
INTERNATIONAL
STANDARD

ISOAEC
144784

First edition
1998-12-15

Information technology - Computer,
graphics and image processing -
Presentation Environment for Multimedia
Objects (PREMO) -
Part 1:
Fundamentals of PREMO

Technologies de Yin forma tion - Infographie et traitement d’images -
Environnement de pr&entation d’objets multimedia (PREMO) -

Partie 1: Principes fondamentaux de PREMO

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478=1:1998(E)

Contents Page

Foreword.
....

... 111

Introduction..i v

1 Scope ... 1

2 Normative references. ... 1

3 Definitions . 2

4 Symbols and abbreviations . 6

5 Conformance . 6

6 Requirements for PREMO ... 7
6.1 Introduction ...
6.2 Extensibility8
6.3 Configurability8
6.4 Incremental, separable development8
6.5 Simplicity8
6.6 Easeofuse8
6.7 Otherinfluences9

6.7.1 Application development environment 9
6.7.2 Execution environment .. .9

6.8 Functionality9
6.8.1 Introduction. .. .9
6.8.2 Computer graphics9
6.8.3 User interfaces9

0 ISO/IEC 1998
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized
in any form or by any means, electronie or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISO/IEC Copyright Office l Case postale 56 l CH-121 1 Geneve 20 l Switzerland

Printed in Switzerland

ii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

6.8.4 Dynamit interactive graphics 9
6.8.5 Animation .. 10
6.8.6 Audi0 ... 10
6.8.7 Video .. 10
6.8.8 Other and future media .. 10
6.8.9 Co=--representations ... 10
6.8.10 Cooperating applications .. 10

7 Architecture of PREMO ... 10
7.1 Introduction ... 10
7.2 The Standards perspectivel 1
7.3 The functional perspectivell

7.3.1 Introduction. .. 11
7.3.2 Description techniques .. 11
7.3.3 The Object model .. 12
7.3.4 Components .. 12

7.4 The System perspective. 12
7.4.1 Configuring PREMO-based applications. 12
7.4.2 Distributed multimedia. ... 12
7.4.3 Communication in PREMO 12

(3 Object model ’ . 13
8.1 Introduction. .. .1 13
8.2 Basicconcepts ... 13
8.3 Non-objecttypes ... 13
8.4 Objecttypes ... 14
8.5 Object identity and Object reference 14
8.6 Operations .. 14
8.7 Subtyping and inheritance. 15

8.7.1 Overview ... 15
8.7.2 Subtyping ... 15
8.7.3 Inheritance ... 16
8.7.4 Operation dispatching. .. 16

8.8 Abstract Types. .. 18
8.9 Operation request semantics 18
8.10 Protected operations .. 19
8.11 Object and Object reference life cycles 19
8.12 Exceptions. ... 20

9 Mow PREMO components are described. 21

A Notational conventions ... 22
A. 1 Type declarations .. 22
A.2 Data type definitions .. 22

A.2.1 Simple data type definitions 22
A.2.2 Constructed type definitions 24

A.3 Object type definitions 25
A.4 Definition of finite state machines 26
AS Reference to operations and objects 27
A.6 Shorthands for Operation specifications 27

A.6.1 State transition operations of finite state machines 28
A.6.2 Sequential composition of operations. 28

A.7 Specification of components and profiles. 29

B Generic types. 31

C Graphical conventions . 33
C. 1 Graphical conventions for generic types. 36

iii

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1: 1998(E) 0 ISO/IEC

Foreword

ISO (the International Organization for Standardization) and IEC (the International
Electrotechnical Commission) form the specialized System for worldwide standardi-
zation. National bodies that are members of ISO or IEC participate in the development
of International Standards through technical committees established by the respective
organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations,
government and non-governmental, in liaison with ISO and IEC, also take part in the
work.

In the field of information technology, ISO and IEC have established a joint technical
committee ISO/IEC JTC 1. Draft International Standards adopted by the joint technical
committees are circulated to the national bodies for voting. Publication as an Interna-
tional Standard requires approval by at least 75% of the national bodies casting a vote.

ISO/IEC 14478 1 was prepared by Joint Technical Committee ISO/IEC JTC 1, Infor-
mation technology, Subcommittee SC24, Computer graphics and image processing.

ISO/IEC 14478consists of the following Parts under the general title Information tech-
nology - Computer graphics and image processing - Presentation Environment for
Multimedia Objects (PREMO):

- Part 1: Fundamentals of PREMO

Part 2: Foundation Component

- Part 3: Multimedia Systems Services

Part 4: Modelling, Rendering, and Interaction Component

Additional Parts may be defined as this work Progresses.

Annexes A and B form an integral part of this part of ISO/IEC 14478. Annex C is for
information only.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

Introduction

The need for a coordinated method for addressing all aspects of the construction of,
presentation of, and interaction with multimedia objects has led to the standardization
of this Presentation Environment for Multimedia Objects. Multimedia means objects
consisting of still Computer graphics, moving Computer graphics (animation), synthet-
ic graphics of all types, audio, still images, moving images (including Video), images
coming from imaging operations, and any other content type or combination of con-
tent types that tan be “presented”. ISO/IEC 14478 is extensible and configurable, and
allows the separate, incremental development of additional standardized and non-
standardized components to meet the needs of application communities.

PREMO currently consists of the following Parts:

Part 1: Fundamentals of PREMO

Contains a motivational overview of PREMO giving its scope, justification, and an ex-
planation of key concepts, describes the Overall architecture of PREMO, and specifies
the common semantics for specifying the externally visible characteristics of PREMO
objects in an implementation-independent way.

Part 2: Foundation component

This component lists an initial set of Object types and non-Object types useful for the
construction of, presentation of, and interaction with multimedia information. Any
conforming PREMO implementation shall support these Object types.

Part 3: Multimedia Systems Services Component

Describes objects that provide an infrastructure for building multimedia computing
platforms that support interactive multimedia applications dealing with synchronized,
time-based media in a heterogeneous distributed environment.

Part 4: Modelling, Presentation, and Interaction Component

Describes objects which are needed for advanced Computer Systems using
Video, audio, or other types of presentable media enhanced by time aspects.

graphics,

NOTE - Further internationally standardized components are expected to be developed
within ISO/IEC JTClKC24 and by other subcommittees.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

INTERNATIONAL STANDARD 0 ISO/IEC ISO/IEC 1447%1:1998(E)

Information technology - Computer graphics and image
processing - Presentation Environment for Multimedia Objects
(PREMO) -
Part 1: Fundamentals of PREMO

1 Scope

ISO/IEC 14478 specifies techniques for supporting interactive Single, and multiple media applications which recognize and em-
phasize the interrelationships among user interfaces, multimedia applications, and multimedia information interchange.

ISO/IEC 14478 defines a flexible environment to encompass modular functionality and is extensible through the creation of fu-
ture components, both within and outside of Standards committees. It supports a wide range of multimedia applications in a con-
sistent way, from simple drawings up to full motion Video, Sound, and virtual reality environments.

ISO/IEC 14478 is independent of any particular implementation language, development environment, or execution environment.
For integration into a programming environment, the Standard shall be embedded in a System dependent interface following the
particular conventions of that environment. ISO/IEC 14478 provides versatile packaging techniques beyond the capabilities of
monolithic Single-media Systems. This allows rearranging and extending functionality to satisfy requirements specific to partic-
ular application areas. ISO/IEC 14478 is developed incrementally with Parts 1 through 4 initially available. Other components
are expected to be standardized by ISO/IEC JTC 1 SC24 or other subcommittees.

ISO/IEC 14478 provides a framework within which application-defined ways of interacting with the environment tan be inte-
grated. Methods for the definition, presentation, and manipulation of both input and output objects are described. Application-
supplied structuring of objects is also allowed and tan, for example, be used as a basis for the development of toolkits for the
creation of, presentation of, and interaction with multimedia and hyper-media documents and product model data.

ISO/IEC 14478 is able to support construction, presentation, and interaction with multiple simultaneous inputs and Outputs using
multiple media. Several such activities may occur simultaneously, and the application program tan adapt its behaviour to make
best use of the capabilities of its environment.

ISO/IEC 14478 includes interfaces for external storage, retrieval and interchange of multimedia objects.

2 Normative referemces

The following Standards contain provisions which, through reference in this text, constitute provisions of this part of ISO/IEC
14478. At the time of publication, the editions indicated were valid. All Standards are subject to revision, and Parties to agree-
ments based on this part of ISO/IEC 14478 are encouraged to investigate the possibility of applying the most recent editions of
the Standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 14478-2: 1998, Information technology - Computer graphics and image processing - Presentation Envirqnment for
Multimedia Objects (PREMO) - Part 2: Foundation Component.

ISOIIEC 14478-3: 1998, Information technology - Computer graphics and image processing - Presentation Environment for
Multimedia Objects (PREMO) - Part 3: Multimedia Systems Services.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISOHEC 14478=1:1998(E) 0 ISO/IEC

ISOIIEC 14478-4: 1998, Information technology - Computer graphics an.d image processing - Presentation Environment for
Multimedia Objects (PREMO) - Part 4: Modelling, Rendering, and Unteraction Component.

3 Definitions

For the purposes of ISO/IEC 14478, the following definitions apply.

3.2.1 multimedia: The creation, editing, composing, and/or presentation of products consisting of any combination of nze-

3.2.1.1 multimedia Object: An Object consisting of one or more types of media that tan be presented to a user-.

3.2.2 medium (Plural media): A means by which information is
include audio, Video, (animated) graphics, images, text.

perceived, expressed, stored, or transmitted. Examples

3.2.3
puts.

dynamic interactive graphics: Graphits applications where the graphics varies in real-time in response to user in-

3.2.4 animation: Series of pictures in a time-ordered sequence to display as a Video medium. This covers all changes that
have a visual effect. It thus includes the time-varying Position, shape, colour, transparency, structure, and texture of an Object,
and changes in lighting, Camera position, orientation, and focus, and even changes of rendering techniques.

3.2.5 text: A medium encompassing a Character-based encoding only.

3.2.6 audio: A medium encompassing all forms of information transmitted by Sound.

3.2.7 Video: A medium encompassing a continuous series of pictures typically depicting motion or time sequenced events.

3.2.8 co-representation: A representation of
ways from which the most appropriate is Chosen.

information where the same information is presen ted in several different

3.2.9 component: A PREMO component is a set of related
tY Pes of a component are clustered into (component) profiles.

Object types and non-Object types. The Object and non-Object

3.2.9.1 Standard component: A component that is defined in one of the Parts of ISO/IEC 14478, or a component that
has been registered by an approved registration authority, and conforming to the rules defined for components in PREMO.

3.2.9.2 non-Standard component: A component that is not a Standard component, but which obeys the rules defined
by PREMO for conforming components.

32.10 Profile: A Profile is set of related Object types and non-Object types from which objects tan be instantiated, and a
configuration specification which defines dependencies between Object types and other profiles. Profiles offer a set of Services
embodied by the operations defined on its constituent Object types.

3.2.10.1 basic
which shall be

Profile (of a component):
provided by all complying

A mandatory set of Object and
implementation of a component.

non-Object types for a specific component

3.2.11 Object: An entity that encapsulates some private state information or data, a set of assoc iated
ulate the data, and possibly a thread of control so that col lectively they tan be treated as a Single unit.

operations that manip-

3.2.11.1
iour.

Object type: It defines the operations of objects; these operations collectively characterize the object’s behav-

3.2.11.2 Object reference: An Object name which reliably denotes a particular Object instance. This is a non-Object.

3.2.12
haviour

state: Information encapsulated within an Object that has to be remembered when one Operation alters the future be-
of future operations.

3.2.13
Object

identity (of objects): Objects have a unique, immutable
ndependent of its state or behaviour.

identi ty which provides a means to denote or refer to the
i

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

3.2.14 attribute (of objects): A pair of accessor and mutator functions, to retrieve the value of to set the value of the at-
tribute.

3.2.14.1 retrieve only attribute: An Object attribute where the mutator function to set the value,
present, does not Change the value of the attribute, and raises an exception.

though conceptually

3.2.15 signature (of operations): An Operation3 signature consists of a list of Parameter types, and a list of result types.

3.2.16 interface (of objects): The set of Operation signatures defined for a type.

3.2.17 non-Object types: Things that are not objects, e.g., integers, real numbers.

3.2.18 Operation: Describes an action that tan be applied to an Object, using Parameters.

3.2.18.1 Operation invocation: Activation of an object’s action, by describing its Parameters, possibly causing results to
be returned.

3.2.18.2 Operation request: Synonym for Operation invocation.

3.2.18.3 Operation dispatching: The selection process which selects a specific Operation implementation for execution.

3.2.18.4 Operation overloading: The implernen tation of an Operation defined for a derived in te@ace Supersedes
plementation of the Same Operation defined for a base interface. This effect is called Operation overloading.

the im-

3.2.19 client: (of another Object) An Object issuing an Operation request.

3.2.20 exception: Information returned if an error condition has occurred during the execution of a request of an Operation.

3.2.21 controlling Parameter: Special Parameter conceptually present for all operations, used to control the way opera-
Gons are dispatched. It refers to the Object type on which the Operation is defined.

3.2.22 subtyping:
ceptable in contexts

A relation ship bet ween
another tY Pe.

types. It defines the rules by which objects of one type are determined to be ac-
expecting

3.2.23 subtype: A type S is a subtype of another type T if any Object of type S tan be used in any context that expects an
Object of type T.

3.2.23.1 immediate subtype: A type S is an immediate subtype of another type T, if T is the immediate Supertype of S.

3.2.24 Supertype: A type T is a Supertype of S, if S is a subtype of T.

3.2.24.
types.

1 multiple Supertype: An Object type tan have more one Supertype; they are referred to as multiple super-

3.2.24.2 immediate Supertype: A type T is an immediate Supertype of type S, if it is a Supertype of S, and there is no type
Q such that Q is a Supertype of S and T is a Supertype of Q.

3.2.25
of T.

direct instance: An Object is a direct instance of a type T, if it is an instance of Tand not an instance of any subtype

3.2.26 immediate type: The type of the direct instance of an Object instance.

3.2.27 type
type itself.

graph (of a type): The set of all supertypes of a type (including the recursively defined supertypes) plus the

3.2.28 inheritance : A notational mech anism for defining Operation reuse. It is a relationship on interfaces.

3.2.28.1 multiple inheritance: A notational mechanism for defining Operation reuse on multiple base interfaces.

3.2.28.2 Single inheritance: As opposed to multiple inheritance; denotes an interface having only one base interface.

3.2.29 derived interface: If the interface P inherits from Q, P may also be referred to as a derived interface.

3.2.30 base interface: If the interface P inherits from (3, Q is a base interface (of P).

3.2.31 abstract Object type: Non-instantiable Object type.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1: 1998(E) 0 ISO/IEC

3.2.32 Operation request semantics: A finer control an Object has to Service an Operation request.

3.2.32.1 Operation receptor: A holder conceptually assigned to each ope.ration in which Operation requests are placed.

3.2.32.2 Operation receptor mode: An immutable characteristics of an Operation receptor.

3.32.2.1 synchronous Operation receptor mode: One of the three possible modes of an Operation receptor; callers
are suspended on Operation requests.

3.32.2.2 asynchronous Operation receptor mode: One of the three possible modes of an Operation receptor; call-
arguments are stored. ers are not suspended on Operation requests, and the request’s

3.32.2.3 sampled Operation receptor mode: 0
not suspended on Operation requests, and only one

ne of the three possible modes of an Operation receptor; callers are
argument is stored. requests

3.2.33 protected Operation: An
es cannot request this Operation.

Operation which tan be invoked from within the Object instance only; other Object instanc-

3.2.34
stroyed.

life cycle (of objects and references): The mechanisms whereby objects and Object references are created and de-

3.2.34.1 life cycle facilities: The boundary between PREMO and its implementation environment, providing life cycle
related Services.

3.2.34.2 create facility: Facility to create objects possibly using initialization variables.

3.2.34.3 copy facility: Facility to create objects as copies of already existing objects.

3.34.3.1 shallow copy: Version of the copy facility
the values of the attributes in the orig inal Object.

attribute values are set in the newly created Object using

3.34.3.2 deep copy: Version of the copy facility when attribute values are set in the newly created Object using the
values of the attributes in the original Object except for Object references; in the case of Object references, the referred
objects are (deep) copied, and the new reference values are used to set the attributes.

3.2.34.4 cast facility: Facility to create an Object reference to an already existing Object, referring to a different immediate
tY Pe.

3.2.34.5 destroyReference facility: Facility to destruct an Object reference.

3.2.34.6 destroyobject facility: Facility to destruct an Object instance.

3.2.35 type Schema: A notational convention used to describe Object types (see clause A.3).

3.2.36 Operation Schema: A notational convention used to describe an Operation within a type Schema.

3.2.37 component Schema: A notational convention to describe components (see clause A.7).

3.2.38 Profile Schema: A notational convention to describe profiles within a component Schema (see clause A.7).

3.2.39 generic type (Schema): A notational convention used to describe a family of PREMO types, based on the general
notational conventions of type Schema (see clause B).

3.2.40 formal types: Symbols used in generic type Schemas to denote non-specified Object or non-Object types.

3.2.41 actualization: A notational convention whereby generic type Schema are used to define PREMO Object types
through replacing formal types by PREMO Object or non-Object types.

The following alphabetical list gives the subclause of each definition.

abstract Object type 3.2.31

actualization 3.2.41

animation 3.2.4

asynchronous Operation receptor mode 3.32.2.2

4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

attribute (of objects)
audio
base interface
basic Profile (of a component)
cast facility
client
co-representation
component
component Schema
controlling Parameter
copy facility
create facility
deep copy
derived interface
destroyobject facility
destroyReference facility
direct instance
dynamic interactive graphics
exception
formal types
generic type (Schema)
identity (of objects)
immediate subtype
immediate Supertype
immediate type
inheritance
interface (of objects)
life cycle (of objects and references)
life cycle facilities
medium (Plural media)
multimedia
multimedia Object
multiple inheritance
multiple Supertype
non-Object types
non-Standard component
Object
Object reference
Object type
Operation
Operation dispatching
Operation invocation
Operation overloading
Operation receptor
Operation receptor mode
Operation request
Operation request semantics

3.2.14
3.2.6
3.2.30
3.2.10.1
3.2.34.4
3.2.19
3.2.8
3.2.9
3.2.37
3.2.21
3.2.34.3
3.2.34.2
3.34.3.2
3.2.29
3.2.34.6
3.2.34.5
3.2.25
3.2.3
3.2.20
3.2.40
3.2.39
3.2.13
3.2.23.1
3.2.24.2
3.2.26
3.2.28
3.2.16
3.2.34
3.2.34.1
3.2.2
3.2.1
3.2.1.1
3.2.28.1
3.2.24.1
3.2.17
3.2.9.2
3.2.11
3.2.11.2
3.2.11.1
3.2.18
3.2.18.3
3.2.18.1
3.2.18.4
3.2.32.1
3.2.32.2
3.2.18.2
3.2.32

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478=1:1998(E) 0 ISO/IEC

Operation Schema
Profile
Profile Schema
protected Operation
retrieve only attribute
sampled Operation receptor mode
shallow copy
signature (of operations)
Single inheritance
Standard component
state
subtype
subtyping
Supertype
synchronous Operation receptor mode
text
type graph (of a type)
type schema
Video

3.2.36
3.2.10
3.2.38
3.2.33
3.2.14.1
3.32.2.3
3.34.3.1
3.2.15
3.2.28.2
3.2.9.1
3.2.12
3.2.23
3.2.22
3.2.24
3.32.2.1
3.2.5
3.2.27
3.2.35
3.2.7

4 Symbols and abbreviations

CADKAM: Computer-Aided Design / Computer-Aided Manufacturing.

IEC: International Electrotechnical Commission.

1s: International Standard.

ISO: International Organization for Standardization.

JTC: Joint Technical Committee.

PREMO: Presentation Environments for Multimedia Objects.

2SD: Two and a half dimensional.

2D: Two-dimensional.

3D: Three-dimensional.

5 Conformance

A component is defined in PREMO to be a set of related Object types and non-Object types and a set of Profile specifications. A
component is considered to offer a set of Services, embodied by the operations on the objects, and may also depend on Services
provided by other components.

PREMO defines conformance with respect to components as follows:

a) PREMO specifies conformance rules that shall apply for any definition of a conforming component;

b) PREMO specifies conformance rules that shall apply for any implementation of a conforming component;

c) PREMO specifies conformance rules that shall apply for any implementation of a conforming PREMO System.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478=1:1998(E)

A conforming component shall be defined according to the rules described in clause 9. It may also include additional require-
ments that shall apply to implernentations of the component.

An implementation of a conforming component shall provide the mandatory set of functionality designated as a basic Profile for
that component, realize the configuration specification defined for that component, and in addition provide for any other imple-
mentation requirements that are given as part of the component’s definition.

A Standard component is a conforming com
approved registration authority.

ponent defined in one of the Parts of PREMO or one that has been registered by an

An implementation of a conforming PREMO System (i.e., a System implemented
formante requirements of each of the components from which it is constituted.

using PREMO components) shall obey the con-

6 Requirements for PREMO

61 l Introduction

Technology has evolved to the Point that digital media has become an inherent part of most applications. In addition, many ap-
plications use multiple presentation media simultaneously. This combination has resulted in a large number of diverse require-
ments. ISO/IEC 14478 is intended to address the presentation requirements of such diverse application areas as:

a) medical Systems,

b) education/training,

c) virtual reality,

d) geographic information Systems,

e) digital publications,

f) scientific visualization and data exploration,

g) entertainment,

h) realtime command control Systems, and

i> simulation;

and such presentation and interaction techniques as:

j) animation,

k) simultaneous use of multiple media,

1) multimodal user interfaces,

m) realistic rendering (including various dimensionalities, such 2D, 2.5D, 3D, and incorporating various media, such as
Video, Sound, and other non-visual data).

ISO/IEC 14478 provides a common underlying functional nucleus to support these application areas and presentation techniques,
as weh as future areas and techniques. PREMO also enables the use of interaction techniques appropriate for specific applica-
tions, such as those listed above.

PREMO provides a generic framework, into which various organizations or applications may place their specialised objects with
specific behaviour, thereby enabling interoperability. In this sense, PREMO is intended to serve as middleware, coordinating
multimedia components.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478=1:1998(E) 0 ISO/IEC

62 . Extensibility

ISO/IEC 14478 is extensible in that it makes provisions for extending the functionality specified in the Standard via a number of
standardized mechanisms. In particular, additional components may be developed which respond to the needs of specific appli-
cation areas. See also clause B in ISO/IEC 14478-2 for further details on the way PREMO objects may be extended.

Many aspects of ISO/IEC 14478 are extensible by an ISO-administered registration mechanism, so that a uniform description of
the extension is available to all implernentations.

63 . Configurability

The need for configurability arises because different application areas have different demands on the task of presenting their data.
PREMO embodies a configurable System design which offers a foundation from which specific requirements for Object support
and interrelationships tan be realized. This configurable System design is based on the concepts of components and profiles (see
clause 7.3.4 and clause 9). In a configurable System, profiles tan be Chosen according to the special needs of particular applica-
tions. The advantages of a configurable System design are:

a) Applications do not reference the whole System but only the specific component profiles they require. For example, an
application might need only an audio or Video Profile.

b) When introducing new techniques, e.g., shading methods within a graphics System, or a special purpose graphics data
storage, there is no need to implement a completely new graphics System for the realization of these new approaches. They
tan be integrated as new Object types that fit within the existing foundation.

64 . Incremental, separable development

ISOIIEC 14478 is described and structured in such
a foundation for a n evolvable fa .mily of Standards.

a way that it tan be developed incrementally. The Chosen architecture provides

65 . Simplicity

Aspects, such as portability and maintenance, are greatly enhanced by keeping underlying concepts simple. Simplicity means that
PREMO is based on a general architecture under which various sets of objects may be utilized. Objects are defined in terms of
their externally visible behaviour, thereby hiding implementation details. Hierarchical structuring of and within objects is possi-
ble, thereby allowing more complex entities to be assembled from simpler Parts.

66 . Ease of use

PREMO is easy to use for at least the following classes:

a) end users (individuals or groups), who work with information processing applications based on PREMO;

b) programmers, who use PREMO components to build applications;

C>
d)

vendors, who develop, sell, and Service

System administrators, who control and

implernentations of PREMO;

manage multimedia Systems.

and IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

67 . Other influences

6.7.1 Application development environment

PREMO takes advantage of an Object-oriented design philosophy. This aspect is differentiated from different kinds of language
bindings addressed below. Thinking in terms of objects leads to a natura1 description of the functionality of distributed multime-
dia Systems entailingr

a) uniform mechanism to access passive or active entities;

b) the treatment, description, assignment, and modification of the attributes of objects as inherent information;

c) a clear understanding concerning the concurrent existente of objects that the user may freely select and modify; and

d) the definition of different objects with equivalent behaviour as instances of a common tY Pe.

Many benefits of the Object-oriented approach taken by PREMO tan be realized without requiring that applications be imple-
mented in Object-oriented or Object-based languages. PREMO tan be bound to both Object-oriented and non Object-oriented
languages. However, the functionality of PREMO is defined so that the advantages of Object-oriented environments - especially
subtyping and inheritance and the ability to define mutual communication between application objects and multimedia objects
- tan be used. Subtyping and inheritance offer mechanisms to extend PREMO functionality and to adapt it to specific areas of
applications, whereas mutual communication supports a stronger symmetry between input and output. Notwithstanding the
above, one main goal for describing the functionality is that it is not limited to only Object-oriented environments.

6.7.2 Execution environment

PREMO allows applications to take advantage of distributed environments. It allows distribution of func
ple processors. Where and when applicable, PREMO is compatible with, or is defined in terms of, other

tionalities across multi-
international Standards.

68 . Functionality

6.8.1 Introduction

PREMO supports the construction of, presentation of, and interaction with objects consisting of still Computer graphics, moving
Computer graphics (animation), audio, text, still images, moving images (including Video), images coming from imaging opera-
tions, and any other media type or combination of media types that tan be presented.

6.8.2 Computer graphics

The objective of PREMO is to consider the evolving needs of the Computer graphics and applications communities. Increasingly
this means catering to the integration of Computer graphics in multimedia applications. The underlying concepts and functionality
of PREMO provide a visible route which the community tan follow to take advantage of ISO/IEC 14478. This shall be accom-
plished by providing simple yet extensible functionality in a well-defined manner.

6.8.3 User interfaces

PREMO goes beyond the presentation and interaction requirements of simple
grated use of multiple media, for example, through simultaneous presentations.

6.8.4 Dynamit interactive graphics

oraphical user interfaces by supporting the inte- b

PREMO provides for real-time control and presentation of dynamic interactive Computer graphics applications, where the graph-
ics varies in real-time in response to external inputs. It allows an application to integrate dynamic Computer graphics with other
media.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISOLEC 14478=1:1998(E) 0 ISO/IEC

6.8.5 Animation

PREMO provides for real-time control of media presentation, including the presentation of time-varying information, e.g., slide
Shows, smoothly moving objects. It allows an application to integrate animation with other media. PREMO provides mechanisms
that tan be used to create animated audio-visual applications.

6.8.6 Audio

PREMO
integrate

provides for real-time control of both analogue and digital audio information
audio with other media.

presentation. It allows an application to

6.8.7 Video

PREMO provides for real-time control of the presentation of both analogue and digital Video information. This includes both
Single frame and time-varying Video data. It allows an application to integrate Video with other media.

6.8.8 Other and future media

PREMO supports media besides the ones listed in this
of media types that tan be presented. Examples of such

6.8.9 Co-representations

clause.
media

PREMO is extensible to support any media type
include haptic and thermal sensory presentations.

or combination

PREMO supports co-representations. That is, the same information tan be presented in several different ways from which the
most appropriate is Chosen. For example, PREMO allows a modeller to choose the most appropriate renderer from among those
available. It allows information to be represented in a variety of media - for example audio and Video - from which the most
suitable tan be Chosen based on the application’s needs and the capabilities of available devices.

6.8.10 Cooperating applications

PREMO supports real-time exchange among applications cooperating in interaction with the
Operation between different media and the exchange of Single media and multimedia objects.

71 .

Architecture of PREMO

Introduction

same Scene. This includes both co-

PREMO tan be conceptually described in at least three different ways. These three architectural perspectives each have their own
way of describing the Parts of PREMO and their interrelations.

The three architectural perspectives are:

a) the Standards perspective, which explains how PREMO is organized as a multi-part Standard.

b) the functional perspective, which introduces the organization of PREMO as a collection of components, profiles, and
Object and non-Object types. It also includes types related to non-presentation functionalities. Emerging ISO and other Object
technology Standards - such as standardized Object description techniques, Object request brokers, traders, and Object serv-
ices - should be influenced by PREMO requirements and provide capabilities that PREMO tan utilize.

c) the System perspective, which explains what Systems may result from PREMO implernentations and how different
PREMO implernentations shall interoperate. It explains what aspects of an environment should be brought under control of
PREMO as opposed to transparent aspects (e.g., distribution). This architecture also allows precise formulation of portability
and interoperability requirements for PREMO implernentations.

10

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 1447%1:1998(E)

72 . The Standards perspective

PREMO envisages a broad scope of functionality which cannot be covered by a Single activity. Therefore, PREMO has been
designed as a multipart Standard. The first part (ISO/IEC 14478-1) explains key concepts, describes the Overall architecture of
PREMO, and specifies the common semantics for specifying the externally visible characteristics of PREMO objects in an im-
plementation-independent way. The second part (ISO/IEC 14478-2) defines those objects that any conforming PREMO imple-
mentation shall support. The third part (ISO/IEC 14478-3) defines a Multimedia Systems Services component which provides an
infrastructure for building computing platforms that support interactive multimedia applications dealing with synchronized,
time-based media in a heterogeneous distributed environment. The fourth part (ISOLIEC 14478-4) defines a Modelling, Presen-
tation, and Interaction component which is targeted at providing paradigm independent support for high-level modelling and
presentation, enhanced by time control and interaction, and using various media.

Further Parts are anticipated that will be appropriate for specific application areas. For example, a PREMO-based mapping from
existing Computer graphics Standards will allow many existing applications to be integrated into multimedia presentations. Also,
the development of toolkits and highly interactive and portable authoring tools for the generation and presentation of multimedia
documents could be defined based on functionality specified by other international Standards committees.

73 . The functional perspective

7.3.1 Introduction

The functional perspective groups presentation and interaction functionality in terms familiar to an application programmer
(e.g., aspects of time , geometry, etc.) and functionality necessary to achieve certain effects, where the programmer is possibly
unaware of the underlying techniques used to achieve these effects (e.g., forms of anti-aliasing, colour representations, structur-
ing of presentation data).

The functional architecture is restricted to a conceptual description of the functionality, leaving further detail or realization to the
foundation and non-foundation components. It identifies the functional areas common to all media components, but possibly hav-
ing different realizations in each environment.

The functional architecture explains the nature of the rules for components and profiles such that they tan be combined (config-
ured) and linked to other standardized or external non-Standard components. The selection of components to assemble the func-
tionality needed for a given application and in Order to be able to run on a target platform is based on criteria such as:

- how components tan interface to one another,

- how new components may reuse Parts of older components, and

- how components tan be realized on the corresponding part of the implementation platform.

7.3.2 Description techniques

PREMO functionality is described in terms of Object behaviour. Esch PREMO Object is specified by giving:

a) a definition of its interface;

b) a description of the object’s behaviour. Such a description specifies the object’s visible behaviour, the effects of opera-
tions on the object’s internal state, the output Parameters of each Operation request it is capable of receiving, and the input
Parameters of these requests?

The notational conventions used for Object specifications are described in clause A.3 and Annex B.

IJ Descriptions of the objects’
reports.

behaviour, using formal description techniques, are being developed separately and may be published as accompanying technical

11

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478=1:1998(E) 0 ISOIIEC

7.3.3 The Object model

An Object-oriented description technique is used to specify PREMO functionality. The Object-oriented terminology and formal-
ism constitute an Object model in which objects and Object types are composed and made to interact. The manner in which PRE-
MO is described is independent of both the techniques used to construct PREMO implernentations and the languages to which
those implernentations may be bound. PREMO tan be bound to, and implemented in, both Object-oriented and non object-ori-
ented programming languages. The Object model is described in clause 8.

7.3.4 Components

A component is a collection of profiles where specific profiles are defined to offer particular sets of functionality in the form of
Object and non-Object types. Esch Profile is defined in terms of its dependencies on other profiles (either internal, i.e., depend-
encies on profiles belonging to the same component, or external, i.e., dependencies on profiles belonging to another component)
and the Object and non-object types it provides for other components.

The exact rules for components and profiles are given in clause 9 with the notational conventions described in clause A.7 of this
part. These rules ferm the basis for the properties of configuration, customization, extensibility, and interoperability.

74 . The System perspective

7.4.1 Configuring PREMO-based applications

The functionality of PREMO is realized by a set of Object types. The PREMO architecture provides mechanisms for creating,
using, and extending the standardized Object types and non-Object types.

NOTE - For example, in a PREMO implementation that provides traditional Computer graphics functionality, there could be modelling and
rendering functions with different capabilities. Modellers range from powerful geometric modellers which perform Union and intersection
operations on regular and free form 3D bodies to simple 2D graphics modellers. Renderers tan include high Performance renderers for
photorealistic images and generators for an animated sequence of images from key frames as well as generators for 2D business graphics
diagrams.

7.4.2 Distributed multimedia

Instances of PREMO Object types are conceptually location independent. There are no
these Object instances, thus allowing a PREMO implementation to be easily distributed.

inherent constraints on the location of

NOTE - For example, an application built using PREMO might create a multi-user interface in a virtual reality setting where several players
arc moving and manipulating within the same Scene. Esch player uses his/her own renderers with his personal viewing Parameters to generate
his/her view of the Scene, hears his/her personal version of Sound associated with the objects in the Scene, and activates his/her own input
devices to communicate with the common Scene. If this example were realized in a distributed environment, different renderers might be
installed as remote processes each with a copy of the Scene. In this case, Scene updates could be performed in such a way that the different
copies of the Scene remain consistent with each other.

7.4.3 Communication in PREMO

Since PREMO supports distributed applications, as well as multiple processor implernentations, the invocation of PREMO op-
erations may involve communication. Objects tan learn of each other’s existente and invoke each other’s operations. Synchro-
nization may be provided, since two objects could invoke operations on a third Object concurrently. Communication among
PREMO objects and between PREMO objects and their client applications requires the use of underlying support facilities that
are not addressed in this Standard.

12

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

8 Object rnodel

81 . Introduction

This clause describes the common semantics for specifying the externally visible characteristics of PREMO objects in an imple-
mentation-independent way. It specifies the common features that all conforming Systems shall support. It includes a formal
model of types, operations, and subtyping.

PREMO uses an Object model to support design portability and reuse of Object definitions. The use of an Object-oriented design
leads to a natura1 description and provides, in particular, a way for explaining extensibility and configuration aspects for PREMO
objects. It should be noted that the description techniques used in this document focus on design and allow different bindings of
an object’s interface (i.e., the declaration of its operations) to programming languages, communication techniques, and imple-
mentations. Although the PREMO Object Model defines types and operations as concepts, Systems that conform with the model
need not provide objects that correspond to these concepts (e.g., if PREMO was implemented using a non Object-oriented pro-
gramming language, like Fortran).

It must be emphasized that the requirements described in this clause are valid for PREMO objects only, i.e., for objects defined
in this or subsequent Parts of ISO/IEC 14478. Even if PREMO is implemented in an Object oriented environments, it is rtot man-
dated that nlt objects in this environment behave exactly as described in this clause, only those which are defined by PREMO.

82 . Basic concepts

The PREMO Object Model is based on a small number of basic concepts: objects, Object types, and subtyping. An object tan
model any kind of entity, e.g., a person, a ship, a document, a graphic Segment, or a colour value. A basic characteristic of an
Object is its distinct identity, which is immutable, persists for as long as the Object exists, and is independent of the properties and
behaviour of the Object.

Operations are applied to objects. Thus, for example, to determine the colour of a graphic Segment, the colour Operation might
be applied to the Segment Object. As another example, in a windowing System a relationship between two windows may be de-
fined as an Operation parent, which? when applied to one window Object, returns another window Object. The operations associ-
ated with an Object collectively characterize its behaviour.

Objects are created as instances of Object types (e.g., person, colour, Segment). An object type defines the behaviour of its in-
stances by describing operations that tan be applied to those objects. Types tan be related to one another through supertypdsub-
type relationships.

State is required in an Object System, because it captures internal information that may affect the outcome of operations. For ex-
ample, an Operation setcolour might take a Segment Object and a colour Object as input arguments and produce side effects on
the latter Object. State captures these side effects, and a subsequent application of the colour Operation will presumably yield a
result that differs from a previous invocation. In the PREMO Object Model, operations are used to model the external interface
to state.

An Object type tan also be described in terms of attributes. Attributes represent a notational convention only; an attribute is func-
tionally equivalent to declaring a pair of accessor and mutator operations, to retrieve the value of the attribute and to set the value
of the attribute. As a further notational convenience, attributes may also be labelled as “retrieve only”, which means that the mu-
tator Operation, though conceptually present, does not Change the value of the attribute. In other words, the corresponding value
tan only be changed by the Object itself, based on the object’s internal state transition, or through other, dedicated operations.

83 . Non-Object types

Things that are not objects are called non-objects. These do not have an Object reference, and therefore cannot be the controlling
Parameter for an Operation request (see 8.6). Esch non-Object tan be considered to belong to a type, called a non-Object (data)
type. This is analogous to objects being instances of types. Non-Object types, however, do not belong to the PREMO Object type
hierarchy. Examples of non-objects are, e.g., an integer or a real number.

13

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1: 1998(E) 0 ISO/IEC

84 . Object types

Objects support
Objects are crea

only
.ted a

certain operations. The Object type defines these operations, and thus characterizes the behaviour of obiects.
s instances of their Object types, and, in the PREMO Object Model, objects shall not Change their type.

Esch Operation has a signature, which consists of a list of input and output Parameter types (see 8.6). The set of Operation names
with their respective signatures, defined for a type, is called the interface of that type, which is a distinct notion from the type
itself. The interface includes signatures that are inherited from supertypes (see 8.7). The interface of a type tan be applied to all
instances of that type.

Types are arranged into a type hierarchy that forms a directed, acyclic graph. PREMO objects inherit from type PREMOObject,
which defines the basic operations required for all objects in PREMO. Applications may introduce new types by subtyping from
PREMOObject or its subtypes. Having a Single root allows programs to declare a Parameter that takes an Object of any type as a
value. The set of all Object types is referred to as OTypes.

85 . Object identity and Object reference

In the PREMO Object Model, an object reference is an Object name which reliably denotes a particular Object. Specifically, an
Object reference identifies the same Object each time the reference is used in a request. The type of the Object may be inferred
from an Object reference.

Object references are represented in PREMO by opaque non-object types. For each Object of type T, an Object reference type,
referring to Object instances of type T, automatically exists in PREMO. As a notational convention, Refldenotes the non-Object
type of Object reference referring to Object instances of type T.

An Object reference referring to no Object instances has a distinguishable value, which is referred to as NULLObject. Operations
are available among those defined for PREMO objects in general to check whether a reference has a NULLObject value or not.

86 . Operations

An o/)e ‘ration describes an action that tan be applied to an Object, using Parameters. An operatio
eration request, specifies the Operation and Parameters, possibly causing results to be returned.

The consequences of a request tan include:

a) an immediate set of results;

b) side effects, manifested as changes in the state of the Object; and

c) exceptions.

Formally, an Operation 0 has the signature:

n in vocation 9 also called an op-

where o is
m 2 0 outp

the name of the
ut Parameters w

Operation. The Operation
ith names yj and types pj.

signature specifies n 2 1 input Parameters with names xi and tY Pes ci; and

In the PREMO Object Model, operations are always specified with a special Parameter called the controlling Parameter, which
is used to control the way operations are dispatched: its role is to differentiate among several possible implernentations of an op-
eration with the same name and signature (see 8.7.4). For discussion purposes in this clause, we assume that the first Parameter
x is the controlling parameter-, although this choice is not required by the model. Esch Object type TE OTypes has a set of op-
efations:

Ops(T) = {Q;,Q;, . ..} .

14

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478=1:1998(E)

An Operation is part of the interface of the type T of its controlling Parameter and of all subtypes of T (see 8.7). An Operation is
defined on the type of its controlling Parameter; e.g., C2 is defined on o . All operations defined on a type have either distinct
names or, if names are identical, have a distinct signature. In the PREMO Object Model an Operation is defined on a Single type
(the type of the controlling Parameter), so there is no notion of an Operation independent of a type, or of an Operation defined on
two or more types.

In the PREMO Object Model, operations tan only be defined on Object types, not on non-Object types. The controlling Parameter
type shall be an element of OTypes. All other Parameters are restricted to be non-Object data types. Note that references to objects
are expressed by non-Object data types; hence, this restriction does not introduce a limitation on functional expressiveness.

An Operation may have side effects. The PREMO Object Model does not specify anything about the execution Order for opera-
tions. For example, whether or not callers issue requests sequentially or concurrently and whether or not requests get serviced
sequentially or concurrently is not gart of the PREMO Object Model. Although the PREMO Object Model does not specify sup-
port for multi-process synchronization, it does allow several styles of Operation request semantics (see 8.9).

In the PREMO Object Model operations are not objects, neither are requests (i.e., Operation invocations).

NOTE - In Iine with a
is invoked).

common practice, the Object issuing an Operation request is also referred to as a dient (of the Object whose Operation

87 . Subtyping and inheritance

8.7.1 Overview

Subtyping is a relationship between types, based on their interfaces. It defines the rules by which objects of one type are deter-
mined to be acceptable in contexts expecting another type. Inheritance is a mechanism for reuse; as a notational convenience a
type may be defined in terms of another type. This clause defines the two concepts separately, but then explicitly states how they
are related in the PREMO Object Model.

8.7.2 Subtyping

The PREMO Object Model supports subtyping for Object types. Intuitively, one type S is a subtype of another type T, if S is a
specialization or a refinement of T. Operationally, this means that any Object of type S tan be used in any context that expects an
Object of type T. In other words, objects of type S are also of type T. Subtypes tan have multiple supertypes, with the implication
that an Object that is an instance of a type S is also an instance of all supertypes of S. The relationships between types define a
type hierarchy, which tan be drawn as a directed, acyclic graph (see Figure 1; see also clause C for the graphical conventions
used in the figures in ISO/IEC 14478).

An Object is a direct instance of a type T, if it is an instance of Tand not an instance of any subtype of T. The PREMO Object
Model restricts objects to be direct instances of exactly one type. That one type is the immediate type of the Object. The PREMO
Object Model has no mechanism to Change the immediate type of an Object.

An Object type T is an immediate
and T is a Supertype of ‘Q .

Supertype of S, if it is a Supertype of S, and there is no type Q such that Q is a Supertype of s

In the PREMO Object Model, the type designer is required to declare the intent that a type S is a subtype of T. Formally, if S is
decIared to be a subtype of T, then for each Operation IltT E Ops(T) there exists a corresponding Operation RS E Op,@) such
that the following conditions hold:

a) the names of the Operation match;

b) the number and types of the parameters shall be the same (except that the controlling Parameter types shall differ);

c) the number and types of the results shall be the Same.

Thus, for every Operation in T there shall be a corresponding Operation in S, though there may be more operations in Op,@) than
in Ops(T).

15

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1: 1998(E) 0 ISO/IEC

I 1

Figure l- TYpe graph

The set of all supertypes of a type, including the recursively defined supertypes, plus the type itself, form the type grap,h of the
type. For example, if the Object type D is a subtype of B and C, and both B and C are subtypes of A (see Figure 1), the set con-
sisting of A, B, C, and D forms the type graph of D. The PREMO Object Model does not provide a name-conflict resolution
mechanism, nor does it allow subtypes to redefine inherited Operation signatures (although it is allowed to add operations in the
subtype with identical name but a different signature).

The above typing rules prevent two types that have an Operation with the same name but different signatures from having a com-
mon subtype. Supertypes are used to characterize functionality that is common to their subtypes.

8.7.3 Inheritance

Inheritance is a notational mechanism for defining Operation reuse. If a type S inherits from another type T then the definition of
S inherits all the operations of Tand may provide other operations. Intuitively, inheritance means that the operations defined for
T are also defined for, and tan be used by, S. When inheriting an interface, type S may include its own implementation for an
Operation inherited from Tor, alternatively, may rely on the implementation provided with T. The choice among the various im-
plementations of an Operation when the Operation is invoked is referred to as Operation dispatching, as is described in more detail
in 8.7.4.

If the interface P inherits from Q, P may also be referred to as derived interface, whereas Q is the base interface (of P).

The PREMO Object Model relates subtyping and inheritance. If S is declared to be a subtype of T, then S also inherits from T.

The PREMO Object Model supports multiple inheritance, which is a notational mechanism for the definition of inheritance of
multiple types (see 8.7.2).

Subtyping is a relationship between types. Inheritance tan be applied to both interfaces and implernentations; i.e., both interfaces
and implernentations tan be inherited.

The PREMO Object Model does not provide a conflict resolution mechanism in the case of name clashes.

8.7.4 Operation dispatching

When an Operation request is issued, a specific Operation implementation is selected for execution. This selection process is called
Operation dispatching.

16

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

P

q(refA)
f tI+ ---m -9

A +E f
. . .

4
B E f
~ . .

Figure 2 - Example for Operation dispatching

The selection mechanism is based on the name and the signature of the Operation: the name of the Operation and the non-Object
types used as actual Parameters used at the Operation invocation (except for the controlling Parameter) shall match the signature
of the Operation specified for the Object whose Operation is invoked. An exception to this rule applies for Parameters of an Object
reference type. If the signature of an Operation is:

Cu : (XI : 01, x2 : 02, . ..> x, : On) -) (y1 : pl, y, : 92, “.> y, : p,)

and, say, cTi is of type ReJT where T is an Object type, and S is a subtype of T, the actual Parameter Xi is permitted to be of type
Refs when invoking the Operation W. Also, if, say, pj is of type RefQ where Q is an Object type, and R is a subtype of Q, the actual
returned value for Parameter yj is permitted to be of type RefR when the Operation o returns.

The process of selecting which Operation to invoke is based on the type of the Object supplied as the controlling Parameter of the
actual call. The Operation of the given name defined on the immediate type of the controlling argument is Chosen for invocation.
In some cases this choice tan be done at compile time with no loss of flexibility, whereas in others it must be delayed until exe-
cution tune.

The effect of this selection mechanism is as follows. From the perspective of the Object which requests an Operation, only inter-
face inheritance is of importante. However, from the perspective of the Object which implements the Operation, both interface
inheritance and implementation inheritance are of importante. In the PREMO Object Model the implementation of the derived
interface Supersedes (or overloads) the implementation of the base interface. For example, if type S is a subtype of T, and the
interface of both S and T contains the Operation 03, then for all instances of type S the implementation of Operation w implemented
for S will prevail, even if used in an operational context that expects an Object of type T.

NOTE - An example will clarify the selection mechanism (see also Figure 2). Let A and B be PREMO Object types, such that B is a subtype
of A; furthermore let the Operation .f be defined both in A and in B, i.e., both types provide an implementation for this Operation. As a
convention, the two implernentations will be denoted by A.fand B.f, respectively. Let P be another PREMO type, and p an instance of this
type; finally let the Operation y be defined for P. The Parameter list of 9 should include one of type RefA. Finally, let us suppose that the
implementation of !?q issues an Operation request on the Operation f using its argument of type RefA. The Operation dispatching rules
determine which of the possible implernentations off (i.e., A.for B.f) will be invoked. Following the rules above, the Operation pq may be
invoked with actual Parameters of non-object types of both RefA and Re@. In the former case the implementation of p.q invokes the Operation
f on the referred Object instance: the selected implementation should be A.f(case ‘a’ in Figure 2). In the case when pq is invoked with an
actual Parameter of type RefB, the selection mechanism described above will choose B.f(case ‘b’ in Figure 2).

17

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISOIIEC 14478=1:1998(E) 0 ISO/IEC

In the case an Operation wishes to have a finer control over the selection mechanism, it tan inquire the immediate type and the
type graph of the Object referred to by its argument (see clauses 7.2 and 9.4 of ISO/IEC 14478-2) and it tan use the cas t facility,
(see 8.11). In the example above, if the implementation of p.q needs to access A.f in any case, it should inquire the type of the
Object the actual Parameter refers to and, if necessary, should generate a new Object reference of type RefA with the help of the
Gast facility.

These rules do not disambiguate all possible situations in the case of multiple inheritance. For example, let B, C, and D be types
such that D is a subtype of both B and C (see Figure 1). Let B and C have an implementation for the Operation f (with identical
signature, except for the respective controlling Parameter). Finally, let D simply inherit the Operation f, without providing an im-
plementation. In this case, when using an Object reference RefD, there is no unambiguous choice between the two possible im-
plementations of the operationf. In the PRIEM0 Object Model, an exception is raised when no unambiguous choice exists. Note
that some environments may also offer compile time checking for such cases.

88 l Abstract Types

An abstract tvye in PREMO is a non-instantiable type, i.e., if T is defined to be abstract, then no PREMO Object may be a direct -
instance of T (see 8.7.2). Usage of abstract types makes the specification of Object type hierarchies clearer and more succinct,
allowing the specifications to “abstract out” identical interfaces without forcing implernentations to provide realizations for these
objects in isolation.

89 0 Operation request semantics

The external behaviour of PREMO objects is based on the operations defined for the Object. Requests for operations provide the
only means of information transfer among PREMO objects. All requests are delivered at most once to the Object.

Internally, an Object has a finer control over the actions it has to perform to Service the request. Conceptually, each Operation has
an Operation receptor, and an Operation request amounts to putting a request into this receptor. Esch receptor of an Operation may
be in one of three modes: synchronous, asynchronous, or sampled. This mode is specified as part of the Operation specification
and is immutable during the lifetime of the Object. The default mode is synchronous (see also clause A.3 for the notational con-
ventions used to define operations). The detailed semantics of the three modes are as follows:

- The Operation receptor is synchronous. This means that the request is placed in the Operation? receptor and the caller is
then suspended until the callee has serviced the request. Data may be associated with the request, and the request may have
return values. The PREMO Object Model makes no assumptions on the Order of servicing of these requests if there are sev-
eral waiting to be serviced.

- The Operation receptor is asynchronous. In this case, the request is placed in the operation’s Service receptor but the
caller is not suspended. Data may be associated to the request, but the request shall not have return values. The PREMO
Object Model makes no assumptions on the Order of servicing of these requests.

- The Operation receptor is sampled. In this case, the receptor may hold at most one request; if several requests arrive at the
receptor without being serviced, their respective requests overwrite one another. The caller is not suspended. Data may be
associated with the request, but the request shall not have return values.

While suspended, an Object tan receive Operation requests from other objects. These requests arc managed in accordance with
the behaviour described above. A suspended Object may also carry out internal processing, but shall not access information re-
lated to its own Operation receptors.

NOTE - The ability of objects for continuing internal processing while being suspended is important for the support of multimedia
synchronization (see 7.9.1 of ISO/IEC 14478-2).

Apart from having several outstanding Service requests on the same Operation of an Object, there may be several Operation re-
quests on diferent operations waiting to be serviced. In this case, the Object chooses one of these requests nondeterministically.
An Object has also means to control which requests it wishes to Service, depending on its internal state.

18

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

An
and

Object instance tan
the implementation

also issue an Operation invocation
of the Operation is immediately in

to one of its own operati ons. In this
voked, i.e., deadlock shal 1 not occur.

A subtype may provide a new implementation for an inherited
shall not be changed in the subtype.

Operation. However, the Operation request mode of an Operation

case, all receptors are bypassed,

8.10 Protected operations

An Operation may be declared to be protected. The name and signature of a protected Operation is part of the interface of the
Object type just as with any other operations. However, for any Object instance, a protected Operation tan only be invoked by the
instance itself; no other Object instance tan invoke such an Operation. Being part of the interface of the Object, it is possible to
modify the behaviour of a protected Operation in the subtype of the Object, thereby specializing the object’s behaviour. The fact
whether an Operation is protected or not is an immutable characteristics of the Operation during the lifetime of the Object. Also,
a subtype cannot declare an inherited protected Operation to be unprotected.

Attributes tan also be declared to be
tected.

protected; this simply means that the accessor and mutator operations for attributes are pro-

8.11 Object and Object reference life cycles

PREMO objects are created and destroyed by facilities which are part of the boundary between PREMO and its environments.

Objects may be created through the use of the create facility. If successful, this facility returns an Object reference to an Object
of the requested type. If the creation is successful, it tan be safely assumed that this Object reference refers to an existing Object
instance of t,he type specified by the argument of the create facility. Using this Object reference, operations on the Object may
be immediately requested. This facility shall also invoke the (protected) initialize Operation of the newly instantiated Object (see
clauses 7.2 and 9.4 in ISO/IEC 1447%2), which is available for all PREMO objects; this invocation is done Prior to the return of
the Object reference to the caller. Parameters of the create facility include the necessary initialization Parameters. Creation of
an Object might be unsuccessful; it is environment dependent how the caller of the facility is notified about this and it is the re-
sponsibility of the caller to check the success of Object creation.

NOTE - The create facility may, for example, return NULLObject in the case of an unsuccessful Object creation.

Objects may also be copied through the use of the copy facility. copy also returns a reference to a new Object, but it also receives
a reference to an already existing Object. The newly created Object has the following characteristics:

- It has the same immediate type as the Object referred to by the argument of copy.

- The initialize Operation is not invoked on the new Object; however, another (protected) Operation is defined on all
PREMO objects, called initializeOnCopy, which is invoked by the copy facility. The signature of initializeOnCopy is void
of any arguments.

- If copy is shaIlow, all attributes of the new Object are set to the values as retrieved from the Object referred to by the
argument of copy.

- If copy is deep, all attributes of the new Object, except Object references, are set to the values as retrieved from the
Object referred to by the argument of copy. For Object reference attributes, a deep copy is made for all referred objects
(recursively) and the corresponding reference attributes of the newly created Object will refer to these new objects.

NOTE - If the implementation of PREMO is based on a distributed environment, the caller of the create and copy facilities may also
control “where” the new Object is created.

An Object reference is of a non-Object type and, as such, tan be included as a Parameter for other Operation requests. The defini-
tion of operations shall specify whether the reference is used directly (in which case, conceptually, each such cal1 constitutes the
creation of a new instance of these Object references), or whether new objects and Object references should be created by a (deep
or shallow) copying of the referred Object. Whether this copying is performed by the caller (i.e., before the invocation of the op-

19

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 1447%1:1998(E) 0 ISO/IEC

eration) or the callee (i.e., as a first action of the Operation being invoked) is dependent on the implementation environment and
the programming language. This part of the Operation specification is conceptually part of the signature of the Operation, i.e., sub-
types cannot Change this in the case of overloaded operations.

NOTE - An implementation may have a finer control over argument copying. For example, it may decide to copy part of a structure only, or
to stop recursive copying at some level. These decisions may be based on the semantics of the Operation and/or the particularities of the
implementation. PREMO standardizes the minimum level of copying only, i.e., most of the time only shallow copy is required.

The facility cast tan also be used to create new Object references. This facility receives an Object reference and an Object type
as parameter-, and creates an Object reference which still refers to the same Object instance, but of the type given as Parameter.
PREMO requires that, if type A is a subtype of B, a is an instance of A, and the reference to a is given in the form of RefB, then
a new reference, of type RefA and referring to the same instance, tan be created using a and A.

NOTE - Same Object environments mav offer richer casting facilities, but PREMO does not rely on those. An example for the usage of the w
cast facility is when the caller receives an Object reference to a type which is the Supertype of the expected type. By inquiring the type graph
of the Object and using the cast facility using a type appearing on this type graph, the caller may create an Object reference with the
uppropriate (sub)type.

Object references may conceptually be destroyed using the des troyRef erence facility. As a result of this conceptual de-
struction, the Object instance is no longer accessible through this Object reference. Other Object references created, e.g., by argu-
ment passing or the usage of cast, may still be used to refer to the Object instance. It is incumbent on the application or the
implementation to delete Object references which are no longer in use. Objects are automatically destroyed when no valid refer-
ence exist for them any more, but not before. In other words, the PREMO specification makes the assumption that all valid ref-
erences also remain valid.

The specification of the facilities create, copy, cast, and destroyReference is independent of any particular imple-
mentation language, development environment, or execution environment. For integration into a programming environment,
these facilities shall be realized through an appropriate language binding.

NOTE
objects as

To increase the efficiency of the imple
special data types and not a s objec ts.

mentations, some programming languages may choose to implement some categories of

8.12 Exceptions

When servicing a particular request, a PREMO Object may detect error conditions which make it impossible to fully Service the
request. In such a case the PREMO Object shall, instead of servicing the request, raise an exception. Exceptions are defined as
special data structures which may convey additional information on the error condition leading to the raise of the exception.

Details of how exceptions are raised are part of the boundary between PREMO and its environment (see also 8.11). The detailed
specification depends on a particular implementation language, development environment, or execution environment. There are,
however, some simple rules which shall always apply:

- If an exception is raised by an Object, the state of the Object shall not Change.

- Different error conditions result in different exceptions; the set of possible exceptions for a specific Operation is part of
the detailed specification of the Operation. When operations are redefined through subtyping, the set of possible exceptions
may be extended with new exceptions.

- Facilities shall be available for the
tion was executed or not, as well as to

caller of
access th

an Operation to detect whe ther an exception
ei nformation stored in the exception data st

has been raised when the opera-
ructure.

20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

9 How PREMO components are described

Fundamentally, a component in PREMO is a set of related Object types and non-Object types that comply with the PREMO Ob-
ject Model. Components organize these Object and non-Object types in terms of profiles, whereby some set of the types defined
in the component are collected together for a particular view of their usage. A Profile may be tailored towards a particular con-
stituency or application domain, for example.

A component may contain one or mol-e profiles, one of which shall be designated as the basic Profile for the component. The
basic Profile of a component represents the minimal and hence mandatory set of types provided by the component implementa-
tion. All other profiles defined within the component shall be defined with respect to the component’s basic Profile.

The specification of a Profile shall make explicit the dependencies that the Profile has with respect to other profiles within
component and with profiles defined in other components. These dependencies between profiles is expressed as follows.

its own

a) A Profile P belonging to component A may depend on Profile Q of the same component if there arc Object types in P that
are either:

1) subtyped from Object types defined within Q (type dependency), or e
2) whose behaviour depends on operations defined by Object types in Q (Service dependency).

This form of dependency is referred to as internal dependency.

b) A Profile P belonging to component A may depend on Profile R of component B if there are Object types in P that arc
either:

1) derived from other Object types defined within R (type dependency), or

2) whose behaviour depends on Services provided by Object types defined within R (Service dependency).

This form of dependency is referred to as extemal dependency.

The various possible dependencies are non-exclusi
be in terms of both type and Service dependencies.

ve; a component Profile may have internal and external dependencies that may

The specification of a Profile also includes the list of types which tan be used to resolve type or Service dependencies by other
profiles or by applications in general. A Profile tan thereby restritt the usage of a type to, e.g., as a Service provider only, i.e., the
operations of the type are available for Operation requests, but no subtyping of this type is possible. The PREMO specification
also includes restrictions describing which part of the full PREMO Object hierarchy tan be used to resolve type dependencies (see
7.5 of ISO/IEC 14478-2).

NOTE - Language bindings to PREMO shall provide details on how these notions are mapped onto a particular programming environment.
In some cases the programming environment may not make it possible to enforce the differente between Service and type dependencies.

The notational conventions used for component and Profile specification are defined in clause A.7.

The Profile specification of a PREMO component makes Provision for PREMO implernentations to offer automatic configuring
mechanisms. Such mechanisms may allow for an implementation of a component and/or a Profile to interoperate with other com-
ponent implernentations.

21

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478=1:1998(E) 0 ISO/IEC

Annex A
(normative)

Notational conventions

Al . Type declarations

The notation:

AT R : Type

is used to denote that A and B are of type Type. In this notation, Type may be either a non-Object or an Object type. For example,
the declaration

InvalidReference, InvalidOperations : Exceptions

declares two values of type Exceptions.

Constant values may be specified as follows:

A : Type 1 A = Value

The Symbol ‘ 1 ’ separates the type specification and the constant definition. For example, the declaration

A:ZIA= 12

declares A to be a constant of an integer type with a constant value of 12.

18.2 Data type definitions

The definitions of operations in PREMO rely heavily on the conventions in this clause. Abstract data types are constructed from
basic data types with a number of data type constructors. Values of these types for various programming languages are deter-
mined by the PREMO language binding Standards.

AZ1 Simple data type defhitions

The simplest data type definition is exemplified by:

ConstraintOp ::= Equal 1 NotEqual

This lists the values the data type has, in this case Equal and NotEqual. Values are separated by the Symbol ‘ / ‘.

NOTE - This data type construction is often referred to as “enumeration” in various programming languages.

Type Synonyms are sometimes used to make specifications more readable. For example, the definition:

State == Integer

means that, in what follows, the name State may be used as a synonym for Integer.

Data types which consist of sets of values of another type are defined using the powerset constructor, ‘IP’, for example:

NameSet == P GenName

22

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

means that values of type NameSet consist of sets of values, each of type GenName.

Data types which
this construct is:

consist of subranges of other data types are defined using a set comprehension construct. The general form of

TypeName =={declarations 1 predicate@expression}

The values of TypeName are just those values of ‘expression’ which satisfy the condition expressed by ‘predicate’. The ‘decla-
ration’ part declares the types of the variables used in the predicate and expression Parts. For example, to define a tuple whose
components are restricted values of other types:

WCOrd == R

PatSize == {x,y: WCOrd 1 x>O~y>O+,y)}

This states that the values of the data type PatSize consists of pairs of values each of type WCOrd x WCOrd which satisfv the
predicate x > 0 A ~9 > 0. This approach is used in preference to the equivale.nt approach of defining a subtype of WCOrd for strict-
ly positive Ordinate values and then defining PatSize as a Cartesian product on this data type.

Another example is:

WCOrdPos =={r: WCOrd 1 r>Ov-}

This declares WCOrdPos to be a subtype of WCOrd. WCOrdPos consists of those values of the data type WCOrd which are pos-
itive.

For simple cases, shorthand forms of the declarations are used. If the predicate is omitted, the default predicate true is assumed.
If the expression is omitted, the default is the characteristic tuple of the declaration part (the tuple of declared variables in the
order in which they are declared). For example, the type WCOrdPos could be written as:

WCOrdPos =={r: WCOrd 1 r>O)

Here the expression is omitted and the characteristic tuple of the declaration part (r) is assumed.

Functions are defined using the notation:

Selects == SelectCritType + SelectCrit

This defines Selects as a function from values of type SelectCritType to values of type SelectCrit.

The set of all functions mapping the set X to set Y tan be expressed as:

X+Y

Where it is necessary to define a function whose Source data type is the subtype of some other data type, a further extension of
the predicate notation is used. For example, the notation (i, j) -+ m means that the value m is associated with the ordered pair
(i,j) . Also:

Matrix23 == {i, j : N, nz:R 1 i<2,j<3+,j)+m}

defines a subtype of:

Matrix == NxN-+R

which describes a matrix of dimension p x q . For thisMatrix33 the first index of the Source is restricted to the values { 1, 2) and
the second to the values { 1, 2, 3) .

23

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1: 1998(E) 0 ISO/IEC

A.2.2 Constructed type definitions

In Order to describe some of the PREMO operations in a concise manner, it is convenient to define data types which may take
any of the values of other types.

A.2.2.1 Tbples

Ordered tuples are defined using the Cartesian product constructor ‘x'. For example:

Constraint == String X ConstraintOp

defines values of the data type Comtraint to consist of a pair of values, the first of type String, the second of type ConstraintOp.

A.2.2.2 Discriminated unions

One such construction is the (discriminated) Union. An abbreviated example is:

IntegerValues ::= short «Short »

long«Long»

I unsignedShort«UShort »

The definition states that the values of the data type IntegerValues are either of the type Short, Long, or values of type UShort.
The constructor names ‘short", ‘lang', ‘unsignedShort' are Chosen to describe usage of the type following. This is done
because in some cases, the type name alone either does aot provide an adequate explanation, or provides an ambiguous explana-
tion. Types defined in this way are disjoint Unions of the component types. A given value of the type corresponds to a value in
only one of the component types. Thus in the example here, a value of the data type IntegerValues arises from only one of the
component data types Short, Long, and Ushort.

The main usage of such Union types is exemplified by the following:

IntegerTypes ..- SS---SHORT 1 LONG 1 UNSIGNEDSHORT

Integer == IntegerTypes -+ IntegerValues

The type Integer is a
the names of various

A.2.2.3

function from the Source data type IntegerTypes to range data type IntegerValues.
variants of integers and the data type Integer associates a value with each of these

Sequences and arravs u

The Source type denotes
integers.

The constructor ‘seq’ defines a type whose values consist of a sequence of values of some other type, for example,

CharString == seq Char

defines values of type CharString to consist of sequences of values each of type Char. The constructor ‘seq’ allows sequences of
length 0. An additional family of sequence constructors is provided by the following forms (for an arbitrary type X and non-neg-
ative integer ~2):.

seqnX == {f: seq X 1 #f’n}

seq,x =={f:seqX 1 #f mod2=Or\#f>l}

seq()X== {f: seqX 1 #f mod2. = 1 ~#f2 1}

where the Operator # delivers the length of the sequence.

24

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/XEC 14478-1: 1998(E)

Finally, a family of array constructors is defined with the following forms (for an arbitrary type X and size i):

array;X== (f: seqX I #f= i}

where i is a non-negative integer.

Specific sequences and arrays will also be denoted in the text as:

A3 l Object type definitions

Object types are described in term of their inheritance relationships and their operations. Type specifications are enclosed in type
Schemas:

f=
Tyl3e Name

SuperTypeI redef (Red~finedOperation I, RedefinedOperation2)
SuperType2

short description of the type in natura1 language

attributek AttributeType
attribute2: AnotherType [Retrieve Only]

t

description of the attribute(s) in natura1 language

r oyeration

parameter in: TypeOfParameterl
paran2eter2,,lll. TypeOfParameter2
ynrlXW?ter3i,. TypeOfParameter3 [Shallow Copy]

I parameter4i,: TypeOfParameter4 ID@P COPYI
exceptions: (ExceptionValuel, ExceptionValue2)

behavioural description in natura1 language

Exceptions raised:
ExceptionValue

I L
I Tby3e Name d

Description.

The name of the type appears on the top and the bottom lines of the Schema; these lines enclose the set of inheritance relationships
and Operation definitions which constitute the type specification. If the type is defined to be abstract (see 8.8) the keyword ab-
stract appears as a subscript of the type name in the top enclosing line.

A type Schema encloses the following units:

- inheritance relationships: this follows the top enclosing line, and is a list of PREMO types, one per line, specifying the
set of immediate supertypes for the newly defined type. A simple listing of type names indicates that all operations defined
in these supertypes are inherited by the new type without Change; if the new type provides new implernentations for some
operations, these shall be listed between a pair of brackets, and this list shall be preceded by the keyword ‘redef’ (see the
Schema above).

25

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1: 1998(E) 0 ISO/IEC

-- short
This unit

descrip tion of the type: a short description, comment, etc., which applies to the type as whole, in English prose.
is optional.

- attributes: a separate sub-Schema shall be used for attributes, which is functionally equivalent to declaring pairs of
accessor and mutator operations, to retrieve the value of the attribute and to set the value of the attribute, respectively. Esch
attribute shall be defined with its type. Exceptions may also be present in this sub-Schema, denoting exceptions raised when
setting the corresponding attribute value. The type name in an attribute may be followed by the remark [Retrieve Only],
which means that the Operation to set the attribute, although conceptually present, does not Change the value of the attribute.
In other words, although the attribute value mav be changed by the Object itself depending on its state and semantics, the
value cannot be set by other objects, or only through dedicated, and separate, operations which are to be defined explicitly.

- operatiorz Schemas (one per Operation): each Operation Schema contains the name of the Operation on the top line of the
Schema, followed by the signature of the Operation, the semantic description of the Operation, and the list of exceptions the
Operation may raise.

- The signature consists of a list of Parameters, each with its type (using the declaration notation, see clause A.3). The
keywords in or out, appearing as a subscript to the Parameter name, denote whether the Parameter is an input or an output
Parameter, respectively. Note that the controlling argument (see 8.6) does not appear in this list.

The type specification of an argument may be followed by the remark [Deep Copy] or [Shallow Copy], in the case the
type is an Object reference type. These remarks specify whether the Object, referred to by the argument, shall be copied
on the cal1 or not and, if yes, whether the copy is deep or shallow (see 8.11). If no remark is present, the Object is not cop-
ied, and the value of the Object reference shall be used by the Operation.
The list of Parameters is followed, if applicable, by a set of exceptions which tan be raised by the Operation.

- The semantics description of the Operation, in English prose.

- The semantics of each exception which tan be raised by the Operation. Unless stated otherwise the data assigned to
exceptions are empty; if this is not the case, the detailed information on the returned data is part of the semantics of the
exception.

The request semantics of the Operation (see 8.9) appears in the name of the Operation in the Operation Schema: a char-
acter rn or s in the subscript of the name denotes an asynchronous or sampled Operation, respectively. If none of the
two Character appears as subscript, the Operation is synchronous.

The name of the operations may be preceded by the Symbol ‘E’ which denotes that the Operation is protected (see 8.10
for the definition of protected operations).

There are some other, more succinct ways of defining operations, too. These are further described in clause A.6.

A.4 Definition of finite state machines

The behaviour of objects in PREMO are sometimes defined in terms of states and state trans itions of
clause defines the notational conventions used in the PREMO Standard for the specification of finite

State transitions are defined through state transition tables:

finite state mach ines. This
state machi nes.

The Symbol in the ith row andjlh column tan be either ‘Y’, ‘ N’, or ‘I’, and the meaning is as follows.

26

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 ISO/IEC ISO/IEC 14478-1: 1998(E)

- ‘Y’ means that a transition from state i to statej is possible, and this transition tan be requested by a client;

- ‘1’ means that a transition from state i to state j is possible, but this transition cannot be explicitly requested by a client,
i.e., only the Object may perform such a state transition internally;

- ‘N’ means that the state transition from state i to statej is not allowed.

The name of the initial state is underlined.

States are specified in the functional specification of the objects using constant with integer values (although type Synonyms may
be used to make the specification more readable). This makes extensions of finite state machines easy to describe.

AS Reference to operations and objects

In some cases, e.g., to make the behavioural descriptions or various examples more concise, it is necessary to
to refer to an Operation of an Object type or an Object instance. In PREMO, the following notation is used.

have a clear notation

- If the Symbol A refers to an Object type, an Object instance, or an Object reference (depending on the context), and the
symbolfrefers to the name of an Operation, the Symbol A.f will be used to denote this Operation on A. If necessary, input and
output arguments of the Operation may also be given by listing them in a pair of brackets, each name followed by the ‘in’ and
‘out’ subscripts to denote whether it is an input or output argument respectively, followed by a colon and the corresponding
value. This convention is analogous to the one used in the type Schemas. For example:

A.f(arg-onei, : 1234, arg-twoi, : 3.456, arg-threeoUt : output-value)

denotes an operation with two input arguments (arg one and arg - - two) and one output argument (arg - three). The Operation
is invoked by assigning the values 1234 and 3.456 to the two input arguments, respectively, and the value of the output argu-
ment is fed into output-value. The names of the arguments appearing between brackets shall be present in the Operation
specification Schema of the Object: the Order of the argument is not significant. It is not necessary to list all the arguments,
only those which are relevant in the context. Finally, if no argument notation is required for the context, the pair of brackets
tan be missing altogether.

- If the Symbol A refers to an Object type, an Object instance, or an Object reference (depending on the context), and the
Symbol a refers to an attribute of the Object, A.a-set and A.a-retrieve refer to the mutator and the accessor functions, respec-
tively. The Symbol A.a may also be used as a shorthand for A.a-retrieve. Because A.a-set may have only one argument with
an obvious argument name, it is not necessary to add the name or the argument if the bracketed notation is used, i.e.,

A.a-set(6.789)

is acceptable, although the notation:

A.a-set(ai, : 6.789)

is also correct (though redundant).

In the behavioural description of objects, the following notational convention is also used. Types and instances of those types
(i.e., the actual active objects) are distinguished as follows. If Foo is an Object type or a generic type definition, the type is referred
to as the “Foo Object type” or “Foo type”, while a specific instance of a type is referred to as a “Foo Object”.

A.6 Shorthands for Operation specifications

Using the notations for the references to operations and for finite state machines it is possible to define alternative ways of spec-
ifying operations in type Schemas; these are presented in this clause. These shorthands are merely shorthand for the Operation
specification Schemas as described in clause A.3, and do not represent any new concepts. However, using these shorthands, the
Object type specifications become more succinct.

27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478.1: 1998(E) 0 ISO/IEC

A.6.1 State transition operations of finite state machines

Objects implementing finite state machines may also have operations to perform state transitions. Although it is possible to de-
scribe such operations with Operation Schemas and a semantic description in English, the following notation is also possible:

l=== Type Name

SuperType

transitionOp == cT(TargetStateNamejJ 0
cr(TargetSta*teName,, StateNamel 1 *. . [StuteName,) 0
@TargetStateNurne 1 . . . 1 TargetStateNurne,,, StuteName 1 . . . 1 StuteName,):

i Type Name

remarks on the transition operations in natura1 language (if necessary)

This defines transitionop to be an Operation which may perform one of various possible state transitions (the possibilities are .
separated by the Character YD’). The alternatives are taken from left to right; if a state transition is possible (i.e., is allowed by the
state transition table), it is performed and the Operation terminates. Esch specification of a state transition Operation may be of
the form:

- c$TargetStateNameI): means a state transition of the Object to state TargetStateNurne;

- o(TargetStateName2, StuteName] 1 . . . 1 StuteName,): state transition ofthe Object to state TargetStateNurne,, provided the
current state is one of the range StuteName], . . ., StuteName,.

- o(TargetStateName3 1 . . . 1 TargetStateNurne,,,, StuteName] 1 . . . 1 StuteName,,): state transition to one of the states in the
range TargetStateName3, . . ., TargetStateNurne,,. The choice among the various possibilities for the target state depends on
the general behaviour of the Object; the semantic details for this transition are described by the additional (English) text in
the scheme.

If the Operation is invoked but none of the state transitions are permitted, the Operation raises the exception WrongState, defined
in 9.3 (Page 29) of ISO/IEC 14478-2.

A.6.2 Sequential composition of operations

The Schema

l== TypeName

SuperTypeI
SuperType

Operation == operationI ; Operation2

remarks on the Operation in natura1 language (if necessary).

c TypeName

defines Operation as a sequential composition of operationI and operation2. Both operation] and operat@ may be either oper-
ations defined elsewhere in the type specification Schema of TypeName or may be, for example, of the ferm SuperTypel.op, i.e.,
referring to an inherited Operation.

28

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

0 TSO/IEC ISO/IEC 14478-1: 1998(E)

Sequential composition means that the operations are performed sequentially in left to right Order, unless one of the operations
is interrupted by raising an exception. In the latter case the whole Operation is interrupted and raises the same exception. Only
operations without arguments are specified this way in PREMO.

Although the definition above describes the sequential composition of two operations it is possible, by natura1 extension and, if
necessary, through the usage of parentheses as delimiters, to extend the composition to an arbitrary number of operations. Also,
the formalism tan be used with one Operation without real sequential composition, meaning simply an identification of opera-
tions.

A7 . Specification of components and profiles

Components and profiles are defined through component Schemas. Esch component shall contain one and only one component
Schema:

r Name

provides Service

type I, type2, type3
Profile Ql

provides type

type 1, type2, type3
Profile Q2

requires Service

Component Rl Profile PI

requires type

Component R2 Profile P2

r Advanced

provides Service
b
1 type 1, type2, type3

Profile Q3

provides type

type 1, tyl3e2, tyl3e3
Profile Q4

requires Service

Component R3 Profile P3

requires type

Component R4 Profile P4
Profile Basic

Name

29

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
47

8-1
:19

98

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

