

Reference number
ISO/IEC 8824-1:2002(E)

© ISO/IEC 2002

INTERNATIONAL
STANDARD

ISO/IEC
8824-1

Third edition
2002-12-15

Information technology — Abstract
Syntax Notation One (ASN.1):
Specification of basic notation

Technologies de l'information — Notation de syntaxe abstraite
numéro un (ASN.1): Spécification de la notation de base

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2002
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published by ISO in 2003
Published in Switzerland

ii © ISO/IEC 2002 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

© ISO/IEC 2002 – All rights reserved iii

 CONTENTS
Page

Introduction ... viii
1 Scope .. 1
2 Normative references ... 1

2.1 Identical Recommendations | International Standards .. 1
2.2 Additional references .. 2

3 Definitions.. 2
3.1 Information object specification.. 2
3.2 Constraint specification... 2
3.3 Parameterization of ASN.1 specification .. 2
3.4 Structure for identification of organizations.. 3
3.5 Universal Multiple-Octet Coded Character Set (UCS) ... 3
3.6 Additional definitions.. 3

4 Abbreviations ... 7
5 Notation.. 8

5.1 General .. 8
5.2 Productions.. 8
5.3 The alternative collections .. 8
5.4 Non-spacing indicator ... 9
5.5 Example of a production ... 9
5.6 Layout ... 9
5.7 Recursion .. 9
5.8 References to permitted sequences of lexical items .. 9
5.9 References to a lexical item .. 9
5.10 Short-hand notations ... 9
5.11 Value references and the typing of values... 10

6 The ASN.1 model of type extension .. 10
7 Extensibility requirements on encoding rules... 11
8 Tags .. 12
9 Use of the ASN.1 notation.. 12
10 The ASN.1 character set... 13
11 ASN.1 lexical items.. 14

11.1 General rules ... 14
11.2 Type references ... 14
11.3 Identifiers .. 15
11.4 Value references.. 15
11.5 Module references... 15
11.6 Comments ... 15
11.7 Empty lexical item .. 15
11.8 Numbers .. 15
11.9 Real numbers... 16
11.10 Binary strings .. 16
11.11 XML binary string item .. 16
11.12 Hexadecimal strings .. 16
11.13 XML hexadecimal string item... 16
11.14 Character strings.. 17
11.15 XML character string item .. 17
11.16 Assignment lexical item.. 19
11.17 Range separator... 19
11.18 Ellipsis ... 19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

iv © ISO/IEC 2002 – All rights reserved

11.19 Left version brackets ... 19
11.20 Right version brackets... 19
11.21 XML end tag start item ... 19
11.22 XML single tag end item... 20
11.23 XML boolean true item... 20
11.24 XML boolean false item.. 20
11.25 XML tag names for ASN.1 types.. 20
11.26 Single character lexical items.. 21
11.27 Reserved words ... 22

12 Module definition ... 22
13 Referencing type and value definitions .. 26
14 Notation to support references to ASN.1 components ... 27
15 Assigning types and values .. 28
16 Definition of types and values .. 30
17 Notation for the boolean type ... 32
18 Notation for the integer type... 33
19 Notation for the enumerated type ... 34
20 Notation for the real type.. 35
21 Notation for the bitstring type .. 36
22 Notation for the octetstring type... 37
23 Notation for the null type ... 38
24 Notation for sequence types ... 38
25 Notation for sequence-of types... 42
26 Notation for set types ... 44
27 Notation for set-of types... 45
28 Notation for choice types.. 45
29 Notation for selection types.. 47
30 Notation for tagged types ... 48
31 Notation for the object identifier type .. 49
32 Notation for the relative object identifier type ... 50
33 Notation for the embedded-pdv type .. 51
34 Notation for the external type... 53
35 The character string types... 54
36 Notation for character string types ... 55
37 Definition of restricted character string types .. 55
38 Naming characters and collections defined in ISO/IEC 10646-1... 59
39 Canonical order of characters ... 62
40 Definition of unrestricted character string types .. 62
41 Notation for types defined in clauses 42 to 44 ... 64
42 Generalized time... 64
43 Universal time .. 65
44 The object descriptor type .. 65
45 Constrained Types.. 66
46 Element set specification.. 67
47 Subtype elements.. 69

47.1 General .. 69
47.2 Single Value.. 70
47.3 Contained Subtype .. 70

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

© ISO/IEC 2002 – All rights reserved v

47.4 Value Range.. 71
47.5 Size Constraint .. 71
47.6 Type Constraint... 72
47.7 Permitted Alphabet.. 72
47.8 Inner Subtyping... 72
47.9 Pattern constraint... 73

48 The extension marker ... 73
49 The exception identifier.. 75
Annex A – ASN.1 regular expressions .. 77

A.1 Definition .. 77
A.2 Metacharacters .. 77

Annex B – Rules for Type and Value Compatibility... 80
B.1 The need for the value mapping concept (Tutorial introduction).. 80
B.2 Value mappings... 82
B.3 Identical type definitions... 83
B.4 Specification of value mappings ... 85
B.5 Additional value mappings defined for the character string types .. 85
B.6 Specific type and value compatibility requirements.. 86
B.7 Examples... 87

Annex C – Assigned object identifier values... 89
C.1 Object identifiers assigned in this Recommendation | International Standard 89
C.2 Object identifiers in the ASN.1 and encoding rules standards .. 89

Annex D – Assignment of object identifier component values ... 91
D.1 Root assignment of object identifier component values.. 91
D.2 ITU-T assignment of object identifier component values ... 91
D.3 ISO assignment of object identifier component values ... 92
D.4 Joint assignment of object identifier component values.. 92

Annex E – Examples and hints .. 93
E.1 Example of a personnel record.. 93

E.1.1 Informal description of Personnel Record... 93
E.1.2 ASN.1 description of the record structure... 93

E.2 Guidelines for use of the notation ... 94
E.2.1 Boolean ... 95
E.2.2 Integer ... 95
E.2.3 Enumerated ... 95
E.2.4 Real ... 96
E.2.5 Bit string.. 97
E.2.6 Octet string.. 98
E.2.7 UniversalString, BMPString and UTF8String .. 99
E.2.10 Sequence and sequence-of .. 100
E.2.11 Set and set-of... 102
E.2.12 Tagged... 104
E.2.13 Choice ... 105
E.2.14 Selection type.. 107
E.2.16 Embedded-pdv .. 108
E.2.17 External ... 108
E.2.18 Instance-of... 108
E.2.19 Relative Object Identifier .. 109

E.3 Identifying abstract syntaxes... 109
E.4 Subtypes .. 110

Annex F – Tutorial annex on ASN.1 character strings .. 113
F.1 Character string support in ASN.1 .. 113
F.2 The UniversalString, UTF8String and BMPString types.. 113
F.3 On ISO/IEC 10646-1 conformance requirements ... 114
F.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance... 114
F.5 Adopted subsets as parameters of the abstract syntax... 115

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

vi © ISO/IEC 2002 – All rights reserved

F.6 The CHARACTER STRING type .. 115

Annex G – Tutorial annex on the ASN.1 model of type extension ... 116
G.1 Overview... 116
G.2 Meaning of version numbers... 117
G.3 Requirements on encoding rules ... 118
G.4 Combination of (possibly extensible) constraints ... 118

G.4.1 Model .. 118
G.4.2 Serial application of constraints .. 118
G.4.3 Use of set arithmetic.. 119
G.4.4 Use of the Contained Subtype notation... 120

Annex H – Summary of the ASN.1 notation ... 121

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

© ISO/IEC 2002 – All rights reserved vii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 8824-1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 6, Telecommunications and information exchange between systems, in collaboration with
ITU-T. The identical text is published as ITU-T Rec. X.680.

This third edition cancels and replaces the second edition (ISO/IEC 8824-1:1998), which has been
technically revised. It also incorporates the Amendments ISO/IEC 8824-1:1998/Amd.1:2000 and
ISO/IEC 8824-1:1998/Amd.2:2000 and the Technical Corrigenda ISO/IEC 8824-1:1998/Cor.1:1999,
ISO/IEC 8824-1:1998/Cor.2:2002, ISO/IEC 8824-1:1998/Cor.3:2002 and ISO/IEC 8824-1:1998/Cor.4:2002.

ISO/IEC 8824 consists of the following parts, under the general title Information technology — Abstract Syntax
Notation One (ASN.1):

— Part 1: Specification of basic notation

— Part 2: Information object specification

— Part 3: Constraint specification

— Part 4: Parameterization of ASN.1 specifications

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

viii © ISO/IEC 2002 – All rights reserved

 Introduction
This Recommendation | International Standard presents a standard notation for the definition of data types and values. A
data type (or type for short) is a category of information (for example, numeric, textual, still image or video
information). A data value (or value for short) is an instance of such a type. This Recommendation | International
Standard defines several basic types and their corresponding values, and rules for combining them into more complex
types and values.

In some protocol architectures, each message is specified as the binary value of a sequence of octets. However,
standards-writers need to define quite complex data types to carry their messages, without concern for their binary
representation. In order to specify these data types, they require a notation that does not necessarily determine the
representation of each value. ASN.1 is such a notation. This notation is supplemented by the specification of one or
more algorithms called encoding rules that determine the value of the octets that carry the application semantics (called
the transfer syntax). ITU-T Rec. X.690 | ISO/IEC 8825-1, ITU-T Rec. X.691 | ISO/IEC 8825-2 and ITU-T Rec. X.693 |
ISO/IEC 8825-4 specify three families of standardized encoding rules, called Basic Encoding Rules (BER), Packed
Encoding Rules (PER), and XML Encoding Rules (XER).

Some users wish to redefine their legacy protocols using ASN.1, but cannot use standardized encoding rules because
they need to retain their existing binary representations. Other users wish to have more complete control over the exact
layout of the bits on the wire (the transfer syntax). These requirements are addressed by ITU-T Rec. X.692 |
ISO/IEC 8825-3 which specifies an Encoding Control Notation (ECN) for ASN.1. ECN enables designers to formally
specify the abstract syntax of a protocol using ASN.1, but to then (if they so wish) take complete or partial control of
the bits on the wire by writing an accompanying ECN specification (which may reference standardized Encoding Rules
for some parts of the encoding).

A very general technique for defining a complicated type at the abstract level is to define a small number of simple
types by defining all possible values of the simple types, then combining these simple types in various ways. Some of
the ways of defining new types are as follows:

a) given an (ordered) list of existing types, a value can be formed as an (ordered) sequence of values, one
from each of the existing types; the collection of all possible values obtained in this way is a new type (if
the existing types in the list are all distinct, this mechanism can be extended to allow omission of some
values from the list);

b) given an unordered set of (distinct) existing types, a value can be formed as an (unordered) set of values,
one from each of the existing types; the collection of all possible unordered sets of values obtained in this
way is a new type (the mechanism can again be extended to allow omission of some values);

c) given a single existing type, a value can be formed as an (ordered) list or (unordered) set of zero, one or
more values of the existing type; the collection of all possible lists or sets of values obtained in this way
is a new type;

d) given a list of (distinct) types, a value can be chosen from any one of them; the set of all possible values
obtained in this way is a new type;

e) given a type, a new type can be formed as a subset of it by using some structure or order relationship
among the values.

An important aspect of combining types in this way is that encoding rules should recognize the combining constructs,
providing unambiguous encodings of the collection of values of the basic types. Thus, every basic type defined using
the notation specified in this Recommendation | International Standard is assigned a tag to aid in the unambiguous
encoding of values.

Tags are mainly intended for machine use, and are not essential for the human notation defined in this Recommendation
| International Standard. Where, however, it is necessary to require that certain types be distinct, this is expressed by
requiring that they have distinct tags. The allocation of tags is therefore an important part of the use of this notation, but
(since 1994) it is possible to specify the automatic allocation of tags.

NOTE 1 – Within this Recommendation | International Standard, tag values are assigned to all simple types and construction
mechanisms. The restrictions placed on the use of the notation ensure that tags can be used in transfer for unambiguous
identification of values.

An ASN.1 specification will initially be produced with a set of fully defined ASN.1 types. At a later stage, however, it
may be necessary to change those types (usually by the addition of extra components in a sequence or set type). If this is
to be possible in such a way that implementations using the old type definitions can interwork with implementations
using the new type definitions in a defined way, encoding rules need to provide appropriate support. The ASN.1
notation supports the inclusion of an extension marker on a number of types. This signals to encoding rules the intention
of the designer that this type is one of a series of related types (i.e., versions of the same initial type) called an extension
series, and that the encoding rules are required to enable information transfer between implementations using different
types that are related by being part of the same extension series.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2002(E)

© ISO/IEC 2002 – All rights reserved ix

Clauses 10 to 31 (inclusive) define the simple types supported by ASN.1, and specify the notation to be used for
referencing simple types and for defining new types using them. Clauses 10 to 31 also specify notations to be used for
specifying values of types defined using ASN.1. Two value notations are provided. The first is called the basic ASN.1
value notation, and has been part of the ASN.1 notation since its first introduction. The second is called the XML
ASN.1 Value Notation, and provides a value notation using Extensible Markup Language (XML).

NOTE 2 – The XML Value Notation provides a means of representing ASN.1 values using XML. Thus, an ASN.1 type
definition also specifies the structure and content of an XML element. This makes ASN.1 a simple schema language for XML.

Clauses 33 to 34 (inclusive) define the types supported by ASN.1 for carrying within them the complete encoding
of ASN.1 types.

Clauses 35 to 40 (inclusive) define the character string types.

Clauses 41 to 44 (inclusive) define certain types which are considered to be of general utility, but which require no
additional encoding rules.

Clauses 45 to 47 (inclusive) define a notation which enables subtypes to be defined from the values of a parent type.

Clause 48 defines a notation which allows ASN.1 types specified in a "version 1" specification to be identified as likely
to be extended in "version 2", and for additions made in subsequent versions to be separately listed and identified with
their version number.

Clause 49 defines a notation which allows ASN.1 type definitions to contain an indication of the intended error
handling if encodings are received for values which lie outside those specified in the current standardized definition.

Annex A forms an integral part of this Recommendation | International Standard, and specifies ASN.1 regular
expressions.

Annex B forms an integral part of this Recommendation | International Standard, and specifies rules for type and value
compatibility.

Annex C forms an integral part of this Recommendation | International Standard, and records object identifier and
object descriptor values assigned in the ASN.1 series of Recommendations | International Standards.

Annex D does not form an integral part of this Recommendation | International Standard, and describes the top-level
arcs of the registration tree for object identifiers.

Annex E does not form an integral part of this Recommendation | International Standard, and provides examples and
hints on the use of the ASN.1 notation.

Annex F does not form an integral part of this Recommendation | International Standard, and provides a tutorial
on ASN.1 character strings.

Annex G does not form an integral part of this Recommendation | International Standard, and provides a tutorial on
the ASN.1 model of type extension.

Annex H does not form an integral part of this Recommendation | International Standard, and provides a summary
of ASN.1 using the notation of clause 5.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 1

INTERNATIONAL STANDARD
ISO/IEC 8824-1 : 2002 (E)
ITU-T Rec. X.680 (2002 E)

ITU-T RECOMMENDATION

Information technology –
Abstract Syntax Notation One (ASN.1):

Specification of basic notation

1 Scope
This Recommendation | International Standard provides a standard notation called Abstract Syntax Notation One
(ASN.1) that is used for the definition of data types, values, and constraints on data types.

This Recommendation | International Standard:
– defines a number of simple types, with their tags, and specifies a notation for referencing these types and

for specifying values of these types;
– defines mechanisms for constructing new types from more basic types, and specifies a notation for

defining such types and assigning them tags, and for specifying values of these types;
– defines character sets (by reference to other Recommendations and/or International Standards) for use

within ASN.1.

The ASN.1 notation can be applied whenever it is necessary to define the abstract syntax of information.

The ASN.1 notation is referenced by other standards which define encoding rules for the ASN.1 types.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards
– CCITT Recommendation X.660 (1992) | ISO/IEC 9834-1:1993, Information technology – Open Systems

Interconnection – Procedures for the operation of OSI Registration Authorities: General procedures:
(plus amendments).

– ITU-T Recommendation X.681 (2002) | ISO/IEC 8824-2:2002, Information technology – Abstract Syntax
Notation One (ASN.1): Information object specification.

– ITU-T Recommendation X.682 (2002) | ISO/IEC 8824-3:2002, Information technology – Abstract Syntax
Notation One (ASN.1): Constraint specification.

– ITU-T Recommendation X.683 (2002) | ISO/IEC 8824-4:2002, Information technology – Abstract Syntax
Notation One (ASN.1): Parameterization of ASN.1 specifications.

– ITU-T Recommendation X.690 (2002) | ISO/IEC 8825-1:2002, Information technology – ASN.1 encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER).

– ITU-T Recommendation X.691 (2002) | ISO/IEC 8825-2:2002, Information technology – ASN.1 encoding
rules: Specification of Packed Encoding Rules (PER).

– ITU-T Recommendation X.692 (2002) | ISO/IEC 8825-3:2002, Information technology – ASN.1 encoding
rules: Specification of Encoding Control Notation (ECN).

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

2 ITU-T Rec. X.680 (07/2002)

– ITU-T Recommendation X.693 (2001) | ISO/IEC 8825-4:2002, Information technology – ASN.1 encoding
rules: XML Encoding Rules (XER).

2.2 Additional references
– ITU-R Recommendation TF.460-5 (1997), Standard-frequency and time-signal emissions.
– CCITT Recommendation T.100 (1988), International information exchange for interactive videotex.
– ITU-T Recommendation T.101 (1994), International interworking for videotex services.
– ISO International Register of Coded Character Sets to be used with Escape Sequences.
– ISO/IEC 646:1991, Information technology – ISO 7-bit coded character set for information interchange.
– ISO/IEC 2022:1994, Information technology – Character code structure and extension techniques.
– ISO/IEC 6523:1998, Data interchange – Structures for the identification of organizations.
– ISO/IEC 7350:1991, Information technology – Registration of repertoires of graphic characters from

ISO/IEC 10367.
– ISO 8601:2000, Data elements and interchange formats – Information interchange – Representation of

dates and times.
– ISO/IEC 10646-1:2000, Information technology – Universal Multiple-Octet Coded Character Set

(UCS) – Part 1: Architecture and Basic Multilingual Plane.
– The Unicode Standard, Version 3.2.0:2002. The Unicode Consortium. (Reading, MA, Addison-Wesley)

NOTE 1 – The above reference is included because it provides names for control characters.

– W3C XML 1.0:2000, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation,
Copyright © [6 October 2000] World Wide Web Consortium, (Massachusetts Institute of Technology,
Institut National de Recherche en Informatique et en Automatique, Keio University),
http://www.w3.org/TR/2000/REC-xml-20001006.

NOTE 2 – The reference to a document within this Recommendation | International Standard does not give it, as a stand-alone
document, the status of a Recommendation or International Standard.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Information object specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2:
a) information object;
b) information object class;
c) information object set;
d) instance-of type;
e) object class field type.

3.2 Constraint specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3:
a) component relation constraint;
b) table constraint.

3.3 Parameterization of ASN.1 specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:
a) parameterized type;
b) parameterized value.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 3

3.4 Structure for identification of organizations

This Recommendation | International Standard uses the following terms defined in ISO/IEC 6523:
a) issuing organization;
b) organization code;
c) International Code Designator.

3.5 Universal Multiple-Octet Coded Character Set (UCS)

This Recommendation | International Standard uses the following terms defined in ISO/IEC 10646-1:
a) Basic Multilingual Plane (BMP);
b) cell;
c) combining character;
d) graphic symbol;
e) group;
f) limited subset;
g) plane;
h) row;
i) selected subset.

3.6 Additional definitions

3.6.1 abstract character: An abstract value which is used for the organization, control or representation of textual
data.

NOTE – Annex F provides a more complete description of the term abstract character.

3.6.2 abstract value: A value whose definition is based only on the type used to carry some semantics,
independently of how it is represented in any encoding.

NOTE – Examples of abstract values are the values of the integer type, the boolean type, a character string type, or of a type
which is a sequence (or a choice) of an integer and a boolean.

3.6.3 ASN.1 character set: The set of characters, specified in clause 10, used in the ASN.1 notation.

3.6.4 ASN.1 specification: A collection of one or more ASN.1 modules.

3.6.5 associated type: A type which is used only for defining the value and subtype notation for a type.
NOTE – Associated types are defined in this Recommendation | International Standard when it is necessary to make it clear that
there may be a significant difference between how the type is defined in ASN.1 and how it is encoded. Associated types do not
appear in user specifications.

3.6.6 bitstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more bits.
NOTE – Where there is a need to carry embedded encodings of an abstract value, the use of a bitstring (or an octetstring) type
without a contents constraint (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11) is deprecated. Otherwise, the use of the
embedded-pdv type (see clause 33) provides a more flexible mechanism, allowing the announcement of the abstract syntax and of
the encoding of the abstract value that is embedded.

3.6.7 boolean type: A simple type with two distinguished values.

3.6.8 character property: The set of information associated with a cell in a table defining a character repertoire.
NOTE – The information will normally include some or all of the following items:

a) a graphic symbol;
b) a character name;
c) the definition of functions associated with the character when used in particular environments;
d) whether it represents a digit;
e) an associated character differing only in (upper/lower) case.

3.6.9 character abstract syntax: Any abstract syntax whose values are specified as the set of character strings of
zero, one or more characters from some specified collection of characters.

3.6.10 character repertoire: The characters in a character set without any implication on how such characters are
encoded.

3.6.11 character string types: Simple types whose values are strings of characters from some defined character set.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

4 ITU-T Rec. X.680 (07/2002)

3.6.12 character transfer syntax: Any transfer syntax for a character abstract syntax.
NOTE – ASN.1 does not support character transfer syntaxes which do not encode all character strings as an integral multiple
of 8 bits.

3.6.13 choice types: Types defined by referencing a list of distinct types; each value of the choice type is derived
from the value of one of the component types.

3.6.14 component type: One of the types referenced when defining a CHOICE, SET, SEQUENCE, SET OF, or
SEQUENCE OF.

3.6.15 constraint: A notation which can be used in association with a type, to define a subtype of that type.

3.6.16 contents constraint: A constraint on a bit string or octet string type that specifies either that the contents are
to be an encoding of a specified ASN.1 type, or that specified procedures are to be used to produce and process the
contents.

3.6.17 control characters: Characters appearing in some character repertoires that have been given a name (and
perhaps a defined function in relation to certain environments) but which have not been assigned a graphic symbol, and
which are not spacing characters.

NOTE – HORIZONTAL TABULATION (9) and LINE FEED (10) are examples of control characters that have been assigned a
formatting function in a printing environment. DATA LINK ESCAPE (16) is an example of a control character that has been
assigned a function in a communication environment.

3.6.18 Coordinated Universal Time (UTC): The time scale maintained by the Bureau International de l'Heure
(International Time Bureau) that forms the basis of a coordinated dissemination of standard frequencies and time signals.

NOTE 1 – The source of this definition is ITU-R Rec. TF.460-5. ITU-R has also defined the acronym for Coordinated Universal
Time as UTC.
NOTE 2 – UTC and Greenwich Mean Time (GMT) are two alternative time standards which for most practical purposes
determine the same time.

3.6.19 element: A value of a governing type or an information object of a governing information object class,
distinguable from all other values of the same type or information objects of the same class, respectively.

3.6.20 element set: A set of elements, all of which are values of a governing type, or information objects of a
governing class.

NOTE – Governing class is defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4.7.

3.6.21 embedded-pdv type: A type whose set of values is formally the union of the sets of values in all possible
abstract syntaxes. This type can be used in an ASN.1 specification that wishes to carry in its protocol an abstract value
whose type may be defined externally to that ASN.1 specification. It carries an identification of the abstract syntax (the
type) of the abstract value being carried, as well as an identification of the encoding rules used to encode that abstract
value.

3.6.22 encoding: The bit-pattern resulting from the application of a set of encoding rules to an abstract value.

3.6.23 (ASN.1) encoding rules: Rules which specify the representation during transfer of the values of ASN.1 types.
Encoding rules also enable the values to be recovered from the representation, given knowledge of the type.

NOTE – For the purpose of specifying encoding rules, the various referenced type (and value) notations, which can provide
alternative notations for built-in types (and values), are not relevant.

3.6.24 enumerated types: Simple types whose values are given distinct identifiers as part of the type notation.

3.6.25 extension addition: One of the added notations in an extension series. For set, sequence and choice types, each
extension addition is the addition of either a single extension addition group or a single component type. For enumerated
types it is the addition of a single further enumeration. For a constraint it is the addition of (only) one subtype element.

NOTE – Extension additions are both textually ordered (following the extension marker) and logically ordered (having increasing
enumeration values, and, in the case of CHOICE alternatives, increasing tags).

3.6.26 extension addition group: One or more components of a set, sequence or choice type grouped within version
brackets. An extension addition group is used to clearly identify the components of a set, sequence or choice type that were
added in a particular version of an ASN.1 module, and can identify that version with a simple integer.

3.6.27 extension addition type: A type contained within an extension addition group or a single component type that is
itself an extension addition (in such a case it is not contained within an extension addition group).

3.6.28 extensible constraint: A subtype constraint with an extension marker at the outer level, or that is extensible
through the use of set arithmetic with extensible sets of values.

3.6.29 extension insertion point (or insertion point): The location within a type definition where extension additions
are inserted. This location is the end of the type notation of the immediately preceding type in the extension series if there is

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 5

a single ellipsis in the type definition, or immediately before the second ellipsis if there is an extension marker pair in the
definition of the type.

NOTE – There can be at most one insertion point within the components of any choice, sequence, or set type.

3.6.30 extension marker: A syntactic flag (an ellipsis) that is included in all types that form part of an extension
series.

3.6.31 extension marker pair: A pair of extension markers between which extension additions are inserted.

3.6.32 extension-related: Two types that have the same extension root, where one was created by adding zero or
more extension additions to the other.

3.6.33 extension root: An extensible type that is the first type in an extension series. It carries either the extension
marker with no additional notation other than comments and white-space between the extension marker and the matching
"}" or ")", or an extension marker pair with no additional notation other than a single comma, comments and white-space
between the extension markers.

NOTE – Only an extension root can be the first type in an extension series.

3.6.34 extension series: A series of ASN.1 types which can be ordered in such a way that each successive type in the
series is formed by the addition of text at the extension insertion point.

3.6.35 extensible type: A type with an extension marker, or to which an extensible constraint has been applied.

3.6.36 external reference: A type reference, value reference, information object class reference, information object
reference, or information object set reference (which may be parameterized), that is defined in some other module than
the one in which it is being referenced, and which is being referred to by prefixing the module name to the referenced
item.

EXAMPLE – ModuleName.TypeReference

3.6.37 external type: A type which is a part of an ASN.1 specification that carries a value whose type may be
defined externally to that ASN.1 specification. It also carries an identification of the type of the value being carried.

3.6.38 false: One of the distinguished values of the boolean type (see also "true").

3.6.39 governing (type); governor: A type definition or reference which affects the interpretation of a part of the
ASN.1 syntax, requiring that part of the ASN.1 syntax to reference values in the governing type.

3.6.40 identical type definitions: Two instances of the ASN.1 "Type" production (see clause 16) are defined as
identical type definitions if, after performing the transformations specified in Annex B, they are identical ordered lists of
identical lexical items (see clause 11).

3.6.41 integer type: A simple type with distinguished values which are the positive and negative whole numbers,
including zero (as a single value).

NOTE – When particular encoding rules limit the range of an integer, such limitations are chosen so as not to affect any user
of ASN.1.

3.6.42 lexical item: A named sequence of characters from the ASN.1 character set, specified in clause 11, which is
used in forming the ASN.1 notation.

3.6.43 module: One or more instances of the use of the ASN.1 notation for type, value, value set, information object
class, information object, and information object set (as well as the parameterized variant of those), encapsulated using
the ASN.1 module notation (see clause 12).

NOTE – The terms information object class (etc.) are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, and parameterization is
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4.

3.6.44 null type: A simple type consisting of a single value, also called null.

3.6.45 object: A well-defined piece of information, definition, or specification which requires a name in order to
identify its use in an instance of communication.

NOTE – Such an object may be an information object as defined in ITU-T Rec. X.681 | ISO/IEC 8824-2.

3.6.46 object descriptor type: A type whose distinguished values are human-readable text providing a brief
description of an object (see 3.6.45).

NOTE – An object descriptor value is usually associated with a single object. Only an object identifier value unambiguously
identifies an object.

3.6.47 object identifier: A globally unique value associated with an object to unambiguously identify it.

3.6.48 object identifier type: A simple type whose values are the set of all object identifiers allocated in accordance
with the rules of ITU-T Rec. X.660 | ISO/IEC 9834 series.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

6 ITU-T Rec. X.680 (07/2002)

NOTE – The rules of ITU-T Rec. X.660 | ISO/IEC 9834-1 permit a wide range of authorities to independently associate object
identifiers with objects.

3.6.49 octetstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more
octets, each octet being an ordered sequence of eight bits.

3.6.50 open systems interconnection: An architecture for computer communication which provides a number of
terms which are used in this Recommendation | International Standard preceded by the abbreviation "OSI".

NOTE – The meaning of such terms can be obtained from the ITU-T Rec. X.200 series and equivalent ISO/IEC Standards if
needed. The terms are only applicable if ASN.1 is used in an OSI environment.

3.6.51 open type notation: An ASN.1 notation used to denote a set of values from more than one ASN.1 type.
NOTE 1 – The term "open type" is used synonymously with "open type notation" in the body of this Recommendation |
International Standard.
NOTE 2 – All ASN.1 encoding rules provide unambiguous encodings for the values of a single ASN.1 type. They do not
necessarily provide unambiguous encodings for "open type notation", which carries values from ASN.1 types that are not
normally determined at specification time. Knowledge of the type of the value being encoded in the "open type notation" is
needed before the abstract value for that field can be unambiguously determined.
NOTE 3 – The only notation in this Recommendation | International Standard which is an open type notation is the
"ObjectClassFieldType" specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 14, where the "FieldName" denotes either a type
field or a variable-type value field.

3.6.52 parent type (of a subtype): The type that is being constrained when defining a subtype, and which governs
the subtype notation.

NOTE – The parent type may itself be a subtype of some other type.

3.6.53 production: A part of the formal notation (also called grammar or Backus-Naur Form, BNF) used to specify
ASN.1.

3.6.54 real type: A simple type whose distinguished values (specified in clause 20) are members of the set of real
numbers.

3.6.55 recursive definition (of a type): A set of ASN.1 definitions which cannot be reordered so that all types used
in a construction are defined before the definition of the construction.

NOTE – Recursive definitions are allowed in ASN.1: the user of the notation has the responsibility for ensuring that those values
(of the resulting types) which are used have a finite representation and that the value set associated with the type contains at least
one value.

3.6.56 relative object identifier: A value which identifies an object by its position relative to some known object
identifier (see 3.6.47).

3.6.57 relative object identifier type: A simple type whose values are the set of all possible relative object
identifiers.

3.6.58 restricted character string type: A character string type whose characters are taken from a fixed character
repertoire identified in the type specification.

3.6.59 selection types: Types defined by reference to a component type of a choice type, and whose values are
precisely the values of that component type.

3.6.60 sequence types: Types defined by referencing a fixed, ordered list of types (some of which may be declared
to be optional); each value of the sequence type is an ordered list of values, one from each component type.

NOTE – Where a component type is declared to be optional, a value of the sequence type need not contain a value of that
component type.

3.6.61 sequence-of types: Types defined by referencing a single component type; each value in the sequence-of type
is an ordered list of zero, one or more values of the component type.

3.6.62 serial application (of constraints): The application of a constraint to a parent type which is already
constrained.

3.6.63 set arithmetic: The formation of new sets of values or information objects using the operations of union,
intersection and set difference (use of EXCEPT) as specified in 46.2.

NOTE – The result of serial application of constraints is not covered by the term "set arithmetic".

3.6.64 set types: Types defined by referencing a fixed, unordered, list of types (some of which may be declared to be
optional); each value in the set type is an unordered list of values, one from each component type.

NOTE – Where a component type is declared to be optional, a value of the set type need not contain a value of that component
type.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 7

3.6.65 set-of types: Types defined by referencing a single component type; each value in the set-of type is an
unordered list of zero, one or more values of the component type.

3.6.66 simple types: Types defined by directly specifying the set of their values.

3.6.67 spacing character: A character in a character repertoire which is intended for inclusion with graphic
characters in the printing of a character string but which is represented in the physical rendition by empty space; it is not
normally considered to be a control character (see 3.6.17).

NOTE – There may be a single spacing character in the character repertoire, or there may be multiple spacing characters with
varying widths.

3.6.68 subtype (of a parent type): A type whose values are a subset (or the complete set) of the values of some
other type (the parent type).

3.6.69 tag: A type denotation which is associated with every ASN.1 type.

3.6.70 tagged types: A type defined by referencing a single existing type and a tag; the new type is isomorphic to the
existing type, but is distinct from it.

3.6.71 tagging: Replacing the existing (possibly the default) tag of a type by a specified tag.

3.6.72 transfer syntax: The set of bit strings used to exchange the abstract values in an abstract syntax, usually
obtained by application of encoding rules to an abstract syntax.

NOTE – The term "transfer syntax" is synonymous with "encoding".

3.6.73 true: One of the distinguished values of the boolean type (see also "false").

3.6.74 type: A named set of values.

3.6.75 type reference name: A name associated uniquely with a type within some context.
NOTE – Reference names are assigned to the types defined in this Recommendation | International Standard; these are universally
available within ASN.1. Other reference names are defined in other Recommendations | International Standards, and are
applicable only in the context of that Recommendation | International Standard.

3.6.76 unrestricted character string type: A type whose abstract values are values from a character abstract syntax,
together with an identification of the character abstract syntax and of the character transfer syntax to be used in its
encoding.

3.6.77 user (of ASN.1): The individual or organization that defines the abstract syntax of a particular piece of
information using ASN.1.

3.6.78 value mapping: A 1-1 relationship between values in two types that enables a reference to one of those
values to be used as a reference to the other value. This can, for example, be used in specifying subtypes and default
values (see Annex B).

3.6.79 value reference name: A name associated uniquely with a value within some context.

3.6.80 value set: A collection of values of a type. Semantically equivalent to a subtype.

3.6.81 version brackets: A pair of adjacent left and right brackets ("[[" or "]]") used to delineate the start and end of an
extension addition group. The pair of left brackets can optionally be followed by a number giving a version number for the
extension addition group.

3.8.82 version number: A number which can be associated with a version bracket (see G.1.8).
NOTE – A version number cannot be added to an extension addition which is not part of an extension addition group, nor to
extension additions to any type other than choice, sequence, or set.

3.6.83 white-space: Any formatting action that yields a space on a printed page, such as spaces or tabs.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply:

ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
BMP Basic Multilingual Plane
DCC Data Country Code
DNIC Data Network Identification Code

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

8 ITU-T Rec. X.680 (07/2002)

ECN Encoding Control Notation of ASN.1
ICD International Code Designator
IEC International Electrotechnical Commission
ISO International Organization for Standardization
ITU-T International Telecommunication Union – Telecommunication Standardization Sector
OID Object Identifier
OSI Open Systems Interconnection
PER Packed Encoding Rules of ASN.1
ROA Recognized Operating Agency
UCS Universal Multiple-Octet Coded Character Set
UTC Coordinated Universal Time
XML Extensible Markup Language

5 Notation

5.1 General

5.1.1 The ASN.1 notation consists of a sequence of characters from the ASN.1 character set specified in clause 10.

5.1.2 Each use of the ASN.1 notation contains characters from the ASN.1 character set grouped into lexical items.
Clause 11 specifies all the sequences of characters forming lexical items, and names each item.

5.1.3 The ASN.1 notation is specified in clause 12 (and following clauses) by specifying and naming those
sequences of lexical items which form valid instances of the ASN.1 notation, and by specifying the ASN.1 semantics of
each sequence.

5.1.4 In order to specify the permitted sequences of lexical items, this Recommendation | International Standard uses
a formal notation defined in the following subclauses.

5.2 Productions

5.2.1 All lexical items are named (see clause 11), and permitted sequences of lexical items are named.

5.2.2 A new (more complex) permitted sequence of lexical items is defined by means of a production. This uses the
names of lexical items and of permitted sequences of lexical items and forms a new named permitted sequence of lexical
items.

5.2.3 Each production consists of the following parts, on one or several lines, in order:
a) a name for the new permitted sequence of lexical items;
b) the characters

 ::=
c) one or more alternative sequences of lexical items, as defined in 5.3, separated by the character

 |

5.2.4 A sequence of lexical items is present in the new permitted sequence of lexical items if it is present in one or
more of the alternatives. The new permitted sequence of lexical items is referenced in this Recommendation |
International Standard by the name in 5.2.3 a) above.

NOTE – If the same sequence of lexical items appears in more than one alternative, any semantic ambiguity in the resulting
notation is resolved by associated text.

5.3 The alternative collections

5.3.1 Each alternative in a production (see 5.2.3.c) is specified by a list of names. Each name is either the name of a
lexical item, or is the name of a permitted sequence of lexical items defined and named by some other production.

5.3.2 The permitted sequence of lexical items defined by each alternative consists of all sequences obtained by
taking any one of the sequences (or the lexical item) associated with the first name, in combination with (and followed

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 9

by) any one of the sequences (or lexical item) associated with the second name, in combination with (and followed by)
any one of the sequences (or lexical item) associated with the third name, and so on up to and including the last name (or
lexical item) in the alternative.

5.4 Non-spacing indicator

If the non-spacing indicator "&" (AMPERSAND) is inserted between these items in production sequences, then the
lexical item that precedes it and the lexical item that follows it shall not be separated by white-space.

NOTE – This indicator is only used in productions that describe the XML value notation. For example, it is used to specify that
the lexical item "<" is to be immediately followed by an XML tag name.

5.5 Example of a production

5.5.1 The production:

 ExampleProduction ::=
 bstring
 | hstring
 | "{" IdentifierList "}"

associates the name "ExampleProduction" with the following sequences of lexical items:
a) any "bstring" (a lexical item); or
b) any "hstring" (a lexical item); or
c) any sequence of lexical items associated with "IdentifierList", preceded by a "{" and followed by a "}".

NOTE – "{" and "}" are the names of lexical items containing the single characters { and } (see 11.26).

5.5.2 In this example, "IdentifierList" would be defined by a further production, either before or after the production
defining "ExampleProduction".

5.6 Layout

Each production used in this Recommendation | International Standard is preceded and followed by an empty line.
Empty lines do not appear within productions. The production may be on a single line, or may be spread over several
lines. Layout is not significant.

5.7 Recursion

The productions in this Recommendation | International Standard are frequently recursive. In this case the productions
are to be continuously reapplied until no new sequences are generated.

NOTE – In many cases, such reapplication results in an infinite set of permitted sequences of lexical items. Some or all of the
sequences in the set may themselves contain an unbounded number of lexical items. This is not an error.

5.8 References to permitted sequences of lexical items

This Recommendation | International Standard references a permitted sequence of lexical items (part of the ASN.1
notation) by referencing the name that appears before the "::=" in a production; the name is surrounded by the
QUOTATION MARK (34) character (") to distinguish it from natural language text, unless it appears as part of a
production.

5.9 References to a lexical item

This Recommendation | International Standard references a lexical item by using the name of the lexical item; when the
name appears in natural language text, and could be confused with such text, then it is surrounded by the QUOTATION
MARK (34) character (").

5.10 Short-hand notations

In order to make productions more concise and more readable, the following short-hand notations are used in the
definition of permitted sequences of lexical items in this Recommendation | International Standard and also in ITU-T
Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4:

a) An asterisk (*) following two names, "A" and "B", denotes the "empty" lexical item (see 11.7), or one of
the permitted sequences of lexical items associated with "A", or an alternating series of one of the

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

10 ITU-T Rec. X.680 (07/2002)

sequences of lexical items associated with "A" and one of the sequences of lexical items associated with
"B", both starting and finishing with one associated with "A". Thus:

 C ::= A B *
is equivalent to:

 C ::= D | empty
 D ::= A | A B D
"D" being an auxiliary name not appearing elsewhere in the productions.
EXAMPLE – "C ::= A B *" is the shorthand notation for the following alternatives of C:

 empty
 A
 A B A
 A B A B A
 A B A B A B A
 ...

b) A plus sign (+) is similar to the asterisk in a), except that the "empty" lexical item is excluded. Thus:

 E ::= A B +
is equivalent to:

 E ::= A | A B E
EXAMPLE – "E ::= A B +" is the shorthand notation for the following alternatives of E:

 A
 A B A
 A B A B A
 A B A B A B A
 ...

c) A question mark (?) following a name denotes either the "empty" lexical item (see 11.7) or a permitted
sequence of lexical items associated with "A". Thus:

 F ::= A ?
is equivalent to:

 F ::= empty | A
NOTE – These short-hand notations take precedence over the juxtaposition of lexical items in production sequences (see 5.2.2).

5.11 Value references and the typing of values

5.11.1 The ASN.1 value assignment notation enables a name to be given to a value of a specified type. This name
can be used wherever a reference to that value is needed. Annex B describes and specifies the value mapping
mechanism that allows a value reference name for a value of one type to identify a value of a second (similar) type.
Thus, a reference to the first value can be used wherever a reference to a value in the second type is required.

5.11.2 In the body of the ASN.1 standards normal English text is used to specify legality (or otherwise) of constructs
where more than one type is involved. These legality specifications generally require that two or more types be
"compatible". For example, the type used in defining a value reference is required to be "compatible with" the
governing type when the value reference is used. The normative Annex B uses the value mapping concept to give a
precise statement about whether any given ASN.1 construct is legal or not.

6 The ASN.1 model of type extension
When decoding an extensible type, a decoder may detect:

a) the absence of expected extension additions in a sequence or set type; or

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 11

b) the presence of arbitrary unexpected extension additions above those defined (if any) in a sequence or set
type, or of an unknown alternative in a choice type, or an unknown enumeration in an enumerated type, or
of an unexpected length or value of a type whose constraint is extensible.

In formal terms, an abstract syntax defined by the extensible type X contains not only the values of type X, but also the
values of all types that are extension-related to X. Thus, the decoding process never signals an error when either of the
above situations (a or b) is detected. The action that is taken in each situation is determined by the ASN.1 specifier.

NOTE – Frequently the action will be to ignore the presence of unexpected additional extensions, and to use a default value or a
"missing" indicator for expected extension additions that are absent.

Unexpected extension additions detected by a decoder in an extensible type can later be included in a subsequent
encoding of that type (for transmission back to the sender, or to some third party), provided that the same transfer syntax
is used on the subsequent transmission.

7 Extensibility requirements on encoding rules
NOTE – These requirements apply to standardized encoding rules. They do not apply to encoding rules defined using ECN (see
ITU-T Rec. X.692 | ISO/IEC 8825-3).

7.1 All ASN.1 encoding rules shall allow the encoding of values of an extensible type X in such a way that they
can be decoded using an extensible type Y that is extension-related to X. Further, the encoding rules shall allow the
values that were decoded using Y to be re-encoded (using Y) and decoded using a third extensible type Z that is extension
related to Y (and hence X also).

NOTE – Types X, Y and Z may appear in any order in the extension series.

If a value of an extensible type X is encoded and then relayed (directly or through a relaying application using extension-
related type Z) to another application that decodes the value using extensible type Y that is extension-related to X, then
the decoder using type Y obtains an abstract value composed of:

a) an abstract value of the extension root type;
b) an abstract value of each extension addition that is present in both X and Y;

c) delimited encoding for each extension addition (if any) that is in X but not in Y.

The encodings in c) shall be capable of being included in a later encoding of a value of Y, if so required by the
application. That encoding shall be a valid encoding of a value of X.

Tutorial example: If system A is using an extensible root type (type X) that is a sequence type or a set type with an
extension addition of an optional integer type, while system B is using an extension-related type (type Y) that has two
extension additions where each is an optional integer type, then transmission by B of a value of Y which omits the
integer value of the first extension addition and includes the second must not be confused by A with the presence of the
first (only) extension addition of X that it knows about. Moreover, A must be able to re-encode the value of X with a
value present for the first integer type, followed by the second integer value received from B, if so required by the
application protocol.

7.2 All ASN.1 encoding rules shall specify the encoding and decoding of the value of an enumerated type and a
choice type in such a way that if a transmitted value is in the set of extension additions held in common by the encoder
and the decoder, then it is successfully decoded; otherwise, it shall be possible for the decoder to delimit the encoding of
it and to identify it as a value of an (unknown) extension addition.

7.3 All ASN.1 encoding rules shall specify the encoding and decoding of types with extensible constraints in such
a way that if a transmitted value is in the set of extension additions held in common by the encoder and the decoder, then
it is successfully decoded, otherwise it shall be possible for the decoder to delimit the encoding of and to identify it as a
value of an (unknown) extension addition.

In all cases, the presence of extension additions shall not affect the ability to recognize later material when a type with an
extension marker is nested inside some other type.

NOTE 1 – All variants of the Basic Encoding Rules of ASN.1 and the Packed Encoding Rules of ASN.1 satisfy all these
requirements. Encoding rules defined using ECN do not necessarily satisfy all these requirements, but may do so.
NOTE 2 – PER and BER do not identify the version number in the encoding of an extension addition. Encodings specified using
ECN may or may not provide such identification.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

12 ITU-T Rec. X.680 (07/2002)

8 Tags
8.1 A tag is specified by giving a class and a number within the class. The class is one of:

– universal;
– application;
– private;
– context-specific.

8.2 The number is a non-negative integer, specified in decimal notation.

8.3 Restrictions on tags assigned by the user of ASN.1 are specified in clause 30.
NOTE – Clause 30 includes the restriction that users of this notation are not allowed to explicitly specify universal class tags in
their ASN.1 specifications. There is no formal difference between use of tags from the other three classes. Where application
class tags are employed, a private or context-specific class tag could generally be applied instead, as a matter of user choice and
style. The presence of the three classes is largely for historical reasons, but guidance is given in E.2.12 on the way in which the
classes are usually employed.

8.4 Table 1 summarizes the assignment of tags in the universal class which are specified in this Recommendation |
International Standard.

Table 1 – Universal class tag assignments

UNIVERSAL 0 Reserved for use by the encoding rules
UNIVERSAL 1 Boolean type
UNIVERSAL 2 Integer type
UNIVERSAL 3 Bitstring type
UNIVERSAL 4 Octetstring type
UNIVERSAL 5 Null type
UNIVERSAL 6 Object identifier type
UNIVERSAL 7 Object descriptor type
UNIVERSAL 8 External type and Instance-of type
UNIVERSAL 9 Real type
UNIVERSAL 10 Enumerated type
UNIVERSAL 11 Embedded-pdv type
UNIVERSAL 12 UTF8String type
UNIVERSAL 13 Relative object identifier type
UNIVERSAL 14-15 Reserved for future editions of this Recommendation | International Standard
UNIVERSAL 16 Sequence and Sequence-of types
UNIVERSAL 17 Set and Set-of types
UNIVERSAL 18-22, 25-30 Character string types
UNIVERSAL 23-24 Time types
UNIVERSAL 31-... Reserved for addenda to this Recommendation | International Standard

8.5 Some encoding rules require a canonical order for tags. To provide uniformity, a canonical order for tags is
defined in 8.6.

8.6 The canonical order for tags is based on the outermost tag of each type and is defined as follows:
a) those elements or alternatives with universal class tags shall appear first, followed by those with

application class tags, followed by those with context-specific tags, followed by those with private class
tags;

b) within each class of tags, the elements or alternatives shall appear in ascending order of their tag numbers.

9 Use of the ASN.1 notation
9.1 The ASN.1 notation for a type definition shall be "Type" (see 16.1).

9.2 The ASN.1 notation for a value of a type shall be "Value" (see 16.7).
NOTE – It is not in general possible to interpret the value notation without knowledge of the type.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 13

9.3 The ASN.1 notation for assigning a type to a type reference name shall be either "TypeAssignment" (see 15.1),
"ValueSetTypeAssignment" (see 15.6), "ParameterizedTypeAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2),
or "ParameterizedValueSetTypeAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

9.4 The ASN.1 notation for assigning a value to a value reference name shall be either "ValueAssignment"
(see 15.2) or "ParameterizedValueAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2).

9.5 The production alternatives of the notation "Assignment" shall only be used within the notation
"ModuleDefinition" (except as specified in NOTE 2 of 12.1).

10 The ASN.1 character set
10.1 A lexical item shall consist of a sequence of the characters listed in Table 2 except as specified in 10.2
and 10.3. In Table 2, characters are identified by the names they are given in ISO/IEC 10646-1.

Table 2 – ASN.1 characters

A to Z (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z)
a to z (LATIN SMALL LETTER A to LATIN SMALL LETTER Z)
0 to 9 (DIGIT ZERO to DIGIT 9)
! (EXCLAMATION MARK)
" (QUOTATION MARK)
& (AMPERSAND)
' (APOSTROPHE)
((LEFT PARENTHESIS)
) (RIGHT PARENTHESIS)
* (ASTERISK)
, (COMMA)
- (HYPHEN-MINUS)
. (FULL STOP)
/ (SOLIDUS)
: (COLON)
; (SEMICOLON)
< (LESS-THAN SIGN)
= (EQUALS SIGN)
> (GREATER-THAN SIGN)
@ (COMMERCIAL AT)
[(LEFT SQUARE BRACKET)
] (RIGHT SQUARE BRACKET)
^ (CIRCUMFLEX ACCENT)
_ (LOW LINE)
{ (LEFT CURLY BRACKET)
| (VERTICAL LINE)
} (RIGHT CURLY BRACKET)

NOTE – Where equivalent derivative standards are developed by national standards bodies, additional characters may appear in
the following lexical items:

– typereference (see 11.2);

– identifier (see 11.3);

– valuereference (see 11.4);

– modulereference (see 11.5).
When additional characters are introduced to accommodate a language in which the distinction between upper-case and lower-
case letters is without meaning, the syntactic distinction achieved by dictating the case of the first character of certain of the above
lexical items has to be achieved in some other way. This is to allow valid ASN.1 specifications to be written in various languages.

10.2 Where the notation is used to specify the value of a character string type, all characters for the defined
character set can appear in the ASN.1 notation, surrounded by the QUOTATION MARK (34) characters (") (see 11.14).

10.3 Additional (arbitrary) graphic symbols may appear in the "comment" lexical item (see 11.6).

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

14 ITU-T Rec. X.680 (07/2002)

10.4 There shall be no significance placed on the typographical style, size, colour, intensity, or other display
characteristics.

10.5 The upper and lower-case letters shall be regarded as distinct.

10.6 ASN.1 definitions can also contain white-space characters (see 11.1.6) between lexical items.

11 ASN.1 lexical items

11.1 General rules

11.1.1 The following subclauses specify the characters in lexical items. In each case the name of the lexical item is
given, together with the definition of the character sequences which form the lexical item.

11.1.2 The lexical items specified in the subclauses of this clause 11 (except multiple-line "comment", "bstring",
"hstring" and "cstring") shall not contain white-space (see 11.6, 11.10, 11.12 and 11.14).

11.1.3 The length of a line is not restricted.

11.1.4 Lexical items may be separated by one or more occurrences of white-space (see 11.1.6) or comments (see
11.6) except when the non-spacing indicator "&" (see 5.4) is used. Within an "XMLTypedValue" production (see 15.2),
white-space may appear between lexical items, but the "comment" lexical item shall not be present.

NOTE – This is to avoid ambiguity resulting from the presence of adjacent hyphens or asterisk and solidus within an "xmlcstring"
lexical item. Such characters never indicate the start of a "comment" lexical item when they appear within an "XMLTypedValue"
production.

11.1.5 A lexical item shall be separated from a following lexical item by one or more instances of white-space or
comment if the initial character (or characters) of the following lexical item is a permitted character (or characters) for
inclusion at the end of the characters in the earlier lexical item.

11.1.6 This Recommendation | International Standard uses the terms "newline", and "white-space". In representing
white-space and newline (end of line) in machine-readable specifications, any one or more of the following characters
may be used in any combination (for each character, the character name and character code specified in The Unicode
Standard are given):

For white-space:
HORIZONTAL TABULATION (9)
LINE FEED (10)
VERTICAL TABULATION (11)
FORM FEED (12)
CARRIAGE RETURN (13)
SPACE (32)

For newline:
LINE FEED (10)
VERTICAL TABULATION (11)
FORM FEED (12)
CARRIAGE RETURN (13)

NOTE – Any character or character sequence that is a valid newline is also a valid white-space.

11.2 Type references

Name of lexical item – typereference

11.2.1 A "typereference" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial
character shall be an upper-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately
followed by another hyphen.

NOTE – The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

11.2.2 A "typereference" shall not be one of the reserved character sequences listed in 11.27.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 15

11.3 Identifiers

Name of lexical item – identifier

An "identifier" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial character
shall be a lower-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately followed by
another hyphen.

NOTE – The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

11.4 Value references

Name of lexical item – valuereference

A "valuereference" shall consist of the sequence of characters specified for an "identifier" in 11.3. In analysing an
instance of use of this notation, a "valuereference" is distinguished from an "identifier" by the context in which it
appears.

11.5 Module references

Name of lexical item – modulereference

A "modulereference" shall consist of the sequence of characters specified for a "typereference" in 11.2. In analysing an
instance of use of this notation, a "modulereference" is distinguished from a "typereference" by the context in which it
appears.

11.6 Comments

Name of lexical item – comment

11.6.1 A "comment" is not referenced in the definition of the ASN.1 notation. It may, however, appear at any time
between other lexical items, and has no syntactic significance.

NOTE – Nonetheless, in the context of a Recommendation | International Standard that uses ASN.1, an ASN.1 comment may
contain normative text related to the application semantics, or constraints on the syntax.

11.6.2 The lexical item "comment" can have two forms:
a) One-line comments which begin with "--" as defined in 11.6.3;

b) Multiple-line comments which begin with "/*" as defined in 11.6.4.

11.6.3 Whenever a "comment" begins with a pair of adjacent hyphens, it shall end with the next pair of adjacent
hyphens or at the end of the line, whichever occurs first. A comment shall not contain a pair of adjacent hyphens other
than the pair which starts it and the pair, if any, which ends it. If a comment beginning with "--" includes the adjacent
characters "/*" or "*/", these have no special meaning and are considered part of the comment. The comment may
include graphic symbols which are not in the character set specified in 10.1 (see 10.3).

11.6.4 Whenever a "comment" begins with "/*", it shall end with a corresponding "*/", whether this "*/" is on the
same line or not. If another "/*" is found before a "*/", then the comment terminates when a matching "*/" has been
found for each "/*". If a comment beginning with "/*" includes two adjacent hyphens "--", these hyphens have no
special meaning and are considered part of the comment. The comment may include graphic symbols which are not in
the character set specified in 10.1 (see 10.3).

NOTE – This allows the user to comment parts of an ASN.1 module that already contain comments (whether they begin with "--"
or "/*") by simply inserting "/*" at the beginning of the part to be commented and "*/" at its end, provided there are no character
string values within the part to be commented out that contain "/*" or "*/".

11.7 Empty lexical item

Name of lexical item – empty

The "empty" item contains no characters. It is used in the notation of clause 5 when alternative sets of production
sequences are specified, to indicate that absence of all alternatives is possible.

11.8 Numbers

Name of lexical item – number

A "number" shall consist of one or more digits. The first digit shall not be zero unless the "number" is a single digit.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

16 ITU-T Rec. X.680 (07/2002)

NOTE – The "number" lexical item is always mapped to an integer value by interpreting it as decimal notation.

11.9 Real numbers

Name of lexical item – realnumber

A "realnumber" shall consist of an integer part that is a series of one or more digits, and optionally a decimal point (.).
The decimal point can optionally be followed by a fractional part which is one or more digits. The integer part, decimal
point or fractional part (whichever is last present) can optionally be followed by an e or E and an optionally-signed
exponent which is one or more digits. The leading digit of the exponent shall not be zero unless the exponent is a single
digit.

11.10 Binary strings

Name of lexical item – bstring

A "bstring" shall consist of an arbitrary number (possibly zero) of the characters:

 0 1

possibly intermixed with white-space, preceded by an APOSTROPHE (39) character (') and followed by the pair of
characters:

 'B

EXAMPLE – '01101100'B

Occurrences of white-space within a binary string lexical item have no significance.

11.11 XML binary string item

Name of item – xmlbstring

An "xmlbstring" shall consist of an arbitrary number (possibly zero) of zeros, ones or white-space. Any white-space
characters that appear within a binary string item have no significance.

EXAMPLE – 01101100

This sequence of characters is also a valid instance of "xmlhstring" and "xmlcstring". In analysing an instance of use of
this notation, an "xmlbstring" is distinguished from an "xmlhstring" or "xmlcstring" by the context in which it appears.

11.12 Hexadecimal strings

Name of lexical item – hstring

11.12.1 An "hstring" shall consist of an arbitrary number (possibly zero) of the characters:
A B C D E F 0 1 2 3 4 5 6 7 8 9

possibly intermixed with white-space, preceded by an APOSTROPHE (39) character (') and followed by the pair of
characters:

 'H

EXAMPLE – 'AB0196'H

Occurrences of white-space within a hexadecimal string lexical item have no significance.

11.12.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

11.13 XML hexadecimal string item

Name of item – xmlhstring

11.13.1 An "xmlhstring" shall consist of an arbitrary number (possibly zero) of the characters:
0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f

or white-space. Any white-space characters that appear within a hexadecimal string item have no significance.
EXAMPLE – Ab0196

11.13.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 17

11.13.3 Some instances of "xmlhstring" are also valid instances of "xmlbstring" and "xmlcstring". In analysing an
instance of use of this notation, an "xmlhstring" is distinguished from an "xmlbstring" or "xmlcstring" by the context in
which it appears.

11.14 Character strings

Name of lexical item – cstring

11.14.1 A "cstring" shall consist of an arbitrary number (possibly zero) of graphic symbols and spacing characters
from the character set referenced by the character string type, preceded and followed by a QUOTATION MARK (34)
character ("). If the character set includes a QUOTATION MARK (34) character, this character (if present in the
character string being represented by the "cstring") shall be represented in the "cstring" by a pair of QUOTATION
MARK (34) characters on the same line with no intervening spacing character. The "cstring" may span more than one
line of text, in which case the character string being represented shall not include spacing characters in the position prior
to or following the end of line in the "cstring". Any spacing characters that appear immediately prior to or following the
end of line in the "cstring" have no significance.

NOTE 1 – The "cstring" can only be used to unambiguously represent (on a printed page) character strings for which every
character in the string being represented has either been assigned a graphic symbol, or is a spacing character. Where a character
string containing control characters needs to be denoted in a printed representation, alternative ASN.1 syntax is available (see
clause 35).
NOTE 2 – The character string represented by a "cstring" consists of the characters associated with the graphic symbols and
spacing characters. Spacing characters immediately preceding or following any end of line in the "cstring" are not part of the
character string being represented (they are ignored). Where spacing characters are included in the "cstring", or where the graphic
symbols in the character repertoire are not unambiguous in a printed representation, the character string denoted by "cstring" may
be ambiguous in that printed representation.

EXAMPLE 1 – " "

EXAMPLE 2 – The "cstring":

 "ABCDE FGH

 IJK""XYZ"

can be used to represent a character string value of type IA5String. The value represented consists of the characters:

 ABCDE FGHIJK"XYZ

where the precise number of spaces intended between E and F can be ambiguous in a printed representation if a
proportional spacing font (such as is used above) is used in the printed specification, or if the character repertoire
contains multiple spacing characters of different widths.

11.14.2 When a character is a combining character (see Annex F) it shall be denoted in a printed representation of the
"cstring" as an individual character. It shall not be overprinted with the characters with which it combines. (This ensures
that the order of combining characters in the string value is unambiguously defined in the printed version.)

EXAMPLE – Lower case "e" and the accent combining character are two characters in ISO/IEC 10646-1, and thus a
corresponding "cstring" should be printed as two characters and not as the single character é.

11.15 XML character string item

Name of item – xmlcstring

11.15.1 An "xmlcstring" shall consist of an arbitrary number (possibly zero) of the following ISO/IEC 10646-1
characters:

a) HORIZONTAL TABULATION (9);
b) LINE FEED (10);
c) CARRIAGE RETURN (13);
d) any character whose ISO/IEC 10646-1 character code is in the range 32 (20 hex) to 55295 (D7FF hex),

inclusive;
e) any character whose ISO/IEC 10646-1 character code is in the range 57344 (E000 hex) to 65533 (FFFD

hex), inclusive;
f) any character whose ISO/IEC 10646-1 character code is in the range 65536 (10000 hex) to 1114111

(10FFFF hex), inclusive.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

18 ITU-T Rec. X.680 (07/2002)

NOTE – Additional restrictions are imposed by the requirement that the "xmlcstring", in an instance of use, shall contain only
characters permitted by the governing character string type.

11.15.2 The characters "&" (AMPERSAND), "<" (LESS-THAN SIGN) or ">" (GREATER-THAN SIGN) shall
appear only as part of one of the character sequences specified in 11.15.4 or 11.15.5.

11.15.3 An "xmlcstring" is used to represent the value of a restricted character string (see 37.9), and can be used to
represent all combinations of ISO/IEC 10646-1 characters, either directly, or by using the escape sequences specified
below.

NOTE 1 – An "xmlcstring" cannot be used to represent characters that are not present in ISO/IEC 10646-1, such as some of the
control characters which can appear in GeneralString, nor can it represent characters which might be defined with ISO/IEC
10646-1 character codes above 10FFFF hex.
NOTE 2 – The characters LINE FEED (10) and CARRIAGE RETURN (13) and the pair CARRIAGE RETURN + LINE FEED
are not distinguished when processed by conforming XML processors.

11.15.4 If the characters "&" (AMPERSAND), "<" (LESS-THAN SIGN) or ">" (GREATER-THAN SIGN) are
present in an abstract character string value being represented by "xmlcstring" (see 37.9), they shall be represented in the
"xmlcstring" by either

a) the escape sequences specified in 11.15.8; or

b) the escape sequences "&", "<" or ">" respectively. These escape sequences shall not contain
white-space (see 11.1.6).

11.15.5 If a character with an ISO/IEC 10646-1 character code in column 1 of Table 3 is present in the abstract
character string value being represented by the "xmlcstring" (see 37.9), it shall be represented by the character sequence
in column 2 of Table 3. These character sequences shall not contain white-space (see 11.1.6).

NOTE – This does not include characters with decimal character codes 9, 10, and 13, and all the letters in these character
sequences are lowercase.

Table 3 – Escape sequences for control characters in an "xmlcstring"

ISO/IEC 10646-1
character code

"xmlcstring"
representation

ISO/IEC 10646-1
character code

"xmlcstring"
representation

0 (0 hex) <nul/> 17 (11 hex) <dc1/>
1 (1 hex) <soh/> 18 (12 hex) <dc2/>
2 (2 hex) <stx/> 19 (13 hex) <dc3/>
3 (3 hex) <etx/> 20 (14 hex) <dc4/>
4 (4 hex) <eot/> 21 (15 hex) <nak/>
5 (5 hex) <enq/> 22 (16 hex) <syn/>
6 (6 hex) <ack/> 23 (17 hex) <etb/>
7 (7 hex) <bel/> 24 (18 hex) <can/>
8 (8 hex) <bs/> 25 (19 hex)
11 (B hex) <vt/> 26 (1A hex) <sub/>
12 (C hex) <ff/> 27 (1B hex) <esc/>
14 (E hex) <so/> 28 (1C hex) <is4/>
15 (F hex) <si/> 29 (1D hex) <is3/>
16 (10 hex) <dle/> 30 (1E hex) <is2/>
 31 (1F hex) <is1/>

11.15.6 When "xmlcstring" is used within an "XMLTypedValue" (see 15.2) forming part of an XER encoding (see
ITU-T Rec. X.693 | ISO/IEC 8825-4), it may contain adjacent HYPHEN-MINUS (45) characters. When used within an
instance of XML value notation in an ASN.1 module, it shall not contain two adjacent HYPHEN-MINUS characters. If
this character sequence is present in an abstract character string value being represented by the "xmlcstring" in an ASN.1
module, then at least one of the adjacent HYPHEN-MINUS characters shall be represented by the escape sequences
specified in 11.15.8.

11.15.7 When "xmlcstring" is used within an "XMLTypedValue" forming part of an XER encoding (see ITU-T Rec.
X.693 | ISO/IEC 8825-4), it may contain adjacent ASTERISK (42) and SOLIDUS (47) characters in any order. When
used within an instance of XML value notation in an ASN.1 module, it shall not contain adjacent ASTERISK and
SOLIDUS characters (in any order). If this character sequence is present in an abstract character string value being
represented by the "xmlcstring", then at least one of the adjacent ASTERISK and SOLIDUS characters shall be
represented by the escape sequences specified in 11.15.8.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 19

11.15.8 Any character that can appear directly in an "xmlcstring" can also be represented in the "xmlcstring" by an
escape sequence of the form "&#n;" (where n is the ISO/IEC 10646-1 character code in decimal notation) or of the form
"&#xn;" (where n is the ISO/IEC 10646-1 character code in hexadecimal notation). These escape sequences shall not
contain white-space (see 11.1.6).

NOTE 1 – Leading zeros are permitted in the decimal and hexadecimal values of "n" and both lowercase and uppercase letters
"A"-"F" can be used in the hexadecimal value.
NOTE 2 – If the escape sequences "&#n" and "&#xn" are used for ISO/IEC 10646-1 characters which are not in the Basic
Multilingual Plane (BMP), the value of "n" will be greater than 65535 (FFFF hex).

EXAMPLE – The "xmlcstring":

 ABCDé FGHîJK&XYZ

can be used to represent a character string value of type UTF8String. The value represented consists of the characters:

 ABCDé FGHîJK&XYZ

where the precise space characters between é and F can be ambiguous in print media if a proportional spacing font (such
as above) is used in the specification.

11.16 Assignment lexical item

Name of lexical item – "::="

This lexical item shall consist of the sequence of characters:
::=

NOTE – This sequence does not contain white-space (see 11.1.2).

11.17 Range separator

Name of lexical item – ".."

This lexical item shall consist of the sequence of characters:
..

NOTE – This sequence does not contain white-space (see 11.1.2).

11.18 Ellipsis

Name of lexical item – "..."

This lexical item shall consist of the sequence of characters:
...

NOTE – This sequence does not contain white-space (see 11.1.2).

11.19 Left version brackets

Name of lexical item – "[["

This lexical item shall consist of the sequence of characters:
[[

NOTE – This sequence does not contain white-space (see 11.1.2).

11.20 Right version brackets

Name of lexical item – "]]"

This lexical item shall consist of the sequence of characters:
]]

NOTE – This sequence does not contain white-space (see 11.1.2).

11.21 XML end tag start item

Name of item – "</"

This item shall consist of the sequence of characters:

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

20 ITU-T Rec. X.680 (07/2002)

</
NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.22 XML single tag end item

Name of item – "/>"

This item shall consist of the sequence of characters:
/>

NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.23 XML boolean true item

Name of item – "true"

11.23.1 This item shall consist of the sequence of characters:
true

11.23.2 In analysing an instance of use of this notation, a "true" is distinguished from a "valuereference" or an
"identifier" by the context in which it appears.

NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.24 XML boolean false item

Name of item – "false"

11.24.1 This item shall consist of the sequence of characters:
false

11.24.2 In analyzing an instance of use of this notation, a "false" is distinguished from a "valuereference" or an
"identifier" by the context in which it appears.

NOTE – This sequence does not contain any white-space characters (see 11.1.2).

11.25 XML tag names for ASN.1 types

Name of item – xmlasn1typename

11.25.1 This Recommendation | International Standard uses the item "xmlasn1typename" when ASN.1 built-in types are
to be used as XML tag names.

11.25.2 Table 4 lists the character sequences that are to form the "xmlasn1typename" for each of the ASN.1 built-in
types listed in 16.2. The ASN.1 built-in type is identified in column 1 of Table 4 by its production name. The character
sequence which shall be used for "xmlasn1typename" is identified in column 2 of Table 4, with no white-space before or
after these character sequences.

11.25.3 The "xmlasn1typename" for the "UsefulType"s (see 41.1) shall be the "typereference" used in their definition.

11.25.4 The character sequence in the "xmlasn1typename" item for the "ObjectClassFieldType" and for the
"InstanceOfType" are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1 and Annex C.

11.25.5 If the ASN.1 built-in type is a "TaggedType" then the type which determines the "xmlasn1typename" shall be
"Type" in the "TaggedType" (see 30.1). If this is itself a "TaggedType", then this subclause 11.25.5 shall be recursively
applied.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 21

Table 4 – Characters in xmlasn1typename

ASN.1 type production name Characters in xmlasn1typename

BitStringType BIT_STRING
BooleanType BOOLEAN
ChoiceType CHOICE
EmbeddedPDVType SEQUENCE
EnumeratedType ENUMERATED
ExternalType SEQUENCE
InstanceOfType SEQUENCE
IntegerType INTEGER
NullType NULL
ObjectClassFieldType See ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.10 and 14.11
ObjectIdentifierType OBJECT_IDENTIFIER
OctetStringType OCTET_STRING
RealType REAL
RelativeOIDType RELATIVE_OID
RestrictedCharacterStringType The type name (e.g. IA5String)
SequenceType SEQUENCE
SequenceOfType SEQUENCE_OF
SetType SET
SetOfType SET_OF
TaggedType See 11.25.5
UnrestrictedCharacterStringType SEQUENCE

11.26 Single character lexical items

Names of lexical items –
"{"
"}"
"<"
">"
","
"."
"("
")"
"["
"]"
"-" (HYPEN-MINUS)
":"
"="
""" (QUOTATION MARK)
"'" (APOSTROPHE)
" " (SPACE)
";"
"@"
"|"
"!"
"^"

A lexical item with any of the names listed above shall consist of the single character without the quotation marks.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

22 ITU-T Rec. X.680 (07/2002)

11.27 Reserved words

Names of reserved words –

ABSENT ENCODED INTEGER RELATIVE-OID

ABSTRACT-SYNTAX END INTERSECTION SEQUENCE

ALL ENUMERATED ISO646String SET

APPLICATION EXCEPT MAX SIZE

AUTOMATIC EXPLICIT MIN STRING

BEGIN EXPORTS MINUS-INFINITY SYNTAX

BIT EXTENSIBILITY NULL T61String

BMPString EXTERNAL NumericString TAGS

BOOLEAN FALSE OBJECT TeletexString

BY FROM ObjectDescriptor TRUE

CHARACTER GeneralizedTime OCTET TYPE-IDENTIFIER

CHOICE GeneralString OF UNION

CLASS GraphicString OPTIONAL UNIQUE

COMPONENT IA5String PATTERN UNIVERSAL

COMPONENTS IDENTIFIER PDV UniversalString

CONSTRAINED IMPLICIT PLUS-INFINITY UTCTime

CONTAINING IMPLIED PRESENT UTF8String

DEFAULT IMPORTS PrintableString VideotexString

DEFINITIONS INCLUDES PRIVATE VisibleString

EMBEDDED INSTANCE REAL WITH

Lexical items with the above names shall consist of the sequence of characters in the name, and are reserved character
sequences.

NOTE 1 – White-space does not occur in these sequences.
NOTE 2 – The keywords CLASS, CONSTRAINED, CONTAINING, ENCODED, INSTANCE, SYNTAX and UNIQUE are not used in this
Recommendation | International Standard; they are used in ITU-T Rec. X.681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4.

12 Module definition
12.1 A "ModuleDefinition" is specified by the following productions:

 ModuleDefinition ::=
 ModuleIdentifier
 DEFINITIONS

 TagDefault
 ExtensionDefault
 "::="
 BEGIN

 ModuleBody
 END

 ModuleIdentifier ::=
 modulereference
 DefinitiveIdentifier

 DefinitiveIdentifier ::=
 "{" DefinitiveObjIdComponentList "}"
 | empty

 DefinitiveObjIdComponentList ::=
 DefinitiveObjIdComponent
 | DefinitiveObjIdComponent DefinitiveObjIdComponentList

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 23

 DefinitiveObjIdComponent ::=
 NameForm
 | DefinitiveNumberForm
 | DefinitiveNameAndNumberForm

 DefinitiveNumberForm ::= number

 DefinitiveNameAndNumberForm ::= identifier "(" DefinitiveNumberForm ")"

 TagDefault ::=
 EXPLICIT TAGS
 | IMPLICIT TAGS
 | AUTOMATIC TAGS
 | empty

 ExtensionDefault ::=
 EXTENSIBILITY IMPLIED
 | empty

 ModuleBody ::=
 Exports Imports AssignmentList
 | empty

 Exports ::=
 EXPORTS SymbolsExported ";"
 | EXPORTS ALL ";"
 | empty

 SymbolsExported ::=
 SymbolList
 | empty

 Imports ::=
 IMPORTS SymbolsImported ";"
 | empty

 SymbolsImported ::=
 SymbolsFromModuleList
 | empty

 SymbolsFromModuleList ::=
 SymbolsFromModule
 | SymbolsFromModuleList SymbolsFromModule

 SymbolsFromModule ::=
 SymbolList FROM GlobalModuleReference

 GlobalModuleReference ::=
 modulereference AssignedIdentifier

 AssignedIdentifier ::=
 ObjectIdentifierValue
 | DefinedValue
 | empty

 SymbolList ::=
 Symbol
 | SymbolList "," Symbol

 Symbol ::=
 Reference
 | ParameterizedReference

 Reference ::=
 typereference
 | valuereference
 | objectclassreference
 | objectreference
 | objectsetreference

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

24 ITU-T Rec. X.680 (07/2002)

 AssignmentList ::=
 Assignment
 | AssignmentList Assignment

 Assignment ::=
 TypeAssignment
 | ValueAssignment
 | XMLValueAssignment
 | ValueSetTypeAssignment
 | ObjectClassAssignment
 | ObjectAssignment
 | ObjectSetAssignment
 | ParameterizedAssignment

NOTE 1 – The use of a "ParameterizedReference" in the "Exports" and "Imports" lists is specified in ITU-T Rec. X.683 |
ISO/IEC 8824-4.
NOTE 2 – For examples (and for the definition in this Recommendation | International Standard of types with universal class
tags), the "ModuleBody" can be used outside of a "ModuleDefinition".
NOTE 3 – "TypeAssignment", "ValueAssignment", "XMLValueAssignment" and "ValueSetTypeAssignment" productions are
specified in clause 15.
NOTE 4 – The value of "TagDefault" for the module definition affects only those types defined explicitly in the module. It does
not affect the interpretation of imported types.
NOTE 5 – The character semicolon does not appear in the assignment list specification or any of its subordinate productions, and
is reserved for use by ASN.1 tool developers.

12.2 The "TagDefault" is taken as EXPLICIT TAGS if it is "empty".
NOTE – Clause 30 gives the meaning of EXPLICIT TAGS, IMPLICIT TAGS, and AUTOMATIC TAGS.

12.3 When the AUTOMATIC TAGS alternative of "TagDefault" is selected, automatic tagging is said to be selected
for the module, otherwise it is said to be not selected. Automatic tagging is a syntactical transformation which is applied
(with additional conditions) to the "ComponentTypeLists" and "AlternativeTypeLists" productions occurring within the
definition of the module. This transformation is formally specified by 24.7 to 24.9, 26.3 and 28.2 to 28.5 regarding the
notations for sequence types, set types and choice types, respectively.

12.4 The EXTENSIBILITY IMPLIED option is equivalent to the textual insertion of an extension marker ("...") in
the definition of each type in the module for which it is permitted. The location of the implied extension marker is the
last position in the type where an explicitly specified extension marker is allowed. The absence of EXTENSIBILITY
IMPLIED means that extensibility is only provided for those types within the module where an extension marker is
explicitly present.

NOTE – EXTENSIBILITY IMPLIED affects only types. It has no effect on object sets and subtype constraints.

12.5 The "modulereference" appearing in the "ModuleIdentifier" production is called the module name.
NOTE – The possibility of defining a single ASN.1 module by the use of several occurrences of "ModuleBody" assigned the same
"modulereference" was (arguably) permitted in earlier specifications. It is not permitted by this Recommendation | International
Standard.

12.6 Module names shall be used only once (except as specified in 12.9) within the sphere of interest of the
definition of the module.

12.7 If the "DefinitiveIdentifier" is not empty, the denoted object identifier value unambiguously and uniquely
identifies the module being defined. No defined value may be used in defining the object identifier value.

NOTE – The question of what changes to a module require a new "DefinitiveIdentifier" is not addressed in this Recommendation |
International Standard.

12.8 If the "AssignedIdentifier" is not empty, the "ObjectIdentifierValue" and the "DefinedValue" alternatives
unambiguously and uniquely identify the module from which reference names are being imported. When the
"DefinedValue" alternative of "AssignedIdentifier" is used, it shall be a value of type object identifier. Each
"valuereference" which textually appears within an "AssignedIdentifier" shall satisfy one of the following rules:

a) It is defined in the "AssignmentList" of the module being defined, and all "valuereference"s which
textually appear on the right side of the assignment statement also satisfy this rule (rule "a") or the next
rule (rule "b").

b) It appears as a "Symbol" in a "SymbolsFromModule" whose "AssignedIdentifier" does not textually
contain any "valuereference"s.

NOTE – It is recommended that an object identifier be assigned so that others can unambiguously refer to the module.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 25

12.9 The "GlobalModuleReference" in a "SymbolsFromModule" shall appear in the "ModuleDefinition" of another
module, except that if it includes a non-empty "DefinitiveIdentifier", the "modulereference" may differ in the two cases.

NOTE – A different "modulereference" from that used in the other module should only be used when symbols are to be imported
from two modules with the same name (the modules being named in disregard of 12.6). The use of alternative distinct names
makes these names available for use in the body of the module (see 12.15).

12.10 When both a "modulereference" and a non-empty "AssignedIdentifier" are used in referencing a module, the
latter shall be considered definitive.

12.11 When the referenced module has a non-empty "DefinitiveIdentifier", the "GlobalModuleReference"
referencing that module shall not have an empty "AssignedIdentifier".

12.12 When the "SymbolsExported" alternative of "Exports" is selected:
a) each "Symbol" in "SymbolsExported" shall satisfy one and only one of the following conditions:

i) is only defined in the module being constructed; or
ii) appears exactly once in the "SymbolsImported" alternative of "Imports";

b) every "Symbol" to which reference from outside the module is appropriate shall be included in the
"SymbolsExported" and only these "Symbol"s may be referenced from outside the module (subject to the
relaxation specified in 12.13); and

c) if there are no such "Symbol"s, then the empty alternative of "SymbolsExported" (not of "Exports") shall
be selected.

12.13 When either the "empty" alternative or the EXPORTS ALL alternative of "Exports" is selected, every "Symbol"
defined in the module or imported by the module may be referenced from other modules subject to the restriction
specified in 12.12 a).

NOTE – The "empty" alternative of "Exports" is included for backwards compatibility.

12.14 Identifiers that appear in a "NamedNumberList", "Enumeration" or "NamedBitList" are implicitly exported if
the typereference that defines them is exported or appears as a component (or subcomponent) within an exported type.

12.15 When the "SymbolsImported" alternative of "Imports" is selected:
a) Each "Symbol" in "SymbolsFromModule" shall either be defined in the module body, or be present in the

"Imports" clause, of the module denoted by the "GlobalModuleReference" in "SymbolsFromModule".
Importing a "Symbol" present in the "Imports" clause of the referenced module is only allowed if there is
only one occurrence of the "Symbol" in that clause, and the "Symbol" is not defined in the referenced
module.

NOTE 1 – This does not prohibit the same symbol name defined in two different modules from being imported
into another module. However, if the same "Symbol" name appears more than once in the "Imports" clause of
module A, that "Symbol" name cannot be exported from A for import to another module B.

b) If the "SymbolsExported" alternative of "Exports" is selected in the definition of the module denoted by
the "GlobalModuleReference" in "SymbolsFromModule" the "Symbol" shall appear in its
"SymbolsExported".

c) Only those "Symbol"s that appear amongst the "SymbolList" of a "SymbolsFromModule" may appear as
the symbol in any "External<X>Reference" which has the "modulereference" denoted by the
"GlobalModuleReference" of that "SymbolsFromModule" (where <X> is "Value", "Type", "Object",
"Objectclass", or "Objectset").

d) If there are no such "Symbol"s, then the "empty" alternative of "SymbolsImported" shall be selected.
NOTE 2 – An effect of c) and d) is that the statement IMPORTS; implies that the module cannot contain an
"External<X>Reference".

e) All the "SymbolsFromModule" in the "SymbolsFromModuleList" shall include occurrences of
"GlobalModuleReference" such that:
i) the "modulereference" in them are all different from each other and from the "modulereference"

associated with the referencing module; and
ii) the "AssignedIdentifier", when non-empty, denotes object identifier values which are all different

from each other and from the object identifier value (if any) associated with the referencing module.

12.16 When the "empty" alternative of "Imports" is selected, the module may still reference "Symbols" defined in
other modules by means of an "External<X>Reference".

NOTE – The "empty" alternative of "Imports" is included for backwards compatibility.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

26 ITU-T Rec. X.680 (07/2002)

12.17 Identifiers that appear in a "NamedNumberList", "Enumeration" or "NamedBitList" are implicitly imported if
the typereference that defines them is imported or appears as a component (or subcomponent) within an imported type.

12.18 A "Symbol" in a "SymbolsFromModule" may appear in "ModuleBody" as a "Reference". The
meaning associated with the "Symbol" is that which it has in the module denoted by the corresponding
"GlobalModuleReference".

12.19 Where the "Symbol" also appears in an "AssignmentList" (deprecated), or appears in one or more other
instances of "SymbolsFromModule", it shall only be used in an "External<X>Reference". Where it does not so appear, it
shall be used directly as a "Reference".

12.20 The various alternatives for "Assignment" are defined in the following clauses in this Recommendation |
International Standard, except as noted otherwise:

Assignment alternative Defining subclause

"TypeAssignment" 15.1
"ValueAssignment" 15.2
"XMLValueAssignment" 15.2
"ValueSetTypeAssignment" 15.6
"ObjectClassAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.1
"ObjectAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.1
"ObjectSetAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.1
"ParameterizedAssignment" ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.1

The first symbol of every "Assignment" is one of the alternatives of "Reference", denoting the reference name being
defined. In no two assignments within an "AssignmentList" shall the reference names be the same.

13 Referencing type and value definitions
13.1 The defined type and value productions:

 DefinedType ::=
 ExternalTypeReference
 | Typereference
 | ParameterizedType
 | ParameterizedValueSetType

 DefinedValue ::=
 ExternalValueReference
 | Valuereference
 | ParameterizedValue

specify the sequences which shall be used to reference type and value definitions. The type identified by a
"ParameterizedType" and "ParameterizedValueSetType", and the value identified by a "ParameterizedValue" are
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4.

13.2 The "NonParameterizedTypeName" production:

 NonParameterizedTypeName ::=
 ExternalTypeReference
 | typereference
 | xmlasn1typename

is used when an XML tag name is needed to represent an ASN.1 type.

13.3 The third alternative shall not be used as the "NonParameterizedTypeName" in the "XMLTypedValue" of
"XMLValueAssignment" (see 15.2) or of "XMLOpenTypeFieldVal" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.6)
when the XML value notation is used in an ASN.1 module if the "xmlasn1typename" is "CHOICE", "ENUMERATED",
"SEQUENCE", "SEQUENCE_OF", "SET" or "SET_OF".

NOTE – This restriction is imposed in XML value notation used in an ASN.1 module because these "xmlasn1typename"s do not
define an ASN.1 type. The restriction is not present for use of this notation in encoding rules (such as XER, see ITU-T
Rec. X.693 | ISO/IEC 8825-4) because XML tags formed from "xmlasn1typename"s are not used to determine the types that are
being encoded.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 27

13.4 Except as specified in 12.18, the "typereference", "valuereference", "ParameterizedType",
"ParameterizedValueSetType" or "ParameterizedValue" alternatives shall not be used unless the reference is within the
"ModuleBody" in which a type or value is assigned (see 15.1 and 15.2) to the "typereference" or "valuereference".

13.5 The "ExternalTypeReference" and "ExternalValueReference" shall not be used unless the corresponding
"typereference" or "valuereference":

a) has been assigned a type or value respectively (see 15.1 and 15.2); or
b) are present in the "Imports" clause,

within the "ModuleBody" used to define the corresponding "modulereference". Referencing a name in the "Imports"
clause of another module shall only be allowed if there is no more than one occurrence of the "Symbol" in that clause.

NOTE – This does not prohibit the same "Symbol" defined in two different modules from being imported into another module.
However, if the same "Symbol" appears more than once in the IMPORTS clause of a module A, then that "Symbol" cannot be
referenced using module A in an external reference.

13.6 An external reference shall be used in a module only to refer to a reference name which is defined in a
different module, and is specified by the following productions:

 ExternalTypeReference ::=
 modulereference
 "."
 typereference

 ExternalValueReference ::=
 modulereference
 "."
 valuereference

NOTE – Additional external reference productions ("ExternalClassReference", "ExternalObjectReference" and
"ExternalObjectSetReference") are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2.

13.7 When the referencing module is defined using the "SymbolsImported" alternative of "Imports", the
"modulereference" in the external reference shall appear in the "GlobalModuleReference" of exactly one of the
"SymbolsFromModule" in the "SymbolsImported". When the referencing module is defined using the "empty"
alternative of "Imports", the "modulereference" in the external reference shall appear in the "ModuleDefinition" of the
module (different from the referencing module) where the "Reference" is defined.

13.8 Where a "DefinedType" is used as part of notation governed by a "Type" (for example, in a
"SubtypeConstraint") then the "DefinedType" shall be compatible with the governing "Type" as specified in clause
B.6.2.

13.9 Every occurrence within an ASN.1 specification of a "DefinedValue" is governed by a "Type", and that
"DefinedValue" shall reference a value of a type that is compatible with the governing "Type" as specified in
clause B.6.2.

14 Notation to support references to ASN.1 components
14.1 There is a requirement for formal reference to components of ASN.1 types, values, etc. for many purposes.
One such instance is the need to write text to identify a specific type within some ASN.1 module. This clause defines a
notation which can be used to provide such references.

14.2 The notation enables any component of a set or sequence type (which is either mandatorily or optionally
present in the type) to be identified.

14.3 Any part of any ASN.1 type definition can be referenced by use of the "AbsoluteReference" syntactic
construct:

 AbsoluteReference ::= "@" ModuleIdentifier
 "."
 ItemSpec

 ItemSpec ::=
 typereference
 | ItemId "." ComponentId

 ItemId ::= ItemSpec

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

28 ITU-T Rec. X.680 (07/2002)

 ComponentId ::=
 identifier
 | number
 | "*"

NOTE – The AbsoluteReference production is not used elsewhere in this Recommendation | International Standard. It is provided
for the purposes stated in 14.1.

14.4 The "ModuleIdentifier" identifies an ASN.1 module (see 12.1).

14.5 When the first altenative of "DefinitiveIdentifier" is used as part of the "ModuleIdentifier", the
"DefinitiveIdentifier" unambiguously and uniquely identifies the module from which a name is being referenced.

14.6 The "typereference" references any ASN.1 type defined in the module identified by "ModuleIdentifier".

14.7 The "ComponentId" in each "ItemSpec" identifies a component of the type which has been identified by the
"ItemId". It shall be the last "ComponentId" if the component it identifies is not a set, sequence, set-of, sequence-of, or
choice type.

14.8 The "identifier" form of "ComponentId" can be used if the parent "ItemId" is a set or sequence type, and is
required to be one of the "identifier"s of the "NamedType" in the "ComponentTypeLists" of that set or sequence. It can
also be used if the "ItemId" identifies a choice type, and is then required to be one of the "identifier"s of a "NamedType"
in the "AlternativeTypeLists" of that choice type. It cannot be used in any other circumstance.

14.9 The number form of "ComponentId" can be used only if the "ItemId" is a sequence-of or set-of type. The value
of the number identifies the instance of the type in the sequence-of or set-of, with the value "1" identifying the first
instance of the type. The value zero identifies a conceptual integer type component (not explicitly present in transfer)
that contains a count of the number of instances of the type in the sequence-of or set-of that are present in the value of
the enclosing type.

14.10 The "*" form of "ComponentId" can be used only if the "ItemId" is a sequence-of or set-of. Any semantics
associated with the use of the "*" form of "ComponentId" apply to all components of the sequence-of and set-of.

NOTE – In the following example:

 M DEFINITIONS ::= BEGIN
 T ::= SEQUENCE {
 a BOOLEAN,
 b SET OF INTEGER
 }
END

the components of "T" could be referenced by text outside an ASN.1 module (or in a comment), such as:
 -- if (@M.T.b.0 is odd) then:
 -- (@M.T.b.* shall be an odd integer)

which is used to state that if the number of components in b is odd, all components of b must be odd.

15 Assigning types and values
15.1 A "typereference" shall be assigned a type by the notation specified by the "TypeAssignment" production:

 TypeAssignment ::=
 typereference
 "::="
 Type

The "typereference" shall not be an ASN.1 reserved word (see 11.27).

15.2 A "valuereference" shall be assigned a value by the notation specified by either the "ValueAssignment" or
"XMLValueAssignment" productions:

 ValueAssignment ::=
 valuereference
 Type
 "::="
 Value

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 29

 XMLValueAssignment ::=
 valuereference
 "::="
 XMLTypedValue

 XMLTypedValue ::=
 "<" & NonParameterizedTypeName ">"
 XMLValue
 "</" & NonParameterizedTypeName ">"
 | "<" & NonParameterizedTypeName "/>"

The value being assigned to the "valuereference" in the "ValueAssignment" is "Value", and is governed by "Type" and
shall be a notation for a value of the type defined by "Type" (as specified in 15.3). The value being assigned to the
"valuereference" in the "XMLValueAssignment" is "XMLValue" (see 16.7), and shall be a notation for a value of the
type defined by "NonParameterizedTypeName" (as specified in 15.4). If this is the "xmlasn1typename" item, then it
identifies the ASN.1 built-in type in the corresponding row of Table 4 (see also 13.3).

15.3 "Value" is a notation for a value of a type as specified in 16.7.

15.4 "XMLValue" is a notation for a value of a type if "XMLValue" is an "XMLBuiltinValue" notation for the type
(see 16.10).

15.5 The second alternative of "XMLTypedValue" (use of an XML empty-element tag) can be used only if an
instance of the "XMLValue" production is empty.

NOTE – If the "XMLValue" production was an "xmlcstring" containing only white-space, this would not be empty, and the
second alternative could not be used.

15.6 A "typereference" can be assigned a value set by the notation specified by the "ValueSetTypeAssignment"
production:

 ValueSetTypeAssignment ::=
 typereference
 Type
 "::="
 ValueSet

This notation assigns to "typereference" the type defined as a subtype of the type denoted by "Type" and which contains
exactly the values which are specified in or allowed by "ValueSet". The "typereference" shall not be an ASN.1 reserved
word (see 11.27), and may be referenced as a type. "ValueSet" is defined in 15.7.

15.7 A value set governed by some type shall be specified by the notation "ValueSet":

 ValueSet ::= "{" ElementSetSpecs "}"

The value set comprises all of the values, of which there shall be at least one, specified by "ElementSetSpecs" (see
clause 46).

15.8 The "ValueSetTypeAssignment" production expands into:

 typereference
 Type
 "::="
 "{" ElementSetSpecs "}"

For all purposes, including the application of encoding rules, this is defined to be exactly equivalent to the use of the
production:

 typereference
 "::="
 Type
 "(" ElementSetSpecs ")"

with the same "Type" and "ElementSetSpecs" specifications.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

30 ITU-T Rec. X.680 (07/2002)

16 Definition of types and values
16.1 A type shall be specified by the notation "Type":

 Type ::= BuiltinType | ReferencedType | ConstrainedType

16.2 The built-in types of ASN.1 are specified by the notation "BuiltinType", defined as follows:

 BuiltinType ::=
 BitStringType
 | BooleanType
 | CharacterStringType
 | ChoiceType
 | EmbeddedPDVType
 | EnumeratedType
 | ExternalType
 | InstanceOfType
 | IntegerType
 | NullType
 | ObjectClassFieldType
 | ObjectIdentifierType
 | OctetStringType
 | RealType
 | RelativeOIDType
 | SequenceType
 | SequenceOfType
 | SetType
 | SetOfType
 | TaggedType

The various "BuiltinType" notations are defined in the following clauses (in this Recommendation | International
Standard unless otherwise stated):

 BitStringType 21
BooleanType 17
CharacterStringType 36
ChoiceType 28
EmbeddedPDVType 33
EnumeratedType 19
ExternalType 34
InstanceOfType ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex C
IntegerType 18
NullType 23
ObjectClassFieldType ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.1
ObjectIdentifierType 31
OctetStringType 22
RealType 20
RelativeOIDType 32
SequenceType 24
SequenceOfType 25
SetType 26
SetOfType 27
TaggedType 30

16.3 The referenced types of ASN.1 are specified by the notation "ReferencedType":

 ReferencedType ::=
 DefinedType
 | UsefulType
 | SelectionType
 | TypeFromObject
 | ValueSetFromObjects

The "ReferencedType" notation provides an alternative means of referring to some other type (and ultimately to a built-
in type). The various "ReferencedType" notations, and the way in which the type to which they refer is determined, are
specified in the following places in this Recommendation | International Standard unless otherwise stated:

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 31

 DefinedType 13.1
UsefulType 41.1
SelectionType 29
TypeFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15
ValueSetFromObjects ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

16.4 The "ConstrainedType" is defined in clause 45.

16.5 This Recommendation | International Standard requires the use of the notation "NamedType" in specifying the
components of the set types, sequence types and choice types. The notation for "NamedType" is:

 NamedType ::= identifier Type

16.6 The "identifier" is used to unambiguously refer to components of a set type, sequence type or choice type in
the value notation, in inner subtype constraints and in component relation constraints (see ITU-T Rec. X.682 | ISO/IEC
8824-3). It is not part of the type, and has no effect on the type.

16.7 A value of some type shall be specified by the notation "Value" or by the notation "XMLValue":

 Value ::=
 BuiltinValue
 | ReferencedValue
 | ObjectClassFieldValue

 XMLValue ::=
 XMLBuiltinValue
 | XMLObjectClassFieldValue

NOTE 1 – "ObjectClassFieldValue" and "XMLObjectClassFieldValue" are defined in ITU-T Rec. X.681 |
ISO/IEC 8824-2, 14.6.
NOTE 2 – "XMLValue" is only used in "XMLTypedValue".

16.8 If any part of the "XMLValue" production results in an XML start-tag immediately followed by an XML end-
tag, possibly separated by white-space inserted as permitted by 11.1.4 (for example, <field1></field1>), these two XML
tags, and any intervening white-space, can be replaced by a single XML empty-element tag (<field1/>).

NOTE – If any white-space character, except white-space inserted as permitted by 11.1.4, is present between the final ">"
character of the start tag and the initial "<" character of the end-tag, the condition above is not satisfied.

16.9 Values of the built-in types of ASN.1 can be specified by the notation "XMLBuiltinValue" (see 16.10) or
"BuiltinValue", defined as follows:

 BuiltinValue ::=
 BitStringValue
 | BooleanValue
 | CharacterStringValue
 | ChoiceValue
 | EmbeddedPDVValue
 | EnumeratedValue
 | ExternalValue
 | InstanceOfValue
 | IntegerValue
 | NullValue
 | ObjectIdentifierValue
 | OctetStringValue
 | RealValue
 | RelativeOIDValue
 | SequenceValue
 | SequenceOfValue
 | SetValue
 | SetOfValue
 | TaggedValue

Each of the various "BuiltinValue" notations is defined in the same subclause as the corresponding "BuiltinType"
notation, as listed in 16.2.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

32 ITU-T Rec. X.680 (07/2002)

16.10 "XMLBuiltinValue" is defined as follows:

XMLBuiltinValue ::=
 XMLBitStringValue
 | XMLBooleanValue
 | XMLCharacterStringValue
 | XMLChoiceValue
 | XMLEmbeddedPDVValue
 | XMLEnumeratedValue
 | XMLExternalValue
 | XMLInstanceOfValue
 | XMLIntegerValue
 | XMLNullValue
 | XMLObjectIdentifierValue
 | XMLOctetStringValue
 | XMLRealValue
 | XMLRelativeOIDValue
 | XMLSequenceValue
 | XMLSequenceOfValue
 | XMLSetValue
 | XMLSetOfValue
 | XMLTaggedValue

Each of the various "XMLBuiltinValue" notations is defined in the same clause as the corresponding "BuiltinType"
notation, as listed in 16.2 above.

16.11 The referenced values of ASN.1 are specified by the notation "ReferencedValue":

 ReferencedValue ::=
 DefinedValue
 | ValueFromObject

The "ReferencedValue" notation provides an alternative means of referring to some other value (and ultimately to a
built-in value). The various "ReferencedValue" notations, and the way in which the value to which they refer is
determined, are specified in the following places (in this Recommendation | International Standard unless otherwise
stated):

 DefinedValue 13.1
 ValueFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

16.12 Regardless of whether or not a type is a "BuiltinType", "ReferencedType" or "ConstrainedType", its values
can be specified by either a "BuiltinValue" or "ReferencedValue" of that type.

16.13 The value of a type referenced using the "NamedType" notation shall be defined by the notation
"NamedValue", or when used as part of an "XMLValue", by the notation "XMLNamedValue". These productions are:

 NamedValue ::= identifier Value

 XMLNamedValue ::= "<" & identifier ">" XMLValue "</" & identifier ">"

where the "identifier" is the same as that used in the "NamedType" notation.
NOTE – The "identifier" is part of the notation, it does not form part of the value itself. It is used to unambiguously refer to the
components of a set type, sequence type or choice type.

16.14 The implied (see 12.4) or explicit presence of an extension marker (see clause 6) in the definition of a type has
no effect on the value notation. That is, the value notation for a type with an extension marker is exactly the same as if
the extension marker was absent.

NOTE – Subclause 46.8 prohibits value notation used in a subtype constraint from referencing a value that is not in the extension
root of the parent type.

17 Notation for the boolean type
17.1 The boolean type (see 3.6.7) shall be referenced by the notation "BooleanType":

 BooleanType ::= BOOLEAN

17.2 The tag for types defined by this notation is universal class, number 1.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 33

17.3 The value of a boolean type (see 3.6.73 and 3.6.38) shall be defined by the notation "BooleanValue", or when
used as an "XMLValue", by the notation "XMLBooleanValue". These productions are:

 BooleanValue ::= TRUE | FALSE

 XMLBooleanValue ::=
 "<" & "true" "/>"
 | "<" & "false" "/>"

18 Notation for the integer type
18.1 The integer type (see 3.6.41) shall be referenced by the notation "IntegerType":

 IntegerType ::=
 INTEGER
 | INTEGER "{" NamedNumberList "}"

 NamedNumberList ::=
 NamedNumber
 | NamedNumberList "," NamedNumber

 NamedNumber ::=
 identifier "(" SignedNumber ")"
 | identifier "(" DefinedValue ")"

 SignedNumber ::=
 number
 | "-" number

18.2 The second alternative of "SignedNumber" shall not be used if the "number" is zero.

18.3 The "NamedNumberList" is not significant in the definition of a type. It is used solely in the value notation
specified in 18.9.

18.4 The "valuereference" in "DefinedValue" shall be of type integer.
NOTE – Since an "identifier" cannot be used to specify the value associated with "NamedNumber", the "DefinedValue" can never
be misinterpreted as an "IntegerValue". Therefore in the following case

a INTEGER ::= 1
T1 ::= INTEGER { a(2) }
T2 ::= INTEGER { a(3), b(a) }
c T2 ::= b
d T2 ::= a

c denotes the value 1, since it cannot be a reference to the second nor the third occurrence of a, and d denotes the value 3.

18.5 The value of each "SignedNumber" or "DefinedValue" appearing in the "NamedNumberList" shall be
different, and represents a distinguished value of the integer type.

18.6 Each "identifier" appearing in the "NamedNumberList" shall be different.

18.7 The order of the "NamedNumber"s in the "NamedNumberList" is not significant.

18.8 The tag for types defined by this notation is universal class, number 2.

18.9 The value of an integer type shall be defined by the notation "IntegerValue", or when used as an "XMLValue",
by the notation "XMLIntegerValue". These productions are:

 IntegerValue ::=
 SignedNumber
 | identifier

 XMLIntegerValue ::=
 SignedNumber
 | "<" & identifier "/>"

18.10 The "identifier" in "IntegerValue" and in "XMLIntegerValue" shall be one of the "identifier"s in the
"IntegerType" with which the value is associated, and shall represent the corresponding number.

NOTE – When referencing an integer value for which an "identifier" has been defined, use of the "identifier" form of
"IntegerValue" and "XMLIntegerValue" should be preferred.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

34 ITU-T Rec. X.680 (07/2002)

18.11 Within an instance of value notation for an integer type with a "NamedNumberList", any occurrence of a name
that is both an "identifier" from the "NamedNumberList" and a reference name shall be interpreted as the "identifier".

19 Notation for the enumerated type
19.1 The enumerated type (see 3.6.24) shall be referenced by the notation "EnumeratedType":

 EnumeratedType ::=
 ENUMERATED "{" Enumerations "}"

 Enumerations ::=
 RootEnumeration
 | RootEnumeration "," "..." ExceptionSpec
 | RootEnumeration "," "..." ExceptionSpec "," AdditionalEnumeration

 RootEnumeration ::= Enumeration

 AdditionalEnumeration ::= Enumeration

 Enumeration ::= EnumerationItem | EnumerationItem "," Enumeration

 EnumerationItem ::= identifier | NamedNumber
NOTE 1 – Each value of an "EnumeratedType" has an identifier which is associated with a distinct integer. However, the values
themselves are not expected to have any integer semantics. Specifying the "NamedNumber" alternative of "EnumerationItem"
provides control of the representation of the value in order to facilitate compatible extensions.
NOTE 2 – The numeric values inside the "NamedNumber"s in the "RootEnumeration" are not necessarily ordered or contiguous,
and the numeric values inside the "NamedNumber"s in the "AdditionalEnumeration" are ordered but not necessarily contiguous.

19.2 For each "NamedNumber", the "identifier" and the "SignedNumber" shall be distinct from all other
"identifier"s and "SignedNumber"s in the "Enumeration". Subclauses 18.2 and 18.4 also apply to each "NamedNumber".

19.3 Each "EnumerationItem" (in an "EnumeratedType") which is an "identifier" is successively assigned a distinct
non-negative integer. For the "RootEnumeration", the successive integers starting with 0, but excluding any which are
employed in "EnumerationItem"s which are "NamedNumber"s, are assigned.

NOTE – An integer value is associated with an "EnumerationItem" to assist in the definition of encoding rules. It is not otherwise
used in the ASN.1 specification.

19.4 The value of each new "EnumerationItem" shall be greater than all previously defined
"AdditionalEnumeration"s in the type.

19.5 When a "NamedNumber" is used in defining an "EnumerationItem" in the "AdditionalEnumeration", the value
associated with it shall be different from the value of all previously defined "EnumerationItem"s (in this type) regardless
of whether the previously defined "EnumerationItem"s occur in the enumeration root or not. For example:

A ::= ENUMERATED {a, b, ..., c(0)} -- invalid, since both 'a' and 'c' equal 0
B ::= ENUMERATED {a, b, ..., c, d(2)} -- invalid, since both 'c' and 'd' equal 2
C ::= ENUMERATED {a, b(3), ..., c(1)} -- valid, 'c' = 1
D ::= ENUMERATED {a, b, ..., c(2)} -- valid, 'c' = 2

19.6 The value associated with the first "EnumerationItem" in the "AdditionalEnumeration" alternative that is an
"identifier" (not a "NamedNumber") shall be the smallest value for which an "EnumerationItem" is not defined in the
"RootEnumeration" and all preceding "EnumerationItem"s in the "AdditionalEnumeration" (if any) are smaller. For
example, the following are all valid:

A ::= ENUMERATED {a, b, ..., c} -- c = 2
B ::= ENUMERATED {a, b, c(0), ..., d} -- d = 3
C ::= ENUMERATED {a, b, ..., c(3), d} -- d = 4
D ::= ENUMERATED {a, z(25), ..., d} -- d = 1

19.7 The enumerated type has a tag which is universal class, number 10.

19.8 The value of an enumerated type shall be defined by the notation "EnumeratedValue", or when used as an
"XMLValue", by the notation "XMLEnumeratedValue". These productions are:

 EnumeratedValue ::= identifier

 XMLEnumeratedValue ::= "<" & identifier "/>"

19.9 The "identifier" in "EnumeratedValue" and "XMLEnumeratedValue" shall be equal to that of an "identifier" in
the "EnumeratedType" sequence with which the value is associated.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 35

19.10 Within an instance of value notation for an enumerated type, any occurrence of a name that is both an
"identifier" from the "Enumeration" and a reference name shall be interpreted as the "identifier".

20 Notation for the real type
20.1 The real type (see 3.6.54) shall be referenced by the notation "RealType":

 RealType ::= REAL

20.2 The real type has a tag which is universal class, number 9.

20.3 The values of the real type are the values PLUS-INFINITY and MINUS-INFINITY together with the real
numbers capable of being specified by the following formula involving three integers, M, B and E:

M x BE

where M is called the mantissa, B the base, and E the exponent.

20.4 The real type has an associated type which is used to give precision to the definition of the abstract values of
the real type and is also used to support the value and subtype notations of the real type.

NOTE – Encoding rules may define a different type which is used to specify encodings, or may specify encodings without
reference to the associated type. In particular, the encoding in BER and PER provides a Binary-Coded Decimal (BCD) encoding
if "base" is 10, and an encoding which permits efficient transformation to and from hardware floating point representations if
"base" is 2.

20.5 The associated type for value definition and subtyping purposes is (with normative comments):

 SEQUENCE {
 mantissa INTEGER,
 base INTEGER (2|10),
 exponent INTEGER

 -- The associated mathematical real number is "mantissa"
 -- multiplied by "base" raised to the power "exponent"

}

NOTE 1 – Non-zero values represented by "base" 2 and by "base" 10 are considered to be distinct abstract values even if they
evaluate to the same real number value, and may carry different application semantics.
NOTE 2 – The notation REAL (WITH COMPONENTS { ... , base (10)}) can be used to restrict the set of values to base 10
abstract values (and similarly for base 2 abstract values).
NOTE 3 – This type is capable of carrying an exact finite representation of any number which can be stored in typical floating
point hardware, and of any number with a finite character-decimal representation.

20.6 The value of a real type shall be defined by the notation "RealValue", or when used in an "XMLValue", by the
notation "XMLRealValue":

 RealValue ::=
 NumericRealValue
 | SpecialRealValue

 NumericRealValue ::=
 realnumber
 | "-" realnumber
 | SequenceValue -- Value of the associated sequence type

 SpecialRealValue ::=
 PLUS-INFINITY
 | MINUS-INFINITY

The second and third alternatives of "NumericRealValue" shall not be used for zero values.

 XMLRealValue ::=
 XMLNumericRealValue | XMLSpecialRealValue

 XMLNumericRealValue ::=
 realnumber
 | "-" realnumber

The second alternative of "XMLNumericRealValue" shall not be used for zero values.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

36 ITU-T Rec. X.680 (07/2002)

 XMLSpecialRealValue ::=
 "<" & PLUS-INFINITY "/>" | "<" & MINUS-INFINITY "/>"

20.7 When the "realnumber" notation is used it identifies the corresponding "base" 10 abstract value. If the
"RealType" is constrained to "base" 2, the "realnumber" identifies the "base" 2 abstract value corresponding either to the
decimal value specified by the "realnumber" or to a locally-defined precision if an exact representation is not possible.

21 Notation for the bitstring type
21.1 The bitstring type (see 3.6.6) shall be referenced by the notation "BitStringType":

 BitStringType ::=
 BIT STRING

 | BIT STRING "{" NamedBitList "}"

 NamedBitList ::=
 NamedBit
 | NamedBitList "," NamedBit

 NamedBit ::=
 identifier "(" number ")"
 | identifier "(" DefinedValue ")"

21.2 The first bit in a bit string is called the leading bit. The final bit in a bit string is called the trailing bit.
NOTE – This terminology is used in specifying the value notation and in defining encoding rules.

21.3 The "DefinedValue" shall be a reference to a non-negative value of type integer.

21.4 The value of each "number" or "DefinedValue" appearing in the "NamedBitList" shall be different, and is the
number of a distinguished bit in a bitstring value. The leading bit of the bit string is identified by the "number" zero,
with succeeding bits having successive values.

21.5 Each "identifier" appearing in the "NamedBitList" shall be different.
NOTE 1 – The order of the "NamedBit" production sequences in the "NamedBitList" is not significant.
NOTE 2 – Since an "identifier" that appears within the "NamedBitList" cannot be used to specify the value associated with a
"NamedBit", the "DefinedValue" can never be misinterpreted as an "IntegerValue". Therefore in the following case:

 a INTEGER ::= 1
 T1 ::= INTEGER { a(2) }
 T2 ::= BIT STRING { a(3), b(a) }

the last occurrence of a denotes the value 1, as it cannot be a reference to the second nor the third occurrence of a.

21.6 The presence of a "NamedBitList" has no effect on the set of abstract values of this type. Values containing
1 bits other than the named bits are permitted.

21.7 When a "NamedBitList" is used in defining a bitstring type ASN.1 encoding rules are free to add (or remove)
arbitrarily any trailing 0 bits to (or from) values that are being encoded or decoded. Application designers should
therefore ensure that different semantics are not associated with such values which differ only in the number of trailing
0 bits.

21.8 This type has a tag which is universal class, number 3.

21.9 The value of a bitstring type shall be defined by the notation "BitStringValue", or when used as an
"XMLValue", by the notation "XMLBitStringValue". These productions are:

 BitStringValue ::=
 bstring
 | hstring
 | "{" IdentifierList "}"
 | "{" "}"
 | CONTAINING Value

 IdentifierList ::=
 identifier
 | IdentifierList "," identifier

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 37

 XMLBitStringValue ::=
 XMLTypedValue
 | Xmlbstring
 | XMLIdentifierList
 | empty

 XMLIdentifierList ::=
 "<" & identifier "/>"
 | XMLIdentifierList "<" & identifier "/>"

21.10 The "XMLTypedValue" alternative shall not be used unless the bitstring has a contents constraint which
includes an ASN.1 type and does not include an ENCODED BY. If this alternative is used, the "XMLTypedValue" shall
be a value of the ASN.1 type in the contents constraint.

21.11 The "XMLIdentifierList" alternative shall not be used unless the bitstring has a "NamedBitList".

21.12 Each "identifier" in "BitStringValue" or "XMLBitStringValue" shall be the same as an "identifier" in the
"BitStringType" production sequence with which the value is associated.

21.13 The "empty" alternative denotes a bitstring with no bits.

21.14 If the bitstring has named bits, the "BitStringValue" or "XMLBitStringValue" notation denotes a bitstring
value with ones in the bit positions specified by the numbers corresponding to the "identifier"s, and with all other bits
zero.

NOTE – For a "BitStringType" that has a "NamedBitList", the "{" "}" production sequence in "BitStringValue" and the "empty"
in "XMLBitStringValue" are used to denote the bitstring which contains no one bits.

21.15 When using the "bstring" or "xmlbstring" notation, the leading bit of the bitstring value is on the left, and the
trailing bit of the bitstring value is on the right.

21.16 When using the "hstring" notation, the most significant bit of each hexadecimal digit corresponds to the
leftmost bit in the bitstring.

NOTE – This notation does not, in any way, constrain the way encoding rules place a bitstring into octets for transfer.

21.17 The "hstring" notation shall not be used unless the bitstring value consists of a multiple of four bits.

EXAMPLE

'A98A'H

and

'1010100110001010'B

are alternative notations for the same bitstring value. If the type was defined using a "NamedBitList", the (single) trailing
zero does not form part of the value, which is thus 15 bits in length. If the type was defined without a "NamedBitList",
the trailing zero does form part of the value, which is thus 16 bits in length.

21.18 The CONTAINING alternative can only be used if there is a contents constraint on the bitstring type which
includes CONTAINING. The "Value" shall then be value notation for a value of the "Type" in the "ContentsConstraint"
(see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11).

NOTE – This value notation can never appear in a subtype constraint because ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11.3
forbids further constraints after a "ContentsConstraint", and the above text forbids its use unless the governor has a
"ContentsConstraint".

21.19 The CONTAINING alternative shall be used if there is a contents constraint on the bitstring type which does not
contain ENCODED BY.

22 Notation for the octetstring type
22.1 The octetstring type (see 3.6.49) shall be referenced by the notation "OctetStringType":

 OctetStringType ::= OCTET STRING

22.2 This type has a tag which is universal class, number 4.

22.3 The value of an octetstring type shall be defined by the notation "OctetStringValue", or when used as an
"XMLValue", by the notation "XMLOctetStringValue". These productions are:

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

38 ITU-T Rec. X.680 (07/2002)

 OctetStringValue ::=
 bstring
 | hstring
 | CONTAINING Value

 XMLOctetStringValue ::=
 XMLTypedValue
 | xmlhstring

22.4 The "XMLTypedValue" alternative shall not be used unless the octetstring has a contents constraint which
includes an ASN.1 type and does not include an ENCODED BY. If this alternative is used, the "XMLTypedValue" shall
be a value of the ASN.1 type in the contents constraint.

22.5 In specifying the encoding rules for an octetstring, the octets are referenced by the terms first octet and trailing
octet, and the bits within an octet are referenced by the terms most significant bit and least significant bit.

22.6 When using the "bstring" notation, the left-most bit of the "bstring" notation shall be the most significant bit of
the first octet of the octetstring value. If the "bstring" is not a multiple of eight bits, it shall be interpreted as if it
contained additional zero trailing bits to make it the next multiple of eight.

22.7 When using the "hstring" or "xmlhstring" notation, the left-most hexadecimal digit shall be the most significant
semi-octet of the first octet.

22.8 If the "hstring" is an odd number of hexadecimal digits, it shall be interpreted as if it contained a single
additional trailing zero hexadecimal digit. The "xmlhstring" shall not be an odd number of hexadecimal digits.

22.9 The CONTAINING alternative can only be used if there is a contents constraint on the octetstring type which
includes CONTAINING. The "Value" shall then be value notation for a value of the "Type" in the "ContentsConstraint"
(see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11).

NOTE – This value notation can never appear in a subtype constraint because ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 11.3
forbids further constraints after a "ContentsConstraint", and the above text forbids its use unless the governor has a
"ContentsConstraint".

22.10 The CONTAINING alternative shall be used if there is a contents constraint on the octetstring type which does
not contain ENCODED BY.

23 Notation for the null type
23.1 The null type (see 3.6.44) shall be referenced by the notation "NullType":

 NullType ::= NULL

23.2 This type has a tag which is universal class, number 5.

23.3 The value of a null type shall be referenced by the notation "NullValue", or when used as an "XMLValue", by
the notation "XMLNullValue". These productions are:

 NullValue ::= NULL

 XMLNullValue ::= empty

24 Notation for sequence types
24.1 The notation for defining a sequence type (see 3.6.60) shall be the "SequenceType":

 SequenceType ::=
 SEQUENCE "{" "}"
 | SEQUENCE "{" ExtensionAndException OptionalExtensionMarker "}"
 | SEQUENCE "{" ComponentTypeLists "}"

 ExtensionAndException ::= "..." | "..." ExceptionSpec

 OptionalExtensionMarker ::= "," "..." | empty

 ComponentTypeLists ::=
 RootComponentTypeList
 | RootComponentTypeList "," ExtensionAndException ExtensionAdditions

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 39

 OptionalExtensionMarker
 | RootComponentTypeList "," ExtensionAndException ExtensionAdditions
 ExtensionEndMarker "," RootComponentTypeList
 | ExtensionAndException ExtensionAdditions ExtensionEndMarker ","
 RootComponentTypeList
 | ExtensionAndException ExtensionAdditions OptionalExtensionMarker

 RootComponentTypeList ::= ComponentTypeList

 ExtensionEndMarker ::= "," "..."

 ExtensionAdditions ::=
 "," ExtensionAdditionList
 | empty

 ExtensionAdditionList ::=
 ExtensionAddition
 | ExtensionAdditionList "," ExtensionAddition

 ExtensionAddition ::=
 ComponentType
 | ExtensionAdditionGroup

 ExtensionAdditionGroup ::= "[[" VersionNumber ComponentTypeList "]]"

 VersionNumber ::= empty | number ":"

 ComponentTypeList ::=
 ComponentType
 | ComponentTypeList "," ComponentType

 ComponentType ::=
 NamedType
 | NamedType OPTIONAL
 | NamedType DEFAULT Value
 | COMPONENTS OF Type

24.2 When the "ComponentTypeLists" production occurs within the definition of a module for which automatic
tagging is selected (see 12.3), and none of the occurrences of "NamedType" in any of the first three alternatives for
"ComponentType" contains a "TaggedType", then automatic tagging transformation is selected for the entire
"ComponentTypeLists", otherwise it is not.

NOTE 1 – The use of the "TaggedType" notation within the definition of the list of components for a sequence type gives control
of tags to the specifier, as opposed to automatic assignment by the automatic tagging mechanism. Therefore, in the following
case:
 T ::= SEQUENCE { a INTEGER, b [1] BOOLEAN, c OCTET STRING }

no automatic tagging is applied to the list of components a, b, c, even if this definition of sequence type T occurs within a module
for which automatic tagging is selected.
NOTE 2 – Only those occurrences of the "ComponentTypeLists" production appearing within a module where automatic tagging
is selected are candidates for transformation by automatic tagging.

24.3 The decision to apply the automatic tagging transformation is taken individually for each occurrence of
"ComponentTypeLists" and prior to the COMPONENTS OF transformation specified by 24.4. However, as specified
in 24.7 to 24.9, the automatic tagging transformation (if applied) is applied after the COMPONENTS OF transformation.

NOTE – The effect of this is that the application of automatic tags is suppressed by tags explicitly present in the
"ComponentTypeLists", but not by tags present in the "Type" following COMPONENTS OF.

24.4 "Type" in the "COMPONENTS OF Type" notation shall be a sequence type. The "COMPONENTS OF Type"
notation shall be used to define the inclusion, at this point in the list of components, of all the component types of the
referenced type, except for any extension marker and extension additions that may be present in the "Type". (Only the
"RootComponentTypeList" of the "Type" in the "COMPONENTS OF Type" is included; extension markers and extension
additions, if any, are ignored by the "COMPONENTS OF Type" notation.) Any subtype constraint applied to the
referenced type is ignored by this transformation.

NOTE – This transformation is logically completed prior to the satisfaction of the requirements in the following subclauses.

24.5 The following subclauses each identify a series of occurrences of "ComponentType" in either the root or the
extension additions or both. The rule of 24.5.1 shall apply to all such series.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

40 ITU-T Rec. X.680 (07/2002)

24.5.1 Where there are one or more consecutive occurrences of "ComponentType" that are all marked OPTIONAL or
DEFAULT, the tags of those "ComponentType"s and of any immediately following component type in the series shall be
distinct (see clause 30). If automatic tagging was selected, the requirement that tags be distinct applies only after
automatic tagging has been performed, and will always be satisfied.

24.5.2 Subclause 24.5.1 shall apply to the series of "ComponentType"s in the root.

24.5.3 Subclause 24.5.1 shall apply to the complete series of "ComponentType"s in the root or in the extension
additions, in the textual order of their occurrence in the type definition (ignoring all version brackets and ellipsis
notation). (See also 48.7.)

24.6 When the third or fourth alternative of "ComponentTypeLists" is used, all "ComponentType"s in extension
additions shall have tags which are distinct from the tags of the textually following "ComponentType"s up to and
including the first such "ComponentType" that is not marked OPTIONAL or DEFAULT in the trailing
"RootComponentTypeList", if any. (See also 48.7.)

24.7 The automatic tagging transformation of an occurrence of "ComponentTypeLists" is logically performed after
the transformation specified by 24.4, but only if 24.2 determines that it shall apply to that occurrence of
"ComponentTypeLists". Automatic tagging transformation impacts each "ComponentType" of the
"ComponentTypeLists" by replacing the "Type" originally in the "NamedType" production with a replacement
"TaggedType" occurrence specified in 24.9.

24.8 If automatic tagging is in effect and the "ComponentType"s in the extension root have no tags, then no
"ComponentType" within the "ExtensionAdditionList" shall be a "TaggedType".

24.9 If automatic tagging is in effect, the replacement "TaggedType" is specified as follows:
a) the replacement "TaggedType" notation uses the "Tag Type" alternative;
b) the "Class" of the replacement "TaggedType" is empty (i.e., tagging is context-specific);
c) the "ClassNumber" in the replacement "TaggedType" is tag value zero for the first "ComponentType" in

the "RootComponentTypeList", one for the second, and so on, proceeding with increasing tag numbers;
d) the "ClassNumber" in the replacement "TaggedType" of the first "ComponentType" in the

"ExtensionAdditionList" is zero if the "RootComponentTypeList" is missing, else it is one greater than
the largest "ClassNumber" in the "RootComponentTypeList", with the next "ComponentType" in the
"ExtensionAdditionList" having a "ClassNumber" one greater than the first, and so on, proceeding with
increasing tag numbers;

e) the "Type" in the replacement "TaggedType" is the original "Type" being replaced.
NOTE 1 – The rules governing specification of implicit tagging or explicit tagging for replacement "TaggedType"s are provided
by 30.6. Automatic tagging is always implicit tagging unless the "Type" is a choice type or an open type notation, or a
"DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3), in which case it is explicit tagging.
NOTE 2 – Once 24.7 is satisfied, the tags of the components are completely determined, and are not modified even when the
sequence type is referenced in the definition of a component within another "ComponentTypeLists" for which automatic tagging
transformation applies. Thus, in the following case:
 T ::= SEQUENCE { a Ta, b Tb, c Tc }

 E ::= SEQUENCE { f1 E1, f2 T, f3 E3 }

automatic tagging applied to the components of E never affects the tags attached to components a, b and c of T, whatever the
tagging environment of T. If T is defined in an automatic tagging environment and E is not in an automatic tagging environment,
automatic tagging is still applied to components a, b and c of T.
NOTE 3 – When a sequence type appears as the "Type" in "COMPONENTS OF Type", each occurrence of "ComponentType" in it is
duplicated by the application of 24.4 prior to the possible application of automatic tagging to the referencing sequence type. Thus,
in the following case:
 T ::= SEQUENCE { a Ta, b SEQUENCE { b1 T1, b2 T2, b3 T3}, c Tc }

 W ::= SEQUENCE { x Wx, COMPONENTS OF T, y Wy }

the tags of a, b, and c within T need not be the same as the tags of a, b, and c within W if W has been defined in an automatic
tagging environment, but the tags of b1, b2 and b3 are the same in both T and W. In other words, the automatic tagging
transformation is only applied once to a given "ComponentTypeLists".
NOTE 4 – Subtyping has no impact on automatic tagging.
NOTE 5 – When automatic tagging is in place, insertion of new components at any location other than the extension insertion
point (see 3.6.29) may result in changes to other components due to the side effect of modifying the tags thus causing
interworking problems with an older version of the specification.

24.10 If OPTIONAL or DEFAULT are present, the corresponding value may be omitted from a value of the new type.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 41

24.11 If DEFAULT occurs, the omission of a value for that type shall be exactly equivalent to the insertion of the value
defined by "Value", which shall be a value notation for a value of the type defined by "Type" in the "NamedType"
production sequence.

24.12 The value corresponding to an "ExtensionAdditionGroup" (all components together) is optional. However, if
such a value is present, then the value corresponding to the components within the bracketed "ComponentTypeList" that
are not marked OPTIONAL or DEFAULT shall be present.

24.13 The "identifier"s in all "NamedType" production sequences of the "ComponentTypeLists" (together with those
obtained by expansion of COMPONENTS OF) shall all be distinct.

24.14 A value for a given extension addition type shall not be specified unless there are values specified for all
extension addition types not marked OPTIONAL or DEFAULT that lie logically between the extension addition type and
the extension root.

NOTE 1 – Where the type has grown from the extension root (version 1) through version 2 to version 3 by the addition of
extension additions, the presence in an encoding of any addition from version 3 requires the presence of an encoding of all
additions in version 2 that are not marked OPTIONAL or DEFAULT.
NOTE 2 – "ComponentType"s that are extension additions but not contained within an "ExtensionAdditionGroup" should always
be encoded if they are not marked OPTIONAL or DEFAULT, except when the abstract value is being relayed from a sender that is
using an earlier version of the abstract syntax in which the "ComponentType" is not defined.
NOTE 3 – Use of the "ExtensionAdditionGroup" production is recommended because:
 a) it can result in more compact encodings depending on the encoding rules (e.g., PER);
 b) the syntax is more precise in that it clearly indicates that a value of a type defined in the "ExtensionAdditionList" and

not marked OPTIONAL or DEFAULT should always be present in an encoding if the extension addition group in which
it is defined is encoded (compare with Note 1);

 c) the syntax makes it clear which types in an "ExtensionAdditionList" must as a group be supported by an application.

24.15 A "VersionNumber" shall be used only if all "ExtensionAdditions"s and "ExtensionAdditionAlternatives",
within the module are "ExtensionAdditionGroup"s or "ExtensionAdditionAlternativesGroup"s with "VersionNumber"s.
The "number" in each "VersionNumber" of an "ExtensionAdditionGroup" shall be greater than or equal to two, and shall
be greater than the "number" in any preceding "ExtensionAdditionGroup" within an insertion point.

NOTE 1 – The convention used here is that the specification with no extension addition groups is version 1, thus the first added
extension addition group will have a number greater than or equal to 2. Where a single "ExtensionAddition" is needed for an
"ExtensionAdditions", an "ExtensionAdditionGroup" can be used with a single "ExtensionAddition".
NOTE 2 – The restrictions on use of "VersionNumber" apply only within a single module and impose no constraints on imported
types.

24.16 All sequence types have a tag which is universal class, number 16.
NOTE – Sequence-of types have the same tag as sequence types (see 25.2).

24.17 The notation for defining a value of a sequence type shall be "SequenceValue", or when used as an
"XMLValue", "XMLSequenceValue". These productions are:

 SequenceValue ::=
 "{" ComponentValueList "}"
 | "{" "}"

 ComponentValueList ::=
 NamedValue
 | ComponentValueList "," NamedValue

 XMLSequenceValue ::=
 XMLComponentValueList
 | empty

 XMLComponentValueList ::=
 XMLNamedValue
 | XMLComponentValueList XMLNamedValue

24.18 The "{" "}" or "empty" notation shall only be used if:

a) all "ComponentType" sequences in the "SequenceType" are marked DEFAULT or OPTIONAL, and all
values are omitted; or

b) the type notation was SEQUENCE{}.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

42 ITU-T Rec. X.680 (07/2002)

24.19 There shall be one "NamedValue" or "XMLNamedValue" for each "NamedType" in the "SequenceType"
which is not marked OPTIONAL or DEFAULT, and the values shall be in the same order as the corresponding
"NamedType" sequences.

25 Notation for sequence-of types
25.1 The notation for defining a sequence-of type (see 3.6.61) from another type shall be the "SequenceOfType".

 SequenceOfType ::= SEQUENCE OF Type | SEQUENCE OF NamedType
NOTE – If an initial letter which is upper-case is needed for an XML tag name used in XML Value Notation for the
"SequenceOfType", then the first alternative should be used. (The XML tag name is then formed from the name of the "Type".)

25.2 All sequence-of types have a tag which is universal class, number 16.
NOTE – Sequence types have the same tag as sequence-of types (see 24.16).

25.3 The notation for defining a value of a sequence-of type shall be the "SequenceOfValue", or when used as an
"XMLValue", "XMLSequenceOfValue". These productions are:

 SequenceOfValue ::=
 "{" ValueList "}"
 | "{" NamedValueList "}"
 | "{" "}"

 ValueList ::=
 Value
 | ValueList "," Value

 NamedValueList ::=
 NamedValue
 | NamedValueList "," NamedValue

 XMLSequenceOfValue ::=
 XMLValueList
 | XMLDelimitedItemList
 | XMLSpaceSeparatedList
 | empty

 XMLValueList ::=
 XMLValueOrEmpty
 | XMLValueOrEmpty XMLValueList

 XMLValueOrEmpty ::=
 XMLValue
 | "<" & NonParameterizedTypeName "/>"

 XMLSpaceSeparatedList ::=
 XMLValueOrEmpty
 | XMLValueOrEmpty " " XMLSpaceSeparatedList

 XMLDelimitedItemList ::=
 XMLDelimitedItem
 | XMLDelimitedItem XMLDelimitedItemList

 XMLDelimitedItem ::=
 "<" & NonParameterizedTypeName ">" XMLValue
 "</" & NonParameterizedTypeName ">"
 | "<" & identifier ">" XMLValue "</" & identifier ">"

The "{" "}" or "empty" notation is used when the "SequenceOfValue" or "XMLSequenceOfValue" is an empty list.
NOTE 1 – Semantic significance may be placed on the order of these values.
NOTE 2 – The "XMLSpaceSeparatedList" production is not used in this Recommendation | International Standard, and is not
used in XML Value Notation. It is provided in order to allow specification of the use of "XMLSpaceSeparatedList" in encodings
of the "IntegerType", "RealType", "ObjectIdentifierType", "RelativeOIDType", and the GeneralizedTime and UTCTime useful
types. It is also possible to specify use of "XMLValueList" instead of "XMLDelimitedItemList" for some instances of "SEQUENCE
OF SEQUENCE" and "SEQUENCE OF SET".

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 43

25.4 If the"XMLValue" for the component is "empty", then the second alternative of "XMLValueOrEmpty" shall
be chosen to represent that value of the component.

25.5 The "XMLValueList" or "XMLDelimitedItemList" productions shall be used in accordance with column 2 of
Table 5, where the "Type" of the component is listed in column 1.

Table 5 – "XMLSequenceOfValue" and "XMLSetOfValue" notation for ASN.1 types

ASN.1 type XML value notation

BitStringType XMLDelimitedItemList
BooleanType XMLValueList
CharacterStringType XMLDelimitedItemList
ChoiceType XMLValueList
ConstrainedType See 25.7
DefinedType See 25.9
EmbeddedPDVType XMLDelimitedItemList
EnumeratedType XMLValueList
ExternalType XMLDelimitedItemList
InstanceOfType See ITU-T Rec. X.681 | ISO/IEC 8824-2, C.9
IntegerType XMLDelimitedItemList
NullType XMLValueList
ObjectClassFieldType See ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.10 and 14.11
ObjectIdentifierType XMLDelimitedItemList
OctetStringType XMLDelimitedItemList
RealType XMLDelimitedItemList
RelativeOIDType XMLDelimitedItemList
SelectionType See 25.8
SequenceType XMLDelimitedItemList
SequenceOfType XMLDelimitedItemList
SetType XMLDelimitedItemList
SetOfType XMLDelimitedItemList
TaggedType See 25.6
UsefulType (GeneralizedTime) XMLDelimitedItemList
UsefulType (UTCTime) XMLDelimitedItemList
UsefulType (ObjectDescriptor) XMLDelimitedItemList
TypeFromObject See ITU-T Rec. X.681 | ISO/IEC 8824-2, 15.6
ValueSetFromObjects See ITU-T Rec. X.681 | ISO/IEC 8824-2, 15.6

25.6 If the "Type" of the component is a "TaggedType" then the type which determines the
"XMLSequenceOfValue" notation shall be the "Type" in the "TaggedType" (see 30.1). If this is itself a "TaggedType",
then this subclause 25.6 shall be recursively applied.

25.7 If the "Type" of the component is a "ConstrainedType" then the type which determines the
"XMLSequenceOfValue" notation shall be the "Type" in the "ConstrainedType" (see 45.1). If this is itself a
"ConstrainedType", then this subclause 25.7 shall be recursively applied.

25.8 If the "Type" of the component is a "SelectionType" then the type which determines the
"XMLSequenceOfValue" notation shall be the type referenced by the "SelectionType" (see clause 29).

25.9 If the "Type"of the component is a "DefinedType" then the type which determines the
"XMLSequenceOfValue" notation shall be the type referenced by the "DefinedType" (see 13.1).

25.10 The second alternative of "XMLDelimitedItem" shall be used if and only if the "SequenceOfType" contains
an "identifier", and the "identifier" in the "XMLDelimitedItem" shall be that "identifier".

25.11 If the first alternative of "XMLDelimitedItem" is used, then if the component of the sequence-of type (after
ignoring any tags) is a "typereference" or an "ExternalTypeReference", then the "NonParameterizedTypeName" shall be
that "typereference" or "ExternalTypeReference", otherwise it shall be the "xmlasn1typename" specified in Table 4
corresponding to the built-in type of the component.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

44 ITU-T Rec. X.680 (07/2002)

25.12 If the first alternative of "SequenceOfType" is used, then the first alternative of "SequenceOfValue" shall be
used. Each "Value" in the "ValueList" of "SequenceOfValue", and each "XMLValue" in the alternatives of
"XMLSequenceOfValue" shall be of the type specified in the "SequenceOfType".

25.13 If the second alternative of "SequenceOfType" is used, then the second alternative of "SequenceOfValue"
shall be used, and each "NamedValue" in the "NamedValueList" shall contain a "Value" of the type specified in the
"NamedType" of the "SequenceOfType". The "identifier" in the "NamedValue"s shall be the "identifier" in the
"NamedType" of the "SequenceOfType".

26 Notation for set types
26.1 The notation for defining a set type (see 3.6.64) from other types shall be the "SetType":

 SetType ::=
 SET "{" "}"
 | SET "{" ExtensionAndException OptionalExtensionMarker "}"
 | SET "{" ComponentTypeLists "}"

"ComponentTypeLists", "ExtensionAndException" and "OptionalExtensionMarker" are specified in 24.1.

26.2 "Type" in the "COMPONENTS OF Type" notation shall be a set type. The "COMPONENTS OF Type" notation shall
be used to define the inclusion, at this point in the list of components, of all the component types of the referenced type,
except for any extension marker and extension additions that may be present in the "Type". (Only the
"RootComponentTypeList" of the "Type" in the "COMPONENTS OF Type" is included; extension markers and extension
additions, if any, are ignored by the "COMPONENTS OF Type" notation.) Any subtype constraint applied to the
referenced type is ignored by this transformation.

NOTE – This transformation is logically completed prior to the satisfaction of the requirements in the following subclauses.

26.3 The "ComponentType" types in a set type shall all have different tags (see clause 30). The tag of each new
"ComponentType" added to the "ExtensionAdditions" shall be canonically greater (see 8.6) than those of the other
components in the "ExtensionAdditions".

NOTE – Where the "TagDefault" for the module in which this notation appears is AUTOMATIC TAGS, this is achieved regardless
of the actual "ComponentType"s, as a result of the application of 24.7. (See also 48.7.)

26.4 Subclauses 24.2 and 24.7 to 24.13 also apply to set types.

26.5 All set types have a tag which is universal class, number 17.
NOTE – Set-of types have the same tag as set types (see 27.2).

26.6 There shall be no semantics associated with the order of values in a set type.

26.7 The notation for defining the value of a set type shall be "SetValue", or when used as an "XMLValue",
"XMLSetValue". These productions are:

 SetValue ::=
 "{" ComponentValueList "}"
 | "{" "}"

 XMLSetValue ::=
 XMLComponentValueList
 | empty

"ComponentValueList" and "XMLComponentValueList" are specified in 24.17.

26.8 The "SetValue" and "XMLSetValue" shall only be "{" "}" and "empty" respectively if:

a) all "ComponentType" sequences in the "SetType" are marked DEFAULT or OPTIONAL, and all values are
omitted; or

b) the type notation was SET{}.

26.9 There shall be one "NamedValue" or "XMLNamedValue" for each "NamedType" in the "SetType" which is
not marked OPTIONAL or DEFAULT.

NOTE – These "NamedValue"s or "XMLNamedValue"s may appear in any order.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 45

27 Notation for set-of types
27.1 The notation for defining a set-of type (see 3.6.65) from another type shall be the "SetOfType":

 SetOfType ::=
 SET OF Type
 | SET OF NamedType

NOTE – If an initial letter which is upper-case is needed for an XML tag name used in XML Value Notation for the "SetOfType",
then the first alternative should be used. (The XML tag name is then formed from the name of the "Type".)

27.2 All set-of types have a tag which is universal class, number 17.
NOTE – Set types have the same tag as set-of types (see 26.5).

27.3 The notation for defining a value of a set-of type shall be the "SetOfValue", or when used as an "XMLValue",
"XMLSetOfValue". These productions are:

 SetOfValue ::=
 "{" ValueList "}"
 | "{" NamedValueList "}"
 | "{" "}"

 XMLSetOfValue ::=
 XMLValueList
 | XMLDelimitedItemList
 | XMLSpaceSeparatedList
 | empty

"ValueList", "NamedValueList" and the alternatives of "XMLSetOfValue" are specified in 25.3. The "{" "}" or
"empty" notation is used when the "SetOfValue" or "XMLSetOfValue" is an empty list.

NOTE 1 – Semantic significance should not be placed on the order of these values.
NOTE 2 – Encoding rules are not required to preserve the order of these values.
NOTE 3 – The set-of type is not a mathematical set of values, thus, as an example, for SET OF INTEGER the values { 1 } and
{ 1 1 } are distinct.

27.4 If the first alternative of "SetOfType" is used, then the first alternative of "SetOfValue" shall be used. Each
"Value" in the "ValueList" of "SetOfValue", and each "XMLValue" in the alternatives of "XMLSetOfValue" shall be of
the type specified in the "SetOfType".

27.5 If the second alternative of "SetOfType" is used, then the second alternative of "SetOfValue" shall be used,
and each "NamedValue" sequence in the "NamedValueList" shall contain a "Value" of the type specified in the
"NamedType" of the "SetOfType". The "identifier" in the "NamedValue"s shall be the "identifier" in the "NamedType"
of the "SetOfType".

28 Notation for choice types
28.1 The notation for defining a choice type (see 3.6.13) from other types shall be the "ChoiceType":

 ChoiceType ::= CHOICE "{" AlternativeTypeLists "}"

 AlternativeTypeLists ::=
 RootAlternativeTypeList
 | RootAlternativeTypeList ","
 ExtensionAndException ExtensionAdditionAlternatives
 OptionalExtensionMarker

 RootAlternativeTypeList ::= AlternativeTypeList

 ExtensionAdditionAlternatives ::=
 "," ExtensionAdditionAlternativesList
 | empty

 ExtensionAdditionAlternativesList ::=
 ExtensionAdditionAlternative
 | ExtensionAdditionAlternativesList "," ExtensionAdditionAlternative

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

46 ITU-T Rec. X.680 (07/2002)

 ExtensionAdditionAlternative ::=
 ExtensionAdditionAlternativesGroup
 | NamedType

 ExtensionAdditionAlternativesGroup ::=
 "[[" VersionNumber AlternativeTypeList "]]"

 AlternativeTypeList ::=
 NamedType
 | AlternativeTypeList "," NamedType

NOTE – "T ::= CHOICE { a A }" and A are not the same type, and may be encoded differently by encoding rules.

28.2 When the "AlternativeTypeLists" production occurs within the definition of a module for which automatic
tagging is selected (see 12.3), and none of the occurrences of "NamedType" in any "AlternativeTypeList" contains a
"TaggedType", the automatic tagging transformation is selected for the entire "AlternativeTypeLists", otherwise it is not.

28.3 The types defined in the "AlternativeTypeList" productions in an "AlternativeTypeLists" shall have distinct
tags (see clause 30, and 48.7). If automatic tagging was selected, the requirement that tags be distinct applies only after
automatic tagging has been performed, and will always be satisfied.

28.4 If automatic tagging is in effect and the "NamedType"s in the extension root have no tags, then no "NamedType"
within the "ExtensionAdditionAlternativesList" shall be a tagged type.

28.5 The automatic tagging transformation impacts each "NamedType" of the "AlternativeTypeLists" by replacing the
"Type" originally in the "NamedType" production with a replacement "TaggedType". The replacement "TaggedType" is
specified as follows:

a) the replacement "TaggedType" notation uses the "Tag Type" alternative;
b) the "Class" of the replacement "TaggedType" is empty (i.e., tagging is context-specific);
c) the "ClassNumber" in the replacement "TaggedType" is tag value zero for the first "NamedType" in the

"RootAlternativeTypeList", one for the second, and so on, proceeding with increasing tag numbers;
d) the "ClassNumber" in the replacement "TaggedType" of the first "NamedType" in the

"ExtensionAdditionAlternativesList" is one greater than the largest "ClassNumber" in the
"RootAlternativeTypeList", with the next "NamedType" in the "ExtensionAdditionAlternativesList"
having a "ClassNumber" one greater than the first, and so on, proceeding with increasing tag numbers;

e) the "Type" in the replacement "TaggedType" is the original "Type" being replaced.
NOTE 1 – The rules governing specification of implicit tagging or explicit tagging for replacement "TaggedType"s are provided
by 30.6. Automatic tagging is always implicit tagging unless the "Type" is an untagged choice type or an untagged open type
notation, or an untagged "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3), in which case it is explicit tagging.
NOTE 2 – Once automatic tagging has been applied, the tags of the components are completely determined, and are not modified
even when the choice type is referenced in the definition of an alternative within another "AlternativeTypeLists" for which
automatic tagging transformation applies. Thus, in the following case:

T ::= CHOICE { a Ta, b Tb, c Tc }

E ::= CHOICE {f1 E1, f2 T, f3 E3}

automatic tagging applied to the components of E never affects the tags attached to components a, b and c of T, whatever the
tagging environment of T. If T is defined in an automatic tagging environment and E is not in an automatic tagging environment,
automatic tagging is still applied to components a, b and c of T.
NOTE 3 – Subtyping does not affect automatic tagging.
NOTE 4 – When automatic tagging is in place, insertion of new alternatives at any location other than the extension insertion
point (see 3.6.29) may result in changes to other alternatives due to the side effect of modifying the tags thus causing interworking
problems with an older version of the specification.

28.5 "VersionNumber" is defined in 24.1, and the restrictions on consistent use of "VersionNumber" throughout a
module that are specified in 24.15 shall apply to the use of "number"s within this production.

28.6 The tag of each new "NamedType" added to the "ExtensionAdditionAlternativesList" shall be canonically
greater (see 8.6) than those of the other alternatives in the "ExtensionAdditionAlternativesList", and shall be the last
"NamedType" in the "ExtensionAdditionAlternativesList".

28.7 The choice type contains values which do not all have the same tag. (The tag depends on the alternative which
contributed the value to the choice type.)

28.8 When this type does not have an extension marker and is used in a place where this Recommendation |
International Standard requires the use of types with distinct tags (see 28.3), all possible tags of values of the choice
type shall be considered in such requirement. The following examples which assume that the "TagDefault" is not
AUTOMATIC TAGS illustrate this requirement.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 47

EXAMPLES

1 A ::= CHOICE {
b B,
c NULL}

 B ::= CHOICE {
d [0] NULL,
e [1] NULL}

2 A ::= CHOICE {
b B,
c C}

 B ::= CHOICE {
d [0] NULL,
e [1] NULL}

 C ::= CHOICE {
f [2] NULL,
g [3] NULL}

3 (Incorrect)
 A ::= CHOICE {
b B,
c C}

 B ::= CHOICE {
d [0] NULL,
e [1] NULL}

 C ::= CHOICE {
f [0] NULL,
g [1] NULL}

Examples 1 and 2 are correct uses of the notation. Example 3 is incorrect without automatic tagging, as the tags for
types d and f are identical, as well as for e and g.

28.9 The "identifier"s of all "NamedType"s in the "AlternativeTypeLists" shall differ from those of the other
"NamedType"s in that list.

28.10 The notation for defining the value of a choice type shall be the "ChoiceValue", or when used as an
"XMLValue", "XMLChoiceValue". These productions are:

 ChoiceValue ::= identifier ":" Value

 XMLChoiceValue ::= "<" & identifier ">" XMLValue "</" & identifier ">"

28.11 "Value" or "XMLValue" shall be a notation for a value of the type in the "AlternativeTypeLists" that is named
by the "identifier".

29 Notation for selection types
29.1 The notation for defining a selection type (see 3.6.59) shall be "SelectionType":

 SelectionType ::= identifier "<" Type

where "Type" denotes a choice type, and "identifier" is that of some "NamedType" appearing in the
"AlternativeTypeLists" of the definition of that choice type.

29.2 When "Type" denotes a constrained type, the selection is performed on the parent type, ignoring any subtype
constraint on the parent type.

29.3 Where the "SelectionType" is used as a "NamedType", the "identifier" of the "NamedType" is present, as well
as the "identifier" of the "SelectionType".

29.4 Where the "SelectionType" is used as a "Type", the "identifier" is retained and the type denoted is that of the
selected alternative.

29.5 The notation for a value of a selection type shall be the notation for a value of the type referenced by the
"SelectionType".

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

48 ITU-T Rec. X.680 (07/2002)

30 Notation for tagged types
A tagged type (see 3.6.70) is a new type which is isomorphic with an old type, but which has a different tag. The tagged
type is mainly of use where this Recommendation | International Standard requires the use of types with distinct tags
(see 24.5 to 24.6, 26.3 and 28.3). The use of a "TagDefault" of AUTOMATIC TAGS in a module allows this to be
accomplished without the explicit appearance of tagged type notation in that module.

NOTE – Where a protocol determines that values from several data types may be transmitted at any moment in time, distinct tags
may be needed to enable the recipient to correctly decode the value.

30.1 The notation for a tagged type shall be "TaggedType":

 TaggedType ::=
 Tag Type
 | Tag IMPLICIT Type
 | Tag EXPLICIT Type

 Tag ::= "[" Class ClassNumber "]"

 ClassNumber ::=
 number
 | DefinedValue

 Class ::=
 UNIVERSAL
 | APPLICATION
 | PRIVATE
 | empty

30.2 The "valuereference" in "DefinedValue" shall be of type integer, and assigned a non-negative value.

30.3 The new type is isomorphic with the old type, but has a tag with class "Class" and number "ClassNumber",
except when "Class" is "empty", in which case the tag is context-specific class and number is "ClassNumber".

30.4 The "Class" shall not be UNIVERSAL except for types defined in this Recommendation | International Standard.
NOTE 1 – Use of universal class tags are agreed from time-to-time by ITU-T and ISO.
NOTE 2 – Subclause E.2.12 contains guidance and hints on stylistic use of tag classes.

30.5 All application of tags is either implicit tagging or explicit tagging. Implicit tagging indicates, for those
encoding rules which provide the option, that explicit identification of the original tag of the "Type" in the
"TaggedType" is not needed during transfer.

NOTE – It can be useful to retain the old tag where this was universal class, and hence unambiguously identifies the old type
without knowledge of the ASN.1 definition of the new type. Minimum transfer octets is, however, normally achieved by the use
of IMPLICIT. An example of an encoding using IMPLICIT is given in ITU-T Rec. X.690 | ISO/IEC 8825-1.

30.6 The tagging construction specifies explicit tagging if any of the following holds:
a) the "Tag EXPLICIT Type" alternative is used;

b) the "Tag Type" alternative is used and the value of "TagDefault" for the module is either EXPLICIT
TAGS or is empty;

c) the "Tag Type" alternative is used and the value of "TagDefault" for the module is IMPLICIT TAGS or
AUTOMATIC TAGS, but the type defined by "Type" is an untagged choice type, an untagged open type, or
an untagged "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

The tagging construction specifies implicit tagging otherwise.

30.7 If the "Class" is "empty", there are no restrictions on the use of "Tag", other than those implied by the
requirement for distinct tags in 24.5 to 24.6, 26.3 and 28.3.

30.8 The IMPLICIT alternative shall not be used if the type defined by "Type" is an untagged choice type or an
untagged open type or an untagged "DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.3).

30.9 The notation for a value of a "TaggedType" shall be "TaggedValue", or when used as an "XMLValue",
"XMLTaggedValue". These productions are:

 TaggedValue ::= Value

 XMLTaggedValue ::= XMLValue

where "Value" or "XMLValue" is a notation for a value of the "Type" in the "TaggedType".

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 49

NOTE – The "Tag" does not appear in this notation.

31 Notation for the object identifier type
31.1 The object identifier type (see 3.6.48) shall be referenced by the notation "ObjectIdentifierType":

 ObjectIdentifierType ::=
 OBJECT IDENTIFIER

31.2 This type has a tag which is universal class, number 6.

31.3 The value notation for an object identifier shall be "ObjectIdentifierValue", or when used as an "XMLValue",
"XMLObjectIdentifierValue". These productions are:

 ObjectIdentifierValue ::=
 "{" ObjIdComponentsList "}"
 | "{" DefinedValue ObjIdComponentsList "}"

 ObjIdComponentsList ::=
 ObjIdComponents
 | ObjIdComponents ObjIdComponentsList

 ObjIdComponents ::=
 NameForm
 | NumberForm
 | NameAndNumberForm
 | DefinedValue

 NameForm ::= identifier

 NumberForm ::= number | DefinedValue

 NameAndNumberForm ::=
 identifier "(" NumberForm ")"

 XMLObjectIdentifierValue ::=
 XMLObjIdComponentList

 XMLObjIdComponentList ::=
 XMLObjIdComponent
 | XMLObjIdComponent & "." & XMLObjIdComponentList

 XMLObjIdComponent ::=
 NameForm
 | XMLNumberForm
 | XMLNameAndNumberForm

 XMLNumberForm ::= number

 XMLNameAndNumberForm ::=
 identifier & "(" & XMLNumberForm & ")"

31.4 The "valuereference" in "DefinedValue" of "NumberForm" shall be of type integer, and assigned a non-
negative value.

31.5 The "valuereference" in "DefinedValue" of "ObjectIdentifierValue" shall be of type object identifier.

31.6 The "DefinedValue" of "ObjIdComponents" shall be of type relative object identifier, and shall identify an
ordered set of arcs from some starting node in the object identifier tree to some later node in the object identifier tree.
The starting node is identified by the earlier "ObjIdComponents"s, and later "ObjIdComponents"s (if any) identify arcs
from the later node. The starting node is required to be neither the root, nor a node immediately beneath the root.

NOTE – A relative object identifier value has to be associated with a specific object identifier value so as to unambiguously
identify an object. Object identifier values are required (see 31.10) to have at least two components. This is why there is a
restriction on the starting node.

31.7 The "NameForm" shall be used only for those object identifier components whose numeric value and identifier
are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A to C (see also Annex D of this Recommendation |
International Standard), and shall be one of the identifiers specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A
to C. Where ITU-T Rec. X.660 | ISO/IEC 9834-1 specifies synonymous identifiers, any synonym may be used with the

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

50 ITU-T Rec. X.680 (07/2002)

same semantics. Where the same name is both an identifier specified in ITU-T Rec. X.660 | ISO/IEC 9834-1 and an
ASN.1 value reference within the module containing the "NameForm", the name within the object identifier value shall
be treated as an ITU-T Rec. X.660 | ISO/IEC 9834-1 identifier.

31.8 The "number" in the "NumberForm" and "XMLNumberForm" shall be the numeric value assigned to the
object identifier component.

31.9 The "identifier" in the "NameAndNumberForm" and "XMLNameAndNumberForm" shall be specified when a
numeric value is assigned to the object identifier component.

NOTE – The authorities allocating numeric values to object identifier components are identified in ITU-T Rec. X.660 |
ISO/IEC 9834-1.

31.10 The semantics associated with an object identifier value are specified in ITU-T Rec. X.660 | ISO/IEC 9834-1.
 NOTE – ITU-T Rec. X.660 | ISO/IEC 9834-1 requires that an object identifier value shall contain at least two arcs.

31.11 The significant part of the object identifier component is the "NameForm" or "NumberForm" or
"XMLNumberForm" which it reduces to, and which provides the numeric value for the object identifier component.
Except for the arcs specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, Annexes A to C (see also Annex D of this
Recommendation | International Standard), the numeric value of the object identifier component is always present in an
instance of object identifier value notation.

31.12 Where the "ObjectIdentifierValue" includes a "DefinedValue" for an object identifier value, the list of object
identifier components to which it refers is prefixed to the components explicitly present in the value.

NOTE – ITU-T Rec. X.660 | ISO/IEC 9834-1 recommends that whenever an object identifier value is assigned to identify an
object, an object descriptor value is also assigned.

EXAMPLES

With identifiers assigned as specified in ITU-T Rec. X.660 | ISO/IEC 9834-1, the values:

{ iso standard 8571 pci (1) }

and

{ 1 0 8571 1 }

would each identify an object, pci, defined in ISO 8571, as would

iso.standard.8571.pci(1)

and

1.0.8571.1

in an "XMLObjectIdentifierValue".

With the following additional definition:

ftam OBJECT IDENTIFIER ::= { iso standard 8571 }

the following value is equivalent to those above:

{ ftam pci(1) }

32 Notation for the relative object identifier type
32.1 The relative object identifier type (see 3.6.57) shall be referenced by the notation "RelativeOIDType":

 RelativeOIDType ::= RELATIVE-OID

32.2 This type has a tag which is universal class, number 13.

32.3 The value notation for a relative object identifier shall be "RelativeOIDValue", or when used as "XMLValue",
"XMLRelativeOIDValue". These productions are:

 RelativeOIDValue ::=
 "{" RelativeOIDComponentsList "}"

 RelativeOIDComponentsList ::=
 RelativeOIDComponents
 | RelativeOIDComponents RelativeOIDComponentsList

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 51

 RelativeOIDComponents ::=
 NumberForm
 | NameAndNumberForm
 | DefinedValue

 XMLRelativeOIDValue ::=
 XMLRelativeOIDComponentList

 XMLRelativeOIDComponentList ::=
 XMLRelativeOIDComponent
 | XMLRelativeOIDComponent & "." & XMLRelativeOIDComponentList

 XMLRelativeOIDComponent ::=
 XMLNumberForm
 | XMLNameAndNumberForm

32.4 The productions "NumberForm", "NameAndNumberForm", "XMLNumberForm",
"XMLNameAndNumberForm", and their semantics, are defined in subclauses 31.3 to 31.11.

32.5 The "DefinedValue" of "RelativeOIDComponents" shall be of type relative object identifier, and shall identify
an ordered set of arcs from some starting node in the object identifier tree to some later node in the object identifier tree.
The starting node is identified by the earlier "RelativeOIDComponents"s (if any), and later "RelativeOIDComponents"s
(if any) identify arcs from the later nodes.

32.6 The first "RelativeOIDComponents" or "XMLRelativeOIDComponent" identifies one or more arcs from some
starting node in the object identifier tree to some later node in the object identifier tree. The starting point can be defined
by comments associated with the type definition. If there is no definition of the starting node within comments
associated with the type definition, then it needs to be transmitted as an object identifier value in an instance of
communication (see E.2.19). The starting node is required to be neither the root, nor a node immediately beneath the
root.

NOTE – A relative object identifier value has to be associated with a specific object identifier value so as to unambiguously
identify an object. Object identifier values are required (see 31.10) to have at least two components. This is why there is a
restriction on the starting node.

EXAMPLE

With the following definitions:

thisUniversity OBJECT IDENTIFIER ::=
 {iso member-body country(29) universities(56) thisuni(32)}

firstgroup RELATIVE-OID ::= {science-fac(4) maths-dept(3)}

or in XML value notation:

thisUniversity ::= <OBJECT_IDENTIFIER>1.2.29.56.32</OBJECT_IDENTIFIER>

firstgroup ::= <RELATIVE_OID>4.3</RELATIVE_OID>

the relative object identifier:

relOID RELATIVE-OID ::= {firstgroup room(4) socket(6)}

or in XML value notation:

relOID ::= <RELATIVE_OID>4.3.4.6</RELATIVE_OID>

can be used instead of the OBJECT IDENTIFIER value {1 2 29 56 32 4 3 4 6} if the current root
(known by the application or transmitted by the application) is thisUniversity.

33 Notation for the embedded-pdv type
33.1 The embedded-pdv type (see 3.6.21) shall be referenced by the notation "EmbeddedPDVType":

 EmbeddedPDVType ::= EMBEDDED PDV
NOTE – The term "Embedded PDV" means an abstract value from a possibly different abstract syntax (essentially, the value and
encoding of a message defined in a separate – and identified – protocol) that is embedded in a message. Historically, it meant
"Embedded Presentation Data Value" from its use in the OSI Presentation Layer, but this expansion is not used today, and it
should be interpreted as "embedded value".

33.2 This type has a tag which is universal class, number 11.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

52 ITU-T Rec. X.680 (07/2002)

33.3 The type consists of values representing:
a) an encoding of a single data value that may, but need not, be the value of an ASN.1 type; and
b) identification (separately or together) of:

1) an abstract syntax; and
2) the transfer syntax.

NOTE 1 – The data value may be the value of an ASN.1 type, or may, for example, be the encoding of a still image or a moving
picture. The identification consists of either one or two object identifiers, or (in an OSI environment) references an OSI
presentation context identifier which specifies the abstract and transfer syntaxes.
NOTE 2 – The identification of the abstract syntax and/or the encoding may also be determined by the application designer as a
fixed value, in which case it is not encoded in an instance of communication.

33.4 The embedded-pdv type has an associated type. This associated type is used to support the value and subtype
notations of the embedded-pdv type.

33.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER }

 -- Abstract and transfer syntax object identifiers --,

 syntax OBJECT IDENTIFIER
 -- A single object identifier for identification of the abstract
 -- and transfer syntaxes --,

 presentation-context-id INTEGER
 -- (Applicable only to OSI environments)
 -- The negotiated OSI presentation context identifies the
 -- abstract and transfer syntaxes --,

 context-negotiation SEQUENCE {
 presentation-context-id INTEGER,
 transfer-syntax OBJECT IDENTIFIER }

 -- (Applicable only to OSI environments)
 -- Context-negotiation in progress, presentation-context-id
 -- identifies only the abstract syntax
 -- so the transfer syntax shall be specified --,

 transfer-syntax OBJECT IDENTIFIER
 -- The type of the value (for example, specification that it is
 -- the value of an ASN.1 type)
 -- is fixed by the application designer (and hence known to both
 -- sender and receiver). This
 -- case is provided primarily to support
 -- selective-field-encryption (or other encoding
 -- transformations) of an ASN.1 type --,

 fixed NULL
 -- The data value is the value of a fixed ASN.1 type (and hence
 -- known to both sender
 -- and receiver) -- },

 data-value-descriptor ObjectDescriptor OPTIONAL
 -- This provides human-readable identification of the class of the
 -- value --,

data-value OCTET STRING }

(WITH COMPONENTS {
 ... ,
 data-value-descriptor ABSENT })

NOTE – The embedded-pdv type does not allow the inclusion of a data-value-descriptor value. However, the definition of
the associated type provided here underlies the commonalities which exist between the embedded-pdv type, the external type and
the unrestricted character string type.

33.6 The presentation-context-id alternative is only applicable in an OSI environment, when the integer
value shall be an OSI presentation context identifier in the OSI defined context set. This alternative shall not be used
during OSI context negotiation.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 53

33.7 The context-negotiation alternative is only applicable in an OSI environment, and shall only be used
during OSI context negotiation. The integer value shall be an OSI presentation context identifier proposed for addition
to the OSI defined context set. The object identifier transfer-syntax shall identify a proposed transfer syntax for that
OSI presentation context which is to be used to encode the value.

33.8 The notation for a value of the embedded-pdv type shall be the value notation for the associated type defined
in 33.5, where the value of the data-value component of type OCTET STRING represents an encoding using the
transfer syntax specified in identification.

EmbeddedPdvValue ::= SequenceValue -- value of associated type defined in 33.5

XMLEmbeddedPDVValue ::= XMLSequenceValue -- value of associated type defined in 33.5

EXAMPLE – If a single option is to be enforced, such as use of syntaxes, then this can be done by writing:

EMBEDDED PDV (WITH COMPONENTS {
 ... ,
 identification (WITH COMPONENTS {
 syntaxes PRESENT }) })

34 Notation for the external type
34.1 The external type (see 3.6.37) shall be referenced by the notation "ExternalType":

 ExternalType ::= EXTERNAL

34.2 This type has a tag which is universal class, number 8.

34.3 The type consists of values representing:
a) an encoding of a single data value that may, but need not, be the value of an ASN.1 type; and
b) identification of:

1) an abstract syntax; and
2) the transfer syntax; and

c) (optionally) an object descriptor which provides a human-readable description of the category of the data
value. The optional object descriptor shall not be present unless explicitly permitted by comment
associated with use of the "ExternalType" notation.

NOTE – Note 1 in 33.3 also applies to the external type.

34.4 The external type has an associated type. This type is used to give precision to the definition of the abstract
values of the external type and is also used to support the value and subtype notations of the external type.

NOTE – Encoding rules may define a different type which is used to derive encodings, or may specify encodings without
reference to any associated type. For example, the encoding in BER uses a different sequence type for historical reasons.

34.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER }

 -- Abstract and transfer syntax object identifiers --,

 syntax OBJECT IDENTIFIER
 -- A single object identifier for identification of the abstract
 -- and transfer syntaxes --,

 presentation-context-id INTEGER
 -- (Applicable only to OSI environments)
 -- The negotiated OSI presentation context identifies the
 -- abstract and transfer syntaxes --,

 context-negotiation SEQUENCE {
 presentation-context-id INTEGER,
 transfer-syntax OBJECT IDENTIFIER }

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

54 ITU-T Rec. X.680 (07/2002)

 -- (Applicable only to OSI environments)
 -- Context-negotiation in progress, presentation-context-id
 -- identifies only the abstract syntax
 -- so the transfer syntax shall be specified --,

 transfer-syntax OBJECT IDENTIFIER
 -- The type of the value (for example, specification that it is
 -- the value of an ASN.1 type)
 -- is fixed by the application designer (and hence known to both
 -- sender and receiver). This
 -- case is provided primarily to support
 -- selective-field-encryption (or other encoding
 -- transformations) of an ASN.1 type --,

 fixed NULL
 -- The data value is the value of a fixed ASN.1 type (and hence
 -- known to both sender
 -- and receiver) -- },

data-value-descriptor ObjectDescriptor OPTIONAL
 -- This provides human-readable identification of the class of
 -- the value --,

data-value OCTET STRING }
(WITH COMPONENTS {
 ... ,
 identification (WITH COMPONENTS {
 ... ,
 syntaxes ABSENT,
 transfer-syntax ABSENT,
 fixed ABSENT }) })

NOTE – For historical reasons, the external type does not allow the syntaxes, transfer-syntax or fixed alternatives of
identification. Application designers requiring these options should use the embedded-pdv type. The definition of the
associated type provided here underlies the commonalities which exist between the external type, the unrestricted character string
type and the embedded-pdv type.

34.6 The text of 33.6 and 33.7 also applies to the external type.

34.7 The notation for a value of the external type shall be the value notation for the associated type defined in 34.5,
where the value of the data-value component of type OCTET STRING represents an encoding using the transfer syntax
specified in identification.

 ExternalValue ::= SequenceValue -- value of associated type defined in 34.5

 XMLExternalValue ::= XMLSequenceValue -- value of associated type defined in 34.5
NOTE – For historical reasons, encoding rules are able to transfer embedded values in EXTERNAL whose encodings are not an
exact multiple of eight bits. Such values cannot be represented in value notation using the above associated type.

35 The character string types
These types consist of strings of characters from some specified character repertoire. It is normal to define a character
repertoire and its encoding by use of cells in one or more tables, each cell corresponding to a character in the repertoire.
A graphic symbol and a character name are also usually assigned to each cell, although in some repertoires, cells are left
empty, or have names but no shapes (examples of cells with names but no shape include control characters such as EOF
in ISO/IEC 646 and spacing characters such as THIN-SPACE and EN-SPACE in ISO/IEC 10646-1).

In general, the information associated with a cell denotes a distinct abstract character in the repertoire even if that
information is null (no graphic symbol or name is assigned to that cell).

The ASN.1 basic value notation for character string types has three variants (which can be combined), specified formally
below:

a) A representation of the characters in the string using assigned graphic symbols, possibly including
spacing characters; this is the "cstring" notation.

NOTE 1 – Such a representation can be ambiguous in a printed representation when the same graphic symbol is
used for more than one character in the repertoire.
NOTE 2 – Such a representation can be ambiguous in a printed representation when spacing characters of
different widths are present in the repertoire or the specification is printed with a proportional-spacing font.

b) A listing of the characters in the character string value by giving a series of ASN.1 value references that
have been assigned the character; a set of such value references is defined in the module

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 55

ASN1-CHARACTER-MODULE in clause 38 for the ISO/IEC 10646-1 character repertoire and for the
IA5String character repertoire; this form is not available for other character repertoires unless the user
assigns to such value references using the value notation described in a) above or c) below.

c) A listing of the characters in the character string value by identifying each abstract character by the
position of its cell in the character repertoire table(s); this form is available only for IA5String,
UniversalString, UTF8String and BMPString.

The ASN.1 XML value notation for character string types uses the "xmlcstring" notation, which includes the ability to
use escape sequences for certain special characters, and for specification of characters using decimal or hexadecimal (see
11.15).

36 Notation for character string types
36.1 The notation for referencing a character string type (see 3.6.11) shall be:

 CharacterStringType ::=
 RestrictedCharacterStringType
 | UnrestrictedCharacterStringType

"RestrictedCharacterStringType" is the notation for a restricted character string type and is defined in clause 37.
"UnrestrictedCharacterStringType" is the notation for the unrestricted character string type and is defined in 40.1.

36.2 The tag of each restricted character string type is specified in 37.1. The tag of the unrestricted character string
type is specified in 40.2.

36.3 The notation for a character string value shall be:

 CharacterStringValue ::=
 RestrictedCharacterStringValue
 | UnrestrictedCharacterStringValue

 XMLCharacterStringValue ::=
 XMLRestrictedCharacterStringValue
 | XMLUnrestrictedCharacterStringValue

"RestrictedCharacterStringValue" and "XMLRestrictedCharacterStringValue" are defined in 37.8 and 37.9 respectively.
"UnrestrictedCharacterStringValue" and "XMLUnrestrictedCharacterStringValue" are notations for an unrestricted
character string value and they are defined in 40.7.

37 Definition of restricted character string types
This clause defines types whose values are restricted to sequences of zero, one or more characters from some
specified collection of characters. The notation for referencing a restricted character string type shall be
"RestrictedCharacterStringType":

 RestrictedCharacterStringType ::=
 BMPString
 | GeneralString
 | GraphicString
 | IA5String
 | ISO646String
 | NumericString
 | PrintableString
 | TeletexString
 | T61String
 | UniversalString
 | UTF8String
 | VideotexString
 | VisibleString

Each "RestrictedCharacterStringType" alternative is defined by specifying:
a) the tag assigned to the type; and
b) a name (e.g., NumericString) by which the type is referenced; and

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

56 ITU-T Rec. X.680 (07/2002)

c) the characters in the collection of characters used in defining the type, by reference to a table listing the
character graphics or by reference to a registration number in the ISO International Register of Coded
Character Sets (see ISO International Register of Coded Character Sets to be used with Escape
Sequences), or by reference to ISO/IEC 10646-1.

37.1 Table 6 lists the name by which each restricted character string type is referenced, the number of the universal
class tag assigned to the type, the defining registration number or table, or the defining text clause, and, where necessary,
identification of a Note relating to the entry in the table. Where a synonymous name is defined in the notation, this is
listed in parentheses.

Table 6 – List of restricted character string types

Name for referencing the type Universal
class number

Defining registration numbera), table number,
or ITU-T Rec. X.680 | ISO/IEC 8824-1 clause Notes

UTF8String 12 Subclause 37.16

NumericString 18 Table 7 (Note 1)

PrintableString 19 Table 8 (Note 1)

TeletexString (T61String) 20 6, 87, 102, 103, 106, 107, 126, 144, 150, 153, 156,
164, 165, 168 + SPACE + DELETE

(Note 2)

VideotexString 21 1, 13, 72, 73, 87, 89, 102, 108, 126, 128, 129, 144,
150, 153, 164, 165, 168 + SPACE + DELETE

(Note 3)

IA5String 22 1, 6 + SPACE + DELETE

GraphicString 25 All G sets + SPACE

VisibleString (ISO646String) 26 6 + SPACE

GeneralString 27 All G and all C sets + SPACE + DELETE

UniversalString 28 See 37.6

BMPString 30 See 37.15

a) The defining registration numbers are listed in ISO International Register of Coded Character Sets to be used with Escape
Sequences.

NOTE 1 – The type-style, size, colour, intensity, or other display characteristics are not significant.

NOTE 2 – Register entries 6 and 156 can be used instead of 102 and 103.

NOTE 3 – The entries corresponding to these registration numbers provide the functionality of CCITT Rec. T.100 and ITU-T
Rec. T.101.

37.2 Table 7 lists the characters which can appear in the NumericString type and NumericString character
abstract syntax.

Table 7 – NumericString

Name Graphic

Digits 0, 1, ... 9

Space (space)

37.3 The following object identifier and object descriptor values are assigned to identify and describe the
NumericString character abstract syntax:

{ joint-iso-itu-t asn1(1) specification(0) characterStrings(1) numericString(0) }

and

"NumericString character abstract syntax"

NOTE 1 – This object identifier value can be used in CHARACTER STRING values and in other cases where there is a need to carry
the identification of the character string type separate from the value.
NOTE 2 – A value of a NumericString character abstract syntax may be encoded by:
 a) One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character transfer

syntax is identified by the object identifier associated with those rules in ISO/IEC 10646-1, Annex N.
 b) The ASN.1 encoding rules for the built-in type NumericString. In this case the character transfer syntax is identified

by the object identifier value {joint-iso-itu-t asn1(1) basic-encoding(1)}.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 57

37.4 Table 8 lists the characters which can appear in the PrintableString type and PrintableString character
abstract syntax.

Table 8 – PrintableString

Name Graphic

Latin capital letters A, B, ... Z

Latin small letters a, b, ... z

Digits 0, 1, ... 9

SPACE (space)
APOSTROPHE '

LEFT PARENTHESIS (

RIGHT PARENTHESIS)

PLUS SIGN +

COMMA ,

HYPHEN-MINUS -

FULL STOP .

SOLIDUS /

COLON :

EQUALS SIGN =

QUESTION MARK ?

37.5 The following object identifier and object descriptor values are assigned to identify and describe the
PrintableString character abstract syntax:

{ joint-iso-itu-t asn1(1) specification(0) characterStrings(1) printableString(1) }

and

"PrintableString character abstract syntax"

NOTE 1 – This object identifier value can be used in CHARACTER STRING values and in other cases where there is a need to carry
the identification of the character string type separate from the value.
NOTE 2 – A value of a PrintableString character abstract syntax may be encoded by:
 a) One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character transfer

syntax is identified by the object identifier associated with those rules in ISO/IEC 10646-1, Annex N.
 b) The ASN.1 encoding rules for the built-in type PrintableString. In this case the character transfer syntax is

identified by the object identifier { joint-iso-itu-t asn1(1) basic-encoding(1) }.

37.6 The characters which can appear in the UniversalString type are any of the characters allowed by
ISO/IEC 10646-1.

37.7 Use of this type invokes the conformance requirements specified in ISO/IEC 10646-1.
NOTE – Clause 38 defines an ASN.1 module containing a number of subtypes of this type for the "Collections of graphics
characters for subsets" defined in ISO/IEC 10646-1, Annex A.

37.8 The "RestrictedCharacterStringValue" notation for the restricted character string types shall be "cstring" (see
11.14), "CharacterStringList", "Quadruple", or "Tuple". "Quadruple" is only capable of defining a character string of
length one, and can only be used in value notation for UniversalString, UTF8String or BMPString types. "Tuple" is
only capable of defining a character string of length one, and can only be used in value notation for IA5String types.

 RestrictedCharacterStringValue ::=
 cstring
 | CharacterStringList
 | Quadruple
 | Tuple

 CharacterStringList ::= "{" CharSyms "}"

 CharSyms ::=
 CharsDefn
 | CharSyms "," CharsDefn

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

58 ITU-T Rec. X.680 (07/2002)

 CharsDefn ::=
 cstring
 | Quadruple
 | Tuple
 | DefinedValue

 Quadruple ::= "{" Group "," Plane "," Row "," Cell "}"

 Group ::= number

 Plane ::= number

 Row ::= number

 Cell ::= number

 Tuple ::= "{" TableColumn "," TableRow "}"

 TableColumn ::= number

 TableRow ::= number
NOTE 1 – The "cstring" notation can only be used unambiguously on a medium capable of displaying the graphic symbols for the
characters which are present in the value. Conversely, if the medium has no such capability, the only means of unambiguously
specifying a character string value that uses such graphic symbols is by means of the "CharacterStringList" notation, and only if
the type is UniversalString, UTF8String, BMPString or IA5String, and the "DefinedValue" alternative of "CharsDefn" is
used (see 38.1.2).
NOTE 2 – Clause 38 defines a number of "valuereference"s which denote single characters (strings of size 1) of type BMPString
(and hence UniversalString and UTF8String) and IA5String.

 EXAMPLE – Suppose that one wishes to specify a value of "abcΣdef" for a UniversalString where the character "Σ" is
not representable on the available medium, this value can also be expressed as:

 IMPORTS BasicLatin, greekCapitalLetterSigma FROM ASN1-CHARACTER-MODULE
 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) };

 MyAlphabet ::= UniversalString (FROM (BasicLatin | greekCapitalLetterSigma))

 mystring MyAlphabet ::= { "abc" , greekCapitalLetterSigma , "def" }

NOTE 3 – When specifying the value of a UniversalString, UTF8String or BMPString type, the "cstring" notation should not
be used unless ambiguities arising from different graphic characters with similar shapes have been resolved.

 EXAMPLE – The following "cstring" notation should not be used because the graphic symbols 'H', 'O', 'P' and 'E' occur in
the BASIC LATIN, CYRILLIC and BASIC GREEK alphabets and thus are ambiguous.

 IMPORTS BasicLatin, Cyrillic, BasicGreek FROM ASN1-CHARACTER-MODULE
 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) };

 MyAlphabet ::= UniversalString (FROM (BasicLatin | Cyrillic | BasicGreek))

 mystring MyAlphabet ::= "HOPE"

An alternative unambiguous definition of mystring would be:

 mystring MyAlphabet(BasicLatin) ::= "HOPE"

Formally, mystring is a value reference to a value of a subset of MyAlphabet, but it can, by the value mapping rules of Annex B,
be used wherever a value reference is needed to this value within MyAlphabet.

37.9 The "XMLRestrictedCharacterStringValue" notation is:

 XMLRestrictedCharacterStringValue ::= xmlcstring

37.10 There are characters which cannot be directly represented in "xmlcstring". These shall be represented using the
escape sequences specified in 11.15.

NOTE – If the restricted character string value contains characters which are not ISO/IEC 10646-1 characters specified in 11.15.1,
these cannot be represented in "xmlcstring", and such values cannot be transferred using XML Encoding Rules (see ITU-T Rec.
X.693 | ISO/IEC 8825-4).

37.11 The "DefinedValue" in "CharsDefn" shall be a reference to a value of that type.

37.12 The "number" in the "Plane", "Row" and "Cell" productions shall be less than 256, and in the "Group"
production it shall be less than 128.

37.13 The "Group" specifies a group in the coding space of the UCS, the "Plane" specifies a plane within the group,
the "Row" specifies a row within the plane, and the "Cell" specifies a cell within the row. The abstract character
identified by this notation is the abstract character for the cell specified by the "Group", "Plane", "Row", and "Cell"
values. In all cases, the set of permitted characters may be restricted by subtyping.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 59

NOTE – Application designers should consider carefully the conformance implications when using open-ended character string
types such as GeneralString, GraphicString, and UniversalString without the application of constraints. Careful text on
conformance is also needed for bounded but large character string types such as TeletexString.

37.14 The "number" in the "TableColumn" production shall be in the range zero to seven, and the "number" in the
"TableRow" production shall be in the range zero to fifteen. The "TableColumn" specifies a column and the "TableRow"
specifies a row of a character code table in accordance with Figure 1 of ISO/IEC 2022. This notation is used only for
IA5String when the code table contains Register Entry 1 in columns 0 and 1 and Register Entry 6 in columns 2 to 7
(see the ISO International Register of Coded Character Sets to be used with Escape Sequences).

37.15 BMPString is a subtype of UniversalString that has its own unique tag and contains only the characters in
the Basic Multilingual Plane (those corresponding to the first 64K-2 cells, less cells whose encoding is used to address
characters outside the Basic Multilingual Plane) of ISO/IEC 10646-1. It has an associated type defined as:

 UniversalString (Bmp)

where Bmp is defined in the ASN.1 module ASN1-CHARACTER-MODULE (see clause 38) as the subtype of
UniversalString corresponding to the "BMP" collection name defined in ISO/IEC 10646-1, Annex A.

NOTE 1 – Since BMPString is a built-in type, it is not defined in ASN1-CHARACTER-MODULE.
NOTE 2 – The purpose of defining BMPString as a built-in type is to enable encoding rules (such as BER) that do not take
account of constraints to use 16-bit rather than 32-bit encodings.
NOTE 3 – In the value notation all BMPString values are valid UniversalString and UTF8String values.

37.16 UTF8String is synonymous with UniversalString at the abstract level and can be used wherever
UniversalString is used (subject to rules requiring distinct tags) but has a different tag and is a distinct type.

NOTE – The encoding of UTF8String used by BER and PER is different from that of UniversalString, and for most text will
be less verbose.

38 Naming characters and collections defined in ISO/IEC 10646-1
This clause specifies an ASN.1 built-in module which contains the definition of a value reference name for each
character from ISO/IEC 10646-1, where each name references a UniversalString value of size 1. This module also
contains the definition of a type reference name for each collection of characters from ISO/IEC 10646-1, where each
name references a subset of the UniversalString type.

NOTE – These values are available for use in the value notation of the UniversalString type and types derived from it. All of
the value and type references defined in the module specified in 38.1 are exported and must be imported by any module that uses
them.

38.1 Specification of the ASN.1 Module "ASN1-CHARACTER-MODULE"

The module is not printed here in full. Instead, the means by which it is defined is specified.

38.1.1 The module begins as follows:

ASN1-CHARACTER-MODULE { joint-iso-itu-t asn1(1) specification(0) modules(0)
iso10646(0) }

DEFINITIONS ::= BEGIN
 -- All of the value references and type references defined within this
 -- module are implicitly exported, and are available for import by any module.
 -- ISO/IEC 646 control characters:

 nul IA5String ::= {0, 0}
soh IA5String ::= {0, 1}
stx IA5String ::= {0, 2}
etx IA5String ::= {0, 3}
eot IA5String ::= {0, 4}
enq IA5String ::= {0, 5}
ack IA5String ::= {0, 6}
bel IA5String ::= {0, 7}
bs IA5String ::= {0, 8}
ht IA5String ::= {0, 9}
lf IA5String ::= {0,10}
vt IA5String ::= {0,11}
ff IA5String ::= {0,12}
cr IA5String ::= {0,13}
so IA5String ::= {0,14}
si IA5String ::= {0,15}
dle IA5String ::= {1, 0}
dc1 IA5String ::= {1, 1}

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

60 ITU-T Rec. X.680 (07/2002)

dc2 IA5String ::= {1, 2}
dc3 IA5String ::= {1, 3}
dc4 IA5String ::= {1, 4}
nak IA5String ::= {1, 5}
syn IA5String ::= {1, 6}
etb IA5String ::= {1, 7}
can IA5String ::= {1, 8}
em IA5String ::= {1, 9}
sub IA5String ::= {1,10}
esc IA5String ::= {1,11}
is4 IA5String ::= {1,12}
is3 IA5String ::= {1,13}
is2 IA5String ::= {1,14}
is1 IA5String ::= {1,15}
del IA5String ::= {7,15}

38.1.2 For each entry in each list of character names for the graphic characters (glyphs) shown in clauses 24 and 25 of
ISO/IEC 10646-1, the module includes a statement of the form:

<namedcharacter> BMPString ::= <tablecell>
-- represents the character <iso10646name>, see ISO/IEC 10646-1

where:
a) <iso10646name> is the character name derived from one listed in ISO/IEC 10646-1;
b) <namedcharacter> is a string obtained by applying to <iso10646name> the procedures specified in

38.2;
c) <tablecell> is the glyph in the table cell in ISO/IEC 10646-1 corresponding to the list entry.

EXAMPLE

latinCapitalLetterA BMPString ::= {0, 0, 0, 65}
-- represents the character LATIN CAPITAL LETTER A, see ISO/IEC 10646-1

greekCapitalLetterSigma BMPString ::= {0, 0, 3, 163}
-- represents the character GREEK CAPITAL LETTER SIGMA, see ISO/IEC 10646-1

38.1.3 For each name for a collection of graphic characters specified in ISO/IEC 10646-1, Annex A, a statement is
included in the module of the form:

<namedcollectionstring> ::= BMPString
(FROM (<alternativelist>))

 -- represents the collection of characters <collectionstring>,
 -- see ISO/IEC 10646-1.

where:
a) <collectionstring> is the name for the collection of characters assigned in ISO/IEC 10646-1;
b) <namedcollectionstring> is formed by applying to <collectionstring> the procedures of 38.3;
c) <alternativelist> is formed by using the <namedcharacter>s as generated in 38.2 for each of the

characters specified by ISO/IEC 10646-1.

The resulting type reference, <namedcollectionstring>, forms a limited subset. (See the tutorial in Annex F.)
NOTE – A limited subset is a list of characters in a specified subset. Contrast this to a selected subset, which is a collection of
characters listed in ISO/IEC 10646-1, Annex A, plus the BASIC LATIN collection.

EXAMPLE (partial)

 space BMPString ::= {0, 0, 0, 32}
exclamationMark BMPString ::= {0, 0, 0, 33}
quotationMark BMPString ::= {0, 0, 0, 34}
... -- and so on
tilde BMPString ::= {0, 0, 0, 126}

 BasicLatin ::= BMPString
 (FROM (space
 | exclamationMark
 | quotationMark
 | ... -- and so on
 | tilde)
)

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 61

-- represents the collection of characters BASIC LATIN, see ISO/IEC 10646-1.
-- The ellipsis in this example is used for brevity and means "and so on";
-- you cannot use this in an actual ASN.1 module.

38.1.4 ISO/IEC 10646-1 defines three levels of implementation. By default all types defined in
ASN1-CHARACTER-MODULE, except for Level1 and Level2 conform to implementation level 3, since such types have
no restriction on use of combining characters. Level1 indicates that implementation level 1 is required, Level2
indicates that implementation level 2 is required, and Level3 indicates that implementation level 3 is required. Thus,
the following are defined in ASN1-CHARACTER-MODULE:

 Level1 ::= BMPString (FROM (ALL EXCEPT CombiningCharacters))

 Level2 ::= BMPString (FROM (ALL EXCEPT CombiningCharactersType-2))

 Level3 ::= BMPString

NOTE 1 – CombiningCharacters and CombiningCharactersType-2 are the <namedcollectionstring>s corresponding to
"COMBINING CHARACTERS" and "COMBINING CHARACTERS B-2", respectively, defined in ISO/IEC 10646-1, Annex A.
NOTE 2 – Level1 and Level2 will be used either following an "IntersectionMark" (see clause 46) or as the only constraint in a
"ConstraintSpec". (See E.2.7.1 for an example.)
NOTE 3 – See F.2.5 for more information on this topic.

38.1.5 The module is terminated by the statement:

 END

38.1.6 A user-defined equivalent of the example in 38.1.3 is:

 BasicLatin ::= BMPString (FROM (space..tilde))
 -- represents the collection of characters BASIC LATIN,
 -- see ISO/IEC 10646-1.

38.2 A <namedcharacter> is the string obtained by taking an <iso10646name> (see 38.1.2) and applying the
following algorithm:

a) each upper-case letter of the <iso10646name> is transformed into the corresponding lower-case letter,
unless the upper-case letter is preceded by a SPACE, in which case the upper-case letter is kept
unchanged;

b) each digit and each HYPHEN-MINUS is kept unchanged;
c) each SPACE is deleted.

NOTE – The above algorithm, taken in conjunction with the character naming guidelines in Annex K of ISO/IEC 10646-1 will
always result in unambiguous value notation for every character name listed in ISO/IEC 10646-1.

EXAMPLE – The character from ISO/IEC 10646-1, row 0, cell 60, which is named "LESS-THAN SIGN" and has the
graphic representation "<" can be referenced using the "DefinedValue" of:

 less-thanSign

38.3 A <namedcollectionstring> is the string obtained by taking <collectionstring> and applying the
following algorithm:

a) each upper-case letter of the ISO/IEC 10646-1 collection name is transformed into the corresponding
lower-case letter, unless the upper-case letter is preceded by a SPACE or it is the first letter of the name,
in which case the upper-case letter is kept unchanged;

b) each digit and each HYPHEN-MINUS is kept unchanged;
c) each SPACE is deleted.

EXAMPLES

1) The collection identified in Annex A of ISO/IEC 10646-1 as:

 BASIC LATIN

has the ASN.1 type reference:

 BasicLatin

2) A character string type consisting of the characters in the BASIC LATIN collection, together with the BASIC
ARABIC collection, could be defined as follows:

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

62 ITU-T Rec. X.680 (07/2002)

 My-Character-String ::= BMPString (FROM (BasicLatin | BasicArabic))

NOTE – The above construction is necessary because the apparently simpler construction of:

 My-Character-String ::= BMPString (BasicLatin | BasicArabic)

would allow only strings which were entirely BASIC LATIN or BASIC ARABIC but not a mixture of both.

39 Canonical order of characters
39.1 For the purpose of "ValueRange" subtyping and for possible use by encoding rules, a canonical ordering of
characters is specified for UniversalString, UTF8String, BMPString, NumericString, PrintableString,
VisibleString, and IA5String.

39.2 For the purpose of this clause only, a character is in one-to-one correspondence with a cell in a code table,
whether that cell has been assigned a character name or shape, and whether it is a control character or printing character,
combining or non-combining character.

39.3 The canonical order of an abstract character is defined by the canonical order of its value in the 32-bit
representation of ISO/IEC 10646-1, with low numbers appearing first and high numbers appearing last in the canonical
order.

39.4 Endpoints of "ValueRanges" within "PermittedAlphabet" notations (or individual characters) can be specified
using either the ASN.1 value reference defined in the module ASN1-CHARACTER-MODULE or (where the graphic symbol
is unambiguous in the context of the specification and the medium used to represent it) by giving the graphic symbol in a
"cstring" (ASN1-CHARACTER-MODULE is defined in 38.1) , or by use of the "Quadruple" or "Tuple" notation of 37.8.

39.6 For NumericString, the canonical ordering, increasing from left to right, is defined (see Table 7 of 37.2) as:

 (space) 0 1 2 3 4 5 6 7 8 9

The entire character set contains precisely 11 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring".

NOTE – This order is the same as the order of the corresponding characters in the BASIC LATIN collection of ISO/IEC 10646-1.

39.7 For PrintableString, the canonical ordering, increasing from left to right and top to bottom, is defined (see
Table 8 of 37.4) as:

(SPACE) (APOSTROPHE) (LEFT PARENTHESIS) (RIGHT PARENTHESIS) (PLUS SIGN) (COMMA)
(HYPHEN-MINUS) (FULL STOP) (SOLIDUS) 0123456789 (COLON) (EQUAL SIGN) (QUESTION
MARK) ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

The entire character set contains precisely 74 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring".

NOTE – This order is the same as the order of the corresponding characters in the BASIC LATIN collection of ISO/IEC 10646-1.

39.8 For VisibleString, the canonical order of the cells is defined from the ISO/IEC 646 encoding (called
ISO 646 ENCODING) as follows:

 (ISO 646 ENCODING) - 32
NOTE – That is, the canonical order is the same as the characters in cells 2/0-7/14 of the ISO/IEC 646 code table.

The entire character set contains precisely 95 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring".

39.9 For IA5String, the canonical order of the cells is defined from the ISO/IEC 646 encoding as follows:

 (ISO 646 ENCODING)

The entire character set contains precisely 128 characters. The endpoint of a "ValueRange" (or individual characters) can
be specified using the graphic symbol in a "cstring" or an ISO 646 control character value reference defined in 38.1.1.

40 Definition of unrestricted character string types
This clause defines a type whose values are the values of any character abstract syntax. In an OSI environment, this
abstract syntax may be part of the OSI defined context set. Otherwise, it is referenced directly for each instance of use
of the unrestricted character string type.

NOTE 1 – A character abstract syntax (and one or more corresponding character transfer syntaxes) can be defined by any
organization able to allocate ASN.1 OBJECT IDENTIFIERs.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 63

NOTE 2 – Profiles produced by a community of interest will normally determine the character abstract syntaxes and character
transfer syntaxes that are to be supported for specific instances or groups of instances of CHARACTER STRING. It will be usual in
OSI applications to include reference to supported syntaxes in an OSI Protocol Implementation Conformance Statement.

40.1 The unrestricted character string type (see 3.6.76) shall be referenced by the notation
"UnrestrictedCharacterStringType":

 UnrestrictedCharacterStringType ::= CHARACTER STRING

40.2 This type has a tag which is universal class, number 29.

40.3 The type consists of values representing:
a) a character string value that may, but need not, be the value of an ASN.1 character string type; and
b) identification (separately or together) of:

1) a character abstract syntax; and
2) the character transfer syntax.

40.4 The unrestricted character string type has an associated type. This associated type is used to support its value
and subtype notations.

40.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHOICE {
 syntaxes SEQUENCE {
 abstract OBJECT IDENTIFIER,
 transfer OBJECT IDENTIFIER }

 -- Abstract and transfer syntax object identifiers --,

 syntax OBJECT IDENTIFIER
 -- A single object identifier for identification of the
 -- abstract and transfer syntaxes --,

 presentation-context-id INTEGER
 -- (Applicable only to OSI environments)
 -- The negotiated OSI presentation context identifies the
 -- abstract and transfer syntaxes --,

 context-negotiation SEQUENCE {
 presentation-context-id INTEGER,
 transfer-syntax OBJECT IDENTIFIER }

 -- (Applicable only to OSI environments)
 -- Context-negotiation in progress, presentation-context-id
 -- identifies only the
 -- abstract-syntax, so the transfer syntax shall be specified --,

 transfer-syntax OBJECT IDENTIFIER
 -- The type of the value (for example, specification that it is
 -- the value of an ASN.1 type) is fixed by the application
 -- designer (and hence known to both sender and receiver). This
 -- case is provided primarily to support
 -- selective-field-encryption (or other encoding
 -- transformations) of an ASN.1 type --,

 fixed NULL
 -- The data value is the value of a fixed ASN.1 type (and hence
 -- known to both sender and receiver) -- },

 data-value-descriptor ObjectDescriptor OPTIONAL
 -- This provides human-readable identification of the class of
 -- the value --,

string-value OCTET STRING }
(WITH COMPONENTS {
 ... ,
 data-value-descriptor ABSENT })

NOTE – The unrestricted character string type does not allow the inclusion of a data-value-descriptor value together with
the identification. However, the definition of the associated type provided here underlies the commonalities which exist
between the embedded-pdv type, the external type and the unrestricted character string type.

40.6 The text of 33.6 and 33.7 also applies to the unrestricted character string type.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

64 ITU-T Rec. X.680 (07/2002)

40.7 The value notation shall be the value notation for the associated type, where the value of the string-value
component of type OCTET STRING represents an encoding using the transfer syntax specified in identification.

UnrestrictedCharacterStringValue ::= SequenceValue -- value of associated type defined in 40.5

XMLUnrestrictedCharacterStringValue ::=
 XMLSequenceValue -- value of associated type defined in 40.5

40.8 An example of the unrestricted character string type is given in E.2.8.

41 Notation for types defined in clauses 42 to 44
41.1 The notation for referencing a type defined in clauses 42 to 44 shall be:

 UsefulType ::= typereference

where "typereference" is one of those defined in clauses 42 to 44 using the ASN.1 notation.

41.2 The tag of each "UsefulType" is specified in clauses 42 to 44.

42 Generalized time
42.1 This type shall be referenced by the name:

 GeneralizedTime

42.2 The type consists of values representing:
a) a calendar date, as defined in ISO 8601; and
b) a time of day, to any of the precisions defined in ISO 8601, except for the hours value 24 which shall not

be used; and
c) the local time differential factor as defined in ISO 8601.

42.3 The type is defined, using ASN.1, as follows:

 GeneralizedTime ::= [UNIVERSAL 24] IMPLICIT VisibleString

with the values of the VisibleString restricted to strings of characters which are either

a) a string representing the calendar date, as specified in ISO 8601, with a four-digit representation of the
year, a two-digit representation of the month and a two-digit representation of the day, without use of
separators, followed by a string representing the time of day, as specified in ISO 8601, without separators
other than decimal comma or decimal period (as provided for in ISO 8601), and with no terminating Z (as
provided for in ISO 8601); or

b) the characters in a) above followed by an upper-case letter Z; or

c) the characters in a) above followed by a string representing a local time differential, as specified in
ISO 8601, without separators.

In case a), the time shall represent the local time. In case b), the time shall represent coordinated universal time. In
case c), the part of the string formed as in case a) represents the local time (t1), and the time differential (t2) enables
coordinated universal time to be determined as follows:

 coordinated universal time is t1 − t2

EXAMPLES

 Case a)

 "19851106210627.3"

 local time 6 minutes, 27.3 seconds after 9 pm on 6 November 1985.

 Case b)

 "19851106210627.3Z"

 coordinated universal time as above.

 Case c)

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 65

 "19851106210627.3-0500"

 local time as in example a), with local time 5 hours retarded in relation to coordinated universal time.

42.4 The tag shall be as defined in 42.3.

42.5 The value notation shall be the value notation for the VisibleString defined in 42.3.

43 Universal time
43.1 This type shall be referenced by the name:

 UTCTime

43.2 The type consists of values representing:
a) calendar date; and
b) time to a precision of one minute or one second; and
c) (optionally) a local time differential from coordinated universal time.

43.3 The type is defined, using ASN.1, as follows:

 UTCTime ::= [UNIVERSAL 23] IMPLICIT VisibleString

with the values of the VisibleString restricted to strings of characters which are the juxtaposition of:

a) the six digits YYMMDD where YY is the two low-order digits of the Christian year, MM is the month
(counting January as 01), and DD is the day of the month (01 to 31); and

b) either:
1) the four digits hhmm where hh is hour (00 to 23) and mm is minutes (00 to 59); or
2) the six digits hhmmss where hh and mm are as in 1) above, and ss is seconds (00 to 59); and

c) either:
1) the character Z; or

2) one of the characters + or -, followed by hhmm, where hh is hour and mm is minutes.

The alternatives in b) above allow varying precisions in the specification of the time.

In alternative c) 1), the time is coordinated universal time. In alternative c) 2), the time (t1) specified by a) and b) above
is the local time; the time differential (t2) specified by c) 2) above enables the coordinated universal time to be
determined as follows:

 Coordinated universal time is t1 − t2

EXAMPLE 1 – If local time is 7am on 2 January 1982 and coordinated universal time is 12 noon on 2 January 1982, the
value of UTCTime is either of:

– "8201021200Z"; or
– "8201020700-0500".

EXAMPLE 2 – If local time is 7am on 2 January 2001 and coordinated universal time is 12 noon on 2 January 2001, the
value of UTCTime is either of:

– "0101021200Z"; or
– "0101020700-0500".

43.4 The tag shall be as defined in 43.3.

43.5 The value notation shall be the value notation for the VisibleString defined in 43.3.

44 The object descriptor type
44.1 This type shall be referenced by the name:

 ObjectDescriptor

44.2 The type consists of human-readable text which serves to describe an object. The text is not an unambiguous
identification of the object, but identical text for different objects is intended to be uncommon.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

66 ITU-T Rec. X.680 (07/2002)

NOTE – It is recommended that an authority assigning values of type OBJECT IDENTIFIER to an object should also assign values
of type ObjectDescriptor to that object.

44.3 The type is defined, using ASN.1, as follows:

 ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString

The GraphicString contains the text describing the object.

44.4 The tag shall be as defined in 44.3.

44.5 The value notation shall be the value notation for the GraphicString defined in 44.3.

45 Constrained types
45.1 The "ConstrainedType" notation allows a constraint to be applied to a (parent) type, either to restrict its set of
values to some subtype of the parent or (within a set or sequence type) to specify that component relations apply to
values of the parent type and to values of some other component in the same set or sequence value. It also allows an
exception identifier to be associated with a constraint.

 ConstrainedType ::=
 Type Constraint
 | TypeWithConstraint

In the first alternative, the parent type is "Type", and the constraint is specified by "Constraint" as defined in 45.6. The
second alternative is defined in 45.5.

45.2 When the "Constraint" notation follows a set-of or sequence-of type notation, it applies to the "Type" in the
(innermost) set-of or sequence-of notation, not to the set-of or sequence-of type.

NOTE – For example, in the following the constraint (SIZE(1..64)) applies to the VisibleString, not the SEQUENCE OF:

 NamesOfMemberNations ::= SEQUENCE OF VisibleString (SIZE(1..64))

45.3 When the "Constraint" notation follows the selection type notation, it applies to the choice type, and not to the
type of the selected alternative. Such a constraint is ignored (see 29.2).

NOTE – In the following example, the constraint (WITH COMPONENTS {..., a ABSENT}) applies to the CHOICE type T, not to
the selected SEQUENCE type, and has no effect on the values of V.

 T ::= CHOICE {
 a SEQUENCE {
 a INTEGER OPTIONAL,
 b BOOLEAN
 },
 b NULL
}

 V ::= a < T (WITH COMPONENTS {..., a ABSENT})

45.4 When the "Constraint" notation follows a "TaggedType" notation, the interpretation of the overall notation is
the same regardless of whether the "TaggedType" or the "Type" is considered as the parent type.

45.5 As a consequence of the interpretation specified in 45.2, special notation is provided to allow a constraint to be
applied to a set-of or sequence-of type. This is "TypeWithConstraint":

 TypeWithConstraint ::=
 SET Constraint OF Type
 | SET SizeConstraint OF Type
 | SEQUENCE Constraint OF Type
 | SEQUENCE SizeConstraint OF Type
 | SET Constraint OF NamedType
 | SET SizeConstraint OF NamedType
 | SEQUENCE Constraint OF NamedType
 | SEQUENCE SizeConstraint OF NamedType

In the first and second alternatives the parent type is "SET OF Type", while in the third and fourth it is "SEQUENCE OF
Type". In the fifth and sixth alternatives the parent type is "SET OF NamedType", and in the seventh and eighth is
"SEQUENCE OF NamedType". In the first, third, fifth and seventh alternatives, the constraint is "Constraint" (see 45.6),
while in the second, fourth, sixth and eighth it is "SizeConstraint" (see 47.5).

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 67

NOTE – Although the "Constraint" alternatives encompass the corresponding "SizeConstraint" alternatives, the "SizeConstraint"
alternatives are provided for historical reasons.

45.6 A constraint is specified by the notation "Constraint":

 Constraint ::= "(" ConstraintSpec ExceptionSpec ")"

 ConstraintSpec ::=
 SubtypeConstraint
 | GeneralConstraint

"ExceptionSpec" is defined in clause 49. Unless it is used in conjunction with an "extension marker" (see clause 48), it
shall only be present if the "ConstraintSpec" includes an occurrence of "DummyReference" (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.3) or is a "UserDefinedConstraint" (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 9). The
"GeneralConstraint" is defined in ITU-T Rec. X.682 | ISO/IEC 8824-3, 8.1.

45.7 The notation "SubtypeConstraint" is the general-purpose "ElementSetSpecs" notation (see clause 46):

 SubtypeConstraint ::= ElementSetSpecs

In this context, the elements are values of the parent type (the governor of the element set is the parent type). There shall
be at least one element in the set.

46 Element set specification
46.1 In some notations a set of elements of some identified type or information object class (the governor) can be
specified. In such cases, the notation "ElementSetSpec" is used:

 ElementSetSpecs ::=
 RootElementSetSpec
 | RootElementSetSpec "," "..."
 | RootElementSetSpec "," "..." "," AdditionalElementSetSpec

 RootElementSetSpec ::= ElementSetSpec

 AdditionalElementSetSpec ::= ElementSetSpec

 ElementSetSpec ::= Unions
 | ALL Exclusions

 Unions ::= Intersections
 | UElems UnionMark Intersections

 UElems ::= Unions

 Intersections ::= IntersectionElements
 | IElems IntersectionMark IntersectionElements

 IElems ::= Intersections

 IntersectionElements ::= Elements | Elems Exclusions

 Elems ::= Elements

 Exclusions ::= EXCEPT Elements

 UnionMark ::= "|" | UNION

 IntersectionMark ::= "^" | INTERSECTION
NOTE 1 – The caret character "^" and the word INTERSECTION are synonymous. The character "|" and the word UNION are
synonymous. It is recommended that, as a stylistic matter, either the characters or the words be used throughout a user
Specification. EXCEPT can be used with either style.
NOTE 2 – The order of precedence from highest to lowest is: EXCEPT, "^", "|". Notice that ALL EXCEPT is specified so that it
cannot be interspersed with the other constraints without the use of parentheses around "ALL EXCEPT xxx".
NOTE 3 – Anywhere that "Elements" occurs, either a constraint without parentheses [e.g., INTEGER (1..4)] or a parenthesized
subtype constraint [e.g., INTEGER ((1..4 | 9))] can appear.
NOTE 4 – Note that two EXCEPT operators must have either "|", "^", "(" or ")" separating them, so (A EXCEPT B EXCEPT C)
is not permitted. This must be changed to ((A EXCEPT B) EXCEPT C) or (A EXCEPT (B EXCEPT C)).
NOTE 5 – Note that ((A EXCEPT B) EXCEPT C) is the same as (A EXCEPT (B | C)).
NOTE 6 – The elements that are referenced by "ElementSetSpecs" is the union of the elements referenced by the
"RootElementSetSpec" and "AdditionalElementSetSpec" (when present).

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

68 ITU-T Rec. X.680 (07/2002)

NOTE 7 – When the elements are information objects (i.e., the governor is an information object class), the notation
"ObjectSetElements" as defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.3 is used.

46.2 The elements forming the set are:
a) if the first alternative of the "ElementSetSpec" is selected, those specified in the "Unions" [see b)],

otherwise all elements of the governor except those specified in the "Elements" notation of the
"Exclusions";

b) if the first alternative of "Unions" is selected, then those specified in the "Intersections" [see c)], otherwise
those specified at least once either in the "UElems" or "Intersections";

c) if the first alternative of "Intersections" is selected, those specified in the "IntersectionElements" [see d)],
otherwise those specified by "IElems" which also are specified by "IntersectionElements";

d) if the first alternative of "IntersectionElements" is selected, those specified in the "Elements", otherwise
those specified in the "Elems" except those specified in the "Exclusions".

46.3 The set of values is defined to be extensible if the following conditions hold:
a) for "Elements": there is an extension marker at the outer level;

NOTE – This applies even if all values of the parent are included in the root of the new constrained type.

b) for "Unions": at least one of the "UElems" is extensible;
c) for "Intersections": at least one of the "IElems" is extensible;
d) for "Exclusions": the set of elements preceding EXCEPT is extensible.

Otherwise, the set of values is not extensible (see also G.4).

46.4 If the set of values is extensible, the root values can be determined by performing the set arithmetic using only
root values of the sets of values involved in the set arithmetic, as specified in 46.2. The extension additions can be
determined by performing the set arithmetic using the root values augmented by the extension additions, for each set of
values involved in the set arithmetic, and then excluding values that were determined to be root values.

46.5 The "Elements" notation is defined as follows:

 Elements ::=
 SubtypeElements
 | ObjectSetElements
 | "(" ElementSetSpec ")"

The elements specified by this notation are:
a) As described in clause 47 below if the "SubtypeElements" alternative is used. This notation shall only be

used when the governor is a type, and the actual type involved will further constrain the notational
possibilities. In this context, the governor is referred to as the parent type.

b) As described in ITU-T Rec. X.681 | ISO/IEC 8824-2, 12.10, if the "ObjectSetElements" notation is used.
This notation shall only be used when the governor is an information object class.

c) Those specified by the "ElementSetSpec" if the third alternative is used.

46.6 When performing set arithmetic within a subtype constraint or a value set when the governing type is
extensible, only abstract values that are in the extension root of the governing type are used in the set arithmetic. In this
case, all instances of value notation (including value references) used in set arithmetic are required to reference an
abstract value of the extension root of the governing type. The end-points of a range constraint are required to reference
values that are present in the extension root of the governing type, and the range specification as a whole references all
(and only) those values in the range that are within the extension root of the governing type.

46.7 When performing set arithmetic involving information object sets, all information objects are used in the set
arithmetic. If any of the information object sets contributing to the set arithmetic are extensible, or if there is an
extension marker at the outermost level of an "ElementSetSpecs", the result of the set arithmetic is extensible.

46.8 If a subtype constraint is serially applied to a parent type which is extensible through the application of an
extensible constraint, value notation used within it shall not reference values that are not in the extension root of the
parent type. The result of the second (serially applied) constraint is defined to be the same as if the constraint had been
applied to the parent type without its extension marker and possible extension additions.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 69

EXAMPLE

Foo ::= INTEGER (1..6, ..., 73..80)
Bar ::= Foo (73) -- illegal
foo Foo ::= 73 -- legal since it is value notation for Foo, not part of a constraint

Bar is illegal since 73 is not in the extension root of Foo. If 73 had been in the extension root of Foo, the example
would have been legal, and Bar would have contained the single value of 73.

47 Subtype elements

47.1 General

A number of different forms of notation for "SubtypeElements" are provided. They are identified below, and their syntax
and semantics are defined in the following subclauses. Table 9 summarizes which notations can be applied to which
parent types.

 SubtypeElements ::=
 SingleValue
 | ContainedSubtype
 | ValueRange
 | PermittedAlphabet
 | SizeConstraint
 | TypeConstraint
 | InnerTypeConstraints
 | PatternConstraint

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

70 ITU-T Rec. X.680 (07/2002)

Table 9 – Applicability of subtype value sets

Type (or derived
from such a type by

tagging or subtyping)

Single
value

Contained
subtype

Value
range

Size
constraint

Permitted
alphabet

Type
constraint

Inner
subtyping

Pattern
constraint

Bit string Yes Yes No Yes No No No No
Boolean Yes Yes No No No No No No
Choice Yes Yes No No No No Yes No
Embedded-pdv Yes No No No No No Yes No
Enumerated Yes Yes No No No No No No
External Yes No No No No No Yes No
Instance-of Yes Yes No No No No Yes No
Integer Yes Yes Yes No No No No No
Null Yes Yes No No No No No No
Object class field type Yes Yes No No No No No No
Object descriptor Yes Yes No Yes Yes No No No
Object identifier Yes Yes No No No No No No
Octet string Yes Yes No Yes No No No No
open type No No No No No Yes No No
Real Yes Yes Yes No No No Yes No
Relative object
identifier

Yesb) Yesb) No No No No No No

Restricted character
string types

Yes Yes Yesa) Yes Yes No No Yes

Sequence Yes Yes No No No No Yes No
Sequence-of Yes Yes No Yes No No Yes No
Set Yes Yes No No No No Yes No
Set-of Yes Yes No Yes No No Yes No
Time types Yes Yes No No No No No No
Unrestricted character
string type

Yes No No Yes No No Yes No

a) Allowed only within the "PermittedAlphabet" of BMPString, IA5String, NumericString, PrintableString,
VisibleString, UTF8String and UniversalString.

b) The starting node for all relative object identifier types or values in constraints or valuesets shall be the same as the starting
node for the governor.

47.2 Single value

47.2.1 The "SingleValue" notation shall be:

 SingleValue ::= Value

where "Value" is the value notation for the parent type.

47.2.2 A "SingleValue" specifies the single value of the parent type specified by "Value".

47.3 Contained subtype

47.3.1 The "ContainedSubtype" notation shall be:

 ContainedSubtype ::= Includes Type

 Includes ::= INCLUDES | empty

The "empty" alternative of the "Includes" production shall not be used when "Type" in "ContainedSubtype" is the
notation for the null type.

47.3.2 A "ContainedSubtype" specifies all of the values in the root of the parent type that are also in the root of
"Type". "Type" is required to be derived from the same built-in type as the parent type.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 71

47.3.3 The set of values referenced by an extensible "Type" used in a contained subtype constraint does not inherit
the extension marker from the "Type". Any values in "Type" that are not in the extension root of that type are ignored,
and do not contribute to the values of the constrained type.

NOTE – The use of an extensible "Type" does not in itself make the constrained type extensible.

47.4 Value range

47.4.1 The "ValueRange" notation shall be:

 ValueRange ::= LowerEndpoint ".." UpperEndpoint

47.4.2 A "ValueRange" specifies the values in a range of values which are designated by specifying the values of the
endpoints of the range. This notation can only be applied to integer types, the "PermittedAlphabet" of certain restricted
character string types (IA5String, NumericString, PrintableString, VisibleString, BMPString,
UniversalString and UTF8String only) and real types. All values specified in the "ValueRange" are required to be
in the root of the parent type.

NOTE – For the purpose of subtyping, PLUS-INFINITY exceeds all real values and MINUS-INFINITY is less than all real values.

47.4.3 Each endpoint of the range is either closed (in which case that endpoint is specified) or open (in which case the
endpoint is not specified). When open, the specification of the endpoint includes a less-than symbol ("<"):

 LowerEndpoint ::= LowerEndValue | LowerEndValue "<"

 UpperEndpoint ::= UpperEndValue | "<" UpperEndValue

47.4.4 An endpoint may also be unspecified, in which case the range extends in that direction as far as the parent type
allows:

 LowerEndValue ::= Value | MIN

 UpperEndValue ::= Value | MAX
NOTE – When a "ValueRange" is used as a "PermittedAlphabet" constraint, "LowerEndValue" and "UpperEndValue" shall be of
size 1.

47.5 Size constraint

47.5.1 The "SizeConstraint" notation shall be:

 SizeConstraint ::= SIZE Constraint

47.5.2 A "SizeConstraint" can only be applied to bit string types, octet string types, character string types, set-of types
or sequence-of types.

47.5.3 The "Constraint" specifies the permitted integer values for the length of the specified values, and takes the
form of any constraint which can be applied to the following parent type:

 INTEGER (0 .. MAX)

The "Constraint" shall use the "SubtypeConstraint" alternative of "ConstraintSpec".

47.5.4 The unit of measure depends on the parent type, as follows:

Type Unit of measure

bit string bit

octet string octet

character string character

set-of component value

sequence-of component value
NOTE – The count of the number of characters specified in this subclause for determining the size of a character string value shall
be clearly distinguished from a count of octets. The count of characters shall be interpreted according to the definition of the
collection of characters used in the type, in particular, in relation to references to the standards, tables or registration numbers in a
register which can appear in such a definition.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

72 ITU-T Rec. X.680 (07/2002)

47.6 Type constraint

47.6.1 The "TypeConstraint" notation shall be:

 TypeConstraint ::= Type

47.6.2 This notation is only applied to an open type notation and restricts the open type to values of "Type".

47.7 Permitted alphabet

47.7.1 The "PermittedAlphabet" notation shall be:

 PermittedAlphabet ::= FROM Constraint

47.7.2 A "PermittedAlphabet" specifies all values which can be constructed using a sub-alphabet of the parent string.
This notation can only be applied to restricted character string types.

47.7.3 The "Constraint" is any which could be applied to the parent type (see Table 9), except that it shall use the
"SubtypeConstraint" alternative of "ConstraintSpec". The sub-alphabet includes precisely those characters which appear
in one or more of the values of the parent string type which are allowed by the "Constraint".

47.7.4 If "Constraint" is extensible, then the set of values selected by the permitted alphabet constraint is extensible.
The set of values in the root are those permitted by the root of "Constraint", and the extension additions are those values
permitted by the root together with the extension-additions of "Constraint", excluding those values already in the root.

47.8 Inner subtyping

47.8.1 The "InnerTypeConstraints" notation shall be:

 InnerTypeConstraints ::=
 WITH COMPONENT SingleTypeConstraint
 | WITH COMPONENTS MultipleTypeConstraints

47.8.2 An "InnerTypeConstraints" specifies only those values which satisfy a collection of constraints on the presence
and/or values of the components of the parent type. A value of the parent type is not specified unless it satisfies all of the
constraints expressed or implied (see 47.8.6). This notation can be applied to the set-of, sequence-of, set, sequence and
choice types.

NOTE – An "InnerTypeConstraints" applied to a set or sequence type is ignored by the COMPONENTS OF transformation (see 24.4
and 26.2).

47.8.3 For the types which are defined in terms of a single other (inner) type (set-of and sequence-of), a constraint
taking the form of a subtype value specification is provided. The notation for this is "SingleTypeConstraint":

 SingleTypeConstraint ::= Constraint

The "Constraint" defines a subtype of the single other (inner) type. A value of the parent type is specified if and only if
each inner value belongs to the subtype obtained by applying the "Constraint" to the inner type.

47.8.4 For the types which are defined in terms of multiple other (inner) types (choice, set, and sequence), a number
of constraints on these inner types can be provided. The notation for this is "MultipleTypeConstraints":

 MultipleTypeConstraints ::=
 FullSpecification
 | PartialSpecification

 FullSpecification ::= "{" TypeConstraints "}"

 PartialSpecification ::= "{" "..." "," TypeConstraints "}"

 TypeConstraints ::=
 NamedConstraint
 | NamedConstraint "," TypeConstraints

 NamedConstraint ::=
 identifier ComponentConstraint

47.8.5 The "TypeConstraints" contains a list of constraints on the component types of the parent type. For a sequence
type, the constraints must appear in order. The inner type to which the constraint applies is identified by means of its
identifier. For a given component, there shall be at most one "NamedConstraint".

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 73

47.8.6 The "MultipleTypeConstraints" comprises either a "FullSpecification" or a "PartialSpecification". When
"FullSpecification" is used, there is an implied presence constraint of ABSENT on all inner types which can be
constrained to be absent (see 47.8.9) and which is not explicitly listed. Where "PartialSpecification" is employed, there
are no implied constraints, and any inner type can be omitted from the list.

47.8.7 A particular inner type may be constrained in terms of its presence (in values of the parent type), its value, or
both. The notation is "ComponentConstraint":

 ComponentConstraint ::= ValueConstraint PresenceConstraint

47.8.8 A constraint on the value of an inner type is expressed by the notation "ValueConstraint":

 ValueConstraint ::= Constraint | empty

The constraint is satisfied by a value of the parent type if and only if the inner value belongs to the subtype specified by
the "Constraint" applied to the inner type.

47.8.9 A constraint on the presence of an inner type shall be expressed by the notation "PresenceConstraint":

 PresenceConstraint ::= PRESENT | ABSENT | OPTIONAL | empty

The meaning of these alternatives, and the situations in which they are permitted are defined in 47.8.9.1 to 47.8.9.3.

47.8.9.1 If the parent type is a sequence or set, a component type marked OPTIONAL may be constrained to be PRESENT
(in which case the constraint is satisfied if and only if the corresponding component value is present) or to be ABSENT (in
which case the constraint is satisfied if and only if the corresponding component value is absent) or to be OPTIONAL (in
which case no constraint is placed upon the presence of the corresponding component value).

47.8.9.2 If the parent type is a choice, a component type can be constrained to be ABSENT (in which case the constraint
is satisfied if and only if the corresponding component type is not used in the value), or PRESENT (in which case the
constraint is satisfied if and only if the corresponding component type is used in the value); there shall be at most one
PRESENT keyword in a "MultipleTypeConstraints".

NOTE – See E.4.6 for a clarifying example.

47.8.9.3 The meaning of an empty "PresenceConstraint" depends on whether a "FullSpecification" or a
"PartialSpecification" is being employed:

a) in a "FullSpecification", this is equivalent to a constraint of PRESENT for a set or sequence component
marked OPTIONAL and imposes no further constraint otherwise;

b) in a "PartialSpecification", no constraint is imposed.

47.9 Pattern constraint

47.9.1 The "PatternConstraint" notation shall be:

 PatternConstraint ::= PATTERN Value

47.9.2 "Value" shall be a "cstring" of type UniversalString (or a reference to such a character string) which
contains an ASN.1 regular expression as defined in Annex A. The "PatternConstraint" selects those values of the parent
type that satisfy the ASN.1 regular expression. The entire value shall satisfy the entire ASN.1 regular expression, i.e., the
"PatternConstraint" does not select values whose leading characters match the (entire) ASN.1 regular expression but
which contain further trailing characters.

NOTE – "Value" is formally defined as a value of type UniversalString, but the sets of values of type UniversalString and
UTF8String are the same (see 37.16). Thus a totally equivalent definition could have been to say that "Value" is a value of type
UTF8String.

48 The extension marker
NOTE – Like the constraint notation in general, the extension marker has no effect on some encoding rules of ASN.1, such as the
Basic Encoding Rules, but does on others, such as the Packed Encoding Rules. Its effect on encodings defined using ECN is
determined by the ECN specification.

48.1 The extension marker, ellipsis, is an indication that extension additions are expected. It makes no statement as
to how such additions should be handled other than that they shall not be treated as an error during the decoding process.

48.2 The joint use of the extension marker and an exception identifier (see clause 49) is both an indication that
extension additions are expected and also provides a means for identifying the action to be taken by the application if
there is a constraint violation. It is recommended that this notation be used in those situations where store and forward or

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

74 ITU-T Rec. X.680 (07/2002)

any other form of relaying is in use, so as to indicate (for example) that any unrecognized extension additions are to be
returned to the application for possible re-encoding and relaying.

48.3 The result of set arithmetic involving subtype constraints, value sets or information object sets that are
extensible is specified in clause 46.

48.4 If a type defined with an extensible constraint is referenced in a "ContainedSubtype", the newly defined type
does not inherit the extension marker or any of its extension additions (see 47.3.3). The newly defined type can be made
extensible by including an extension marker at the outermost level in its "ElementSetSpecs" (see also 46.3). For
example:

 A ::= INTEGER (0..10, ..., 12) -- A is extensible.
 B ::= INTEGER (A) -- B is inextensible and is constrained to 0-10.
 C ::= INTEGER (A, …) -- C is extensible and is constrained to 0-10.

48.5 If a type defined with an extensible constraint is further constrained with an "ElementSetSpecs", the resulting
type does not inherit the extension marker nor any extension additions that may be present in the former constraint (see
46.8). For example:

 A ::= INTEGER (0..10, ...) -- A is extensible.
 B ::= A (2..5) -- B is inextensible.
 C ::= A -- C is extensible.

48.6 Components of a set, sequence or choice type that are constrained to be absent shall not be present, regardless
of whether the set, sequence or choice type is an extensible type.

NOTE – Inner type constraints have no effect on extensibility.

For example:

 A ::= SEQUENCE {
a INTEGER
b BOOLEAN OPTIONAL,
...
}

 B ::= A (WITH COMPONENTS {b ABSENT})
 -- B is extensible, but 'b' shall not be
 -- present in any of its values.

48.7 Where this Recommendation | International Standard requires distinct tags (see 24.5 to 24.6, 26.3 and 28.3),
the following transformation shall conceptually be applied before performing the check for tag uniqueness:

48.7.1 A new element or alternative (called the conceptually-added element, see 48.7.2) is conceptually added at the
extension insertion point if:

a) there are no extension markers but extensibility is implied in the module heading, and then an extension
marker is added and the new element is added as the first addition after that extension marker; or

b) there is a single extension marker in a CHOICE or SEQUENCE or SET, and then the new element is added at
the end of the CHOICE or SEQUENCE or SET immediately prior to the closing brace; or

c) there are two extension markers in a CHOICE or SEQUENCE or SET, and then the new element is added
immediately before the second extension marker.

48.7.2 This conceptually-added element is solely for the purposes of checking legality through the application of rules
requiring distinct tags (see 24.5 to 24.6, 26.3 and 28.3). It is conceptually-added after the application of automatic
tagging (if applicable) and the expansion of COMPONENTS OF.

48.7.3 The conceptually-added element is defined to have a tag which is distinct from the tag of all normal ASN.1
types, but which matches the tag of all such conceptually-added elements and matches the indeterminate tag of the open
type, as specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 14.2, Note 2.

NOTE – The rules concerning tag uniqueness relating to the conceptually added element and to the open type, together with the
rules requiring distinct tags (see 24.5 to 24.6, 26.3 and 28.3) are necessary and sufficient to ensure that:

 a) any unknown extension addition can be unambiguously attributed to a single insertion point when a BER encoding is
decoded; and

 b) unknown extension additions can never be confused with OPTIONAL elements.
In PER the above rules are sufficient but are not necessary to ensure these properties. They are nonetheless imposed as rules
of ASN.1 to ensure independence of the notation from encoding rules.

48.7.4 If, with these conceptually-added elements, the rules requiring distinct types are violated, then the specification
has made illegal use of the extensibility notation.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 75

NOTE – The purpose of the above rules is to make precise restrictions arising from the use of insertion points (particularly those
which are not at the end of SEQUENCEs or SETs or CHOICEs). The restrictions are designed to ensure that in BER, DER and CER it
is possible to attribute an unknown element received by a version 1 system unambiguously to a specific insertion point. This
would be important if the exception handling of such added elements was different for different insertion points.

48.8 Examples

48.8.1 Example 1

 A ::= SET {
 a A,
 b CHOICE {
 c C,
 d D,
 ...
 }
}

is legal, for there is no ambiguity as any added material must be part of b.

48.8.2 Example 2

 A ::= SET {
 a A,
 b CHOICE {
 c C,
 d D,
 ...
 },
 ... ,
 d D
}

is illegal, for added material may be part of b, or may be at the outer level of A, and a version 1 system cannot tell which.

48.8.3 Example 3

 A ::= SET {
 a A,
 b CHOICE {
 c C,
 ...
 } ,
 d CHOICE {
 e E,
 ...
 }
}

is also illegal, for added material may be part of b or d.

48.8.4 More complex examples can be constructed, with extensible choices inside extensible choices, or extensible
choices within elements of a sequence marked OPTIONAL or DEFAULT, but the above rules are necessary and sufficient to
ensure that an element not present in version 1 can be unambiguously attributed by a version 1 system to precisely one
insertion point.

49 The exception identifier
49.1 In a complex ASN.1 specification, there are a number of places where it is specifically recognized that
decoders have to handle material that is not completely specified in it. These cases arise in particular from use of a
constraint that is defined using a parameter of the abstract syntax (see ITU-T Rec. X.683 | ISO/IEC 8824-4, clause 10).

49.2 In such cases, the application designer needs to identify the actions to be taken when some implementation-
dependent constraint is violated. The exception identifier is provided as an unambiguous means of referring to parts of
an ASN.1 specification in order to indicate the actions to be taken. The identifier consists of a "!" character, followed by
an optional ASN.1 type and a value of that type. In the absence of the type, INTEGER is assumed as the type of the value.

49.3 If an "ExceptionSpec" is present, it indicates that there is text in the body of the standard saying how to handle
the constraint violation associated with the "!" character. If it is absent, then the implementors will either need to
identify text that describes the action that they are to take, or will take implementation-dependent action when a
constraint violation occurs.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

76 ITU-T Rec. X.680 (07/2002)

49.4 The "ExceptionSpec" notation is defined as follows:

 ExceptionSpec ::= "!" ExceptionIdentification | empty

 ExceptionIdentification ::=
 SignedNumber
 | DefinedValue
 | Type ":" Value

The first two alternatives denote exception identifiers of type integer. The third alternative denotes an exception
identifier ("Value") of arbitrary type ("Type").

49.5 Where a type is constrained by multiple constraints, more than one of which has an exception identifier, the
exception identifier in the outermost constraint shall be regarded as the exception identifier for that type.

49.6 Where an exception marker is present on types that are used in set arithmetic, the exception identifier is
ignored and is not inherited by the type being constrained as a result of the set arithmetic.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 77

Annex A

ASN.1 regular expressions

(This annex forms an integral part of this Recommendation | International Standard)

A.1 Definition

A.1.1 An ASN.1 regular expression is a pattern that describes a set of strings whose format conforms to this pattern.
A regular expression is itself a string; it is constructed analogously to arithmetic expressions, by using various operators
to combine smaller expressions. The smallest expressions, which are (usually) made of one or two characters, are
placeholders that stand for a set of characters.

The regular expressions presented here are very similar to those of scripting languages like Perl and to those of XML
Schema, where some other examples of use can be found.

A.1.2 Most characters, including all letters and digits, are regular expressions that match themselves.

EXAMPLE

 The regular expression "fred" matches only the string "fred".

A.1.3 Two regular expressions may be concatenated; the resulting regular expression matches any string formed by
concatenating two substrings that respectively match the concatenated subexpressions.

A.2 Metacharacters

A.2.1 A metacharacter sequence (or metacharacter) is a set of one or more contiguous characters that have a special
meaning in the context of a regular expression. The following list contains all of the metacharacter sequences. Their
meaning is explained in the following clauses.

[] Match any character in the set where ranges are denoted by "-".
A "^" after the opening bracket complements the set which follows it.

{g,p,r,c} Quadruple which identifies a character of ISO/IEC 10646-1 (see 37.8)
\N{name} Match the named character (or any character of the named character set) 38.1
. Match any character (unless it is one of the newline characters defined in 11.1.6)
\d Match any digit (equivalent to "[0-9]")
\w Match any alphanumeric character (equivalent to "[a-zA-Z0-9]")
\t Match the HORIZONTAL TABULATION (9) character (see 11.1.6)
\n Match any one of the newline characters defined in 11.1.6
\r Match the CARRIAGE RETURN (13) character (see 11.1.6)
\s Match any one of the white-space characters (see 11.1.6)
\b atch a word boundary
\ (prefix) Quote the next metacharacter and cause it to be interpreted literally
\\ Match the REVERSE SOLIDUS (92) character "\"
"" Match the QUOTATION MARK (34) character (")
| (infix) Alternative between two expressions
() Grouping of the enclosed expression
* (postfix) Match the previous expression zero, one or several times
+ (postfix) Match the previous expression one or several times
? (postfix) Match the previous expression once or not at all
#n (postfix) Match the previous expression exactly n times (where n is a single digit)
#(n) (postfix) Match the previous expression exactly n times
#(n,) (postfix) Match the previous expression at least n times
#(n,m) (postfix) Match the previous expression at least n but not more than m times
#(,m) (postfix) Match the previous expression not more than m times

NOTE 1 – The characters CIRCUMFLEX ACCENT (94) "^" and HYPHEN-MINUS (45) "-" are additional metacharacters in
certain positions of the string defined in A.2.2.
NOTE 2 – The value in round brackets after a character name in this annex is the decimal value of the character in ISO/IEC
10646-1.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

78 ITU-T Rec. X.680 (07/2002)

NOTE 3 – This notation does not provide the metacharacters "^" and "$" to match the beginning and the end of a string
respectively. Hence a string shall match a regular expression in its entirety except if the latter includes ".*" at its beginning, at its
end or at both sides.
NOTE 4 – The following metacharacter sequences cannot contain white-space (see 11.1.6) unless the white-space appears
immediately prior to or following a newline:
 {g,p,r,c}
 \N{name}
 #n
 #(n)
 #(n,)
 #(n,m)
 #(,m)
If a regular expression contains a newline, any spacing characters that appear immediately prior to or following the newline have
no significance and match nothing (see 11.14.1).

A.2.2 A list of characters enclosed by "[" and "]" matches any single character in that list. If the first character of
the list is the caret "^", then it matches any character which is not in the list. A range of characters may be specified by
giving the first and last characters, separated by a hyphen (according to the order relation defined in 39.3). All
metacharacter sequences, except "]" and "\", lose their special meaning inside a list. To include a literal
CIRCUMFLEX ACCENT (94) "^", place it anywhere except in the first position or precede it with a backslash. To
include a literal HYPHEN-MINUS (45) "-", place it first or last in the list, or precede it with a backslash. To include a
literal CLOSING SQUARE BRACKET (93) "]", place it first. If the first character in the list is the caret "^", then the
characters "-" and "]" also match themselves when they immediately follow that caret. The metacharacter sequences
defined in A.2.3, A.2.4, A.2.6 and A.2.7 can be used between the square brackets where they keep their meaning.

EXAMPLES

 The regular expression "[0123456789]", or equivalently "[0-9]", matches any single digit.

 The regular expression "[^0]" matches any single character except 0.

 The regular expression "[\d^.-]" matches any single digit, a caret, a hyphen or a period.

A.2.3 To avoid any ambiguity between two ISO/IEC 10646-1 characters which have the same glyph, two notations
are provided. A notation of the form "{group,plane,row,cell}" references a (single) character according to the
"Quadruple" production defined in 37.8.

A.2.4 A notation of the form "\N{valuereference}" matches the referenced character if "valuereference" is a
reference to a restricted character string value of size 1 (see clause 37) which is defined or imported in the current
module. A notation of the form "\N{typereference}" matches any character of the referenced character set if
"typereference" is a reference to a subtype of a "RestrictedCharacterStringType" which is defined in the current module,
or is one of the "RestrictedCharacterStringType"s defined in clause 37.

NOTE – In particular, "valuereference" or "typereference" can be one of the references defined in the module
ASN1-CHARACTER-MODULE (see 38.1) and imported into the current module (see 37.8).

EXAMPLES

The regular expression "\N{greekCapitalLetterSigma}" matches GREEK CAPITAL LETTER SIGMA.

The regular expression "\N{BasicLatin}" matches any (single) character of the BASIC LATIN character
set.

"[\N{BasicLatin}\N{Cyrillic}\N{BasicGreek}]+", or equivalently "(\N{BasicLatin} |

\N{Cyrillic} | \N{BasicGreek})+", are regular expressions that match a string made of any (non null)
number of characters from the three character sets specified.

A.2.5 The period "." matches any single character, unless it is one of the newline characters defined in 11.1.6.

A.2.6 The symbol "\d" is a synonym for "[0-9]", i.e., it matches any single digit. The symbol "\t" matches the
HORIZONTAL TABULATION (9) character. The symbol "\w" is a synonym for "[a-zA-Z0-9]", i.e., it matches any
single (lower-case or upper-case) character or any single digit.

EXAMPLE

 The regular expression "\w+(\s\w+)*\." matches a sentence made of at least one (alphanumeric) word. The
words are separated by one white-space character as defined in 11.1.6. There is no white-space character
before the ending period.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 79

A.2.7 The symbol "\r" matches the CARRIAGE RETURN (13) character. The symbol "\n" matches any one of the
newline characters defined in 11.1.6. The symbol "\s" matches any one of the white-space characters defined in 11.1.6.
The symbol "\b" matches the empty string at the beginning or at the end of a word.

EXAMPLE

 The regular expression ".*\bfred\b.*" matches any string which includes the word "fred" (this word is
not only a series of four characters; it is delimited). Hence it matches strings like "fred" or "I am fred
the first", but not strings like "My name is freddy" or "I am afred I don’t know how to spell
‘afraid’!".

A.2.8 A character that normally functions as a metacharacter can be interpreted literally by prefixing it with a "\". If
the regular expression includes a QUOTATION MARK (34), this character shall be represented by a pair of
QUOTATION MARK characters.

EXAMPLES

 The regular expression "\." matches the (single) string ".", but not any string of any single character.

 The regular expression """" matches the string which contains a single QUOTATION MARK.

 The regular expression "\)" matches the string ")".

 The regular expression "\a" matches the character "a".
NOTE – The fourth example shows that the backslash is allowed to precede characters that are not metacharacters, but this use is
deprecated (because other metacharacters could be allowed in future versions of this Recommendation | International Standard).

A.2.9 Two or more regular expressions may be joined by the infix operator "|". The resulting regular expression
matches any string matching either subexpression.

A.2.10 A regular expression may be followed by a repetition operator. If the operator is "?", the preceding item is
optional and matched at most once. If the operator is "*", the preceding item will be matched zero or more times. If the
operator is "+", the preceding item will be matched one or more times. If the operator is of the form "#(n)", the
preceding item is matched exactly n times; in this particular case, the parentheses can be omitted if n consists of one
digit. If it is of the form "#(n,)", the item is matched n or more times. If it is of the form "#(,m)", the item is optional
and is matched at most m times. Finally, if it is of the form "#(n,m)", the item is matched at least n times, but not more
than m times.

NOTE – It is illegal to use the metacharacters "*", "+", "?" or "#" as the first character of a regular expression. It is also illegal to
use the metacharacters "#" or "|" as the last character of a regular expression.

EXAMPLES

 A phone number like "555-1212" is matched by the regular expression "\d#3-\d#4", or equivalently
"\d#(3)-\d#(4)".

 A price in dollars like "$12345.90" is matched by the regular expression "$\d#(1,)(\.\d#(1,2))?".
Note that parentheses are requested after the "#" symbol when it is followed by a range.

 A social security number like "123-45-5678" is matched by the regular expression "\d#3-?\d#2-?\d#4".

A.2.11 Repetition (see A.2.10) takes precedence over concatenation (see A.1.3), which in turn takes precedence over
alternation (see A.2.9). A whole subexpression may be enclosed in parentheses to override these precedence rules.

A.2.12 When a regular expression contains subexpressions in parentheses, each (non-quoted) opening parenthesis is
successively assigned a distinct (strictly positive) integer from the left to the right of the regular expression. Each
subexpression can then be referenced inside a comment with a notation like "\1", "\2" which uses the associated integer.
The empty subexpression "()" is not permitted.

EXAMPLE

 "((\d#2)(\d#2)(\d#4))" -- \1 is a date in which \2 is the month, \3 the day
 -- and \4 the year.

NOTE – There is a requirement for formal reference to subexpressions of a regular expression for many purposes. One such
instance is the need to write text to document the regular expression within the ASN.1 module. This is a notation which can be
used to provide such references. This notation is not used elsewhere in this Recommendation | International Standard.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

80 ITU-T Rec. X.680 (07/2002)

Annex B

Rules for type and value Compatibility
(This annex forms an integral part of this Recommendation | International Standard)

This annex is expected to be mainly of use to tool builders to ensure that they interpret the language identically. It is
present in order to clearly specify what is legal ASN.1 and what is not, and to be able to specify the precise value that
any value reference name identifies, and the precise set of values that any type or value set reference name identifies. It
is not intended to provide a definition of valid transformations of ASN.1 notations for any purpose other than those
stated above.

B.1 The need for the value mapping concept (tutorial introduction)

B.1.1 Consider the following ASN.1 definitions:

A ::= INTEGER

B ::= [1] INTEGER

C ::= [2] INTEGER (0..6,...)

D ::= [2] INTEGER (0..6,...,7)

E ::= INTEGER (7..20)

F ::= INTEGER {red(0), white(1), blue(2), green(3), purple(4)}

a A ::= 3

b B ::= 4

c C ::= 5

d D ::= 6

e E ::= 7

f F ::= green

B.1.2 It is clear that the value references a, b, c, d, e, and f can be used in value notation governed by A, B, C, D, E,
and F, respectively. For example:

W ::= SEQUENCE {w1 A DEFAULT a}

and:

x A ::= a

and:

Y ::= A(1..a)

are all valid given the definitions in B.1.1. If, however, A above were replaced by B, or C, or D, or E, or F, would the
resulting statements be illegal? Similarly, if the value reference a above were replaced in each of these cases by b, or c,
or d, or e, or f, are the resulting statements legal?

B.1.3 A more sophisticated question would be to consider in each case replacement of the type reference by the
explicit text to the right of its assignment. Consider for example:

f INTEGER {red(0), white(1), blue(2), green(3), purple(4)} ::= green

W ::= SEQUENCE {
 w1 INTEGER {red(0), white(1), blue(2), green(3), purple(4)}
 DEFAULT f}

x INTEGER {red(0), white(1), blue(2), green(3), purple(4)} ::= f

Y ::= INTEGER {red(0), white(1), blue(2), green(3), purple(4)}(1..f)

Would the above be legal ASN.1?

B.1.4 Some of the above examples are cases which, even if legal (as most of them are – see later text), users would
be ill-advised to write similar text, as they are at the least obscure and at worst confusing. However, there are frequent
uses of a value reference to a value of some type (not necessarily just an INTEGER type) as the default value for that type

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 81

with tagging or subtyping applied in the governor. The value mapping concept is introduced in order to provide a clear
and precise means of determining which constructs such as the above are legal.

B.1.5 Again, consider:

C ::= [2] INTEGER (0..6,...)

E ::= INTEGER (7..20)

F ::= INTEGER {red(0), white(1), blue(2), green(3), purple(4)}

In each case a new type is being created. For F we can clearly identify a 1-1 correspondence between the values in it and
the values in the universal type INTEGER. In the case of C and E, we can clearly identify a 1-1 correspondence between
the values in them and a subset of the values in the universal type INTEGER. We call this relationship a value mapping
between values in the two types. Moreover, because values in F, C, and E all have (1-1) mappings to values of INTEGER,
we can use these mappings to provide mappings between the values of F, C, and E themselves. This is illustrated for F
and C in Figure B.1.

Figure B.1

B.1.6 Now when we have a value reference such as:

c C ::= 5

to a value in C which is required in some context to identify a value in F, then, provided a value mapping exists between
that value in C and a (single) value in F, we can (and do) define c to be a legal reference to the value in F. This is
illustrated in Figure B.2, where the value reference c is used to identify a value in F, and can be used in place of a direct
reference f1 where we would otherwise have to define:

f1 F ::= 5

. . . .
. . . .

. . . .

. . . .

T0732160-99

[2]1
[2]0
[2]2

[2]5
[2]6

[2]4

[2]3

F C

Mappings Mappings

Integer

red(0)

white(1)
blue(2)

green(3)

purple(4)

Derived
mappings

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

82 ITU-T Rec. X.680 (07/2002)

Figure B.2

B.1.7 It should be noted that in some cases there will be values in one type (7 to 20 in A of B.1.1 for example) that
have value mappings to values in another type (7 to 20 in E of B.1.1 for example), but other values (21 upwards of A)
that have no such mapping. A reference to such values in A would not provide a valid reference to a value in E. (In this
example, the whole of E has a value mapping to a subset of A. In the general case, there may be a subset of values in
both types that have mappings, with other values in both types that are unmapped.)

B.1.8 In the body of the ASN.1 standards, normal English text is used to specify legality in the above and similar
cases. Subclause B.6 gives the precise requirements for legality and should be referenced whenever there is doubt about
a complex construction.

NOTE – The fact that value mappings are defined to exist between two occurrences of the "Type" construct permits the use of
value references established using one "Type" construct to identify values in another "Type" construct which is sufficiently
similar. It allows dummy and actual parameters to be typed using two textually separate "Type" constructs without violating the
rules for compatibility of dummy and actual parameters. It also allows fields of information object classes to be specified using
one "Type" construct and the corresponding value in an information object to be specified using a distinct "Type" construct which
is sufficiently similar. (These examples are not intended to be exhaustive.) It is, however, recommended that advantage be taken
of this freedom only for simple cases such as SEQUENCE OF INTEGER, or CHOICE {int INTEGER, id OBJECT IDENTIFIER},
and not for more complex "Type" constructs.

B.2 Value mappings

B.2.1 The underlying model is of types, as non-overlapping containers, that contain values, with every occurrence of
the ASN.1 "Type" construct defining a distinct new type (see Figures B.1 and B.2). This annex specifies when value
mappings exist between such types, enabling a reference to a value in one type to be used where a reference to a value in
some other type is needed.

EXAMPLE: Consider:

X ::= INTEGER

Y ::= INTEGER

X and Y are type reference names (pointers) to two distinct types, but value mappings exist between these types, so any
value reference to a value of X can be used when governed by Y (for example, following DEFAULT).

B.2.2 In the set of all possible ASN.1 values, a value mapping relates a pair of values. The whole set of value
mappings is a mathematical relation. This relation possesses the following properties: it is reflexive (each ASN.1 value is
related to itself), it is symmetric (if a value mapping is defined to exist from a value x1 to a value x2, then there
automatically exists a value mapping from x2 to x1), and it is transitive (if there is a value mapping from a value x1
to x2, and a value mapping from x2 to x3, then there automatically exists a value mapping from x1 to x3).

B.2.3 Furthermore, given any two types X1 and X2, seen as sets of values, the set of value mappings from values
in X1 to values in X2 is a one-to-one relation, that is, for all values x1 in X1, and x2 in X2, if there is a value mapping
from x1 to x2, then:

a) there is no value mapping from x1 to another value in X2 different from x2; and

. . . .

. . . .

T0732170-99

[2]1 [2]0

[2]2

[2]5
[2]6

[2]4

[2]3

5

F

C
c

f

f1

red(0)

white(1)
blue(2)

green(3)

purple(4)

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 83

b) there is no value mapping from any value in X1 (other than x1) to x2.

B.2.4 Where a value mapping exists between a value x1 and a value x2, a value reference to either one can
automatically be used to reference the other if so required by some governing type.

NOTE – The fact that value mappings are defined to exist between values in some "Type" constructs is solely for the purpose of
providing flexibility in the use of the ASN.1 notation. The existence of such mappings carries no implications whatsoever that the
two types carry the same application semantics, but it is recommended that ASN.1 constructs which would be illegal without
value mappings are used only if the corresponding types do indeed carry the same application semantics. Note that value
mappings will frequently exist in any large specification between two types that are identical ASN.1 constructs, but which carry
totally different application semantics, and where the existence of these value mappings is never used in determining the legality
of the total specification.

B.3 Identical type definitions

B.3.1 The concept of identical type definitions is used to enable value mappings to be defined between two instances
of "Type" which are either identical or sufficiently similar that one would normally expect their use to be
interchangeable. In order to give precision to the meaning of "sufficiently similar", this subclause specifies a series of
transformations which are applied to each of the instances of "Type" to produce a normal form for those instances of
"Type". The two instances of "Type" are defined to be identical type definitions if, and only if, their normal forms are
identical ordered lists of the same lexical items (see clause 11).

B.3.2 Each occurrence of "Type" in an ASN.1 specification is an ordered list of the lexical items defined in clause
11. The normal form is obtained by applying the transformations defined in B.3.2.1 to B.3.2.6 in that order.

B.3.2.1 All the comments (see 11.6) are removed.

B.3.2.2 The following transformations are not recursive and hence need only to be applied once, in any order:
a) For a type defined by a "ValueSetTypeAssignment", its definition is replaced by a "TypeAssignment"

using the same "Type" and a subtype constraint which is the contents of the "ValueSet" as specified in
15.6.

b) For each integer type: the "NamedNumberList" (see 18.1), if any, is reordered so that the "identifier"s are
in alphabetical order ("a" first, "z" last).

c) For each enumerated type: numbers are added, as specified in 19.3, to any "EnumerationItem" (see 19.1)
that is an "identifier" (without a number); then the "RootEnumeration" is reordered so that the
"identifiers" are in alphabetical order ("a" first, "z" last).

d) For each bitstring type: the "NamedBitList" (see 21.1), if any, is reordered so that the "identifiers" are in
alphabetical order ("a" first, "z" last).

e) For each object identifier value: each "ObjIdComponents" is transformed into its corresponding
"NumberForm" in accordance with the semantics of clause 31 (see the example in 31.12).

f) For each relative object identifier value (see 32.3): each "RelativeOIDComponents" is transformed into its
corresponding "NumberForm" in accordance with the semantics of clause 32.

g) For sequence types (see clause 24) and set types (see clause 26): any extension of the form
"ExtensionAndException", "ExtensionAdditions", is cut and pasted to the end of the
"ComponentTypeLists"; "OptionalExtensionMarker", if present, is removed.

 If "TagDefault" is IMPLICIT TAGS, the keyword IMPLICIT is added to all instances of "Tag" (see clause
30) unless either:

• it is already present; or

• the reserved word EXPLICIT is present; or

• the type being tagged is a CHOICE type or;

• it is an open type.
 If "TagDefault" is AUTOMATIC TAGS, the decision on whether to apply automatic tagging is taken

according to 24.2 (the automatic tagging will be performed later on).
NOTE – Subclauses 24.3 and 26.2 specify that the presence of a "Tag" in a "ComponentType" which was
inserted as a result of the replacement of "Components of Type" does not in itself prevent the automatic tagging
transformation.

 If "ExtensionDefault" is EXTENSIBILITY IMPLIED, an ellipsis ("...") is added after the
"ComponentTypeLists" if it is not present.

h) For choice type (see clause 28): "RootAlternativeTypeList" is reordered so that the identifiers of the
"NameType"s are in alphabetical order ("a" first, "z" last). "OptionalExtensionMarker", if present, is

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

84 ITU-T Rec. X.680 (07/2002)

removed. If "TagDefault" is IMPLICIT TAGS, the keyword IMPLICIT is added to all instances of "Tags"
(see clause 30) unless either:

• it is already present; or

• the reserved word EXPLICIT is present; or

• the type being tagged is a CHOICE type; or

• it is an open type.
 If "TagDefault" is AUTOMATIC TAGS, the decision on whether to apply automatic tagging is taken

according to 28.5 (the automatic tagging will be performed later on). If "ExtensionDefault" is
EXTENSIBILITY IMPLIED, an ellipsis ("...") is added after the "AlternativeTypeLists" if it is not
present.

B.3.2.3 The following transformations shall be applied recursively in the specified order, until a fix-point is reached:
a) For each object identifier value (see 31.3): if the value definition begins with a "DefinedValue", the

"DefinedValue" is replaced by its definition.
b) For each relative object identifier value (see 32.3): if the value definition contains "DefinedValue"s, the

"DefinedValue"s are replaced by their definition.
c) For sequence types and set types: all instances of "COMPONENTS OF Type" (see clause 24) are

transformed according to clauses 24 and 26.
d) For sequence, set and choice types: if it has earlier been decided to tag automatically (see B.3.2.2 g) and

h)), the automatic tagging is applied according to clauses 24, 26 and 28.
e) For selection type: the construction is replaced by the selected alternative according to clause 29.
f) All type references are replaced by their definitions according to the following rules:

• If the replacing type is a reference to the type being transformed, the type reference is replaced by a
special item that matches no other item than itself.

• If the replacing type is a sequence-of type or a set-of type, the constraints following the replaced
type, if any, are moved in front of the keyword OF.

• If the replaced type is a parameterized type or a parameterized value set (see ITU-T Rec. X.683 |
ISO/IEC 8824-4, 8.2), every "DummyReference" is replaced by the corresponding
"ActualParameter".

g) All value references are replaced by their definitions; if the replaced value is a parameterized value (see
ITU-T Rec. X.683 | ISO/IEC 8824-4, 8.2), every "DummyReference" is replaced by the corresponding
"ActualParameter".

NOTE – Before replacing any value reference, the procedures of this annex shall be applied to ensure that the
value reference identifies, through value mappings or directly, a value in its governing type.

B.3.2.4 For set type: the "RootComponentTypeList" is reordered so that the "ComponentType"s are in alphabetical
order ("a" first, "z" last).

B.3.2.5 The following transformations shall be applied to value definitions:
a) If an integer value is defined with an identifier, that identifier is replaced by the associated number.
b) If a bitstring value is defined using identifiers, it is replaced by the corresponding "bstring" with all

trailing zero bits removed.
c) All white-space immediately before and after each newline (including the newline) in a "cstring" is

removed.
d) All white-space in "bstring" and "hstring" is removed.
e) Each real value defined with base 2 is normalized so that the mantissa is odd, and each real value defined

with base 10 is normalized so that the last digit of the mantissa is not 0.
f) Each GeneralizedTime and UTCTime value is replaced by a string which conforms to the rules used

when encoding in DER and CER (see ITU-T Rec. X.690 | ISO/IEC 8825-1, 11.7 and 11.8).
g) After applying c), each UTF8String, NumericString, PrintableString, IA5String,

VisibleString (ISO646String), BMPString and UniversalString value is replaced by the
equivalent value of type UniversalString written using the "Quadruple" notation (see clause 37.8).

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 85

B.3.2.6 Any occurrence of "realnumber" shall be transformed to a "base" 10 associated "SequenceValue". Any
occurrence of the "RealValue" associated with "SequenceValue" shall be transformed to the associated "SequenceValue"
of the same "base", such that the last digit of the mantissa is not zero.

B.3.3 If two instances of "Type", when transformed to their normal form, are identical lists of lexical items (see
clause 11), then the two instances of "Type" are defined to be identical type definitions with the following exception: if
an "objectclassreference" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.1), an "objectreference" (see ITU-T Rec. X.681 |
ISO/IEC 8824-2, 7.2) or an "objectsetreference" (see ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.3) appears within the
normalized form of the "Type", then the two types are not defined to be identical type definitions, and value mappings
(see B.4 below) will not exist between them.

NOTE – This exception was inserted to avoid the need to provide transformation rules to normal form for elements of syntax
concerned with information object class, information object, and information object set notation. Similarly, specification for the
normalization of all value notation and of set arithmetic notation has not been included at this time. Should there prove to be a
requirement for such specification, this could be provided in a future version of this Recommendation | International Standard.
The concept of identical type definitions and of value mappings was introduced to ensure that simple ASN.1 constructs could be
used either by using reference names or by copying text. It was felt unnecessary to provide this functionality for more complex
instances of "Type" that included information object classes, etc.

B.4 Specification of value mappings

B.4.1 If two occurrences of "Type" are identical type definitions under the rules of B.3, then value mappings exist
between every value of one type and the corresponding value of the other type.

B.4.2 For a type, X1, created from any type, X2, by tagging (see clause 30), value mappings are defined to exist
between all the members of X1 and the corresponding members of X2.

NOTE – Whilst value mappings are defined to exist between the values of X1 and X2 in B.4.2 above, and between the values of X3
and X4 in B.4.3, if such types are embedded in otherwise identical but distinct type definitions (such as SEQUENCE or CHOICE type
definitions), the resulting type definitions (the SEQUENCE or CHOICE types) will not be identical type definitions, and there will be
no value mappings between them.

B.4.3 For a type, X3, created by selecting values from any governing type, X4, by the element set construct or by
subtyping, value mappings are defined to exist between the members of the new type and those members of the
governing type that were selected by the element set or subtyping construct. The presence or absence of an extension
marker has no effect on this rule.

B.4.4 Additional value mappings are specified in B.5 between some of the character string types.

B.4.5 A value mapping is defined to exist between all the values of any type defined as an integer type with named
values and any integer type defined without named values, or with different named values, or with different names for
named values, or both.

NOTE – The existence of the value mapping does not affect any scope rule requirements on the use of the names of named values.
They can only be used in a scope governed by the type in which they are defined, or by a typereference name to that type.

B.4.6 A value mapping is defined to exist between all the values of any type defined as a bit string type with named
bits and any bit string type defined without named bits, or with different named bits, or with different names for named
bits, or both.

NOTE – The existence of the value mapping does not affect any scope rule requirements on the use of the names of named bits.
They can only be used in a scope governed by the type in which they are defined, or by a typereference name to that type.

B.5 Additional value mappings defined for the character string types

B.5.1 There are two groups of restricted character string types, group A (see B.5.2) and group B (see B.5.3). Value
mappings are defined to exist between all types in group A, and value references to values of these types can be used
when governed by one of the other types. For the types in group B, value mappings never exist between these different
types, nor between any type in group A and any type in group B.

B.5.2 Group A consists of:
UTF8String
NumericString
PrintableString
IA5String
VisibleString (ISO646String)
UniversalString
BMPString

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

86 ITU-T Rec. X.680 (07/2002)

B.5.3 Group B consists of:
TeletexString (T61String)
VideotexString
GraphicString
GeneralString

B.5.4 The value mappings in group A are specified by mapping the character string values of each type to
UniversalString, then using the transitivity property of value mappings. To map values from one of the group A
types to UniversalString, the string is replaced by a UniversalString of the same length with each character
mapped as specified below.

B.5.5 Formally, the set of abstract values in UTF8String is the same set of abstract values that occur in
UniversalString but with a different tag (see 37.16), and each abstract value in UTF8String is defined to map to the
corresponding abstract value in UniversalString.

B.5.6 The glyphs (printed character shapes) for characters used to form the types NumericString and
PrintableString have recognizable and unambiguous mappings to a subset of the glyphs assigned to the first 128
characters of ISO/IEC 10646-1. The mapping for these types is defined using this mapping of glyphs.

B.5.7 IA5String and VisibleString are mapped into UniversalString by mapping each character into the
UniversalString character that has the identical (32-bit) value in the BER encoding of UniversalString as the (8-
bit) value of the BER encoding of IA5String and VisibleString.

B.5.8 BMPString is formally a subset of UniversalString, and corresponding abstract values have value
mappings.

B.6 Specific type and value compatibility requirements

This subclause uses the value mapping concept to provide precise text for the legality of certain ASN.1 constructs.

B.6.1 Any "Value" occurrence, x-notation, with a governing type, Y, identifies the value, y-val, in the governing type
Y that has a value mapping to the value x-val specified by x-notation. It is a requirement that such a value exists.

For example, consider the occurrence of x in the last line of the following:

X ::= [0] INTEGER (0..30)

x X ::= 29

Y ::= [1] INTEGER (25..35)

Z1 ::= Y (x | 30)

These ASN.1 constructs are legal, and in the last assignment the x-notation x is referencing the x-val 29 in X and,
through value mapping, identifies the y-val 29 in Y. The x-notation 30 is referencing the y-val 30 in Y, and Z1 is the set
of values 29 and 30. On the other hand, the assignment:

Z2 ::= Y (x | 20)

is illegal because there is no y-val to which the x-notation 20 can refer.

B.6.2 Any "Type" occurrence, t-notation, that has a governing type, V, identifies the complete set of values in the
root of the governing type V that have value mappings to any of the values in the root of the "Type" t-notation. This set
is required to contain at least one value.

For example, consider the occurrence of W in the last line of the following:

V ::= [0] INTEGER (0..30)

W ::= [1] INTEGER (25..35)

Y ::= [2] INTEGER (31..35)

Z1 ::= V (W | 24)

W contributes values 25-30 to the set arithmetic resulting in Z1 having the values 24-30. On the other hand, the
assignment:

Z2 ::= V (Y | 24)

is illegal because there are no values in Y which map to a value in V.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 87

B.6.3 The type of any value supplied as an actual parameter is required to have a value mapping from that value to
one of the values in the type governing the dummy parameter, and it is a value of that governing type which is identified.

B.6.4 If a "Type" is supplied as an actual parameter for a dummy parameter which is a value set dummy parameter,
then all values of that "Type" are required to have value mappings to values in the governor of the value set dummy
parameter. The actual parameter selects the total set of values in the governor which have mappings to the "Type".

B.6.5 In specifying the type, A, of a dummy parameter that is a value or a value set parameter, it is an illegal
specification unless for all values of A, and for every instance of use of A on the right-hand side of the assignment, that
value of A can legally be applied in place of the dummy parameter.

B.7 Examples

B.7.1 This subclause provides examples to illustrate B.3 and B.4.

B.7.2 Example 1
X ::= SEQUENCE X1 ::= SEQUENCE

{name VisibleString, {name VisibleString,
age INTEGER} -- comment --
 age INTEGER}

X2 ::= [8] SEQUENCE X3 ::= SEQUENCE
{name VisibleString, {name VisibleString,
age INTEGER} age AgeType}

 AgeType ::= INTEGER

X, X1, X2, and X3 are all identical type definitions. Differences of white-space and comment are not visible, nor does the
use of the AgeType type reference in X3 affect the type definition. Note, however, that if any of the identifiers for the
elements of the sequence were changed, the types would cease to be identical definitions, and there would be no value
mappings between them.

B.7.3 Example 2
B ::= SET B1 ::= SET

{name VisibleString, {age INTEGER,
age INTEGER} name VisibleString}

are identical type definitions provided neither is in a module with AUTOMATIC TAGS in the module header, otherwise
they are not identical type definitions, and value mappings will not exist between them. Similar examples can be written
using CHOICE and ENUMERATED (using the "identifier" form of "EnumerationItem").

B.7.4 Example 3
C ::= SET C1 ::= SET

{name [0]VisibleString, {name VisibleString,
age INTEGER} age INTEGER (1..64)}

are not identical type definitions, nor are either of them identical type definitions to either of B or B1, and there are no
value mappings between any of the values of C and C1, nor between either of them and either of B or B1.

B.7.5 Example 4
x INTEGER { y (2) } ::= 3

z INTEGER ::= x

is legal, and assigns the value 3 to z through the value mapping defined in B.4.5.

B.7.6 Example 5
b1 BIT STRING ::= '101'B

b2 BIT STRING {version1(0), version2(1), version3(2)} ::= b1

is legal, and assigns the value {version1, version3} to b2.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

88 ITU-T Rec. X.680 (07/2002)

B.7.7 Example 6

With the definitions of B.1.1, SEQUENCE elements of the form:

X DEFAULT y

are legal, where X is any of A, B, C, D, E, or F, or any of the text to the right of the type assignments to these names, and y
is any of a, b, c, d, e, or f, with the following exceptions: E DEFAULT y is illegal for all of a, b, c, d, f, and C DEFAULT
e is illegal, because in these cases there are no value mappings available from the defaulting value reference into the
type being defaulted.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 89

Annex C

Assigned object identifier values
(This annex forms an integral part of this Recommendation | International Standard)

This annex records object identifier and object descriptor values assigned in the ASN.1 series of Recommendations |
International Standards, and provides an ASN.1 module for use in referencing those object identifier values.

C.1 Object identifiers assigned in this Recommendation | International Standard

The following values are assigned in this Recommendation | International Standard:

Subclause 37.3

 Object Identifier Value:
 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1) numericString(0) }

 Object Descriptor Value: "NumericString ASN.1 type"

Subclause37.5

 Object Identifier Value:
 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1) printableString(1) }

 Object Descriptor Value: "PrintableString ASN.1 type"

Subclause 38.1

 Object Identifier Value:
 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) }

 Object Descriptor Value: "ASN.1 Character Module"

Subclause C.2

 Object Identifier Value:
 { joint-iso-itu-t asn1(1) specification(0) modules(0) object-identifiers(1) }

 Object Descriptor Value: "ASN.1 Object Identifier Module"

C.2 Object identifiers in the ASN.1 and encoding rules standards

This clause specifies an ASN.1 module which contains the definition of a value reference name for each object identifier
value defined in the ASN.1 standards (ITU-T Rec. X.680 | ISO/IEC 8824-1 to ITU-T Rec. X.693 | ISO/IEC 8825-4).

NOTE – These values are available for use in the value notation of the OBJECT IDENTIFIER type and types derived from it. All
of the value references defined in the module specified in this clause are exported and have to be imported by any module that
wishes to use them.

ASN1-Object-Identifier-Module { joint-iso-itu-t asn1(1) specification(0) modules(0)
object-identifiers(1) }

DEFINITIONS ::= BEGIN

 -- NumericString ASN.1 type (see 37.3) --
 numericString OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1)
numericString(0) }

 -- PrintableString ASN.1 type (see 37.5) --
 printableString OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) specification(0) characterStrings(1)
printableString(1) }

 -- ASN.1 Character Module (see 38.1) --
 asn1CharacterModule OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) specification(0) modules(0) iso10646(0) }

 -- ASN.1 Object Identifier Module (this module) --
 asn1ObjectIdentifierModule OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) specification(0) modules(0)
object-identifiers(1) }

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

90 ITU-T Rec. X.680 (07/2002)

 -- BER encoding of a single ASN.1 type --
 ber OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) basic-encoding(1) }

 -- CER encoding of a single ASN.1 type --
 cer OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) ber-derived(2) canonical-encoding(0) }

 -- DER encoding of a single ASN.1 type --
 der OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1) }

 -- PER encoding of a single ASN.1 type (basic aligned) --
 perBasicAligned OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) packed-encoding(3) basic(0) aligned(0) }

 -- PER encoding of a single ASN.1 type (basic unaligned) --
 perBasicUnaligned OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) packed-encoding(3) basic(0) unaligned(1) }

 -- PER encoding of a single ASN.1 type (canonical aligned) --
 perCanonicalAligned OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) packed-encoding(3) canonical(1) aligned(0) }

 -- PER encoding of a single ASN.1 type (canonical unaligned) --
 perCanonicalUnaligned OBJECT IDENTIFIER ::=

 { joint-iso-itu-t asn1(1) packed-encoding(3) canonical(1) unaligned(1) }

 -- XER encoding of a single ASN.1 type (basic) --
 xerBasic OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) xml-encoding(5) basic(0) }

 -- XER encoding of a single ASN.1 type (canonical) --
 xerCanonical OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) xml-encoding(5) canonical(1) }

END -- ASN1-Object-Identifier-Module --

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 91

Annex D

Assignment of object identifier component values
(This annex does not form an integral part of this Recommendation | International Standard)

This annex describes the top-level arcs of the registration tree for object identifiers. No explanation is given on how
new arcs are added, nor on the rules that registration authorities should follow. These are specified in ITU-T
Rec. X.660 | ISO/IEC 9834-1.

D.1 Root assignment of object identifier component values

D.1.1 Three arcs are specified from the root node. The assignment of values and identifiers, and the authority for
assignment of subsequent component values, are as follows:

Value Identifier Authority for subsequent assignments
0 itu-t ITU-T (See D.2)
1 iso ISO (See D.3)
2 joint-iso-itu-t See D.4

D.1.2 The identifiers itu-t, iso and joint-iso-itu-t, assigned above, may each be used as a "NameForm" (see
31.3).

D.1.3 The identifiers ccitt and joint-iso-ccitt are synonyms for itu-t and joint-iso-itu-t, respectively,
and thus may appear in object identifier values.

D.2 ITU-T assignment of object identifier component values

D.2.1 Five arcs are specified from the node identified by itu-t. The assignment of values and identifiers is:

Value Identifier Authority for subsequent assignments
0 recommendation See D.2.2
1 question See D.2.3
2 administration See D.2.4
3 network-operator See D.2.5
4 identified-organization See D.2.6

These identifiers may be used as a "NameForm" (see 31.3).

D.2.2 The arcs below recommendation have the value 1 to 26 with assigned identifiers of a to z. Arcs below these
have the numbers of ITU-T (and CCITT) Recommendations in the series identified by the letter. Arcs below this are
determined as necessary by the ITU-T (and CCITT) Recommendations. The identifiers a to z may be used as a
"NameForm".

D.2.3 The arcs below question have values corresponding to ITU-T Study Groups, qualified by the study period.
The value is computed by the formula:

study group number + (period * 32)

where "period" has the value 0 for 1984-1988, 1 for 1988-1992, etc., and the multiplier is 32 decimal.

The arcs below each study group have the values corresponding to the questions assigned to that study group. Arcs
below this are determined as necessary by the group (e.g., working party or special rapporteur group) assigned to study
the question.

D.2.4 The arcs below administration have the values of X.121 DCCs. Arcs below this are determined as
necessary by the Administration of the country identified by the X.121 DCC.

D.2.5 The arcs below network-operator have the value of X.121 DNICs. Arcs below this are determined as
necessary by the Administration or ROA identified by the DNIC.

D.2.6 The arcs below identified-organization are assigned values by the ITU Telecommunication
Standardization Bureau (TSB). Arcs below this are determined as necessary by the identified organizations.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

92 ITU-T Rec. X.680 (07/2002)

NOTE – Organizations which may find this arc useful include:
– recognized operating agencies not operating a public data network;
– scientific and industrial organizations;
– regional standards organizations; and
– multi-national organizations.

D.3 ISO assignment of object identifier component values

D.3.1 Three arcs are specified from the node identified iso(1). The assignment of values and identifiers is:

Value Identifier Authority for subsequent assignments
0 standard See D.3.2
2 member-body See D.3.3
3 identified-organization See D.3.4

These identifiers may be used as a "NameForm".
NOTE – The use of arc registration-authority(1) has been withdrawn.

D.3.2 The arcs below standard shall each have the value of the number of an International Standard. Where the
International Standard is multi-part, there shall be an additional arc for the part number, unless this is specifically
excluded in the text of the International Standard. Further arcs shall have values as defined in that International
Standard.

D.3.3 The arcs immediately below member-body shall have values of a three digit numeric country code, as
specified in ISO 3166, that identifies the ISO National Body in that country. The "NameForm" of object identifier
component is not permitted with these identifiers.

D.3.4 The arcs immediately below identified-organization shall have values of an International Code
Designator (ICD) allocated by the Registration Authority for ISO/IEC 6523 that identify an issuing organization
specifically registered by that authority as allocating object identifier components. The arcs immediately below the ICD
shall have values of an "organization code" allocated by the issuing organization in accordance with ISO/IEC 6523.

D.4 Joint assignment of object identifier component values

D.4.1 The arcs below joint-iso-itu-t have values which are assigned and agreed from time to time by a
Registration Authority established by ISO/IEC and ITU-T to identify areas of joint ISO/IEC | ITU-T standardization
activity, in accordance with ITU-T Rec. X.662 | ISO/IEC 9834-3.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 93

Annex E

Examples and hints
(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. It also contains
hints, or guidelines, for the use of the various features of ASN.1. Unless otherwise stated, an environment of AUTOMATIC
TAGS is assumed.

E.1 Example of a personnel record

The use of ASN.1 is illustrated by means of a simple, hypothetical personnel record.

E.1.1 Informal description of Personnel Record

The structure of the personnel record and its value for a particular individual are shown below.

 Name: John P Smith

 Title: Director

 Employee Number: 51

 Date of Hire: 17 September 1971

 Name of Spouse: Mary T Smith

 Number of Children: 2

 Child Information

 Name: Ralph T Smith

 Date of Birth 11 November 1957

 Child Information

 Name: Susan B Jones

 Date of Birth 17 July 1959

E.1.2 ASN.1 description of the record structure

The structure of every personnel record is formally described below using the standard notation for data types.

 PersonnelRecord ::= [APPLICATION 0] SET
{ name Name,
 title VisibleString,
 number EmployeeNumber,
 dateOfHire Date,
 nameOfSpouse Name,
 children SEQUENCE OF ChildInformation DEFAULT {}
}

 ChildInformation ::= SET
{ name Name,
 dateOfBirth Date
}

 Name ::= [APPLICATION 1] SEQUENCE
{ givenName VisibleString,
 initial VisibleString,
 familyName VisibleString
}

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

94 ITU-T Rec. X.680 (07/2002)

 EmployeeNumber ::= [APPLICATION 2] INTEGER

 Date ::= [APPLICATION 3] VisibleString -- YYYY MMDD

This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct DEFAULT can only be
applied to a component of a SEQUENCE or a SET, it cannot be applied to an element of a SEQUENCE OF. Thus, the
DEFAULT { } in PersonnelRecord applies to children, not to ChildInformation.

E.1.3 ASN.1 description of a record value

The value of John Smith's personnel record is formally described below using the standard notation for data values.

{ name {givenName "John", initial "P", familyName "Smith"},
title "Director",
number 51,
dateOfHire "19710917",
nameOfSpouse {givenName "Mary", initial "T", familyName "Smith"},
children
{ {name {givenName "Ralph", initial "T", familyName "Smith"} ,
 dateOfBirth "19571111"},
 {name {givenName "Susan", initial "B", familyName "Jones"} ,
 dateOfBirth "19590717" }
}

}

or in XML value notation:

person ::=
<PersonnelRecord>
 <name>
 <givenName>John</givenName>
 <initial>P</initial>
 <familyName>Smith</familyName>
 </name>
 <title>Director</title>
 <number>51</number>
 <dateOfHire>19710917</dateOfHire>
 <nameOfSpouse>
 <givenName>Mary</givenName>
 <initial>T</initial>
 <familyName>Smith</familyName>
 </nameOfSpouse>
 <children>
 <ChildInformation>
 <name>
 <givenName>Ralph</givenName>
 <initial>T</initial>
 <familyName>Smith</familyName>
 </name>
 <dateOfBirth>19571111</dateOfBirth>
 </ChildInformation>
 <ChildInformation>
 <name>
 <givenName>Susan</givenName>
 <initial>B</initial>
 <familyName>Jones</familyName>
 </name>
 <dateOfBirth>19590717</dateOfBirth>
 </ChildInformation>
 </children>
</PersonnelRecord>

E.2 Guidelines for use of the notation

The data types and formal notation defined by this Recommendation | International Standard are flexible, allowing a
wide range of protocols to be designed using them. This flexibility, however, can sometimes lead to confusion,
especially when the notation is approached for the first time. This annex attempts to minimize confusion by giving
guidelines for, and examples of, the use of the notation. For each of the built-in data types, one or more usage guidelines
are offered. The character string types (for example, VisibleString) and the types defined in clauses 42 to 44 are not
dealt with here.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 95

E.2.1 Boolean

E.2.1.1 Use a boolean type to model the values of a logical (that is, two-state) variable, for example, the answer to a
yes-or-no question.

 EXAMPLE

 Employed ::= BOOLEAN

E.2.1.2 When assigning a reference name to a boolean type, choose one that describes the true state.

 EXAMPLE

 Married ::= BOOLEAN

 not

 MaritalStatus ::= BOOLEAN

E.2.2 Integer

E.2.2.1 Use an integer type to model the values (for all practical purposes, unlimited in magnitude) of a cardinal or
integer variable.

 EXAMPLE

 CheckingAccountBalance ::= INTEGER -- in cents; negative means overdrawn.

 balance CheckingAccountBalance ::= 0

or using XML value notation:

 balance ::= <CheckingAccountBalance>0</CheckingAccountBalance>

E.2.2.2 Define the minimum and maximum allowed values of an integer type as named numbers.

 EXAMPLE

 DayOfTheMonth ::= INTEGER {first(1), last(31)}

 today DayOfTheMonth ::= first

 unknown DayOfTheMonth ::= 0

or using XML value notation:

 today ::= <DayOfTheMonth><first/></DayOfTheMonth>

 unknown ::= <DayOfTheMonth>0</DayOfTheMonth>

Note that the named numbers first and last were chosen because of their semantic significance to the reader, and
does not exclude the possibility of DayOfTheMonth having other values which may be less than 1, greater than 31 or
between 1 and 31.

To restrict the value of DayOfTheMonth to just first and last, one would write:

 DayOfTheMonth ::= INTEGER {first(1), last(31)} (first | last)

and to restrict the value of the DayOfTheMonth to all values between 1 and 31, inclusive, one would write:

 DayOfTheMonth ::= INTEGER {first(1), last(31)} (first .. last)

 dayOfTheMonth DayOfTheMonth ::= 4

or using XML value notation:

 dayOfTheMonth ::= <DayOfTheMonth>4</DayOfTheMonth>

E.2.3 Enumerated

E.2.3.1 Use an enumerated type to model the values of a variable with three or more states. Assign values starting with
zero if their only constraint is distinctness.

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

96 ITU-T Rec. X.680 (07/2002)

 EXAMPLE

 DayOfTheWeek ::= ENUMERATED {sunday(0), monday(1), tuesday(2),
 wednesday(3), thursday(4), friday(5), saturday(6)}

 firstDay DayOfTheWeek ::= sunday

or using XML value notation:

 firstDay ::= <DayOfTheWeek><sunday/></DayOfTheWeek>

Note that while the enumerations sunday, monday, etc., were chosen because of their semantic significance to the
reader, DayOfTheWeek is restricted to assuming one of these values and no other. Further, only the name sunday,
monday, etc., can be assigned to a value; the equivalent integer values are not allowed.

E.2.3.2 Use an extensible enumerated type to model the values of a variable that has just two states now, but that may
have additional states in a future version of the protocol.

 EXAMPLE

 MaritalStatus ::= ENUMERATED {single, married}
 -- First version of MaritalStatus

in anticipation of:

 MaritalStatus ::= ENUMERATED {single, married, …, widowed}
 -- Second version of MaritalStatus

and later yet:
 MaritalStatus ::= ENUMERATED {single, married, …, widowed, divorced}
 -- Third version of MaritalStatus

E.2.4 Real

E.2.4.1 Use a real type to model an approximate number.

 EXAMPLE

 AngleInRadians ::= REAL

 pi REAL ::= {mantissa 3141592653589793238462643383279, base 10, exponent −30}

or using the alternate value notation for REAL:

 pi REAL ::= 3.14159265358979323846264338327

or using XML value notation:

 pi ::=
 <REAL>
 3.14159265358979323846264338327
 </REAL>

E.2.4.2 Application designers may wish to ensure full interworking with real values despite differences in floating
point hardware, and in implementation decisions to use (for example) single or double length floating point for an
application. This can be achieved by the following:

 App-X-Real ::= REAL (WITH COMPONENTS {
 mantissa (−16777215..16777215),
 base (2),
 exponent (−125..128) })

 /*
 Senders shall not transmit values outside these ranges
 and conforming receivers shall be capable of receiving
 and processing all values in these ranges.
 */

 girth App-X-Real ::= {mantissa 16, base 2, exponent 1}

or using XML value notation:

 girth ::=
 <App-X-Real>
 32
 </App-X-Real>

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 97

E.2.5 Bit string

E.2.5.1 Use a bit string type to model binary data whose format and length are unspecified, or specified elsewhere, and
whose length in bits is not necessarily a multiple of eight.

 EXAMPLE

 G3FacsimilePage ::= BIT STRING
 -- a sequence of bits conforming to ITU-T Rec. T.4.

 image G3FacsimilePage ::= '100110100100001110110'B

 trailer BIT STRING ::= '0123456789ABCDEF'H

 body1 G3FacsimilePage ::= '1101'B

 body2 G3FacsimilePage ::= '1101000'B

or using XML value notation:

 image ::= <G3FacSimile>100110100100001110110</G3FacSimile>

 trailer ::=
 <BIT_STRING>
 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011
 1100 1101 1110 1111
 </BIT_STRING>

 body1 ::= <G3FacSimile>1101</G3FacSimile>

 body2 ::= <G3FacSimile>1101000</G3FacSimile>

Note that body1 and body2 are distinct abstract values because trailing 0 bits are significant (due to there being no
"NamedBitList" in the definition of G3FacsimilePage).

E.2.5.2 Use a bit string type with a size constraint to model the values of a fixed sized bit field.

 EXAMPLE

 BitField ::= BIT STRING (SIZE (12))

 map1 BitField ::= '100110100100'B

 map2 BitField ::= '9A4'H

 map3 BitField ::= '1001101001'B -- Illegal - violates size constraint.

or using XML value notation:

 map1 ::= <BitField>100110100100</BitField>

Note that map1 and map2 are the same abstract value, for the four trailing bits of map2 are not significant.

E.2.5.3 Use a bit string type to model the values of a bit map, an ordered collection of logical variables indicating
whether a particular condition holds for each of a correspondingly ordered collection of objects.

 DaysOfTheWeek ::= BIT STRING {
 sunday(0), monday (1), tuesday(2),
 wednesday(3), thursday(4), friday(5),
 saturday(6) } (SIZE (0..7))

 sunnyDaysLastWeek1 DaysOfTheWeek ::= {sunday, monday, wednesday}
 sunnyDaysLastWeek2 DaysOfTheWeek ::= '1101'B
 sunnyDaysLastWeek3 DaysOfTheWeek ::= '1101000'B

 sunnyDaysLastWeek4 DaysOfTheWeek ::= '11010000'B -- Illegal

or using XML value notation:

 sunnyDaysLastWeek1 ::=
 <DaysOfTheWeek>
 <sunday/><monday/><wednesday/>
 </DaysOfTheWeek>

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

98 ITU-T Rec. X.680 (07/2002)

 sunnyDaysLastWeek2 ::= <DaysOfTheWeek>1101</DaysOfTheWeek>

 sunnyDaysLastWeek3 ::= <DaysOfTheWeek>1101000</DaysOfTheWeek>

Note that if the bit string value is less than 7 bits long, then the missing bits indicate a cloudy day for those days, hence
the first three values above have the same abstract value.

E.2.5.4 Use a bit string type to model the values of a bit map, a fixed-size ordered collection of logical variables
indicating whether a particular condition holds for each of a correspondingly ordered collection of objects.

 DaysOfTheWeek ::= BIT STRING {
 sunday(0), monday (1), tuesday(2),
 wednesday(3), thursday(4), friday(5),
 saturday(6) } (SIZE (7))
sunnyDaysLastWeek1 DaysOfTheWeek ::= {sunday, monday, wednesday}
sunnyDaysLastWeek2 DaysOfTheWeek ::= '1101'B -- Illegal
 -- violates size constraint.
sunnyDaysLastWeek3 DaysOfTheWeek ::= '1101000'B

 sunnyDaysLastWeek4 DaysOfTheWeek ::= '11010000'B -- Illegal
 -- violates size constraint.

Note that the first and third values have the same abstract value.

E.2.5.5 Use a bit string type with named bits to model the values of a collection of related logical variables.

 EXAMPLE

 PersonalStatus ::= BIT STRING
 {married(0), employed(1), veteran(2), collegeGraduate(3)}

 billClinton PersonalStatus ::= {married, employed, collegeGraduate}

 hillaryClinton PersonalStatus ::= '110100'B

or using XML value notation:

 billClinton ::=
 <PersonalStatus>
 <married/>
 <employed/>
 <collegeGraduate/>
 </PersonalStatus>

 hillaryClinton ::= <PersonalStatus>110100</PersonalStatus>

Note that billClinton and hillaryClinton have the same abstract values.

E.2.6 Octet string

E.2.6.1 Use an octet string type to model binary data whose format and length are unspecified, or specified elsewhere,
and whose length in bits is a multiple of eight.

 EXAMPLE

 G4FacsimileImage ::= OCTET STRING
 -- a sequence of octets conforming to ITU-T Rec. T.5 and CCITT Rec. T.6

 image G4FacsimilePage ::= '3FE2EBAD471005'H

or using XML value notation:

 image ::= <G4FacSimileImage>3FE2EBAD471005</G4FacSimileImage>

E.2.6.2 Use a restricted character string type in preference to an octet string type, where an appropriate one is
available.

 EXAMPLE

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 99

 Surname ::= PrintableString

 president Surname ::= "Clinton"

or using XML value notation:

 president ::= <Surname>Clinton</Surname>

E.2.7 UniversalString, BMPString and UTF8String

Use the BMPString type or the UTF8String type to model any string of information which consists solely of characters
from the ISO/IEC 10646-1 Basic Multilingual Plane (BMP), and UniversalString or UTF8String to model any
string which consists of ISO/IEC 10646-1 characters not confined to the BMP.

E.2.7.1 Use Level1 or Level2 to denote that the implementation level places restrictions on the use of combining
characters.

 EXAMPLE

 RussianName ::= Cyrillic (Level1)
 -- RussianName uses no combining characters.

 SaudiName ::= BasicArabic (SIZE (1..100) ^ Level2)
 -- SaudiName uses a subset of combining characters.

Representation of letter Σ:

 greekCapitalLetterSigma BMPString ::= {0, 0, 3, 163}

or using XML value notation:

 greekCapitalLetterSigma ::= <BMPString>Σ</BMPString>

Representation of string "f → ∝ ":

 rightwardsArrow UTF8String ::= {0, 0, 33, 146}

 infinity UTF8String ::= {0, 0, 34, 30}

 property UTF8String ::= {"f ", rightwardsArrow, " ", infinity}

or using XML value notation:

 property ::= <UTF8String>f → ∞</UTF8String>

E.2.7.2 A collection can be expanded to be a selected subset (i.e., include all characters in the BASIC LATIN
collection) by use of the "UnionMark" (see clause 46).

 EXAMPLE

 KatakanaAndBasicLatin ::= UniversalString (FROM (Katakana | BasicLatin))

E.2.8 CHARACTER STRING

Use the unrestricted character string type to model any string of information which cannot be modelled using one of the
restricted character string types. Be sure to specify the repertoire of characters and their coding into octets.

 EXAMPLE

 PackedBCDString ::= CHARACTER STRING (WITH COMPONENTS {
 identification (WITH
COMPONENTS {
 fixed PRESENT })

 /* The abstract and transfer syntaxes shall be
 packedBCDString-AbstractSyntaxId and
 packedBCDString-TransferSyntaxId defined below.
 */

 })

 /* object identifier value for a character abstract syntax
 (character set) whose alphabet
 is the digits 0 through 9.
 */

 PackedBCDString-AbstractSyntaxId OBJECT IDENTIFIER ::=
 { joint-iso-itu-t asn1(1) examples(123) packedBCD(2) charSet(0) }

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

100 ITU-T Rec. X.680 (07/2002)

 /* object identifier value for a character transfer syntax that
 packs two digits per octet, each digit encoded as 0000 to
 1001, 11112 used for padding.
 */

 PackedBCDString-TransferSyntaxId OBJECT IDENTIFIER ::=
 { joint-iso-itu-t asn1(1) examples(123) packedBCD(2)
 characterTransferSyntax(1) }

 /* The encoding of PackedBCDString will contain only the defined
 encoding of the characters, with any necessary length field, and in
 the case of BER with a field carrying the tag. The object
 identifier values are not carried, as "fixed" has been specified.
 */

or using XML value notation:

 packedBCDString-AbstractSyntaxId ::=
 <OBJECT_IDENTIFIER>
 joint-iso-itu-t.asn1(1).examples(123).packedBCD(2).charSet(0)
 </OBJECT_IDENTIFIER>

 packedBCDString-TransferSyntaxId ::=
 <OBJECT_IDENTIFIER>
 joint-iso-itu-t.asn1(1).examples(123).packedBCD(2).characterTransferSyntax(1)
 </OBJECT_IDENTIFIER>

or:

 packedBCDString-AbstractSyntaxId ::=
 <OBJECT_IDENTIFIER>2.1.123.2.0</OBJECT_IDENTIFIER>

 PackedBCDString-TransferSyntaxId ::=
 <OBJECT_IDENTIFIER>2.1.123.2.1</OBJECT_IDENTIFIER>

NOTE – Encoding rules do not necessarily encode values of the type CHARACTER STRING in a form that always includes the
object identifier values, although they do guarantee that the abstract value is preserved in the encoding.

E.2.9 Null

Use a null type to indicate the effective absence of a component of a sequence.

 EXAMPLE

 PatientIdentifier ::= SEQUENCE {
 name VisibleString,
 roomNumber CHOICE {
 room INTEGER,
 outPatient NULL -- if an out-patient --
 }
}

 lastPatient PatientIdentifier ::= {
 name "Jane Doe",
 roomNumber outPatient : NULL
}

or using XML value notation:

 lastPatient ::=
 <PatientIdentifier>
 <name>Jane Doe</name>
 <roomNumber><outPatient/></roomNumber>
 </PatientIdentifier>

E.2.10 Sequence and sequence-of

E.2.10.1 Use a sequence-of type to model a collection of variables whose types are the same, whose number is large or
unpredictable, and whose order is significant.

 EXAMPLE

 NamesOfMemberNations ::= SEQUENCE OF VisibleString
 -- in alphabetical order

 firstTwo NamesOfMemberNations ::= {"Australia", "Austria"}

or, using the optional identifier:

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 101

 NamesOfMemberNations2 ::= SEQUENCE OF memberNation VisibleString
 -- in alphabetical order

 firstTwo2 NamesOfMemberNations2 ::=
 {memberNation "Australia", memberNation "Austria"}

Using XML value notation, the above two values are as follows:

 firstTwo ::=
 <NamesOfMemberNations>
 <VisibleString>Australia</VisibleString>
 <VisibleString>Austria</VisibleString>
 </NamesOfMemberNations>

 firstTwo2 ::=
 <NamesOfMemberNations2>
 <memberNation>Australia</memberNation>
 <memberNation>Austria</memberNation>
 </NamesOfMemberNations2>

E.2.10.2 Use a sequence type to model a collection of variables whose types are the same, whose number is known and
modest, and whose order is significant, provided that the make-up of the collection is unlikely to change from one
version of the protocol to the next.

 EXAMPLE

 NamesOfOfficers ::= SEQUENCE {
 president VisibleString,
 vicePresident VisibleString,
 secretary VisibleString}

 acmeCorp NamesOfOfficers ::= {
 president "Jane Doe",
 vicePresident "John Doe",
 secretary "Joe Doe"}

or using XML value notation:

 acmeCorp ::=
 <NamesOfOfficers>
 <president>Jane Doe</president>
 <vicePresident>John Doe</vicePresident>
 <secretary>Joe Doe</secretary>
 </NamesOfOfficers>

E.2.10.3 Use an inextensible sequence type to model a collection of variables whose types differ, whose number is
known and modest, and whose order is significant, provided that the make-up of the collection is unlikely to change
from one version of the protocol to the next.

 EXAMPLE

 Credentials ::= SEQUENCE {
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER}

E.2.10.4 Use an extensible sequence type to model a collection of variables whose order is significant, whose number
currently is known and is modest, but which is expected to be increased:

 EXAMPLE

 Record ::= SEQUENCE { -- First version of protocol containing "Record"
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER,
 ...,
 ...
}

in anticipation of:

 Record ::= SEQUENCE { -- Second version of protocol containing "Record"
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER,
 ...,

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

102 ITU-T Rec. X.680 (07/2002)

 [[2: -- Extension addition added in protocol version 2
 lastLoggedIn GeneralizedTime OPTIONAL,
 minutesLastLoggedIn INTEGER
]],
 ...
}

and later yet (version 3 of the protocol made no additions to Record):

 Record ::= SEQUENCE { -- Third version of protocol containing "Record"
 userName VisibleString,
 password VisibleString,
 accountNumber INTEGER,
 ...,
 [[2: -- Extension addition added in protocol version 2
 lastLoggedIn GeneralizedTime OPTIONAL,
 minutesLastLoggedIn INTEGER
]],
 [[4: -- Extension addition added in protocol version 3

 certificate Certificate,
 thumb ThumbPrint OPTIONAL
]],
 ...
 }

E.2.11 Set and set-of

E.2.11.1 Use a set type to model a collection of variables whose number is known and modest and whose order is
insignificant. If automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown
below. (With automatic tagging, the tags are not needed.)

 EXAMPLE

 UserName ::= SET {
 personalName [0] VisibleString,
 organizationName [1] VisibleString,
 countryName [2] VisibleString}

 user UserName ::= {
 countryName "Nigeria",
 personalName "Jonas Maruba",
 organizationName "Meteorology, Ltd."}

or using XML value notation:

 user ::=
 <UserName>
 <countryName>Nigeria</countryName>
 <personalName>Jonas Maruba</personalName>
 <organizationName>Meteorology, Ltd.</organizationName>
 </UserName>

E.2.11.2 Use a set type with OPTIONAL to model a collection of variables that is a (proper or improper) subset of
another collection of variables whose number is known and reasonably small and whose order is insignificant. If
automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown below. (With
automatic tagging, the tags are not needed.)

 EXAMPLE

 UserName ::= SET {
 personalName [0] VisibleString,
 organizationName [1] VisibleString OPTIONAL

 -- defaults to that of the local organization -- ,
 countryName [2] VisibleString OPTIONAL

 -- defaults to that of the local country -- }

E.2.11.3 Use an extensible set type to model a collection of variables whose make-up is likely to change from one
version of the protocol to the next. The following assumes AUTOMATIC TAGS was specified in the module definition.

 EXAMPLE

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 103

 UserName ::= SET {
 personalName VisibleString, -- First version of
"UserName"
 organizationName VisibleString OPTIONAL ,
 countryName VisibleString OPTIONAL,
 ...,
 ...
}

 user UserName ::= { personalName "Jonas Maruba" }

or using XML value notation:

 user ::=
 <UserName>
 <personalName>Jonas Maruba</personalName>
 </UserName>

in anticipation of:

 UserName ::= SET { -- Second version of "UserName"
 personalName VisibleString,
 organizationName VisibleString OPTIONAL,
 countryName VisibleString OPTIONAL,
 ...,
 [[2: -- Extension addition added in protocol version 2
 internetEmailAddress VisbleString,
 faxNumber VisibleString OPTIONAL
]],
 ...
}

 user UserName ::= {
 personalName "Jonas Maruba",
 internetEmailAddress "jonas@meteor.ngo.com"
}

or using XML value notation:

 user ::=
<UserName>
 <personalName>Jonas Maruba</personalName>
 <internetEmailAddress>jonas@meteor.ngo.com</internetEmailAddress>
</UserName>

and later yet (versions 3 and 4 of the protocol made no additions to UserName):

 UserName ::= SET { -- Fifth version of protocol containing "UserName"
 personalName VisibleString,
 organizationName VisibleString OPTIONAL,
 countryName VisibleString OPTIONAL,
 ...,
 [[2: -- Extension addition added in version 2
 internetEmailAddress VisbleString,
 faxNumber VisibleString OPTIONAL
]],
 [[5: -- Extension addition added in version 5
 phoneNumber VisibleString OPTIONAL
]],
 ...
}

 user UserName ::= {
 personalName "Jonas Maruba",
 internetEmailAddress "jonas@meteor.ngo.com"
}

or using XML value notation:

 user ::=
 <UserName>
 <personalName>Jonas Maruba</personalName>
 <internetEmailAddress>jonas@meteor.ngo.com</internetEmailAddress>
 </UserName>

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

ISO/IEC 8824-1:2003 (E)

104 ITU-T Rec. X.680 (07/2002)

E.2.11.4 Use a set-of type to model a collection of variables whose types are the same and whose order is insignificant.

 EXAMPLE

 Keywords ::= SET OF VisibleString -- in arbitrary order

 someASN1Keywords Keywords ::= {"INTEGER", "BOOLEAN", "REAL"}

or, using the optional identifier:

 Keywords2 ::= SET OF keyword VisibleString -- in arbitrary order

 someASN1Keywords2 Keywords2 ::= {keyword "INTEGER", keyword "BOOLEAN",
 keyword "REAL"}

Using XML value notation, the above two values are as follows:

 someASN1Keywords ::=
 <Keywords>
 <VisibleString>INTEGER</VisibleString>
 <VisibleString>BOOLEAN</VisibleString>
 <VisibleString>REAL</VisibleString>
 </Keywords>

 someASN1Keywords2 ::=
 <Keywords2>
 <keyword>INTEGER</keyword>
 <keyword>BOOLEAN</keyword>
 <keyword>REAL</keyword>
 </Keywords2>

E.2.12 Tagged

Prior to the introduction of the AUTOMATIC TAGS construct, ASN.1 specifications frequently contained tags. The
following subclauses describe the way in which tagging was typically applied. With the introduction of AUTOMATIC
TAGS, new ASN.1 specifications need make no use of the tag notation, although those modifying old notation may have
to concern themselves with tags. New users of the ASN.1 notation are encouraged to use AUTOMATIC TAGS as this
makes the notation more readable.

E.2.12.1 Universal class tags are used only within this Recommendation | International Standard. The notation
[UNIVERSAL 30] (for example) is provided solely to enable precision in the definition of the "UsefulTypes" (see 41.1).
It should not be used elsewhere.

E.2.12.2 A frequently encountered style for the use of tags is to assign an application class tag precisely once in the
entire specification, using it to identify a type that finds wide, scattered, use within the specification. An application class
tag is also frequently used (once only) to tag the types in the outermost CHOICE of an application, providing
identification of individual messages by the application class tag. The following is an example use in the former case:

 EXAMPLE

 FileName ::= [APPLICATION 8] SEQUENCE {
 directoryName VisibleString,
 directoryRelativeFileName VisibleString}

E.2.12.3 Context-specific tagging is frequently applied in an algorithmic manner to all components of a SET,
SEQUENCE, or CHOICE. Note, however, that the AUTOMATIC TAGS facility does this easily for you.

 EXAMPLE

 CustomerRecord ::= SET {
 name [0] VisibleString,
 mailingAddress [1] VisibleString,
 accountNumber [2] INTEGER,
 balanceDue [3] INTEGER -- in cents --}

 CustomerAttribute ::= CHOICE {
 name [0] VisibleString,
 mailingAddress [1] VisibleString,
 accountNumber [2] INTEGER,
 balanceDue [3] INTEGER -- in cents --}

E.2.12.4 Private class tagging should normally not be used in internationally standardized specifications (although this
cannot be prohibited). Applications produced by an enterprise will normally use application and context-specific tag
classes. There may be occasional cases, however, where an enterprise-specific specification seeks to extend an

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

 ISO/IEC 8824-1:2003 (E)

 ITU-T Rec. X.680 (07/2002) 105

internationally standardized specification, and in this case use of private class tags may give some benefits in partially
protecting the enterprise-specific specification from changes to the internationally standardized specification.

 EXAMPLE

 AcmeBadgeNumber ::= [PRIVATE 2] INTEGER

 badgeNumber AcmeBadgeNumber ::= 2345

or using XML value notation:

 badgeNumber ::= <AcmeBadgeNumber>2345</AcmeBadgeNumber>

E.2.12.5 Textual use of IMPLICIT with every tag is generally found only in older specifications. BER produces a less
compact representation when explicit tagging is used than when implicit tagging is used. PER produces the same
compact encoding in both cases. With BER and explicit tagging, there is more visibility of the underlying type
(INTEGER, REAL, BOOLEAN, etc.) in the encoded data. These guidelines use implicit tagging in the examples whenever it
is legal to do so. This may, depending on the encoding rules, result in a compact representation, which is highly
desirable in some applications. In other applications, compactness may be less important than, for example, the ability to
carry out strong type-checking. In the latter case, explicit tagging can be used.

 EXAMPLE

 CustomerRecord ::= SET {
 name [0] IMPLICIT VisibleString,
 mailingAddress [1] IMPLICIT VisibleString,
 accountNumber [2] IMPLICIT INTEGER,
 balanceDue [3] IMPLICIT INTEGER -- in cents --
}

 CustomerAttribute ::= CHOICE {
 name [0] IMPLICIT VisibleString,
 mailingAddress [1] IMPLICIT VisibleString,
 accountNumber [2] IMPLICIT INTEGER,
 balanceDue [3] IMPLICIT INTEGER -- in cents --
}

E.2.12.6 Guidance on use of tags in new ASN.1 specifications referencing this Recommendation | International
Standard is quite simple: DON'T USE TAGS. Put AUTOMATIC TAGS in the module header, then forget about tags. If you
need to add new components to the SET, SEQUENCE or CHOICE in a later version, add them to the end.

E.2.13 Choice

E.2.13.1 Use a CHOICE to model a variable that is selected from a collection of variables whose number are known and
modest.

 EXAMPLE

 FileIdentifier ::= CHOICE {
 relativeName VisibleString,

 -- name of file (for example, "MarchProgressReport")
 absoluteName VisibleString,

 -- name of file and containing directory
 -- (for example, "<Williams>MarchProgressReport")

 serialNumber INTEGER
 -- system-assigned identifier for file --}

 file FileIdentifier ::= serialNumber : 106448503

or using XML value notation:

fileIdentifier ::=
 <FileIdentifier>
 <serialNumber>106448503</serialNumber>
 </FileIdentifier>

E.2.13.2 Use an extensible CHOICE to model a variable that is selected from a collection of variables whose make-up is
likely to change from one version of the protocol to the next.

 EXAMPLE

 FileIdentifier ::= CHOICE { -- First version of
FileIdentifier

 relativeName VisibleString,

ISO/IEC 8824-1:2002 (E)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 88
24

-1:
20

02

https://iecnorm.com/api/?name=969c0673c3d4a095d33f32eca4758d00

	ITU-T Recommendation X.680
	Contents
	Foreword
	Introduction
	Information technology – Abstract Syntax Notation One (ASN.1): Specification of basic notation
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Additional references

	3 Definitions
	3.1 Information object specification
	3.2 Constraint specification
	3.3 Parameterization of ASN.1 specification
	3.4 Structure for identification of organizations
	3.5 Universal Multiple-Octet Coded Character Set (UCS)
	3.6 Additional definitions

	4 Abbreviations
	5 Notation
	5.1 General
	5.2 Productions
	5.3 The alternative collections

	5.4 Non-spacing indicator
	5.5 Example of a production
	5.6 Layout
	5.7 Recursion
	5.8 References to permitted sequences of lexical items
	5.9 References to a lexical item
	5.10 Short-hand notations
	5.11 Value references and the typing of values
	6 The ASN.1 model of type extension
	7 Extensibility requirements on encoding rules
	8 Tags
	9 Use of the ASN.1 notation
	10 The ASN.1 character set
	11 ASN.1 lexical items
	11.1 General rules
	11.2 Type references
	11.3 Identifiers
	11.4 Value references
	11.5 Module references
	11.6 Comments
	11.7 Empty lexical item
	11.8 Numbers
	11.9 Real numbers
	11.10 Binary strings
	11.11 XML binary string item
	11.12 Hexadecimal strings
	11.13 XML hexadecimal string item
	11.14 Character strings
	11.15 XML character string item
	11.16 Assignment lexical item
	11.17 Range separator
	11.18 Ellipsis
	11.19 Left version brackets
	11.20 Right version brackets
	11.21 XML end tag start item
	11.22 XML single tag end item
	11.23 XML boolean true item
	11.24 XML boolean false item
	11.25 XML tag names for ASN.1 types
	11.26 Single character lexical items
	11.27 Reserved words

	12 Module definition
	13 Referencing type and value definitions
	14 Notation to support references to ASN.1 components
	15 Assigning types and values
	16 Definition of types and values
	17 Notation for the boolean type
	18 Notation for the integer type
	19 Notation for the enumerated type
	20 Notation for the real type
	21 Notation for the bitstring type
	22 Notation for the octetstring type
	23 Notation for the null type
	24 Notation for sequence types
	25 Notation for sequence-of types
	26 Notation for set types
	27 Notation for set-of types
	28 Notation for choice types
	29 Notation for selection types
	30 Notation for tagged types
	31 Notation for the object identifier type
	32 Notation for the relative object identifier type
	33 Notation for the embedded-pdv type
	34 Notation for the external type
	35 The character string types
	36 Notation for character string types
	37 Definition of restricted character string types
	38 Naming characters and collections defined in ISO/IEC 10646-1
	39 Canonical order of characters
	40 Definition of unrestricted character string types
	41 Notation for types defined in clauses 42 to 44
	42 Generalized time
	43 Universal time
	44 The object descriptor type
	45 Constrained types
	46 Element set specification
	47 Subtype elements
	48 The extension marker
	49 The exception identifier
	Annex A - ASN.1 regular expressions
	A.1 Definition
	A.2 Metacharacters

	Annex B - Rules for type and value Compatibility
	B.1 The need for the value mapping concept (tutorial introduction)
	B.2 Value mappings
	B.3 Identical type definitions
	B.4 Specification of value mappings
	B.5 Additional value mappings defined for the character string types
	B.6 Specific type and value compatibility requirements
	B.7 Examples

	Annex C - Assigned object identifier values
	C.1 Object identifiers assigned in this Recommendation | International Standard
	C.2 Object identifiers in the ASN.1 and encoding rules standards

	Annex D - Assignment of object identifier component values
	D.1 Root assignment of object identifier component values
	D.2 ITU-T assignment of object identifier component values
	D.3 ISO assignment of object identifier component values
	D.4 Joint assignment of object identifier component values

	Annex E - Examples and hints
	E.1 Example of a personnel record
	E.2 Guidelines for use of the notation
	E.3 Identifying abstract syntaxes
	E.4 Subtypes

	Annex F - Tutorial annex on ASN.1 character strings
	F.1 Character string support in ASN.1
	F.2 The UniversalString, UTF8String and BMPString types
	F.3 On ISO/IEC 10646-1 conformance requirements
	F.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance
	F.5 Adopted subsets as parameters of the abstract syntax
	F.6 The CHARACTER STRING type

	Annex G - Tutorial annex on the ASN.1 model of type extension
	G.1 Overview
	G.2 Meaning of version numbers
	G.3 Requirements on encoding rules
	G.4 Combination of (possibly extensible) constraints

	Annex H - Summary of the ASN.1 notation

