAPC\/L fire use tO (S

interchanggable. In order to give precision to the meaning of "sufficiently similar", this subclause specifies| a series of
transformations which are applied to each of the instances of "Type" to produce a normal form for fhose ipstances of
"Type". THe two instances of "Type" are defined to be identical type definitions if, and only if, theinormdl forms are

identical ordered lists of the same lexical items (see clause 11).

B.3.2 Hach occurrence of "Type" in an ASN.1 specification is an ordered list of the legical items defingd in clause

11. The nofmal form is obtained by applying the transformations defined in B.3.2.1 to B.3.2.6 in that order.
B.3.2.1 All the comments (see 11.6) are removed.

B.3.2.2 The following transformations are not recursive and hence need only to\be applied once, in any ordgr:

Q|

For a type defined by a "ValueSetTypeAssignment", its definition is replaced by a "TypeAssignment"
using the same "Type" and a subtype constraint which is theé contents of the "ValueSet" as gpecified in
15.6.

For each integer type: the "NamedNumberList" (see™8.1), if any, is reordered so that the "ideptifier"s are
in alphabetical order ("a" first, "z" last).

For each enumerated type: numbers are added;, as specified in 19.3, to any "Enumerationltem| (see 19.1)
that is an "identifier" (without a number); then the "RootEnumeration" is reordered qo that the
"identifiers" are in alphabetical order ("a'“first, "z" last).

For each bitstring type: the "NamedBitList" (see 21.1), if any, is reordered so that the "identifiers" are in
alphabetical order ("a" first, "z" last).

For each object identifier~value: each "ObjldComponents" is transformed into its cofresponding
"NumberForm" in accordanee with the semantics of clause 31 (see the example in 31.12).

For each relative object identifier value (see 32.3): each "RelativeOIDComponents" is transforfned into its
corresponding "NumberForm" in accordance with the semantics of clause 32.

For sequence types (see clause 24) and set types (see clause 26): any extension of the form
"ExtensionAndException", "ExtensionAdditions", is cut and pasted to the end of the
"CompanentTypeLists"; "OptionalExtensionMarker", if present, is removed.

If "TagDefault" is | MPLI CI T TAGS, the keyword | MPLI O T is added to all instances of "Tag"|(see clause
30),unless either:

o it is already present; or

h)

* the reserved word EXPLI Cl T is present; or
» the type being tagged is a CHO CE type or;
e itis an open type.

If "TagDefault" is AUTOVATI C TAGS, the decision on whether to apply automatic tagging is taken
according to 24.2 (the automatic tagging will be performed later on).

NOTE - Subclauses 24.3 and 26.2 specify that the presence of a "Tag" in a "ComponentType" which was
inserted as a result of the replacement of "Components of Type" does not in itself prevent the automatic tagging
transformation.

If "ExtensionDefault" is EXTENSIBILITY |MPLIED, an ellipsis ("...") is added after the
"ComponentTypeLists" if it is not present.

For choice type (see clause 28): "RootAlternativeTypeList" is reordered so that the identifiers of the
"NameType"s are in alphabetical order ("a" first, "z" last). "OptionalExtensionMarker", if present, is

ITU-T Rec. X.680 (07/2002) 83

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

removed. If "TagDefault" is | MPLI O T TAGS, the keyword | MPLI CI T is added to all instances of "Tags"
(see clause 30) unless either:

e itis already present; or

* the reserved word EXPLI Cl T is present; or
* the type being tagged is a CHO CE type; or
e itis an open type.

If "TagDefault" is AUTOVATI C TAGS, the decision on whether to apply automatic tagging is taken
according to 28.5 (the automatic tagging will be performed later on). If "ExtensionDefault" is
EXTENSI BI LI TY | MPLI ED, an ellipsis ("...") is added after the "AlternativeTypeLists" if it is not
present.

B.3.2.3 The following transformations shall be applied recursively in the specified order, until a fix-point is reached:

B.3.24 H

B.3.25 T

84

q

he following-transformations shall be applied to value definitions:

For each object identifier value (see 31.3): if the value definition begins with a "DefinedValue", the
"DefinedValue" is replaced by its definition.

For each relative object identifier value (see 32.3): if the value definition contains "DefinedYalue's, the
"DefinedValue"s are replaced by their definition.

For sequence types and set types: all instances of "COVPONENTS OF Type" (see clayse 24) are
transformed according to clauses 24 and 26.

For sequence, set and choice types: if it has earlier been decided to tag automatically (see B.3{2.2 g) and
h)), the automatic tagging is applied according to clauses 24, 26 and 28¢

For selection type: the construction is replaced by the selected alternative according to clause 29.
All type references are replaced by their definitions accordingto‘the following rules:

e If the replacing type is a reference to the type being transformed, the type reference is replaced by a
special item that matches no other item than itself:

» If the replacing type is a sequence-of type oOr a' set-of type, the constraints following the replaced
type, if any, are moved in front of the keyword OF.

» If the replaced type is a parameterized\type or a parameterized value set (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.2), every,\ "DummyReference" is replaced by the cofresponding
"ActualParameter".

All value references are replaced.by their definitions; if the replaced value is a parameterized value (see
ITU-T Rec. X.683 | ISO/IEC, 8824-4, 8.2), every "DummyReference" is replaced by the cofresponding
"ActualParameter”.

NOTE - Before replading*any value reference, the procedures of this annex shall be applied to enpure that the
value reference identifies, through value mappings or directly, a value in its governing type.

or set type: the "Reot€omponentTypeList" is reordered so that the "ComponentType"s are in glphabetical
order ("a" fiirst, "z" last).

If an integer value is defined with an identifier, that identifier is replaced by the associated number.

[f a bitstring value is defined using identifiers, it is replaced by the corresponding "bstrinjg" with all
trailing zero bits removed.

g)

All white-space immediately before and after each newline (including the newline) in a "cstring" is
removed.

All white-space in "bstring" and "hstring" is removed.

Each real value defined with base 2 is normalized so that the mantissa is odd, and each real value defined
with base 10 is normalized so that the last digit of the mantissa is not 0.

Each General i zedTi me and UTCTi ne value is replaced by a string which conforms to the rules used
when encoding in DER and CER (see ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.7 and 11.8).

After applying c¢), each UTF8String, NumericString, PrintableString, |A5String,
VisibleString (1S0646String), BMWPString and Universal String value is replaced by the
equivalent value of type Uni ver sal St ri ng written using the "Quadruple" notation (see clause 37.8).

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

B.3.2.6 Any occurrence of "realnumber" shall be transformed to a "base" 10 associated "SequenceValue". Any
occurrence of the "RealValue" associated with "SequenceValue" shall be transformed to the associated "SequenceValue"
of the same "base", such that the last digit of the mantissa is not zero.

B.3.3 If two instances of "Type", when transformed to their normal form, are identical lists of lexical items (see
clause 11), then the two instances of "Type" are defined to be identical type definitions with the following exception: if
an "objectclassreference" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.1), an "objectreference" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 7.2) or an "objectsetreference" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.3) appears within the
normalized form of the "Type", then the two types are not defined to be identical type definitions, and value mappings
(see B.4 below) will not exist between them.

NOTE — This exception was inserted to avoid the need to provide transformation rules to normal form for elements of syntax
concerned with information object class, information object, and information object set notation. Similarly, specification for the
normalization of all value notation and of set arithmetic notation has not been included at this time. Should there prove to be a
requirement for such specification, this could be provided in a future version of this Recommendation | International Standard.
The concept of 1dent1cal type deﬁn1t1ons and of Value mapp1ngs was 1ntroduced to ensure that s1mple ASN l constructs could be
used eitle i ore complex
instance$ of "Type" that 1ncluded 1nformat10n object classes etc.

B.4 Specification of value mappings

B.4.1 If two occurrences of "Type" are identical type definitions under the rules of B.3,(then value mappings exist
between eviery value of one type and the corresponding value of the other type.

B.4.2 Hor a type, X1, created from any type, X2, by tagging (see clause 30), value mappings are defined to exist
between all the members of X1 and the corresponding members of X2.
NOTE - Whilst value mappings are defined to exist between the values of X1 and X2-in.B.4.2 above, and between the[values of X3
and X4 ip B.4.3, if such types are embedded in otherwise identical but distinct type.definitions (such as SEQUENCE or [CHO CE type

definitiops), the resulting type definitions (the SEQUENCE or CHOl CE types) will.tiot be identical type definitions, and [there will be
no valug mappings between them.

B.4.3 Hor a type, X3, created by selecting values from any governing type, X4, by the element set congtruct or by
subtyping, [value mappings are defined to exist between the members of the new type and those membpers of the
governing type that were selected by the element set or subtyping construct. The presence or absence of ah extension
marker has|no effect on this rule.

B.4.4 Additional value mappings are specified in B,§ between some of the character string types.

B.4.5 A value mapping is defined to exist between all the values of any type defined as an integer type with named
values and|any integer type defined without named values, or with different named values, or with differenf names for
named values, or both.

NOTE - The existence of the value mapping-does not affect any scope rule requirements on the use of the names of njmed values.
They caf only be used in a scope govetned by the type in which they are defined, or by a typereference name to that type.

B.4.6 A value mapping is defined to exist between all the values of any type defined as a bit string type with named
bits and anjy bit string type defined without named bits, or with different named bits, or with different nameg for named
bits, or both.

NOTE - The existence%ofithe value mapping does not affect any scope rule requirements on the use of the names of named bits.
They cap only be us¢d/imna scope governed by the type in which they are defined, or by a typereference name to that type.

B.5 Additional value mappings defined for the character string types

B.5.1 T O-FO = : : U
mappings are deﬁned to ex1st between all types in group A and Value references to Values of these types can be used
when governed by one of the other types. For the types in group B, value mappings never exist between these different
types, nor between any type in group A and any type in group B.

B.5.2 Group A consists of:

UTF8Stri ng

Nureri cString

Printabl eString

| A5String

Vi si bl eString (I SO646Stri ng)
Uni versal String

BMPSt ri ng

ITU-T Rec. X.680 (07/2002) 85

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

B.5.3 Group B consists of:

Tel etexString (T61Stri ng)
Vi deot exStri ng
GraphicString

Ceneral String

B.5.4 The value mappings in group A are specified by mapping the character string values of each type to
Uni ver sal Stri ng, then using the transitivity property of value mappings. To map values from one of the group A
types to Uni versal String, the string is replaced by a Uni versal String of the same length with each character

mapped as

specified below.

B.S.S Formally, the set of abstract values in UTF8String is the same set of abstract values that occur in
Uni ver sal St ri ng but with a different tag (see 37.16), and each abstract value in UTF8St ri ng is defined to map to the

correspond

B.5.6 i

Pri nt abl ¢
characters

B.5.7 |
Uni ver sal
bit) value g

ing abstract value in Uni ver sal Stri ng.

f ISO/IEC 10646-1. The mapping for these types is defined using this mapping of glyphs.

ASSt ring and Vi si bl eString are mapped into Uni ver sal Stri ng by mapping each’ charac
St ri ng character that has the identical (32-bit) value in the BER encoding of Unjvetsal Strin
f the BER encoding of | A5St ri ng and Vi si bl eSt ri ng.

B.5.8 BVPString is formally a subset of Universal String, and corresponding abstract values
mappings.
B.6 Specific type and value compatibility requirements

This subcld

B.6.1 A
Y that has 4
For examp
X
X
Y
Z
These ASN

through va
of values 2

Z
is illegal bd

B.6.2 A
root of the
is required

ny "Value" occurrence, x-notation, with a governing typ®,", identifies the value, y-val, in the gov
value mapping to the value x-val specified by x-notation. It is a requirement that such a value exis
e, consider the occurrence of x in the last line of the following:
= [0] I NTEGER (0. . 30)
X::= 29
= [1] | NTEGER (25..35)
1 ::= Y (x| 30)
(.1 constructs are legal, and jn the last assignment the x-notation x is referencing the x-val 2

ue mapping, identifies theé y-val 29 in Y. The x-notation 30 is referencing the y-val 30 in Y, and Z
D and 30. On the otherthand, the assignment:

P ::=Y (x| 20)
cause there s N0 y-val to which the x-notation 20 can refer.

ny "Type'“occurrence, t-notation, that has a governing type, V, identifies the complete set of v
governing type V that have value mappings to any of the values in the root of the "Type" t-notati
to eOntain at least one value.

hrgbvhr@rmwd—chmctrdmj—&rmmdﬂc—m—thc—w f ring and
St ri ng have recognizable and unambiguous mappings to a subset of the glyphs assigned 0 [the first 128

er into the
g as the (8-

have value

use uses the value mapping concept to provide precise text for the legality of certain ASN.1 constructs.

erning type
ts.

D in X and,
1 is the set

hlues in the
brn. This set

For example, consider the occurrence of Win the last line of the following:

V ::=[0] INTEGER (O..30)

W ::=[1] |INTEGER (25.. 35)

Y ::=[2] INTEGER (31..35)

Z1 ::= V (W] 24)
W contributes values 25-30 to the set arithmetic resulting in Z1 having the values 24-30. On the other hand, the
assignment:

72 1= V(Y| 24)

is illegal because there are no values in Y which map to a value in V.

86

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

B.6.3 The type of any value supplied as an actual parameter is required to have a value mapping from that value to
one of the values in the type governing the dummy parameter, and it is a value of that governing type which is identified.

B.6.4 If a "Type" is supplied as an actual parameter for a dummy parameter which is a value set dummy parameter,
then all values of that "Type" are required to have value mappings to values in the governor of the value set dummy
parameter. The actual parameter selects the total set of values in the governor which have mappings to the "Type".

B.6.5 In specifying the type, A, of a dummy parameter that is a value or a value set parameter, it is an illegal
specification unless for all values of A, and for every instance of use of A on the right-hand side of the assignment, that
value of A can legally be applied in place of the dummy parameter.

B.7 Examples

B.7.1 This subclause provides examples to illustrate B.3 and B.4.

B.7.2 Example T
AN :: = SEQUENCE X1 ::= SEQUENCE
{name VisibleString, {name VisibleString,
age | NTEGER} -- comment --
age | NTECER}
X2 ::=[8] SEQUENCE X3 ::= SEQUENCE
{name VisibleString, {name VisibleString,
age | NTEGER} age AgeType}
AgeType ::= | NTECER

X, X1, X2, 4nd X3 are all identical type definitions. Differences of white-spacésand comment are not visible, for does the
use of the AgeType type reference in X3 affect the type definition. Note, however, that if any of the identifiers for the
elements of the sequence were changed, the types would cease to be identical definitions, and there would be no value
mappings Qetween them.

B.7.3 Example 2
B ::=SET Bl ::=SET
{name VisibleString, {age | NTEGER,
age | NTEGER} name Vi sibl eString}

are identicql type definitions provided neither is inh‘a module with AUTOVATI C TAGS in the module headet, otherwise
they are not identical type definitions, and valué_mappings will not exist between them. Similar examples caf be written
using CHO |CE and ENUMERATED (using the "identifier" form of "Enumerationltem").

B.7.4 Example 3
g ::=SET Cl ::=SET
{name [0] Vi(siybl eStri ng, {name VisibleString,
age | NTEGER} age | NTECGER (1..64)}

are not identical type definitions, nor are either of them identical type definitions to either of B or B1, and there are no
value mappings between any of the values of Cand C1, nor between either of them and either of B or B1.

B.7.5 Example 4
XL INTEGER { v (2) } ::= 3
z |INTEGER ::= Xx

is legal, and assigns the value 3 to z through the value mapping defined in B.4.5.

B.7.6 Example 5
bl BIT STRING ::= "101'B
b2 BIT STRING {versionl(0), version2(1), version3(2)} ::= bl

is legal, and assigns the value { ver si on1, versi on3} to b2.

ITU-T Rec. X.680 (07/2002) 87

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

B.7.7 Example 6

With the definitions of B.1.1, SEQUENCE elements of the form:
X DEFAULT y

are legal, where X is any of A, B, C, D, E, or F, or any of the text to the right of the type assignments to these names, and y
isany of a, b, c, d, e, or f, with the following exceptions: E DEFAULT v is illegal for all ofa, b, c, d, f, and C DEFAULT
e is illegal, because in these cases there are no value mappings available from the defaulting value reference into the
type being defaulted.

88 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:

Annex C

Assigned object identifier values

(This annex forms an integral part of this Recommendation | International Standard)

2002 (E)

This annex records object identifier and object descriptor values assigned in the ASN.1 series of Recommendations |
International Standards, and provides an ASN.1 module for use in referencing those object identifier values.

C.1 Object identifiers assigned in this Recommendation | International Standard

The following values are assigned in this Recommendation | International Standard:

Subclause[37.3

Subclause37.5

Subclause|38.1

Subclause(C.2

C.2 (bject identifiers in the ASN.1 and encoding rules standards

This clausd

value definged in the ASN.1 standards (ITU-T Rec. X.680 | ISO/IEC 8824-1 to ITU-T Rec. X.693 | ISO/IEC 8

NOTE

of the vilue references defined in the module specified in this clause are exported and have to be imported by any

wishes t

Qbject Identifier Value:
{

(bject Descriptor Value: " Nunmeri cString ASN. 1 type"

Qbject Identifier Value:
{

(bject Descriptor Value: "Printabl eString ASN. 1 type"

Qbject Identifier Value:
{

(Qbject Descriptor Value: "ASN. 1 Char act er Mdul e"

Qbject Identifier Value:
{

(bject Descriptor Value: "ASN. 1 (pject |dentifier Mdule"

ASNL- Coject-ldentifier-Mdule { joint-iso-itu-t asnl(1l) specification(0) nod
obj ect-~identifiers(l) }

joint-iso-itu-t asnl(1l) specification(0) characterStrings(1l) nunericString

0) }

joint-iso-itu-t asnl(1l) specification(0) characterStrings(l) printableStrijng(1l) }

joint-iso-itu-t asnl(1l) specification(0) »yodules(0) iso0l0646(0) }

joint-iso-itu-t asnl(1l) specif@cation(0) nodules(0) object-identifiers(fl) }

specifies an ASN.1 module which contains the definition of a value reference name for each objeft identifier

These values are ayailable for use in the value notation of the OBJECT IDENTIFIER type and types derive

use them.

DEFINITIONS ::= BEG N

R25-4).

from it. All
module that

ul es(0)

I\hrmruanru Ae /\CI\I 1 L RVIZY-Y /onn ’27 ’2\
J NPAM

nunericString OBJECT | DENTI FI ER :
{ joint-iso-itu-t asnl(1) speC|fication(0) characterStrings(1)
nurericString(0) }

-- PrintableString ASN.1 type (see 37.5) --
printabl eString OBJECT I DENTIFIER :: =

{ joint-iso-itu-t asnl(1l) specification(0) characterStrings(1)
printabl eString(1) }

-- ASN. 1 Character Mdule (see 38.1) --
asnlCharact er Modul e OBJECT | DENTIFIER :: =

{ joint-iso-itu-t asnl(1l) specification(0) nodul es(0) iso0l10646(0) }

-- ASN. 1 bject Identifier Mddule (this nmodule) --
asnlObj ectldentifierMdule OBJECT | DENTIFIER :: =

{ joint-iso-itu-t asnl(1l) specification(0) nodul es(0)
object-identifiers(l) }

ITU-T Rec. X.680 (07/2002)

89

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

-- BER encoding of a single ASN. 1 type --
ber OBJECT IDENTIFIER :: =
{ joint-iso-itu-t asnl(1) basic-encoding(1l) }

-- CER encoding of a single ASN.1 type --
cer OBJECT IDENTIFIER :: =
{ joint-iso-itu-t asnl(1l) ber-derived(2) canonical-encoding(0) }

-- DER encoding of a single ASN. 1 type --
der OBJECT IDENTIFIER ::=
{ joint-iso-itu-t asnl(1l) ber-derived(2) distinguished-encoding(1l) }

-- PER encoding of a single ASN.1 type (basic aligned) --
per Basi cAl i gned OBJECT I DENTIFIER :: =
{ joint-iso-itu-t asnl(1l) packed-encoding(3) basic(0) aligned(0) }

-- PER encoding of a single ASN. 1 type (basic unaligned) --
per Basi cUnal i gned OBJECT I DENTIFIER :: =

L H + e b LIWALAY 1 =l ol L2 L + LD - A
1 Oort=tSo=—T o=t astr() packet——cncouarnNg(-oS)—bastc(uU—unrart yIIUU\..) }

-- PER encoding of a single ASN. 1 type (canonical aligned) --
per Canoni cal Al'i gned OBJECT | DENTIFIER :: =
{ joint-iso-itu-t asnl(1l) packed-encoding(3) canonical (1) +aligned(0) }

-- PER encoding of a single ASN. 1 type (canonical unaligned) |\~
per Canoni cal Unal i gned OBJECT I DENTIFIER :: =
{ joint-iso-itu-t asnl(1l) packed-encoding(3) canoniyal (1) unaligped(1l) }

-- XER encoding of a single ASN. 1 type (basic) --
xerBasi ¢ OBJECT | DENTIFIER :: =
{joint-iso-itu-t asnl(1) xm -encoding(5) basic(0) }

-- XER encodi ng of a single ASN.1 type (canoniecal) --
xer Canoni cal OBJECT IDENTIFIER :: =
{joint-iso-itu-t asnl(1) xm -encoding(5) canonical (1) }

BND -- ASNL- bj ect-Identifier-Mdule --

90 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Annex D

Assignment of object identifier component values

(This annex does not form an integral part of this Recommendation | International Standard)

This annex describes the top-level arcs of the registration tree for object identifiers. No explanation is given on how
new arcs are added, nor on the rules that registration authorities should follow. These are specified in ITU-T
Rec. X.660 | ISO/IEC 9834-1.

D.1 Root assignment of object identifier component values

D.1.1 Three arcs are specified from the root node. The assignment of values and identifiers, and the authority for
assignment of subsequent component values, are as follows:

Halue Identifier Authority for subsequent assignuients
0 Itu-t ITU-T (See D.2)

1 I'so ISO (See D.3)

2] joint-iso-itu-t See D.4

D.1.2 Tlhe identifiers i tu-t, i so and j oi nt-i so-itu-t, assigned above, may each be used as a "NamgForm" (see
31.3).

D.1.3 The identifiers cci tt and j oi nt-i so-ccitt are synonyms forituy-t.andj oi nt-iso-itu-t, rgspectively,
and thus mfy appear in object identifier values.

D.2 I[TU-T assignment of object identifier component values
D.2.1 Hive arcs are specified from the node identified by i t us\t . “The assignment of values and identifiers|is:
Nalue Identifier Authority for subsequent assignments
0 reconmmendat i on See D.2.2
1 question See D.2.3
2| admi ni stration See D.2.4
3 net wor k- oper at or See D.2.5
4 i denti fi ed- okgani zati on See D.2.6

These identifiers may be used as a "Name¢Form" (see 31.3).

D.2.2 The arcs below r ecormendat i on have the value 1 to 26 with assigned identifiers of a to z. Arcs below these
have the nymbers of ITU-T (and, CCITT) Recommendations in the series identified by the letter. Arcs below this are
determined| as necessary by(the¢” ITU-T (and CCITT) Recommendations. The identifiers a to z may bg used as a

"NameForm".

D.2.3 The arcs belew quest i on have values corresponding to ITU-T Study Groups, qualified by the sthdy period.
The value is computed by the formula:

study group number + (period * 32)

where "period" has the value 0 for 1984-1988, 1 for 1988-1992, etc., and the multiplier is 32 decimal.

The arcs below each study group have the values corresponding to the questions assigned to that study group. Arcs
below this are determined as necessary by the group (e.g., working party or special rapporteur group) assigned to study
the question.

D.2.4 The arcs below admi ni stration have the values of X.121 DCCs. Arcs below this are determined as
necessary by the Administration of the country identified by the X.121 DCC.

D.2.5 The arcs below net wor k- oper at or have the value of X.121 DNICs. Arcs below this are determined as
necessary by the Administration or ROA identified by the DNIC.

D.2.6 The arcs below identified-organization are assigned values by the ITU Telecommunication
Standardization Bureau (TSB). Arcs below this are determined as necessary by the identified organizations.

ITU-T Rec. X.680 (07/2002) 91

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NOTE - Organizations which may find this arc useful include:

recognized operating agencies not operating a public data network;
scientific and industrial organizations;
regional standards organizations; and

multi-national organizations.

D.3 ISO assignment of object identifier component values

D.3.1 Three arcs are specified from the node identified i so(1) . The assignment of values and identifiers is:

Value Identifier Authority for subsequent assignments
0 standard See D.3.2
2 nmenber - body See D.3.3
3 i dentified-organi zation See D.3.4
These identifiers may be used as a "NameForm".

N

D.3.2 T
Internation
excluded 1
Standard.

D33 T

OTE — The use of arc r egi st rati on-aut hori ty(1) has been withdrawn.

he arcs below st andar d shall each have the value of the number of an International 'Standard.
h] Standard is multi-part, there shall be an additional arc for the part number, unless this is

he arcs immediately below nmenber-body shall have values of a thte€ digit numeric countt

specified ih ISO 3166, that identifies the ISO National Body in that country. ("The "NameForm" of obje

component|

D.34 T
Designator
specifically
shall have Y

is not permitted with these identifiers.

he arcs immediately below identified-organization, shall have values of an Internat
(ICD) allocated by the Registration Authority for ISOAEC 6523 that identify an issuing o
registered by that authority as allocating object identifien cemponents. The arcs immediately bel
alues of an "organization code" allocated by the issuinig organization in accordance with ISO/IEC

D.4 Joint assignment of object identifier componént values

D41 T
Registratio
activity, in

he arcs below joi nt-iso-itu-t have ¥alues which are assigned and agreed from time to
h Authority established by ISO/IEC anddTU-T to identify areas of joint ISO/IEC | ITU-T stan
accordance with ITU-T Rec. X.662 |ISO/IEC 9834-3.

Where the
specifically

h the text of the International Standard. Further arcs shall have values as_defined in that Ipternational

ly code, as
t identifier

onal Code
rganization
bw the ICD
6523.

time by a
dardization

92

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Annex E

Examples and hints

(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ASN.I in the description of (hypothetical) data structures. It also contains
hints, or guidelines, for the use of the various features of ASN.1. Unless otherwise stated, an environment of AUTOVATI C
TAGS is assumed.

E.1 Example of a personnel record

The use of

E.1.1 I

The structu

E.1.2 A

The structyre of every personnel regord is formally described below using the standard notation for data types.
Per sonnel Record ::= [APPLI CATI ON 0] SET
{ nanme Name,
ti\tle Vi si bl eString,

Name: John P Smith
Tlitle: Director
Hmployee Number: 51
Date of Hire: 17 September 1971
Name of Spouse: Mary T Smith
Number of Children: 2
(hild Information
Name: Ralph T Smith
Date of Birth 11 November 1957

(hild Information

Name:

Date of Birth

hformal description of Personnel Record

re of the personnel record and its value for a particular individual are shown below.

SN.1 description of the record structure

ASN 1 is illustrated by means of a simple_hypothetical personnel record

Susan B Jones

17 July 1959

numnber Enpl oyeeNunber ,
dateOHre Dat e,
name Spouse Nane,
children SEQUENCE COF Chi | dI nfornation DEFAULT {}
}
Childlnformation ::= SET
{ nane Nane,
dateOBirth Dat e
}
Name ::= [APPLI CATI ON 1] SEQUENCE
{ gi venNane Vi si bl eString,
initial Vi si bl eString,
fam | yNane Vi si bl eString
}

ITU-T Rec. X.680 (07/2002)

93

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)
Enpl oyeeNunber ::= [APPLI CATI ON 2] | NTEGER
Date ::= [APPLICATION 3] VisibleString -- YYYY MVDD

This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct DEFAULT can only be
applied to a component of a SEQUENCE or a SET, it cannot be applied to an element of a SEQUENCE OF. Thus, the
DEFAULT { } in Per sonnel Recor d applies to chi | dr en, not to Chi | dI nf or mati on.

E.1.3 ASN.1 description of a record value

The value of John Smith's personnel record is formally described below using the standard notation for data values.

{ nane {gi venNane "John", initial "P', famlyNanme "Smth"},
title "Director”,
nunber 51,
dateOHre "19710917",
namef Spouse {givenNane "Mary", initial "T", famlyNanme "Smth"},
chiTdren

{ {name {givenNane "Ral ph", initial "T', famlyNane "Smth"} ,
dateOBirth "19571111"},

{name {givenNane "Susan", initial "B", fanilyName "Jones"} ,
dateOBirth "19590717" }

or in XML |value notation:

person :: =
<Per sonnel Recor d>
<nane>
<gi venNane>John</ gi venNane>
<initial >P</initial>
<f am | yNanme>Smi t h</ f am | yNane>
</ nane>
<title>Director</title>
<nunber >51</ nunber >
<dat eCf Hi re>19710917</ dat eCf H r e
<nanmeCf Spouse>
<gi venName>Mar y</ gi venNare>
<initial >T</initial>
<f am | yName>Smi t h</ f.am | yNane>
</ nanef Spouse>
<chi | dren>
<Chi | dI nf or mat j\on>
<nane>
<gi venNane>Ral ph</ gi venNane>
<initial>T</initial>
<flam | yNane>Sm t h</ f am | yNane>
</ nane>
<dat e Bi rt h>19571111</dateO Bi rt h>
</Chi | dI nf or mati on>
<Chi | dI nf or mat i on>
<nane>
<gi venNane>Susan</ gi venNane>
<initial>B</initial>
<f am | yNanme>Jones</ f am | yNane>
<dat eOF Bi rt h>19590717</ dat e Bi rt h>
</ Chi | dI nf or mat i on>
</ chi | dren>
</ Per sonnel Recor d>

E.2 Guidelines for use of the notation

The data types and formal notation defined by this Recommendation | International Standard are flexible, allowing a
wide range of protocols to be designed using them. This flexibility, however, can sometimes lead to confusion,
especially when the notation is approached for the first time. This annex attempts to minimize confusion by giving
guidelines for, and examples of, the use of the notation. For each of the built-in data types, one or more usage guidelines
are offered. The character string types (for example, Vi si bl eSt ri ng) and the types defined in clauses 42 to 44 are not
dealt with here.

94 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

E.2.1 Boolean

E.2.1.1 Use a boolean type to model the values of a logical (that is, two-state) variable, for example, the answer to a
yes-or-no question.

EXAMPLE
Enpl oyed ::= BOOLEAN

E.2.1.2 When assigning a reference name to a boolean type, choose one that describes the frue state.

EXAMPLE
Married ::= BOOLEAN
not
Marital Status ::= BOOLEAN

E.2.2 Integer

E.2.2.1 Use an integer type to model the values (for all practical purposes, unlimited in magnitude) of a|cardinal or
integer varjable.

HXAMPLE
Checki ngAccount Bal ance ::= INTEGER-- in cents; negati've neans ovefdrawn.
bal ance Checki ngAccount Bal ance ::= 0

or using XIML value notation:

bal ance ::= <Checki ngAccount Bal ance>0</ Checki‘ngAccount Bal ance>

E.2.2.2 Define the minimum and maximum allowed values of an integer type as named numbers.

HXAMPLE
DayOf TheMonth ::= | NTEGER {first (1) 0l ast(31)}
today DayCf TheMbnth ::= first
unknown DayCOf TheMonth ::= 0

or using XIML value notation:
today ::= <DayCf TheMont\h><fir st/ ></ DayO TheMont h>
unknown :: = <DayCOf<FheMont h>0</ DayCf TheMont h>

Note that the named numbers first and | ast were chosen because of their semantic significance to the freader, and
does not exclude the possibility @f\BayCf TheMont h having other values which may be less than 1, greater| than 31 or
between 1 and 31.

To restrict the value of Day@& TheMont h to just fi r st and | ast, one would write:

Day&TheMonth ::= | NTEGER {first(1), last(31)} (first | last)

and to restrict the value of the DayOf TheMont h to all values between 1 and 31, inclusive, one would write:
DayOf TheMonth ::= | NTEGER {first(1), last(31)} (first .. last)

dayOf TheMont h DayOf TheMonth :: = 4

or using XML value notation:

dayOf TheMont h : : = <Dayf TheMont h>4</ DayOf TheMont h>

E.2.3 Enumerated

E.2.3.1 Use an enumerated type to model the values of a variable with three or more states. Assign values starting with
zero if their only constraint is distinctness.

ITU-T Rec. X.680 (07/2002) 95

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

EXAMPLE
DayOf TheWeek ::= ENUMERATED {sunday(0), nonday(1l), tuesday(2),
wednesday(3), thursday(4), friday(5), saturday(6)}
firstDay DayCf TheWeek ::= sunday
or using XML value notation:
firstDay ::= <DayOf TheWeek><sunday/ ></ Dayf TheWeek>

Note that while the enumerations sunday, nonday, etc., were chosen because of their semantic significance to the
reader, DayCf TheWeek is restricted to assuming one of these values and no other. Further, only the name sunday,
monday, etc., can be assigned to a value; the equivalent integer values are not allowed.

E.2.3.2 Use an extensible enumerated type to model the values of a variable that has just two states now, but that may
have additional states in a future version of the protocol.

HXAMPLE

Marital Status ::= ENUMERATED {single, married}
-- First version of Marital Status

in anticipation of:

Marital Status ::= ENUMERATED {single, nmarried, .., w dowed}
-- Second version of Marital Status

—

and later yq

Marital Status ::= ENUMERATED {single, married, ., W dowed, divorced}
-- Third version of Marital Status

E.2.4 Real

E.2.4.1 Use a real type to model an approximate number.

HXAMPLE
Angl el nRadi ans ::= REAL
pi REAL ::= {mantissa 3141592653589793238462643383279, base 10, exponept -30}

or using th¢ alternate value notation for REAL:

pi REAL ::= 3.14159265358979323846264338327
or using XIML value notation:

pi ::=
<REAL>

3,:14159265358979323846264338327
</ REAE>

E.2.4.2 Application designers may wish to ensure full interworking with real values despite differences|in floating
point hardyare, and-in\implementation decisions to use (for example) single or double length floating point for an
application| This can be achieved by the following:

App- X- Real ::= REAL (W TH COVPONENTS {
mantissa (-16777215..16777215),
base (2),
exponent (-125..128) })

/*
Senders shall not transmt val ues outside these ranges
and conform ng receivers shall be capable of receiving
and processing all values in these ranges.

*/

girth App-X-Real ::= {mantissa 16, base 2, exponent 1}
or using XML value notation:
girth ::=
<App- X- Real >

32
</ App- X- Real >

96 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

E.2.5 Bit string

E.2.5.1 Use a bit string type to model binary data whose format and length are unspecified, or specified elsewhere, and
whose length in bits is not necessarily a multiple of eight.

EXAMPLE
&BFacsim | ePage ::= BIT STRI NG
-- a sequence of bits conformng to ITUT Rec. T.4.
i mage G3Facsim | ePage ::= '100110100100001110110' B
trailer BIT STRING :: = '0123456789ABCDEF' H
bodyl G3Facsim | ePage ::= '1101'B
body2 G3Facsim | ePage ::= '1101000' B

or using XW-vealue-netatton:

i mage ::= <G3FacSi nil e>100110100100001110110</ G3FacSi ni | e>

trailer ::=
<BI T_STRI NG
0000 0001 0010 0011 0100 0101 0110 0111 1000<1001 101p 1011
1100 1101 1110 1111

</ Bl T_STRI NG

bodyl ::= <G3FacSi nil e>1101</ G3FacSi m | e>
body2 ::= <G3FacSi m | e>1101000</ G3FacSi m | e>

Note that qfdyl and body?2 are distinct abstract values because trailing Q bits’ are significant (due to thefe being no
"NamedBifList" in the definition of G3Facsi mi | ePage).

E.2.5.2 Use a bit string type with a size constraint to model the values)of a fixed sized bit field.

HXAMPLE
BitField ::= BIT STRING (SI ZE (12))
mapl BitField ::="'100110100100:\B
map2 BitField ::="'9A4'H
map3 BitField ::="'1001101001'B -- Illegal - violates size constrailnt.
or using XIML value notation:
mapl ::= <BitFi eld>100110100100</BitFi el d>

Note that nppl and map?2 are the sdme‘abstract value, for the four trailing bits of map2 are not significant.

E.2.5.3 Use a bit string type‘\to' model the values of a bit map, an ordered collection of logical variables indicating
whether a particular condition-holds for each of a correspondingly ordered collection of objects.

DaysOi-TheWeek ::= BI T STRING {
sunday(0), nonday (1), tuesday(2),
wednesday(3), thursday(4), friday(5),
saturday(6) } (SIZE (0..7))

sunnyDaysLast Week2 DaysCf TheWeek : :

= '1101'B
sunnyDaysLast Week3 DaysOf TheWeek ::= '1101000'B
sunnyDaysLast Week4 DaysCOf TheWeek ::= '11010000'B -- Il egal

or using XML value notation:

sunnyDaysLast ekl :: =
<DaysO TheWek>
<sunday/ ><nonday/ ><wednesday/ >
</ DaysO TheWeek>

ITU-T Rec. X.680 (07/2002) 97

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

sunnyDaysLast Week2 :: = <DaysOf TheWeek>1101</ DaysCOf TheWeek>
sunnyDaysLast Week3 :: = <DaysOf TheWeek>1101000</ DaysOf TheWeek>

Note that if the bit string value is less than 7 bits long, then the missing bits indicate a cloudy day for those days, hence
the first three values above have the same abstract value.

E.2.5.4 Use a bit string type to model the values of a bit map, a fixed-size ordered collection of logical variables
indicating whether a particular condition holds for each of a correspondingly ordered collection of objects.

DaysOf TheWeek ::= BI T STRI NG {
sunday(0), nonday (1), tuesday(2),
wednesday(3), thursday(4), friday(5),
saturday(6) } (SIZE (7))

sunnyDaysLast Week1l DaysOf TheWek : {sunday, nonday, wednesday}

sunnyDaysLast Week2 DaysCf TheWeek ::= '1101'B -- 111 egal

-- violates size constraint.
surmyDaystast WekSTDaysofF- fieWwek————1t101060" B
sunnyDaysLast Week4 DaysCOf TheWeek ::= '11010000'B -- 1l egal

-- viol ates size constraint.
Note that tle first and third values have the same abstract value.

E.2.5.5 Use a bit string type with named bits to model the values of a collection of related togical variables.

HXAMPLE
Personal Status ::= BI T STRING
{married(0), enployed(l), veteran(2),(collegeG aduate(3)}
billdinton Personal Status ::= {married, enployed, collegeG aduate}
hillarydinton Personal Status ::= '110100,B

or using XIML value notation:

billdinton ::=
<Per sonal St at us>
<married/ >
<enpl oyed/ >
<col | egeG aduat e/ >
</ Per sonal St at us>

hillarydinton ::= <Personal Status>110100</ Per sonal St at us>

Note that bj | | d i nt on and hi | | ar yd i nt}6n have the same abstract values.

E.2.6 Qctet string

E.2.6.1 Use an octet string typeto model binary data whose format and length are unspecified, or specified elsewhere,
and whose [length in bits is a multiple of eight.

HXAMPLE

G4Facsi m | el mage :: = OCTET STRI NG
-="a sequence of octets conforning to ITUT Rec. T.5 and COTT Rec. T|6

mage GAFacsim | ePage ::= ' 3FE2EBAD471005' H

or using XML value nofation:

i mge ::= <&FacSi ni | el mage>3FE2EBAD471005</ AFacSi m | el mage>

E.2.6.2 Use a restricted character string type in preference to an octet string type, where an appropriate one is
available.

EXAMPLE

98 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

Surname ::= PrintableString
president Surname ::= "dinton"

or using XML value notation:

president ::= <Surnanme>d inton</ Sur nane>

E.2.7 UniversalString, BMPString and UTF8String

Use the BMPSt ri ng type or the UTF8St ri ng type to model any string of information which consists solely of characters
from the ISO/IEC 10646-1 Basic Multilingual Plane (BMP), and Uni versal String or UTF8String to model any
string which consists of ISO/IEC 10646-1 characters not confined to the BMP.

E.2.7.1 Use Level 1 or Level 2 to denote that the implementation level places restrictions on the use of combining
characters.

XAMPEE
Russi anName ::= Cyrillic (Level1)
-- Russi anName uses no conbi ni ng characters.
Saudi Name ::= Basi cArabic (SIZE (1..100) " Level 2)

-- Saudi Nane uses a subset of conbining characters.

Representafion of letter X:

greekCapital LetterSigma BWString ::= {0, 0, 3, 163}

or using XIML value notation:

greekCapital LetterSigma ::= <BMPSt ring>Σ,\</BMPSt ri ng>

Representation of string "f — 0"

ri ghtwardsArrow UTF8String ::= {0, 0, 33,146}
infinity UTF8String ::= {0, 0, 34, 30}
property UTF8String ::= {"f ", rightwardsArrow, " ", infinity}

or using XML value notation:

property ::= <UTF8Stri ng>f.'→ ∞ </ UTF8Stri ng>

E.2.7.2 A collection can be expanded to bé a selected subset (i.c., include all characters in the BASIC LATIN
collection) by use of the "UnionMark" (see ‘clause 46).

HXAMPLE
Kat akanaAndBasi cLatin ::= Universal String (FROM (Katakana | BasiclLatin))

E.2.8 (HARACTER STRING

Use the untestricted character string type to model any string of information which cannot be modelled using one of the
restricted character stringtypes. Be sure to specify the repertoire of characters and their coding into octets.

HXAMPLE
PackedBCDString :: = CHARACTER STRI NG (W TH COVPONENTS {

identificatiom (WTH

COVPONENTS {
fixed PRESENT })
/* The abstract and transfer syntaxes shall be
packedBCDSt ri ng- Abst ract Synt axl d and
packedBCDSt ri ng- Tr ansf er Synt axl d defi ned bel ow.

)

/* object identifier value for a character abstract syntax
(character set) whose al phabet
is the digits 0 through 9.

*/

*/
PackedBCDSt ri ng- Abstract Syntaxld OBJECT |DENTIFIER ::=
{ joint-iso-itu-t asnl(1l) exanpl es(123) packedBCD(2) charSet(0) }

ITU-T Rec. X.680 (07/2002) 99

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

/* object identifier value for a character transfer syntax that
packs two digits per octet, each digit encoded as 0000 to
1001, 1111, used for padding.

*/

PackedBCDSt ri ng- Transfer Syntaxld OBJECT | DENTI FIER :: =

{ joint-iso-itu-t asnl(1l) exanples(123) packedBCX 2)
character Transfer Syntax(1) }

/* The encodi ng of PackedBCDString will contain only the defined
encodi ng of the characters, with any necessary length field, and in
the case of BERwith a field carrying the tag. The object
identifier values are not carried, as "fixed" has been specified.

*/

or using XML value notation:

packedBCDSt ri ng- Abstract Syntaxld ::=
<OBJECT_| DENTI FI ER>

JOrMt=TS0-TtU-t- asni(Iy exanples(123)packedBCX 2) - char Ser(]0)

</ OBJECT_I| DENTI FI ER>

packedBCDStri ng- Transfer Syntaxld ::=
<OBJECT_I DENTI FI ER>
joint-iso-itu-t.asnl(1l).exanpl es(123). packedBCD(2). characterTransferSyntax(1)
</ CBJECT_| DENTI FI ER>

or:

packedBCDSt ri ng- Abstract Syntaxld ::=
<OBJECT_| DENTI FI ER>2. 1. 123. 2. 0</ OBJECT_| DENTVFI ER>

PackedBCDSt ri ng- Transfer Syntaxld ::=
<OBJECT_| DENTI FI ER>2. 1. 123. 2. 1</ OBJECT\JV DENTI FI ER>

NOTE - Encoding rules do not necessarily encode values of the type CHARACTER STRI NG in a form that always [includes the
object identifier values, although they do guarantee that the abstract value i$ preserved in the encoding.

E.2.9 Null

Use a null fype to indicate the effective absence of a component of a sequence.

HXAMPLE
Patientldentifier ::= SEQJENCE {
name Visi bl eStri ng,
r oom\unber CHO CE {
room | NTEGER,
out Patijent NULL -- if an out-patient --
}
}
| ast Pati ent~Patientldentifier ::= {
nane~ "Jane Doe",
reomlunber out Patient : NULL
}

or using XIML valtignotation:

|astPatient ::=
Patentldeptifier
<nane>Jane Doe</ nanme>
<r oomNunber ><out Pat i ent / ></ r oonN\unber >
</Patientldentifier>

E.2.10 Sequence and sequence-of

E.2.10.1 Use a sequence-of type to model a collection of variables whose types are the same, whose number is large or
unpredictable, and whose order is significant.

EXAMPLE
NamesOf Menber Nati ons ::= SEQUENCE OF VisibleString
-- in al phabetical order
firstTwo NamesOf MenberNations ::= {"Australia", "Austria"}

or, using the optional identifier:

100 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

NanmesOf Menber Nati ons2 ::= SEQUENCE OF nenber Nation VisibleString
-- in al phabetical order

firstTwo2 NamesOf Menber Nations2 ::=
{menber Nation "Australia", nmenberNation "Austria"}

Using XML value notation, the above two values are as follows:

firstTwo ::=
<NamesOF Menber Nat i ons>
<Vi si bl eString>Austral i a</ Vi si bl eStri ng>
<Vi si bl eStri ng>Austri a</ Vi si bl eStri ng>
</ NamesCOf Menber Nat i ons>

firstTwo2 ::=
<NanesOf Menber Nat i ons2>
<nenber Nat i on>Aust r al i a</ nenber Nat i on>
<nenber Nat i on>Austri a</ nenber Nati on>

E.2.10.2 U

modest, and whose order is significant, provided that the make-up of the collection is unlikely, to'Chang

version of {

H

or using X]

E.2.10.3 U
known and

</ NamesOf Menber Nat i ons2>

he protocol to the next.

XAMPLE
NamesOf O ficers ::= SEQUENCE {
pr esi dent Vi si bl eString,
vi cePr esi dent Vi sibleString,
secretary Vi sibleString}
acneCorp NanmesOFOfficers ::={
pr esi dent "Jane Doe",
vi cePr esi dent "John Dae",
secretary "Joe~Doe"}
ML value notation:

acmeCorp ::=
<NamesOF O fi cers>
<presi dent >Jane Doeg/ presi dent >
<vi cePresi dent >John Doe</ vi cePresi dent >
<secret ary>Joe-Doe</ secretary>
</ NamesOf O fi cer s>

from one vgrsion of the protocol to the next.
HXAMPLE
Credentj als ::= SEQUENCE {
user Nane Vi si bl eString,
password Vi sibleString,
account Nurber | NTEGER}
E.2.10.4 Use ah extensible sequence type to model a collection of variables whose order is significant, whpse number
currently iy known and is modest, but which is expected to be increased:
EXAMPLE
Record ::= SEQUENCE { -- First version of protocol containing "Record"
user Nane Vi sibleString,
password Vi sibleString,
account Nunber | NTEGER,
}
in anticipation of:
Record ::= SEQUENCE { -- Second version of protocol containing "Record"
user Nane Vi sibleString,
password Vi si bl eString,
account Nunber | NTEGER,

ITU-T Rec. X.680 (07/2002)

se a sequence type to model a collection of variables whose types are the same, whose numbgr is|known and
e from one

se an inextensible sequence type to model a collection of variables whose types differ, whosg number is
modest, and whose order (S significant, provided that the make-up of the collection is unlikely to change

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

[[2: -- Extension addition added in protocol version 2
| ast Logged! n General i zedTi me OPTI ONAL,
m nut esLast Logged| n | NTEGER
11,
}
and later yet (version 3 of the protocol made no additions to Recor d):
Record ::= SEQUENCE { -- Third version of protocol containing "Record"
user Nane Vi si bl eString,
password Vi si bl eString,
account Nunber | NTEGER,
[[2: -- Extension addition added in protocol version 2
| ast Logged| n CGeneral i zedTi me OPTI ONAL,
m nut esLast Logged! n | NTEGER
11,
[[4: -- Extension addition added in protocol version|3
certificate Certificate,
t hunb ThunbPri nt OPTI ONAL
11,
}

E.2.11 Set and set-of

E.2.11.1 Use a set type to model a collection of variables whose number is_ known and modest and whqse order is
insignificaft. If automatic tagging is not in effect, identify each variable by Tontext-specifically tagging it as shown
below. (With automatic tagging, the tags are not needed.)

HXAMPLE

User Nane ::= SET {
per sonal Nane [0] VisibleString,
organi zat i onName [1] VisibleString,
count r yNane [2] VisibleString}

user UserNane ::= {
count r yNane "N geria",
per sonal Nane "Jonas Mar uba",
or gani zat i onName "Meteorol ogy, Ltd."}

or using XML value notation:
user ::=
<User Nane>

<countr yName>Ni geri a</ count r yNanme>

<per'sonal Nane>Jonas Mar uba</ per sonal Nane>

<or gani zat i onNanme>Met eor ol ogy, Ltd. </organi zati onNanme>
</\User Nanme>

E.2.11.2 Use a set fype with OPTI ONAL to model a collection of variables that is a (proper or improper) subset of
another collectionof variables whose number is known and reasonably small and whose order is insignificant. If
automatic tagging’ is not in effect, identify each variable by context-specifically tagging it as shown bglow. (With
automatic tagging, the tags are not needed.)

EXAMPLE
User Nane ::= SET {
per sonal Nane [0] VisibleString,
or gani zat i onName [1] VisibleString OPTI ONAL
-- defaults to that of the local organization -- |,
count r yName [2] VisibleString OPTI ONAL
-- defaults to that of the local country -- }

E.2.11.3 Use an extensible set type to model a collection of variables whose make-up is likely to change from one
version of the protocol to the next. The following assumes AUTOMATI C TAGS was specified in the module definition.

EXAMPLE

102 ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

User Nane ::= SET {
per sonal Nare Vi si bl eString, -- First version of
" User Narre"
or gani zat i onName Vi si bl eString OPTI ONAL ,
count r yNarme Vi si bl eString OPTI ONAL,
}
user UserNane ::= { personal Name "Jonas Maruba" }

or using XML value notation:

user ::=
<User Nane>
<per sonal Nane>Jonas Mar uba</ per sonal Nane>
</ User Nane>
in anticipadion of:
User Nane ::= SET { -- Second version of "UserNane"
per sonal Narre Vi si bl eString,
or gani zat i onName Vi si bl eString OPTI ONAL,
count r yNane Vi si bl eString OPTI ONAL,
[[2: -- Extension addition added<hn protocol version 2
i nt er net Emai | Addr ess Vi sbl eString,
f axNunmber Vi si bl eString OPTRONAL
11,
}
user UserNane ::= {
per sonal Nare "Jonas~Nar uba",
i nt er net Enai | Addr ess "j opas@ret eor . ngo. cont
}
or using XML value notation:
user ::=
<User Nane>

<per sonal Nare>Jonas Mar-uba</ per sonal Nane>
<i nt er net Emai | Addr ess>johas@ret eor . ngo. conx/ i nt er net Enai | Addr ess>
</ User Nane>

and later ygt (versions 3 and 4 of the protoc¢ol' made no additions to User Nane):

User Nane ::= SET{ -- Fifth version of protocol containing "UserNape"
per sonaltNare Vi si bl eString,
or gani-zat i onNane VisibleString OPTI ONAL,
count'r.yName Vi si bl eString OPTI ONAL,
RR2: -- Extension addition added in versilon 2
i nt er net Enai | Addr ess Vi sbl eStri ng,
f axNunber Vi si bl eString OPTI ONAL
11,
[[5: -- Extension addition added in versilon 5
phoneNunber Vi si bl eString OPTI ONAL
I
}
user UserNane ::= {
per sonal Narre "Jonas WNaruba",
i nt er net Enai | Addr ess "j onas@ret eor . ngo. cont
}

or using XML value notation:

user ::=
<User Nanme>
<per sonal Name>Jonas Mar uba</ per sonal Nanme>
<i nt er net Emai | Addr ess>j onas@ret eor . ngo. conx/ i nt er net Emai | Addr ess>
</ User Name>

ITU-T Rec. X.680 (07/2002) 103

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

E.2.11.4 Use a set-of type to model a collection of variables whose types are the same and whose order is insignificant.

EXAMPLE
Keywords ::= SET OF VisibleString -- in arbitrary order
soneASN1Keywor ds Keywords ::= {"I NTEGER', "BOOLEAN', "REAL"}

or, using the optional identifier:

Keywords2 ::= SET OF keyword VisibleString -- in arbitrary order

soneASN1Keywor ds2 Keywords2 ::= {keyword "| NTEGER', keyword "BOOLEAN',
keyword " REAL"}

Using XML value notation, the above two values are as follows:

E.2.12 Tlagged

soneASN1Keywords :: =

<Kevuwords>

<Vi si bl eStri ng>lI NTEGER</ Vi si bl eStri ng>
<Vi si bl eSt ri ng>BOOLEAN</ Vi si bl eStri ng>
<Vi si bl eStri ng>REAL</ Vi si bl eStri ng>

</ Keywor ds>

soneASN1Keywor ds2 :: =
<Keywor ds2>
<keywor d>| NTEGER</ keywor d>
<keywor d>BOOLEAN</ keywor d>
<keywor d>REAL</ keywor d>
</ Keywor ds2>

Prior to the introduction of the AUTOVATI C TAGS construct, ASN.Y,specifications frequently contained tags. The

following
TAGS, new
to concern

ubclauses describe the way in which tagging was typically"applied. With the introduction of
ASN.1 specifications need make no use of the tag notation, although those modifying old notatio

NUTQOVATI C
h may have

themselves with tags. New users of the ASN.1 notation are encouraged to use AUTOVATI C TAGS as this
makes the potation more readable.

E.2.12.1 Universal class tags are used only within, this Recommendation | International Standard. The notation

[UNI VERSAL 30] (for example) is provided solely torenable precision in the definition of the "Useful Types'| (see 41.1).
It should n¢t be used elsewhere.
E.2.12.2 A frequently encountered style for the use of tags is to assign an application class tag precisely pnce in the
entire specification, using it to identify a typéthat finds wide, scattered, use within the specification. An applifation class
tag is alsq frequently used (once only)'to tag the types in the outermost CHO CE of an application] providing
identificatipn of individual messages by the application class tag. The following is an example use in the formjer case:
HXAMPLE
Fi | eNang ‘+.)= [APPLI CATI ON 8] SEQUENCE {
di rect oryNane Vi sibleString,
directoryRel ati veFi | eNane Vi si bl eString}
E.2.12.3 (Jontextsspecific tagging is frequently applied in an algorithmic manner to all components|of a SET,
SEQUENCE,|orxCHA CE. Note, however, that the AUTOVATI C TAGS facility does this easily for you.
XAMPEE
Cust omer Record ::= SET {
name [0] VisibleString,
mai | i ngAddr ess [1] VisibleString,
account Nunber [2] | NTEGER,
bal anceDue [3] INTEGER -- in cents --}
CustonerAttribute ::= CHO CE {
nane [0] VisibleString,
mai | i ngAddr ess [1] VisibleString,
account Nunber [2] | NTEGER,
bal anceDue [3] INTEGER -- in cents --}

E.2.12.4 Private class tagging should normally not be used in internationally standardized specifications (although this
cannot be prohibited). Applications produced by an enterprise will normally use application and context-specific tag
classes. There may be occasional cases, however, where an enterprise-specific specification seeks to extend an

104

ITU-T Rec. X.680 (07/2002)

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002 (E)

internationally standardized specification, and in this case use of private class tags may give some benefits in partially
protecting the enterprise-specific specification from changes to the internationally standardized specification.

EXAMPLE
AcnmeBadgeNunber ::= [PRIVATE 2] | NTEGER
badgeNunmber AcmeBadgeNunber ::= 2345

or using XML value notation:

badgeNunmber ::= <AcneBadgeNunber >2345</ AcneBadgeNunber >

E.2.12.5 Textual use of | MPLI O T with every tag is generally found only in older specifications. BER produces a less
compact representation when explicit tagging is used than when implicit tagging is used. PER produces the same
compact encoding in both cases. With BER and explicit tagging, there is more visibility of the underlying type
(I NTEGER, REAL, BOOLEAN, etc.) in the encoded data. These guidelines use implicit tagging in the examples whenever it
is legal to[do so. This may, depending on the encoding rules, result in a compact representation, whlclr is highly
desirable in} some applications. In other applications, compactness may be less important than, for example, ithe ability to
carry out sfrong type-checking. In the latter case, explicit tagging can be used.

HXAMPLE
Cust oner Record ::= SET {
nane [O] IMPLICIT VisibleString,
mai | i ngAddr ess [1] IMPLICIT ¥isibleString,
account Nunber [2] I MPLI O T, I"NTEGER,
bal anceDue [3] I MPLICKTM NTEGER -- in cents --
}
CustonerAttribute ::= CHO CE {
name [O] WMPLICIT VisibleString,
mai | i ngAddr ess [4Y IMPLICIT VisibleString,
account Nunber [2] IMPLICIT | NTEGER,
bal anceDue [3] IMPLICIT INTEGER -- in cents --
}

E.2.12.6 (Juidance on use of tags in new ASN.1 specifications referencing this Recommendation | Imternational
Standard i quite simple: DON'T USE TAGS. Put AUTOVATI C TAGS in the module header, then forget about ftags. If you
need to add new components to the SET, SEQUENCE or-CHO CE in a later version, add them to the end.

E.2.13 (hoice

E.2.13.1 Use a CHO CE to model a variabléthat is selected from a collection of variables whose number are|known and
modest.

HXAMPLE

Fileldentifier ::= CHO CE {

rel ati veNanme Vi si bl eString,

-~ name of file (for exanple, "MarchProgressReport")
absol ut eNane Vi si bl eString,

-- name of file and containing directory

-- (for exanple, "<WIIlians>MarchProgressReport")
seri al Nurber | NTEGER

-- systemassigned identifier for file --}

Trre Frerdentirrer .= serlal Nunmer . 1Ub44c0Us

or using XML value notation:

fileldentifier ::=
<Fileldentifier>
<seri al Nunber >106448503</ seri al Nunber >
</Fileldentifier>

E.2.13.2 Use an extensible CHO CE to model a variable that is selected from a collection of variables whose make-up is
likely to change from one version of the protocol to the next.

EXAMPLE

Fileldentifier ::= CHO CE { -- First version of
Fileldentifier
rel ati veNanme Vi si bl eString,

ITU-T Rec. X.680 (07/2002) 105

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

	ITU-T Recommendation X.680
	Contents
	Foreword
	Introduction
	Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 Information object specification
	3.2 Constraint specification
	3.3 Parameterization of ASN.1 specification
	3.4 Structure for identification of organizations
	3.5 Universal Multiple-Octet Coded Character Set (UCS)
	3.6 Additional definitions

	4 Abbreviations
	5 Notation
	5.1 General
	5.2 Productions
	5.3 The alternative collections

	5.4 Non-spacing indicator
	5.5 Example of a production
	5.6 Layout
	5.7 Recursion
	5.8 References to permitted sequences of lexical items
	5.9 References to a lexical item
	5.10 Short-hand notations
	5.11 Value references and the typing of values
	6 The ASN.1 model of type extension
	7 Extensibility requirements on encoding rules
	8 Tags
	9 Use of the ASN.1 notation
	10 The ASN.1 character set
	11 ASN.1 lexical items
	11.1 General rules
	11.2 Type references
	11.3 Identifiers
	11.4 Value references
	11.5 Module references
	11.6 Comments
	11.7 Empty lexical item
	11.8 Numbers
	11.9 Real numbers
	11.10 Binary strings
	11.11 XML binary string item
	11.12 Hexadecimal strings
	11.13 XML hexadecimal string item
	11.14 Character strings
	11.15 XML character string item
	11.16 Assignment lexical item
	11.17 Range separator
	11.18 Ellipsis
	11.19 Left version brackets
	11.20 Right version brackets
	11.21 XML end tag start item
	11.22 XML single tag end item
	11.23 XML boolean true item
	11.24 XML boolean false item
	11.25 XML tag names for ASN.1 types
	11.26 Single character lexical items
	11.27 Reserved words

	12 Module definition
	13 Referencing type and value definitions
	14 Notation to support references to ASN.1 components
	15 Assigning types and values
	16 Definition of types and values
	17 Notation for the boolean type
	18 Notation for the integer type
	19 Notation for the enumerated type
	20 Notation for the real type
	21 Notation for the bitstring type
	22 Notation for the octetstring type
	23 Notation for the null type
	24 Notation for sequence types
	25 Notation for sequence-of types
	26 Notation for set types
	27 Notation for set-of types
	28 Notation for choice types
	29 Notation for selection types
	30 Notation for tagged types
	31 Notation for the object identifier type
	32 Notation for the relative object identifier type
	33 Notation for the embedded-pdv type
	34 Notation for the external type
	35 The character string types
	36 Notation for character string types
	37 Definition of restricted character string types
	38 Naming characters and collections defined in ISO/IEC 10646-1
	39 Canonical order of characters
	40 Definition of unrestricted character string types
	41 Notation for types defined in clauses 42 to 44
	42 Generalized time
	43 Universal time
	44 The object descriptor type
	45 Constrained types
	46 Element set specification
	47 Subtype elements
	48 The extension marker
	49 The exception identifier
	Annex A - ASN.1 regular expressions
	A.1 Definition
	A.2 Metacharacters

	Annex B - Rules for type and value Compatibility
	B.1 The need for the value mapping concept (tutorial introduction)
	B.2 Value mappings
	B.3 Identical type definitions
	B.4 Specification of value mappings
	B.5 Additional value mappings defined for the character string types
	B.6 Specific type and value compatibility requirements
	B.7 Examples

	Annex C - Assigned object identifier values
	C.1 Object identifiers assigned in this Recommendation | International Standard
	C.2 Object identifiers in the ASN.1 and encoding rules standards

	Annex D - Assignment of object identifier component values
	D.1 Root assignment of object identifier component values
	D.2 ITU-T assignment of object identifier component values
	D.3 ISO assignment of object identifier component values
	D.4 Joint assignment of object identifier component values

	Annex E - Examples and hints
	E.1 Example of a personnel record
	E.2 Guidelines for use of the notation
	E.3 Identifying abstract syntaxes
	E.4 Subtypes

	Annex F - Tutorial annex on ASN.1 character strings
	F.1 Character string support in ASN.1
	F.2 The UniversalString, UTF8String and BMPString types
	F.3 On ISO/IEC 10646-1 conformance requirements
	F.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance
	F.5 Adopted subsets as parameters of the abstract syntax
	F.6 The CHARACTER STRING type

	Annex G - Tutorial annex on the ASN.1 model of type extension
	G.1 Overview
	G.2 Meaning of version numbers
	G.3 Requirements on encoding rules
	G.4 Combination of (possibly extensible) constraints

	Annex H - Summary of the ASN.1 notation

