INTERNATIONAL ISO/IEC
STANDARD 19507

First edition
2012-04-15

G) S—

Information technology — Object
Management Group Object Constraint
Language (OCL)

Technologies de l'information —‘Langage de contraintes prienté-objet
(OCL) de I'OMG

Reference number
ISO/IEC 19507:2012(E)

©|SO/IEC 2012

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +4122749 01 11

Fax + 4122749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Table of Contents

FOrEWOId ... et e e e e e e e IX
INtrOAUCHION ... e X
1 Scope e 1
2| CONfOMANCE ... ceniieieeeeeeeeee e s e e e e eanas 1
3| REFEIENCES ... o e 2
3.1 Normative ReferencCescooouiiiiiiiiiiiieeeee BT e 2

3.2 Informative Referencesooveeiiiiiiiiie s logoiieeeeeeeeee e, 2

4| Terms and Definitionscoouniveeiiieiiiceem e 3
5| Notational Conventions ..o T, 3
6| Additional Informationcfiiiiii 3
6.1 Changes to Adopted OMG Specificationscccceeeeeeeeienii i, 3

6.2 Structure of the Specification’ ..., 3

6.3 Acknowledgementso 4

7| OCL Language Descriptionccccooeviiiiiiiiiiiciiiecideeeeeeeen, 5
A B CT=T 01T = | SO SRR 5

7.2 WY OC L2 ettt e e e e e e e e e e e e 5

7.2.1 WheredoUse OCLcccccviiiiiiiieiieeeee et e e snrneeeeeeeees e 5

4 T 1 (o Yo Uo7 4T o TN R 6

T3 ALBGENA ..o | 6

7.3.2)Example Class Diagramceeeiiiieieeeiiiiiieeeiiiieee e siieee e ssineeeees | 6

7313 Character Stuuieiiiiii it [7

7.4 Relation to the UML Metamodelcccooeeiiiiiiiiiiiiee e, 7

T A SEIf e [7

7.4.2 Specifying the UML Contextoccooeiiiiiiiiiiiiieeciieeee e |, 7

T A.3INVAMNANES .oooiiiiiiiiiiiie e [8

7.4.4 Pre- and Postconditionscooooiiiiiiiiicc e [8

LA 3o T = 10 1= T [=T 0)= 9

7.4.6 Operation Body EXPreSSIiONcooiiiiiiiiiiiiiiiiieeiiiiiiee et e e annaeeee s 9

7.4.7 Initial and Derived ValUESsoouuuiiiiiiiii e 9

7.4.8 Other Types Of EXPreSSIONScooiiiiiiiiiiiiiiiiie et 10

7.5 Basic Values and TYPESuuuiiiiiiiiiiie ettt 10

7.5.1 Types from the UML MOAEIccooiiiiiiiiiiiiie e 11

7.5.2 ENUMErAtioN TYPES ...uniiiiiiiiiiiiiieie ettt e e e e et e e e e e e e e e e e e e e eannnes 11

7.5.3 LEL EXPIESSIONS ...uuuiiiiiii i e e e e e e e e as 11

7.5.4 Additional operations/attributes through «definition» expressions 12

7.5.5 Type CONfOIMANCE ...t e et e e e e e e e e e e e ennneees 12

© ISO/IEC 2012 - All rights reserved iii

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

8

7.5.6 Re-typing or Casting

7.5.7 Precedence RUIESoooiieiiiieieie et

7.5.8 Use of Infix Operators
7.5.9 Keywords
7.5.10 Comment

7.5 11 INVAIA VAIUES ...

7.6 Objects and Properties
7 6 1 Properties: Affributes

7.6.2 Properties: Operations
7.6.3 Properties: AssociationEnds and Navigation
7.6.4 Navigation to Association Classescccccovvieeeeiiniieeeiiist bt
7.6.5 Navigation from Association Classesc.cccoccvveviiiiice @M
7.6.6 Navigation through Qualified Associations
7.6.7 Using Pathnames for Packagescccccovcd INCF e,
7.6.8 Accessing overridden properties of supertypes
7.6.9 Predefined properties on All Objects
7.6.10 Features on Classes Themselves i,
7.6.11 Collections
7.6.12 Collections of ColleCtionSooeeee e
7.6.13 Collection Type Hierarchy and Type ‘€onformance Rules
7.6.14 Previous Values in Postconditions™............ccccciiiieiieinniiniiee,
7.6.15 Tuples
7.7 Collection Operations
7.7.1 Select and Reject Operations
7.7.2 Collect Operation
7.7.3 ForAll Operation
7.7.4 Exists Operation icoooiiiiiiieeee e
7.7.5 Closure Operationcccevviiiiiiieeee e
7.7.6 lterate Operation
7.8 Messages.in,OCL
7.8.1 Calling 'operations and sending signals
7.8.2 Accessing result values
7.8,3%An example
7.9 Resolving Properties

Abstract Syntax

8.1 Introduction

8.2 The Types Package
8.2.1 Type Conformance

8.2.2 Operations and Well-formedness Rules for the Types Package
8.3 The Expressions Package

8.3.1 EXPresSions COrecoeeiiiiiiiieeeeie et e e e e e e e
8.3.2 FeatureCall EXPreSSiONScooiiiiiiiiiiiieieeee e

8.3.3 If Expressions

8.3.4 Message EXPreSSIiONSccuiiiiiiiiieiiiiiiiee ettt

8.4 Literal Expressions
8.4.1 Let Expressions

8.4.2 Well-formedness Rules of the Expressions packagecc.ccc..c....

8.4.3 Additional Operations on UML metaclasses

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

8.4.4 Additional Operations on OCL Metaclassescccovveeeeeeiieeeeiiiiiiciieeeeeeeeeee 62
8.4.5 Overview of class hierarchy of OCL Abstract Syntax metamodel 64

9 Concrete SYNtaXoooveveiiiiii 65
S B B 7Y T = | SO 65
9.2 Structure of the Concrete Syntaxoovvviiiiiiiiiii, 65
9.3 ANote to TOOI BUIIAErScccooiiiiiiiiiiiiiiiiccee e 67
9.3.1 PArSING ..eceiiiiiiiiie ittt | 67
9.3.2 VISIDIITY .eeeeeeeieeeeee e N | 67

9.4 Concrete Syntaxcooeeviiiiiiiiiiiieieeeeeeeeeeeeeeee o ST 67
9.4.1 ExpressionInOCICS ... e eeeeeee e e 68
9.4.2 OclEXPressionCS ... S T e 68
9.4.3 VariableEXpCS ... N e e 69
9.4.4 simpleNameCS ...l [69
9.4.5 restrictedKeywordCS ... S e, 70
9.4.6 unreservedSimpleNameCS ... N e [71
9.4.7 pathNameCS ... e e [, 71
9.4.8 LiteralEXPCSooriiiieii e S e e 72
9.4.9 EnumLiteralEXpCS ... e e 72
9.4.10 CollectionLiteralEXpCSoooi i eeeereeeeeereeee e e 73
9.4.11 CollectionTypeldentifierCS .S .0 e e 73
9.4.12 CollectionLiteralPartsSCS ..o i eeeeeeeeees [74
9.4.13 CollectionLiteralPartCS . on e eeeeeeeeeee e e 74
9.4.14 CollectionRaNGECS nr= i ii it | e 74
9.4.15 PrimitiveLiteralEXPCSooiiieiieeie e eeeeeeeee e e 75
9.4.16 TupleLiteralEXPESouiiiiiiiiiieeeee e eeeneeeeeeees e 76
9.4.17 UnlimitedNaturalLiteralEXpCS ... e 76
9.4.18 IntegerLiteralEXPCS ... e 76
9.4.19 RealLIteralEXPCS ... eneeeee e e e 77
9.4.20 StripgliteralEXPCS ... | 77
9.4.21 BooleanLiteralEXPCSooiiiiiiiiiiiieieeee e eeeeeeeeeeeee e e e e e 78
9.4.22 TypeLiteralEXPCS ... e eeeneeeees e 78
Q.42 CallEXPCS ...ooiieeieiee ettt e e e s e e s nnneees | e 79
9.4124 LOOPEXPCS ..ottt e e e e e e e ee e e e e e 79
9:4.25 IteratorEXPCS ..o e 80
9.4.26 IterateEXPCS ..o e 83
9.4.27 VariableDeclarationCSoooviiiiiiiiiiiiieireece e seeieneeeeeeees [84
9.4.28 TYPECS ..ottt a e e s ee e s nnnnees | e 85
9.4.29 primitiveTypPeCS ... | 85
430 octTyPe e S T e 86
9.4.31 collectioNTYPECSt 86
9.4.32 tUPIETYPECS ...t e s 87
9.4.33 variableDeclarationLiStCSoooiiiiiiiii e 87
9.4.34 FeatureCallEXPCSot e 88
9.4.35 OperatioNCallEXPCSoooiiiiiee e 88
9.4.36 PropertyCallEXPCS ...t 91
9.4.37 NavigationCallEXPCScooiiiiiiie et 93
9.4.38 AssociationClassCallEXPCScoooiiiiiiiie e 93
9.4.39 iSMArkedPreCsS ...t e e e e e e e e e e 94
9.4.40 arguMENESCS ... e e e 94

© ISO/IEC 2012 - All rights reserved v

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

9.4.41 LEEXPCS ...ttt ettt bbb 95
9.4.42 LEtEXPSUDCS ...t a e e e e e 95
9.4.43 OCIMESSAGEEXPCSttt e e 96
9.4.44 OclMessageArgumeENtSCS ... 97
9.4.45 OcCIMeSSageArglS ... 97
9.4.46 ITEXPCS ..ottt 98
9.4.47 NUIILItEralEXPCS ... et e e e e e e 98
9.4.48 InvalidLiteralEXPCS 99
9.4.49 COMMENTSeviiiiiiiieeeie et e e e eeeeee e e e e e e e e e ssnene b [e e e e 99

9.5 Environment Definition ... e 99
9.5.1 ENVIrONMENt ..o eee e e e [99
9.5.2 NamedElement ... e e [102
9.5.3 NAMESPACE ...eeveeiiieiiaeeiiiiiiiiiiiiiieeeeeae e e e e e eeeeeeeeeeeeeee el e eeeeeeeeee e e e e e e e 102

9.6 Concrete to Abstract Syntax Mapping i e b 102
9.7 Abstract Syntax to Concrete Syntax Mapping ‘..., 103
10 Semantics Described Using UMLcoviicc e, 105
10.1 INtroduCtioNcooiiiiieie e e e 105
10.2 The Values Packagecccccoceedse il e 106
10.2.1 Definitions of Concepts for the /alues Packageccccovvinnii o, 107
10.2.2 Well-formedness Rules for the/Values Packageccccoooenii o, 111
10.2.3 Additional Operations for the'Values Packageccccoovveeeeniiioinnen, 113
10.2.4 Overview of the Values.Packageccccccceviiieiiiniincnnies e 114
10.3 The Evaluations Packagecccccceeiviiiiiiiiiiiiieeiieeeeeeee e, 115
10.3.1 Definitions of Coneepts for the Evaluations Packagec..o e 116
10.3.2 Well-formedness'Rules of the Evaluations Packagecccccoo v, 125
10.3.3 Additional Qpérations of the Evaluations Packagecccoeceeeitveeennn, 132
10.3.4 Overview 0f the Values Packagecccccccceeviicciinieeeieeeeeeeeee e [, 133

10.4 The AS-Darmain-Mapping Packagecoooiiiiiiiivieieecco, 134
10.4.1 Well-formedness rules for the AS-Domain-Mapping.type-value Pagkage 135
10.4.2,Additional Operations for the AS-Domain-Mapping.type-value Package 137
10.4.3:Well-formedness rules for the AS-Domain-Mapping.exp-eval Package 137

11 OCL Standard Libraryccooooveeiiiiiiii e, 145
T INtrOAUCHION .o e 145
11.2 The OclAny, OclVoid, Oclinvalid, and OclMessage Types ..|............ 146
T1.2.1 OCIANY oottt | e 146
11.2.2 OCIMESSAQGE ...ttt ettt a e e rrr e e ne e e e e e e e e e | e 146

SIS IEZ28C T e 1Yo T o P 146
11.2.4 OCHNVAI ..o 146

11.3 Operations and Well-formedness Rules ..., 146
LIS Tt B O 1o 2 TSP 146
LIRS T © 1o AV o 1o PP PRRPPRI 148
T1.3.3 OCIMESSAGEuvveiiieiiiiiiii ettt sttt e e e sttt e e e et e e e ettt e e e e e nneee e e e e ansbeeeeeennneeas 148

11.4 Primitive TYPES ..ooeeieiiieeeeeeee ettt a e e e e e 148
I g T T S 148
B |) =T 1= PSSP 148
I 3] Vo S 149

vi © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

11.4.4 Boolean
11.4.5 UnlimitedNatural
11.5 Operations and Well-formedness Rules
11.5.1 Real
11.5.2 Integer
11.5.3 String
11.5.4 Boolean
11 5 5 UnlimitedNatural

2 The Use of OClc Expressions in UML Models

11.6 Collection-Related Types
11.6.1 Collection
11.6.2 Set
11.6.3 OrderedSet
11.6.4 Bag
11.6.5 Sequence

11.7 Operations and Well-formedness Rules
11.7.1 Collection
11.7.2 Set
11.7.3 OrderedSet
11.7.4 Bag
11.7.5 Sequence

11.8 Predefined Iterator Expressions
11.8.1 Extending the Standard Library with Iterator Expressions

11.9 Mapping Rules for Predefined lterator Expressions
11.9.1 Collection
11.9.2 Set
11.9.3 Bag
11.9.4 Sequence
11.9.5 OrderedSet

12.1 Introduction
12.2 The:ExpressionInOcl Type
12.241 ExpressioninOcl
12.3. Well-formedness Rules
12.3.1 ExpressioninOcl
12.4 Standard Placements of OCL Expressions
12.4.1 How to Extend the Use of OCL at Other Places
12.5 Definition

1251 ‘VAV’C”'fUIIIIUdIIUDD RU:GD
12.6 Invariant
12.6.1 Well-formedness rules
12.7 Precondition
12.7.1 Well-formedness rules
12.7.2 Postcondition
12.7.3 Well-formedness rules
12.8 Initial Value Expression
12.8.1 Well-formedness rules
12.9 Derived Value Expression

© ISO/IEC 2012 - All rights reserved

vii

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

viii

12.10 Operation Body Expression

12.11 Guard
12.11.1 Well-formedness rules

12.12 Concrete Syntax of Context Declarations
12.12.1 packageDeclarationCS
12.12.2 contextDeclarationCS
12.12.3 propertyContextDeclCS

8 The Basic OCL and Essential OCL

+2-12 4 mitOrBervatuetS
12.12.5 classifierContextDeclCS
12.12.6 invOrDefCS
12.12.7 defExpressionCS
12.12.8 operationContextDeclCS
12.12.9 prePostOrBodyDecICS
12.12.10 operationCS
12.12.11 parametersCS

13.1 Introduction
13.2 OCL Adaptation for Metamodeling
13.3 Diagrams

MNEX A - SEMANTICS...cuviiiiiiee e e
nnex B - Bibliographyo e
nnex C - Legal Information. ;...

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 1

Foreword

9507:2012(E)

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO
member bodies). The work of preparing International Standards is normally carried out through ISO technical
committees. Each member body interested in a subject for which a technical committee has been established has the right

to be repreg
ISO, also t4
matters of {

Internationd

The main t4
technical ¢
approval by

Attention i
shall not bd

ISO/IEC 19
Object Marj
of the OM(

ISO/IEC 19
Language
Object Conf

ented on that committee. International organizations, governmental and non-governmental,in
ke part in the work. ISO collaborates closely with the International Electrotechnical Commiiss]
lectrotechnical standardization.

1 Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

sk of technical committees is to prepare International Standards. Draft International Standards
mmittees are circulated to the member bodies for voting. Publication as,an International Stan
at least 75 % of the member bodies casting a vote.

drawn to the possibility that some of the elements of this document may be the subject of pa
held responsible for identifying any or all such patent rights.

507 was prepared by Technical Committee ISO/IEC JTCh,Information technology, in collabg
agement Group (OMG), following the submission and{procCessing as a Publicly Available Speg
i Object Constraint Language specification Version 2:3.1.

507, under the general title Information technology - Open distributed processing - Object Co
pecification (OCL), apart from this introductery material is identical with that for the OMG sj
straint Language, v2.3.1.

liaison with
on (IEC) on all

adopted by the

lard requires

ent rights. ISO

ration with the
ification (PAS)

nstraint
ecification for

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and

ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability, and portability
can be integrated.

RM-ODP P,
systems. TH
of cases, th
(e.g., interf;
appropriate

RM-ODP P
foundation4
2 of the RM
specificatio]

OCL Lang

OCLisap
OCL expre
of the syste
used to spe

OCL is not
cannot invg
place, OCL

OCL is a ty
to the type

defined wit
types. Thes

e scop 2 and the UML, while related, are not the sameé aj
e RM-ODP Part 2 and the UML specification use the same term for concepts that are related b,
nce). Nevertheless, a specification using the Part 2 modeling concepts can be expressediusing

extensions (using stereotypes, tags, and constraints).

art 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed $ystems, expresse
1 concepts and framework defined in Part 2. Given the relation between UNIL; as a modeling lar
[ODP standard, it is easy to show that UML is suitable as a notation f0tthe individual viewp
hs defined by the RM-ODP.

juage

ire specification language; therefore, an OCL expression-is‘guaranteed to be without side effe
sion is evaluated, it simply returns a value. It cannot ehange anything in the model. This meaj
m will never change because of the evaluation of an*QCL expression, even though an OCL ex]
Cify a state change (e.g., in a post-condition).

a programming language; therefore, it is not‘possible to write program logic or flow control i
ke processes or activate non-query operations within OCL. Because OCL is a modeling langu|
expressions are not by definition directly executable.

ped language so that each OCL expression has a type. To be well formed, an OCL expression
conformance rules of the langudge. For example, you cannot compare an Integer with a String.
hin a UML model represents a‘distinct OCL type. In addition, OCL includes a set of supplemen|
e are described in Clause’ 11 (“The OCL Standard Library™).

ibing distributed

nd, in a number
ut not identical
UML with

d using the
guage and Part
oint

bts. When an
1s that the state
bression can be

h OCL. You
page in the first

must conform
Each Classifier
tary predefined

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

INTERNATIONAL STANDARD

ISO/IEC 19507:2012(E)

Information technology - Object Management Group
Object Constraint Language (OCL)

1 Scope

This Internptional Standard defines the Object Constraint Language (OCL), version 2.3.1. OCL version 2
version of QCL that is aligned with UML 2.3 and MOF 2.0.

2 Conformance

The UML

specification share a common core. The OCL specification contains a well-defined and named subset of
defined purely based on the common core of UML and MOF. This allows this subset of OCL to be used
MOF and the UML, while the full specification can be used with the WML only.

The follow

1. Syhtax compliance: The tool can read and write OCL expressions in accordance with the grammar, i

va

2. XMI compliance: The tool can exchange OCL-expressions using XMI.

3. Evpluation compliance: The tool evaluates OCL expressions in accordance with the semantics clausd
addglitional compliance points are optional for OCL evaluators, as they are dependent on the technicall

wh

°]
*]

The follow
compliance

alllnstances()

.0 Infrastructure and the MOF 2.0 Core specifications that were developed in parallel with th

ng compliance points are distinguished for both parts.

idating its type conformance and conformance ofiwell-formedness rules against a model.

ich they are evaluated:

bre-values and oclIsNéw() in postconditions
DclMessage
navigating across non-navigable associations

\ccessing(private and protected features of an object

ngtable shows the possible compliance points. Each tool is expected to fill in this table to sp

3.1 is the

s OCL 2.3.1
CL that is
with both the

hcluding

. The following
platform on

ecify which

peints are supported.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Table 2.1 - Overview of OCL Compliance Points

OCL-MOF subset Full OCL

Syntax

XMI

Evaluation

- alllnstan

LCS

- @pre in

bostcondtions

- OclMess

hoe

- navigatir

g non-navigable associations

- accessing

b private and protected features

3

3.1

The followi

edition cite
applies.

3.2

ISO
ISO
ISO
UM]
UM]
MO}
UNI

eferences

ormative References

g referenced documents are indispensable for the application of this document. For dated refefences, only the
1 applies. For undated references, the latest €dition of the referenced document (including any|amendments)

39 Codes for the representation of names of languages

3166 Codes for the representationof names of countries and their subdivisions

[EC 10646:2003 Information.technology -- Universal Multiple-Octet Coded Character Set (UCS)
L 2.3 Superstructure Specification: http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

| 2.3 Infrastructure_Specification: http://www.omg.org/soec/UML/2.3/Infrastructure/PDF/

2.0 Core Specification: http://www.omg.org/spec/MOF/2.0/PDF/

CODE<$+} Standard: http://www.unicode.org/versions/Unicode5.1.0/

Unid

ode Fechnical Standard#10: http://www.unicode.org/reports/tr10/

Informative References

The following specifications are referenced in informative text:

« ISO/IEC 19501:2005 Information technology - Open Distributed Processing -- Unified Modeling Language (UML)
Version 1.4.2

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

4 Terms and Definitions

There are no formal definitions that are taken from other documents.

5 Notational Conventions

There are nfo symbols defined.

6 Additional Information

6.1 QGhanges to Adopted OMG Specifications

This Internptional Standard replaces the specification of OCL given in OCLN2:2.

The version} of OCL specified in ISO/IEC 19501:2005 in intended for/ise-in models based on UML 1.4.1{ and UML 1.5.
However, use of the OCL specified by ISO/IEC 19501:2005 is not prescribed by this specification.

The version} of OCL specified in this International Standard is 1ot directly applicable to models based on|ISO/IEC
19501:20093.

6.2 Structure of the Specification

This International Standard is divided into several clauses.

« The PCL Language Description clausergives an informal description of OCL. This clause is not normgtive, but meant
to bg explanatory.

« Clause 8 (“Abstract Syntax™).describes the abstract syntax of OCL using a MOF 2.0 compliant metamgpdel. This is the
samg¢ approach as used in'the UML specifications. The metamodel is MOF compliant in the sense thatfit only uses
consfructs that are defined in the MOF.

+ Clause 9 (“Concrete Syntax™) describes the canonical concrete syntax using an attributed EBNF gramrhar. This syntax
is mapped ontd the abstract syntax, achieving a complete separation between concrete and abstract synjtax.

+ Clause 10 (‘‘Semantics Described using UML”) describes the semantics for OCL using UML.

¢ In Clause- (“’T‘lm: OCL Standard I ikvm-y”) the OCL Standard L ikquy is-described—This-defines +ypn like Integer’

Boolean, etc. and all the collection types. OCL is not a stand-alone language, but an integral part of the UML. An OCL
expression needs to be placed within the context of a UML model.

+ Clause 12 (“The Use of Ocl Expressions in UML Models”) describes a number of places within the UML where OCL
expressions can be used.

« Clause 13 (“Basic OCL and Essential OCL”) defines the adaptation of the OCL metamodel when used in particular
context of Core::Basic infrastructure library package and in the context of EMOF.

« Annex A (Semantics), Annex B (Bibliography), and Annex C (Legal Information)

© ISO/IEC 2012 - All rights reserved 3

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

6.3

The following companies submitted and/or supported parts of this specification:

Acknowledgements

Adaptive Ltd.

BoldSoft

Borl

nd Software Corporation

Comf
Dres|
Fran|
Inter]
ION
Kabf
King
Clas
Opef
Orad
Projq
Rati

SAP
Soft
Synt]
Tele

Thal
Uniy

Uniy

[puware Corporation

den University of Technology
ce Telecom

national Business Machines
A
ra Technologies Inc.

s College

ke Objecten

) Canarias, SL

le

ct Technology Inc.

nal Software Corporation
AG

am

ropy Ltd.

ogic

S

ersity of\Bremen

ersity-of Kent

University of York

Zeligsoft, Inc.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

7

71

ISO/IEC 19507:2012(E)

OCL Language Description

General

This clause introduces the Object Constraint Language (OCL), a formal language used to describe expressions on UML
models. These expressions typically specify invariant conditions that must hold for the system being modeled or queries

over object

described in a model Note that when the OCI pvprpqcinnc are pva]nah:-ﬂ’ ﬂqpy donot have si

de effects (i.e.,

their evalud

OCL expre
modelers ¢4
specify quel

Note - Thi

7.2

A UML di{
specificatio
constraints
to write uni
formal lang
business or

OCL has bg
as a busine

OCLisap
OCL expre
of the syste]
used to spe

OCL is not
cannot invg
place, OCL

OCL is a ty
to the type
defined wit

tion cannot alter the state of the corresponding executing system).

isions can be used to specify operations / actions that, when executed, do alter the state) of the
In use OCL to specify application-specific constraints in their models. UML modelérs can als
ries on the UML model, which are completely programming language independent:

5 clause is informative only and not normative.

Why OCL?

gram, such as a class diagram, is typically not refined enough-te provide all the relevant aspe
n. There is, among other things, a need to describe additional constraints about the objects in t
pre often described in natural language. Practice has shown)that this will always result in ambig
ymbiguous constraints, so-called formal languages haveélbeen developed. The disadvantage of
uages is that they are usable to persons with a strong mathematical background, but difficult f
system modeler to use.

en developed to fill this gap. It is a formal language that remains easy to read and write. It has
s modeling language within the IBM Insurance division, and has its roots in the Syntropy me

hire specification language; thereforé,)an OCL expression is guaranteed to be without side effe
sion is evaluated, it simply retutins a value. It cannot change anything in the model. This meaj
m will never change because\ofthe evaluation of an OCL expression, even though an OCL ex
Cify a state change (e.g., in‘a“post-condition).

a programming language; therefore, it is not possible to write program logic or flow control i
ke processes or activate non-query operations within OCL. Because OCL is a modeling langul
expressions are.not by definition directly executable.

ped language so that each OCL expression has a type. To be well formed, an OCL expression
bonformance rules of the language. For example, you cannot compare an Integer with a String.
hinza\UML model represents a distinct OCL type. In addition, OCL includes a set of supplemen

types. Thes|

system. UML
use OCL to

bts of a

he model. Such
uities. In order
raditional

or the average

peen developed
thod.

cts. When an
1s that the state
bression can be

h OCL. You
age in the first

must conform
Each Classifier
tary predefined

e are’ described in Clause 11 (“The OCL Standard Library™).

As a specification language, all implementation issues are out of scope and cannot be expressed in OCL.

The evaluation of an OCL expression is instantaneous. This means that the states of objects in a model cannot change
during evaluation.

7.21

Where to Use OCL

OCL can be used for a number of different purposes:

as a

query language,

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

7.3

7.3.1

Text written in the typeface as shown below is an OCL expression.

'This

to specify invariants on classes and types in the class model,

to specify type invariant for Stereotypes,

to describe pre- and post conditions on Operations and Methods,
to describe Guards,

to specify target (sets) for messages and actions,

to specify constraints on operations, and

to specify derivation rules for attributes for any expression over a UML model.

Introduction

Legend

is |an OCL expression'

The context keyword introduces the context for the expression. The keywerd inv, pre, and post denote thg stereotypes,
respectively «invariant», «precondition», and «postcondition» of the eOnstraint. The actual OCL expressign comes after

the colon.

cont¢xt TypeName inv:
'this §s an OCL expression with stereotype <<invariant>> in the
contdxt of TypeName' = 'another string'

In the examples the keywords of OCL are written in boldface. The boldface has no formal meaning, but is usgd to make the

expressions|more readable. OCL expressions are writfen using ASCII characters only.

Words

7.3.2 Example Class Diagram

The diagramh below is used in the examples in this clause.

in Ithlics within the main text of the paragraphs refer to parts of OCL expressions.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Bank cenumerations=
Gender
male
accountMumber:integer female
banksccount | 0.F
CustomerAccaunt
0.4 |customer
manager 0.r
Person : — - Company
isMarried | Boolsan T name - String
lsbnemp wed : Boolean numberOfEmployees : Integer
birthDate | Date employse employer
age : Inteder 3 T o+ | stockPrice() : Real
firstMame|: Sing 0. | 3
lastiame| String |
gender - Gender |
= 2 wife |
income(Dfgte} : Integer =
A Job
husband | 0.. title : String
startDate : Date
salary - Integer
Marriage
place : String
date : Date

Figure 7.1 {Class Diagram Example

7.3.3 Character Set

OCL text cpmprises characters in the UNICODE character set. In particular, string literals, comments, anfl the names of

types, features, and other elements in the UML modélmay contain any valid UNICODE character.

7.4 Relation to the UML Metamodel

7.41 Self

Each OCL gxpression is writtep-in the context of an instance of a specific type. In an OCL expression, thq reserved word
self is used|to refer to the contextual instance. For example, if the context is Company, then self refers to|an instance of

Company.

7.4.2 Specifying the UML Context

The contex} of an”OCL expression within a UML model can be specified through a so-called context dec|aration at the
beginning (F an-OCL nv?rncc;r\n Thecontext-declaration-of the constraintsin-the Fr\"r\“n.hg sub-clauses g Shown.

If the constraint is shown in a diagram, with the proper stereotype and the dashed lines to connect it to its contextual
element, there is no need for an explicit context declaration in the test of the constraint. The context declaration is

optional.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

7.4.3 Invariants

The OCL expression can be part of an Invariant, which is a Constraint stereotyped as an «invariant». When the invariant
is associated with a Classifier, the latter is referred to as a “type” in this clause. An OCL expression is an invariant of the
type and must be true for all instances of that type at any time. (Note that all OCL expressions that express invariants are
of the type Boolean.)

For example, if in the context of the Company type in Figure 7.1, the following expression would specify an invariant that
the number[of employees must always exceed 50:

self.numberOfEmployees > 50

where self is an instance of type Company. (We can view self as the object from where we start ‘evaluating the
expression.) This invariant holds for every instance of the Company type.

The type of the contextual instance of an OCL expression, which is part of an invariant, is written with the context
keyword, followed by the name of the type as follows. The label inv: declares the €onstraint to be an «inyarianty
constraint.
cont¢xt Company inv:
self.numberOfEmployees > 50

In most casgs, the keyword self can be dropped because the contextis clear, as in the above examples. A$ an alternative

for self, a different name can be defined playing the part of self. Eor'¢xample:
cont¢xt ¢ : Company inv:

dnumberOfEmployees > 50

This invarignt is equivalent to the previous one.

Optionally, [the name of the constraint may be written after the inv keyword, allowing the constraint to be| referenced by

name. In the following example the name of the constraint is enoughEmployees.
contéxt ¢ : Company inv enoughEmployees:

dnumberOfEmployees > 50

7.4.4 Pre-and Postconditions

The OCL expression can be part-0f a Precondition or Postcondition, corresponding to «precondition» and ¢postcondition»
stereotypes|of Constraint dssociated with an Operation or other behavioral feature. The contextual instancg self then is an
instance of the type thdtlowns the operation or method as a feature. The context declaration in OCL uses [the context
keyword, followed by the type and operation declaration. The stereotype of constraint is shown by putting the labels
‘pre:” and ‘post:~before the actual Preconditions and Postconditions. For example:

cont¢xtFypename::operationName(paraml : Typel, ...): ReturnType

1
IC . pdaldllll

post: result= ...

The name self can be used in the expression referring to the object on which the operation was called. The reserved word
result denotes the result of the operation, if there is one. The names of the parameters (paramli) can also be used in the
OCL expression. In the example diagram, we can write:
context Person::income(d : Date) : Integer
post: result = 5000

8 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Optionally, the name of the precondition or postcondition may be written after the pre or post keyword, allowing the
constraint to be referenced by name. In the following example the name of the precondition is parameterOk and the name
of the postcondition is resultOk. In the UML metamodel, these names are the values of the attribute name of the
metaclass Constraint that is inherited from ModelElement.

context Typename::operationName(paraml : Typel, ...): ReturnType

pre parameterOk: paraml > ...

post resultOk : result=...

7.4.5 Package Context

The above

environmerft. To specify explicitly in which package invariant, pre or postcondition Constrairifs,belong, th
can be enclpsed between ‘package’ and ‘endpackage’ statements. The package statementschave the syntay:
package Package::SubPackage

cont¢xt X inv:

cont¢xt X::operationName(..)

endp

An OCL file (or stream) may contain any number package statements, thus allowing all invariant, precon|

postconditi

7.4.6 Qperation Body Expression

An OCL expression may be used to indicate th€ result of a query operation. This can be done using the fa
cont¢xt Typename::operationName(paraml= Typel, ...): ReturnType
body|: -- some expression

The expres

be used in the expression. Pres-and postconditions, and body expressions may be mixed together after on

context. Fo

conté¢xt Person::getCurrentSpouse() : Person

pre:

body|: self.mariages->select(m | m.ended = false).spouse

7.4.7

.|. some invariant ...

pre: ... some precondition ...

nitial and Derived Values

Context declaration is precise enough when the package in which the Classifier belongs!is clea

hckage

ns to be written and stored in one file. This filelmay co-exist with a UML model as a separat

ion must conform to the result type of the operation. Like in the pre- and postconditions, the

F example:

self.isMarried = true

r from the
ese constraints

ditions, and
c entity.

llowing syntax:

arameters may
e operation

An OCL expression may be used to indicate the initial or derived value of an attribute or association end. This can be

done using

the following syntax:

context Typename::attributeName: Type

init:

-- some expression representing the initial value

context Typename::assocRoleName: Type

derive: -- some expression representing the derivation rule

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The expression must conform to the result type of the attribute. In the case the context is an association end the
expression must conform to the classifier at that end when the multiplicity is at most one, or Set, or OrderedSet when the
multiplicity may be more than one. Initial and derivation expressions may be mixed together after one context. For

example:
conte
init:

deriv

xt Person::income : Integer
parents.income->sum() * 1% -- pocket allowance
e: if underAge

The derivat
on the samg
constraint aj

748 O

Any OCL ¢
that case, th
Expression]

7.5 B

In OCL, a1
are indepen|

The most b
of their val

eI PaTeItS - MCOME-—SuIT)96 = POCKEt atfowarce
else job.salary -- income from regular job

endif

jon constraint must be satisfied at any time, hence the derivation includes the initialization. B

property but they must not be contradictory. For each property there should he,at most one it

nd at most one derivation constraint.

ther Types of Expressions

xpression can be used as the value for an attribute of the UML metac¢lass Expression or one of
e semantics sub clause describes the meaning of the expression» A special subclass of Expres
nOcl is used for this purpose. See Clause 12 “The Use of OCL Expressions in UML Models”

asic Values and Types

lumber of basic types are predefined and available to the modeler at all times. These predefin
dent of any object model and are part of the definition of OCL.

hes, are shown in the following table;

th are allowed
hitialization

its subtypes. In
kion, called
for a definition.

bd value types

hsic value in OCL is a value of one of the basic types. The basic types of OCL, with corresponding examples

Table 7.1- Basic OCL types and their values
type values consistent with implementation definitions
Ocllnvalid invalid
OclVoid null, invalid
Boolean trfesfalse (MOF) http://www.w3.org/TR/xmlschema-2/#boolean
Integer 1,-5, 2, 34,26524, ... | (MOF) http://www.w3.org/TR/xmlschema-2/#integer
Real 1.5,3.14, ... http://www.w3.org/TR/xmlschema-2/#double
String "To be or not to be...! | (MOF) http://www.w3.org/TR/xmlschema-2/#string
UnlimitedNatural | 0,1,2,42, ..., * http://www.w3.org/TR/xmlschema-2/#nonNegativelnteger

OCL defines a number of operations on the predefined types. Table 7.2 gives some examples of the operations on the
predefined types. See 11.4, *Primitive Types’ for a complete list of all operations.

Table 7.2- Examples of operations on the predefined types

type operations

Integer * +,-,/,abs()

Real *, +, -, /, floor()
10

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Table 7.2- Examples of operations on the predefined types

Boolean

and, or, xor, not, implies, if-then-clse

String

concat(), size(), substring()

UnlimitedNatural | *,+,/

Collection,
clauses.

Multiple adjacent strings are concatenated allowing a long string to be specified on multiple lines.

'"This|is a'

'conctenated string' -- 'This is a concatenated string'
Unicode chpracters are used within single quoted sequences, with the following backslash based escape sec
define backfslash and other characters.

\b -- backspace

\t -- horizontal tab

\n -- linefeed

\f -- form feed

\r -- carriage return

\" -- double quote

\ -- single quote

\ -- backslash

\xhh | --#x00 to #xFF

\uhhhh -- #x0000 to #xFFFF
where % is a hex digit: 0to 9, A to F or a to f.
Reserved wprds such as true and arbitrary awkward'spellings may be used as names by enclosing the name in
prefixed sinjgle quotes.

self.'"|f' = 'tabbed\tvariable'.'spaced operation'()
7.5.1 Types from the UML Model

Each OCL
and associal
attached to

7.5.2 Enumeration Types

Enumeratio

Set, Bag, Sequence, and Tuple are basic types as well. Their specifics will be described in the upcoming sub

expression is writtefi in the context of a UML model, a number of classifiers (types/classes, ...
tions, and their géneralizations. All classifiers from the UML model are types in the OCL expr|
the model.

ns‘ate Datatypes in UML and have a name, just like any other Classifier. An enumeration defin

juences used to

underscore-

, their features
bssions that are

es a number of

enumeratio

13 L D ! 1 11 1 £l . A S SATE IR AV ah 4 £ 1 1
T ITICTALS UIdl dI'T UIT PDOUSSIUVIC VAluts Ol UIC CITUIIICT AUOIL - VYV IUIIT UT L ULC CTall TCICT 10U UIT Vdl

e of an

enumeration. When we have Datatype named Gender in the example model with values ‘female’ or ‘male’ they can be
used as follows:

context Person inv: gender = Gender::male

753 L

et Expressions

Sometimes a sub-expression is used more than once in a constraint. The /et expression allows one to define a variable that
can be used in the constraint.

context Person inv:

© ISO/IEC 2012 - All rights reserved

11

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

let income : Integer = self.job.salary->sum() in

if

isUnemployed then
income < 100

else

income >= 100

endif

A let expression may be included in any kind of OCL expression. It is only known within this specific expression. A

variable de

7.5.4

stereotype

attributes o
each attriby

contg
def:
def:
def:

Operations
keyword sh|
contg

statiq

The names
association}

Using this

an attached

755 T

OCL is a ty
conformang

An OCL expression m which all the types coniorm 1s a valid expression. An UCL expression m which th

A‘ld

The Let expression allows a variable to be used in one Ocl expression. To enable reuse of variables/opers
multiple O(
are defined
definitions,
as where af

Taration inside a let must have a declared type and an initial value.

ditional operations/attributes through «definition» expressions

L expressions one can use a Constraint with the stereotype «definition», in which helper varia
This «definition» Constraint must be attached to a Classifier and may only contain variable a
nothing else. All variables and operations defined in the «definition» comstraint are known in th

OclHelper» of the classifier. They are used in an OCL expressioin-¢xactly the same way as
- operations are used. The syntax of the attribute or operation definitions is similar to the Let
te and operation definition is prefixed with the keyword ‘def™as shown below.

xt Person

ncome : Integer = self job.salary->sum()

hickname : String = ‘Little Red Rooster’

hasTitle(t : String) : Boolean = self.job->exists(title = t)

1
1

or attributes defined by "definitions expressions" may be static (classifier scoped). In that casg
ould be used before "def."
xt MyClass

def : globalld() : Integer = ...

of the attributes / operations.igi.a let expression may not conflict with the names of respective
nds and operations of the ‘Classifier.

lefinition syntax is identical to defining an attribute/operation in the UML with stereotype «O
OCL constraint fervits derivation.

ype Conformance

ped language and the basic value types are organized in a type hierarchy. This hierarchy detet
e of the different types to each other. You cannot, for example, compare an Integer with a Boo

tions over

bles/operations
nd/or operation
e same context

y property of the Classifier can be used. Such variables and operations are attributes and operjations with

normal
bxpression, but

the static

attributes/

tIHelper» with

mines
ean or a String.

e types don’t

conform is an invalid expression. It contains a fype conformance error. A type typel conforms to a type type2 when an
instance of fypel can be substituted at each place where an instance of fype?2 is expected. The type conformance rules for
types in the class diagrams are simple.

12

Each type conforms to each of its supertypes.

Type conformance is transitive: if fypel conforms to type2, and type2 conforms to type3, then typel conforms to type3.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The effect of this is that a type conforms to its supertype, and all the supertypes above. The type conformance rules for
the types from the OCL Standard Library are listed in Table 7.3., where the third column specifies an additional condition

Table 7.3- Type conformance rules

Type Conforms to/Is a subtype of | Condition

Set(T1) Collection(T2) if T1 conforms to T2
Sequence(T1) Collection(T2) if T1 conforms to T2
Bag(T1) Collection(T2) if T1 conforms to T2
OrderedSqt(T1) Collection(T2) if T1 conforms to T2
Integer Real

UnlimitedNatural Integer * is an invalid Integer

which must| be satisfied by the involved types to verify the type conformance rule

Although UnlimitedNatural conforms to Integer, ‘*’ is an invalid Integer, so, that the evaluation of the exp

results in ifjvalid.

The conformance relation between the collection types only holds if.th8y are collections of element types
each other. See 7.6.13, *Collection Type Hierarchy and Type Confornmiance Rules’ for the complete confor

collections.

Table 7.4 pfovides examples of valid and invalid expressiofs.

Table 7.4- Valid and Invalid Expressions

OCL expression valid explanation

1+2%*34 yes

1 + 'motorcycle’ no type String does not conform to type Integer
23 * false no type Boolean does not conform to Integer
12+ 13.5 yes

7.5.6 Re-typing or Casting

In some cirfumstances, it is desirable to use a property of an object that is defined on a subtype of the curr
of the obje¢t. Because the property is not defined on the current known type, this results in a type confor

When it is gerfain that the actual type of the object is the subtype, the object can be re-typed using the o

ression ‘1 + *’

hat conform to
mance rules for

ent known type
mance error.

eration

oclAsType(Classifier). This operation results in the same object, but the known type is the argument Classifier. When
there is an object object of type Typel and Type?2 is another type, it is allowed to write:

object.oclAsType(Type2) --- changes the static type of the expression to Type2

An object can only be re-typed to a type to which it conforms. If the actual type of the object, at evaluation time, is not
a subtype of the type to which it is re-typed, then the result of oclAsType is invalid.

© ISO/IEC 2012 - All rights reserved

13

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Casting provides visibility, at parse time, of features not defined in the context of an expression's static type. It does not
coerce objects to instances of another type, nor can it provide access to hidden or overridden features of a type. For this,
the feature call is qualified by the name of the type (a path name, if necessary) whose definition of the feature is to be

accessed.

For example, if class Employee redefines the age() : Integer operation of the Person class, a constraint may access the
Person definition as in

context Fmp]nvee

inv: pelf.age() <= self.Person::age()

For ¢

7.5.7 Precedence Rules

The precedgnce order for the operations, starting with highest precedence, in OCL is:
« literpl and variable expressions, “(“ and)”, “if-then-else-endif”
« “let{in”

. (@pte

 call expressions: """, """ < and “->”
+ unafy “not” and unary “-”
e “*”hnd “/”

* “+”fand binary “-”

R N R
e

- “and”

+ “or

+ “xor”

+ “implies”

e “in”

All infix of

A let expre
atomic valu
...ina+a"

arity, the qualified form may only be used with an explicit source expression.

erators are left.associative, equal precedence operators are evaluated left to right.

ksion is both high precedence and low precedence; high on the left so that a let expression bel
¢ in operations, low on the right so that the in-expression can be an arbitrary expression. “a +
is’aF (let ... in (a + (let ... in (a + a)))).”

aves as an
let ... in a + let

Parentheses “(“ and “)” can be used to change precedence and associativity.

758 U

se of Infix Operators

The use of infix operators is allowed in OCL. The operators ‘+,” - “*.7 ¢/ ‘<’ > ‘<>’ ‘<=’ “>=’ are used as infix
operators. If a type defines one of those operators with the correct signature, they will be used as infix operators. The

expression:

at+b

is equal to the expression:

14

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

a. '+

(b)

that is, invoking the “+” operation on a with b as the parameter to the operation.

ISO/IEC 19507:2012(E)

The infix operators defined for a type must have exactly one parameter. For the infix operators ‘<,” > ‘<= >= ‘<>7

‘and,” ‘or,’

and ‘xor’ the return type must be Boolean.

7.5.9 Keywords

Keywords lln OCL are reserved words. That means that the keywords cannot occur as a name. A reserved word may be

used as the
single quot

and
body|
contg
def
deriv]
else
endif|
endp
false
if
impli
in
init
inv
inval
let
not
null
or

packg

post
pre
self
statid
then
true
xor

The follow
word may 4

bs. The list of keywords is shown below:

o

ckage

ge

Iso, be used by enclosing the word in underscore-prefixed single quotes.

Bag

name of a package, a type, a feature, a variable or a constraint by enclosing the word ifi undefscore-prefixed

ng words are restricted. A restricted word can only be used as a name when preceded by a “:{’. A restricted

Boolean
Collection

Integ

cr

OclAny
OcllInvalid
OclMessage
OclVoid
OrderedSet

Real

Sequence

Set

© ISO/IEC 2012 - All rights reserved

15

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

String
Tuple
UnlimitedNatural

Note that operation names such as iterate, forAll, and oclType are not reserved or restricted.

7.5.10 Comment

Comments
dashes up t

For exampl
-- this

7.5.11 In

Some exprd
the object d
expression
however. F

e Trug
« Fals

« Fals

+ anything IMPLIES True is True

The rules fdq
other sub-e

The IF-exp

the other bijanch.

Finally, the
operation o

76 (

OCL expreq
all attribute]

b and including the end of line is part of the comment.

-
.

is a comment

valid Values

ssions will, when evaluated, have an invalid value. For instance, typecasting with oclAsType(|
oes not support or getting the ->first() element of an empty collection)ywill result in invalid. Ix
where one of the parts is null or invalid will itself be invalid. ThereZare some important excepti
rst, there are the logical operators:

OR-ed with anything is True
c AND-ed with anything is False
c IMPLIES anything is True

r OR and AND are valid irrespective of\the order of the arguments and they are valid whether
kpression is known or not.

ession is another exception. Itwill be valid as long as the chosen branch is valid, irrespective

e is an explicit operation for testing if the value of an expression is undefined. ocllsUndefine
h OclAny that results)in True if its argument is null or invalid and False otherwise.

)bjects @and Properties

siong-can refer to Classifiers, e.g., types, classes, interfaces, associations (acting as types), and
5, assoCiation-ends, methods, and operations without side effects that are defined on these typ

used. Ina ¢

rrOCEarcwritterr foHowmgtwosuceesstvedashestnmmosstgns) Everythmmg mmmredratetyfotlowing the two

to a type that
general, an
ns to this rule,

he value of the

of the value of

1() is an

Hatatypes. Also
s, etc. can be

lass model an operation or method is defined to be side effect free if the isQuery attribute of the operations is

true. For the purpose of this document, we will refer to attributes, association-ends, and side effect free methods and
operations as being properties. A property is one of:

« an Attribute

» an AssociationEnd

« an Operation with isQuery being true

« a Method with isQuery being true

16

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The value of a property on an object that is defined in a class diagram is specified in an OCL expression by a dot
followed by the name of the property. For example:

context Person inv:
self.isMarried

If self is a reference to an object, then self.property is the value of the property property on self.

7.6.1 Properties: Attributes

For exampl, the age of a Person is written as self.age:

cont¢xt Person inv:
self.age > 0

The value df the subexpression self.age is the value of the age attribute on the particular,instance of Persqn identified by
self. The type of this subexpression is the type of the attribute age, which is the standard type Integer.

Using attrifutes and operations defined on the basic value types, we can express caletlations etc. over th¢ class model.
For examplk, a business rule might be “the age of a Person is always greater than zero.” This can be stat¢d by the
invariant ajove.

Attributes thay have multiplicities in a UML model. Whenever the multiplicity of an attribute is greater than 1, the result
type is collgction of values. Collections in OCL are described later.dn this clause.

7.6.2 Properties: Operations

Operations [may have parameters. For example, as showa{¢carlier, a Person object has an income expressed as a function
of the date.| This operation would be accessed as follows, for a Person aPerson and a date aDate:

aPerdon.income(aDate)

The result ¢f this operation call is a value of the return type of the operation, which is Integer in this example. If the

operation hps out or in/out parameters, the-tesult of this operation is a tuple containing all out, in/out pargmeters and the
return valu¢. For example, if the inconte operation would have an out parameter bonus, the result of the above operation
call is of type Tuple(bonus: Integer, result: Integer). You can access these values using the names of the put parameters,
and the keyword result. For example:

aPerdon.income(aDate).bonns'= 300 and
aPerdon.income(aDate)result = 5000

Note that the out paranyeters need not be included in the operation call. Values for all in or in/out parameters are
necessary.

Defining qperations

The operation itself could be defined by a postcondition constraint. This is a constraint that is stereotyped as
«postcondition». The object that is returned by the operation can be referred to by result. It takes the following form:

context Person::income (d: Date) : Integer
post: result = age * 1000

The right-hand-side of this definition may refer to the operation being defined (i.e., the definition may be recursive) as
long as the recursion is not infinite. Inside a pre- or postcondition one can also use the parameters of the operation. The
type of result, when the operation has no out or in/out parameters, is the return type of the operation, which is Integer in
the above example. When the operation does have out or in/out parameters, the return type is a Tuple as explained above.
The postcondition for the income operation with out parameter bonus may take the following form:

© ISO/IEC 2012 - All rights reserved 17

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

context Person::income (d: Date, bonus: Integer) : Integer
post: result = Tuple { bonus = ...,
result=.... }

To refer to an operation or a method that doesn’t take a parameter, parentheses with an empty argument list are
mandatory:

context mepsmx i

self.stockPrice() > 0

7.6.3 Properties: AssociationEnds and Navigation

Starting from a specific object, we can navigate an association on the class diagram to refefito-other objefts and their
properties. [[o do so, we navigate the association by using the opposite association-end:

objedt.associationEndName

The value qf this expression is the set of objects on the other side of the associationEndName association. If the
multiplicity] of the association-end has a maximum of one (“0..1” or “1”), then-the value of this expression|is an object. In
the exampl¢ class diagram, when we start in the context of a Company (i.&., self'is an instance of Compapy), we can
write:

cont¢xt Company
inv: self. manager.isUnemployed = false
inv|: self.employee->notEmpty()

In the first jnvariant self.manager is a Person, because thesmultiplicity of the association is one. In the sefond invariant
self.employge will evaluate in a Set of Persons. By default, navigation will result in a Set. When the assog¢iation on the
Class Diagtam is adorned with {ordered}, the navigation results in an OrderedSet.

Collections| like Sets, OrderedSets, Bags, and, Sequences are predefined types in OCL. They have a large|number of
predefined pperations on them. A property of the collection itself is accessed by using an arrow ‘->’ followgd by the name
of the property. The following example is.i the context of a person:

contg¢xt Person inv:
self.employer->size() < 3
This applie$ the size property on’the Set self.employer, which results in the number of employers of the Person self.
contg¢xt Person inv:

self.employer->isEmpty()

This applie$ the isEmpty property on the Set self.employer. This evaluates to true if the set of employers {s empty and
false othervise,

Missing Association names

The association name is never missing. If no explicit name is available, an implicit name is constructed in accordance
with the UML style guide. Associations that are not explicitly named, are given names that are constructed according to
the following production rule:

“A_” <association-end-namel> “_” <association-end-name2>

where <association-end-namel> is the name of one association end and lexically precedes <association-end-name2>
which is the name of the other association end.

18 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Missing Association End names

The name of an association-end is never missing. If no explicit name is available an implicit name is taken from the name
of the class to which the end is attached.

NOTE: To tool vendors: this is a non-normative change from OCL 2.2, where the UML style guidance of converting the first
letter of the implicit name to lowercase was endorsed. The normative text has never defined how implicit names are obtained.
Tool vendors may wish to provide backward/forward compatibility warnings for this change.

=l Part] 0." | = Person 0..1 Jrole O}
T role 1 ! owner @
Figure 7.2 { Ambiguous name example

This may r¢sult in an ambiguity between an implicit association end name and another-explicit name, unlgss only one of
the associafion ends is navigable. The ambiguous name cannot be used in OCL.

aPerdon.role -- ambiguous

Qualifying association ends with association names

An association end name may be qualified with its association name\or its source classifier name to resolye an ambiguity.

aPerdon.Person::role -- still ambiguous
aPerdon.A_person_role::role -- some Parts, using@mplicit Person to Part association name
aPerdon.A_owner role::role -- a Role, using implicit Person to Role association name

Ends ownjed by associations

In a UML {ssociation, an end may be owned by the'Classifier at that end, or by the association, itself. The ownership of
the end is nlot significant to OCL. In either case,) the association end is considered as a property of the Clgssifier and can
be navigated from that end to the other.

Navigatioh over Associations with Multiplicity Zero or One

Because th¢ multiplicity of therel¢*manager is one, self.manager is an object of type Person. Such a single object can be
used as a Spt as well. It then'behaves as if it is a Set containing the single object. The usage as a set is dgne through the
arrow follofved by a propetty of Set. This is shown in the following example:

cont¢xt Company inv:
self.managet->size() = 1

The sub-expression self.manager is used as a Set, because the arrow is used to access the size property omn Set. This
expression gvallates to true

context Company inv:
self.manager->foo

The sub-expression self.manager is used as Set, because the arrow is used to access the foo property on the Set. This
expression is incorrect, because foo is not a defined property of Set.

context Company inv:
self.manager.age > 40

The sub-expression self.manager is used as a Person, because the dot is used to access the age property of Person.

© ISO/IEC 2012 - All rights reserved 19

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

In the case of an optional (0..1 multiplicity) association, this is especially useful to check whether there is an object or not
when navigating the association. In the example we can write:

conte

xt Person inv:

self.wife->notEmpty() implies self.wife.gender = Gender::female

Combining Properties

Properties can be combined to make more complicated expressions. An important rule is that an OCL expression always

evaluates tq
result to ge

Following 4

[1] [1] Mg4rried people are of age >= 18
cont¢xt Person inv:
self.wife->notEmpty() implies self.wife.age >= 18 and
self.husband->notEmpty() implies self.husband.age >= 18
[2] [2] acpmpany has at most 50 employees
cont¢xt Company inv:
self.employee->size() <= 50
7.6.4 Navigation to Association Classes
To specify pavigation to association classes (Job and Marriageé\n the example), OCL uses a dot and the 1
association [class:
cont¢xt Person inv:
self.Job
The sub-expression self.Job evaluates to a Set of all the jobs a person has with the companies that are his
In the case jof an association class, there is\no €xplicit rolename in the class diagram. The name Job used

navigation

In case of a
enough. W{
class. Take

a specific object of a specific type. After obtaining a result, one can always apply anotherpr
a new result value. Therefore, each OCL expression can be read and evaluated left-to-right.

re some invariants that use combined properties on the example class diagram:

s the name of the association-¢lass.

recursive association, that is an association of a class with itself, the name of the association cl
need to distinguish thevdirection in which the association is navigated as well as the name of
the following model.as an example.

bperty to the

ame of the

her employer.
in this

nss alone is not
the association

Perzon kosses
age S
EmployeeRanking
employeeg® — — — o score
Figure 7.3 - Navigating recursive association classes

When navigating to an association class such as EmployeeRanking there are two possibilities depending on the direction.
For instance, in the above example, we may navigate towards the employees end, or the bosses end. By using the name of
the association class alone, these two options cannot be distinguished. To make the distinction, the rolename of the
direction in which we want to navigate is added to the association class name, enclosed in square brackets. In the

expression

20

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

context Person inv:
self. EmployeeRanking[bosses]->sum() > 0

the self. EmployeeRanking[bosses] evaluates to the set of EmployeeRankings belonging to the collection of bosses. And in
the expression

context Person inv:
self.EmployeeRanking[employees]->sum() > 0

the self. EmployeeRankingfemployees] cvaluares 1o e Set of EmployeeRankings beionging to the cottection of employees.
The unqualffied use of the association class name is not allowed in such a recursive situation. Thus, thelfpllowing
example is [invalid:

cont¢xt Person inv:
self.EmployeeRanking->sum() > 0 -- INVALID!

In a non-redursive situation, the association class name alone is enough, although the qualified version is alloyed as well.
Therefore, the examples at the start of this sub clause could also be written as:
cont¢xt Person inv:
self.Job[employer]

7.6.5 Navigation from Association Classes

We can navfigate from the association class itself to the objects thatéparticipate in the association. This is Jone using the
dot-notatiof and the role-names at the association-ends.

cont¢xt Job
inyf: self.employer.numberOfEmployees >= 1
iny|: self.employee.age > 21

Navigation |from an association class to one of the gbjects on the association will always deliver exactly gne object. This
is a result df the definition of AssociationClass. Therefore, the result of this navigation is exactly one object, although it
can be used as a Set using the arrow (->).

7.6.6 Navigation through Qualified Associations

Qualified afsociations use one orunore qualifier attributes to select the objects at the other end of the asspciation. To

navigate th¢m, we can add the values for the qualifiers to the navigation. This is done using square brackets, following the
role-name. [t is permissible to-leave out the qualifier values, in which case the result will be all objects at the other end of
the associafion. The following example results in a Set(Person) containing all customers of the Bank.

cont¢xt Bank inv:
self.customer

The next efample results in one Person, having account number 8764423.

context Bank inv:
self.customer[8764423]

If there is more than one qualifier attribute, the values are separated by commas, in the order which is specified in the
UML class model. It is not permissible to partially specify the qualifier attribute values.

7.6.7 Using Pathnames for Packages

Within UML, types are organized in packages. OCL provides a way of explicitly referring to types in other packages by
using a package-pathname prefix. The syntax is a package name, followed by a double colon:

© ISO/IEC 2012 - All rights reserved 21

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Packagename:: Typename
This usage of pathnames is transitive and can also be used for packages within packages:

Packagenamel::Packagename?2::Typename

7.6.8 Accessing overridden properties of supertypes

Whenever properties are redefined within a type, the property of the supertypes can be accessed using the oclAsType()
operation. Whenever we have a class B as a subtype of class A, and a property pl of both A and B, w€)cpn write:

cont¢xt B inv:
self.oclAsType(A).pl -- accesses the p1 property defined in A
self.pl -- accesses the pl property defined in B

Figure 7.4 shows an example where such a construct is needed. In this model fragment thete is an ambigpity with the
OCL expregsion on Dependency:

cont¢xt Dependency inv:
self.source <> self

This can either mean normal association navigation, which is inherited from ModelElement, or it might aJso mean
navigation through the dotted line as an association class. Both possible havigations use the same role-nape, so this is
always ambiguous. Using ocl4sType() we can distinguish between them with:

cont¢xt Dependency
inv): self.oclAsType(Dependency).source->isEmpty()
inv: self.oclAsType(ModelElement).source->isEmpty()

source
target

ModelElement | ,

il

Note Dependency

value:Uninterpreted

Figure 7.4 HAccessingOverriddenProperties Example

7.6.9 Predefined properties on All Objects

There are several properties that apply to all objects, and are predefined in OCL. These are:

ocllsTypeOf (t : Classifier) : Boolean
oclIsKindOf (t : Classifier) : Boolean

oclInState (s : OclState) : Boolean

ocllsNew () : Boolean

oclAsType (t : Classifier) : instance of Classifier

22 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The operation is ocllsTypeOf results in true if the type of self and ¢ are the same. For example:

context Person
inv: self.ocllsTypeOf(Person) -- is true
inv: self.ocllsTypeOf(Company) -- is false

The above property deals with the direct type of an object. The ocl/lsKindOf property determines whether ¢ is either the
direct type or one of the supertypes of an object.

The operatipit ociInSiate(s/) TeSults 1N ruc it the object 1S in the State 5. Possibie states jor the operationotlInState(s) are
all states of the statemachine that defines the classifier's behavior. For nested states the statenames can b combined

€6, .9

using the dpuble colon “:

.Y Y
L g MoPowsr |
*, - -/

Figure 7.5 { Statemachine Example

In the exaniple statemachine above, values for s can be On, Off, Off::Standby, Off::NoPower. If the classifipr of object has
the above associated statemachine, valid OCL expressions arg;
objedt.oclInState(On)
objedt.oclInState(Off)
objedt.oclInstate(Off::Standby)
objedt.oclInState(Off::NoPower)

If there are[multiple statemachines attached to«the object’s classifier, then the statename can be prefixed wijth the name of
the statemafhine containing the state and the-double colon ‘::,” as with nested states.

The operatipn oc/IsNew evaluates to true)if, used in a postcondition, the object is created during performing the operation
(i.e., it didd’t exist at preconditionttime).

7.6.10 Features on Classes Themselves

All propertfes discussed/until now in OCL are properties on instances of classes. The types are either predefined in OCL
or defined in the class.model. In OCL, it is also possible to use static features, applicable to the types/clagses themselves
rather than o theirjinstances. For example, the Employee class may define a static operation “uniquelD” that computes a
unique ID fo Gise in the initialization of the employee ID attribute:

context Empioyceid T Strimg-tmit;
Employee::uniquelD()
Static features are invoked using the '::' operator and are distinct from the features of the Classifier metaclass, which
include the alllnstances operation pre-defined by OCL. If we want to make sure that all instances of Person have unique
names, we can write:

context Person inv:
Person.allInstances()->forAll(p1, p2 |
pl <> p2 implies pl.name <> p2.name)

© ISO/IEC 2012 - All rights reserved 23

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Invocation of alllnstances uses the '.' operator rather than '::' because it is not a static operation. It is an operation

applicable t

7.6.11

o instances of the Classifier metaclass, of which Person is an example.

Collections

Single navigation of an association results in a Set, combined navigations in a Bag, and navigation over associations
adorned with {ordered} results in an OrderedSet. Therefore, the collection types defined in the OCL Standard Library

play an important role in OCI, expressions
The type Cpllection is predefined in OCL. The Collection type defines a large number of predefined.opergtions to enable
the OCL expression author (the modeler) to manipulate collections. Consistent with the definition of‘OCL as an
expression |anguage, collection operations never change collections; isQuery is always true. They ‘may repult in a
collection, but rather than changing the original collection they project the result into a new(ene.
Collection s an abstract type, with the concrete collection types as its subtypes. OCL_distinguishes three [different
collection types: Set, Sequence, and Bag. A Set is the mathematical set. It does not/contain duplicate elenpents. A Bag is
like a set, which may contain duplicates (i.e., the same element may be in a bag twie¢ or more). A Sequenge is like a Bag
in which the elements are ordered. Both Bags and Sets have no order defined-on-them.
Collectior Literals
Sets, Sequepnces, and Bags can be specified by a literal in OCL. Cufly)brackets surround the elements of the collection,
elements in|the collection are written within, separated by commast The type of the collection is written Hefore the curly
brackets:

Sef{{1,2,5,88}

Sefl { 'apple,' 'orange,' 'strawberry’ }
A Sequencg:

Sequence { 1,3,45,2,3 }

Sequence { 'ape,' 'nut' }
A bag:

Bag {1,3,4,3,5}
Because of|the usefulness of a(Sequence of consecutive Integers, there is a separate literal to create them| The elements
inside the curly brackets can\b¢ replaced by an interval specification, which consists of two expressions df type Integer,
Int-exprl anhd Int-expr2, separated by °..". This denotes all the Integers between the values of Int-expri and Int-expr2,
including the values of\{nt-expril and Int-expr2 themselves:

Sequence{s=(6 +4) }

Sequerice{/1..10 }

-- qre both identical to

Sequence{ 1, 2,3,4,5,6,7,8,9,10 }

The complete list of Collection operations is described in Clause 11 (“The OCL Standard Library™).

Collections can be specified by a literal, as described above. The only other way to get a collection is by navigation. To
be more precise, the only way to get a Set, OrderedSet, Sequence, or Bag is:

24

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 1

1. aliteral, this will result in a Set, OrderedSet, Sequence, or Bag:

Set

2,4,1,5,7,13,11,17}

OrderedSet {1,2,3,5,7,11,13,17}
Sequence {1,2,3,5,7,11,13,17}
Bag {1,2,3,2,1}

2. anavigation starting from a single object can result in a collection:

co

3. opgrations on collections may result in new collections:

col

7.6.12 Collections of Collections

OCL allow
operations

7.6.13 Collection Type Hierarchy and Type Conformance Rules

In addition

« The
Type confo
+ DTpd

« Dpg

« Col
Set

+ Typ
Typd

For exampl
Set

Set

Set

self.employee

to the type conformance rules in 7.5.5, *Type Conformance’ the following rules hold for all ty
the collectipn types:

rmance rules are as follows for the collection'types:

lypel), Sequence(Typel)/Sequence(Type2), Bag(Typel)/Bag(Typel).

LAY LA

ectionl->union(collection2)

elements of collections to be collections themselves. The OCL Standard/Library includes spqg
or collections. These can be used to flatten collections of collections explicitly.

types Set (X), Bag (X), and Sequence (X) are all subtypes of Collection (X).

1 conforms to Type2 when they are identical (standard rule for all types).
1 conforms to Type2 when it is a subtype of Type2 (standard rule for all types).

ection(Typel) conforms to Collection(Type2), when Typel conforms to Type2. This is also true fo1

e conformance is transitive: if Typel conforms to Type2, and Type2 conforms to Type3, then Type]
3 (standard rule for all types).

e, if Bicycle.dnd Car are two separate subtypes of Transport:

Bicycle) (conforms to Set(Transport)
Bicygcle)“conforms to Collection(Bicycle)
Bicyele) conforms to Collection(Transport)

9507:2012(E)

cific flattened

pes, including

Set(Typel)/

conforms to

Note that S

CU(BICYCIC) doe€s not contorm 0 bag(bICyCIC), nor th€ other way around. 1h€y arc both Subty

Collection(Bicycle) at the same level in the hierarchy.

7.6.14 Previous Values in Postconditions

es of

As stated in 7.4.4, Pre- and Postconditions’ OCL can be used to specify pre- and postconditions on operations and
behaviors in UML. In a postcondition, the expression can refer to values of any feature of an object at two moments in

time:

© ISO/IEC 2012 - All rights reserved

25

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

+ the value of a feature at the start of the operation or behavior
« the value of a feature upon completion of the operation or behavior

The value of an operation call or a property navigation in a postcondition is the value upon completion of the operation.
To refer to the value of a feature at the start of the operation, one has to postfix the property name with the keyword
‘@pre’:
context Person::birthdayHappens()
podt: age = age@pre + 1

The property age refers to the property of the instance of Person that executes the operation. The property fige@pre refers
to the valug of the property age of the Person that executes the operation, at the start of the opgratien.

In the case jof an operation call, the '@pre' is postfixed to the operation name, before the parameters.

cont¢xt Company::hireEmployee(p : Person)
pogt: employees = employees@pre->including(p) and
stockprice() = stockprice@pre() + 10

When the pre-value of a feature evaluates to an object, all further properties that“are accessed of this objdct are the new
values (upon completion of the operation) of this object. So:

a.b@pre.c -- takes the old value of property b of a, say x

-- and then the new value of ¢ of x.
a.b@ppre.c@pre-- takes the old value of property b of a, say x
-- and then the old value of ¢ of x.

The ‘@pre’| postfix is allowed only in OCL expressions that/are part of a Postcondition, and only on invdcations of the
features of model classifiers. Asking for a current property of an object that has been destroyed during exdecution of the
operation r¢sults in null. Also, referring to the previous value of an object that has been created during ejecution of the
operation r¢sults in null.

7.6.15 Tuples
It is possible to compose several values-into a fuple. A tuple consists of named parts, each of which can have a distinct
type. Some|examples of tuples are!

Tupl¢ {name: String = ‘Johny/ age: Integer = 10}

Tuplg {a: Collection(Integer) = Set{1, 3, 4}, b: String = ‘foo,’ ¢: String = ‘bar’}

This is also the way towrite tuple literals in OCL; they are enclosed in curly brackets, and the parts are deparated by
commas. The type hames are optional, and the order of the parts is unimportant. Thus:

Tupl¢ {name: String = ‘John,” age: Integer = 10} is equivalent to
Tupl¢ {name = ‘John,” age = 10} and to

Tuple {age = 10, name = ‘John’}
Also, note that the values of the parts may be given by arbitrary OCL expressions, so for example we may write:

context Person def:
attr statistics : Set(TupleType(company: Company, numEmployees: Integer,
wellpaidEmployees: Set(Person), totalSalary: Integer)) =
managedCompanies->collect(c |
Tuple { company: Company = c,
numEmployees: Integer = c.employee->size(),
wellpaidEmployees: Set(Person) = c.Job->select(salary>10000).employee->asSet(),

26 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

totalSalary: Integer = c.Job.salary->sum()
}
)

This results in a bag of tuples summarizing the company, number of employees, the best paid employees, and total salary
costs of each company a person manages.

The parts of a tuple are accessed by their names, using the same dot notation that is used for accessing attributes. Thus:

Tuplg {x: Integer =5, y: String = ‘hi’}.x =5
is a true, if[somewhat pointless, expression. Using the definition of statistics above, we can write;

cont¢xt Person inv:
statisfics->sortedBy(totalSalary)->last().wellpaidEmployees->includes(self)

This assertq that a person is one of the best-paid employees of the company with the highest total salary that he manages.
In this expression, both ‘totalSalary’ and ‘wellpaidEmployees’ are accessing tuple pattsi

7.7 Qollection Operations

OCL defings many operations on the collection types. These operations dre¢ specifically meant to enable 4 flexible and
powerful why of projecting new collections from existing ones. The different constructs are described in th¢ following sub
clauses.

7.7.1 Select and Reject Operations

Sometimes jan expression using operations and navigations results in a collection, while we are interested gnly in a special
subset of the collection. OCL has special constructsfo*specify a selection from a specific collection. These are the select
and reject dperations. The select specifies a subset'of a collection. A select is an operation on a collection gnd is specified
using the afrow-syntax:

colfection->select(...)

The paramdter of select has a special syntax that enables one to specify which elements of the collection we want to
select. Thetle are three different forms, of which the simplest one is:

colfection->select(boolean-expression)

This resultd in a collection\that contains all the elements from collection for which the boolean-expressiop evaluates to

true. To finf the result‘ef-this expression, for each element in collection the expression boolean-expressidn is evaluated.
If this evalyates to ttue; the element is included in the result collection, otherwise not. As an example, the following OCL
expression ppecifies that the collection of all the employees older than 50 years is not empty:

cont¢xt.Company inv:
self.employee->select(age > 50)->notEmpty()

The self.employee is of type Set(Person). The select takes each person from self.employee and evaluates age > 50 for this
person. If this results in #rue, then the person is in the result Set.

As shown in the previous example, the context for the expression in the select argument is the element of the collection
on which the select is invoked. Thus the age property is taken in the context of a person.

In the above example, it is impossible to refer explicitly to the persons themselves; you can only refer to properties of
them. To enable to refer to the persons themselves, there is a more general syntax for the select expression:

collection->select(v | boolean-expression-with-v)

© ISO/IEC 2012 - All rights reserved 27

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The variable v is called the iterator. When the select is evaluated, v iterates over the collection and the boolean-
expression-with-v is evaluated for each v. The v is a reference to the object from the collection and can be used to refer to
the objects themselves from the collection. The two examples below are identical:

context Company inv:
self.employee->select(age > 50)->notEmpty()

context Company inv:
self.employee->select(p | p.age > 50)->notEmpty()

The result ¢f the complete select is the collection of persons p for which the p.age > 50 evaluates to Trig This amounts
to a subset pf self.employee.
As a final gxtension to the select syntax, the expected type of the variable v can be given. The select now is written as:

colle¢tion->select(v : Type | boolean-expression-with-v)

The meaning of this is that the objects in collection must be of type Type. The next example is identical o the previous
examples:

cont¢xt Company inv:
self.employee.select(p : Person | p.age > 50)->notEmpty()

The compefe select syntax now looks like one of:

colle¢tion->select(v : Type | boolean-expression-with-v)
collegtion->select(v | boolean-expression-with-v)
collegtion->select(boolean-expression)

The reject gperation is identical to the select operation, butavith reject we get the subset of all the elemerts of the
collection fpr which the expression evaluates to False. The reject syntax is identical to the select syntax:

collegtion->reject(v : Type | boolean-expression-with+v)
collegtion->reject(v | boolean-expression-with-v")
colle¢tion->reject(boolean-expression)

As an exanple, specify that the collection'of all the employees who are not married is empty:

cont¢xt Company inv:
self.employee->reject(isMairied)->isEmpty()

The reject @peration is available-in OCL for convenience, because each reject can be restated as a select wfith the negated
expression.|Therefore, the following two expressions are identical:

collection->reject(v : Type | boolean-expression-with-v)
collection->select(v : Type | not (boolean-expression-with-v))

7.7.2 Collect Operation

As shown in the previous sub clause, the select and reject operations always result in a sub-collection of the original
collection. When we want to specify a collection that is derived from some other collection, but which contains different
objects from the original collection (i.e., it is not a sub-collection), we can use a collect operation. The collect operation
uses the same syntax as the select and reject and is written as one of:

collection->collect(v : Type | expression-with-v)
collection->collect(v | expression-with-v)
collection->collect(expression)

The value of the reject operation is the collection of the results of all the evaluations of expression-with-v.

28 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

An example: specify the collection of birthDates for all employees in the context of a company. This can be written in the
context of a Company object as one of:

self.employee->collect(birthDate)
self.employee->collect(person | person.birthDate)
self.employee->collect(person : Person | person.birthDate)

An important issue here is that when the source collection is a Set the resulting collection is not a Set but a Bag.
Moreover, if the source collection is a Sequence or an OrderedSet, the resulting collection is a Sequence. When more than
one employee has the same value for birthDate, this value will be an element of the resulting Bag more than once. The
Bag resultifg from the collect operation always has the same size as the original collection.

It is possiblle to make a Set from the Bag, by using the asSet property on the Bag. The following expressidn results in the
Set of diffeyent birthDates from all employees of a Company:

self.gmployee->collect(birthDate)->asSet()

Shorthand for Collect

Because najigation through many objects is very common, there is a shorthand\notation for the collect that makes the
OCL expregsions more readable. Instead of

self.gmployee->collect(birthdate)
we can alsq write:
self.gmployee.birthdate

In general, when we apply a property to a collection of Objeets, then it will automatically be interpreted af a collect over
the membefs of the collection with the specified property,

For any prdpertyname that is defined as a property.@n the objects in a collection, the following two exprgssions are
identical:

colletion.propertyname
collegtion->collect(propertyname)

and so are these if the property is parameterized:

colletion.propertyname (parl,par2, ...)
collegtion->collect (propértymame(parl, par2, ...))

7.7.3 FprAll Operation

Many time§ a constraint is needed on all elements of a collection. The forAll operation in OCL allows specifying a
Boolean expression, which must hold for all objects in a collection:

COH» vt;Ull fUlAll(A\ Ty}_}\./ ; :JUU}VCI,II UA}JIVDD;UII W;tll v)
collection->forAll(v | boolean-expression-with-v)
collection->forAll(boolean-expression)

This forAll expression results in a Boolean. The result is true if the boolean-expression-with-v is true for all elements of
collection. If the boolean-expression-with-v is false for one or more v in collection, then the complete expression
evaluates to false. For example, in the context of a company:

context Company
inv: self.employee->forAll(age <= 65)
inv: self.employee->forAll(p | p.age <=65)
inv: self.employee->forAll(p : Person | p.age <=65)

© ISO/IEC 2012 - All rights reserved 29

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

These invariants evaluate to true if the age property of each employee is less or equal to 65.

The forAll operation has an extended variant in which more than one iterator is used. Both iterators will iterate over the
complete collection. Effectively this is a for4ll on the Cartesian product of the collection with itself.

context Company inv:
self.employee->forAll(el, e2 : Person |
el <> e2 implies el.forename <> e2.forename)

Th' - 1 - - - AN | L ad 1l 1 1. LC VRS TR b 11 - 1 t t .
1S EXpregsromevaruates to truc 1T e Toreamces Ot all Cmproyces—arc arrrerent 1t s senrantrearry cqurvalent 1o:

context Company inv:
self.employee->forAll (el | self.employee->forAll (e2 |
el <> e2 implies el.forename <> e2.forename))

7.7.4 Exxists Operation

Many timeg one needs to know whether there is at least one element in a collection’ for'which a constraint holds. The
exists operdtion in OCL allows you to specify a Boolean expression that must hold\for at least one object in a collection:

colleption->exists(v : Type | boolean-expression-with-v)
colleftion->exists(v | boolean-expression-with-v)
colleption->exists(boolean-expression)

This exists [operation results in a Boolean. The result is true if theshoolean-expression-with-v is true for af least one
element of [collection. If the boolean-expression-with-v is false fer all v in collection, then the complete ekpression
evaluates t¢ false. For example, in the context of a company*

cont¢xt Company inv:
self.employee->exists(forename = 'Jack')

cont¢xt Company inv:
self.employee->exists(p | p.forename = 'Jack')

cont¢xt Company inv:
self.employee->exists(p : Person | p:forename = 'Jack')

These exprgssions evaluate to true if the forename property of at least one employee is equal to ‘Jack.’

Similarly t¢ forAll expression @nyexists expression may declare multiple iterators.

7.7.5 C(Closure Operation

The iteratofs described in the preceding sections return results from the elements of a collection. The clofure supports
returning r¢sultyfrom the elements of a collection, the elements of the elements of a collection, the elem¢nts of the
elements of the’elements of a collection, and so forth. This can be useful for iterating over a transitive relationship such

as a UML generalizatton—cltostrre-operationuses-the-same-syntax—as-thesefect-and-refecttterators—and—is—written as one of
source>closure(v : Type | expression-with-v)
source>closure(v | expression-with-v)
source>closure(expression)

The returned collection of the closure iteration is an accumulation of the source, and the collections resulting from the
recursive invocation of expression-with-v in which v is associated exactly once with each distinct element of the returned
collection. The iteration terminates when expression-with-v returns empty collections or collections containing only
already accumulated elements. The collection type of the result collection is the unique form (Set or OrderedSet) of the
original source collection. If the source collection is ordered, the result is in depth first preorder. The result satisfies the
postcondition:

30 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

post:

ISO/IEC 19507:2012(E)

let sourceAndResult : Set(Type) = source->asSet()->union(result) in

sourceAndResult = sourceAndResult->collect(expression)

For a simple parent-children relationship and known parents
parents->closure(children)

computes the set of parents.children, parents.children.children, parents.children.children.children etc.

In the oppo
self-

computes tl

For a more

site direction

asOrderedSet()->closure(mother)
e maternal line.

complex relationship such as UML Classifier generalization

aClassifier.generalization()->closure(general.generalization).general()->including(aClassifier)

computes tl
compute th
including t}

As with all
features ag$

7.7.6 It

The iterate
can all be d

colle

The variab]|
accumulato
expression-
value is ass
operation d

col
--1is 1
col
a

Or written

iterat}

e set comprising aClassifier and all its generalizations. The closure recurses over the General
e transitive set of all Generalizations. The generalized classifier is collected“from each of thes
le originating aClassifier in the result.

other iterators, self remains unchanged throughout the recursionjand an implicit source attem
inst iterators.

erate Operation

operation is slightly more complicated, but is verygeneric. The operations reject, select, forAl
escribed in terms of iterate. An accumulation builds one value by iterating over a collection.

Ltion->iterate(elem : Type; acc : Type = <expression> |
expression-with-elem-and-acc)

e elem is the iterator, as in the definition of select, forAll, etc. The variable acc is the accumu
I gets an initial value <expression>: When the iterate is evaluated, elem iterates over the colld
ith-elem-and-acc is evaluated.for each elem. After each evaluation of expression-with-elem-d
igned to acc. In this way, the) value of acc is built up during the iteration of the collection. Th
escribed in terms of iterate will look like:

ection->collect(x : T |(x.property)
dentical to:

ection->iterate(x.y T; acc : T2 = Bag{} |
cc->including(X-property))

n Jaydsltke pseudocode the result of the iterate can be calculated as:

E(élem : T; acc : T2 = value)

zations to
b before

pts to resolve

, exists, collect

ator. The
ction and the
nd-acc, its

e collect

{

acc

= value;

for(Enumeration e = collection.elements() ; e.hasMoreElements();){
elem = e.nextElement();

acc.add(<expression-with-elem-and-acc>

}

return acc;

}

© ISO/IEC 2012 - All rights reserved

31

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Although the Java pseudo code uses a ‘next element,’ the iferafe operation is defined not only for Sequence, but for each
collection type. The order of the iteration through the elements in the collection is not defined for Set and Bag. For a
Sequence the order is the order of the elements in the sequence.

7.8

Messages in OCL

This sub clause contains some examples of the concrete syntax and explains the finer details of the message expression.

In earlier v

781 C

To specify

contg
post:

The observ
the executi
specified in|
parameters

If the actua
is shown by
correct ope

contg
post:

This examp
known.

OCL also d

contg
post:

This results
remainder d
operation d

contq
post:
]

prsions the phrase “actions 1 OCL™ was used, but message was round 1o capture the meaning

alling operations and sending signals

hat communication has taken place, the hasSent (‘*’) operator is used:

xt Subject::hasChanged()
observer*update(12, 14)

br*update(12, 14) results in true if an update message with arguments 12'and 14 was sent to o
n of the operation. Update() is either an Operation that is defined-in_the class of observer, or
the UML model. The argument(s) of the message expression (L2"and 14 in this example) must
of the operation/signal definition.

arguments of the operation/signal are not known, or nof\restricted in any way, it can be left ur
using a question mark. Following the question mark 18 an optional type, which may be needg
fation when the same operation exists with different parameter types.

xt Subject::hasChanged()
observer*update(? : Integer, ? : Integer)

le states that the message update has begn sent to observer, but that the values of the parame

efines a special OcIMessage type. One can get the actual OclMessages through the message

xt Subject::hasChanged()
observer™update(12, 14)

in the Sequence of messages sent. Each element of the collection is an instance of Oc/Messa,
f the constraint ong can refer to the parameters of the operation using their formal parameter
efinition. If the'Operation update has been defined with formal parameters named i and j, then|

xt Subject::hasChanged()
let messages : Sequence(OclMessage) = observer™update(? : Integer, ? : Integer) in
essages->notEmpty() and

more precisely.

bserver during
it is a Signal
conform to the

specified. This
d to find the

ters are not

pperator: .

be. In the
hame from the
we can write:

]

essages->exists(m | m.i >0 and m.j >=m.i)

The value of the parameter i is not known, but it must be greater than zero and the value of parameter j must be larger or

equal to i.

Because the " operator results in an instance of OcI/Message, the message expression can also be used to specify

collections

of messages sent to different targets. For an observer pattern we can write:

context Subject::hasChanged()

post:

let messages : Sequence(OclMessage) =
observers->collect(o | o update(? : Integer, ? : Integer)) in

messages->forAll(m | m.i <=m.j)

32

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Messages is now a set of Oc/Message instances, where every OclMessage instance has one of the observers as a target.

7.8.2 Accessing result values

A signal sent message is by definition asynchronous, so there never is a return value. If there is a logical return value it
must be modeled as a separate signal message. Yet, for an operation call there is a potential return value. This is only
available if the operation has already returned (not necessary if the operation call is asynchronous), and it specifies a
return type in i iti i i e called
operation. If getMoney(...) is an operation on Company that returns a boolean, as in Company::getMonigyfamount :
Integer) : Boolean, we can write:

cont¢xt Person::giveSalary(amount : Integer)
post:{let message : OclMessage = company”getMoney(amount) in

njessage.hasReturned() -- getMoney was sent and returned
apd
njessage.result() = true -- the getMoney call returned true

As with thq previous example we can also access a collection of return values ffom a collection of OclMgssages. If
message.halsReturned() is false, then message.result() will be invalid.

7.8.3 An example

This sub clpuse shows an example of using the OCL message expression.

The Example and Problem

Suppose w¢ have built a component, which takes any form of input and transforms it into garbage (aka epcrypts it). The
component [GarbageCan uses an interface UsefullnformationProvider that must be implemented by users |of the
component [to provide the input. The operation getNVextPieceOfGarbage of GarbageCan can then be used|to retrieve the
garbled dath. Figure 7.6 shows the component’s class diagram. Note that none of the operations are markpd as queries.

GarbageCan

SetUsefullnformationProvider(uip:UsefullnformationProvider)
gefNextPieceOfGarbage() : Integer

0..1 #datasource

<<interface>>
WsefullnformationProvider

getNextPieceOfData():Integer

Figure 7.6 - OclIMessageExample

When selling the component, we do not want to give the source code to our customers. However, we want to specify the
component’s behavior as precisely as possible. So, for example, we want to specify, what getNextPieceOfGarbage does.
Note that we cannot write:

context GarbageCan::getNextPieceOfGarbage() : Integer
post: result = (datasource.getNextPieceOfData() * .7683425 + 10000) / 20 + 3

© ISO/IEC 2012 - All rights reserved 33

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

because UsefullnformationProvider::getNextPieceOfData() is not a query (e.g., it may increase some internal pointer so
that it can return the next piece of data at the next call). Still we would like to say something about how the garbage is
derived from the original data.

The solution

To solve this problem, we can use an OclMessage to represent the call to getNextPieceOfData. This allows us to check for
the result. Note that we need to demand that the call has returned before accessing the result:

cont¢xt GarbageCan::getNextPieceOfGarbage() : Integer

post:|let message : OclMessage = datasource”"getNextPieceOfData()->first() in
njessage.hasReturned()

ahd

rgsult = (message.result() * .7683425 + 10000) / 20 + 3

7.9 Resolving Properties

For any prdperty (attribute, operation, or navigation) the full notation includes the object of which the prgperty is taken.
As seen in [.4.3, ’Invariants’ self can be left implicit, and so can the iteratorvariables in collection operafions. At any
place in an |expression, when an iterator is left out, an implicit iterator-variable is introduced. For examplg in:

cont¢xt Person inv:
employer->forAll(employee->exists(lastName = name))

three impli¢it variables are introduced. The first is self, which.s always the instance from which the congraint starts.
Secondly an implicit iterator is introduced by the forAll and-third by the exists. The implicit iterator variables are
unnamed. The properties employer, employee, lastNameyand name all have the object on which they are gpplied left out.
Resolving these goes as follows:

« at the place of employer there is one implicitivariable: self : Person. Therefore employer must be a prdperty of self.

« at the place of employee there are twolimplicit variables: self: Person and iterl : Company. Therefore|employer must
be a|property of either self or iterisM employee is a property of both self and iterl, then it is defined tp belong to the
varigble in the most inner scope,which is iterl.

« atthe place of lastNameand name there are three implicit variables: self : Person, iterl : Company and iter2 : Person.
Therefore lastName and rame must both be a property of either self or iter! or iter2. In the UML mode] property name
is a property of iterts Howeves, lastName is a property of both self and iter2. This is ambiguous and therefore the
lastName refersdfo.the variable in the most inner scope, which is iter2.

Both of the| followdnig invariant constraints are correct, but have a different meaning:

contg¢xtPersoOn
inw -> ->exi plplastName = name))

inv: employer->forAll(employee->exists(self.lastName = name))

A closure iteration may introduce an implicit iterator-variable at each level of recursion and so multiple iterator-variable
candidates for consideration as the implicit self. Since all candidates have the same static type, it is only the least deeply
nested candidate, with respect to the iteration body, that need be considered as the implicit iterator-variable for a closure.

34 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

8 Abstract Syntax

8.1 Introduction

This clause describes the abstract syntax of the OCL. In this abstract syntax a number of metaclasses from the UML
metamodel are imported. These metaclasses are shown in the models with a transparent fill color. All metaclasses defined

as part of t

e QCIL _abstract Q)ﬂfQY are-shown with g]ight gray hanlzgrr\nnr‘

The abstrag
The abstrag

« The
0OCl

« The

t syntax as described below defines the concepts that are part of the OCL using a MOF compli
t syntax is divided into several packages.

Types package describes the concepts that define the type system of OCL. It shows,which types a
| and which types are deduced from the UML models.

Expressions package describes the structure of OCL expressions.

8.2 The Types Package

OCL is a ty
Evaluation
a model foi
classes in t
2, 3).

The model
Classifier f

In the mod
collection t
Conceptual
expression.
namespacey
the same ty]

ped language. Each expression has a type that is either explicitly declared or can be statically|
pf the expression yields a value of this type. Therefore, before we can define expressions, we 1
the concept of type. A metamodel for OCL types is shown in this sub clause. Note that insta
ne metamodel are the types themselves (e.g., Integer).not instances of the domain they represe

in Figure 8.1 shows the OCL types. The basic'type is the UML Classifier, which includes all
om the UML Superstructure.

hnt metamodel.

re predefined in

derived.

have to provide
hces of the

nt (e.g., -15, 0,

subtypes of

b1, the CollectionType (and its subclasses) and the TupleType are special. One can never instantiate all

ypes, because there is an infinite nimber, especially when nested collections are taken into ac
y all these types do exist, but.such a type should be (lazily) instantiated by a tool, whenever it
For convenience an instancejrepresenting a collection type or a tuple type may be replicated i
(such as in a top-level,package or within the expression referencing it), however they represe

pe.

ount.

is needed in an
n different

ht semantically

© ISO/IEC 2012 - All rights reserved

35

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

+elementType 1

DclAny is the
of all other

times in the

ass whose
SequenceType,
es, respectively.

terized with an

hat there is no

Classifier
[I I |
VoidType Class AnyType MessageType
*
*
InvalidType | | pDataType | | TemplateParameterType #refprredSignal
+specification: String - 0.1
ZF Signal
| | | +referredQperation
- GollectionType PrimitiveType TupleType Operation 0..1
| [I

OrdefredSetType SequenceType | | BagType SetType
Figure 8.1 { Abstract Syntax Kernel Metamodel for OCL Types
AnyType
AnyType is fthe metaclass of the special type Ocldny, which is the type to which all other types conform.
sole instande of AnyType. This metaclass allows defining the special property of being the generalization
Classifiers, |including Classes, DataTypes, and PrimitiveTypes.
BagType
BagType is|a collection type that describes a multiset of elements where each element may occur multiplg
bag. The elpments are unordered. Part of a BagType is the declaration of the type of its elements.
CollectionType
CollectionType describessa\list of elements of a particular given type. CollectionType is a concrete metacl
instances afle the family ot abstract Collection(T) data types. Its subclasses are SetType, OrderedSetType,
and BagType, whosetinstances are the concrete Set(T), OrderedSet(T), Sequence(T), and Bag(T), data typ
Part of evetly collection type is the declaration of the type of its elements (i.e., a collection type is parame
element type)>In the metamodel thig is shown as an association from FnlantinnTva tao Classifier Note

restriction on the element type of a collection type. This means in particular that a collection type may be parameterized
with other collection types allowing collections to be nested arbitrarily deep.

Associations
elementType The type of the elements in a collection. All elements in a collection must conform to this type.
36 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

InvalidType

InvalidType represents a type that conforms to all types except the VoidType type. The only instance of InvalidType is
Invalid, which is further defined in the standard library. Furthermore Invalid has exactly one runtime instance identified
as Ocllnvalid.

MessageType

MessageTyy

e describes ocl messages. Similar to the collection tvpes, MessageTvpe describes a set of types

in the standard

library. Par
message ty]
MessageTyy
instances, g

Associatio

referredSig

referredOp

OrderedS

OrderedSet,
set. The elg
of its elemg

Sequence

SequenceT3
sequence. i
of its elemd

SetType

SetType is §
elements ar

of every MessageType is a reference to the declaration of the type of its operation or signaly
be is parameterized with an operation or signal. In the metamodel, this is shown as an assoecia,
be to Operation and to Signal. MessageType is part of the abstract syntax of OCL, residing on
alled OclMessage, and subtypes of OclMessage, reside on M1 level.

ments are ordered by their position in the sequence Rart of an OrderedSetType is the declarat
nts.

Type
pe is a collection type that describes ali$t of elements where each element may occur multipl

he elements are ordered by their position in the sequence. Part of a SequenceType is the declaral
nts.

collection type that deseribes a set of elements where each distinct element occurs only once
e not ordered. Part ‘of)a SetType is the declaration of the type of its elements.

TemplateParameterFype

A Templat

arameterType is used to refer to generic types in parameterized definitions. It is used in the s

to represen{ the parameterized collection operations. A TemplateParameterType is usually named “T” (or *
so on, when mere than one type parameter is involved).

.., an ocl
ion from
M2 level. Its

1S

rnal The Signal that is sent by the message.

eration The Operation that is called by the message.

ptType

Iype is a collection type that describes a set of elemenfy where each distinct element occurs ofnly once in the

on of the type

e times in the
tion of the type

in the set. The

tandard library
T2,” “T3,” and

The TemplateParameterType is a sub-class of Classifier.

© ISO/IEC 2012 - All rights reserved

37

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Attributes
specification An un-interpreted opaque definition of the template parameter type.
TupleType

TupleType (informally known as record type or struct) combines different types into a single aggregate type. The parts of
a TupleTypg-are-deseribed by its attributeseach having a name and-atype-There-is-no-restriction-on-the kind of types that

can be used as part of a tuple. In particular, a TupleType may contain other tuple types and collection types| Each attribute
of a TupleType represents a single feature of a TupleType. Each part is uniquely identified by its nafne.

VoidType
VoidType is[the metaclass of the OclVoid type that conforms to all types except the Ocllnvalid type. The dnly instance of
VoidType is|OclVoid, which is further defined in the standard library. Furthermore Oc/poid has exactly one[instance called

null - corregponding to the UML NullLiteral literal specification - and representing\the absence of value. [Note that in
contrast with invalid, null is a valid value and as such can be owned by collections.

8.2.1 Type Conformance

The type cqnformance rules are formally underpinned in the Semantics sub clause of the specification. To|ensure that the
rules are accessible to UML modelers they are specified in this sib’ clause using OCL. For this, the additfonal operation
conformsTofc : Classifier) : Boolean is defined on Classifier, It.evaluates to true, if the self Classifier conforms to the

argument c| The following OCL statements define type conformance for individual types.

BagType
[3] [1] Different bag types conform to each other ifitheir element types conform to each other.

contgxt BagType
inv: BagType.alllnstances()->forAll(b |
self.elementType.conformsTo(b.élementType) implies self.conformsTo(b))

Classifier
[4] [1] Conformance is a transitive relationship.

contgxt Classifier
inv Tansitivity: Classifiet.allInstances()->forAll(x|Classifier.alllnstances()
->forAll(y

(self.conformsTo(x) and x.conformsTo(y)) implies self.conformsTo(y)))

[5] [2] Clgsses(conform to superclasses and interfaces that they realize.

contgxt\Class
inv : self.generalization.general->forAll (p |
(p-oclIsKindOf(Class) or p.oclIsKindOf(Interface)) implies
self.conformsTo(p.oclAsType(Classifier)))

[6] [3] Interfaces conforms to super interfaces.

context Interface
inv : self.generalization.general->forAll (p |
p.oclIsKindOf(Interface) implies self.conformsTo(p.oclAsType(Interface)))

38 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[7] [4] The Conforms operation between Types is reflexive, a Classifier always conform to itself.
context Classifier

inv: self.conformsTo(self)

[8] [5] The Conforms operation between Types is anti-symmetric.

context Classifier
inv: Classifier.alllnstances()->forAll(t1, t2 |
(tl.conformsTo(t2) and t2.conformsTo(t1)) implies t1 = t2)

CollectionType
[9] [1] Spgcific collection types conform to collection type.

contgxt CollectionType

inv: { all instances of SetType, SequenceType, BagType conform to a

CollectionType if the elementTypes conform

CollectionType.alllnstances()->forAll (c |

c.oclIsTypeOf(CollectionType) and

self.elementType.conformsTo(c.elementType) implies
self.conformsTo(c))

[10][2] Collections do not conform to any primitive type.

contgxt CollectionType

inv: PrimitiveType.alllnstances()->forAll (p | not self.conformsTo(p)),
[117[3] Codllections of non-conforming types do not conform.

contgxt CollectionType
inv: CollectionType.alllnstances()->forAll (c |
(ng¢t self.elementType.conformsTo (c.elementType)) ihplies (not self.conformsTo (c)))

InvalidType
[12]]1] Odlnvalid conforms to all other types:
contgxt InvalidType

inv: (lassifier.alllnstances()->forAll{c,}self.conformsTo (c))

OrderedSetType
[13][1] Different ordered set'types conform to each other if their element types conform to each other.

contgxt OrderedSetType
inv: QrderedSetType.alllnstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

PrimitiveType
[14] [1] Int 6\41 \/UllfUllllD tU Rvul.

context PrimitiveType
inv: (self.name = 'Integer') implies
PrimitiveType.alllnstances()->forAll (p | (p.name = 'Real') implies
(self.conformsTo(p)))

[15][2] UnlimitedNatural conforms to Integer.
context PrimitiveType
inv: (self.name = 'UnlimitedNatural') implies

Primitive Type.alllnstances()->forAll (p | (p.name = 'Integer’) implies
(self.conformsTo(p)))

© ISO/IEC 2012 - All rights reserved 39

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Note that * is an invalid Integer and so conversion of * to Integer yields invalid whose type conforms to all types.

SequenceType
[16][1] Different sequence types conform to each other if their element types conform to each other.
context SequenceType

inv: SequenceType.alllnstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

SetType
[17][1] Ditferent set types conform to each other if their element types conform to each other.

contdxt SetType
inv: $etType.alllnstances()->forAll(s |
self.elementType.conformsTo(s.elementType) implies self.conformsTo(s))

TupleTyps¢
[18][1] Tuple types conform to each other when their names and types conform te"each other. Note that allAroperties is an

additional operation in the UML.

contdxt TupleType

inv: TupleType.alllnstances()->forAll (t |

(|t.allProperties()->forAll (tp |

-- make sure at least one tuplepart has the same name

-- (uniqueness of tuplepart names will ensure that not two

-- tupleparts have the same name within one tuple)
self.allProperties()->exists(stp|stp.name = tp.name) and

-- make sure that all tupleparts with the same name sonforms.
self.allProperties()->forAll(stp | (stp.name = tp.rame) implies
stp.type.conformsTo(tp.type))

itpplies
self.conformsTo(t)

VoidType
[19][1] Og¢lVoid conforms te-alLother types except Ocllnvalid.

contgxt VoidType
inv: Classifier.alllnStances()->forAll (c | not c.ocllsTypeOf(Ocllnvalid) implies self.conformsTo (c))

8.2.2 (Qperations and Well-formedness Rules for the Types Package

BagType
[20][1] The name of a bag type is “Bag” followed by the element type’s name in parentheses.

context BagType
inv: self.name = ‘Bag(‘ + self.elementType.name +)’

BooleanType
allInstances() : Set(Boolean)

Returns Set{true,false}.

40 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

CollectionType
[21]]1] The name of a collection type is “Collection” followed by the element type’s name in parentheses.

context CollectionType
inv: self.name = ‘Collection(‘ + self.elementType.name +)’

InvalidType
alllnstances() : Set(Ocllnvalid)

Returns invalid, since the notional return of Set{invalid} is not well-formed.

MessageType
[22]]1] MgssageType has either a link with a Signal or with an operation, but not both.
contgxt MessageType
inv: feferredOperation->size() + referredSignal->size() = 1
[23]1[2] The parameters of the referredOperation become attributes of the instance of\MessageType.

contgxt MessageType:

inv: feferredOperation->size()=1 implies

Jet{1..self.ownedAttribute->size() } ->forAll(i | self.ownedAttribute.at(i)cmpSlots(
referredOperation.ownedParameter.asProperty()->at(i)))

[24]1[3] Thk attributes of the referredSignal become attributes of the instance of MessageType.

contgxt MessageType

inv: feferredSignal->size() = 1 implies

Set{1..self.ownedAttribute->size() } ->forAll(i | self.ownedAttribute.asOrderedSet().at(i).cmpSlots(
referredSignal.ownedAttribute.asOrderedSet()->at(i)))

OrderedSetType
[25][1] The name of a set type is “OrderedSet? followed by the element type’s name in parentheses.

contgxt OrderedSetType
inv: delf.name = ‘OrderedSet(‘ + selfelementType.name +)’

SequenceType
[26][1] The name of a sequence-type is “Sequence” followed by the element type’s name in parentheses.

contgxt SequenceType
inv: gelf.name = ‘Sequence(‘ + self.elementType.name +)’

SetType
[27][1] Thedame of a set type is “Set” followed by the element type’s name in parentheses.

conteXT SeTType
inv: self.name = ‘Set(‘ + self.elementType.name +)’

TupleType
[28][1] The name of a tuple type includes the names of the individual parts and the types of those parts.

context TupleType
inv: name =
‘Tuple(‘.concat (
Sequence{1.allProperties()->size() } ->iterate (pn; s: String = *’ |
let p: Attribute = allProperties()->at (pn) in (
s.concat (

© ISO/IEC 2012 - All rights reserved 41

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

(if (pn>1) then °,” else ** endif)
.concat (p.name).concat (i:1)
.concat (p.type.name)
)
)
)

).concat (i)i)

[29]1[2] All parts belonging to a tuple type have unique names.

contdxt TupleType
inv: 1+ always true, because attributes must have unique names.

[301[3] A TupleType instance has only features that are Properties(tuple parts).

contdxt TupleType
inv: feature->forAll (f | f.ocllsTypeOf(Property))

VoidType
alllnstance}() : Set(OclVoid)

Returns Set{null}.

8.3 The Expressions Package

This sub clause defines the abstract syntax of the expressions package. This package defines the structurd that OCL
expressions| can have. An overview of the inheritance relationships between all classes defined in this padkage is shown
in Figure 8{2.

TIypedElement
+body A
1 OclExpression +initExpression
0.1 0.1
+source
+appliedElement
0.1
CallExp LiteralExp IfExp VariableExp TypeExp MessageExp StateExp
* * *
. +referredState
+referringExp +refefredType oA
0.1 -
FeatureCallExp LoopExp [110°PEXP I .
0.1 . +referredVariable | oo
+iterato
+loopBodyOwner ’ *\ 01 0.1 N
01 Variable P - +initializedElement
+variable
+representedParameter
IteratorExp IterateExp 0..1 01"
D..1 +result
+baseExp Parameter

Figure 8.2 - The basic structure of the abstract syntax kernel metamodel for Expressions

42 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

8.3.1 Expressions Core

Figure 8.2 shows the core part of the Expressions package. The basic structure in the package consists of the classes
OclExpression, CallExp, and VariableExp. An OclExpression always has a type, which is usually not explicitly modeled,
but derived. Each CallExp has exactly one source, identified by an OclExpression. In this sub clause we use the term
‘property’ that is a generalization of Feature, AssociationEnd, and predefined iterating OCL collection operations.

A FeatureCallExp generalizes all property calls that refer to Features in the UML metamodel. In Figure 8.3 the various

subtypes of

Most of the
their specif]
literal, on W

CallExp

A CallExp
result value

Associatiohs

source

FeatureCallExp

A Feature(
which this

Attributes

isPre

IfExp
An IfExp id

IterateExp

An [terateH
construct th

FeatureCallkxp are detined.

¢ structure. From the metamodel it can be deduced that an OCL expression always starts with
hich a property is recursively applied.

s an expression that refers to a feature (operation, property) or to a predéfined iterator for col
is the evaluation of the corresponding feature. This is an abstract metaclass.

The result value of the source expression is theyinstance that performs the property call

allExp expression is an expression that refers'to-a feature that is defined for a Classifier in the
pxpression is attached. Its result value is the,evaluation of the corresponding feature.

Boolean indicatingswhether the expression accesses the precondition-time value of the 1|

defined in 8.3.3 " If Expressions’ but included in this diagram for completeness.

xp is ane€xpression that evaluates its body expression for each element of a collection. It acts
at iterates over the elements of its source collection and results in a value. An iterate expressi

remainder of the expressions package consists of a specification of the different subclasses of CallExp and

a variable or

lections. Its

[UML model to

eferred feature.

as a loop
n evaluates its
bach iteration-

body expre

sion/for each element of its source collection. The evaluated value of the body expression in

step becomes the new value for the result variable for the succeeding iteration-step. The result can be of any type and is
defined by the result association. The IterateExp is the most fundamental collection expression defined in the OCL
Expressions package.

© ISO/IEC 2012 - All rights reserved

43

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations

result

IteratorEx

The Variable that represents the result variable.

p

An IteratorExp is an expression that evaluates its body expression for each element of a collection. It acts as a loop

construct t

at itaratac avar tho alamante of 140 cg10000 onllaction and raculte 11 o valuoe Thao tune of tha 1tar
v + < - He- P

ator expression

depends on
represents 4
etc. The O(
of the iterat

LiteralExp

A LiteralFEN
expression

LoopExp

A LoopExp
elements of]
of a loop ej

Associatio

iterator

body

MessageE

MessageEx]

OclExpregsion

An OclExp
of all other
the OCL Ej
expression

the name of the expression, and sometimes on the type of the associated source expression. [T
11 other predefined collection operations that use an iterator. This includes select, collect{r¢ject
L Standard Library defines a number of predefined iterator expressions. Their semantics is dg
e expression in 11.7, *Predefined Iterator Expressions.’

[p is an expression with no arguments producing a value. In general the‘zésult value is identics
symbol. This includes things like the integer 1 or literal strings like“this is a LiteralExp.’

is an expression that represents a loop construct over a colleCtion. It has an iterator variable tha
the collection during iteration. The body expression iscevaluated for each element in the collec
L pression depends on the specific kind and its name:

1S

The iterator variables. These vadriables are, each in its turn, bound to every element valu
collection while evaluating the body expression.

The OclExpression that is evaluated for each element in the source collection.

Xp

b is defined in “Message Expressions” on page 48, but included in this diagram for completen|

ession is anexpression that can be evaluated in a given environment. OclExpression is the abs
expressions in the metamodel - except for the ExpressionInOcl container class. It is the top-1d
(pressions package. Every OclExpression has a type that can be statically determined by analy]
hnd(its context. Evaluation of an expression results in a value. Expressions with boolean result

he IteratorExp
, forAll, exists,
fined in terms

1 with the

t represents the
tion. The result

e of the source

£SS.

ract superclass
vel element of
zing the

can be used as

constraints

values, targ

€.g., to specily an mvariant of a class). Expressions of any type can be used to specily queries,
et sets, etc.

initial attribute

The environment of an OclExpression defines what model elements are visible and can be referred to in an expression. At
the topmost level the environment will be defined by the Element to which the OCL expression is attached, for example
by a Classifier if the OCL expression is used as an invariant. On a lower level, each iterator expression can also introduce
one or more iterator variables into the environment. The environment is not modeled as a separate metaclass because it
can be completely derived using derivation rules. The complete derivation rules can be found in Clause 9 (“Concrete

Syntax”).

44

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

StateExp

A StateExp is an expression used to refer to a state of a class within an expression. It is used to pass directly to the pre-
defined operation ocllsInState the reference of a state of a class defined in the UML model.

Associations

referredState The State being referred.

TypeExp

A TypeExp]is an expression used to refer to an existing meta type within an expression. It is used in particplar to pass the
reference of the meta type when invoking the operations oclIsKindOf, oclIsTypeOf, and oclAsType.

Associatiohs

referredType The type being referred.

Variable

Variables afe typed elements for passing data in expressions. The vafriable can be used in expressions wh¢re the variable
is in scope.| This metaclass represents among others the variables‘se/f'and result and the variables defined using the Let
expression.

Associations
initExpression The OclExpression thatrepresents the initial value of the variable. Depending orf the role that a
variable declaration-plays, the init expression might be mandatory.
representeflParameter The Parameter i the current operation this variable is representing. Any access fo the variable
represents-an.access to the parameter value.
VariableExp

A VariableExp is an expression that consists of a reference to a variable. References to the variables self ind result or to
variables d¢fined by Let.eXpressions are examples of such variable expressions.

Associatiohs

referred Vayiable The Variable to which this variable expression refers.

8.3.2 FeatureCall Expressions

A FeatureCallExp can refer to any of the subtypes of Feature as defined in the UML kernel. This is shown in Figure 8.3
by the three different subtypes, each of which is associated with its own type of Element.

© ISO/IEC 2012 - All rights reserved 45

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

FeatureCallExp

B

+parentNav . ‘_‘ L
@ 'aVIgatonCantxp
. 0.1 *
+qualifier
{Srdered
(M clExpression ‘ +navigationSource
0.1
* 0..1 /
ordered] +referringExp
— \ PropertyCallExp Property
+referredProperty
tparentCall
0.1 +referringEx|
OperationCallExp o=p +referredOperation Opération
*
0.1

Figure 8.3 { Abstract syntax metamodel for FeatureCallExp in the Expressions package

AssociatipnClassCallExp

An AssociafionClassCallExp is a reference to an AssociationClass defined in a UML model. It is used to|determine
objects linkled to a target object by an association class.The expression refers to these target objects by the name of the
target assodiationclass.

Associatiops

referredAsgociationClass The AssogiationClass to which this AssociationClassCallExp is a reference. Thiis refers to an
AssociationClass that is defined in the UML model.

PropertyQallExp

A Property{CallExpressionJs ‘a reference to an Attribute of a Classifier defined in a UML model. It evaluafes to the value
of the attrifjute.

Associatiops

referredProperty The Attribute to which this AttributeCallExp is a reference.

NavigationCallExp

A NavigationCallExp is a reference to a Property or an AssociationClass defined in a UML model. It is used to determine
objects linked to a target object by an association, whether explicitly modeled as an Association or implicit. If there is a
qualifier attached to the source end of the association, then additional qualifier expressions may be used to specify the
values of the qualifying attributes.

46 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations
qualifier The values for the qualifier attributes if applicable.
navigationSource The source denotes the association end Property at the end of the object itself. This is used to

resolve ambiguities when the same Classifier is at more than one end (plays more
in the same association. In other cases it can be derived.

than one role)

OperatiorJCaIIExp

An Operati
expressiong
the parame

Associatio

argument

referredOp

8.3.3 If

This sub cl

bnCallExp refers to an operation defined in a Classifier. The expression may contain a-list of
if the operation is defined to have parameters. In this case, the number and types of the argume
ers.

1S

The arguments denote the arguments to the operation €all: This is only useful whet
call is related to an Operation that takes parameters.

eration The Operation to which this OperationCallEXp)is a reference. This is an Opera
Classifier that is defined in the UML modek

Expressions

huse describes the if expression in detail. Figure<8.4 shows the structure of the if expression.

irgument
nts must match

h the operation

tion of a

0.1
— IfExp @
+thgnOwner g 4 +elseOwner
0.1
+ifOwner
+thenExpression *eon Itlo?
1 +elseExpression
OclExpression |
1
Figure 8.4 { Abstract syntax metamodel for if expression

IfExp

An IfExp results in one of two alternative expressions depending on the evaluated value of a condition. Note that both the
thenExpression and the elseExpression are mandatory. The reason behind this is that an if expression should always result
in a value, which cannot be guaranteed if the else part is left out.

© ISO/IEC 2012 - All rights reserved

47

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations
condition The OclExpression that represents the boolean condition. If this condition evaluates to true, the
result of the if expression is identical to the result of the thenExpression. If this condition
evaluates to false, the result of the if expression is identical to the result of the elseExpression.
thenExpression The OclExpression that represents the then part of the if expression.
elseExpregstom TheOctExpression tiat Tepresents the etse part of the if expressior:

8.3.4 Message Expressions

In the specification of communication between instances we unify the notions of asynchroneus)and synchronous
communicaion. The structure of the message expressions is shown in Figure 8.5.

UnspecifiedValueExp

V

+target OCIExpression

1 Fargument
Z} {ordered}

MessageExp
0.1 0.1
+calledOperation +sentSignal
0..1 -1
CallOpgrationAction CallSignalAction

Figure 8.5 { The abstract syntax of Ocl messages

MessageBExp
A MessageExp is an expression that results in a collection of OclMessage value. An OclMessage is the upification of a

signal sent,|and an operation call. The target of the operation call or signal sent is specified by the target PclExpression.
Arguments jare OclExpressions, in particular they may be unspecified value expressions for arguments whese value is not
specified. If covers both synchronous and asynchronous actions.

48 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

Associations

target

argument

The OclExpression that represents the target instance to which the signal is sent.

ISO/IEC 19507:2012(E)

The OclExpressions that represent the parameters to the Operation or Signal. The number and
type of arguments should conform to those defined in the Operation or Signal. The order of the
arguments is the same as the order of the parameters of the Operation or the attributes of a

Signal.

calledOperation

sentSignal

If this is a message to request an operation call, this is the requested CallOperaf

If this is a UML signal sent, this is the SendSignalAction.

UnspecifiedValueExp

An UnpecifiedValueExp is an expression whose value is unspecified in an OCL expression. It is used wit

messages t¢ leave parameters of messages unspecified.

8.4 Lliteral Expressions

This sub clfuse defines the different types of literal expressions of OCL. It also refers to enumeration typ

enumeration literals. Figure 8.6 shows all types of literal expressions.

LiteralExp

HlteralBap * EnumlLiteralExp

+referredEnygnliter al
0.1

| Pr'.im.r'tr've.[fra'afExp| NullLiteralExp InvalidLiteralExp

e

| MNinmericliteralExp ‘ StringLiteralExp

BooleanLiteralExp

EnuwnerationLiteral

+string Sy mbol: String +hoo

leanSymhbol: Boolean

| P

RealliteralExp

UnlimitedNaturalLiteralExp

InmtegerLiteralExp

+realSy mbol: Real

+unlimitedraturalSymbol: Unlimitediatural

+integerSy mbol: Integer

Figure 8.6 { Abstract syntax metamodel for Literal expression

jonAction.

hin OCL

es and

© ISO/IEC 2012 - All rights reserved

49

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

LiteralExp
[]
CollectionLiteralExp TypedElement TupleLiteralExp
+kind: CollectionKind
1 Z% 0..1
+part | 4 | | o | +part
CollectionLiteralPart

TupleLiteralPart

4 0 o 1
+attribute

| | 0.1
CollectionRange Collectionltem Property

<<enumeration>>

+irstOw CollectionKind

+Hirst +Collection

+item +Set
+OrderedSet
+Bag
+Sequence

OclExpression

Figure 8.7 { Abstract syntax metamodel for Collection‘and Tuple Literal expression

BooleanL|teralExp

A BooleanlliteralExp represents the value trie or false of the predefined type Boolean.
Attributes
booleanSymbol Fhe-Boolean that represents the value of the literal.

Collectionltem

A Collectionltem represents an individual element of a collection.

CollectionKind

The CollectionKind enumeration lists the kinds of collections. Its literals are Collection, Set, OrderedSet, Bag, and
Sequence.

CollectionLiteralExp

A CollectionLiteral Exp represents a reference to collection literal.

50 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Attributes

kind The kind of collection literal that is specified by this CollectionLiteralExp.
Associations

part The parts of the collection literal expression
CollectiorLiteralPart

A CollectidnLiteralPart is a member of the collection literal.

Associatiohs

type

Collectiorn

The type of the collection literal.

Range

A CollectignRange represents a range of integers.

EnumLitefalExp

An EnumlLiy

teral Exp represents a reference to an enumeration<literal.

Associatiohs

referredEnumLiteral The EnumlLiteral to which the enum expression refers.

IntegerLiteralExp

An IntegerLiteralExp denotes a value of the predefined type Integer.

Attributes

integerSyn

NumericL

A Numeric|

hbol The Integer that represents the value of the literal.
teralExp
LitéralExp denotes a value of either the type UnlimitedNatural, Integer or Real types.

PrimitiveLiteralExp

A PrimitiveLiteral Exp literal denotes a value of a primitive type.

© ISO/IEC 2012 - All rights reserved

51

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Attributes
symbol The String that represents the value of the literal.

RealLiteralExp
A ReallLiteralExp denotes a value of the predefined type Real.

Attributes

—

realSymbq The Real that represents the value of the literal.

StringLitefralExp
A StringLiteralExp denotes a value of the predefined type String.

Attributes
stringSymbpol The String that represents the value of the literal.

TupleLitenalExp

A TupleLitdralExp denotes a tuple value. It contains a name and a value for each part of the tuple type.
Associations
part The Variable declarations defining the parts of the literal.

UnlimitedNaturalLiteralExp
An UnlimitedNaturalLiteralExp denotes”a value of the predefined type UnlimitedNatural.

Attributes
unlimitedNatural Symbol The UnlimitedNatural that represents the value of the literal.

8.4.1 Lpt Expressions

This sub clause defines the abstract syntax metamaodel for T et PYprf‘qqian The only addition to the abstralct syntax is the

metaclass LetExp as shown in Figure 8.8. The other metaclasses are re-used from the previous diagrams.

Note: Let expressions that take arguments are no longer allowed in OCL 2.0. This feature is redundant. Instead, a
modeler can define an additional operation in the UML Classifier, potentially with a special stereotype to denote that this
operation is only meant to be used as a helper operation in OCL expressions. The postcondition of such an additional
operation can then define its result value. Removal of Let functions will therefore not affect the expressibility of the
modeler. Another way to define such helper operations is through the «definition» constraint, which reuses some of the
concrete syntax defined for Let expressions (see 12.5, *Definition’), but is nothing more than an OCL-based syntax for
defining helper attributes and operations.

52 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Oc/Expression +initExpression
0..1
*in +initializedElement
0.1 0.1
LetExp +variable Variable
0..1 1

Figure 8.8 { Abstract syntax metamodel for let expression

LetExp

A LetExp i§ a special expression that defined a new variable with an initial value. A vaniable defined by a| LetExp cannot
change its Yalue. The value is always the evaluated value of the initial expressionsThe variable is visible|in the in
expression.

Associatiops
variable The Variable introduced by the Let expression.
in The OclExpression in whose enyironment the defined variable is visible.

8.4.2 Well-formedness Rules of the Expressions package

The metaclisses defined in the abstract syntax have<dhe following well-formedness rules:

PropertyQallExp

The type of the call expression is the type-of the referred property.

contgxt PropertyCallExp
inv: fype = referredProperty.type

BooleanLjteralExp
[31][1] The type of a boolean Literal expression is the type Boolean.

contgxt BooleanLiteralExp
inv: delf.typeitame = ‘Boolean’

CollectionlLiteralExp
[32][1] ‘Collection’ is an abstract class on the M1 level and has no M0 instances.
context CollectionLiteralExp
inv: kind <> CollectionKind::Collection
[33]1[2] The type of a collection literal expression is determined by the collection kind selection and the common supertype of
all elements. Note that the definition below implicitly states that empty collections have OclVoid as their elementType.

context CollectionLiteralExp

inv: kind = CollectionKind::Set implies type.ocllsKindOf (SetType)

inv: kind = CollectionKind::OrderedSet implies type.ocllsKindOf (OrderedSetType)
inv: kind = CollectionKind::Sequence implies type.ocllsKindOf (SequenceType)

© ISO/IEC 2012 - All rights reserved 53

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

inv: kind = CollectionKind::Bag implies type.ocllsKindOf (BagType)
inv: type.oclAsType (CollectionType).elementType = part->iterate (p; c : Classifier = OclVoid | c.commonSuperType (p.type))

CollectionLiteralPart

No additional well-formedness rules.

Collectionltem
[34][1] Th type of a Collectionltem is the type of the item expression.

contdxt Collectionltem
inv: type = item.type

CollectionRange
[35][1] Th type of a CollectionRange is the common supertype of the expressions taking part’in the range.

contgxt CollectionRange
inv: fiype = first.type.commonSuperType (last.type)

EnumLiteralExp
[36][1] Thg type of an enum Literal expression is the type of the referred literal.

contgxt EnumLiteralExp
inv: gelf.type = referredEnumLiteral.enumeration

IfExp
[371[1] Thg type of the condition of an if expression must.b&“Boolean.

contgxt IfExp
inv: gelf.condition.type.oclIsKindOf(PrimitiveType)and self.condition.type.name = ‘Boolean’

[38][2] Thg type of the if expression is the most-common supertype of the else and then expressions.

contgxt IfExp
inv: delf.type = thenExpression.type.comimonSuperType(elseExpression.type)

IntegerLiteralExp
[39][1] Th type of an integer Literal expression is the type Integer.

contgxt IntegerLiteralExp.
inv: delf.type.name = Integer’

IteratorExp any
[40][1] Theyre is ‘exactly one iterator.

contdxt lteratorExp
inv: name = ‘any’ implies iterator->size() = 1

[41][2] The type is the same as the source element type

context IteratorExp
inv: name = ‘any’ implies type = source.type.oclAsType(CollectionType).elementType

[42][3] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘any’ implies body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’

54 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

IteratorExp closure
[43]]1] There is exactly one iterator.

context [teratorExp
inv: name = 'closure' implies iterator->size() = 1

[44][2] The collection type for an OrderedSet or a Sequence source type is OrderedSet. For any other source the collection
type is Set.

context [teratorExp
inv: name = 'closure' implies

if squrce.type.ocllsKindOf(SequenceType) or source.type.ocllsKindOf(OrderedSetType) then
type.ocllsKindOf(OrderedSetType)
else
type.ocllsKindOf(SetType)
englif

[45][3] The source element type is the same as type of the body elements or element.

contgxt IteratorExp

inv: name = 'closure' implies
source.type.oclAsType(CollectionType).elementType =

if body.type.oclIsKindOf(CollectionType)

then body.type.oclAsType(CollectionType).elementType
else body.type

endif

[46][4] The element type is the same as the source element type.

contgxt IteratorExp
inv: name = 'closure' implies
ype.oclAsType(CollectionType).elementType

= source.type.oclAsType(CollectionType).¢lementType

IteratorExp collect
[471[1] Theyre is exactly one iterator.

contgxt IteratorExp
inv: flame = 'collect' implies iterator->Size() = 1

[48][2] The collection type for an'@rderedSet or a Sequence type is a Sequence, the result type for any other ¢ollection type
is a|Bag.
contgxt [teratorExp
inv: lame = 'collectlimplies
if squrce.type.0cllsKindOf(SequenceType) or source.type.ocllsKindOf(OrderedSetType) then
type.ocllsKindOf(SequenceType)
else]
typeroedsKindOf(BagType)
endif

[49][3] The element type is the type of the body elements.
context IteratorExp
inv: name = 'collect' implies
type.oclAsType(CollectionType).elementType =
body.type.oclAsType(CollectionType).elementType

© ISO/IEC 2012 - All rights reserved 55

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

IteratorExp collectNested
[50][1] There is exactly one iterator.

context IteratorExp
inv: name = 'collectNested' implies iterator->size() = 1

[51]1[2] The type is a Bag.

context IteratorExp
inv: name = 'collectNested' implies type.ocllsKindOf(BagType)

[52][3] The type is the type of source.

contgxt [teratorExp
inv: game = 'collectNested' implies type = body.type

IteratorExp exists
[53]1[1] The|type must be Boolean.

contgxt [teratorExp
inv: lame = ‘exists’ implies type.oclIsKindOf(PrimitiveType) and type.name = ‘Boolean’

[54][2] Thel type of the body must be Boolean.

contgxt [teratorExp
inv: lame = ‘exists’ implies body.type.ocllsKindOf(PrimitiveType) and body:type.name = ‘Boolean’

IteratorExp forAll
[55][1] The| type must be Boolean.

contgxt IteratorExp
inv: game = ‘forAll” implies type.ocllsKindOf(PrimitiveType) and type.name = ‘Boolean’

[56][2] The| type of the body must be Boolean.

contgxt IteratorExp
inv: game = ‘forAll’ implies body.type.ocllsKindOf(Primitive Type) and body.type.name = ‘Boolean’

IteratorExp isUnique
[57]1[1] Theye is exactly one iterator.

contdxt IteratorExp

inv: game = ‘isUnique’ implies iterator->size() = 1
[58][2] The| type must be Boolean.

contdxt IteratorExp
inv: game = ‘isUnique’ implies type.ocllsKindOf(PrimitiveType) and type.name = ‘Boolean’

IteratorExp.onhe
[59][1] There 1s exactly one iterator.

context IteratorExp
inv: name = ‘one’ implies iterator->size() = 1
[60][2] The type is Boolean

context IteratorExp
inv: name = ‘one’ implies type.oclIsKindOf(PrimitiveType) and type.name = ‘Boolean’

[61][3] The type of the body must be Boolean.

context IteratorExp
inv: name = ‘one’ implies body.type.oclIsKindOf(PrimitiveType) and body.type.name = ‘Boolean’

56 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

IteratorExp reject or select
[62]]1] There is exactly one iterator.

context [teratorExp

inv: name = ‘reject’ or name = ‘select’ implies iterator->size() = 1
[63]1[2] The type is the same as the source.

context [teratorExp

inv: name = ‘reject’ or name = ‘select’ implies type = source.type
[64][3] The type of the body must be Boolean.

contgxt IteratorExp
inv: pame = ‘reject’ or name = ‘select’ implies
bodyjtype.oclIsKindOf(Primitive Type) and body.type.name = ‘Boolean’

IteratorExjp sortedBy
[65]1[1] Thetre is exactly one iterator.
contgxt IteratorExp
inv: npame = 'sortedBy' implies iterator->size() = 1
[66] [2] The collection type for an OrderedSet or a Sequence type is a Sequerice, ‘the result type for any other ¢ollection type
is Bag.
contgxt IteratorExp
inv: pame = 'sortedBy' implies
if squrce.type.ocllsKindOf(SequenceType) or source.type.ocllsKindOf(BagType) then
type.ocllsKindOf(SequenceType)
else]

type.ocllsKindOf(OrderedSetType)
end|f

[67]1[3] The element type is the type of the body elements.

contgxt IteratorExp
inv: lame = 'sortedBy' implies
typg.oclAsType(CollectionType).element Type =
bofly.type.oclAsType(CollectionType).elementType

IterateExp
[68]1[1] Th type of the iterate-is the type of the result variable.

contgxt IterateExp

inv: fype = result.type
[69]1[2] Thg type-of the body expression must conform to the declared type of the result variable.

contgxt It€rateExp

inv: bedy-typecontormstotrestlttype)
[70][3] A result variable must have an init expression.

context IterateExp
inv: self.result.initExpression->size() = 1

LetExp
[71][1] The type of a Let expression is the type of the in expression.

context LetExp
inv: type = in.type

© ISO/IEC 2012 - All rights reserved 57

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

LiteralExp

No additional well-formedness rules.

LoopExp
[72]1[1] The type of the source expression must be a collection.

context LoopExp
inv: source.type.oclIsKindOf (CollectionType)

[73]1[2] Th loop variable of an iterator expression has no init expression.
contgxt LoopExp
inv: gelf.iterator->forAll(initExpression->isEmpty())
[74]1[3] Th type of each iterator variable must be the type of the elements of the source collection!

contgxt [teratorExp
inv: gelf.iterator->forAll(type = source.type.oclAsType (CollectionType).elementType)

FeatureCallExp

No additiorjal well-formedness rules.

NumericLjteralExp

No additionjal well-formedness rules.

OclExpression

No additiorjal well-formedness rules.

MessageBxp
[75]1[1] If the message is an operation call actieh,the arguments must conform to the parameters of the operation.

contdxt MessageExp
inv: dalledOperation->notEmpty() implies
rgument->forAll (a | a.type.conformsTo
(self.calledOperation.operation.ownedParameter->
select(kind = ParameterDirectionKind::in)
->at((arggument->indexOf (a)).type))

[76][2] If the message ista-send signal action, the arguments must conform to the attributes of the signal.

contgxt MessageExp

inv: gentSignal=>notEmpty() implies

rgument->forAll (a | a.type.conformsTo
(Self.sentSignal.signal.ownedAttribute

=>at(argunent=>TmdexOf (@) type))

[771[3] If the message is a call operation action, the operation must be an operation of the type of the target expression.
context MessageExp
inv: calledOperation->notEmpty() implies
target.type.allOperations()->includes(calledOperation.operation)
[78]1[4] An OCL message has either a called operation or a sent signal.

context MessageExp
inv: calledOperation->size() + sentSignal->size() = 1

58 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[79]1[5] The target of an OCL message cannot be a collection.

context MessageExp
inv: not target.type.ocllsKindOf (CollectionType)

OperationCallExp
[80]1[1] All the arguments must conform to the parameters of the referred operation.

context OperationCallExp
inv: JTgUmMems-—TorAlt (@ {a.Type.conforms 10
(self.refParams->at (arguments->indexOf (a)).type))

[81]1[2] There must be exactly as many arguments as the referred operation has parameters.

contgxt OperationCallExp
inv: grguments->size() = refParams->size()

[82][3] An additional attribute refParams lists all parameters of the referred operation except. the return and qut parameter(s).

contgxt OperationCallExp

def: fefParams: Sequence(Parameter) = referredOperation.ownedParameter->select (p\|
p-kind <> ParameterDirectionKind::return or

p-kind <> ParameterDirectionKind::out)

CallExp

No additionjal well-formedness rules.

RealLiterglExp
[83]1[1] Thk type of a real Literal expression is the type Reak
contgxt RealLiteralExp

inv: elf.type.name = iReali
StateExp
No additionfl well-formedness rules.
StringLiteralExp

[84]1[1] Thk type of a string Literal expression is the type String.

contgxt StringLiteralExp
inv: gelf.type.name =:String’

TypeExp

No additiofjal/weH-formedness rules.

TupleLiteralExp
[85]1[1] The type of a TupleLiteralExp is a TupleType with the specified parts.
context TupleLiteralExp
inv: type.ocllsKindOf (TupleType)
and part->size() = type.allProperties()->size()
and part->forAll (tlep |
type.allProperties()->exists (tp | tlep.attribute.name = tp.name and tlep.attribute.type = tp.type))

© ISO/IEC 2012 - All rights reserved 59

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[86][2] All tuple literal expression parts of one tuple literal expression have unique names.

context TupleLiteralExp
inv: part->isUnique (attribute.name)

TupleLiteralPart
[871[1] The type of the attribute conforms to the type of the value expression.

context TupleLiteralPart
inv: 4UTBUTE Ty pe.CONTorms I0{ valuc.type)

UnlimitedNaturalLiteralExp
[88][1] Th type of an unlimited natural Literal expression is the type UnlimitedNatural.

contdxt UnlimitedNaturalLiteralExp
inv: gelf.type.name = ‘UnlimitedNatural’

UnspecifiedValueExp

No additionjal well-formedness rules.

Variable
[89]1[1] For initialized variable declarations, the type of the initExpresSion must conform to the type of the d¢clared variable.

contgxt Variable
inv: ipitExpression->notEmpty() implies initExpression.type.conformsTo (type)

VariableExp
[90]1[1] Th type of a VariableExp is the type of the variable to which it refers.

contgxt VariableExp
inv: fiype = referred Variable.type

8.4.3 Additional Operations.on UML metaclasses

In the clausps “Abstract Syntax,” “Concrete Syntax,” and “The Use of Ocl Expressions in UML Models” many additional
operations pn UML metaclasses-are used. They are defined in this sub clause. The next sub clause definef additional
operations for the OCL metaclasses.

Classifier

The operatipn commonSuperType results in the most specific common supertype of two classifiers.

contgxt Classifier
def: gommoOnSuperType (c : Classifier) : Classifier =
Classifier.alllnstances()->select (cst |
c.conformsTo (cst) and
self.conformsTo (cst) and
not Classifier.alllnstances()->exists (clst |
c.conformsTo (clst) and
self.conformsTo (clst) and
clst.conformsTo (cst) and
clst <> cst

)

)->any (true)

The following operations have been added to Classifier to lookup properties and operations.

60 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

The operatipn allFeatures() is defined in the UML semantics.

The operatipn alllnstances()

ISO/IEC 19507:2012(E)

context Classifier

def: lookupProperty(attName : String) : Attribute =
self.allProperties()->any(me | me.name = attName)

def: lookupAssociationClass(name : String) : AssociationClass =
self.allAssociationClasses()->any (ae | ac.name = name)

def: lookupOperation (name: String, paramTypes: Sequence(Classifier)): Operation =
self.allOperations()->any (op | op.name = name and

op.hasMatchingSignature(paramTypes))

def:

eV Sianal —
T i=3

self.allReceptions().signal->any (sig | sig.name = sigName and
sig.hasMatchingSignature(paramTypes))

def: glIReceptions() : Set(Reception) =

self.allFeatures()->select(f | f.ocllsKindOf(Reception))

def: glIProperties() : Set(Property) =

self.allFeatures()->select(f | f.oclIsKindOf(Property))

def: gllOperations() : Set(Property) =

self.allFeatures()->select(f | f.ocllsKindOf(Operation))

contgxt Classifier
def: gllInstances() : Set(T) = -- all instances of self

returns all :Estances of the classifier and the classifiers specializing it. May only be used for classifiers that have a finite

number of

stances. This is the case, for example, for user defined classes because instances need to be cr¢ated explicitly,

and for enujmerations, the standard Boolean type, and otherspecial types such as OclVoid. This is not the| case, for
example, fdr data types such as collection types or the standard String, UnlimitedNatural, Integer, and Repl types.

Operation

An additional operation is added to Operationjwhich checks whether its signature matches with a sequenc¢ of Classifiers.

Note that i making the match only parameters with direction kind ‘in’ are considered.

contgxt Operation
def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boolean =
--[check that operation op has a signature that matches the given parameter lists
et sigParamTypes: Sequence(Classifier) = self.allProperties().type in
(

(sigParamTypes->size() = paramTypes->size()) and

(Set{1..paramTypes->size() }->forAll (i |

paramTypes->at (i).conformsTo (sigParamTypes->at (1))
)

)
)
def: allProperties() : Set(Property) =

self.ownedParameter->asProperty()

—

Parameter

The operation asProperty results in a property that has the same name, type, etc. as the parameter.

context Parameter::asProperty(): Property

pre: -- none
post: result.name = self.name
post: result.type = self.type
post: result.upperValue =1

© ISO/IEC 2012 - All rights reserved 61

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

post: result.lowerValue =1

post: result.isOrdered = true

post: result.isStatic = false

post: result.visibility = VisibilityKind::private

An additional class operation is added to Parameter to return a Parameter.

context Parameter::make(n : String, ¢ : Classifier, k : ParameterDirectionKind) :Parameter
post: result.name =n

. EVAE TR I |
pOSt. FCSTTRIT™—K

post:|result.type = ¢

Property

The operatipn cmpSlots returns true if the compared property has identical name and type.

contgxt Parameter::cmpSlots(): Boolean =
resylt.name = self.name and result.type = self.type

Signal

An additiorjal operation is added to Signal, which checks whether its signature“matches with a sequence ¢f Classifiers.
Note that i} making the match the parameters of the signal are its attributes:

contgxt Signal

def: hasMatchingSignature(paramTypes: Sequence(Classifier)) : Boglean =

--Icheck that signal has a signature that matches the given parameter lists

qt opParamTypes: Sequence(Classifier) = self.ownedParameter->select (p | p.kind <>
ParameterDirectionKind::return).type in

—

(
(opParamTypes->size() = paramTypes->size().) and
(Set{1..paramTypes->size() } ->forAll (i |
paramTypes->at (i).conformsTo (opParamTypes->at (i))

)
)
)
State

The operatipn getStateMachine()/returns the statemachine to which a state belongs.

contgxt State::getStateMachine() : StateMachine
post: [result = container.stateMachine

Transition

The operatipngetStateMachine() returns the statemachine to which a transition belongs.

context Transition::getStateMachine() : StateMachine
post: result = container.stateMachine

8.4.4 Additional Operations on OCL Metaclasses

In clauses “Abstract Syntax,” “Concrete Syntax,” and “The Use of Ocl Expressions in UML Models” many additional
operations on OCL metaclasses are used. They are defined in this sub clause. The previous sub clause defines additional
operations for the UML metaclasses.

62 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

OclExpression

The following operation returns an operation call expression for the predefined asSet() operation with the self expression
as its source.

context OclExpression::withAsSet() : OperationCallExp

post:
post:
post:

result.name = ‘asSet’
result.argument->isEmpty()
result.source = self

TupleType

An additior]
syntax clau

contd
post:

Variable
An additior]

contd
post:
post:
post:

An additior

contg
post:
post:
uppe
post:
post:
post:
post:
post:

al class operation is added to Tuple to return a new tuple. The name of a tupletype is‘defined
ke and need not be specified here.

xt TupleType::make(atts : Sequence(Property)) : TupleType
Sequence{1...atts->size() } ->forAll(i | result.ownedAttribute.at(i).cmpSlots(atts.at(i))

al operation is added to Variable to return a corresponding Parametet:

xt Variable::asParameter() : Parameter
result.name = self.name

result.direction = ParameterDirectionKind::in
result.type = self.type

al operation is added to Variable to return a correspending Property.

xt Variable::asProperty() : Attribute

result.name = self.name

result.type = self.type

Value =1

result.lowerValue =1

result.isOrdered = true

result.isStatic = false

result.visibility = VisibilityKind::private
result.constraint.specification.bedyExpression = self.initExpression

© ISO/IEC 2012 - All rights reserved

in the abstract

63

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

8.4.5 Overview of class hierarchy of OCL Abstract Syntax metamodel

ModelElemeant
{from Core)

s

I | Jlies

Collection)iteralPart VanableDeclaration Cf:enl:.rmglatqn:}

i)

[| UnspecifiedValueExp OclMessagefrg
Collectionftem CollectionRange
OclExpression
| I I [
Exp VariableExp LetExp PJ’GPEW!D
LN V4
LiteralEx
RameR OciMessageExp P
T LoopExp (ModelPropertyCallExp
V&

' ¢

Caollectionl iteralExp TupleLiteralExp EnumLiteralExp |]
OperationCallExp AttributeCallExp
PrimitiveliteralExp
\4
@ xp erateExp
> NavigationCalExp
BooleanliteralExp StringLiteralExp z}
MNumencLiteralExp | |
¢ AssociationEndCallExp AssociationClassCalIExp
| Iy |
IntegerlteralExp Re}).l&a}lE)(p Unlimited MaturalLiteral Exp
Figure 8.9 { Overview of the abstract syntax metamodel for Expressions

64

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

9

9.1

ISO/IEC 19507:2012(E)

Concrete Syntax

General

This clause describes the concrete syntax of the OCL. This allows modelers to write down OCL expressions in a
standardized way. A formal mapping from the concrete syntax to the abstract syntax from Clause 8 (“Abstract Syntax”) is

given. Alth

ough not reguired. 9 6 _"Concrete to Abstract Svyntax Manning’ describes a mapning from the.
=} 1 7 2 rr =] rr =}

bstract syntax

to the conc
represented|

9.2, ’Struct
attribute gr

9.2 S

The concre
may have s
production
production
side of a pr

In the attrih
and annotat
annotations|

Synthesiz

Each produ
OCL Abstr
the abstract
attribute co

The motival
Note that e
concrete sy

Inherited /

Each produf
visible fron

ete syntax. This allows one to produce a standard human readable version of any OCL expres
as an instance of the abstract syntax.

ire of the Concrete Syntax’ describes the structure of the grammar and the motivation for the
\mmar.

tructure of the Concrete Syntax

e syntax of OCL is described in the form of a full attribute grammar. Each production in an att
ynthesized attributes attached to it. The value of synthesized attributes of elements on the left
rule is always derived from attributes of elements at the rightchand side of that production rul
may also have inherited attributes attached to it. The valueof inherited attributes of elements o
oduction rule is always derived from attributes of elements on the left hand side of that produ|

ed with synthesized and inherited attributes, and>disambiguating rules. There are a number of
as follows.

ed Attributes

ction rule has one synthesized attribute called ast (short for abstract syntax tree), that holds the
et Syntax that is returned by the'rule. The type of ast is different for every rule, but it always i
syntax. The type is stated avith each production rule under the heading “Abstract Syntax Map
pstitutes the formal mapping from concrete syntax to abstract syntax.

ich name in the EBNF format of the production rule is postfixed with ‘CS’ to clearly distingui
htax elements.and their abstract syntax counterparts.

Attributes

ctionnrule has one inherited attribute called env (short for environment), that holds a list of na

sion that is

use of an

ribute grammar
hand side of a
e. Each

) the right hand
ction.

ute grammar that specifies the concrete syntax, eyety production rule is denoted using the EBNF formalism

special

instance of the
5 an element of
ping.” The ast

tion for the use of amattribute grammar is the easiness of the construction and the clarity of this mapping.

sh between the

mes that are

) the’expression. All names are references to elements in the model. In fact, env is a name spa

te environment

for the expression or expression part denoted according to the production rule. The type of the env attribute is
Environment, as shown in Figure 9.1. A number of operations are defined for this type. Their definitions and more details
on the Environment type can be found in “Concrete Syntax” on page 67. The manner in which both the ast and env
attributes are determined is given using OCL expressions.

© ISO/IEC 2012 - All rights reserved

65

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Environment
EMPTY_ENV : Environment

lookupLocal()
lookup()
lookupLocal()

olkun()

LAV

hddElement()
hddNamespace()
hestedEnvironment()
ookuplmplicitAttribute()
ookuplmplicitSourceForAttribute()
ookuplmplicitAssociationEnd()
lookuplmplicitOperation()

+namedElements | 0..n

NamedElement

ame : String +referredElement ModelElement
nayBelmplicit : Boolean

1 (from’Core)

getType()

Figure 9.1 { The Environment type

Note that the contents of the env attribute are fully determined by the context of the OCL expression. WHen an OCL
expression |s used as an invariant to class X, its edvironment will be different than in the case the expressjon is used as a
postconditipn to an operation of class Y. In Clduse 12 (“The Use of Ocl Expressions in UML Models™) the context of
OCL expregsions is defined in detail.

Multiple Production Rules

For some elements there is a choice of multiple production rules. In that case the EBNF format of each pr¢duction rule is
prefixed by|a capital letter between square brackets. The same prefix is used for the corresponding determipation rules for
the ast and |env attributes.

Multiple Qccurrences of Production Names

In some prgduction‘rules the same element name is used more than once. To distinguish between these o¢currences the
names will [be ‘postfixed by a number in square brackets, as in the following example.

CollectionRangeCS ::= OclExpressionCS[1] ‘..” OclExpressionCS[2]

Disambiguating Rules

Some of the production rules are syntactically ambiguous. For such productions disambiguating rules have been defined.
Using these rules, each production and thus the complete grammar becomes nonambiguous. For example in parsing a.b(),
there are at least three possible parsing solutions:

1. aisa VariableExpr (a reference to a let or an iterator variable)

66 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

2. aisan AttributeCallExp (self is implicit)

3. aisaNavigationCallExp (self is implicit)

A decision on which grammar production rule to use can only be made when the environment of the expression is taken
into account. The disambiguating rules describe these choices based on the environment and allow unambiguous parsing

of a.b(). In
- Ifa

this case the rules (in plain English) would be:

is a defined variable in the current scope g isa Vﬂrinh]epxp

« Ifn

« If nd

Disambigug
exist or nof|
be validate
fulfill all thi
are written

93 A

931 P

The gramm
builder is f}
concrete sy
syntax dire
approach. T
instance of

9.3.2 \Visibility

The OCL s}
‘protected,’
specify con

As a separg

t, check self and all iterator variables in scope. The inner-most scope for which as is either

n attribute with the name a, resulting in an AttributeCallExp, or

n opposite association-end with the name a, resulting in a NavigationCallExp, defines the meaning of a.b().

ither of the above is true, the expression is illegal / incorrect and cannot be parsed.

ting rules may be based on the UML model to which the OCL expressiofyis attached (e.g., dqes an attribute
. Because of this, the UML model must be available when an OCL/exptession is parsed, othgrwise it cannot
| as a correct expression. The grammar is structured in such a way(that at most one of the production rules will
e disambiguating rules, thus ensuring that the grammar as a whole'is unambiguous. The disambiguating rules

in OCL, and use some metaclasses and additional operations from UML.

| Note to Tool Builders

arsing

ar in this clause might not prove to be.the most efficient way to directly construct a tool. Of dourse, a tool-
ee to use a different parsing mechanism: He can, for example, first parse an OCL expression fising a special
htax tree, and do the semantic validation against a UML model in a second pass. Also, error correction or
ted editing might need hand-optimized grammars. This document does not prescribe any spedific parsing

he only restriction is that atthe end of all processing a tool should be able to produce the sanje well-formed

the abstract syntax, as would be produced by this grammar.

pecification puts no restriction on the visibility declared for a property defined in the model (such as ‘private,’

or ‘publiex). In OCL, all modelelements are considered visible. The reason for this is to alloy

a modeler to

straints,-even between ‘hidden’ elements. At the lowest implementation level this might be usgful.

te‘option OCL tools may enforce all UML visibility rules to support OCL expressions to be specified only

1

1 bl dalal 4 I +all N 4 1 ot 4 da £ 4 1 42 £ OO0
OVeEr visiblemoaereremehts: SPTCTATTy v I d tOOT TICCUSTO S U T atCCUTUCTOT T UITTIIo U v ardatior OT O T L

this visibility enforcement is necessary.

9.4 Concrete Syntax

expressions,

In the concrete syntax, names that are reserved words or include punctuation characters can be used by enclosing the
required name in underscore-prefixed single quotes.
'and' '>="

© ISO/IEC 2012 - All rights reserved

67

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[In OCL 2.0 and 2.2 a reserved word could be used as a name after prefixing it with an underscore.

and

The subsequent symbol lookup would look first for the spelling with an underscore in the meta-model and if that was not
found would attempt a further lookup after removing the underscore. This behavior was indeterminate, could not access
names that existed both with and without prefixes, and did not support punctuation characters. The simple underscore

prefix is therefore deprecated in OCL 2.3 and will be removed in OCL 3.0.]

941 E

The Expres|
Expr

Abstract §
Expr

Synthesiz
Expr

Inherited attributes

The envirox
context of t
variable to
the contexti
or postcond

similar way,

OclE
H

942 O

An OclExp
is handled ¢

xpressioninOclICS

sionInOcl symbol has been added to set up the initial environment of an expression.

b

ssionInOcICS ::= OclExpressionCS

yntax mapping
pssionInOclCS.ast : OclExpression

ed attributes
pssionInOclCS.ast = OclExpressionCS.ast

ment of the OCL expression must be defined, but what éxactly needs to be in the environment
he OCL expression. The following rule is therefore net.complete. It defines the env attribute by
hn empty environment, as well as a Namespace containing all elements visible from self. In st
halClassifier will be defined for the various placés where an ocl expression may occur. In the c
ition, the result variable as well as variable\definitions for any named operation parameters ca

kpressionCS.env =
I pressionInOclCS.contextualClassifier.namespace.getEnvironmentWithParents()
.addElement (‘self,” ExpressionlnOclCS.contextualClassifier, true)

clExpressionCS

Fession has several production rules, one for each subclass of OclExpression. Note that Unspe
xplicitly in OclMessageArgCS, because that is the only place where it is allowed.

depends on the
adding the self
Ib clause 12.2,

ntext of a pre-
h be added in a

cifiedValueExp

[A] OclExpressionCS-3=CallExpCS
[B] OclExpression€S ::= VariableExpCS
[C] OclExpressionCS ::= LiteralExpCS

[D] OclExpressionCS ::= LetExpCS

[E] OclExp

[F] OclExpressionCS

ressionCS ::= OclMessageExpCS

.= IfExpCS

Abstract syntax mapping

OclE

68

xpressionCS.ast : OclExpression

© ISO/IEC 2012 - Al

Il rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Synthesized attributes

[A] OclExpressionCS.ast = CallExpCS.ast

[B] OclExpressionCS.ast = VariableExpCS.ast

[C] OclExpressionCS.ast = LiteralExpCS.ast

[D] OclExpressionCS.ast = LetExpCS.ast

[E] OclExpressionCS.ast = OclMessageExpCS.ast
[F] OclExpressionCS.ast = IfExpCS.ast

Inherited attributes

[A] QallExpCS.env = OclExpressionCS.env
[B] YariableExpCS.env = OclExpressionCS.env
[C] LiteralExpCS.env = OclExpressionCS.env
[D] LetExpCS.env = OclExpressionCS.env
[E] QclMessageExpCS.env = OclExpressionCS.env
[F] HExpCS.env = OclExpressionCS.env

Disambiguating rules

The disambjguating rules are defined in the children.

9.4.3 VariableExpCS

A variable gxpression is just a name that refers to a variable or self.
[A] VariableExpCS ::= simpleNameCS
[B] YariableExpCS ::='self'

Abstract §yntax mapping
VariableExpCS.ast : VariableExpression

Synthesized attributes

[A] VariableExpCS.ast.referred Variable &
env.lookup(simpleNameC8ast).referredElement.oclAsType(VariableDeclaration)
[B] VariableExpCS.ast.referred Variable =
env.lookup('self’).referredElement.oclAsType(VariableDeclaration)

Inherited attributes

-- none

Disambiguatingrules

[91][1][A] simpleNameCS must be a name of a visible VariableDeclaration in the current environment

env.lcoRUp (SIMpleNameC S astyTeferTed E fement.oc S ROt ¢ variabicDectaration)

9.4.4 simpleNameCS

This production rule represents a single name. No special rules are applicable. The abstract syntax of a simpleNameCS
String is undefined in UML 2.3, and so is undefined in OCL 2.3. The reason for this is internationalization.

The concrete syntax of a simpleNameCS String supports a Unicode letter-prefixed identifier (form [A]). Reserved words
and names involving awkward characters such as punctuation may be specified by prefixing a String Literal with an ©_’
(form [B] and [C]).

© ISO/IEC 2012 - All rights reserved 69

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[A] simpleNameCS ::=N

ameStartChar NameChar*

[B] simpleNameCS ::="_" #x27 StringChar* #x27
[C] simpleNameCS[1] ::= simpleNameCS[2] WhiteSpaceChar* #x27 StringChar* #x27

The identifier form starts with a Unicode letter:

NameStartChar ::= [A-Z]

""" [a-z]

#xCO-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF]

and may continue with a Uni

Namg¢Char ::= NameStartChar | [0-9]
The StringChar form is defined under StringLiteralExpCS.

Example simpleNameCS values are:
String i3 apetm MAX VALUE isLetterOrDigit 'true' _">='_"\"

Abstract §yntax mapping

simpleNameCS.ast : String

Synthesized attributes

[A] sjmpleNameCS.ast =
[B] simpleNameCS.ast =

[C] sjmpleNameCS[1].ast = simpleNameCS[2] + <CodePoints of StringChar*>

Inherited attributes

-- nonec
Disambigtpating rules

[

[A] simpleNameCS.d
[B] No whitespacéyis
[

9.4.5 restrictedKeywordCS

This produgtien‘rule represents any name that is not a reserved keyword.

[
[#x370-#x37D] | [Px3/F-#x FFF]

[#x200C-#x200D] | [#x2070-#x218F] | [#x2C00-#x2FEF]
[#x3001-#xD7FF] | [#xF900-#xFDCF] | [#xFDF0-#xFFFD]
[#x10000-#xEFFFF]

A] the character, if any;following the last NameChar is not a NameChar.

[] simpleNanteCS[2

code letter or digit.

<CodePoints of NameStartChar NameChar*>
<CodePoints of StringChar*x

st.isnot a reserved word
permitted between the ' ' and the first NameChar.
] is a simpleNameCS [B] or [C].

[A] restrictedKeywordCS
[B] restrictedKeywordCS
[C] restrictedKeywordCS
[D] restrictedKeywordCS

Abstract syntax mapping
restrictedKeywordCS.ast

70

::= CollectionTypeldentifierCS
::= primitiveTypeCS

= oclTypeCS

::="Tuple'

: String

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

Synthesized attributes

[A] T

estrictedKeywordCS.ast = CollectionTypeldentifierCS.ast.name

[B] restrictedKeywordCS.ast = primitiveTypeCS.ast.name
[C] restrictedKeywordCS.ast = oclTypeCS.ast.name

[D] r

estrictedKeywordCS.ast = '"Tuple'

Inherited attributes

-- no

ne

ISO/IEC 19507:2012(E)

Disambig

-- no

9.4.6 u

This produ

hating rules
nc

nreservedSimpleNameCS

tion rule represents any name that is not a reserved keyword.

[A] ynreservedSimpleNameCS ::= simpleNameCS
[B] unreservedSimpleNameCS ::= restrictedKeywordCS

Abstract syntax mapping
unregervedSimpleNameCS.ast : String

Synthesized attributes

[A] ynreservedSimpleNameCS.ast = simpleNameCS.ast
[B] unreservedSimpleNameCS.ast = restrictedKeywordCS-ast

Inherited attributes

-- no
Disambig

-- no
947 p

This rule rdpresents a path,name, which is held in its ast as a sequence of Strings.
[A] ﬂ;lthNameCS v=simpleNameCS

(B]

Abstract

nc

hating rules
nc

athNameCS

thNameCS~= pathNameCS ‘::* unreservedSimpleNameCS

yntaxmapping

pathlNameCS.ast : Sequence(String)

Synthesized attributes

[A] pathNameCS.ast = Sequence {simpleNameCS .ast}
[B] pathNameCS.ast = pathNameCS.ast->append(unreservedSimpleNameCS.ast)

Inherited attributes

--none

Disambiguating rules

--none

© ISO/IEC 2012 - All rights reserved

71

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

9.4.8 LiteralExpCS

This rule re

presents literal expressions.

[A] LiteralExpCS ::= EnumLiteral ExpCS
[B] LiteralExpCS ::= CollectionLiteralExpCS
[C] LiteralExpCS ::= TupleLiteralExpCS
[D] LiteralExpCS ::= PrimitiveLiteralExpCS

[E]L

iteralExpCS ::= TypeLiteral ExpCS

Abstract Jyntax mapping

Liter:

Synthesiz
(Al
(Bl
[y
(D14
[E1L4

IExpCS.ast : LiteralExp

ed attributes

iteralExpCS.ast = EnumLiteral ExpCS.ast
iteralExpCS.ast = CollectionLiteralExpCS.ast
iteralExpCS.ast = TupleLiteral ExpCS.ast
iteralExpCS.ast = PrimitiveLiteral ExpCS.ast
iteralExpCS.ast = TypeLiteralExpCS.ast

Inherited attributes

[AlH
(B] G
[C]T
[D]H
[E]T

Disambig

-- no

949 E

The rule re

Enun|

numLiteralExpCS.env = LiteralExpCS.env
ollectionLiteralExpCS.env = Literal ExpCS.env
upleLiteralExpCS.env = Literal ExpCS.env
rimitiveLiteralExpCS.env = LiteralExpCS.env
ypeLiteralExpCS.env = LiteralExpCS.env

hating rules
I§

numLiteralExpCS

bresents Enumeration Literal“expressions.

Abstract §yntax mapping

Enun|

Synthesiz

Enun|

hLiteralExpCSiast: EnumLiteralExp

ed attributes
hLiferalExpCS.ast.type =

EnumlLiteral ExpCS.ast.referredEnumLiteral =

EnumLiteralExpCS.ast.type.oclAsType (Enumeration).literal->
select (1 | l.name = simpleNameCS.ast)->any(true)

Inherited attributes

--none

Disambiguating rules

[92][1] The specified name must indeed reference an enumeration:

72

hLiteralExpCS ::= pathNameCS ::” simpleNameCS

env.lookupPathName (pathNameCS.ast).referredElement.oclAsType (Classifier)

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

not EnumLiteralExpCS.ast.type.ocllsUndefined() and
EnumLiteralExpCS.ast.type.ocllsKindOf (Enumeration)

9.4.10 CollectionLiteralExpCS

This rule represents a collection literal expression.

CollectionLiteralExpCS ::= CollectionTypeldentifierCS
< { CollectionLiteralPartsCS? ¢}’

ISO/IEC 19507:2012(E)

Abstract syntax mapping
CollgctionLiteralExpCS.ast : CollectionLiteralExp

Synthesized attributes

CollgctionLiteralExpCS.ast.parts = CollectionLiteralPartsCS.ast
CollgctionLiteralExpCS.ast.kind = CollectionTypeldentifierCS.ast

Inherited attributes

CollgctionTypeldentifierCS.env = CollectionLiteral ExpCS.env
CollgctionLiteralPartsCS.env = CollectionLiteralExpCS.env

Disambigtiating rules
[93]1[1] In p literal the collection type may not be Collection.
CollgctionTypeldentifierCS.ast <> ‘Collection’

9.4.11 CollectionTypeldentifierCS

This rule rdpresents the type identifier in a colleetion literal expression. The Collection type is an abstracf type on M1

level, so it has no corresponding literals.

[A] CollectjonTypeldentifierCS ::= ‘Set?

[B] CollectjonTypeldentifierCS ::= ‘Bag’

[C] CollectjonTypeldentifierCS-&=*Sequence’
[D] CollectjonTypeldentifierCS T:= ‘Collection’
[E] CollectjonTypeldentifierCS ::= ‘OrderedSet’

Abstract syntax-mapping
CollgctionTypeldentifierCS.ast : CollectionKind

Synthesized attributes

[A] CollectionTypeldentifierCS.ast = CollectionKind::Set

[B] CollectionTypeldentifierCS.ast = CollectionKind::Bag

[C] CollectionTypeldentifierCS.ast = CollectionKind::Sequence
[D] CollectionTypeldentifierCS.ast = CollectionKind::Collection
[E] CollectionTypeldentifierCS.ast = CollectionKind::OrderedSet

Inherited attributes

-- none

© ISO/IEC 2012 - All rights reserved

73

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Disambiguating rules

--none

9.4.12 CollectionLiteralPartsCS

This production rule describes a sequence of items that are the contents of a collection literal.

CollectionLiteralPartsCS[1] = CollectionLiteralPartCS
(> Collectionl ifprn]paﬁfQ[7])2

Abstract gyntax mapping
CollgctionLiteralPartsCS[1].ast : Sequence(CollectionLiteralPart)

Synthesized attributes

ColldctionLiteralPartsCS[1].ast =
Sequence{CollectionLiteralPartCS.ast}->union(CollectionLiteralPartsCS[2].ast)

Inherited attributes

ColldctionLiteralPartCS.env = CollectionLiteralPartsCS[1].env
CollgctionLiteralPartSCS[2].env = CollectionLiteralPartsCS[1].env

Disambigtiating rules

-- none

9.4.13 ClollectionLiteralPartCS

[A] CollectjonLiteralPartCS ::= CollectionRangeCS
[B] CollectjonLiteralPartCS ::= OclExpressionCS

Abstract §yntax mapping
CollgctionLiteralPartCS.ast : CollectionLiteralPart

Synthesized attributes

[A] ollectionLiteralPartCS.ast = CollectionRange.ast
[B] dollectionLiteralPart€S.ast.ocllsKindOf(Collectionltem) and
(JollectionLitefalPartCS.ast.oclAsType(Collectionltem).OclExpression = OclExpressionCS.ast

Inherited attributes

[A] (ollectionRangeCS.env = CollectionLiteralPartCS.env
[B] OelBepressioncS-env———CoHeetion-iteralRartCS-eny

Disambiguating rules
-- none

9.4.14 CollectionRangeCS

CollectionRangeCS ::= OclExpressionCS[1] ,” OclExpressionCS[2]

74 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

Abstract syntax mapping
CollectionRangeCS.ast : CollectionRange

Synthesized attributes

CollectionRangeCS.ast.first = OclExpressionCS[1].ast
CollectionRangeCS.ast.last = OclExpressionCS[2].ast

Inherited attributes

ISO/IEC 19507:2012(E)

OclEfxpressionCS[1].env = CollectionRangeCS.env
OclExpressionCS[2].env = CollectionRangeCS.env

Disambiguating rules

-- none

9.4.15 PrimitiveLiteralExpCS

This includps Real, Boolean, UnlimitedNatural, Integer, and String literals. Especially String literals must take

internationglization into account and might need to remain undefined in this‘specification.

[A] PrimitiyeLiteralExpCS ::= IntegerLiteralExpCS
[B] PrimitiyeLiteralExpCS ::= RealLiteralExpCS
[C] PrimitiyeLiteralExpCS ::= StringLiteralExpCS
[D] PrimitiyeLiteralExpCS ::= BooleanLiteralExpCS

[E] PrimitiyeLiteralExpCS ::= UnlimitedNaturalLiteralExpCS

[F] PrimitiveLiteralExpCS ::= NullLiteralExpCS
[G] PrimitiyeLiteral ExpCS ::= InvalidLiteral ExpCS

Abstract §yntax mapping
PrimjtiveLiteral ExpCS.ast : PrimitiveLiteralExp

Synthesized attributes

[A] HrimitiveLiteral ExpCS‘ast = IntegerLiteralExpCS.ast

] BrimitiveLiteralExpCS.ast = RealLiteralExpCS.ast

P
F] PrimitiveLiteralExpCS.ast = NullLiteralExpCS.ast

B] P

C] PrimitiveLiteralExpCS.ast = StringLiteral ExpCS.ast

D] HrimitivekiteralExpCS.ast = BooleanLiteral ExpCS.ast
rimitiveliteralExpCS.ast = UnlimitedNaturalLiteral ExpCS.ast

[
[
[
(E]
[
[

Inherited attributes

--none

Disambiguating rules

-- none

© ISO/IEC 2012 - All rights reserved

G] PrimitiveLiteralExpCS.ast = InvalidLiteral ExpCS.ast

75

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

9.4.16 TupleLiteralExpCS

This rule represents tuple literal expressions.
TupleLiteralExpCS ::= ‘Tuple’ ‘{‘ variableDeclarationListCS ‘}’

Abstract syntax mapping
TupleLiteralExpCS.ast : TupleLiteralExp

Synthesized attributes
Tupl¢LiteralExpCS.tuplePart = variableDeclarationListCS.ast

Inherited attributes
variapleDeclarationListCS[1].env = TupleLiteral ExpCS.env

Disambigtpating rules

[1] The initExpression and type of all VariableDeclarations must exist.

Tupl¢LiteralExpCS.tuplePart->forAll(varDecl |
vafDecl.initExpression->notEmpty() and not varDecl.type.ocllsUndefined()))

9.4.17 UnlimitedNaturalLiteralExpCS

This rule represents unlimited natural literal expressions. The lexical representation is either the lexical represpntation of an
integer valug or the single character * that represents the unlimited value. The -1 representation of the unlimitgd value is only
visible in the abstract systax and its serialization.

[A] UnlimitedNaturalLiteralExpCS ::= <Integer Lexieal Representation>
[B] UnlimitedNaturalLiteralExpCS ::= “*’

Abstract §yntax mapping
UnlirpitedNaturalLiteralExpCS.ast : UnlimitedNaturalLiteralExp

Synthesized attributes

UnlitpitedNaturalLiteralExpC$.ast.unlimitedNaturalSymbol = <IntegerValue>
UnlitphitedNaturalLiteralExpCS.ast.unlimitedNaturalSymbol = -1

Inherited Ittributes

-- none

Disambigtpating rules

--none

9.4.18 IntegerLiteralExpCS

This rule represents integer literal expressions. The lexical representation of an integer is a sequence of at least one of the
decimal digit characters, without a leading zero; except that a single leading zero character is required for the zero value.

IntegerLiteral ExpCS ::= <Integer Lexical Representation>

Abstract syntax mapping
IntegerLiteralExpCS.ast : IntegerLiteralExp

76 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Synthesized attributes
IntegerLiteralExpCS.ast.integerSymbol = <Integer Value>

Inherited attributes

--none

Disambiguating rules

- 1o

nc

9.4.19 RealLiteralExpCS

This rule rg
part. The 3
exponent irl
fractional p
fraction paift or the exponent part may be missing but not both.

Reall

presents real literal expressions. A real literal consists of an integer part, a fractional part and
kponent part consists of either the letter 'e' or 'E', followed optionally by a '+' arN<" letter folloy
teger part. Each integer part consists of a sequence of at least one of the decimal digit charact
art consists of the letter '.' followed by a sequence of at least one of the/deetmal digit charactd

LiteralExpCS ::= <Real Lexical Representation>

Abstract
RealLiteralExpCS.ast : RealLiteralExp

Synthesi
Realliteral ExpCS.ast.realSymbol = <Real Value>

Inherited

-- no

Disambig

-- none

yntax mapping

d attributes

ttributes

nc

hating rules

9.4.20 StringLiteralExpCS

This rule reg
escape seqy
be split int

where

[A] S
(BI§

presents string liferal expressions. The concrete syntax comprises a sequence of zero or more
ences surrounded by single quote characters. The [B] form with adjacent strings allows a long
fragmentsteor-to be written across multiple lines.

tringLiteralExpCS ::= #x27 StringChar* #x27
tringLiteralExpCS[1] ::= StringLiteralExpCS[2] WhiteSpaceChar* #x27 StringChar* #x27

an exponent
ved by an
ers. The

rs. Either the

characters or
string literal to

StringChar ::= Char | EscapeSequence
WhiteSpaceChar ::= #x09 | #x0a | #x0c | #x0d | #x20

Char ::= [#x20-#x26] | [#x28-#x5B] | [#x5D-#xD7FF] | [#xE000-#xFFFD] | [#x10000-#x10FFFF]
EscapeSequence ::= "\''b' -- #x08: backspace BS

[N\ -- #x09: horizontal tab HT

["\''n' -- #x0a: linefeed LF

[N\t -- #x0c: form feed FF

[N\ -- #x0d: carriage return CR

[-- #x22: double quote "

A -- #x27: single quote '

[-- #x5c: backslash \

© ISO/IEC 2012 - All rights reserved

77

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Hex :

Abstract s

-- #x00 to #xFF
-- #x0000 to #xFFFF

|'\''x" Hex Hex
|"\"'u' Hex Hex Hex Hex
=[0-9]| [A-F] | [a-f]

yntax mapping

StringLiteralExpCS.ast : StringLiteralExp

Synthesiz
[A]
[B]

Inherited

-- no

Disambig

tringLiteralExpCS.ast.symbol = <CodePoints of StringChar*>
ringLiteralExpCS.ast.symbol = StringLiteralExpCS[2] + <CodePoints of StringChar*>

ttributes

IS

hating rules

-- none

9.4.21 B

This rule r¢

ooleanLiteralExpCS

presents boolean literal expressions.

[94][A] BogleanLiteralExpCS ::= ‘true’
[95][B] BogleanLiteral ExpCS ::= ‘false’
Abstract §yntax mapping

Bool

Synthesiz
[A]E
[B] H

panLiteral ExpCS.ast : BooleanLiteralExp

ed attributes

ooleanLiteralExpCS.ast.booleanSymbel = true
ooleanLiteralExpCS.ast.booleanSyimnbol = false

Inherited attributes

-- no

Disambig

-- no

NC

hating rules
I§

9.4.22 TP(

peLiteralExpCS

This production rule references a type name.

Abstract syntax mapping
TypeLiteralExpCS ::= typeCS

Synthesiz

ed attributes

TypeLiteralExpCS.ast = typeCS.ast

78

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

Inherited attributes
typeCS.env = TypeLiteralExpCS.env

Disambiguating rules

--none

9.4.23 CallExpCS

ISO/IEC 19507:2012(E)

This rule rdpresents property call expressions.
[96][A] CallExpCS ::= FeatureCallExpCS
[97]1[B] CallExpCS ::= LoopExpCS

Abstract §yntax mapping
CallHxpCS.ast : CallExp

Synthesized attributes

[A] QallExpCS.ast = ModelPropertyCallCS.ast
[B] dallExpCS.ast = LoopExpCS.ast

Inherited attributes

[A] ModelPropertyCallCS.env = CallExpCS.env
[B] LoopExpCS.env = CallExpCS.env

Disambiguating rules

The disambiguating rules are defined in the childrefr.

9.4.24 LpoopExpCS

This rule rdpresents loop expressions.

[A] LoopExpCS ::= IteratorExpCS
[B] LoopExpCS ::= IterateExp€S

Abstract §yntax mapping
LoopExpCS.ast.: lLoopExp

Synthesizled attributes

[A] LUUIJEA}}CS.QDt - IlClatUlEAl)CS.abt

[B] LoopExpCS.ast = IterateExpCS.ast
Inherited attributes

[A] IteratorExpCS.env = LoopExpCS.env

[B] IterateExpCS.env = LoopExpCS.env

Disambiguating rules

--none

© ISO/IEC 2012 - All rights reserved

79

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

9.4.25 IteratorExpCS

The first alternative is a straightforward Iterator expression, with optional iterator variable. The second and third
alternatives are so-called implicit collect iterators. B is for operations and C for attributes, D for navigations, and E for
associationclasses.

[A] IteratorExpCS ::= OclExpressionCS[1] ‘->’ simpleNameCS

‘((VariableDeclarationCS[1],
(°,” VariableDeclarationCS[2])? ‘|)?
OclExpressionCS[2]

y
[B] IteratorExpCS ::= OclExpressionCS °.” simpleNameCS ‘(‘argumentsCS?’)’
[C] IteratorExpCS ::= OclExpressionCS °.” simpleNameCS

[D] IteratorExpCS ::= OclExpressionCS ‘.” simpleNameCS

(‘[* argumentsCS]*)?

[E] IteratorExpCS ::= OclExpressionCS *.” simpleNameCS

(‘[* argumentsCS ‘]°)?

Abstract §yntax mapping
IteratorExpCS.ast : IteratorExp

Synthesized attributes

-- th ast needs to be determined bit by bit, first the source-association of IteratorExp

[A] ItergtorExpCS.ast.source = OclExpressionCS[1l].ast
-- next the iterator association (©f IteratorExp
-- when the variable declaration is present, its ast is the iterator of this itenatorExp
-- wheén the variable declaration is not present, the iterator has a default name and
-- type
-- In|any case, the iterator does not have an init expression
[A] IterdtorExpCS.ast.iterators->at(l).name = if VariableDeclarationCS[1l]->isEmpty ()
then ii
else VariableDeclarationCS[1l].ast.name
endif
[A] IterdtorExpCS.ast.iterator->at(l).type =
if| VvariableDeclarationCS[1]->isEmpty () or
(VariableDeclarationCS[1]->notEmpty () and
VrriableDeclarationCS[l].ast.type.oclIsUndefined())
then

OclExpressionCS[1l].type.oclAsType (CollectionType) .elementType
else
VariableDeclarationCS[1l] .ast. type
endif
- The optional second iterator
[A] if VariableDeclarationCS[2]->isEmpty() then

IteratorExpCS.ast.iterators->size() = 1

else

IteratorExpCS.ast.iterators->at(2) .name = VariableDeclarationCS[2].ast.name
and

IteratorExpCS.ast.iterators->at(2) . type

80 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

if VariableDeclarationCS[2]->isEmpty() or
(VariableDeclarationCS[2] ->notEmpty () and
VariableDeclarationCS[2] .ast.type.oclIsUndefined())

then

OclExpressionCS[1l].type.oclAsType (CollectionType) .elementType
else

VariableDeclarationCS[2] .ast. type

endif

torExpCS.ast.iterators->forAll (initExpression->isEmpty ())

-- next e name attribute and body association of the IteratorExp
[A] ItergtorExpCS.ast.name = simpleNameCS.ast and
[A] ItergtorExpCS.ast.body = OclExpressionCS[2] .ast
-- Altermnjative B is an implicit collect of an operation over a collection
[B] ItergtorExpCS.ast.iterator. type
OcllExpressionCS.ast.type.oclAsType (CollectionType) .elementType
[B] IterdtorExpCS.ast.source = OclExpressionCS.ast
[B] IterdtorExpCS.ast.name = icollecti
[B] -- the body of the implicit collect is the operation call\ referred to by inamg

IteratorHxpCS.ast.body.oclIsKindOf (OperationCallExp) and
let body |[: OperationCallExp = IteratorExpCS.ast.body.oclAsType (OperationCallExp)
in
body.argyments = argumentsCS.ast
and
body . sounce.oclIsKindOf (VariableExp)
and
body.source.oclAsType (VariableExp) .referredVaviable = IteratorExpCS.ast.iterator
and
body.refgrredOperation =

OclExpressionCS.ast.type.oclAsType (CollectionType) .elementType

lopkupOperation(simpleNameCS ., ast,

if (argumentsCS->notEmpty ())
then arguments.ast->collect (type)
else Sequence{} endif)
-- Alterrfative C/D is an implicit collect of an association or attribute over a c
[C, D] IferatorExpCS.ast.iterator.type =

OclExpressionCS.ast.type.oclAsType (CollectionType) .elementType

[C, D] IferatorExpCS.ast.source = OclExpressionCS.ast
[C, D] IferatorExpCS.ast.name = ‘collect’
[C] -- tHe body of the implicit collect is the attribute referred to by ‘name’

let refAtt :(Attribute = OclExpressionCS.ast.type.oclAsType (CollectionType) .
élementType.lookupAttribute (simpleNameCS.ast),

in

pllection

IterqtorExpCS.ast.body.oclIsKindOf (AttributeCallExp) and

let body : AttributeCallExp = IteratorExpCS.ast.body.oclAsType (AttributeCallExp)

in
body . source.oclIsKindOf (VariableExp)
and

body.source.oclAsType (VariableExp) .referredVariable = IteratorExpCS.ast.iterator

and
body.referredAttribute = refAtt

[D] -- the body of the implicit collect is the navigation call referred to by ‘name’
let refNav : AssociationEnd = OclExpressionCS.ast.type.oclAsType (CollectionType).

elementType. lookupAssociationEnd (simpleNameCS.ast)
in

© ISO/IEC 2012 - All rights reserved

81

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

IteratorExpCS.ast.body.oclIsKindOf (AssociationEndCallExp) and
let body : AssociationEndCallExp =
IteratorExpCS.ast.body.oclAsType (AssociationEndCallExp)

in

body . source.oclIsKindOf (VariableExp)
and
body.source.oclAsType (VariableExp) .referredVariable = IteratorExpCS.ast.iterator
and
bo a3z
an
body.ast.qualifiers = argumentsCS.ast

[E] -- tHe body of the implicit collect is the navigation to the associatioh|class

-- referred to by inamei
let efClass : AssociationClass =
Oc[lExpressionCS.ast. type.oclAsType (CollectionType) .
elementType. lookupAssociationClass (simpleNameCS.ast)
in
ItpratorExpCS.ast.body.oclIsKindOf (AssociationClassCallExp) and
let body : AssociationClassCallExp =
IteratorExpCS.ast.body.oclAsType (AssociationClassCallExp)

in
bofly . source.oclIsKindOf (VariableExp)
anfd
bofy.source.oclAsType (VariableExp) .referredVariable = IteratorExpCS.ast.iflerator
and
bofy.referredAssociationClass = refNav
and

body.ast.qualifiers = argumentsCS.ast
Inherited attributes
[A] OclExpressionCS[1l].env = IteratorExpCS.env
[A] VarigbleDeclarationCS.env = IteratorExpCS.env
-- insiddq an iterator expression the'body is evaluated with a new environment that

[A] OclExpressionCS[2].env =
IteratorExpCS.env.nestedEnvironment () .addElement (VariableDeclarationCS.ast.varName,
VariableDec¢larationCS.ast,

true)
[B] OclExpressionCS.enyv = IteratorExpCS.env
[B] argunlentsCS.env, = IteratorExpCS.env

[C] OclExpressionCS.env
[D] OclExpressionCS.env

IteratorExpCS.env
IteratorExpCS.env

VariableDeclarationCS->notEmpty () implies
VariableDeclarationCS.ast.initExpression->isEmpty ()

[99][2] [B] The source must be of a collection type.
OclExpressionCS.ast. type.oclIsKindOf (CollectionType)
[100][3] [C] The source must be of a collection type.

OclExpressionCS.ast. type.oclIsKindOf (CollectionType)

82 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

[101][4] [C]

ISO/IEC 19507:2012(E)

The referred attribute must be present.

refAtt->notEmpty ()

[102][5] [D]

The referred navigation must be present.

refNav->notEmpty ()

9.4.26 IterateExpCS

IterateExp(

Abstract j

IterateE

Synthesized attributes

-- the aj: needs to be determined bit by bit, first the source association of IterateExp

ItprateExpCS.ast.iterator.name = if VariableDeclarationCS[1l]->isEmpty() thgn

pCS.ast : IterateExp

S ::= OclExpressionCS[1] ‘-> ‘iterate’

‘(“ (VariableDeclarationCS[1] ;*)?
VariableDeclarationCS[2] ‘|’
OclExpressionCS[2]

c)’

yntax mapping

rateExpCS.ast.source = OclExpression€S[1l] .ast
next the iterator association of IterateExp

name and type,
in any case, the iterator has an empty init expression.

else VariableDeclarationCS[1l].ast.name
endif
IterateExpCS.ast.iterator.type =
if VariableDeclarationCS[1l]->isEmpty () or
(VariableDeclarationCS[1]->notEmpty () and
VariableDeclarationCS[1l] .ast.type.oclIsUndefined())

then

OclExpressionCS[1l] . type.oclAsType (CollectionType) .elementType
else

VariableDeclarationCS[1l] .ast. type
endif

ItprateExpCS.ast.iterator.initExpression->isEmpty ()

next the name attribute and body and result association of the IterateExp

IterateExpCS.ast.result = VariableDeclarationCS[2] .ast
IterateExpCS.ast.name = ‘iterate’
IterateExpCS.ast.body = OclExpressionCS[2] .ast

Inherited attributes

OclExpressionCS[l] .env = IteratorExpCS.env

Va
Va

riableDeclarationCS[1l] .env = IteratorExpCS.env
riableDeclarationCS[2] .env = IteratorExpCS.env

© ISO/IEC 2012 - All rights reserved

when the first variable declaration is present, its ast is the iterator |of this
iterateExp, when the variable declaration is not present, the iterator has a default

83

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

-- Inside an iterate expression the body is evaluated with a new environment that
includes
-- the iterator variable and the result variable.
OclExpressionCS[2] .env =
IteratorExpCS.env.nestedEnvironment () .addElement
(VariableDeclarationCS[1l] .ast.varName,
VariableDeclarationCS[1l] .ast,
true) .addElement
— {(VariablebDeclarationCS{2l ast-varName
VariableDeclarationCS[2] .ast,
true)

Disambigtpating rules
[103][1] A tesult variable declaration must have a type and an initial value.

not VarigbleDeclarationCS[2] .ast.type.oclIsUndefined() VariableDeclarationCS[2].ast.initEx-
pression->notEmpty ()

[104][2] When the first variable declaration is present, it may not have an init expression.

VariableDeclarationCS[1]->notEmpty () implies
VariableDeclarationCS[1l] .ast.initExpression->isEmpty ()

9.4.27 VariableDeclarationCS

In the variable declaration, the type and init expression are-optional. When these are required, this is defiped in the
production fule where the variable declaration is used.

VariableDeglarationCS ::= simpleNameCS (“:” type€S)?
(=" OclExpressionCS)?

Abstract §yntax mapping

VariableDeclarationCS.ast : VariableDeclaration

Synthesized attributes

VariableDeclarationCS:ast.name = simpleNameCS.ast
VafpiableDeclarationCS.ast.initExpression = OclExpressionCS.ast
--| A wellt-formed VariableDeclaration must have a type according to the abstfract syntax.
--| The.¥alue null is used when no type has been given in the concrete syntgx.

--| Production rules that use this need to check on this type.
VafpiableDeclarationCS.ast.type = if typeCS->notEmpty() then
typeCS.ast
else
if OclExpressionCS.ast.type->notEmpty () then
OclExpressionCS.ast. type
else
null
endif
endif

84 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Inherited attributes

OclExpressionCS.env = VariableDeclarationCS.env
typeCS.env = VariableDeclarationCS.env

Disambiguating rules

== none

9.4.28 TL/peCS

A typenamg is either a Classifier, or a collection of some type.
[A] typeCS ::= pathNameCS
[B] typeCS ::= collectionTypeCS
[C] typeCS ::= tupleTypeCS
[D] typeCS ::= primitiveTypeCS
[E] typeCS ::= oclTypeCS

Abstract]yntax mapping

typeCS.adt : Classifier

Synthesized attributes

[A] typeCS.ast = typeCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier)
[B] typeCS.ast = CollectionTypeCS.ast

[C] typeCS.ast = tupleTypeCS.ast

[D] typeCS.ast = primitiveTypeCS.ast

[E] typeCS.ast = oclTypeCS.ast

Inherited attributes

[B] cpllectionTypeCS.env = typeCS.env
[C] thpleTypeCS.env = typeCS.env

Disambigtiating rules

[105][1] [A] pathName must be‘a-name of a Classifier in current environment.

typeCS.env. lookupPathName (pathNameCS.ast) .referredElement.oclIsKindOf (Classifier

9.4.29 primitiveTypeCS

This produgtion/rule denotes a primitive type.

Abstract syntax mapping
[A] primitiveTypeCS ::='Boolean’
[B] primitiveTypeCS ::='Integer'
[C] primitiveTypeCS ::='Real'
[D] primitiveTypeCS ::= 'String'
[E] primitiveTypeCS ::='UnlimitedNatural'

Synthesized attributes
[A] primitiveTypeCS.ast = Boolean

© ISO/IEC 2012 - All rights reserved 85

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[B] primitiveTypeCS.ast = Integer

[C] primitiveTypeCS.ast = Real

[D] primitiveTypeCS.ast = String

[E] primitiveTypeCS.ast = UnlimitedNatural

Inherited attributes

--none

Disambigtyating rules

-- none

9.4.30 ofciTypeCS

This produgtion rule denotes a built-in OCL type.

Abstract §yntax mapping

[A] oclTypeCS ::='OclAny'

[B] oflTypeCS ::='Ocllnvalid'
[C] oclTypeCS ::="'0OclMessage’
[D] aclTypeCS ::="OclVoid'

Synthesized attributes

[A] oclTypeCS.ast = OclAny

[B] oflTypeCS.ast = OclInvalid
[C] okl TypeCS.ast = OclMessage
[D] oclTypeCS.ast = OclVoid

Inherited attributes

-- none

Disambigtiating rules

-- none

9.4.31 copllectionTypeCS

A typenamg¢ is either a¢Classifier, or a collection of some type.

collectionTypeCS ::==collectionTypeldentifierCS “(‘ typeCS °)’

Abstract qyntax mapping

typeCS.ast : CollectionType

Synthesized attributes

collectionTypeCS.ast.elementType = typeCS.ast

-- We know that the ‘ast’ is a collectiontype, all we need to state now is which

-- specific collection type it is.

kind = CollectionKind::Set implies collectionTypeCS.ast.oclIsKindOf (SetType)

kind = CollectionKind: :Sequenceimplies collectionTypeCS.ast.oclIsKindOf (SequenceType)

86 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

kind

CollectionKind: :Bag

ISO/IEC 19507:2012(E)

implies collectionTypeCS.ast.oclIsKindOf (BagType)

kind = CollectionKind::Collectionimplies collectionTypeCS.ast.oclIsKindOf (CollectionType)

kind

Inherited attributes

typeCS.env = collectionTypeCS.env

Disambig

== none

CollectionKind: :OrderedSetimplies collectionTypeCS.ast.oclIsKindOf (OrderedSetType)

liating rules

9.4.32 tupleTypeCS

This repres
tupleTypeC|

bnts a tuple type declaration.
S ::= “Tuple’ °(‘ variableDeclarationListCS?)’

Abstract]yntax mapping

typeCS.agt : TupleType
Synthesijed attributes
typeCS.agt = TupleType::make(variableDeclarationListCS->collect(v | v.asAttribgite()))

Inherited attributes

variablel]

Disambig
[106][1] Of]

variablel]
varDeg

9.4.33 v

This produ

variableDe(

eclarationListCS.env = tupleTypeCS.env
hating rules
all VariableDeclarations the initEXpression must be empty and the type must exist.

eclarationListCS.ast->forAll(varDecl |
£l . initExpression=->notEmpty () and varDecl.type->notEmpty())

ariableDeclarationListCS
tion rule répresents the formal parameters of a tuple or attribute definition.

larationListCS[1] = VariableDeclarationCS
(“,’variableDeclarationListCS[2])?

Abstract syntax mapping

variableDeclarationListCS[1l] .ast : Sequence(VariableDeclaration)

Synthesized attributes

variableDeclarationListCS[1] .ast = Sequence{VariableDeclarationCS.ast}
->union (variableDeclarationListCS[2] .ast)

© ISO/IEC 2012 - All rights reserved

87

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Inherited attributes

VariableD
variableD

eclarationCS.env variableDeclarationListCS[1l] .env
eclarationListCS[2] .env variableDeclarationListCS[1l] .env

Disambiguating rules

== none

9434 F

A Feature(C
rules defind

[107][A] Fe
[108][B] Fe
[109][C] Fe

Abstract

FeatureC

Synthesiz

The value d
[A]H
[B] H
[C1H

]

patureCallExpCS

allExp expression may have three different productions. Which one is chosen depends on the
d in each of the alternatives.

atureCallExpCS ::= OperationCallExpCS

ptureCallExpCS ::= PropertyCallExpCS

ptureCallExpCS ::= NavigationCallExpCS

yntax mapping

11ExpCS.ast : FeatureCallExp

ed attributes

f this production is the value of its child production:

catureCallExpCS.ast = OperationCallExpCS.ast
ecatureCallExpCS.ast = PropertyCallExpCS.ast
eatureCallExpCS.ast = NavigationCallExpCS .ast

Inherited attributes

[A]
[B] Y
[CIN

Disambig
Thes

9435 O

An operatid
straightforw

perationCallExpCS.env = FeatureGallExpCS.env
ropertyCallExpCS.env = FeatureCallExpCS.env
avigationCallExpCS.env = FeatureCallExpCS.env

hating rules
b are defined in the children.

perationCallExpCS

n call has many different forms. A is used for infix, B for using an object as an implicit colle
rard, operation call, while D has an implicit source expression. E, F and J are like C, D, and 1,

addition. G

lisambiguating

ction. C is a
with the @pre

covers the static operation call. Rule H 1s for unary prefix expressions. | and J use pathName

qualification of operation names in access to redefined operations.

[110][A] OperationCallExpCS ::= OclExpressionCS[1] simpleNameCS OclExpressionCS[2]

[111][B] OperationCallExpCS
[112][C] OperationCallExpCS

::= OclExpressionCS ‘->’ simpleNameCS ‘(‘ argumentsCS?)’

== OclExpressionCS °.” simpleNameCS ‘(* argumentsCS?)’

[113][D] OperationCallExpCS ::= simpleNameCS ‘(‘ argumentsCS?)’

[114][E] OperationCallExpCS
[115][F] OperationCallExpCS

88

::= simpleNameCS isMarkedPreCS ‘(‘ argumentsCS? ©)’

CS to permit

== OclExpressionCS °.” simpleNameCS isMarkedPreCS ‘(‘ argumentsCS?)’

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[116][G] OperationCallExpCS ::= pathNameCS (‘ argumentsCS?)’

[117][H] OperationCallExpCS ::= simpleNameCS OclExpressionCS
[118][I] OperationCallExpCS ::= OclExpressionCS ".' pathNameCS "::' simpleNameCS '(' argumentsCS? ")’
[119][J] OperationCallExpCS ::= OclExpressionCS '.' pathNameCS "::' simpleNameCS isMarkedPreCS '(' argumentsCS? ')'

Abstract syntax mapping

OperationCallExpCS.ast : OperationCallExp

Synthesized attributes
-- this nule is for binary operators as ‘+,’ '-,’ ‘*,’ etc. It has only,one argument.
[A]] OperationCallExpCS.ast.arguments = Sequence{OclExpression2[2].ast}
OperationCallExpCS.ast.source = OclExpressionCS[1l].ast

[B]

--- The referred operation:

sionCS.ait.type).lookupOperation (

OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast. type.lookupOperation (
simpleNameCS.ast,
Sequence{OclExpression[2] .ast. type}.)

The source is either a collection or a single object used as a collectiqgn.

OperationCallExpCS.ast.arguments = argumentsCSvast
if the OclExpressionCS is a collectiontype/ then the source is this Ocl

pressionCS.

Otherwise, the source must be build up by .defining a singleton set contdining

the OclExpressionCS. This is done though\inserting a call to the standand

operation "asSet()"
OperationCallExpCS.ast.source =
if OclExpressionCS.ast.type.oclIsKindOf (CollectionType)
then OclExpressionCS.ast
else OclExpressionCS.ast.withAsSet()
endif

OperationCallExpCS.ast réferredOperation =
if OclExpression@S.ast.type.oclIsKindOf (CollectionType)
then -- this is“a collection operation called on a collection
OclExpressionCS.ast. type.lookupOperation (simpleNameCS.ast,

if\\(argumentsCS->notEmpty ())
then argumentsCS.ast->collect (type)
else Sequence{} endif)

else

this is '@ set operation called on an object => implicit Set with one elgment

SetType.allInstances()->any (st | st.elementType = OclExpres-

simpleNameCS.ast,

1T (argumentsCS->notEmpty ())
then argumentsCS.ast->collect (type)
else Sequence{} endif)

endif

[C] OperationCallExpCS.ast.referredOperation =

OclExpressionCS.ast. type.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
OperationCallExpCS.ast.arguments = argumentsCS.ast
OperationCallExpCS.ast.source = OclExpressionCS.ast

© ISO/IEC 2012 - All rights reserved

89

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[D] OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCallExpCS.ast.referredOperation =
env.lookupImplicitOperation (simpleName.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
OperationCallExpCS.ast.source = env.lookupImplicitSourceForOperation (
simpleName.ast,
if argumentsCS->notEmpty-()
then arguments.ast->collect (type)
else Sequence{} endif)
[E] -- incorporate the isPre() operation.
OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast.type.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
OperationCallExpCS.ast.arguments = argumentsCS.ast

OperationCallExpCS.ast.source = OclExpressionCS.ast.isPre = true
[F] -- incorporate atPre() operation with the implicit/source
OperationCallExpCS.ast.arguments = argumentsCS.ast and

OperationCallExpCS.ast.referredOperation =
env.lookupImplicitOperation (simpleName:ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
)
OperationCallExpCS.ast.source =
env.lookupImplicitSourceForOperation (simpleName.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
) /isPre = true
[G] OperationCallExpCS.ast.arguments = argumentsCS.ast and
OperationCallExpCS.ast.referredOperation =
env. lookupPathName (pathName.ast,

é{}"* endif)
OperationCallExpCS.ast.source->isEmpty ()
-- this rule-+is for unary operators as ‘-’ and ‘not’ etc. It has no argyment.
[H] OperationCallExpCS.ast.arguments->isEmpty ()
OperationCallExpCS.ast.source = OclExpressionCS.ast

OperationCallExpCS.ast.referredOperation =
OclExpressionCS.ast. type.lookupOperation (
simpleNameCS.ast,
Sequence({})
[I] let owner : Classifier = pathNameCS.env.lookupPathName (pathNameCS.ast) .referredEle-
ment.oclAsType (Classifier) in
OperationCallExpCS.ast.referredOperation =
owner.lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
OperationCallExpCS.ast.arguments = argumentsCS.ast
OperationCallExpCS.ast.source = OclExpressionCS.ast
[J] -- incorporate the isPre() operation.

90 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

le

Op
Op

t owner : Classifier =

ISO/IEC 19507:2012(E)

pathNameCS.env. lookupPathName (pathNameCS.ast) .referredElement.oclAsType (Classifier)

in OperationCallExpCS.ast.referredOperation =
owner . lookupOperation (simpleNameCS.ast,
if argumentsCS->notEmpty ()
then arguments.ast->collect (type)
else Sequence{} endif)
erationCallExpCS.ast.arguments = argumentsCS.ast
£i CallE cs st-source—= OSJEHFEESS!' onCS—ast—isPre— true

Inherited attributes

A

—_

aJ
a

EEGICICkEICICES
O N o

Lo B s e B Brwss e Brws Rl e Raes Rren e

Disambig
[120][1] [A
Set{
[121][2] [A
not (J
[122][3] [L,
Oper|
[123][4] [L,

let o

clExpressionCS[1].env= OperationCallExpCS.env
clExpressionCS[2].env= OperationCallExpCS.env

gumentsCS.env = OperationCallExpCS.env
clExpressionCS.env= OperationCallExpCS.env
rgumentsCS.env = OperationCallExpCS.env
rgumentsCS.env = OperationCallExpCS.env
clExpressionCS.env= OperationCallExpCS.env
reumentsCS.env = OperationCallExpCS.env
gumentsCS.env = OperationCallExpCS.env
LIExpressionCS.env= OperationCallExpCS.env

q
((
()clExpressionCS.env= OperationCallExpCS.env
q

rgumentsCS.env = OperationCallExpCS.env

clExpressionCS.env= OperationCallExpCS.env

afgumentsCS.env = OperationCallExpCS.env

hating rules

The name of the referred Operation mustbe an operator

=%) 2and’, or, xor’)= <=’ " >=""<,”>"} ->includes(simpleNameCS.ast)
B,C,D,E,F] The referred Operation niust be defined for the type of source
perationCallExpCS.ast.referredOpération.ocllsUndefined()

] pathNameCS must be a nameé of a Classifier in current environment.

OclExpressionCS.astitype.conformsTo(owner)

9.4.36 P

This produ
for an impl

ropertyCallExpCS

htionCallExpCS.env.lookupPathName(pathNameCS.ast).referredElement.oclIsKindOf(Classifier)

] The type of the sourde expression must conform to the owner type of the referenced operation

ner : Classifier = pathNameCS.env.lookupPathName(pathNameCS.ast).referredElement.oclAsType(Classifier) in

tiofurule results in a PropertyCallExp. In production [A] the source is explicit, while production [B] is used

qualification of attribute names in access to redefined attributes.

—/ /o

A] PropertyCallExpCS ::= OclExpressionCS °.” simpleNameCS isMarkedPreCS?
B] PropertyCallExpCS ::= simpleNameCS isMarkedPreCS?

C] PropertyCallExpCS ::= pathNameCS

D] PropertyCallExpCS ::= OclExpressionCS "' pathNameCS "::' simpleNameCS isMarkedPreCS?

© ISO/IEC 2012 - All rights reserved

CIt source. Alternative C covers the use o a static attribute. Alternative D uses pathiNameCs to permit

91

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Abstract syntax mapping

PropertyCallExpCS.ast : PropertyCallExp

Synthesized attributes

[A] PropertyCallExpCS.ast.referredAttribute =
OclExpressionCS.ast. type.lookupAttribute (simpleNameCS.ast)
[Al—PropertyCallExpCS ast source = if jsMarkedPreCS->jisEmpty ()
then OclExpressionCS.ast
else OclExpressionCS.ast.isPre = true
endif
[B PropertyCallExpCS.ast.referredAttribute =
env.lookupImplicitAttribute (simpleNameCS.ast)
[B] PropertyCallExpCS.ast.source =
if isMarkedPreCS->isEmpty ()
then env.findImplicitSourceForAttribute (simpleNameCS.ast)
else env.findImplicitSourceForAttribute (simpleNameCS.ast) .fisPre = true
endif
[C] PropertyCallExpCS.ast.referredAttribute =
env.lookupPathName (pathNameCS.ast) f{oclAsType (Attribute)
[D] 1let owner : Classifier = pathNameCS.env.lookupPathName (pathNameCS.ast) .referredEle-
ment.oclAsType (Classifier) in
PropertyCallExpCS.ast.referredAttribute = owner.lookupAttribute (simpleNameCS.ast)
[D] PropertyCallExpCS.ast.source = if isMarkedPreCS->isEmpty ()
then OclExpressionCS.ast
else OclExpressionCS.ast.isPre_ &)true endif
Inherited attributes
[A]] OclExpressionCS.env = PropertyCallExpCS.env
[Dl OclExpressionCS.env = PropertyCallExpCS.env

Disambigtyating rules

[124][1] [A] B] ‘simpleName’ is name of'anProperty of the type of source or if source is empty the name of gn attribute of
‘self” of any of the iterator variables-in (nested) scope. In OCL:

not PropgrtyCallExpCS.astireferredAttribute.oclIsUndefined()

[125][2] [C] The pathName refets to a class attribute.

env. lookypPathName(pathNameCS.ast) .oclIsKindOf (Attribute)

and
Property(JallExpCS.ast.referredAttribute.ownerscope = ScopeKind: :instance

[126][3] [D] pathNameCS must be a name of a Classifier in current environment.

PropertyCallExXpCS.env.lookupPathName (pathNameCS.ast) .referredElement.oclIsKindOf (Classifier)

[127][4] [D] The type of the source expression must conform to the owner type of the referenced attribute
let owner : Classifier = pathNameCS.env.lookupPathName (pathNameCS.ast) .referredElement.oclAs-

Type (Classifier) in
OclExpressionCS.ast. type.conformsTo (owner)

92 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

9.4.37 NavigationCallExpCS

This production rule represents a navigation call expression.

[A] NavigationCallExpCS ::= PropertyCallExpCS
[B] NavigationCallExpCS ::= AssociationClassCallExpCS

Abstract syntax mapping

NavigatidnCallExpCS.ast : NavigationCallExp

Synthesized attributes

The value ¢f this production is the value of its child production.

[A] NavigationCallExpCS.ast = PropertyCallExpCS.ast
[B] NavigationCallExpCS.ast = AssociationClassCallExpCS.ast

Inherited attributes

[A] HropertyCallExpCS.env = NavigationCallExpCS.env
[B] AssociationClassCallExpCS.env = NavigationCallExpCS.env

Disambiguating rules

These are defined in the children.

9.4.38 AssociationClassCallExpCS

This produgtion rule represents a navigation to an,association class.

[A] AssocigtionClassCallExpCS ::= OclExpressionCS ‘.” simpleNameCS (‘[argumentsCS ‘]’)? isMarkedPreCS?
[B] AssocigtionClassCallExpCS ::= simpleNameCS (‘[* argumentsCS]”)? isMarkedPreCS?

Abstract §yntax mapping

AssociatilonClassCallExpCS.ast : AssociationClassCallExp

Synthesized attributes

[A] AssodiationClassCallExpCS.ast.referredAssociationClass =
OclExpressionCS.ast. type.lookupAssociationClass (simpleNameCS.ast)
AspociationClassCallExpCS.ast.source = if isMarkedPreCS->isEmpty ()
then OclExpressionCS.ast
— __&Ise OCIEXpressioncs.ast.isPre = true
endif
[A] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast
[B] AssociationClassCallExpCS.ast.referredAssociationClass =
env.lookupImplicitAssociationClass (simpleNameCS.ast)
AssociationClassCallExpCS.ast.source =
if isMarkedPreCS->isEmpty ()
then env.findImplicitSourceForAssociationClass (simpleNameCS.ast)
else env.findImplicitSourceForAssociationClass (simpleNameCS.ast) .isPre = true
endif
[B] AssociationClassCallExpCS.ast.qualifiers = argumentsCS.ast

© ISO/IEC 2012 - All rights reserved 93

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Inherited attributes

[A] OclExpressionCS.env = AssociationClassCallExpCS.env
[A, B] argumentsCS.env = AssociationClassCallExpCS.env

Disambiguating rules
[128][1] ‘simpleName’ is name of an AssociationClass of the type of source.

not AssociationClassCallExpCS.ast.referredAssociationClass.oclIsUndefined)

9.4.39 isMarkedPreCS

This produgtion rule represents the marking @pre in an ocl expression.

isMarkedPreCS ::= ‘@’ ‘pre’

Abstract lintax mapping
S.

i rkedPreCS.ast : Boolean

Synthesized attributes

sellf.ast = true

Inherited attributes

==| none

Disambigtliating rules

—-—| none

9.4.40 argumentsCS

This produgtion rule represents_atsequence of arguments.

arguments(S[1] ::= OclExpressionCS (‘,” argumentsCS[2])?

Abstract §yntax mapping

argumentsCS[1l] .ast : Sequence (OclExpression)

Synthesizedrattribtites

argumentsCS[1l] .ast = Sequence{OclExpressionCS.ast}->union(argumentsCS[2].ast)

Inherited attributes

OclExpressionCS.env argumentsCS[1l] .env
argumentsCS[2] .env = argumentsCS[1l].env

94 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Disambiguating rules

—— none

9.4.41 LetExpCS

This production rule represents a let expression. The LetExpSubCS nonterminal has the purpose of allowing directly
nested let expressions with the shorthand syntax, i.e., ending with one ‘in’ keyword.

LetExpCS {:= ‘let’ VariableDeclarationCS
LetExpSubCS

Abstract syntax mapping

Le[tExpCS.ast : LetExp

Synthesized attributes
Le[tExpCS.ast.variable = VariableDeclarationCS.ast
LeftExpCS.ast.in = LetExpSubCS.ast

Inherited attributes

Le[tExpSubCS.env = LetExpCS.env.nestedEnvironment () .addElement (
VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,

false)

Disambiguating rules
[129][1] Thg variable name must be unique in th€ current scope

Le[tExpCS.env.lookup (VariableDeclarationCS.ast.varName) .oclIsUndefined()

[130][2] A variable declaration inside,a et must have a declared type and an initial value.

noft VariableDeclarationCS.ast.type.oclIsUndefined() and
VafriableDeclarationCS.ast.initExpression->notEmpty ()

9.4.42 LptExpSubCS

[131][A] LgtExpSubCS[1] ::= *,” VariableDeclarationCS LetExpSubCS[2]
[132][B] LatExpSubCS ::= ‘in’ OclExpressionCS

Abstract syntax mapping

LetExpSubCS.ast : OclExpression

Synthesized attributes

[A] LetExpSubCS[1l].ast.oclAsType (LetExp) .variable VariableDeclarationCS.ast
[A] LetExpSubCS[1l].ast.oclAsType (LetExp) .OClExpression = LetExpSubCS[2].ast
[B] LetExpSubCS.ast = OclExpressionCS.ast

© ISO/IEC 2012 - All rights reserved 95

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Inherited attributes

[A] VariableDeclarationCS.env = LetExpSubCS[1l].env

[A] LetExpSubCS[2].env = LetExpSubCS[1l].env.nestedEnvironment () .addElement (
VariableDeclarationCS.ast.varName,
VariableDeclarationCS.ast,
false)

[B] OClExpressionCS.env = LetExpSubCS.env

Disambigtiating rules

[133][A] THe variable name must be unique in the current scope.

LeltExpSubCS[1] .env.lookup (VariableDeclarationCS.ast.varName) .oclIsUndefin€gd ()

[134][A] A [variable declaration inside a let must have a declared type and an initial value.

not VariableDeclarationCS.ast.type.oclIsUndefined() and
VariableDeclarationCS.ast.initExpression->notEmpty ()

9.4.43 OclMessageExpCS

The message Name must either be the name of a Signal, or the name-of an Operation belonging to the tatget object(s).
[135][A] O¢IMessageExpCS ::= OclExpressionCS ‘*’ simpleNameCS ‘(* OclMessageArgumentsCS?)’
[136][B] O¢lMessageExpCS ::= OclExpressionCS “** simpleNameCS ‘(* OclMessageArgumentsCS?)’

Abstract §yntax mapping

[A]] OclMessageExpCS.ast : OclMessageExp
[B OclMessageExpCS.ast : OclMessageExp

Synthesized attributes

[A] OclMessageExpCS.asttarget OclExpressionCS.ast

[A] OclMessageExpCS.ast.arguments = OclMessageArgumentsCS.ast

--| first, find thé“sequence of types of the operation/signal parameters

[A]] let params (Sequence(Classifier) = OclMessageArguments.ast->collect (mgssArg |

messArg.getType()),

--| try to find either the called operation or the sent signal

[A]l operation : Operation = OclMessageExpCS.ast.target.type.
lookupOperation (simpleNameCS.ast, params),

signal : Signal = OclMessageExpCS.ast.target. type.
lookupSignal (simpleNameCS.ast, params)

in
OclMessageExpCS.ast.calledOperation = if operation->isEmpty ()
then invalid
else = operation
endif
OclMessageExXpCS.ast.sentSignal = if signal->isEmpty ()
then invalid
else signal
endif
[B]

-- OclExpression”simpleNameCS (OclMessageArguments) is identical to

96 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

-- OclExpression”“simpleNameCS (OclMessageArguments)->size() =1
-- actual mapping: straigthforward, TBD...

Inherited attributes

OclExpressionCS.env = OclMessageExpCS.env
OclMessageArgumentsCS.env = OclMessageExpCS.env

Disambig{iating rules

==| none

9.4.44 QclMessageArgumentsCS

OclMessag¢ArgumentsCS[1] ::= OclMessageArgCS
(¢, OclMessageArgumentsCS[2])?

Abstract lyntax mapping
C

Oc[lMessageArgumentsCS[1l] .ast : Sequence (OclMessageZxg)
SynthesizEd attributes
Oc[lMessageArgumentsCS[1l] .ast =

Sequence {OclMessageArgCS.ast}->unien (OclMessageArgumentsCS[2] .ast)

Inherited attributes

Oc[lMessageArgCS.env = OclMessageArgumentsCS[1l] .env
Oc[lMessageArgumentsCS[2] .env = OclMessageArgumentsCS[1l].env

Disambiguating rules

—=-| none

9.4.45 QclMessageArgCsS

[137][A] O¢IMessageArg€S := “? (“:” typeCS)?
[138][B] O¢IMessageéArgCS ::= OclExpressionCS

Abstract 1yntax mapping

OclMessageArgCS.ast : OclMessageArg

Synthesized attributes

[A] OclMessageArgCS.ast.expression->isEmpty ()

[A] OclMessageArgCS.ast.unspecified->notEmpty ()

[A] OclMessageArgCS.ast.type = typeCS.ast

[B] OclMessageArgCS.ast.unspecified->isEmpty ()

[B] OclMessageArgCS.ast.expression = OclExpressionCS.ast

© ISO/IEC 2012 - All rights reserved 97

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19

Inherited a

507:2012(E)

ttributes

OclExpressionCS.env = OclMessageArgCS.env

Disambiguating rules

9.4.46 ExpCS

IfExpCS ::f

Yy 1= : a1
1 UCIEXPICSSIOIN] T |

‘tHen” OclExpression[2]

3

13

Cn

else’ OclExpression[3]

dif”

Abstract §yntax mapping

IfExpCS.ast : IfExp

Synthesized attributes

IfExpCS.ast.condition = OclExpression[l].ast
IfExpCS.ast.thenExpression = OclExpression[2].ast

IfExpCS.ast.elseExpression = OclExpression|[3}-ast

Inherited attributes

Oc[lExpression[l] .env
OcllExpression[2] .env
OcllExpression[3] .env

IfExpCS.env
IfExpCS.env
IfExpCS.enw

Disambigtiating rules

none

9.4.47 NuliLiteralExpCS

This produgd

tion rule results in a“NullLiteralExp.

[A] NullLiteralExpCS s null'

Abstract §

NulllLjteralExpCS.ast :

yntax‘mapping

NullliteralExp

Synthesized attributes

== none

98

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

Inherited attributes

—— none

Disambiguating rules

-- nonc

ISO/IEC 19507:2012(E)

9.4.48 |
This produg
[A] Invalid

Abstract §yntax mapping

Invalj

Synthesiz

== noj

Inherited attributes

== noj

Disambig

== noj

9.4.49 C

It is possibl
mapping off
two forms

with the ne
comments 1

9.5 Hnvironment Definition

The Enviro

tion rule results in an InvalidLiteralExp.

[iteralExpCS ::= 'invalid'

ldLiteralExpCS.ast : InvalidLiteralExp

ed attributes

he

he

hating rules

he

omments

e to include comments anywhere in a text composed according to the above concrete syntax. T|
any comments to the abstraet syntax. Comments are simply skipped when the text is being pal
f comments, a line comment, and a paragraph comment. The line comment starts with the stri
kKt newline. The paragraph comment starts with the string ‘/*’ and ends with the string ‘*/.” Pa
nay be nested.

hment-type used in the rules for the concrete syntax is defined according to the following invs

additional ¢

here will be no
rsed. There are
g ‘--” and ends
ragraph

riants and

perdtions. A diagrammatic view can be found in Figure 9.1. Environments can be nested, den

pted by the

existence of a parent environment. Each environment keeps a list of named elements, that have a name a reference to a
ModelElement.

9.51 E

nvironment

The definition of Environment has the following invariants and specifications of its operations.

[139][1] The attribute EMPTY ENV is really just a helper to avoid having to say new Environment (_..).

context Environment
inv EMPTY ENV_Definition: EMPTY_ ENV.namedElements->isEmpty()

© ISO/IEC 2012 - All rights reserved

99

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[140][2] Find a named element in the current environment, not in its parents, based on a single name.

context Environment::lookupLocal(name : String) : NamedElement
post: result = namedElements->any(v | v.name = name)

[141][3] Find a named element in the current environment or recursively in its parent environment, based on a single name.

context Environment::lookup(name: String) : ModelElement
post: result = if not lookupLocal(name).ocllsUndefined() then
lookupLocal(name).referredElement
tise
parent.lookup(name)
endif

[142][4] Find a named element in the current environment or recursively in its parent environmentsbaséd on g path name.

contdxt Environment::lookupPathName(names: Sequence(String)) : ModelElement
post: |let firstNamespace : ModelElement = lookupLocal(names->first()).referredElement
in
iff firstNamespace.ocllsKindOf(Namespace)
-- indicates a sub namespace of the namespace in which self is present
then
result = self.nestedEnvironment().addNamespace(
firstNamespace).lookupPathName(names->subSequence(2, names->size()))
else
-- search in surrounding namespace
result = parent.lookupPathName(names)
epdif

[143][5] Add a new named element to the environment. Note that this operation is defined as a query operation so that it can
be psed in OCL constraints.

contgxt Environment::addElement (name : String,

elem : ModelElement, imp : Boolean) : Environment
pre : |- the name must not clash with names already existing in this environment
s¢lf.lookupLocal(name).ocllsUndefined()

post:|result.parent = self.parent and
r¢sult.namedElements->includesAll(self.namedElements) and
rgsult.namedElements->count (v{-v.oclIsNew()) = 1 and
r¢sult.namedElements->forAll (v | v.ocllsNew() implies

v:name = name and v.referredElement = elem)
and

v.mayBelmplicit = imp)

[144][6] Combine two-environments resulting in a new environment. Note that this operation is defined as a query operation
so[that it can-be used in OCL constraints.

contdxt Enyironment::addEnvironment(env : Environment) : Environment
pre : p-«thenames must not clash with names already existing in this environment
eirf marmedE fements==forAt i setf fookuptocattmmyoc s ndefimed)
post: result.parent = self.parent and

result.namedElements = self.namedElements->union(env.namedElements)

[145][7] Add all elements in the namespace to the environment.

context Environment::addNamespace(ns: Namespace) : Environment

post: result.namedElements = ns.getEnvironmentWithoutParents().namedElements->union(
self.namedElements)

post: result.parent = self.parent

[146][8] This operation results in a new environment that has the current one as its parent.

context Environment::nestedEnvironment() : Environment

100 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

post: result.namedElements->isEmpty()
post: result.parent = self
post: result.oclIsNew()

[147][9] Lookup a given attribute name of an implicitly named element in the current environment, including its parents.

context Environment::lookupImplicitAttribute(name: String) : Attribute

pre: -- none

post: result =
lookupImplicitSourceForAttribute(name).referredElement.oclAsType(Attribute)

[148][10] Lpokup the implicit source belonging to a given attribute name in the current environment, includirlg the parents.

contgxt Environment::lookupImplicitSourceForAttribute(name: String) : NamedElement
pre: 4- none
post:[let foundElement : NamedElement =
hamedElements->select(mayBelmplicit)
->any(ne | not ne.getType().lookupAttribute(name).ocllsUndefined()) in
r¢sult = if foundAttribute.ocllsUndefined() then
self.parent.lookupImplicitSource ForAttribute(name)
else
foundElement
end

[149][11] Lpokup a given association end name of an implicitly named elemeént in the current environment, irfcluding its
parents.

contgxt Environment::lookupImplicitAssociationEnd(name: String) :*AssociationEnd
pre: 4- none
post:[let foundAssociationEnd : AssociationEnd =
hamedElements->select(mayBelmplicit)
->any(ne | not ne.getType().lookupAssociationEnd(name).ocllsUndefined()) in
rgsult = if foundAssociationEnd.ocllsUndefined(),then
self.parent.lookupImplicitAssociationEnd(name)
else
foundAssociationEnd
end

[150][12]Lgokup an operation of an implicitly named element with given name and parameter types in the cufrent
enyironment, including its_parents.

contgxt Environment::lookuplmplicitOperation(name: String,
params : Sequence(Classifier)) : Operation
pre: 4- none
post:[let foundOperation : Operation =
hamedElements->select(mayBelmplicit)
->any(ne | not ne.getType().lookupOperation(name, params).ocllsUndefined()) in
r¢sult=if foundOperation.ocllsUndefined() then

self parent looknpImplicitOperation(name)
else

foundOperation
end

In OCL 2.0 and 2.2 a reserved word could be used as a name after prefixing it with an underscore. Therefore, for
compatibility, a lookup of simpleNameCS[A] name with a leading underscore may need to be looked up twice. The
symbol is first looked up in the meta-model with the underscore prefix, and if no value is found, the symbol is looked up
gain without the underscore prefix.

A double lookup is not required for a simpleNameCS[B] or [C] name (an underscore-prefixed singly quoted string).

© ISO/IEC 2012 - All rights reserved 101

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The second lookup after removing the underscore prefix is deprecated in OCL 2.3 and will be discontinued in OCL 3.0.
Tool implementors should provide a warning message for this deprecated usage.

9.5.2 NamedElement

A named element is a modelelement that is referred to by a name. A modelelement itself has a name, but this is not
always the name that is used to refer to it.

The operatipn getType() returns the type of the referred modelelement.

contgxt NamedElement::getType() : Classifier

pre: + none

post: [referredElement.oclIsKindOf(VariableDeclaration) implies

result = referredElement.oclAsType(VariableDeclaration).type
post:|referredElement.oclIsKindOf{Classifier) implies

result = referredElement

post: [referredElement.oclIsKindOf(State) implies

result = -- TBD: when aligning with UML 2.0 Infrastructure

9.5.3 amespace

The following additional operation returns the information of the conténts of the namespace in the form gf an
Environment object, where Environment is the class defined in this'clause. Note that the parent associatign of
Environment is not filled.

Because th¢ definition of this operation is completely dependent on the UML metamodel, and this model[will be
considerably different in the 2.0 version, the definition is(left to be done.

contgxt Namespace::getEnvironmentWithoutParents()\Environment
post:|self.isTypeOf(Classifier) implies -- TBD wher‘aligning with UML 2.0 Infrastructure

- include all class features and contained classifiers

post:|self.isTypeOf(Package) implies -- TBD\when aligning with UML 2.0 Infrastructure
Jinclude all classifiers and subpackages

post:|self.isTypeOf(StateMachine) implies -- TBD when aligning with UML 2.0 Infrastructure
- include all states

post:|self.isTypeOf(Subsystem)timplies -- TBD when aligning with UML 2.0 Infrastructure

- include all classifiers andhsubpackages

The following operation returns an Environment that contains a reference to its parent environment, which fis itself created
by this opefation by means*of a recursive call, and therefore contains a parent environment too.

contgxt Namespace::getEnvironmentWithParents() : Environment

post: |result.NamedElements = self.getEnvironmentWithoutParents()

post:|if self.namespace->notEmpty() -- this namespace has an owning namespace
Hen.reSult.parent = self.namespace.getEnvironmentWithParents()

else result.parent = invalid

endif

P=

9.6 Concrete to Abstract Syntax Mapping

The mapping from concrete to abstract syntax is described as part of the grammar. It is described by adding a synthesized
attribute ast to each production that has the corresponding metaclass from the abstract syntax as its type. This allows the
mapping to be fully formalized within the attribute grammar formalism.

102 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

9.7 Abstract Syntax to Concrete Syntax Mapping

It is often useful to have a defined mapping from the abstract syntax to the concrete syntax. This mapping can be defined
by applying the production rules in sub clause 9.4 from left to right. As a general guideline nothing will be implicit (for
example, implicit collect, implicit use of object as set) and all iterator variables will be filled in completely. The mapping

is not formally defined in this document but should be obvious.

© ISO/IEC 2012 - All rights reserved 103

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

104 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10 Semantics Described Using UML

10.1

Introduction

This clause describes the semantics of the OCL using the UML itself to describe the semantic domain and the mapping
between semantic domain and abstract syntax.

In sub clau
given envir
‘meaning’

environmer

To specify
of expressi
domain. Th
mapping fr
with their ¢

The semanfiic domain is described in the form of a UML package, containing a UML class diagram, classg

and attribut
diagram. T
it, a set of s
value), and
resides on |
resides on |

The semantics of an OCL expression is given by association: each value defined in the semantic domain

with a type
value yield
certain nan
Mapping.”
on layer 2.
architecturg

Figure 10.1
syntax.

pbnment,” and in 8.2, The Types Package it is stated that an “evaluation of the expression.yield

e 8.3, The Expressions Package an OCL expression is defined as: “an expression that can be

semantics) of an OCL expression, therefore, can be defined as the value yielded by it§ evalua
t.

evaluated in a
5 a value.” The
ion in a given

he semantics of OCL expressions we need to define two things: (1) the set of, possible values that evaluations

ns may yield, and (2) evaluations and their environment. The set of possible values is called
e set of evaluations together with their associations with the concepts feOni-the abstract syntax

he semantic
represent the

m OCL expressions to values from the semantic domain. Together the sémantic domain and the evaluations

nvironment will be called domain in this clause.

cs. The real semantic domain is the (infinite) set of instanées that can be created according to

S, associations,
this class

represent the evaluation of the OCL expressions in the,semantic domain a second UML package is used. In

p-called evaluation classes is defined (in short eval).Each evaluation class is associated with a
a name space environment that binds names to values. Note that the UML model comprising
ayer 1 of the OMG 4-layered architecture, whil€’the abstract syntax defined in Clause 8 (“Abs
ayer 2.

defined in the abstract syntax, each-evaluation is associated with an expression from the abstr
bd by an OCL expression in a giyetrenvironment, its ‘meaning’ is the result value of its evalu
e space environment. The semantics are also described in the form of a UML package called
Note that this package link§ the domain on layer 1 of the OMG 4-layered architecture with the
The AS-Domain-Mapping.package itself cannot be positioned in one of the layers of the OM
. Note also that this-package contains associations only, no new classes are defined.

shows how the packages defined in this clause relate to each other, and to the packages from

value (its result
both packages,
tract Syntax”),

Is associated
het syntax. The
htion within a
‘AS-Domain-
abstract syntax
7 4-layered

the abstract

© ISO/IEC 2012 - All rights reserved

105

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

—‘ Ocl-AbstractSyntax OCL-Domain

Types —‘

(from Ocl-AbstractSyntax) Vilies
(from OCL-Domain)

\
— Expressions /P 4\ Evaluations .
(from Ocl-AbstractSyntax) | (from OCL-Domain)

OCL-AS-Domain-Mapping

AN

‘ \

‘ | ‘
| |
‘ Type-Value ‘

L (from OCL-AS-Domain-Mapping) J

Expression-Evaluation
(from OCL-AS-Domain-Mapping)

Figure 10.1| - Overview of Packages in the UML-based Semantics

» The|Domain package describes the values and evaluations. It is subdivided into two subpackages:

* The Values package describes the semantic domain. It shows the values OCL expressions may yield as result.

* The Evaluations package describes ‘the evaluations of OCL expressions. It contains the rules that determine the

Fesult value for a given expression.

» The|A4S-Domain-Mapping package describes the associations of the values and evaluations with elemgnts from the
abstract syntax. It is subdiyvided'into two subpackages:

* The Type-Value package contains the associations between the instances in the semantics domain @nd the types in
he abstract syntax:

* The Expression*Evaluation package contains the associations between the evaluation classes and the expressions
n the abstract syntax.

10.2 TheValues Package

OCL is an object language. A value can be either an object, which can change its state in time, or a data type, which can
not change its state. The model in Figure 10.2 shows the values that form the semantic domain of an OCL expression. The
basic type is the Value, which includes both objects and data values. There is a special subtype of Value called
UndefinedValue, which is used to represent the undefined value for any Type in the abstract syntax.

Figure 10.3 shows a number of special data values, the collection and tuple values. To distinguish between instances of
the Set, Bag, and Sequence types defined in the standard library, and the classes in this package that represent instances
in the semantic domain, the names SetTypeValue, BagTypeValue, and SequenceTypeValue are used, instead of SetValue,
BagValue, and SequenceValue.

106 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 1

DomainElement

s

0..1 LocalSnapshot *bindings NameValueBinding +value VEIE
+succ 0. o
0 on N | name : String 0..n 1
PTed +history
{ordered} T
[[|
1 ObjectValue StaticValue OclVoidValue
Figure 10.2) - The kernel values in the semantic domain
The value rpsulting from an ocl message expression is shown in Figure 10.4. It links’an-ocl message value
of an object.
10.2.1 Definitions of Concepts for the Values Package
The sub clquse lists the definitions of concepts in the Values package-in alphabetical order.
10.2.1.1 BagTypeValue
A bag type|value is a collection value that is a multiset of values, where each value may occur multiple ti
The values [are unordered. In the metamodel, this list of*values is shown as an association from Collectio
generalizatifon of BagTypeValue) to Element.
10.2.1.2 CpllectionValue
A collection value is a list of values. In the-tnétamodel, this list of values is shown as an association from
to Element.
Associatiofs
elements The values of the elements in a collection.
10.2.1.3 DpmainElement

A domain 4

lement'is an element of the domain of OCL expressions. It is the generic superclass of all cla

this clause,

in¢lading Value and OclExpEval. It serves the same purpose as ModelElement in the UML m

© ISO/IEC 2012 - All rights reserved

-

9507:2012(E)

to the snapshot

mes in the bag.
W Value (a

ollectionValue

kses defined in
eta model.

107

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

+value
Value
+value
0..n
StaticValue NameValueBinding

name : String

$ +elements 0..n

PrimitiveValue CollectionValue TupleValue o1
0.1
‘ +elements = .
EngmValue 0 : Sel
- lindexNr : Integer | O¢n

SetTypeValue SequenceTypeValue BagTypeValue

Figure 10.3| - The collection and tuple values in the-semantic domain

10.2.1.4 Element

An element represents a single component of a tuple value, or collection value. An element has an index jnumber and a

value. The purpose of the index numbet is to identify uniquely the position of each element within the en
when it is ysed as an element ofa.SequenceValue.

10.2.1.5 LocalSnapshot

A local snapshot is a_demain element that holds for one point in time the subvalues of an object value. It
of an order¢d list ofJocal snapshots of an object value, which is represented in the metamodel by the ass
succ, and history. An object value may also hold a sequence of OcIMessageValues, which the object value
sequence of OclMessageValues, which the object value has received. Both sequences can change in time,

closing value,

is always part
ciations pred,
has sent, and a
therefore they

are includedTmatocatsmapshot—ThisTsTepresented by theassocrations T the metamodetcatted mpuro;

nd outputQ.

A local snapshot has two attributes, isPost and isPre, that indicate whether this snapshot is taken at postcondition or

precondition time of an operation execution. Within the history of an object value it is always possible to

find the local

snapshot at precondition time that corresponds with a given snapshot at postcondition time. The association pre (shown in

Figure 10.3) is redundant, but added for convenience.

108 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations

bindings The set of name value bindings that hold the changes in time of the subvalues of the associated object
value.

outputQ The sequence of OclMessage Values that the associated ObjectValue at the certain point in time has
sent, and are not yet put through to their targets.

inputQ Thesequence of Octiviessage Vatues that the-assoctated-Object Vatue at the certaimrpomt in time has
received, but not yet dealt with.

pred The predecessor of this local snapshot in the history of an object value.

succ The successor of this local snapshot in the history of an object value.

pre If this snapshot is a snapshot at postcondition time of a certain operation execution, then pre is the

associated snapshot at precondition time of the same operation in‘the history of an objpct value.

10.2.1.6 NameValueBinding

A name value binding is a domain element that binds a name to a value.

10.2.1.7 OpjectValue

An object yalue is a value that has an identity, and a certain structure of subvalues. Its subvalues may change over time,
although thp structure remains the same. Its identity may not¢chanhge over time. In the metamodel, the strycture is shown
as a set of NameValueBindings. Because these bindings may,change over time, the ObjectValue is associgted with a

sequence of LocalSnapshots that hold a set of NameValiieBindings at a certain point in time.

Associatiohs

history The sequence of local'snapshots that hold the changes in time of the subvalues of this pbject value.

© ISO/IEC 2012 - All rights reserved 109

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Value NameValueBinding
0..n +arguments
{ordered}
+target
1 OclMessageValue
- Tame . Strimng
ObjectValue 1 . .
isSyncOperation : Boolean
source isAsyncOperation : Boolean *returMessage
isSignal : Boolean 0..1
+inputQ 0.n 0.n/\ +outputQ
0..n +history
LocalSnapshot

isPost : Boolean
isPre : Boolean

+pre 0..1

Figure 10.4) - The message values in the semantic domain

10.2.1.8 OclMessageValue

An ocl mespage value is a value that has as target and as sourceMan object value. An ocl message value has a number of
attributes. The name attribute corresponds to the name of the operation called, or signal sent. The isSync@peration,
isAsyncOpdration, and isSignal attributes indicate respectively whether the message corresponds to a syn¢hronous
operation, gn asynchronous operation, or a signal.

Associatiops

arguments A sequence.ofname value bindings that hold the arguments of the message from the source to
the target:

source The:ebject value that has sent this signal.

target The object value for which this signal has been intended.

returnMessage The ocl message value that holds the values of the result and out parameters of g synchronous

operation call in its arguments. Is only present if this message represents a synchronous
operation call.

10.2.1.9 OclVoidValue

An undefined value is a value that represents void or undefined for any type.

10.2.1.10 PrimitiveValue

A primitive value is a predefined static value, without any relevant substructure (i.e., it has no parts).

110 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.2.1.11 SequenceTypeValue

A sequence type value is a collection value that is a list of values where each value may occur multiple times in the
sequence. The values are ordered by their position in the sequence. In the metamodel, this list of values is shown as an
association from CollectionValue (a generalization of SequenceTypeValue) to Element. The position of an element in the
list is represented by the attribute indexNr of Element.

10.2.1.12 SetTypeValue

A set type yalue is a collection value that is a set of elements where each distinct element occurs only oned in the set. The
elements are not ordered. In the metamodel, this list of values is shown as an association from CollestionValue (a
generalization of SetTypeValue) to Element.

10.2.1.13 $taticValue

A static value is a value that will not change over time.!

10.2.1.14 TupleValue

A tuple valpe (also known as record value) combines values of different types into a single aggregate valpe. The
component§ of a tuple value are described by tuple parts each having a name and a value. In the metamodd]l, this is shown
as an assocjation from TupleValue to NameValueBinding.

Associatiohs

elements The names and values of the elements in a tuple value.

10.2.1.15 Value

A part of the semantic domain.

10.2.2 Well-formedness Rules for the Values Package

10.2.2.1 BpagTypeValue

No additionjal well-formedness’ rules.

10.2.2.2 CpllectionValue

No additionjal well-formedness rules.

10.2.2.3 DomainEtenment

No additional well-formedness rules.

1. AsStaticValue is the counterpart of the DataType concept in the abstract syntax, the name Data Value would be preferable.
StaticValue is used for historical reasons concerning past versions of UML.

© ISO/IEC 2012 - All rights reserved 11

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.2.2.4 Element

No additional well-formedness rules.

10.2.2.5 EnumValue

No additional well-formedness rules.

context LocalSnapshot
inv: 1sPost implies isPre
inv: 1spre implies isPost = false

false

[152][2] Onlly if a snapshot is a postcondition snapshot will it have an associated precondition snapshot.

context LocalSnapshot

inv: 1sPost implies pre->size() =1
inv: npot isPost implies pre->size() = 0
inv: gelf.pre->size() = 1 implies self.pre.isPre = true

10.2.2.7 NameValueBinding

No additiorjal well-formedness rules.

10.2.2.8 OpjectValue

[153][1] ThE history of an object is ordered. The first element does not have a predecessor, the last does not hiive a successor.

context ObjectValue
inv: history->oclIsTypeOf (Sequence (LocalSnapShot))
inv: history->last() .succ->size =0

inv: history->first() .pre->size = 0

10.2.2.9 OclMessageValue
[154][1] Onlly one of the attributes)isSyncOperation, isAsyncOperation, and isSignal may be true at the same fime.

context OclMessageValue

inv: 1sSyncOperation implies isAsyncOperation = false and isSignal false
inv: 1sAsyncOperation implies isSyncOperation = false and isSignal false
inv: 1sSignal implies isSyncOperation = false and isAsyncOperation = false

[155][2] The réturn message is only present if, and only if, the ocl message value is a synchronous operation ¢all.

context OclMessageValue
inv: isSyncOperation implies returnMessage->size() =1
inv: not isSyncOperation implies returnMessage->size() = 0

10.2.2.10 OclVoidValue

[156]No additional well-formedness rules.

10.2.2.11 PrimitiveValue

No additional well-formedness rules.

112 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.2.2.12 SequenceTypeValue

[157][1] All elements belonging to a sequence value have unique index numbers.

self.element->isUnique (e : Element | e.indexNr)

10.2.2.13 SetTypeValue

[158][1] All elements belonging to a set value have unique values.

self.g¢lement->isUnique (e : Element | e.value)

10.2.2.14 $taticValue

No additionjal well-formedness rules.

10.2.2.15 TupleValue

[159][1] All elements belonging to a tuple value have unique names.

self.¢lements->isUnique(e : Element | e.name)

10.2.2.16 Value

No additionjal well-formedness rules.

10.2.3 Additional Operations for the Values Package

10.2.3.1 LpcalSnapshot

[160][1] The operation allPredecessors returns the ¢olléction of all snapshots before a snapshot, allSuccessor§ returns the
colllection of all snapshots after a snapshot.

context LocalSnapshot

def: let allPredecessors () \'Sequence (LocalSnapshot) =
if| pred->notEmpty then

pred->union (pred.allPredecessors())

else

Sequence {}

endif

def: let allSuccessors() : Sequence (LocalSnapshot) =
if| succ->notEmpty then

suce=>union (succ.allSuccessors())

else

Séquence {}

endif

10.2.3.2 ObjectValue

[161][1] The operation getCurrentValueOf results in the value that is bound to the name parameter in the bindings of the latest
snapshot in the history of an object value. Note that the value may be the UndefinedValue.

© ISO/IEC 2012 - All rights reserved 113

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 1

conte
pre:
post:

9507:2012(E)

xt ObjectValue: :getCurrentValueOf (n: String): Value
-- none
result = history->last() .bindings->any(name = n) .value

[162][2] The operation outgoingMessages results in the sequence of Oc/MessageValues that have been in the output queue of
the object between the last postcondition snapshot and its associated precondition snapshot.

context OclExpEval::outgoingMessages() : Sequence(OclMessageValue)
pre: - none

post:

let end: LocalSnapshot =

hiptory->last() .allPredecessors () ->select(isPost = true)->first(), in
left start: LocalSnapshot = end.pre in
let inBetween: Sequence(LocalSnapshot) =

endif

10.233 T

[163][1] Thg operation getValueOf results in the value that'is bound to the name parameter in the tuple value.

context TupleValue::getValueOf (n: String): Value
1- none

pre:
post:

10.2.4 Qverview of the Valués'Package

Figure 10.5| shows an overview ef the inheritance relationships between the classes in the Values packagd.

114

start.allSuccessors () ->excluding(end.allSuccessors())->ineluding(starf
result = inBetween.outputQ->iterate (
-- creating a sequence with all elements present orce
m : oclMessageValue;
res: Sequence(OclMessageValue) = Sequence({}
| if not res->includes(m)
then res->append(m)

else res
endif)
ipleValue

result = elements->any(name= n) .value

E) in

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

DomainElement

5

NameValueBinding Value LocalSnapshot Element
L
ObjegtValue OclMessageValue StaticValue OclVoidValue
L
Collection Value‘ ‘ Tuple\‘/alue ‘ Primitive Value
e
SetTypeValue BagType‘Value EnumValue StringValue

‘ SequenceTypeValue ‘

Figure 10.5 - The inheritance tree of classes in the Values-package

10.3 The Evaluations Package

This sub cljuse defines the evaluations of OCL(expressions. The evaluations package is a mirror image of fhe expressions
package frdm the abstract syntax. Figure 10,6 _shows how the environment of an OCL expression evaluatign is structured.
The enviropment is determined by the plasément of the expression within the UML model as discussed i Clause 12

(“The Use ¢f Ocl Expressions in UML\Models”). The calculation of the environment is done in the ExpregsionInOclEval,

which will be left undefined here.

DomainElement

+STTVITOTIITTeTTt 'r'uilld'h'ﬂys
1 1 \b 0..n
ExpressionInOclEval OclExpEval EvalEnvironment NameValueBinding
0.1 Fcontext 1 1 0.1 .
+gnvironment

+beforeEnvironment

Figure 10.6 - The environment for ocl evaluations

© ISO/IEC 2012 - All rights reserved 115

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Figure 10.6 shows the core part of the Evaluations package. In Figure 10.7 the various subtypes of OclExpEval are
defined. An OclExpEval always has a result value, and a name space that binds names to values.

g

+referredVariable

+iterafors

1| +ini
+bodyEvals 1..n initExp
{ordered) OclExpEval +resultValue Value
thromatres
0..
+source Z% n
0..1

RropertyCallExpEval LiteralExpEval OclMessageExpEval VariableExpEval
0..n

1

+result

StringValue
(from Values)

4
I

+name

VariableDeclEval

OCL expressions can be simply)evaluated, i.c., their value can be determined based on a non-

ModelProperty LoopExpEval
C4qllIExpEval 0
0..1 % -n
IteratorExpEval ‘ IterateExpEval
Figure 10.7|- Domain model for ocl evaluations
Most of the]
name value]

the executi
operation e]
not to beco
evaluations

In Section
124 special

bindings. Operation call expressions, however, need the execution of the called operation. Th
n of an operation will be defined in the UML infrastructure. For our purposes it is enough to
kecution will add totherenvironment of an OCL expression the name ‘result’ bound to a certain|
me tangled in a mix of terms, the term evaluation is used in the following to denote both the

and the execufions of operation call expressions.

0.3.1.13“Model PropertyCall Evaluations,” on page 119 to Section 10.3.1.26, “Let Expressid

subclasses of OclExpEval will be defined.

10.3.1 Definitions of Concepts for the Fvaluations Package

This sub clause lists the definitions of concepts in the Evaluations package in alphabetical order.

10.3.1.1 EvalEnvironment

thanging set of
b semantics of
assume that an
value. In order
normal’” OCL

ns,” on page

An EvalEnvironment is a set of NameValueBindings that form the environment in which an OCL expression is evaluated.
An EvalEnvironment has three operations that are defined in “Additional Operations of the Evaluations Package.”

116

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations

bindings The NameValueBindings that are the elements of this name space.

10.3.1.2 IterateExpEval

An [lterateExpEval is an expression evaluation that evaluates its body expression for each element of a collection value,

and accumulates a value in a result variable It evaluates an TfPY‘ﬂfPFYI\

10.3.1.3 lteratorExpEval

An IteratorExp is an expression evaluation that evaluates its body expression for each element’of a colledtion.

10.3.1.4 ExpressioninOclEval

An ExpressfonInOclEval is an evaluation of the context of an OCL expression. It is’the’counterpart in thq domain of the
Expression]nOcl metaclass defined in Clause 12 (“The Use of Ocl Expressions in\tUML Models”). It is nerely included
here to be gble to determine the environment of an OCL expression.

10.3.1.5 LiteralExpEval

A Literal expression evaluation is an evaluation of a Literal expression.
10.3.1.6 LoopExpEval

A loop expfession evaluation is an evaluation of a Loopexptession.

Associatiohs

bodyEvals The oclExpEvaluations that represent the evaluation of the body expression for[each element
in the source Collection.

iterators The names-of the iterator variables in the loop expression.

10.3.1.7 ModelPropertyCallExpEval

A model prjoperty call expression evaluation is an evaluation of a ModelPropertyCallExp. In Figure 10.8 the various
subclasses ¢f ModelPropertyCallExpEval are shown.

Operationd

atPre The atPre operation returns true if the property call is marked as being evaluated at pre-
condition time.

10.3.1.8 OclExpEval

An ocl expression evaluation is an evaluation of an OclExpression. It has a result value, and it is associated with a set of
name-value bindings called environment. These bindings represent the values that are visible for this evaluation, and the
names by which they can be referenced. A second set of name-value bindings is used to evaluate any sub expression for
which the operation atPre returns true, called beforeEnvironment.

© ISO/IEC 2012 - All rights reserved 117

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Note that as explained in Clauses 9 (“Concrete Syntax™) and 12 (“The Use of Ocl Expressions in UML Models™) these

bindings need to be established, based on the placement of the OCL expression within the UML model. A binding for an
invariant will not need the beforeEnvironment, and it will be different from a binding of the same expression when used
as precondition.

Associations
environmeyrt Fhresctof mamevatue-bmdmgs-tiat Tsthrecontextfor thisevatmatiomrofamroct
beforeEnvjronment The set of name value bindings at the precondition time of an operation, to eval
expressions of type ModelPropertyCallExp for which the operation atPre returt
resultValug The value that is the result of evaluating the OclExpression.

10.3.1.9 OclMessageExpEval

An ocl mes
this diagran

10.3.1.10 PropertyCallExpEval

A property

Associatio

source

10.3.1.11 VYariableDeclEval

sage expression evaluation is defined in “Ocl Message Expression Evalifations” on page 121,
h for completeness.

call expression evaluation is an evaluation of a PropertyCalExp.

1S

The result value of the soureé.€xpression evaluation is the instance that perform
call.

A variable fleclaration evaluation represents'the evaluation of a variable declaration. Note that this is not
OclExpEval, therefore it has no result¥alue.
Associations

name The name of the variable.

initExp The value that will be initially bound to the name of this evaluation.
10.3.1.12

A variable

Xpression.

uate any sub
1S true.

but included in

5 the property

A subtype of

IariabIeExpEvaI

to the variable name within the environment of the expression.

Associations
variable The name that refers to the value that is the result of this evaluation.
118 © ISO/IEC 2012 - A

e that is bound

Il rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

10.3.1.13 Model PropertyCall Evaluations

ISO/IEC 19507:2012(E)

The subtypes of ModelPropertyCallExpEval are shown in Figure 10.8, and are defined in this sub clause in alphabetical

order.

ModelPropertyCallExpEval

.

AttributeCallExpEval

0..n

NavigationCallExpEval | p

.

AssociationClassCallExpEval

+navigationSource

0..n
+referredAssociationClass

+referredAttribute
1

+arguments Q..n

1
OperlationCallExpEval

0..n

Figure 10.8{ - Domain model for ModelPropertyCallExpEval and subtypes

10.3.1.14 AssociationClassCallExpEval

An associafion end callcexpression evaluation is an evaluation of an AssociationClassCallExp, which in ¢

AssociationEndCallExpEval StringValue
— (from Values)
o.n +referredAssociationEnd 1)
{ordered} +referredOperation
+qualifiers 0.. 1
OclExpEval

search of the value‘that is bound to the associationClass name within the expression environment.

Associatiohs

ffect is the

referredAssociationClass The name of the AssociationClass to which the corresponding AssociationClassCallExp is

a reference.

10.3.1.15 AssociationEndCallExpEval

An association end call expression evaluation is an evaluation of an AssociationEndCallExp, which in effect is the search
of the value that is bound to the associationEnd name within the expression environment.

© ISO/IEC 2012 - All rights reserved

119

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations

referredAssociationEnd The name of the AssociationEnd to which the corresponding NavigationCallExp is a
reference.

10.3.1.16 AttributeCallExpEval

An attributg

: an-exalua earch of the value
that is bour]d to the attribute name within the expression environment.

Associatiohs

referred Atfribute The name of the Attribute to which the corresponding AttributeCallExp isja reference.

10.3.1.17 NavigationCallExpEval

A navigatign call expression evaluation is an evaluation of a NavigationCallExp-

Associatiops

navigationfSource The name of the AssociationEnd ef which the corresponding NavigationCpllExp is the
source.

10.3.1.18 QOperationCallExpEval

An operatign call expression evaluation is an evaluation of an OperationCallExp.

Associatiophs

arguments The arguments denote the arguments to the operation call. This is only useful when the
gperation call is related to an Operation that takes parameters.

referredOgleration The name of the Operation to which this OperationCallExp is a reference| This is an
Operation of a Classifier that is defined in the UML model.

10.3.1.19 If Expression Evaluations

If expressidn evaluations are shown in Figure 10.9 and defined in this sub clause.

solseExprossion
Ld

+thenExpressiom OCIExpEval
1 1 1
+condition

IfExpEval

Figure 10.9 - Domain model for if expression

120 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.3.1.20 IfExpEval

An IfExpEval is an evaluation of an IfExp.

Associations
condition The OclExpEval that evaluates the condition of the corresponding IfExpression.
thenExprefsion The OclExpEval that evaluates the thenExpression of the corresponding IfExpression.
elseExpregsion The OclExpEval that evaluates the elseExpression of the corresponding [fExpression.

10.3.1.21 Ocl Message Expression Evaluations

Ocl message expressions are used to specify the fact that an object has, or will send some message to an
some mom¢nt in time. Ocl message expression evaluations are shown in Figure 10.10; and defined in this

DomainElement

0..1
4 OclExpEval
+expression
UnspgcifiedValueExpEval +target 1
1
+unsplecified 0.1

Figure 10.100 - Domain model for,message evaluation

10.3.1.22 OclMessageArgEval

An ocl mes|
parameters
declaration

1 | OclMessdgeArgEval

+arguments 0..n
{ordeted}

1

OclMessageExpEval
name : String

sage argument evaluation is an evaluation of an Oc/MessageArg. It represents the evaluation d
to the Operation or Signal. An argument of a message expression is either an ocl expression,

ther object at
sub clause.

f the actual
or a variable

© ISO/IEC 2012 - All rights reserved

121

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations

variable

expression

The OclExpEval that represents the evaluation of the argument, in case the argument is a
VariableDeclaration.

The OclExpEval that represents the evaluation of the argument, in case the argument is an
OclExpression.

10.3.1.23 OclMessageExpEval

An ocl mespage expression evaluation is an evaluation of an Oc/MessageExp. The only demand we ean pjut on the ocl
message expression is that the OclMessageValue it represents (either an operation call, or a UML:signal), has been at
some time petween ‘now’ and a reference point in time in the output queue of the sending idstance. The “how’ timepoint
is the point|in time at which this evaluation is performed. This point is represented by the“environment lipk of the

OclMessag¢ExpEval (inherited from OclExpEval).

Associatiohs

target

arguments

10.3.1.24 UnspecifiedValueExpEval

The OclExpEval that represents the evaluation of the target instance or instahces on which
the action is performed.

The OcIMessageArgEvals that represent the evaluation of the actual parampters to the
Operation or Message.

An unspecified value expression evaluation is an evaluation of an UnSpecifiedValueExp. It results in a randomly picked

instance of the type of the expression.

10.3.1.25 lLiteral Expression Evaluations

This sub clguse defines the different types of literal expression evaluations in OCL, as shown in Figure 10.11. Again it is

a complete [mirror image of the abstract syntax.

122

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

| LiteralExpEval |

A}

[I
! PrimitiveLiteralExpEval | | EnumlLiteralExpEval l
Z} I TupleLiteralExpEval
I | 1 :
BooldanLiteralExpEval StringLiteralExpEval CollectionLiteralExpEval
Kind : CollectionKind
FuplePart | 0-n 15|
MNumericLiteralExpEval variableDeclEval Aalife
| | name : String {ordered}
e +parts., |, 0..n &epement 1
AF‘ - | CollectionLiteralPartEval *
| IntegeyL iteralExpEval I] RealliteralExpEval | i I |
lCoIlectionRangeEval [GoﬂectionltemE\ral |
| TR E 0.1
Unlimitedaturalliteral ExpEval |

Figure 10.1f1 - Domain model for literal expressions

BooleanLiteralExpEval

A boolean literal expression evaluation represents the.evaluation of a boolean literal expression.
CollectionitemEval

A collection item evaluation represents the.gvaluation of a collection item.
CollectionLiteralExpEval

A collection literal expression evaluiation represents the evaluation of a collection literal expression.
CollectionLiteralPartEval

A collectiofp literal parf evaluation represents the evaluation of a collection literal part.
CollectionRangeEval

A collectiop tange evaluation represents the evaluation of a collection range.

EnumLiteralExpEval

An enumeration literal expression evaluation represents the evaluation of an enumeration literal expression.

IntegerLiteralExpEval

A integer literal expression evaluation represents the evaluation of a integer literal expression.

NumericLiteralExpEval

A numeric literal expression evaluation represents the evaluation of a numeric literal expression.

© ISO/IEC 2012 - All rights reserved 123

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

PrimitiveLiteralExpEval

A primitive literal expression evaluation represents the evaluation of a primitive literal expression.

ReallLiteralExpEval

A real literal expression evaluation represents the evaluation of a real literal expression.

StringLiteralExpEval

A string litgral expression evaluation represents the evaluation of a string literal expression.
TupleLiteralExpEval

A tuple litefal expression evaluation represents the evaluation of a tuple literal expression,

TupleLiterplExpPartEval

A tuple litefal expression part evaluation represents the evaluation of a tuple literal’\expression part.
UnlimitedNaturalLiteralExpEval

An unlimit¢d natural literal expression evaluation represents the evaluation of an unlimited natural literal |expression.

10.3.1.26 lLet Expressions

Let expressjions define new variables. The structure of the let'eXpression evaluation is shown in Figure 1(.12.

in OclExpEval
1
0..1 /N +initExpression
0- 0.1 +variabl
LetEXpEval o ariable StringValue
.]

Figure 10.12 - Domain'model for let expression

LetExpEv

o

A Let expression evaluation 1s an evaluation of a Let expression that defines a new variable with an initial value. A Let
expression evaluation changes the environment of the in expression evaluation.

124 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Associations
variable The name of the variable that is defined.
in The expression in whose environment the defined variable is visible.
initExpression The expression that represents the initial value of the defined variable.

10.3.2 Well-formedness Rules of the Evaluations Package

The metaclgsses defined in the evaluations package have the following well-formedness rules. Theserulep state how the
result valuq is determined. This defines the semantics of the OCL expressions.

10.3.2.1 AssociationClassCallExpEval

[164][1] The result value of an association class call expression is the value bound to the(name of the associatjon class to
which it refers. Note that the determination of the result value when qualifietsiare present is specifiefl in

10.4.3, Well-formedness rules for the AS-Domain-Mapping.exp-eval Pagkage. The operation getCufrentValueOf
is pn operation defined on ObjectValue in 10.2.3, Additional Operationsfor the Values Package.

context AssociationClassCallExpEval inv:
qualifiers->size = 0 implies

resultValue
source.resultValue.getCurrentValueOf (referredAssociationClass.name)

10.3.2.2 AssociationEndCallExpEval

[165][1] Thk result value of an association end call expression is the value bound to the name of the associatign end to which
it refers. Note that the determination of the result value when qualifiers are present is specified in
10/4.3, Well-formedness rules for the AS-Pomain-Mapping.exp-eval Package.

context AssociationEndCallExpEval inv:
qualifiers->size = 0 implies
rpsultValue =
source.resultValue'. getCurrentValueOf (referredAssociationEnd.name)

10.3.2.3 AttributeCallExpEval
[166][1] The result value ofian attribute call expression is the value bound to the name of the attribute to whidh it refers.

context AttributeCallExpEval inv:
regultValue = if source.resultValue->oclIsTypeOf(ObjectValue) then
source.resultValue->oclAsType (ObjectValue)

.getCurrentValueOf (referredAttribute.name)
€lse -- must be a tuple value

source.resultValue->oclAsType(TupleValue)
.getValueOf (referredAttribute.name)

endif

10.3.2.4 BooleanLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.3, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.

© ISO/IEC 2012 - All rights reserved 125

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.3.2.5 CollectionltemEval

[167][1] The value of a collection item is the result value of its item expression. The environment of this ifem expression is
equal to the environment of the collection item evaluation.

context CollectionItemEval
inv: element = item.resultValue
inv: item.environment = self.environment

10.3.2.6 CpllectionLiteralExpEval
[168][1] The environment of its parts is equal to the environment of the collection literal expression evaluatign.

context CollectionLiteralExpEval
inv: parts->forAll(p | p.environment = self.environment)

[169][2] Thg result value of a collection literal expression evaluation is a collection literal valug, or one of its ubtypes.

context CollectionLiteralExpEval inv:
resultValue.oclIsKindOf(CollectionValue)

[170][3] The number of elements in the result value is equal to the number of elements in the collection literal parts, taking
info account that a collection range can result in many elements.

context CollectionlLiteralExpEval inv:
resultValue.elements->size () = parts->collect(€lement)->size()->sum()

[171][4] The elements in the result value are the elements in the collection literal parts, taking into account that a collection
rapge can result in many elements.

context CollectionlLiteralExpEval inv:
let allElements = parts->collect(element)->flatten() in
Sedquence{l. .allElements->size () } v>forAll(i: Integer |
resultValue.elements->at (i) .name = ii and
resultValue.elements->at (i) .value = allElements->at(i) and
self.kind = CollectionKind::Sequence implies
resultValtue.elements->at (i) .indexNr = i)

10.3.2.7 CpllectionLiteralPartEval
No extra well-formedness rules. The manner in which its value is determined is given by its subtypes.

10.3.2.8 CpllectionRangeEval

[172][1] ThE valuesefa collection range is the range of integer numbers between the result value of its first exjpression and
its|/ast expression.

context—CottectionRamgeEvat
inv: element.ocllIsTypeOf(Sequence (Integer)) and
element = getRange(first->oclAsType (Integer), last->oclAsType (Integer))
10.3.2.9 EnumLiteralExpEval

No extra well-formedness rules.

10.3.2.10 EvalEnvironment

[173][1] All names in a name space must be unique.

126 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

context EvalEnvironment inv:
bindings->collect (name)->forAll(name: String | bindings->collect (name)->isUnique (name))

10.3.2.11 ExpressionInOclEval

No extra well-formedness rules.

10.3.2.12 IfExpEval

[174][1] The result value of an if expression is the result of the thenExpression if the condition is true, elserit {s the result of
th¢ elseExpression.

context IfExpEval inv:
resultValue = if condition then thenExpression.resultValue else elseExpression|.resultValue

[175][2] The environment of the condition, thenExpression and elseExpression are equal to the’environment qf the if
expression.

context IfExpEval

inv: ¢ondition.environment = environment

inv: thenExpression.environment = environment
inv: ¢lseExpression.environment = environment

10.3.2.13 IntegerLiteralExpEval

No extra wgll-formedness rules. The manner in which the resultValue is determined is given in 10.4.3, Wgll-formedness
rules for thg AS-Domain-Mapping.exp-eval Package.

10.3.2.14 IlterateExpEval

[176][1] Al] sub evaluations have a different envirommént. The first sub evaluation will start with an environnpent in which
all|iterator variables are bound to the first element of the source, plus the result variable that is bound to the init
expression of the variable declaration in*which it is defined.

—_—

context IterateExpEval

inv: let bindings: Sequence{(NameValueBindings) =

iterators->collect(i |

NameValueBinding(i.varName, source->asSequence ()->first())

bodyEvals<>at(l) .environment = self.environment->addAll(bindings)
->add (NameValueBinding(result.name, result.initExp.resultValue))

[177][2] The environment of any sub evaluation is the same environment as the one from its previous sub evalluation,
taking ifito-account the bindings of the iterator variables, plus the result variable which is bound to tle result value
of|thedast sub evaluation.

inv: let SS: Integer = source.value->size()
in if iterators->size() = 1 then
Sequence{2..SS}->forAll(i: Integer |
bodyEvals->at (i) .environment = bodyEvals->at(i-1) .environment
->replace(NameValueBinding(iterators->at(l) .varName,
source.value->asSequence () ->at(i)))
->replace(NameValueBinding(result.varName,
bodyEvals->at (i-1) .resultValue)))
else -- iterators->size() = 2
Sequence{2..SS*SS}->forAll(i: Integer |
bodyEvals->at (i) .environment = bodyEvals->at(i-1) .environment

© ISO/IEC 2012 - All rights reserved 127

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

->replace (NameValueBinding(iterators->at(l) .varName,
source->asSequence ()->at(i.div(SS) + 1)))
->replace(NameValueBinding(iterators->at(2) .varName,
source.value->asSequence () ->at (i.mod (SS))))
->replace(NameValueBinding(result.varName,
bodyEvals->at(i-1) .resultvValue)))
endif

[178][3] The result value of an IteratorExpEval is the result of the last of its body evaluations.

context IteratorExpEval
inv: resultValue = bodyEvals->last() .resultValue

10.3.2.15 IteratorExpEval

The IteratopExp in the abstract syntax is merely a placeholder for the occurrence of onejof-the predefined iterator
expressions| in the standard library (see Clause 11 “The OCL Standard Library”). TheSe,predefined iteratqr expressions
are all defied in terms of an iterate expression. The semantics defined for the iteraté expression are sufficient to define
the iterator jexpression. No well-formedness rules for IteratorExpEval are defined:

10.3.2.16 lLetExpEval
[179][1] A let expression results in the value of its in expression.

context LetExpEval inv:
resultValue = in.resultValue

[180][2] A let expression evaluation adds a name value bindigg that binds the variable to the value of its initHxpression, to
the environment of its in expression.

context LetExpEval
inv: in.environment = self.environment
->add (NameValueBinding(wariable.varName, variable.initExpression.resultValue))

[181][3] ThE environment of the initExpression is equal to the environment of this Let expression evaluation.

context LetExpEval
inv: initExpression.environment = self.environment

10.3.2.17 lLiteralExpEval

No extra wgll-formednessirules.

10.3.2.18 lLoopExpEval

The result yalue/of a loop expression evaluation is determined by its subtypes.

[182][1] There is an OclExpEval (a sub evaluation) for combination of values for the iterator variables. Each iterator variable
will run through every element of the source collection.

[183]
context LoopExpEval
inv: bodyEvals->size() =
if iterators->size() = 1 then
source.value->size ()
else -- iterators->size() = 2
source.value->size () * source.value->size()
endif

128 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[184][2] All sub evaluations (in the sequence bodyEvals) have a different environment. The first sub evaluation will start with
an environment in which all iterator variables are bound to the first element of the source. Note that this is an
arbitrary choice, one could easily start with the last element of the source, or any other combination.

context LoopExpEval
inv: let bindings: Sequence(NameValueBindings) =
iterators->collect(i |
NameValueBinding(i.varName, source->asSequence ()->first())
in

HodyEvals->at(l) .environment = self.environment->addAll(bindings)

[185][3] All sub evaluations (in the sequence bodyEvals) have a different environment. The environment)is thie same
enyironment as the one from the previous bodyEval, where the iterator variable or variables'aré bound to the
subsequent elements of the source.

context LoopExpEval

inv:
let S$: Integer = source.value->size()
in if|iterators->size() = 1 then

Sequence{2..SS}->forAll(i: Integer |
bodyEvals->at (i) .environment = bodyEvals->at{ixI) .environment
->replace(NameValueBinding(iterators->at(l) .varName,
source.value->asSequence ()->at (i))))

else|-- iterators->size() = 2

Sequence{2..SS*SS}->forAll(i: Integer |
bodyEvals->at (i) .environment = bodyEwvals->at(i-1) .environment

->replace(NameValueBinding (-iterators->at(l) .varName,
source->asSequence () ->at (i.div(SS)\ %+"1)))
->replace(NameValueBinding(\ iterators->at(2) .varName,

source.value->asSequence () ->at(i’.mod(SS)))))))

endif

10.3.2.19 ModelPropertyCallExpEval

Result valup is determined by its subtypes.

[186][1] The environment of a ModelPropertyCall expression is equal to the environment of its source.

context ModelProperty€allExpEval inv:
envir¢nment = souxce.environment

10.3.2.20 NavigationCallExpEval

[187][1] When the navigation call expression has qualifiers, the result value is limited to those elements for which the
qualifier value equals the value of the attribute.

-- To be done.
10.3.2.21 NumericLiteralExpEval

No extra well-formedness rules. Result value is determined by its subtypes.

10.3.2.22 OclExpEval

The result value of an ocl expression is determined by its subtypes.

[188][1] The environment of an OclExpEval is determined by its context, i.e., the ExpressionlnOclEval.

© ISO/IEC 2012 - All rights reserved 129

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

context OclExpEval
inv: environment = context.environment

[189][2] Every OclExpEval has an environment in which at most one self instance is known.

context OclExpEval
inv: environment->select(name = ‘self’)->size() =1

10.3.2.23 OclMessageExpEval

[190][1] Thg result value of an ocl message expression is an ocl message value.

context OclMessageExpEval
inv: resultValue->isTypeOf(OclMessageValue)

[191][2] Th result value of an ocl message expression is the sequence of the outgoing messages of the ‘self” pbject that

mgtches the expression. Note that this may result in an empty sequence when the expression does ngt match any
offthe outgoing messages.

context OclMessageExpEval
inv: resultValue =
nvironment.getValueOf (‘self’).outgoingMessages:>select(m |
m.target = target.resultValue and
m.name = self.name and
self.arguments->forAll (expArg: OclMessageArgEval |
not expArg.resultValue.oclIsUndefined() implies
m.arguments->exists(messArg |\'‘messArg.value = expArg.value))

[192][3] The source of the resulting ocl message value is equalto the ‘self” object of the ocl message expression.

context OclMessageExpEval
inv: resultValue.source = environment:getValueOf(‘self’)

[193][4] Thg isSent attribute of the resulting ocl message value is true only if the message value is in the outgping messages
offthe ‘self” object.

context OclMessageExpEval
inv:
if regultValue.oclIsUndefined()

resultValue.isSent = false
else

rgsultValue.isSent = true
endif

[194][5] Th target afan ocl message expression is an object value.

context OclMessageExpEval
inv: tarxget.resultValue->isTypeOf(ObjectValue)

[195][6] The environment of all arguments, and the environment of the target expression are equal to the environment of
this ocl message value.

context OclMessageExpEval
inv: arguments->forAll(a | a.environment = self.environment)
inv: target.environment = self.environment

10.3.2.24 OclMessageArgEval

[196][1] An ocl message argument evaluation has either an ocl expression evaluation, or an unspecified value expression
evaluation, not both.

130 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

context OclMessageArgEval inv:
expression->size() = 1 implies unspecified->size()
expression->size() = 0 implies unspecified->size()

i
= o

[197][2] The result value of an ocl message argument is determined by the result value of its expression, or its unspecified
value expression.

context OclMessageArgEval inv:

if expression->size() =1

then fesultValue = expression.resultValue
else resultValue = unspecified.resultValue
endif

[198][3] The environment of the expression and unspecified value are equal to the environment ofthis ocl message argument.

context OclMessageArgEval
inv: e¢xpression.environment = self.environment
inv: ynspecified.environment = self.environment

10.3.2.25 QperationCallExpEval

The definitjon of the semantics of the operation call expression depends on the definition of operation call execution in
the UML s¢mantics. This is part of the UML infrastructure specification,‘and will not be defined here. Fop the semantics
of the OperjationCallExp it suffices to know that the execution of an-operation call will produce a result df the correct

type, as spqcified in 10.4, The AS-Domain-Mapping Package.

[199][1] The environments of the arguments of an operation call\éxpression are equal to the environment of this call.

context OperationCallExpEval inv:
argumeénts->forall(a | a.environment = self.environment)

10.3.2.26 PropertyCallExpEval

The result yalue and environment are determined by its subtypes.

[200][1] The environment of the source,ofa property call expression is equal to the environment of this call.

context PropertyCallExpEval inv:
sourceé.environment =_,self.environment

10.3.2.27 PrimitiveLiteralExpEval

No extra wgll-formedngss rules. The result value is determined by its subtypes.

10.3.2.28 RealLiteralExpEval

Mell-formedness

No extra weH—te RaRe whie
rules for the AS-Domain-Mapping.exp-eval Package.

10.3.2.29 StringLiteralExpEval

No extra well-formedness rules. The manner in which the resultValue is determined is given in 10.4.3, Well-formedness
rules for the AS-Domain-Mapping.exp-eval Package.

© ISO/IEC 2012 - All rights reserved 131

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.3.2.30 TupleLiteralExpEval

[201][1] The result value of a tuple literal expression evaluation is a tuple value whose elements correspond to the parts of the
tuple literal expression evaluation.

context TupleliteralExpEval inv:

resultValue.oclIsTypeOf (TupleValue) and

tuplePart->size () = resultValue.elements->size() and
Sequence{l..tuplePart->size() }->forAll(i: Integer |

resultValue.elements->at (i) .name = tuplePart.name and

resultValue.elements->at (i) .value = tuplePart.initExpression.resultValue)

10.3.2.31 UnlimitedNaturalLiteralExpEval

No extra wgll-formedness rules. The manner in which the resultValue is determined is giver'in 10.4.3, WEll-formedness
rules for th¢ AS-Domain-Mapping.exp-eval Package.

10.3.2.32 UnspecifiedValueExpEval

The result ¢f an unspecified value expression is a randomly picked instance 6fthe type of the expression| This rule will
be defined |n 10.4.3, Well-formedness rules for the AS-Domain-Mapping.éxp-eval Package.

10.3.2.33 VYariableDeclEval

No extra well-formedness rules.

10.3.2.34 YariableExpEval
[202][1] Thg result of a VariableExpEval is the value bound to the name of the variable to which it refers.

context VariableExpEval inv:
resultValue = environment.getValueOf (referredVariable.varName)

10.3.3 Additional Operations of the Evaluations Package

10.3.3.1 EyalEnvironment

[203][1] ThE operation getValueOf results in the value that is bound to the name parameter in the bindings of § name space.
Note that the value.may be the UndefinedValue.

[204]

context EyalEnvironment::getValueOf (n: String): Value
pre: 1-/hone
post: |result = bindings->any(name = n) .value

[205][2] The operation replace replaces the value of a name, by the value given in the nvb parameter.

context EvalEnvironment: :replace (nvb: NameValueBinding) : EvalEnvironment
pre: -- none
post: result.bindings = self.bindings

->excluding(self.bindings->any(name = nvb.name))->including(nvb)

[206][3] The operation add adds the name and value indicated by the NameValueBinding given by the nvb parameter.

context EvalEnvironment: :add(nvb: NameValueBinding) : EvalEnvironment
pre: -- none
post: result.bindings = self.bindings->including(nvb)

132 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[207][4] The operation addA!l adds all NameValueBindings in the nvbs parameter.
context EvalEnvironment::add(nvbs: Collection(NameValueBinding)): EvalEnvironment

pre: -- none
post: result.bindings = self.bindings->union(nvbs)

10.3.3.2 CollectionRangeEval

[208][1] The operation getRange() returns a sequence of integers that contains all integer in the collection range.

context CollectionRangeEval: :getRange(first, last: Integer): Sequence (Integen)
pre: t- none
post: |[result = if first = last then
first->asSequence ()
else
first->asSequence () ->union (getRange (first + 1, last))
endif

10.3.4 Qverview of the Values Package

o

Figure 10.13 shows an overview of the inheritance relationships between theclasses in the Values packag

DomainElement
ffrom Values)

i ,‘

‘ CollectiprLiteralPanEval ‘ ITualeLI:earalEmParlE'.'al | IEip«essaonanclEval i

o l (™=] G Rl
clExpEval
ItemEval | | CollectionRangeEval |

| Collectior|

‘ UnspecifiedValusExpEval |

5 L]
| PropértyG4liExpEval J VariableExpEval | LetExpEval | ‘H‘EwEva] I
‘Q‘ ‘ LitaralExpEval | | OclMessageExpEval I
[
‘ ModelProperfyCallExpEval] LoopExpEval {r\
I
A A
I | 1 | TupleLiteralExpEval ‘ | CollectionLiteralExpEval ‘
AttributeCalldxpEval OperationCallExpEval
Primitivel iteral ExpEval ‘ IEnumLileraIE:cDEwal ‘
’_uea'afeE:pE-.-al] [IteratorExpEval | /\
|
|_Riouicotions liEynE sl] [1
i i | BooleanLiteralExpEval | ‘ StringLiteralExpEval |
NumericLiteralExpEval l
‘ AssociationClassCallExpEval ‘ ‘ AssociationEndCallExpEval | .{?\

| UnlimitedMaturalliteral ExpEval

|
IntegerLiteralExpEval | |RﬁalLileraIE:pEval l

Figure 10.13 - The inheritance tree of classes in the Evaluations package

© ISO/IEC 2012 - All rights reserved 133

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.4 The AS-Domain-Mapping Package

Figure 10.14 shows the associations between the abstract syntax concepts and the domain concepts defined in this clause.
Each domain concept has a counterpart called model in the abstract syntax. Each model has one or more instances in the
semantic domain. Note that in particular every OCL expression can have more than one evaluation. Still every evaluation
has only one value. For example, the “asSequence” applied to a Set may have n! evaluations, which each give a different
permutation of the elements in the set, but each evaluation has exactly one result value.

BagTypdvalue | gnstances-
n

b

+model BagType

1 | (from Types)

Collectidn Value +instances +model ["CollectionType

{from Types)
My 1

| EnumVajue | +instances +model —EnEmeEEon

- o.n i {from Core)
+instances +model
ObjectVhlue Class
J o.n 1 {from Core)

+model [OclMessage(T)

I OciMesshageValue |*instances

1 (from StandardLibrary)
Savoilaie | n-rahces model MSdaType
o.n 1 LY T
PrimitiveValye | tinstances +model Primitive’
— 7| (fromBore
— tinstances +model SequeniceType
| SequenceTypeValue | : {fram Types)
o o
| +instances +moide|
SetTypeValue f,s ot Lype
= t"' 1 (from Types)
& +rodel
StaticValie | norances 0%l [DataType
o.n 1 (from Core)
+instances +riadel -
StringValue il

0..n
TupleValue sk S

i

Value

(from StandardLibrary)

1
+maodel | TupleType

Jo.n
-I +instances

{from Types)

1
+model | Classifier

Ol

+model |

(from Core)

1

lo.n
|I_lnlimi‘ted aturalliteral ExpEval I*fnst{mces
Figure 10.1
134

| Unlimited M aturall terslExp

1

B - Associations between values and the types defined in the abstract syntax

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Hnstances +model
| AssociationClassCallExpEval }—{ AssociationClassCallExp
0..n 4

Hinstances +model

instances +model
LoopExpEval LoopExp
0..n 1
Hnstances +model
‘ ModelPropertyCallExpEval ModelPropertyCallExp
0..n 1

| AssociationEndCallExpEval AssociationEndCallExp

=
3
-

5 instances +model = Hnstances +model
AttrlhuteCaIlExpEvall | AttributeCallExp | NavigationCa IIExpE\.raI! | NavigationCallExp
] finstances +m0d|;| Utg él |
5 - Hnstances +mode
BooleantliteralExpEval | Booleantiteralexp| [NumericLiteralExpEval| NumericLiterdlExp
I Daint .4 0..n 1
—l—H'nstances +model tai
CollectiopItemEval CollectionItem OclExpEval e i 3 OclEqp
I . . del 1 0.n 1 L
Hnstances +mode instal
|Cnllecti|}rlLiteraIExpEval| CollectionLiteralExp 0OclMessageArgEval i i e OclMessagpArg
Hnstances +mode insta
|Co|lectio1LiteraIPartEvaI| @ OclMessageExpEval netances s OclHessagﬁ'
- | 0.n 1 0..n 1 [I—
: —anstances +model z Hnstances +model
CollectiohRangeEval CollectionRange OperationCallExpEval [OperationCa
é_ Df.n ld | 0.,n i
nstances “+model Hhstarces
I@ ralExpEval EnumLiteralExp PrimitiveLiteralExpEval fiicaca
g_[m . e e
nstances +model {hstances +model
HExpEyal Exp PropertyCallExpEval
0.n . 1 0..n
Hnstances +model instances
IntegerljteralExpEval | IntegerliteralExp RealLiteralExpEval
——sts e ael Bun
nstances +model insta
TterateEypEval Tteratebxp StringlLiteralExpEval e i
Céﬁm A= ::‘" :
nstances +Hmodel ta
TteratorfxpEval IteratorExp TupleLiteralExpEval reTene ot
Q 0.n 1 .. 1
—l—H'nstances +madel Hnstances +model
LetExpEpal LetExp ‘ UnspecifiedValueExpEval UnspecifiedValupExp
[0.n L 0.n 1
= —l—H'nstances +model 7 instances +model
LiteralExpEval LiteralExp VariableExpEval VariablgExp
4 0.n 1 g.n 1 l—
Figure 10.15 - Associations between the abstract syntax concepts and the domain concepts

10.4.1

ell-formedness 'rules for the AS-Domain-Mapping.type-value Packag

10.4.1.1 CpllectionValue

D

[209][1] Al] elements-in a collection value must have a type that conforms to the elementType of its corresponding
CollectionFype.

contexi CollectionValue inv:

elements->forAll(e: Element | e.value.model.conformsTo(model.elementType))

10.4.1.2 DomainElement

No additional well-formedness rules.

10.4.1.3 Element

No additional well-formedness rules.

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.4.1.4 EnumValue

No additional well-formedness rules.

10.4.1.5 ObjectValue
[210][1] All bindings in an object value must correspond to attributes or associations defined in the object’s Classifier.

context ObjectValue inv:

history->forAll (snapshot | snapshot.bindings->forAll(b |

self .model.allAttributes()->exists (attr | b.name = attr.name)
or

self.model.allAssociationEnds () ->exists (role | b.name = rolesname)) |)

10.4.1.6 OclMessageValue

No additiorjal well-formedness rules.

10.4.1.7 PrimitiveValue

No additiorjal well-formedness rules.

10.4.1.8 SequenceTypeValue

No additiorjal well-formedness rules.

10.4.1.9 SetTypeValue

No additiorjal well-formedness rules.

10.4.1.10 $taticValue

No additiorjal well-formedness rules.

10.4.1.11 TupleValue
[211][1] ThE elements in a tuple value must have a type that conforms to the type of the corresponding tuple parts.

context TupleValue \inv:
elements->forAll(\elem |
let correspondingPart: Attribute =
self.model.allAttributes () ->select(part | part.name = elem.name) in
elem.value.model.conformsTo(correspondingPart.type))

10.4.1.12 UndefinedValue

No additional well-formedness rules.

10.4.1.13 Value

No additional well-formedness rules.

136 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.4.2 Additional Operations for the AS-Domain-Mapping.type-value Package

10.4.2.1 Value
[212][1] The additional operation is/nstanceOf returns true if this value is an instance of the parameter classifier.

context Value::isInstanceOf(c: Classifier): Boolean
pre: -- none
post: result = self . model.conformsTo(c)

10.4.3 Well-formedness rules for the AS-Domain-Mapping.exp-eval Package

10.4.3.1 ApsociationClassCallExpEval

[213][1] ThE string that represents the referredAssociationClass in the evaluation must be equalto the name off the
referred AssociationClass in the corresponding expression.

context AssociationClassCallExpEval inv:
referredAssociationClass = model.referredAssociationClass ..name

[214][2] Thg result value of an association class call expression evaluation that has qualifiers, is determined agcording to the
following rule. The ‘normal’ determination of result value is already given in
10.3.2, Well-formedness Rules of the Evaluations Package.

let

-- the attributes that are the formal qualifiers. Because and association clasfs has two or

-- more association ends, we must select the ‘qualifiers from the other end(s),| not from

-- the source of this expression. We allow.only 2-ary associations.
formalQualifiers : Sequence (Attribute)” =

self.model.referredAssociationClass.connection->any(c |

c <> self.navigationSource).qualifier.asSequence() ,

-- the attributes of the class at the qualified end. Here we already assume that an
-- AssociationEnd will be owned by a Classifier, as will most likely be the caEe in the
-- UML 2.0 Infrastructure.
objectAttributes: Seguence (Attribute) =
self.model. ¥referredAssociationClass.connection->any(c |
c <> _self.navigationSource) .owner. feature->select(£ |
f.oclIsTypeOf (Attribute) .asSequence() ,
-- the rolename ‘of'the qualified association end
qualifiedEnd:-String = self.model.referredAssociationClass.connection->any(c ||
c <> self.navigationSource) .name ,

-- the values for the qualifiers given in the ocl expression

qualifierValnes & Sequence(Valne) = self gualifiers asSequence()

-- the objects from which a subset must be selected through the qualifiers
normalResult =
source.resultValue.getCurrentValueOf (referredAssociationClass.name)

-- if name of attribute of object at qualified end equals name of formal qualifier then
-- if value of attribute of object at qualified end equals the value given in the exp
-- then select this object and put it in the resultValue of this expression.

qualifiers->size <> 0 implies

© ISO/IEC 2012 - All rights reserved 137

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

normalResult->select(obj |
Sequence{l. .formalQualifiers->size() }->forAll(i |
objectAttributes->at (i) .name = formalQualifiers->at (i) .name and
obj.qualifiedEnd.getCurrentValueOf (objectAttributes->at(i) .name) =
qualifiersValues->at (i)))

10.4.3.2 AssociationEndCallExpEval

[215][1] The string that represents the referredAssociationEnd in the evaluation must be equal to the name of the
referredAssociationEnd in the corresponding expression.

context AssociationEndCallExpEval inv:
referredAssociationEnd = model.referredAssociationEnd.name

[216][2] The result value of an association end call expression evaluation that has qualifiers, is determined ac¢ording to the
following rule. The ‘normal’ determination of result value is already given in
10{3.2, Well-formedness Rules of the Evaluations Package.

let
-- the attributes that are the formal qualifiers
formmalQualifiers : Sequence (Attribute) = self.model.referredAssociationEnd.qualifier ,

-- the attributes of the class at the qualified end

objectAttributes: Sequence (Attribute) =
if self.resultValue.model.oclIsKindOf(Collection) implies
then self.resultValue.model.oclAsType(Collection) .elementType->
collect(” feature->oclAsType(Attribute)
elge self.resultValue.model->collect(feature->oclAsType(Attribute))
endif) .asSequence() ,

~

-- the values for the qualifiers given in the ocl expression
qualifierValues : Sequence(Value) = self.qualifiers.asSequence()

-- the objects from which a subset must be selected through the qualifiers
nofmalResult =
source.resultValue.getCurrentValueOf (referredAssociationEnd.name)

-- if [name of attribute of object at qualified end equals name of formal qualiffier then
-- if|value of attribute of object at qualified end equals the value given in [the exp
-- then select{this object and put it in the resultValue of this expression.

qualifiers=>size <> 0 implies
normalResult->select(obj |
$equence({l. .formalQualifiers->size() }->forAll(i |
objectAttributes->at (i) .name = formalQualifiers->at(i) .name and
obj.getCurrentValueOf (objectAttributes->at (i) .name) =
qualifiersValues->at (i)))

10.4.3.3 AttributeCallExpEval

[217][1] The string that represents the referredAttribute in the evaluation must be equal to the name of the referredAttribute
in the corresponding expression.

context AttributeCallExpEval inv:
referredAttribute = model.referredAttribute.name

138 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.4.3.4 BooleanLiteralExpEval

[218][1] The result value of a boolean literal expression is equal to the literal expression itself (‘true’ or ‘false’). Because the
booleanSymbol attribute in the abstract syntax is of type Boolean as defined in the MOF, and resultValue is of type
Primitive as defined in this clause, a conversion is necessary. For the moment, we assume the additional operation
MOFbooleanToOCLboolean() exists. This will need to be re-examined when the MOF and/or UML Infrastructure
submissions are finalized.

contez
resulf

10.43.5C

No extra w

10.4.3.6 C

No extra wi

104.3.7C

No extra wi

10438 C

No extra wi

10439 E

Because thg

10.4.3.10 |

No extra wi

10.4.3.11 |

No extra w

10.4.3.12 §
[219][1] Th

contej

¢t BooleanLiteralExpEval inv:

tValue = model.booleanSymbol.MOFbooleanToOCLboolean ()

pllectionltemEval

b11-formedness rules.

pllectionLiteralExpEval

b11-formedness rules.

pllectionLiteralPartEval

bl1-formedness rules.

pllectionRangeEval

b11-formedness rules.

valEnvironment

re is no mapping of name space to an:abstract syntax concept, there are no extra well-formed

LiteralExpEval

b11-formedness rules.

LoopExpEval

bl1-formedness rules.

EnumLiteralExpEval

e result-value of an EnumLiteralExpEval must be equal to one of the literals defined in its type.

ttEnumLiteralExpEval inv:

model

hess rules.

-type->ineludes{—self—resultVal }
—resuttValy)

10.4.3.13 IfExpEval

[220][1] The condition evaluation corresponds with the condition of the expression, and likewise for the thenExpression and
the else Expression.

context IfExpEval inv:
condition.model = model.condition

thenExpression.model
elseExpression.model

model . thenExpression
model .elseExpression

© ISO/IEC 2012 - All rights reserved

139

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.4.3.14 IntegerLiteralExpEval

context IntegerlLiteralExpEval inv:
resultValue = model.integerSymbol

10.4.3.15 IterateExpEval

[221][1] The model of the result of an iterate expression evaluation is equal to the model of the result of the associated
IterateExp.

context IterateExpEval
inv: result.model = model.result)

10.4.3.16 IteratorExpEval

No extra well-formedness rules.

10.4.3.17 lLetExpEval

[222][1] Al parts of a let expression evaluation correspond to the parts of its associated LetExp.

context LetExpEval inv:

in.model = model.in and

initExpression.model = model.initExpression and
variahle = model.variable.varName

10.4.3.18 lLoopExpEval

[223][1] All sub evaluations have the same model, which is‘the body of the associated LoopExp.

context LoopExpEval
inv: bodyEvals->forAll (model = self.model)

10.4.3.19 ModelPropertyCallExpEval

No extra well-formedness rules.

10.4.3.20 NumericLiteralExpEval
No extra well-formedness aules.

10.4.3.21 NavigationCallExpEval

[224][1] Th string that represents the navigation source in the evaluation must be equal to the name of the najvigationSource
in [th€ cofresponding expression.

context NavigationCallExpEval inv:
navigationSource = model.navigationSource.name

[225][2] The qualifiers of a navigation call expression evaluation must correspond with the qualifiers of the associated

expression.

context NavigationCallExpEval inv:
Sequence{l. .qualifiers->size () }->forAll(i |
qualifiers->at (i) .model = model.qualifiers->at (i) .type)

140 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

10.4.3.22 OclExpEval

[226][1] The result value of the evaluation of an ocl expression must be an instance of the type of that expression.

context OclExpEval
inv: resultValue.isInstanceOf (model.type)

10.4.3.23 OclMessageExpEval

context OclMessageExpEval
inv: target.model = model.target
inv: $et{l..arguments->size()}->forall (i | arguments->at(i) = model . arguments|>at (i))

[228][2] The name of the resulting ocl message value must be equal to the name of the operatiefior signal ind
message expression.

context OclMessageExpEval inv:
if| model.operation->size() =1
thpen resultValue.name = model.operation.name
else resultValue.name = model.signal.name
endif

[229][3] Th isSignal, isSyncOperation, and isAsyncOperation attributes,of the result value of an ocl messagg
evpluation must correspond to the operation indicated in the/o¢l message expression.

[230]
context OclMessageExpEval inv:

if| model.calledOperation->size() =1

thpen model.calledOperation.isAsynchronous = true implies
resultValue.isAsyncOperation = true
else -- message represents sending a signal
resultValue.isSignal = (true
endif

icated in the

expression

[231][4] The arguments of an ocl message expression evaluation must correspond to the formal input parameters of the

operation, or the attributes of the signal indicated in the ocl message expression.

context OclMessageExpEval

inv: model.calledOperation->size() = 1 implies
Sgquence{l.. arguments->size ()} ->forAll(i |
arguments->at (i) .variable->size() = 1 implies

model.calledOperation.operation.parameter->
select(kind = ParameterDirectionKind::in)->at (i) .name =
arguments->at (i) .variable

and

arguments->at (1) .expression->size() = I implies
model.calledOperation.operation.parameter->
select(kind = ParameterDirectionKind::in)at(i).type =

arguments->at (i) .expression.model

inv: model.sentSignal->size() = 1 implies
Sequence{l.. arguments->size ()} ->forAll(i |
arguments->at (i) .variable->size() = 1 implies

model.sentSignal.signal. feature->select(

arguments->at (i) .variable)->notEmpty ()

and
arguments->at (i) .expression->size() = 1 implies

© ISO/IEC 2012 - All rights reserved

141

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

model.sentSignal.signal.feature.oclAsType (StructuralFeature) . type =
arguments->at (i) .expression.model

[232][5] The arguments of the return message of an ocl message expression evaluation must correspond to the names given

by the formal output parameters, and the result type of the operation indicated in the ocl message expression. Note
that the Parameter type is defined in the UML metamodel.

context OclMessageExpEval
inv: let returnArguments: Sequence{ NameValueBindings) =

resultValue.returnMessage.arguments
formalParameters: Sequence{ Parameter } =

4

model.calledOperation.operation.parameter

in
regultValue.returnMessage->size() = 1 and model.calledOperation->s§ize() = 1 implies
- ‘result’ must be present and have correct type
returnArguments->any (name = ‘result’) .value.model =

formalParameters->select(kind = ParameterDirectionKind: yreturn) .type

and

-- all ‘out’ parameters must be present and have correct type

Sequence{l.. returnArguments->size()} ->forAll(i (]
returnArguments->at (i) .name =

formalParameters->select(kind = ParameterDirectionKind: :out)->at (i) .name

and
returnArguments->at (i) . value.model
formalParameters->select(kind = ParameterDirectionKind: :out)->at (]

1) . type)
10.4.3.24 OclMessageArgEval

[233][1] An ocl message argument evaluation must correspend with its argument expression.

context OclMessageArgEval

inv: model.variable->size() =1
implies variable->size (), ='1 and variable.symbol = model.variable.name
inv: mModel.expression->size()="1

implies expression and ‘'expression.model = model.expression
10.4.3.25 QperationCallExpEval

[234][1] Thg result value of air gperation call expression will have the type given by the Operation being callgd, if the

opleration has no dut.or in/out parameters, else the type will be a tuple containing all out, in/out parameters and the
regult value.

context OperationCallEval inv:

let oytparameters : Set(Parameter) = referredOperation.parameter->select(p ||

p-kind = ParameterDirectionKind::in/out or
P kimdt—=ParameterbPirectionKimd—ou L)

in
if outparameters->isEmpty ()
then resultValue.model = model.referredOperation.parameter

->select(kind = ParameterDirectionKind: :result).type
else resultValue.model.oclIsType(TupleType) and
outparameters->forAll(p |

resultValue.model.attribute->exist(a | a.name = p.name and a.type = p.type))
endif

[235][2] The string that represents the referred operation in the evaluation must be equal to the name of the referredOperation
in the corresponding expression.

142 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

context OperationCallExpEval inv:
referredOperation = model.referredOperation.name

[236][3] The arguments of an operation call expression evaluation must correspond with the arguments of its associated
expression.

context OperationCallExpEval inv:
Sequence{l. .arguments->size}->forAll(i |
arguments->at (i) .model = model.arguments->at(i))

10.4.3.26 PropertyCallExpEval

[237][1] Thk source of the evaluation of a property call corresponds to the source of its associated expression

context PropertyCallExpEval inv:
source.model = model.source

10.4.3.27 PrimitiveLiteralExpEval

No extra wgll-formedness rules.

10.4.3.28 RealLiteralExpEval

context RealliteralExpEval inv:
resultValue = model.realSymbol

10.4.3.29 $tringLiteralExpEval

context StringLiteralExpEval inv:
resultValue = model.stringSymbol

10.4.3.30 TupleLiteralExpEval

context TupleliteralExpEval inwvs
model | tuplePart = tuplePartimodel

10.4.3.31 UnlimitedNaturalLiteralExpEval

context UnlimitedNaturalliteralExpEval inv:
resultValue = model+unlimitedNaturalSymbol

10.4.3.32 UnspecifiedValueExpEval

[238][1] Thk result'of an unspecified value expression is a randomly picked instance of the type of the expresgion.

context\UnspecifiedValueExpEval
inv: resultValue = model.type.alllInstances()->any(true)
inv: resultValue.model = model. type

10.4.3.33 VariableDeclEval

context VariableDeclEval inv:
model.initExpression = initExpression.model

10.4.3.34 VariableExpEval

No extra well-formedness rules.

© ISO/IEC 2012 - All rights reserved 143

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

144 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

11

1.1

ISO/IEC 19507:2012(E)

OCL Standard Library

Introduction

This clause describes the OCL Standard Library of predefined types, their operations, and predefined expression
templates in the OCL. This sub clause contains all standard types defined within OCL, including all the operations

defined on

hose tunes. For each oneration the sionature and a descrintion of the semantics is given Wit
r r t=} r t=)

in the

description.
places, post
postconditi
defined if a

The structu
10 (“Semar
types and o
by e.g., the
complete 14

The OCL s
String, and
collection t

defined in fhe OCL standard library are instances of an abstract\syntax class. The OCL standard library e

modeling 1g

Next to def]
on collectig

template exjpression that defines the name and format of the expression is defined in 11.8, *Predefined Ito
Expressiong.

The Standa
can be defi

Certain Stri
converted i
underscores
sequence is
omitted.

The charact

the reserved word ‘result’ is used to refer to the value that results from evaluating the operat
conditions are used to describe properties of the result. When there is more than one pgstcon|
ns must be true. A similar thing is true for multiple preconditions. If these are used, the’ oper
[l preconditions evaluate to true.

Fe, syntax, and semantics of the OCL is defined in Clauses 8 (“Abstract Syntax™), 9 (“Concret
tics Described using UML”). This clause adds another part to the OCL d¢finition: a library of
perations. Any implementation of OCL must include this library package,/This approach has 3
Java definition, where the language definition and the standard libraries are both mandatory p
nguage definition.

andard library defines a number of types. It includes several primitive types: UnlimitedNatura
Boolean. These are familiar from many other languages. Fhé second part of the standard library
ypes. They are Bag, Set, Sequence, and Collection whére ‘Collection is an abstract type. Note

vel, also referred to as the M1 level, where the abstract syntax is the metalevel or M2 level.

nitions of types the OCL standard library defines a number of template expressions. Many opd
ns map not on the abstract syntax metaclass FeatureCallExp, but on the IteratorExp. For each

bl

rd Library may be extended with'new types, new operations and new iterators. In particular nq
hed for collections.

ng operations depend:on:the prevailing locale to ensure that Strings are collated and character
h an appropriate fashion. A locale is defined as a concatenation of up to three character sequenc
, with the first,sequence identifying the language and the second sequence identifying the cou
empty but may*encode an implementation-specific variant. Trailing empty strings and separat

er s€quences for languages are defined by ISO 639.

The charac

on. In several
dition, all
htion is only

b Syntax”), and
predefined
Iso been taken
arts of the

, Integer, Real,
consists of the
hat all types
Kists at the

rations defined
of these a
rator

W operations

5 are case-
cs separated by
ntry. The third
ors may be

er'sequences for countries are defined by ISQ 3166

'fr CA' therefore identifies the locale for the French language in the Canada country.

Comparison of strings and consequently the collation order of Collection::sortedBy() conforms to the Unicode Collation
algorithm defined by Unicode Technical Standard#10.

The locale is ‘en_us’ by default but may be configured by a property constraint on OclAny::oclLocale.

The prevailing locale is defined by the prevailing value of oclLocale within the current environment; it may therefore be
changed temporarily by using a Let expression.

let oclLocale : String ='fr CA' in aString.toUpperCase()

© ISO/IEC 2012 - All rights reserved

145

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

11.2 The OclAny, OclVoid, Oclinvalid, and OclMessage Types

11.2.1 OclAny

All types in the UML model and the primitive and collection types in the OCL standard library conforms to the type
OclAny. Conceptually, OclAny behaves as a supertype for all the types. Features of OclAny are available on each object

in all OCL

expressions. OclAny is itself an instance of the metatype AnyType.

All classes
model and
theoreticall
the type) to

Operations

11.22 O

This sub cl
type is actyl
substituting]

The predefi
operation,
each is detd
the operatid
itself an ing

OclMessag

11.23 O

The type O
that corresp
for the ocll
conversion
‘isEmpty’).

OclVoid is

11.24 O

in a UML model inherit all operations defined on OclAny. To avoid name conflicts between |p
he properties inherited from OclAny, all names on the properties of OclAny start with focly’

there may still be name conflicts, they can be avoided. One can also use qualification,by Od
explicitly refer to the OclAny properties.

of OclAny, where the instance of OclAny is called object.

clMessage

huse contains the definition of the standard type OclMessage. As_defined in this sub clause, ea
plly a template type with one parameter. ‘T’ denotes the paraméter: A concrete ocl message tyj
an operation or signal for the T.

ned type Ocl/Message is an instance of MessageType. Eyery OclMessage is fully determined b
r signal given as parameter. Note that there is conceptually an undefined (infinite) number of
rmined by a different operation or signal. These types are unnamed. Every type has as attribut
n or signal, and either all formal parameters .of the operation, or all attributes of the signal. O
tance of the metatype MessageType.

has a number of predefined operations,-as shown in the OCL Standard Library.

clVoid

"[Void is a type that conforms)to all other types except OclInvalid. It has one single instance, id
onds with the UML LiteralNull value specification. Any property call applied on null results in
sUndefined(), ocllslnvalid(), =(OclAny) and <>(OclAny) operations. However, by virtue of th

If the source_iS\the null literal, it is implicitly converted to Bag{}.

tself an instance of the metatype VoidType.

clinvalid

roperties in the
Although
lAny (name of

Ch ocl message
e is created by

y either the
these types, as
es the name of
t1Message is

entified as null,
invalid, except
e implicit

to a collection literal;"an expression evaluating to null can be used as source of collection opefjations (such as

The type Ocllnvalid is a type that conforms to all other types. It has one single instance, identified as invalid. Any
property call applied on invalid results in invalid, except for the operations ocllsUndefined() and ocllsInvalid().
Ocllnvalid is itself an instance of the metatype InvalidType.

11.3 Operations and Well-formedness Rules

11.3.1 OclAny

=(object2 :

146

OclAny) : Boolean

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

True if self is the same object as object2. Infix operator.

post: result = (self = object2)

<> (object2 : OclAny) : Boolean

True if self is a different object from object2. Infix operator.

post: result = not (self = object2)

ocllsNew() |: Boolean

Can only b¢ used in a postcondition. Evaluates to true if the self is created during performing the opératiop (for instance,
it didn’t ex]st at precondition time).

post:[self@pre.ocllsUndefined()

oclIsUndefined() : Boolean

Evaluates tp true if the self'is equal to invalid or equal to null.
post: [result = self.isTypeOf(OclVoid) or self.isTypeOf(Ocllnvalid)

oclIsInvalid() : Boolean

Evaluates tp true if the self'is equal to OclInvalid.
post:[result = self.isTypeOf(Ocllnvalid)

oclAsType(type : Classifier) : T

Evaluates tp self, where self is of the type identified by The type T may be any classifier defined in the UML model;
if the actual type of self at evaluation time does not conform to T, then the oc/AsType operation evaluates to invalid.

In the case [of feature redefinition, casting an objeet to a supertype of its actual type does not access the supertype's
definition df the feature; according to the semiantics of redefinition, the redefined feature simply does not|exist for the
object. Hopever, when casting to a supertype, any features additionally defined by the subtype are suppiessed.

post:[(result = self) and result.ocllsTypeOf(t)

oclIsTypeQf(type : Classifier) : Boolean

Evaluates tp true if self is of the type t but not a subtype of t
post:[self.ocl Type()-=type

oclIsKindQf(type : Classifier) : Boolean

Evaluates tp truc-if the type of self conforms to t. That is, self is of type t or a subtype of t.

. 1E 11 VAY £ Tali Ay
post: ‘seteelt ypefreontormsTottyped

oclIsInState(statespec : OclState) : Boolean

Evaluates to true if the self is in the state indentified by statespec.
post: -- TBD

oclType() : Classifier

Evaluates to the type of which selfis an instance.

post: self.ocllsTypeOf(result)

© ISO/IEC 2012 - All rights reserved 147

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

oclLocale : String

Defines the default locale for local-dependent library operations such as String::toUpperCase().

11.3.2 OclVoid

= (object : OclAny) : Boolean

Redefines tfe"OTIATIy Operation, TeUITing true it objecr 15 nutt-

post: [result = object.ocllsTypeOf(OclVoid)

11.3.3 QclMessage

hasReturng¢d() : Boolean

True if typd of template parameter is an operation call, and the called operation has yeturned a value. This Jmplies the fact
that the megsage has been sent. False in all other cases.

post:|--

result() : <«The return type of the called operation>>

Returns the|result of the called operation, if type of template parameter'is an operation call, and the calledl operation has
returned a Yalue. Otherwise the invalid value is returned.

pre: hasReturned()
isSignalSent() : Boolean
Returns trug if the OclMessage represents the sendiig of a UML Signal.
isOperationCall() : Boolean

Returns trug if the OclMessage represents.the sending of a UML Operation call.

11.4 Primitive Types

The primitiye types defined in“the OCL standard library are UnlimitedNatural, Integer, Real, String, and Boolean. They
are all instgnces of the metaclass Primitive from the UML core package.

11.4.1 Real

The standagd\type Real represents the mathematical concept of real. Note that UnlimitedNatural is a subclass of Integer
and that Integer is a subclass of Real, so for each parameter of type Real, you can use an unlimited natural or an integer
as the actual parameter. Real is itself an instance of the metatype PrimitiveType (from UML).

11.4.2 Integer

The standard type Integer represents the mathematical concept of integer. Note that UnlimitedNatural is a subclass of
Integer, so for each parameter of type Integer, you can use an unlimited natural as the actual parameter. Integer is itself an
instance of the metatype PrimitiveType (from UML).

148 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

11.4.3 String

The standard type String represents string. A string is a sequence of characters in some suitable character set used to
display information about the model. Character sets may include non-Roman alphabets and characters. String is itself an
instance of the metatype PrimitiveType (from UML).

11.4.4 Boolean

The standagd type Boolean represents the common true/false values. Boolean is itself an instance of theymetatype
PrimitiveType (from UML).

11.4.5 UnlimitedNatural

The standarfd type UnlimitedNatural is used to encode the non-negative values of a multiplic¢ity-specification. [This includes a
special unlipnited value (*) that encodes the upper value of a multiplicity specification., UnlimitedNatural is itself an instance
of the metafype UnlimitedNatural Type.

Note that although UnlimitedNatural is a subclass of Integer, the unlimited value eannot be represented as an Integer. Any use
of the unlinfited value as an integer or real is replaced by the invalid value.

11.5 Operations and Well-formedness Rules

This sub clfiuse contains the operations and well-formedness Tuiles of the primitive types.

11.5.1 Real

Note that UnlimitedNatural is a subclass of Integet and that Integer is a subclass of Real, so for each pargmeter of type
Real, you can use an unlimited natural or an integer as the actual parameter.

+ (r : Real)|: Real

The value ¢f the addition of self and r.

- (r : Real) || Real

The value ¢f the subtractien* of » from self.
* (r : Real)|: Real

The value ¢f the'multiplication of self and r.

- : Real

The negative value of self.

/ (r : Real) : Real

The value of self divided by r. Evaluates to invalid if r is equal to zero.

abs() : Real

The absolute value of self.

© ISO/IEC 2012 - All rights reserved 149

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

post: if self < 0 then result = - self else result = self endif

floor() : Integer

The largest integer that is less than or equal to self.

post: (result <= self) and (result + 1 > self)

round() : Integer

The integer]| that is closest to sel/f. When there are two such integers, the largest one.
post:|((self - result).abs() < 0.5) or ((self - result).abs() = 0.5 and (result > self))

max(r : Real) : Real

The maximpm of self and 7.

post:|if self >= r then result = self else result = r endif
min(r : Regl) : Real

The minimyim of self and r.

post:|if self <= r then result = self else result = r endif
<(r : Real)[: Boolean
True if self]is less than r.
> (r : Real)|: Boolean

True if selflis greater than r.

post:Jresult = not (self <=r)
<=(r : Real) : Boolean

True if self|is less than or equal to r.
post:[result = ((self =) or (self < 1))

>=(r : Real) : Boolean

True if self|is greater than-or equal to r.
post:|result = ((self'= 1) or (self > r))

toString() :|String

Converts s Lffn a cfﬂ'ng value

11.5.2 Integer

Note that UnlimitedNatural is a subclass of Integer, so for each parameter of type Integer, you can use an unlimited
natural as the actual parameter.

- : Integer

The negative value of self.

150 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

+ (i : Integer) : Integer

The value of the addition of self and i.

- (i : Integer) : Integer

The value of the subtraction of i from self.

* (i : Integer) : Integer

The value qf the multiplication of self and i.

/ (i : Integer) : Real

The value ¢f self divided by i.Evaluates to invalid if r is equal to zero.
abs() : Inteper

The absolufe value of self.

post:|if self < 0 then result = - self else result = self endif
div(i : Integer) : Integer
The numbef of times that 7 fits completely within self.
pre: f<>0
post:|if self / i >= 0 then result = (self/ i).floor()
else result = -((-self/i).floor())
endif
mod(i : Infeger) : Integer
The result ifs se/f modulo i.
post:|result = self - (self.div(i) * 1)
max(i : Integer) : Integer
The maximpum of self an i.
post:[if self >= i then result = self else result =i endif
min(i : Intdger) : Integer

The minimym of self an i.

post:[ifiself <= i then result = self else result =i endif

toString() : String
Converts self'to a string value.
11.5.3 String

+ (s : String) : String

The concatenation of self and s.

post: result = self.concat(s)

© ISO/IEC 2012 - All rights reserved 151

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

size() : Integer
The number of characters in self.
concat(s : String) : String

The concatenation of self and s.

post: result.size() = self.size() + string.size()

post: [Fesult.substring(1, sell.size()) — sell

post: [result.substring(self.size() + 1, result.size()) =s
substring(lpwer : Integer, upper : Integer) : String

The sub-string of self starting at character number lower, up to and including character numb€r upper. Character numbers
run from 1 to self.size().

pre: 1 <=lower
pre: lower <= upper

pre: Upper <= self.size()
toInteger()|: Integer
Converts sglf to an Integer value.
toReal() : Real
Converts sglf to a Real value.
toUpperCagse() : String

Converts sdlf to upper case, using the locale defined by looking up oclLocale in the current environment.|Otherwise,
returns the pame string as self.

toLowerCase() : String

Converts sdlf to lower case, using ‘the‘locale defined by looking up oc/Locale in the current environment.| Otherwise,
returns the pame string as self.

indexOf(s | String) : Integer

Queries the|index in(self at which s is a substring of self, or zero if s is not a substring of self. The empty string is
considered fo be assubstring of every string but the empty string, at index 1. No string is a substring of the empty string.

post: [self,siz€() = 0 implies result =0

Ses

. N = dcalfcizall) Oaanliac xacale — 1
post:ls- \vi HAPH HH—

post: s.size() > 0 and result > 0 implies self.substring(result, result + s.size() - 1) =s
equalsIgnoreCase(s : String) : Boolean

Queries whether s and self are equivalent under case-insensitive collation.

post: result = (self.toUpperCase() = s.toUpperCase())
at(i : Integer) : String

Queries the character at position i in self.

152 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

pre: i
pre: i

post:

ISO/IEC 19507:2012(E)

>0
<= self.size()

result = self.substring(i, i)

characters() : Sequence(String)

Obtains the
post:

characters of self as a sequence.

result =

toBoolean(

Converts sd

post:
< (s : String
True if self]
> (s : String

True if self]
post:

<= (s : String) : Boolean

True if self]
post:

>= (s : String) : Boolean

True if self]
post:

11.5.4 B

if self.size() = 0 then
Sequence{}
else
Sequence{1..self.size()} ->iterate(i; acc : Sequence(String) = Sequence{} |
acc->append(self.at(i)))
endif

: Boolean

I/f'to a boolean value.

result = (self = 'true')

) : Boolean

is less than s, using the locale defined by looking up oc/Locale in the current environment.
) : Boolean

is greater than s, using the locale defined-by looking up oc/Locale in the current environment

result = not (self <=s)

is less than or equal to s, ¥sing the locale defined by looking up oclLocale in the current environment.

result = ((self = s) or (self< s))

is greater than.0or equal to s, using the locale defined by looking up oclLocale in the current @
result = ((self'= s) or (self > s))

oolean

nvironment.

or (b : Boolean) : Boolean

True if either self or b is true.

xor (b : Boolean) : Boolean

True if either self or b is true, but not both.

post:

(self or b) and not (self = b)

and (b : Boolean) : Boolean

© ISO/IEC 2012 - All rights reserved

153

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

True if both b7 and b are true.

not : Boolean

True if self is false.

post: if self then result = false else result = true endif

implies (b : Boolean) : Boolean

True if selfis false, or if self is true and b is true.
post:|(not self) or (self and b)

toString() :|String

Converts sglf to a string value.

11.5.5 UnlimitedNatural

+ (u : UnlimitedNatural) : UnlimitedNatural

The value af the addition of self and u. Evaluates to invalid if self or u isunlimited.

* (u : UnlimhitedNatural) : UnlimitedNatural

The value qf the multiplication of self and u. Evaluates to invalid'if self or u is unlimited.
/ (u : UnlinjitedNatural) : Real

The value qf self divided by u. Evaluates to invalid if-u is equal to zero or unlimited, or if self is unlimitad.

div(u : UnlimitedNatural) : UnlimitedNatural

The numbef of times that « fits completely within self. Evaluates to invalid if u is equal to zero or unlimifed, or if self is
unlimited.

post:fresult = (self / u).floor()

mod(u : UnlimitedNatural) :-UnlimitedNatural

The result is self modulows,"Evaluates to invalid if u is equal to zero or unlimited, or if self is unlimited.

post:[result = selfy (self.div(u) * u)

max(u : UnlimitedNatural) : UnlimitedNatural

The maximunmof cp{/fqnd u

post: if self = * or u = * then result = *

else if self >= u then result = self else result = u endif endif

min(u : UnlimitedNatural) : UnlimitedNatural

The minimum of self and u.
post: if self = * then result =u
else if u = * then result = self

else if self <= u then result = self else result = u endif endif endif

154 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

< (u : UnlimitedNatural) : Boolean

True if self is less than u.
post: if self = * then result = false
else if u = * then result = true

else result = self.tolnteger() < u.toInteger() endif endif

> (u : UnlimitedNatural) : Boolean

True if self|is greater than u.
post:[if u = * then result = false
else iff self = * then result = true

else fesult = self.tolnteger() > u.tolnteger() endif endif

<= (u : UnljmitedNatural) : Boolean

True if self|is less than or equal to u.
post:[if u = * then result = true
else iff self = * then result = false

else fesult = self.tolnteger() <= u.toInteger() endif endif
>= (u : UnljmitedNatural) : Boolean

True if self|is greater than or equal to u.

post:|if self = * then result = true
else]f u = * then result = false

else fesult = self.tolnteger() >= u.tolnteger() endif ndif
toInteger()|: Integer

Converts sdlf to an integer value. If self\issinlimited the result is invalid.
post:|if self = * then result = invalid

else fesult = self.oclAsType(Iateger) endif
toString() :|String

Converts sdlf to a string)value, using the canonical form as defined by http://www.w3.org/TR/xmlschemat2/
#nonNegativelnteger, If self is unlimited the result is "*'.

11.6 Gollection-Related Types

This sub clause defines the collection types and their operations. As defined in this sub clause, each collection type is
actually a template type with one parameter. ‘T’ denotes the parameter. A concrete collection type is created by
substituting a type for the T. So Set (Integer) and Bag (Person) are collection types.

© ISO/IEC 2012 - All rights reserved 155

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

11.6.1 Collection

Collection is the abstract supertype of all collection types in the OCL Standard Library. Each occurrence of an object in a
collection is called an element. If an object occurs twice in a collection, there are two elements. This sub clause defines
the properties on Collections that have identical semantics for all collection subtypes. Some operations may be defined
within the subtype as well, which means that there is an additional postcondition or a more specialized return value.
Collection is itself an instance of the metatype CollectionType.

The definitfon of several common operations is different for each subtype. These operations are not mentigned in this sub
clause.

The semantics of the collection operations is given in the form of a postcondition that uses the JterdateExp of the

IteratorExp| construct. The semantics of those constructs is defined in Clause 10 (“Semantics Described uding UML”). In
several cas¢s the postcondition refers to other collection operations, which in turn are defined’ in terms of|the IterateExp
or IteratorHxp constructs.

11.6.2 Set

The Set is the mathematical set. It contains elements without duplicates. Set\is-itself an instance of the mgtatype SetType.

11.6.3 OrderedSet

The OrderefdSet is a Set, the elements of which are ordered. It contains no duplicates. OrderedSet is itself an instance of
the metatype OrderedSetType.

An OrderedSet is not a subtype of Set, neither a subtype éfiSequence. The common supertype of Sets and|OrderedSets is
Collection.

11.6.4 Bag

A bag is a ¢ollection with duplicates allowed. That is, one object can be an element of a bag many times| There is no
ordering deffined on the elements in a bag. Bag is itself an instance of the metatype BagType.

11.6.5 Sequence

A sequence|is a collectiongwhere the elements are ordered. An element may be part of a sequence more than once.
Sequence if itself an instanice of the metatype SequenceType.

A Sentence|is not_a‘subtype of Bag. The common supertype of Sentence and Bags is Collection.

11.7 Qperations and Well-formedness Rules

This sub clause contains the operations and well-formedness rules of the collection types.

11.7.1 Collection

= (c : Collection(T)) : Boolean

True if ¢ is a collection of the same kind as self and contains the same elements in the same quantities and in the same
order, in the case of an ordered collection type.

156 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

<> (¢ : Collection(T)) : Boolean

True if ¢ is

post:

not equal to self.

result = not (self = ¢)

size() : Integer

The numbe

post:

r of elements in the collection self.

ISO/IEC 19507:2012(E)

result = seli->1terate(elem; acc : Integer =0 [acc + 1)

includes(olject : T) : Boolean

True if obj¢ct is an element of self, false otherwise.

post:

result = (self->count(object) > 0)

excludes(object : T) : Boolean

True if obj¢ct is not an element of self, false otherwise.

post:
count(obje

The numbe

post:

result = (self->count(object) = 0)
t: T) : Integer

[of times that object occurs in the collection self.
result = self->iterate(elem; acc : Integer =0 |

if elem = object then acc + 1 else acc endif)

includesAll(c2 : Collection(T)) : Boolean

Does self'c
post:

bntain all the elements of ¢2 ?

result = c2->forAll(elem | self->includesfelem))

excludesAll(c2 : Collection(T)) : Boolean

Does self'c
post:

bntain none of the elements-ef ¢2 ?

result = c2->forAll(elemy.self->excludes(elem))

isEmpty() { Boolean

Is self the d
post:

Note: null-

mpty collection?

result = (self->size() =0)

isEmpty() returns 'true' in virtue of the implicit casting from null to Bag{}

notEmpty() : Boolean

Is self not the empty collection?

post:

result = (self->size() <>0)

null->notEmpty() returns 'false' in virtue of the implicit casting from null to Bag{}.

max(): T

© ISO/IEC 2012 - All rights reserved

157

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The element with the maximum value of all elements in self. Elements must be of a type supporting the max operation.
The max operation - supported by the elements - must take one parameter of type T and be both associative and
commutative. UnlimitedNatural, Integer and Real fulfill this condition.

post: result = self->iterate(elem; acc : T = self.first() | acc.max(elem))
min() : T

The element with the minimum value of all elements in self. Elements must be of a type supporting the min operation.
The min operation - supported by the elements - must take one parameter of type T and be both associatiye and
commutatiie. UnlimitedNatural, Integer and Real fulfill this condition.

post: result = self->iterate(elem; acc : T = self.first() | acc.min(elem))
sum() : T

The additioh of all elements in self. Elements must be of a type supporting the + operation."The + operatiof must take one
parameter df type T and be both associative: (a+b)+c = a+(b+c), and commutative: afb~ b+a. Unlimitedatural, Integer
and Real fulfill this condition.

post:|result = self->iterate(elem; acc : T =0 | acc + elem)
If the + opgration is not both associative and commutative, the sum expression is not well-formed, which|may result in

unpredictable results during evaluation. If an implementation is able toldetect a lack of associativity or comimutativity, the
implementation may bypass the evaluation and return an invalid result.

product(c2} Collection(T2)) : Set(Tuple(first: T, second: T2).)

The cartesign product operation of self and c2.
post:|result = self->iterate (el; acc: Set(Tuple(first: T, second: T2)) = Set{} |
c2->iterate (€2; acc2: Set(Tuple(first: 'L, second: T2)) = acc |
acc2->including (Tuple{first =¢1, second =¢2})))

asSet() : Set(T)

The Set containing all the elements from self, with duplicates removed.
post:|result->forAll(elem | self-=>includes(elem))

post:|self ->forAll(elem Jresult->includes(elem))

asOrdered$et() : OrderédSet(T)

An OrderedSet that\contains all the elements from self, with duplicates removed, in an order dependent oh the particular
concrete coflection'type.

post:|result=>forAll(elem | self->includes(elem))

post: self ->forAll(elem | result->includes(elem))

asSequence() : Sequence(T)

A Sequence that contains all the elements from self, in an order dependent on the particular concrete collection type.
post: result->forAll(elem | self->includes(elem))

post: self ->forAll(elem | result->includes(elem))

asBag() : Bag(T)

The Bag that contains all the elements from self.

158 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

post:
post:

result->forAll(elem | self->includes(elem))

self ->forAll(elem | result->includes(elem))

flatten() : Collection(T?2)

ISO/IEC 19507:2012(E)

If the element type is not a collection type, this results in the same collection as self. If the element type is a collection
type, the result is a collection containing all the elements of all the recursively flattened elements of self.

[1] Well-f

edness rules

(2] [1TAc
contg

inv: §

bllection cannot contain invalid values.
xt Collection
elf->forAll(not oclIsInvalid())

11.7.2 Set

union(s : S

The union
post:
post:
post:

union(bag

The union
post:
post:
post:

= (s : Set(T

Evaluates t

post:

et(T)) : Set(T)
f self and s.

result->forAll(elem | self->includes(elem) or s->includes(elem))
self ->forAll(elem | result->includes(elem))

s ->forAll(elem | result->includes(elem))
Bag(T)) : Bag(T)
f self 'and bag.

result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
self->forAll(elem | result->includes(elem))

bag ->forAll(elem | result->includes(elem))

D) : Boolean

true if self and s contain thé same elements.
result = (self->forAll(elemy,s->includes(elem)) and

s->farAll(elem | self->includes(elem)))

intersection(s : Set(T)) :.Set(T)

The interse

post:

result=>forAll(elem | self->includes(elem) and s->includes(elem))

post:

self>forAll(elem | s ->includes(elem) = result->includes(elem))

Ction of selffand s (i.e., the set of all elements that are in both self and s).

post: 3 —TorAli(elem Seif-—=Inciudes(eiemy = result-—neiudes(cIem))

intersection(bag : Bag(T)) : Set(T)

The intersection of self and bag.

post:

result = self->intersection(bag->asSet)

— (s : Set(T)) : Set(T)

The elements of self, which are not in s.

post:

result->forAll(elem | self->includes(elem) and s->excludes(elem))

© ISO/IEC 2012 - All rights reserved

159

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

post:

self ->forAll(elem | result->includes(elem) = s->excludes(elem))

including(object : T) : Set(T)

The set containing all elements of self plus object.

post:
post:
post:

result->forAll(elem | self->includes(elem) or (elem = object))
self- >forAll(elem | result->includes(elem))

result->includes(object)

excluding(d

The set con
post:
post:
post:

symmetricl

The sets co
post:
post:
post:

count(objeq

The numbe

post:

bject : T) : Set(T)

taining all elements of self without object.
result->forAll(elem | self->includes(elem) and (elem <> object))
self- >forAll(elem | result->includes(elem) = (object <> elem))

result->excludes(object)
Difference(s : Set(T)) : Set(T)

htaining all the elements that are in self or s, but not in both.
result->forAll(elem | self->includes(elem) xor s->includes(elem))
self->forAll(elem | result->includes(elem) =s ->excludes(elem))

s ->forAll(elem | result->includes(elem) = self->excludes(elein))
t: T) : Integer

- of occurrences of object in self.

result <=1

flatten() : Set(T2)

Redefines t|
element typ
of self.

post:

he Collection operation. If the glement type is not a collection type, this results in the same se

result = if self.ocl Type():elementType.ocllsKindOf(CollectionType) then
self->iterate(g; ace”: Set(T2) = Set{} |
acc->union(c->flatten()->asSet()))
else
selft
endif

asSet() : Se

)

Redefines the Collection operation. A Set identical to self. This operation exists for convenience reasons.

post:

result = self

asOrderedSet() : OrderedSet(T)

as self. If the

¢ is a collection type, the esult is the set containing all the elements of all the recursively flaftened elements

Redefines the Collection operation. An OrderedSet that contains all the elements from self, in undefined order.

post:

160

result->forAll(elem | self->includes(elem))

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

asSequence() : Sequence(T)

Redefines the Collection operation. A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->includes(elem))

post: self->forAll(elem | result->count(elem) = 1)

asBag() : Bag(T)

Redefines tfreCotiectionm operation. 1 1e Bag UTat COMAINS alt e CITIMEItS {To 321
post: [result->forAll(elem | self->includes(elem))

post:|self->forAll(elem | result->count(elem) = 1)

11.7.3 QrderedSet

append (objject: T) : OrderedSet(T)

The set of ¢lements, consisting of all elements of self, followed by object.
post: [result->size() = self->size() + 1
post: [result->at(result->size()) = object
post:| Sequence{l..self->size() }->forAll(index : Integer |

result->at(index) = self ->at(index))
prepend(ohject : T) : OrderedSet(T)

The sequenfce consisting of object, followed by all elements“in self.
post: [result->size = self->size() + 1
post: [result->at(1) = object
post:| Sequence{l..self->size()}->forAll(index.; Integer |

belf->at(index) = result->at(index + 1))
insertAt(inflex : Integer, object : T) : OnderedSet(T)

The set consisting of self with objéet inserted at position index.
post: [result->size = self->size() + 1
post: [result->at(index)= object
post:|Sequence {1 {(index - 1)}->forAll(i : Integer |
belf->at(i) = result->at(i))
post:|Sequénce {(index + 1)..self->size()}->forAll(i : Integer |
belf<>at(i) = result->at(i + 1))

subOrderedSet(lower : Integer, upper : Integer) : OrderedSet(T)

The sub-set of self starting at number lower, up to and including element number upper.
pre : 1 <=lower
pre : lower <= upper
pre : upper <= self->size()

post: result->size() = upper -lower + 1

© ISO/IEC 2012 - All rights reserved 161

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

post: Sequence {lower..upper}->forAll(index |
result->at(index - lower + 1) =
self->at(index))

at(i : Integer) : T

The i-th element of self.

pre : i>=1 and i <= self->size()

indexOf(otJj : T) : Integer

The index 9f object 0bj in the sequence.
pre :|self->includes(obj)
post { self->at(i) = obj

first): T

The first elgment in self.

post:|result = self->at(1)
last(): T

The last elgment in self.

post:[result = self->at(self->size())
reverse() : OrderedSet(T)

The ordered set of elements with same elements but with the opposite order.

post:|result->size() = self->size()
sum() : T

Redefines the Collection operation to femove the requirement for the + operation to be associative and/o1f commutative,
since the ofder of evaluation is well-defined by the iteration over an ordered collection.

asSet() : Sef(T)
Redefines the Set operation» Returns a Set containing all of the elements of self, in undefined order.
asOrdered$et() : OrderedSet(T)

Redefines the Set.operation. An OrderedSet identical to self.
post:lresult = self
post: Sequence{1..self.size()}->forAll(i | result->at(i) = self->at(i))

asSequence() : Sequence(T)

Redefines the Set operation. A Sequence that contains all the elements from self, in the same order.
post: Sequence{1..self.size()}->forAll(i | result->at(i) = self->at(i))

asBag() : Bag(T)

Redefines the Set operation. The Bag that contains all the elements from self, in undefined order.

162 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

11.7.4 Bag
= (bag : Bag(T)) : Boolean

True if self and bag contain the same elements, the same number of times.
post: result = (self->forAll(elem | self->count(elem) = bag->count(elem)) and

bag->forAll(elem | bag->count(elem) = self->count(elem)))

ISO/IEC 19507:2012(E)

union(bag { Bag(T)) : Bag(T)

The union ¢f self and bag.
post: [result->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
post:[self ->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))

post:lbag ->forAll(elem | result->count(elem) = self->count(elem) + bag->count(elem))
union(set : [Set(T)) : Bag(T)

The union ¢f self and set.
post:|result->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))
post:[self ->forAll(elem | result->count(elem) = self->count(elem) + set->count(elem))

post:[set ->forAll(elem | result->count(elem) = self->count(elem) + s€t->count(elem))
intersection(bag : Bag(T)) : Bag(T)

The intersetion of self and bag.

post:|result->forAll(elem |
rgsult->count(elem) = self->count(elem).min(bag->count(elem)))
post:[self->forAll(elem |
r¢sult->count(elem) = self->count(elem).min(bag->count(elem)))
post:|bag->forAll(elem |

r¢sult->count(elem) = self->count(¢lem).min(bag->count(elem)))
intersection(set : Set(T)) : Set(T)

The interseftion of self and set!

post: [result->forAll{elem|result->count(elem) = self->count(elem).min(set->count(elem)))

post:|self ->forAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)))

post:|set ->ferAll(elem|result->count(elem) = self->count(elem).min(set->count(elem)))

including(dbjeet : T) : Bag(T)

The bag containing all elements of self plus object.
post: result->forAll(elem |
if elem = object then
result->count(elem) = self->count(elem) + 1
else
result->count(elem) = self->count(elem)
endif)
post: self->forAll(elem |

© ISO/IEC 2012 - All rights reserved

163

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

if elem = object then

result->count(elem) = self->count(elem) + 1
else

result->count(elem) = self->count(elem)
endif)

excluding(object : T) : Bag(T)

The bag coptaining all elements of self apart from all occurrences of object.
post:|result->forAll(elem |
f elem = object then
result->count(elem) = 0
lse
result->count(elem) = self->count(elem)
endif)
post:|self->forAll(elem |
f elem = object then
result->count(elem) = 0
lse
result->count(elem) = self->count(elem)
endif)

count(obje¢t : T) : Integer
The numbert of occurrences of object in self.

flatten() : Bag(T2)

Redefines the Collection operation. If the glement type is not a collection type, this results in the same balg as self. If the
element typle is a collection type, the result is the bag containing all the elements of all the recursively flaftened elements
of self.
post: [result = if self.ocl Type()ielementType.ocllsKindOf(CollectionType) then
self->iterate(¢;ace’: Bag(T2) = Bag{} |
acc->union(c->flatten()->asBag()))
else
selft
endif’

asBag() : Bag(D

Redefines the Collection operation. A Bag identical to self. This operation exists for convenience reasons.

post: result = self

asSequence() : Sequence(T)

Redefines the Collection operation. A Sequence that contains all the elements from self, in undefined order.
post: result->forAll(elem | self->count(elem) = result->count(elem))

post: self ->forAll(elem | self->count(elem) = result->count(elem))

164 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

asSet() : Se

ISO/IEC 19507:2012(E)

t(T)

Redefines the Collection operation. The Set containing all the elements from self, with duplicates removed.

post:
post:

result->forAll(elem | self ->includes(elem))

self ->forAll(elem | result->includes(elem))

asOrderedSet() : OrderedSet(T)

Redefines f|

duplicates
post:
post:
post:

emoved.

result->forAll(elem | self ->includes(elem))
self ->forAll(elem | result->includes(elem))

self ->forAll(elem | result->count(elem) = 1)

11.7.5 Sequence

count(obje
The numbe
=(s : Sequg

True if self|
post:

't : T) : Integer
I of occurrences of object in self.

nce(T)) : Boolean

contains the same elements as s in the same order.
result = Sequence{1..self->size() }->forAll(index : Integer
self->at(index) = s->at(index))
and

self->size() = s->size()

union (s : Sequence(T)) : Sequence(T)

The sequen|
post:
post:

post:

flatten() : S

Redefines t

ce consisting of all elements.id.self, followed by all elements in s.
result->size() = self->size() + s=>size()
Sequence{1..self->size()} ~>forAll(index : Integer |

self->at(index) = result->at(index))
Sequence{1..s->size()}->forAll(index : Integer |

s->at(index) = result->at(index + self->size())))
equence(I?2)

he'Collection operation. If the element type is not a collection type, this results in the same se

prder, with

If the elem

— . 11 — + +] A VRSN | g 11l 1 4 ell ol
IIUTYPUIS d CUTICULHUIT 1y DU, UIT TTSUTL TS UICT STUHUTTIUT CUTILAIIIITE - a1 UIC TITITITIIL Ul dall UIT TU

flattened elements of self. The order of the elements is partial.

post:

result = if self.oclType().elementType.ocllsKindOf(CollectionType) then
self->iterate(c; acc : Sequence(T2) = Sequence{} |
acc->union(c->flatten()->asSequence()))
else
self
endif

© ISO/IEC 2012 - All rights reserved

cursively

quence as self.

165

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

append (object: T) : Sequence(T)

The sequence of elements, consisting of all elements of self, followed by object.

post:
post:
post:

result->size() = self->size() + 1
result->at(result->size()) = object
Sequence{1..self->size() }->forAll(index : Integer |

result->at(index) = self ->at(index))

prepend(oh

The sequen|
post:
post:
post:

insertAt(in

The sequen|
post:
post:
post:

post:

subSequen

The sub-seq
pre :
pre :
pre :
post:
post:

at(i : Integd

ject : T) : Sequence(T)

ce consisting of object, followed by all elements in self.
result->size = self->size() + 1
result->at(1) = object

Sequence{1..self->size() }->forAll(index : Integer |

belf->at(index) = result->at(index + 1))

lex : Integer, object : T) : Sequence(T)

result->size = self->size() + 1

result->at(index) = object

Sequence{l..(index - 1)}->forAll(i : Integer |

belf->at(i) = result->at(i))

Sequence{(index + 1)..self->size() } ->forAll(i : Integer
elf->at(i) = result->at(i + 1))

be(lower : Integer, upper : Integer) : Sequence(T)

| <= lower

ower <= upper

ipper <= self->size()

result->size() = upper'=lower + 1

Sequence {lowersupper} ->forAll(index |

result->at(index > lower + 1) =
self->at(index))

r)/,F

Ce consisting of self with object inserted at position index.

juence of self starting at number Jower, up to and including element number upper.

The i-th element of sequence.

pre : i >=1 and i <= self->size()

indexOf(obj : T) : Integer

The index of object 0bj in the sequence.

pre :

post :

166

self->includes(obj)
self->at(i) = obj

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

first): T

The first element in self.

post: result = self->at(1)
last() : T

The last element in self.

post:[result = self->at(sell->s1ze())
including(gbject : T) : Sequence(T)

The sequenfce containing all elements of self plus object added as the last element.

post:|result = self.append(object)
excluding(gbject : T) : Sequence(T)
The sequenfce containing all elements of self apart from all occurrences of object.

The order df the remaining elements is not changed.
post:fesult->includes(object) = false
post: [result->size() = self->size() - self->count(object)
post:|result = self->iterate(elem; acc : Sequence(T)
=RSequence{}|

if elem = object then acc else acc->append(elem) endit)
reverse() : Pequence(T)

The sequenfce containing the same elements but with the opposite order.

post: [result->size() = self->size()
sum(): T

Redefines the Collection operation, to remove the requirement for the + operation to be associative and/o1] commutative,
since the otder of evaluation is.well-defined by the iteration over an ordered collection.

asBag() : Bag(T)

Redefines the Collection operation. The Bag containing all the elements from self, including duplicates.

post:|result->forAll(elem | self->count(elem) = result->count(elem))

post:|self->forAll(elem | self->count(elem) = result->count(elem))

asSequence() : Sequence(T)

Redefines the Collection operation. The Sequence identical to the object itself. This operation exists for convenience
reasons.

post: result = self
asSet() : Set(T)

Redefines the Collection operation. The Set containing all the elements from self, with duplicates removed.
post: result->forAll(elem | self ->includes(elem))

post: self ->forAll(elem | result->includes(elem))

© ISO/IEC 2012 - All rights reserved 167

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

asOrderedSet() : OrderedSet(T)

Redefines the Collection operation. An OrderedSet that contains all the elements from self, in the same order, with
duplicates removed.

post: result->forAll(elem | self ->includes(elem))

post: self ->forAll(elem | result->includes(elem))

post: self ->forAll(elem | result->count(elem) = 1)

post: scH— fulAH\cicull, cterm2 i
self->indexOf(elem1) < self->indexOf(elem?2)

implies result->indexOf(elem1) < result->indexOf(elem?2))

11.8 Predefined Iterator Expressions

This sub clgquse defines the standard OCL iterator expressions. In the abstract syntax these are all instances|of IteratorExp.
These iterafor expressions always have a collection expression as their source, as is‘défined in the well-formedness rules
in Clause 8|(“Abstract Syntax”). The defined iterator expressions are shown pet spurce collection type. The semantics of
each iterator expression is defined through a mapping from the iterator to theZiterate’ construct. This mepns that the

semantics df the iterator expressions do not need to be defined separatelyin the semantics sub clauses.

In all of thg following OCL expressions, the lefthand side of the equals sign is the IteratorExp to be defiped, and the
righthand side of the equals sign is the equivalent as an lferateExp/The names source, body, and iterator fefer to the role
names in the abstract syntax:

source The source expression of the(teratorExp.
body The body expression of the IteratorExp.
iterator The iterator variable.of the IteratorExp.
result The result variable-of the IterateExp.

11.8.1 Extending the Standard Library with Iterator Expressions

It is possible to add new iteratorexpressions in the standard library. If this is done the semantics of a newl|iterator should
be defined py mapping it to existing constructs, in the same way the semantics of pre-defined iterators is |[done (see sub
clause 11.9

11.9 Mapping Rules for Predefined Iterator Expressions

This sub clause eontains the operations and well-formedness rules of the collection types.

11.9.1 Collection

closure

The closure of applying body transitively to every distinct element of the source collection.
source->closure(iterator | body) =

anonRecurse(source, Result{})

where:

168 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

anonRecurse is an invocation-site-specific helper function synthesized by lexical substitution of iterator, body, add and

Result in:

conte:

xt OclAny

def: anonRecurse(anonSources : Collection(7), anonlnit : Result(T)) : Result(T) =

anonSources->iterate(iterator : T, anonAcc : Result(T) = anonlnit |

if anonAcc->includes(iterator)

then anonAcc

S

[§
where:

T i
Re|
ad

The anonyr
purposes; tl

11.9.1.1 ej

Results in]

sourg

11.9.1.2 q

Results in t

sourg

Ise let anonBody : OclAny = body in
let anonResults : Result(T) = anonAcc->add(iterator) in

if anonBody.oclIsKindOf(CollectionType)

then anonRecurse(anonBody.oclAsType(Collection(7)), anonResults)
else anonRecurse(anonBody.oclAsType(7)->asSet(), anonResults)
endif

ndif)

s the element type of the source collection.
ult is 'OrderedSet' if the source collection is ordered, 'Set' otliérwise.
/ is 'append' if the source collection is ordered, 'including' etherwise.

hous variables 'anonRecurse', 'anonAcc', 'anonlnit', 'anonResults' and 'anonSources' are named
ey do not form part of the evaluation environment. for body.

Kists

rue if body evaluates to true for at least One element in the source collection.
e->exists(iterators | body) =

source->iterate(iterators; result : Boolean = false | result or body)

rAll

Fue if the body expression evaluates to true for each element in the source collection; otherwis
e->forAll(iterators | /body) =

source->itérate(iterators; result : Boolean = true | result and body)

11.9.1.3 igUnique

Results in

rue,if body evaluates to a different value for each element in the source collection; otherwise,

sourd

e-x1sUnique (iterator | body) =

for exposition

b, result is false.

result is false.

source->collect (iterator | Tuple {iter = Tuple{iterator}, value = body})

->forAll (x, y | (x.iter <> y.iter) implies (x.value <> y.value))

isUnique may have at most one iterator variable.

11.9.1.4 any

Returns any element in the source collection for which body evaluates to true. If there is more than one element for which
body is true, one of them is returned. There must be at least one element fulfilling body, otherwise the result of this

IteratorExp

is null.

© ISO/IEC 2012 - All rights reserved

169

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

source->any(iterator | body) =

source->select(iterator | body)->asSequence()->first()

any may have at most one iterator variable.

11.9.1.5 one

Results in true if there is exactly one element in the source collection for which body is true.

sourde->one(1terator | body) =

spurce->select(iterator | body)->size() = 1

one may hgve at most one iterator variable.

11.9.1.6 collect

The Collection of elements that results from applying body to every member of the source set. The result|is flattened.
Notice that|this is based on collectNested, which can be of different type depending{on the type of sourcq. collectNested
is defined ipdividually for each subclass of CollectionType.

sourde->collect (iterator | body) = source->collectNested (iterator | body)->flatten()

collect may| have at most one iterator variable.

11.9.2 Set

The standard iterator expression with source of type Set(T)-are:

11.9.2.1 s¢lect

The subset pf sef for which expr is true.
sourde->select(iterator | body) =
source->iterate(iterator; result : Set(T)) = Set{} |
if body then result-*ing¢luding(iterator)
else result
endif)

select may|have at most ong.iferator variable.

11.9.2.2 rgject

The subset jof the source set for which body is false.

sourde= I‘PjP(‘f(ifPI‘Qf{“‘ 1 hody) =

source->select(iterator | not body)

reject may have at most one iterator variable.

11.9.2.3 collectNested

The Bag of elements which results from applying body to every member of the source set.

source->collectNested(iterator | body) =
source->iterate(iterator; result : Bag(body.type) = Bag{} |
result->including(body))

170 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

collectNested may have at most one iterator variable.

11.9.2.4 sortedBy

Results in the OrderedSet containing all elements of the source collection. The element for which body has the lowest
value comes first, and so on. The type of the body expression must have the < operation defined. The < operation must
return a Boolean value and must be transitive (i.e., if a <b and b < ¢ then a < ¢).

sourge-=sortedBy(iterator | body) =
efate(iterator ; result : OrderedSet(T) : OrderedSet {} |

if result->isEmpty() then

=+

i

result.append(iterator)
else
let position : Integer = result->indexOf (
result->select (item | body (item) > body (iterator)) ->first())
in
result.insertAt(position, iterator)
endif

sortedBy mpy have at most one iterator variable.

11.9.3 Bag

The standarfl iterator expressions with source of type Bag(T) @re:
11.9.3.1 s¢lect

The sub-bag of the source bag for which body is-true.
sourde->select(iterator | body) =
source->iterate(iterator; result : Bag(T) = Bag{} |
if body then result->including(iterator)
else result
endif)

select may have at most one jterator variable.

11.9.3.2 rgject

The sub-bag of the source bag for which body is false.

sourde-xreject(iterator | body) =

source->select(iterator | not body)

reject may have at most one iterator variable.

11.9.3.3 collectNested

The Bag of elements which results from applying body to every member of the source bag.

source->collectNested(iterator | body) =
source->iterate(iterator; result : Bag(body.type) = Bag{} |
result->including(body))

© ISO/IEC 2012 - All rights reserved 171

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

collectNested may have at most one iterator variable.

11.9.3.4 sortedBy

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a
Boolean value and must be transitive (i.e., if a <b and b < ¢ then a < ¢).

sourge-=sortedBy(iterator body) =

iterate(iterator ; result : Sequence(T) : Sequence {} |

if result->isEmpty() then

result.append(iterator)
else

let position : Integer = result->indexOf (

result->select (item | body (item) > body (iterator)) ->first())
in
result.insertAt(position, iterator)

endif

sortedBy mpy have at most one iterator variable.

11.9.4 Sequence

The standaid iterator expressions with source of type Sequence(T) are:

select(expression : OclExpression) : Sequence(T)

The subseqpence of the source sequence for whieh body is true.

sourde->select(iterator | body) =
bource->iterate(iterator; result : Sequence(T) = Sequence{} |
if body then result->including(iterator)
else result
endif)

select may have at most ofie iterator variable.

11.9.4.1 rgject

The subseqpuence of the source sequence for which body is false.

3 1 atorl baods) —
sourde—=rejeetiteratortbody)

source->select(iterator | not body)

reject may have at most one iterator variable.

11.9.4.2 collectNested

The Sequence of elements that results from applying body to every member of the source sequence.

source->collectNested(iterator | body) =

source->iterate(iterator; result : Sequence(body.type) = Sequence{} |

172 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

result->append(body))

collectNested may have at most one iterator variable.

11.9.4.3 sortedBy

ISO/IEC 19507:2012(E)

Results in the Sequence containing all elements of the source collection. The element for which body has the lowest value
comes first, and so on. The type of the body expression must have the < operation defined. The < operation must return a

Boolean va

ab-batranc +£ booand AY

sourde->sortedBy(iterator | body) =

=+

ite

rate(iterator ; result : Sequence(T) : Sequence {} |
if result->isEmpty() then

result.append(iterator)
else

let position : Integer = result->indexOf (

result->select (item | body (item) > body (iterator)) ->first())
in
result.insertAt(position, iterator)

endif

sortedBy mpy have at most one iterator variable.

11.9.5 QrderedSet

The standafd iterator expressions with source of type QrderedSet(T) are:

select(expr

The ordere

bssion : OclExpression) : OrderedSet(T)

| set of the source ordered set for which body is true

sourde->select(iterator | body) =

select may

bource->iterate(iterator; result :\OrderedSet(T) = OrderedSet{} |
if body then result->including(iterator)

else result
endif)

have at most one iterator variable.

reject (expression > OclExpression) : OrderedSet(T)

The ordere

| set’of the source ordered set for which body is false.

o a4 L M Lo
oC-an oS ot ransttr vy oo o8 o \7K

source->reject(iterator | body) =

source->select(iterator | not body)

reject may have at most one iterator variable.

collectNested (expression : OclExpression) : Sequence(T)

The sequence of elements that results from applying body to every member of the source ordered set.

© ISO/IEC 2012 - All rights reserved

173

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

source->collectNested(iterator | body) =
source->iterate(iterator; result : Sequence(body.type) = Sequence{} |

result->append(body))

collectNested may have at most one iterator variable.

sortedBy (expression : OclExpression) : OrderedSet(T)

Results in the ordered set containing all elements of the source collection. The element for which body las the lowest
value comef first, and so on. The type of the body expression must have the < operation defined.(The < gperation must
return a Boplean value and must be transitive (i.e., if a <b and b < ¢, then a < ¢).

sourde->sortedBy(iterator | body) =
itefate(iterator ; result : OrderedSet(T) : OrderedSet {} |
f result->isEmpty() then
result.append(iterator)
glse
let position : Integer = result->indexOf (
result->select (item | body (item) > body (iterator)) ->first())
in result.insertAt(position, iterator)
gndif)

sortedBy mlay have at most one iterator variable.

174 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

12 The Use of OCL Expressions in UML Models

12.1

This clause

Introduction

describes the various manners in which OCL expressions can be used in UML models.

In principle, everywhere in the UML specification where the term expression is used, an OCL expression can be used

(e.g., for in
which resul

In this sped
Clause 8 (“
that the con
expression
grammar to

This sub cl
and the con
place in thd

For every o
the self inst

The
clas

The
clas
Visi

The
clas
conf

In the next
formedness|

12.2 T

Because in

variants, preconditions, and postconditions), but other placements are possible too. The meanir
ts from the evaluation of the OCL expression, depends on its placement within the UML. thod|

ification the structure of an expression, and its evaluation are separated from the usdge '0f the
Abstract Syntax”) defines the structure of an expression. In Clause 9 (“Concrete Syntax”) it wal
tents of the name space environment of an OCL expression are fully determined’by the placem
n the model. In that clause an inherited attribute env was introduced for eyery production rule
represent this name space environment.

huse specifies a number of predefined places where OCL expressions ¢an be used, their associ
tents of the name space environment. The modeler has to define“\is/her own meaning if OCL
UML model that is not defined in this sub clause.

ance of an OCL expression.

[placement is the position where the OCL expression.is used in the UML model (e.g., as invariant
5 Person).

contextual classifier defines the namespacelin which the expression is evaluated. For example, th
sifier of a precondition is the classifier thatis the owner of the operation for which the preconditio
ble within the precondition are all model elements that are visible in the contextual classifier.

self instance is the reference to the object that evaluates the expression. It is always an instance of
sifier. Note that evaluation of an*OCL expression may result in a different value for every instance
extual classifier.

sub clause a numbef of placements are stated explicitly. For each, the contextual classifier is d

he ExpressioninOcl Type

the’ abstract syntax OclExpression is defined recursively, we need a new metaclass to represen

abstract sy

1g of the value,
cl.

expression.

s already noted
ent of the OCL
in the attribute

ted meaning,
is used at a

ccurrence of an OCL expression three things need to be separated: the placement, the contextuall classifier, and

connected to

b contextual
n is defined.

the contextual
of the

tfined and well-

rules are given that exactly define the place where the OCL expression is attached to the UMIL model.

t the top of the

tax tree that represents an OCL expression. This metaclass is called ExpressionlnOcl, and it is

defined to be a

subclass of the Expression metaclass from the UML core, as shown in Figure 12.1. In UML the Expression metaclass has
an attribute language that may have the value ‘OCL.” The body attribute contains a text representation of the actual
expression. The bodyExpression association of ExpressionInOcl is an association to the OCL expression as represented by
the OCL Abstract syntax metamodel. The body attribute (inherited from Expression) may still be used to store the string
representation of the OCL expression. The language attribute (also inherited from Expression) has the value ‘OCL.’

© ISO/IEC 2012 - All rights reserved

175

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

OpaqueExpression

+owringClassifier %

| ExpressionlnO¢| | *TRE(ArEssion

0.1 -
o™ 0.1
If Cr
+gelf Cwy ner 0.1 o1
+HesulOw ner + ar Oy ner
+hody Bt pression
1
+reguity ariable -
+i ot ex iy ariable 0.1 OCfEXp!’ESSIOH
0.1 Variable -
+generatedTy e pararmetens ariable
E” l %’
Clagsifier T}'pedEIemenr

Figure 12.1| - Metaclass ExpressioninOcl added to the UML metamodel

12.2.1 ExpressioninOcl

An expressjon in OCL is an expression that is written in OCL The value of the language attribute is thefefore always
equal to ‘OCL.’

Associations

bodyExpr¢ssion The bodyExpression is an OclExpression that is the root of the actual OCL expfession, which
is described.fully by the OCL abstract syntax metamodel.

contextVafiable The ‘self*variable. The contextual classifier is the type of the ‘self” variable.

resultVarigble The.result’ variable representing the value to be returned by the operation.

parameter)Variable The variables representing the owned parameters of the current operation.

generatedType Types, such as collection types, that are created on demand by OCL to serve as|the types of

OclExpressions in the bodyExpression.

12.3 VYeII-formedness Rules

12.3.1 ExpressioninOcl

[3] [1] This expression is always written in OCL
context ExpressionInOcl

inv: language = ‘OCL’

176 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

12.4 Standard Placements of OCL Expressions

This sub clause defines the standard places where OCL expressions may occur, and defines for each case the value for the
contextual classifier. Note that this list of places is not exhausting, and can be enhanced.

1241 H

At many places in the TIMT, where an Expression is nsed_one can write this expression in QCI. To define

ow to Extend the Use of OCL at Other Places

he use of OCL

at such a pl
defined. Th

12.5 [

A definition constraint is a constraint that is linked to a Classifier. It may only consist-of one or more Le
function defined by the Let expression can be used in an identical way s an attribute or oper:
[heir visibility is equal to that of a public attribute or operation. The-putpose of a definition ¢
hble sub-expressions for use in other OCL expressions.

variable or
Classifier.]
define reus

The placem
rule must h|

hce, the main task is to define what the contextual classifier is. When that is given, the OCL €Xxj
is sub clause defines a number of often used placements of OCL expressions.

efinition

ent of a definition constraint in the UML metamodel is showncin Figure 12.2. The following w
pld. This rule also defines the value of the contextual Classifier.

ression is fully

Exps. The
ition of the
nstraint is to

ell-formedness

ModelElement 0.n +constraint [Constraint
(ffom Core) rconstrainedElement (.. | (fOmCore)
0..1
1 | +body
Classifier Expression
from Core) (from DataTypes)
ExpressioninOcl +bodyExpression OclExpression
1
Figure 12.2] - Situation of Ocl expression used as definition or invariant
12.5.1 Well-formedness Rules

(4] [1] Th
to

ExpressionInOcl is a definition constraint if it has the stereotype «definition» (A) and the constr

hint is attached

context ExpressionInOcl

def: isDefinitionConstraint : Boolean =

self.constraint.stereotype.name = ‘definition’ - A
and
self.constraint.constrainedElement->size() = 1 --B
and

self.constraint.constrainedElement.any(true).ocllsKindOf(Classifier) -- C

© ISO/IEC 2012 - All rights reserved

177

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[5] [2] For a definition constraint the contextual classifier is the constrained element.
context ExpressionInOcl
inv: isDefinitionConstraint implies
contextualClassifier =

self.constraint.constrainedElement.any(true).oclAsType(Classifier)

[6] [3] Inside a definition constraint the use of @pre is not allowed.

context-ExpressiontnOel

nv: 4+

12.6 Invariant

An invariant constraint is a constraint that is linked to a Classifier. The purpose of an inyariant constraint|is to specify
invariants fpr the Classifier. An invariant constraint consists of an OCL expression of type Boolean. The expression must
be true for pach instance of the classifier at any moment in time. Only when an instance is executing an ¢peration, this
does not need to evaluate to true.

The placement of an invariant constraint in the UML metamodel is equal to the placement of a definition|constraint,
which is shpwn in Figure 12.3. The following well-formedness rule must(hold. This rule also defines the [value of the
contextual Classifier.

12.6.1 Well-formedness rules

[7] [1] Thg constraint has the stereotype «invariant» (A) and’the constraint is attached to only one model elgment (B) the
copstraint is attached to a Classifier (C). The contextual classifier is the constrained element and theltype of the
OCL expression must be Boolean.

contgxt ExpressionInOcl

inv: delf.constraint.stereotype.name = ‘invariant’ - A
anjd
self.constraint.constrainedElement->size() = 1 -B
anld

self.constraint.constrainédElement.any(true).ocllsKindOf(Classifier) -- C

injplies

contextualClassifier =
selflconstraint.constrainedElement->any(true).oclAsType(Classifier)

and

selfbodyExpression.type.name = ‘Boolean’

[8] [2] Inside an invariant constraint the use of @pre 1s not allowed.

context ExpressionInOcl

inv: --

178 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

12.7 Precondition

A precondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a precondition is to
specify the conditions that must hold before the operation executes. A precondition consists of an OCL expression of type
Boolean. The expression must evaluate to true whenever the operation starts executing, but only for the instance that will

execute the

operation.

ISO/IEC 19507:2012(E)

The placement of a precondition in the UML metamodel is shown in Figure 12.4. The following well-formedness rule

must hold.

This rule also defines the value of the contextual Classifier.

MoglelElement 0..n +constraint Constraint
from Core) +cpnstrainedElement 0..n (from Core)
4& 0.1 T

{ordered} 1| +bod

{ . y
Feature - 10..n O @] Classifier Expression

(from Core) +feature 0.1 | (from Core) (from DataTypes)

BelpavioralFeature Z%

ExpressionInOg¢l|

(from Core)

Figure 12.3

- An OCL ExpressionInOcl used as a pre- or pestcondition

12.7.1 Well-formedness rules

+bodyExpression

OclExpresdion

[91 [1] The Constraint has the stereotype «precondition» (A), and is attached to only one model element (B)f and to a
BghavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to which
the constraint is attached, and the type of the OCL expression must be Boolean.

contgxt Expression
inv: elf.constraint.stereotype.name = ‘precondition’ --A
arld
sellf.constraint.constrainedElement->size() = 1 -B
arld
sellf.constraint.constrainedElement->any(true).ocllsKindOf(BehavioralFeature) -- C
arld
seflf.canstraint.constrainedElement->any(true) --D
.oclAsType(Behavioralkeature).owner->size() = 1
implies
contextualClassifier =
self.constraint.constrainedElement->any(true)
.oclAsType(BehavioralFeature).owner
and

self.bodyExpression.type.name = ‘Boolean’

© ISO/IEC 2012 - All rights reserved

179

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

[10][2] Inside a precondition constraint the use of @pre is not allowed.

context ExpressionInOcl

inv: --

12.7.2 Postcondition

Like a precondition, a postcondition is a constraint that may be linked to an Operation of a Classifier. The purpose of a
postconditigm 15 to specily the conditions that must hold alter the operation executes. A postcondition congists of an OCL
expression pf type Boolean. The expression must evaluate to true at the moment that the operation stops/¢xecuting, but
only for thq instance that has just executed the operation. Within an OCL expression used in a postconditipn, the “@pre”
mark can bg used to refer to values at precondition time. The variable result refers to the return\value of the operation if
there is any

The placement of a postcondition in the UML metamodel is equal to the placement of a precondition, which is shown in
Figure 12.4] The following well-formedness rule must hold. This rule also defines the.value of the contextual Classifier.

12.7.3 Well-formedness rules

[11][1] Thg Constraint has the stereotype «postcondition» (A), and it is attached to only one model element (B), that is a
BghavioralFeature (C), which has an owner (D). The contextual classifier is the owner of the operation to which
th¢ constraint is attached, and the type of the OCL expressiemmust be Boolean.

contgxt Expression

inv: gelf.constraint.stereotype.name = ‘postcondition’ -A
anjd
self.constraint.constrainedElement->size() = 1 --B
arld
self.constraint.constrainedElement->any(trtic).ocllsKindOf(BehavioralFeature) -- C
anld
self.constraint.constrainedElement->any(true) -D

.oclAsType(BehavioralFeature).owner->size() = 1

inplies

contextualClassifief =
self.constraint:constrainedElement->any().oclAsType(BehavioralFeature).owner

and

self.bodyExpression.type.name = ‘Boolean’

12.8 Initial Value Expression

An initial value expression is an expression that may be linked to an Attribute of a Classifier, or to an AssociationEnd. An
OCL expression acting as the initial value of an attribute must conform to the defined type of the attribute. An OCL
expression acting as the initial value of an association end must conform to the type of the association end. For instance,
the type of the attached Classifier when the multiplicity is maximum one, or OrderedSet with element type the type of the
attached Classifier when the multiplicity is maximum more than one.

The OCL expression is evaluated at the creation time of the instance that owns the attribute for this created instance in the
case of an initial value for an attribute. In the case of an initial value for an association end, the OCL expression is
evaluated at the creation time of the instance of the Classifier at the other end(s) of the association.

180 © ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

The placement of an attribute initial value in the UML metamodel is shown in Figure 12.5. The following well-
formedness rule must hold. This rule also defines the value of the contextual Classifier.

Note - The placement of an initial value of an association end is dependent upon the UML 2.0 metamodel. So are the well-
formedness rules for this case.

12.8.1 Well-formedness rules

[12][1] The-Expressionisthe initialvalue of anattribute (A),and the Attribute has-an owmer (B)-The contextual classifier
is the owner of the attribute, and the type of the OCL expression must conform to the type of the attfibute.
[13]
contgxt ExpressionInOcl
inv: delf.attribute->notEmpty() -A
arld
seflf.attribute.owner->size() = 1 -B
inplies

contextualClassifier = self.attribute.owner
and

self.bodyExpression.type.conformsTo(self.attribute.type)
[14][2] Ingide an initial attribute value the use of @pre is not allowed:

contgxt ExpressionInOcl

inv: - TBD
Fealure |'ieature +owner’ Classifiér

N 0..n froni G
(from Lore) {ordered} 0.1 (frond Core)

1 |+type
StriicturalFeature
(from Core) 0..n

4

Attribute Hattribute 0.1 Expression

(from Core) 0.1 ~-*initialValue ~ | (from DataTypes)

+bodyExpression

ExpressionInOcl OclExpression

Figure 12.4 - Expression used to define the initial value of an attribute

© ISO/IEC 2012 - All rights reserved 181

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

12.9 Derived Value Expression

A derived value expression is an expression that may be linked to an Attribute of a Classifier, or to an AssociationEnd.

An OCL expression acting as the derived value of an attribute must conform to the defined type of the attribute. An OCL
expression acting as the derived value of an association end must conform to the type of the association end. For instance,
the type of the attached Classifier when the multiplicity is maximum one, or OrderedSet with element type the type of the
attached Classifier when the multiplicity is maximum more than one.

A derived ¥
equal to thg

Note - The
rules for thi

12.10 G

A body exp
OCL expre
expression

Note - Th
formedness

1211 G

A guard is
a transition
evaluated a

The placem|
In order to
Classifier.

5 case.
)peration Body Expression
ression is an expression that may be linked to an Operation of a Clasgifier; that is marked Query

bives the result of the operation at a certain point in time.

b placement of an operation body expression is dependent upon the UML 2.0 metamodel. S

alue expression is an invariant that states that the value of the attribute or association end mu
value obtained from evaluating the expression.

placement of a derived value expression is dependent upon the UML 2.0 metamodel. So are the

st always be

well-formedness

i operation. An

sion acting as the body of an operation must conform to the result-type of the operation. Evaljating the body

rules for this case.

uard

in expression that may be linked to a Transitionnin a StateMachine. An OCL expression acting
restricts the transition. An OCL expression\acting as value of a guard is of type Boolean. Thg
the moment that the transition attached€o the guard is attempted.

ent of a guard in the UML metamodel is shown in Figure 12.5. The following well-formedness
state the rule a number of additional operations are defined. The rule also defines the value of]

Mod
(ft

Classifier
(from Core)

bIElement
om Core)

+contex

OclExpression

t 0..1
D..n | +behavior

+bodyExpression 1

Stat

(from Std

eMachine
e Machines)

0

N\ +statemachine ExpressioninOcl

0..n

+transitions

Transition
(from State Machines)

+state State

(from State Machines)

0..n
+internalTransition

-t
0..1

1 +transition
+guard 0.1

Guard 0..1 *+expression Expression
(from State Machines) ¥guard 1 (from DataTypes)

Figure 12.5

182

- An OCL expression used as a Guard expression

o are the well-

as the guard of
expression is

rule must hold.
the contextual

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

12.11.1 Well-formedness rules

[15] [1] The statemachine in which the guard appears must have a context (A), that is a Classifier (B). The contextual

cl

assifier is the owner of the statemachine, and the type of the OCL expression must be Boolean.

context ExpressionInOcl

inv: not self.guard.transition.getStateMachine().context.ocllsUndefined() -A
and
sqllf.guard.transition.getStateMachine().context.ocllsKindOf(Classifier) -- B
inpplies
dontextualClassifier =

[16][2] Ing

contg

inv:

12.12

This sub cl
expressiong
associated 4
of the UMI|

Visibility
visibleEle

Note - The
to the UML

Because of
of an opera
model. The

conf

The pathNd
in the UMI]

delf.bodyExpression.type.name = ‘Boolean’

self.guard.transition.getStateMachine().context.oclAsType(Classifier)
nd

ide a guard the use of @pre is not allowed.

xt ExpressionInOcl

Concrete Syntax of Context Declarations

huse describes the concrete syntax for specifying the context of the different types of usage of]

. It makes use of grammar rules defined in Clause"9 (“Concrete Syntax”). Here too, every pro

o the abstract syntax by the type of the attributesast. However, we must sometimes refer to the
to find the right type for each production,

les etc. must be defined in the UML metamodel. Here we assume that every classifier has an
nts(), which returns an instance ofitype Environment, as defined in Clause 9 (“Concrete Synf

ontext declarations as described.in this sub clause are not needed when the OCL expressions are 4
model. This concrete syntax.for context declarations is only there to facilitate separate OCL express

the assumption that the-concrete syntax below is used separate from the UML model, we assun
tion getClassifier,() ‘on the UML model that allows us to find a Classifier anywhere in the corr
signature of this operation is defined as follows:

ext Model¢ :findClassifier(pathName : Sequence(String)) : Classifier

me need not be a fully qualified name (it may be), as long as it can uniquely identify the classi
miodel. If a classifier name occurs more than once, it needs to be qualified with its owning p

OCL
duction rule is
abstract syntax

operation
ax”’).

ttached directly
ions in text files.

e the existence
esponding

fier somewhere
hckage

invalid. The

(recursively

Vuntil the gualified name-is uniaue If more than one classifieris found the operation return
7 T T Y r

variable Model is used to refer to the UML Model. It is used as Model.findClassifier().

Likewise, we assume the existence of an operation getPackage() on the UML model that allows us to find a Package
anywhere in the corresponding model. The signature of this operation is defined as follows:

context Model::findPackage(pathName :

In this case

Sequence (String)) : Package

the pathName needs to be a fully qualified name.

© ISO/IEC 2012 - All rights reserved

183

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

Note - The rules for the synthesized and inherited attributes associated with the grammar all depend upon the UML 2.0
metamodel. They cannot be written until this metamodel has been stabilized. Therefore only the grammar rules are given.

12.12.1 packageDeclarationCS

This production rule represents a package declaration.

[17]1[A] packageDeclarationCS ::= “package” pathNameCS contextDeclCS*

[18][B] pac

12.12.2 ¢

This produg
[19][A] corl
[20][C] cony
[21][D] cor

12.12.3

This produg
refers to thg

[22] propert

12.12.4 i

This produgd

[23][A] initOrDerValueCS[1] ::= “init” °;’ AQclExpression

[24][B] inif

12.12.5 ¢

This produd
declaration

endpackage

kageDeclarationCS ::= contextDeclCS*

ontextDeclarationCS

tion rule represents all different context declarations.
textDeclarationCS ::= propertyContextDeclCS
textDeclarationCS ::= classifierContextDeclCS

textDeclarationCS ::= operationContextDeclCS

)ropertyContextDecICS

tion rule represents a context declaration for expressions that can be coupled to a property. T}
“owner” of the property, the simple name refers to\its name, the type states its type.

yContextDeclCS ::= ‘context’ pathNameCS °::] simpleName’:’ typeCS initOrDerValueCS

hitOrDerValueCS

tion rule represents an initial or deriyed value expression.

nitOrDerValueCS[2]?

PDrDerValueCS[1] ::= ‘derive’ “:> OclExpression
initOrDerValueCS[2]?

lassifierContextDecICS

tion rule(represents a context declaration for expressions that can be coupled to classifiers. TH
to the-Classifier context is 'self' for the A form and explicitly specified for the B form.

[25]1[A] cla

le path name

e variable

sifiecrContextDeclCS ::= ‘context’ pathNameCS invOrDefCS

[26][B] classifierContextDecICS ::= ‘context’ simpleNameCS ":' pathNameCS invOrDefCS

12.12.6 invOrDefCS

This production rule represents an invariant or definition.

[27]1[A] invOrDefCS[1] ::= “inv’ (simpleNameCS)? “:* OclExpressionCS

invOrDefCS[2]

[28][B] invOrDefCS[1] ::= (‘static’)? ‘def” (simpleNameCS)? ‘:* defExpressionCS

184

invOrDefCS[2]

© ISO/IEC 2012 - All rights reserved

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

ISO/IEC 19507:2012(E)

12.12.7 defExpressionCS

This production rule represents a definition expression. The defExpressionCS nonterminal has the purpose of defining
additional attributes or operations in OCL. They map directly to a UML attribute or operation with a constraint that
defines the derivation of the attribute or operation result value. Note that VariableDeclarationCS has been defined in
Clause 9.

[29]1[A] defExpressionCS ::= VariableDeclarationCS ‘=" OclExpression

[30][B] defExpressionCS ::= operationCS ‘=" OclExpression

12.12.8 gperationContextDeclICS

This produgtion rule represents a context declaration for expressions that can be coupled tocan-operation.

[31] operatipnContextDeclCS ::= ‘context’ operationCS prePostOrBodyDeclCS

12.12.9 prePostOrBodyDecICS

This produgtion rule represents a pre- or postcondition or body expression.

[32][A] prePostOrBodyDeclCS[1] ::= ‘pre’ (simpleNameCS)? ;> OclExpressionCS
prePostOrBodyDeclCS[2]?

[33]1[B] prePostOrBodyDeclCS[1] ::= ‘post’ (simpleNameCS)? ‘:* OclExpressionCS
prePostOrBodyDeclCS[2]?

[34]1[C] prePostOrBodyDecICS[1] ::= ‘body’ (simpleNameC§)? *:> OclExpressionCS
prePostOrBodyDeclCS[2]?

12.12.10|operationCS

This produgtion rule represents an operation in-a context declaration or definition expression.
[35][A] opgrationCS ::= pathNameCS °::*simpleNameCS ‘(° parametersCS?)’ “:* typeCS?
[36][B] opgrationCS ::= simpleNameCS “(* parametersCS? ‘)’ *:” typeCS?

12.12.11|parametersCS

This produgtion rule represents the formal parameters of an operation.
[37] parametersCS[1]\.:* VariableDeclarationCS (*,” parametersCS[2])?
[38]

© ISO/IEC 2012 - All rights reserved 185

https://iecnorm.com/api/?name=94f46ce5f56c0337822b701405ad1788

	Foreword
	Introduction
	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Informative References

	4 Terms and Definitions
	5 Notational Conventions
	6 Additional Information
	6.1 Changes to Adopted OMG Specifications
	6.2 Structure of the Specification
	6.3 Acknowledgements

	7 OCL Language Description
	7.1 General
	7.2 Why OCL?
	7.3 Introduction
	7.4 Relation to the UML Metamodel
	7.5 Basic Values and Types
	7.6 Objects and Properties
	7.7 Collection Operations
	7.8 Messages in OCL
	7.9 Resolving Properties

	8 Abstract Syntax
	8.1 Introduction
	8.2 The Types Package
	8.3 The Expressions Package
	8.4 Literal Expressions

	9 Concrete Syntax
	9.1 General
	9.2 Structure of the Concrete Syntax
	9.3 A Note to Tool Builders
	9.4 Concrete Syntax
	9.5 Environment Definition
	9.6 Concrete to Abstract Syntax Mapping
	9.7 Abstract Syntax to Concrete Syntax Mapping

	10 Semantics Described Using UML
	10.1 Introduction
	10.2 The Values Package
	10.3 The Evaluations Package
	10.4 The AS-Domain-Mapping Package

	11 OCL Standard Library
	11.1 Introduction
	11.2 The OclAny, OclVoid, OclInvalid, and OclMessage Types
	11.3 Operations and Well-formedness Rules
	11.4 Primitive Types
	11.5 Operations and Well-formedness Rules
	11.6 Collection-Related Types
	11.7 Operations and Well-formedness Rules
	11.8 Predefined Iterator Expressions
	11.9 Mapping Rules for Predefined Iterator Expressions

	12 The Use of OCL Expressions in UML Models
	12.1 Introduction
	12.2 The ExpressionInOcl Type
	12.3 Well-formedness Rules
	12.4 Standard Placements of OCL Expressions
	12.5 Definition
	12.6 Invariant
	12.7 Precondition
	12.8 Initial Value Expression
	12.9 Derived Value Expression
	12.10 Operation Body Expression
	12.11 Guard
	12.12 Concrete Syntax of Context Declarations

	13 The Basic OCL and Essential OCL
	13.1 Introduction
	13.2 OCL Adaptation for Metamodeling
	13.3 Diagrams

	Annex A: Semantics
	A.1 General
	A.2 Object Models
	A.3 Interpretation of Object Models
	A.4 Ocl Types and Operations
	A.5 Ocl Expressions and Constraints

	Annex B: Bibliography
	C.1 Copyright Information
	C.2 Use Of Specification - Terms, Conditions & Notices
	C.3 Licenses
	C.4 Patents
	C.5 General Use Restrictions
	C.6 Disclaimer Of Warranty
	C.7 Restricted Rights Legend
	C.8 Trademarks
	C.9 Compliance

	Annex CLegal Information

