INTERNATIONAL ISO/IEC
STANDARD 14478-1

First edition
1998-12-15

Information technology — Computer
graphics and image processing —
Presentation Environment for Multimedia
Objects (PREMO) —

Part 1:
Fundamentals offPREMO

Technologies de l'information — Infographie et traitement d’images —
Environnement de'présentation d’objets multimédia (PREMO) +

Partie 1: Principes fondamentaux de PREMO

I EC Reference number
i ¢ ISO/IEC 14478-1:1998(E)

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/TEC 14478-1:1998(E)

Contents Page
FOreword. . . oo iiitiitie e ieieeeeesesenenesasnsnensncnansnenens ii
Introductlon .. iv

B T + Y S PPN 1

2 Norm[tive S (0) 111 e 1

I B T 1 11 50 1 S 2

4 Symb¢ls and abbreviations. i i il il il 6

5 Confo[mance .. 6

6 Requirements for PREMO............. ..o 00 7
6.1 Introduction 7
6.2 |Extensibility N 8
6.3 |Configurability ONN 8
6.4 |Incremental, separable development S. 7. 8
6.5 |SImpliCity . ..o N e 8
6.6 |Easeofuse 8
6.7 |Otherinfluenceso 9

6.7]1 Application development environment. 9
6.7]2 Execution environment. it 9
6.8 |Functionality......... AN 9
6.8]1 Introduction. o) 9
6.812 Computer graphics o au e e 9
6.8]13 Userinterfaces. 00 . 9

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized
in any form or by any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISO/IEC Copyright Office ® Case postale 56 « CH-1211 Geneve 20 o Switzerland

Printed in Switzerland

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

ISO/IEC 14478-1:1998(E)

6.8.4 Dynamic interactive graphics. 9

6.8.5 ANIMAON . . . ot vttt e 10

6.8.6 AUdio 10

6.8.7 VIdeo. 10

6.8.8 Otherand futuremedia. i, 10

6.8.9 Co—representationst 10

6.8.10 Cooperating applications i 10

7 Architecture of PREMO ittt iiiiiiiiiianneen 10
7.1 Introduction. i 10
7.2 The standards perspective. i 11
7.3 The functional perspective11
7.3.} :utnudu»ﬁuu ... l 1

7.3.2 Description techniques 50 ... 11

733 Theobjectmodel 12

734 Components N 12

7.4 Thesystemperspective................... 5N 0 12
7.4.1 Configuring PREMO-based applications. A0[............ 12

7.4.2 Distributed multimedia. (et 12

7.43 Communicationin PREMOn Vo o oo o oo 12

8 Objectmodel................... D O A .13
8.1 Introduction............ NM ... e 13
8.2 Basicconcepts........ 0 . 13
8.3 Non-objecttypes..... N oo 13
8.4 Objecttypes.......c0 . oo e 14
8.5 Object identity and/object reference[.......... 14
8.6 Operations. .5 ..o 14
8.7 Subtyping andnheritance. oo 15
871 OVervieW. 15

872 Subtyping 15

873 Jnheritance e 16

8.7.4.\ Operation dispatching.[............ 16

8.8 . @Abstract Types. ... 18
8.9~3 " Operation request semantics0.......... 18
&0 Protected operations ool 19
8.11 Object and object reference lifecycles............... | 19
812 EXCeptions..............c.ooiiiiiiiinnnaa oo 20

9 How PREMO components are described. 21
A Notational cONVeNtions.ooveirenenrenenenneadenennenins 22
A.l Typedeclarations il 22
A2 Datatypedefinitions............................ . oL 22
A.2.1 Simple data type definitions o 22

A.2.2 Constructed type definitions............... N 24

A3 Object type definitions 25
A4 Definition of finite state machines\.......... 26
A5 Reference to operations and objects 27
A.6 Shorthands for operation specifications 27
A.6.1 State transition operations of finite state machines 28

A.6.2 Sequential composition of operations. 28

A7 Specification of components and profiles. 29

B Generic types.ouiiini 31
C Graphical conventions.ouiuinuininneninnennenennnn.. 33
C.1 Graphical conventions for generic types. 36

i

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-

1:1998(E)

© ISO/IEC

Foreword

ISO (the Internaional Organization for Standardization) and IEC (the International

Electrotechnical
zation. National t
of International S
organization to d
committees collal
government and
work.

In the field of inf]
committee ISO/I
committees are ¢
tional Standard rq

ISO/IEC 14478
mation technolog

ISO/IEC 14478¢
nology — Compy
Multimedia Obje|

— PartI:}
— Part2: §
— Part 3: A
— Part4: A

Commission) form the specialized system for worldwide standardi-
odies that are members of ISO or IEC participate in the development
tandards through technical committees established by the respectiye
bal with particular fields of technical activity. ISO and IEC technical
borate in fields of mutual interest. Other international organizations,
hon—governmental, in liaison with ISO and IEC, also takepart'in the

brmation technology, ISO and IEC have established a.joint technical
EC JTC]. Draft International Standards adopted-by.the joint technical
rculated to the national bodies for voting. Publication as an Interna-
quires approval by at least 75% of the natignal bodies casting a vote.

| was prepared by Joint Technical Committee ISO/IEC JTC1, Infor-
v, Subcommittee SC24, Computern graphics and image processing.

nsists of the following partsunder the general title Information tech-
ter graphics and image proceéssing — Presentation Environment for
rts (PREMO):

Fundamentals of RREMO
foundation Component
Multimedia Systems Services

Hodelling, Rendering, and Interaction Component

Additional parts

may be defined as this work progresses

Annexes A and B form an integral part of this part of ISO/IEC 14478. Annex C is for
information only.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

ISO/IEC 14478-1:1998(E)

Introduction

The need for a coordinated method for addressing all aspects of the
presentation of, and interaction with multiriedia objects has led to the
of this Presentation Environment for Multimedia Objects. Multimed

construction of,
standardization
a means objects

consisting of still computer graphics¢moving computer graphics (anipation), synthet-
ic graphics of all types, audio, still images, moving images (including video), images
coming from imaging operation$,Jand any other content type or combination of con-
tent types that can be “presented”. ISO/IEC 14478 is extensible and cpnfigurable, and
allows the separate, inofeniéntal development of additional standafdized and non—

standardized componeits to meet the needs of application communit

PREMO currently;consists of the following parts:

Part 1: Fundamentals of PREMO

€s.

Contain$a motivational overview of PREMO giving its scope, justificption, and an ex-

planation of key concepts, describes the overall architecture of PREM|

O, and specifies

the.common semantics for specifying the externally visible characteriptics of PREMO

objects in an implementation-independent way.

Part 2: Foundation component

This component lists an initial set of object types and non—object types useful for the

construction of, presentation of, and interaction with multimedia in
conforming PREMO implementation shall support these object types

Part 3: Multimedia Systems Services Component

Describes objects that provide an infrastructure for building multim

formation. Any

edia computing

latf, —that g st £ P L. 1. . 1 1. .
PratorsStat st ppouTrtine i ac v e TITaTtTITICU T apPITC AtToTS UtdITITS W

time-based media in a heterogeneous distributed environment.

h synchronized,

Part 4: Modelling, Presentation, and Interaction Component

Describes objects which are needed for advanced computer systems

using graphics,

video, audio, or other types of presentable media enhanced by time aspects.

NOTE — Further internationally standardized components are expected
within ISO/IEC JTC1/SC24 and by other subcommittees.

to be developed

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

INTERNATIONAL STANDARD © ISO/IEC

ISO/MEC 1

4478-1:1998(E)

Information technology —

Computer graphics and

image

processing — Presentation Environment for Multimedia Objects
(PREMO) —
Part 1: Fundamentals of PREMO

1

ISO/IEC
phasize th

ISO/IEC
ture comp
sistent wa|

ISO/IEC |
For integr
particular
monolithi
ular appli
are expect

ISO/IEC

grated. M
supplied §
creation o

ISO/IEC
multiple nj
best use o

ISO/IEC

2

Scope

4478 specifies techniques for supporting interactive single, and multiple media applications which re
e interrelationships among user interfaces, multimedia applications, and multimedialinformation inter

4478 defines a flexible environment to encompass modular functionality and-s extensible through th
bnents, both within and outside of standards committees. It supports a wideraihge of multimedia appli
v, from simple drawings up to full motion video, sound, and virtual reality, environments.

4478 is independent of any particular implementation language, development environment, or executi
ition into a programming environment, the standard shall be embedded in a system dependent interfa
conventions of that environment. ISO/IEC 14478 provides Vefsatile packaging techniques beyond th

single-media systems. This allows rearranging and extending functionality to satisfy requirements §
ation areas. ISO/IEC 14478 is developed incrementally with parts 1 through 4 initially available. O
ed to be standardized by ISO/IEC JTC1 SC24 or other’subcommittees.

4478 provides a framework within which application—defined ways of interacting with the environn
bthods for the definition, presentation, and manipulation of both input and output objects are describ
tructuring of objects is also allowed and.¢an, for example, be used as a basis for the development o
, presentation of, and interaction with.multimedia and hyper—-media documents and product model d

4478 is able to support constructiom, presentation, and interaction with multiple simultaneous inputs a
edia. Several such activitiesmyay occur simultaneously, and the application program can adapt its be
[the capabilities of its environment.

4478 includes interfaces for external storage, retrieval and interchange of multimedia objects.

Normative references

cognize and em-
change.

e creation of fu-
cations in a con-

on environment.
ce following the
e capabilities of
pecific to partic-
her components

nent can be inte-
ed. Application—
f toolkits for the
hta.

nd outputs using
haviour to make

The folloy

mg, standards contain provisions which, through reference in this text, constitute provisions of this

part of ISO/IEC

14478. Atthe Time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agree-
ments based on this part of ISO/IEC 14478 are encouraged to investigate the possibility of applying the most recent editions of
the standards indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 14478-2:1998, Information technology — Computer graphics and image processing — Presentation Environment for
Multimedia Objects (PREMO) — Part 2: Foundation Component.

ISO/IEC 14478-3:1998, Information technology — Computer graphics and image processing — Presentation Environment for

Multimedi

a Objects (PREMO) — Part 3: Multimedia Systems Services.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) © ISO/IEC

ISO/IEC 14478-4:1998, Information technology — Computer graphics and image processing — Presentation Environment for
Multimedia Objects (PREMO) — Part 4: Modelling, Rendering, and Interaction Component.

3 Definitions

For the purposes of ISO/IEC 14478, the following definitions apply.

3.2.1 multimedia: The creation, editing, composing, and/or presentation of products consisting of any combination of me-

3.2.1.1 |tultimedia object: An object consisting of one or more types of media that can be presented to a-{isef.

3.2.2 medipm (plural media): A means by which information is perceived, expressed, stored, or transmifted. Examples
include audio] video, (animated) graphics, images, text.

3.2.3 dynamic interactive graphics: Graphics applications where the graphics varies in real-time i response tg user in-

nnte
puts.

3.2.4 animption: Series of pictures in a time—ordered sequence to display as a video medium. This covers all chahges that
have a visual ¢ffect. It thus includes the time-varying position, shape, colour, transparencgstructure, and texture of gn object,
and changes ip lighting, camera position, orientation, and focus, and even changes of'fendering techniques.

3.2.5 text: (A medium encompassing a character—based encoding only.
3.2.6 audi¢: A medium encompassing all forms of information transmittéd by sound.
3.2.7 videq: A medium encompassing a continuous series of picturestypically depicting motion or time sequencegl events.

3.2.8 co-r¢presentation: A representation of information wheré\the same information is presented in several |different
ways from which the most appropriate is chosen.

3.29 component: A PREMO component is a set of related-object types and non—object types. The object and ndn—object
types of a component are clustered into (component) profiles.

3.2.9.1 sfandard component: A component that s defined in one of the parts of ISO/IEC 14478, or a compopent that
has been r¢gistered by an approved registration authority, and conforming to the rules defined for components in PREMO.

3.29.2 non-standard component: A-component that is not a standard component, but which obeys the rule$ defined
by PREMO for conforming components:

3.2.10 profile: A profile is set of-related object types and non—object types from which objects can be instantiat¢d, and a
configuration gpecification which defines dependencies between object types and other profiles. Profiles offer a set of services
embodied by the operations defined on its constituent object types.

3.2.10.1 basic profile (of a component): A mandatory set of object and non—object types for a specific component
which shall be provided by all complying implementation of a component.

3.2.11 objeqt: An'entity that encapsulates some private state information or data, a set of associated operations thdt manip-
ulate the dataland possibly a thread of contral so that collectively theycan-be-treated-as-a-sirgle-tit

3.2.11.1 object type: It defines the operations of objects; these operations collectively characterize the object’s behav-
iour.

3.2.11.2 object reference: An object name which reliably denotes a particular object instance. This is a non—object.

3.2.12 state: Information encapsulated within an object that has to be remembered when one operation alters the future be-
haviour of future operations.

3.2.13 identity (of objects): Objects have a unique, immutable identity which provides a means to denote or refer to the
object independent of its state or behaviour.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

ISO/MIEC 1

4478-1:1998(E)

3.2.14 attribute (of objects): A pair of accessor and mutator functions, to retrieve the value of to set the value of the at-

tribute

3.2.14.1 retrieve only attribute: An object attribute where the mutator function to set the value, though conceptually

present, does not change the value of the attribute, and raises an exception.
3.2.15 signature (of operations): An operation’s signature consists of a list of parameter types, and a list
3.2.16 interface (of objects): The set of operation signatures defined for a type.
3.2.17 non-object types: Things that are not objects, e.g., integers, real numbers.
3.2.18 operation: Describes an action that can be applied to an object, using parameters.
3.2.18.1 operation invocation: Activation of an object’s action, by describing its parameters, possibly
be|returned.
3.2.18.2 operation request: Synonym for operation invocation.
3.2.18.3 operation dispatching: The selection process which selects a specific operation‘ihplementati
3.2.18.4 operation overloading: The implementation of an operation defined for a defived interface st
pl¢gmentation of the same operation defined for a base interface. This effect is called operation overload
3.2.19 client: (of another object) An object issuing an operation request.
3.2.2(1 exception: Information returned if an error condition has occurred-during the execution of a reques|
3.2.21 controlling parameter: Special parameter conceptually present.for all operations, used to contrg
tigns are dispatched. It refers to the object type on which the opération is defined.
3.2.22 subtyping: A relationship between types. It defines the/rules by which objects of one type are detg
ceptablle in contexts expecting another type.
3.2.2 subtype: A type S is a subtype of another typec7] if any object of type S can be used in any conte
object|of type T.
3.2.23.1 immediate subtype: A type S is anzimmediate subtype of another type 7, if T is the immediatg
3.2.24 supertype: A type T is a supertypeof S, if S is a subtype of T.
3.2.24.1 multiple supertype: An object type can have more than one supertype; they are referred to a
types.
3.2.24.2 immediate supertype: A type Tis an immediate supertype of type S, if it is a supertype of S, an
Q buch that Q is a supertype of S and T is a supertype of Q.
3.2.2§ direct instance:-An object is a direct instance of a type T, if it is an instance of T and not an instand
of T.
3.2.24 immediate type: The type of the direct instance of an object instance.
3.2.27] type‘graph (of a type): The set of all supertypes of a type (including the recursively defined sup
type ifself:

of result types.

ausing results to

n for execution.

persedes the im-

ing.

t of an operation.

| the way opera-

rmined to be ac-

t that expects an

supertype of S.

5 multiple super-

d there is no type

e of any subtype

ertypes) plus the

3.2.28 inheritance : A notational mechanism for defining operation reuse. It is a relationship on interfaces.

3.2.28.1 multiple inheritance: A notational mechanism for defining operation reuse on multiple base interfaces.

3.2.28.2 single inheritance: As opposed to multiple inheritance; denotes an interface having only one base interface.

3.2.29 derived interface: If the interface P inherits from Q, P may also be referred to as a derived interface.

3.2.30
3.2.31

base interface: If the interface P inherits from Q, Q is a base interface (of P).

abstract object type: Non—instantiable object type.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) ©

3.2.32 opera

tion request semantics: A finer control an object has to service an operation request.

ISO/IEC

3.2.32.1 operation receptor: A holder conceptually assigned to each operation in which operation requests are placed.

3.2.32.2 operation receptor mode: An immutable characteristics of an operation receptor.

3.32.2.1 synchronous operation receptor mode: One of the three possible modes of an operation receptor; callers
are suspended on operation requests.

3.32.2.2 asynchronous operation receptor mode: One of the three possible modes of an operation receptor; call-

€rs are

not suspended on operation requests, and the request’s arguments are stored.

3.32.2.3 sampled operation receptor mode: One of the three possible modes of an operation receptor; callers are

t panded-oh-operationreauests—and-onl one reaguests-arocumentis-stored
not suppended-en-operationteq 5 3 g h

3.2.33 protgcted operation: An operation which can be invoked from within the object instance only; other objed
es cannot reqfiest this operation.

3.2.34 life gycle (of objects and references): The mechanisms whereby objects and object referenees are create

stroyed.

3.2.34.1 life cycle facilities: The boundary between PREMO and its implementation envirofiment, providing
related sefvices.

3.2.34.2 ¢reate facility: Facility to create objects possibly using initialization variables.
3.2.34.3 ¢opy facility: Facility to create objects as copies of already existing.Objects.

3.34.31 shallow copy: Version of the copy facility when attribute values are set in the newly created ob
the values of the attributes in the original object.

3.34.3.2 deep copy: Version of the copy facility when attribute values are set in the newly created object
valueq of the attributes in the original object except for objectreferences; in the case of object references, th

objects

3.2.34.4 ¢ast facility: Facility to create an object reference to an already existing object, referring to a different i

type.

3.2.34.5 IestroyReference facility: Facility to-destruct an object reference.

3.2.34.6

3.2.35 type|schema: A notational convenfion used to describe object types (see clause A.3).
3.2.36 openation schema: A notational convention used to describe an operation within a type schema.
3.2.37 component schema: A notational convention to describe components (see clause A.7).

3.2.38 profjle schema: A notational convention to describe profiles within a component schema (see clause A.7).

3.2.39 generic type(sehema): A notational convention used to describe a family of PREMO types, based on th
ventiofis of type schema (see clause B).

notational coh

3.2.40 for

are (deep) copied, and the new reference values are used to set the attributes.

estroyObject facility: Facility todestruct an object instance.

t instanc-

d and de-

life cycle

ect using

using the
e referred

nmediate

e general

3.2.41 actualization: A notational convention whereby generic type schema are used to define PREMO object types
through replacing formal types by PREMO object or non—-object types.

The following alphabetical list gives the subclause of each definition.

abstract object type 3.2.31
actualization 3.2.41
animation 324
asynchronous operation receptor mode 3.322.2

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

ISO/TIEC 14478-1:1998(E)

attribute (of objects) 3.2.14
audio 3.2.6
base interface 3.2.30
basic profile (of a component) 3.2.10.1
cast facility 32344
client 3.2.19
co-representation 328
component 329
component schema 3.2.37
controllillg-par-amem 3224
copy facifity 32343
create fadility 32342
deep cop 3.343.2
derived interface 3.2.29
destroyOpject facility 3.2.34.6
destroyRegference facility 3.2.345
direct insfance 3.2.25
dynamic nteractive graphics 323
exceptior 3.2.20
formal types 3.2.40
generic type (schema) 3.2.39
identity (pf objects) 32913
immediate subtype 32.23.1
immediate supertype 32242
immediate type 3.2.26
inheritang¢e 3.2.28
interface [of objects) 32.16
life cycle|(of objects and references) 3.2.34
life cycle|facilities 3.2.34.1
medium (plural media) 322
multimedia 3.2.1
multimedia object 3.2.1.1
multiple fnheritance 3.2.28.1
multiple gupertype 3.2.24.1
non—-objeft types 3.2.17
non-standlard compenent 3292
object 3.2.11
object reference 3.2.11.2
object type 3.2.11.1
operation 3.2.18
operation dispatching 3.2.183
operation invocation 3.2.18.1
operation overloading 3.2.184
operation receptor 3.2.32.1
operation receptor mode 32322
operation request 32.182
operation request semantics 3232

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1

operation schema
profile

profile schema

:1998(E)

protected operation

retrieve oniy attribute

sampled operation receptor mode

challow conv
sSnaundw Copy
clamatiiem {E
SIgndaturc (Ol

—

© ISO/IEC

standard component 3.29.

state 3.2.12

subtype 3.2.23

subtyping 3222

supertype 3.2.24

synchronous opergtion receptor mode 3.32.2.1

text 325

type graph (of a tyjpe) 3.2.27

type schema 3.2.35

video 327

4 Symblols and abbreviations
CAD/CAM: Computer-Aided Design / Computer-Aided Manufacturing.
IEC: International Electrotechnical €6mmission.
IS: International Standard.
ISO: International Organization for Standardization.
JTC: Joint Technical Committee.
PREMQ: Presentation Environments for Multimedia Objects.
2.5D: Two and 4 half dimensional.
2D: Two-diménsional.
3D: Three-dimensional.

5 Conformance

A component is de¢fined in PREMO to be a set of related object types and non—object types and a set of profile specificgtions. A

component is considered to offer a set of services, embodied by the operations on the objects, and may also depend on services

provided by other components.

PREMO defines conformance with respect to components as follows:

a) PREMO specifies conformance rules that shall apply for any definition of a conforming component;

b) PREMO specifies conformance rules that shall apply for any implementation of a conforming component;

¢) PREMO specifies conformance rules that shall apply for any implementation of a conforming PREMO system.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

o

1

to impiementations of the component.

shail apply

ments that
mentation requirements tha

A conforming component shali be defined according t

or one that has been registered by an

10

of PRE

c

1

fined in one of the parts

.
ac

=

An implementation of a conforming PREMO s

£

Fre)

jo
W urvacvlilt Ul

4

4

ITOTIT Wlli(,.ll il,

UICTTUTITPDUTITITUS

tormancert \.uu;l ceh

rporating various| media, such as

'

c

14478 1s intended to address the

troaucuon

4

ultaneous usé_of multiple media,

lin

scipntific visuali;
mufitimodahuser interfaces,

\

g) enfertainment,

c) virfual reality,
1)

k) si
)

o1
and such presentation and interaction techniques as:

ments. ISQ/IEC

CO

in

3D, and

’

N ETY
, 2.0

o

rovides a common underiying functional nucleus to support the

8p

also enabies the use of interaction techniques a

O

i

V]

chniques. PRE}

1

o~

1

as well as tuture areas and te

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E)

6.2

Extensibility

© ISO/IEC

ISO/IEC 14478 is extensible in that it makes provisions for extending the functionality specified in the standard via a number of
standardized mechanisms. In particular, additional components may be developed which respond to the needs of specific appli-
cation areas. See also clause B in ISO/IEC 14478-2 for further details on the way PREMO objects may be extended.

Many aspects of ISO/IEC 14478 are extensible by an ISO-administered registration mechanism, so that a uniform description of
the extension is available to all implementations.

6.3

The need for conf
PREMO embodig
and interrelations
clause 7.3.4 and ¢
tions. The advant

a) Applicatio
application m

b) When intr
storage, there
can be integra

6.4

ISO/IEC 14478 i
a foundation for 4

6.5

Aspects, such as f
PREMO is based
their externally v
ble, thereby allow

6.6

PREMO is easy {

a) end users

Incremental, separable development

Simplicity

Ease ¢f use

Configurability

gurability arises because different application areas have different demands on the task of presenting-
s a configurable system design which offers a foundation from which specific requirements for ebjec
hips can be realized. This configurable system design is based on the concepts of components'and pro
lause 9). In a configurable system, profiles can be chosen according to the special needs of particular
hoes of a configurable system design are:

ns do not reference the whole system but only the specific component profiles they' require. For exa
ght need only an audio or video profile.

bducing new techniques, e.g., shading methods within a graphics system,\Or’ a special purpose grap
is no need to implement a completely new graphics system for the realization of these new approach
ted as new object types that fit within the existing foundation.

described and structured in such a way that it can be developed incrementally. The chosen architecture
n evolvable family of standards.

ortability and maintenance, are greatly.enhanced by keeping underlying concepts simple. Simplicity m|
on a general architecture under which various sets of objects may be utilized. Objects are defined in
sible behaviour, thereby hiding.implementation details. Hierarchical structuring of and within objects
ing more complex entities to-be assembled from simpler parts.

b use for atd{east the following classes:

indiyiduals or groups), who work with information processing applications based on PREMO;

b) programm

neir data.
[support
files (see
applica-

mple, an

hics data
es. They

provides

eans that
terms of
1s possi-

ers¢'who use PREMO components to build applications;

¢) vendors, who develop, sell, and service implementations of PREMO; and

d) system administrators, who control and manage multimedia systems.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

6.7

6.7.1

Other influences

Application development environment

ISO/IEC 14478-1:1998(E)

PREMO takes advantage of an object—oriented design philosophy. This aspect is differentiated from different kinds of language
bindings addressed below. Thinking in terms of objects leads to a natural description of the functionality of distributed multime-
dia systems entailing:

a) uniform mechanism to access passive or active entities;

b) the treatment, description, assignment, and modification of the attributes of objects as inherent information;

¢) a clearunderstanding concerning the concurrent existence of objects that the user may freely select and
= < Y

modify; and

d) th

Many be
mented i
language
subtyping
— can bg
applicati
above, o]

6.7.2

PREMO
ple proce]

6.8

6.8.1

PREMO
computer
tions, and

6.8.2

The obje
this mean
of PREM
plished b

6.8.3

e definition of different objects with equivalent behaviour as instances of a common type.

efits of the object—oriented approach taken by PREMO can be realized without requiring, that appli
object—oriented or object-based languages. PREMO can be bound to both object-oriented and no
. However, the functionality of PREMO is defined so that the advantages of object—oriented environm
and inheritance and the ability to define mutual communication between application objects and m
used. Subtyping and inheritance offer mechanisms to extend PREMO functionality and to adapt it td
ns, whereas mutual communication supports a stronger symmetry between.input and output. No
e main goal for describing the functionality is that it is not limited to only object—oriented environme

Execution environment

hllows applications to take advantage of distributed environments. It allows distribution of functional
ksors. Where and when applicable, PREMO is compatible-with, or is defined in terms of, other intern

Functionality

Introduction

supports the construction of, presentation*of, and interaction with objects consisting of still computer
any other media type or combipdtion of media types that can be presented.

Computer graphics

tive of PREMO is.t6_consider the evolving needs of the computer graphics and applications communi

s catering to the,integration of computer graphics in multimedia applications. The underlying concepts

O provide aisible route which the community can follow to take advantage of ISO/IEC 14478. Thi

providing-simple yet extensible functionality in a well-defined manner.

User interfaces

cations be imple-
h object—oriented
ents — especially
pltimedia objects
specific areas of
withstanding the
nts.

ties across multi-
htional standards.

braphics, moving

graphics (animation), audio, text, stilFimages, moving images (including video), images coming from imaging opera-

ties. Increasingly
and functionality
5 shall be accom-

PREMO

6.8.4

goes beyond the presentation and interaction requirements of simple graphical user interfaces by supporting the inte-
grated use of multiple media, for example, through simultaneous presentations.

Dynamic interactive graphics

PREMO provides for real-time control and presentation of dynamic interactive computer graphics applications, where the graph-
ics varies in real-time in response to external inputs. It allows an application to integrate dynamic computer graphics with other

media.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) © ISO/IEC

6.8.5 Animation

PREMO provides for real-time control of media presentation, including the presentation of time—varying information, e.g., slide
shows, smoothly moving objects. It allows an application to integrate animation with other media. PREMO provides mechanisms
that can be used to create animated audio-visual applications.

6.8.6 Audio

PREMO provides for real-time control of both analogue and digital audio information presentation. It allows an application to
integrate audio with other media.

6.8.7 Video

PREMO provides ffor real-time control of the presentation of both analogue and digital video information. This includes both
single frame and time—varying video data. It allows an application to integrate video with other media.

6.8.8 Other anpd future media

PREMO supports media besides the ones listed in this clause. PREMO is extensible to suppdrf,any media type or combination
of media types thaf can be presented. Examples of such media include haptic and thermal&ensory presentations.

6.8.9 Co-representations
PREMO supports fo-representations. That is, the same information can be presented in several different ways from which the
most appropriate i§ chosen. For example, PREMO allows a modeller to choese the most appropriate renderer from amor|g those
available. It allowq information to be represented in a variety of media —for example audio and video — from which the most
suitable can be chgsen based on the application’s needs and the capabilities of available devices.

6.8.10 Cooperdting applications

PREMO supports feal-time exchange among applications eo0perating in interaction with the same scene. This includes both co-
operation between|different media and the exchange of:single media and multimedia objects.

7 Architecture of PREMO

7.1 Introdyiction

PREMO can be copceptually'described in at least three different ways. These three architectural perspectives each have their own
way of describing the parts*’of PREMO and their interrelations.

The three architectural-perspeetives—are:

a) the standards perspective, which explains how PREMO is organized as a multi—part standard.

b) the functional perspective, which introduces the organization of PREMO as a collection of components, profiles, and
object and non—object types. It also includes types related to non-presentation functionalities. Emerging ISO and other object
technology standards — such as standardized object description techniques, object request brokers, traders, and object serv-
ices — should be influenced by PREMO requirements and provide capabilities that PREMO can utilize.

c) the system perspective, which explains what systems may result from PREMO implementations and how different
PREMO implementations shall interoperate. It explains what aspects of an environment should be brought under control of
PREMO as opposed to transparent aspects (e.g., distribution). This architecture also allows precise formulation of portability
and interoperability requirements for PREMO implementations.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

7.2 The standards perspective

PREMO envisages a broad scope of functionality which cannot be covered by a single activity. Therefore, PREMO has been
designed as a multipart standard. The first part (ISO/IEC 14478-1) explains key concepts, describes the overall architecture of
PREMO, and specifies the common semantics for specifying the externally visible characteristics of PREMO objects in an im-
plementation—independent way. The second part (ISO/IEC 14478-2) defines those objects that any conforming PREMO imple-
mentation shall support. The third part (ISO/IEC 14478-3) defines a Multimedia Systems Services component which provides an
infrastructure for building computing platforms that support interactive multimedia applications dealing with synchronized,
time—based media in a heterogeneous distributed environment. The fourth part ISO/IEC 14478-4) defines a Modelling, Presen-
tation, and Interaction component which is targeted at providing paradigm independent support for high—level modelling and
presentation, enhanced by time control and interaction, and using various media.

hirts are anticipated that will be appropriate for specific application areas. For example, a PREMO—basLid mapping from
omputer graphics standards will allow many existing applications to be integrated into multimedia-pr¢sentations. Also,
pment of toolkits and highly interactive and portable authoring tools for the generation and presentatipn of multimedia
s could be defined based on functionality specified by other international standards committees.

Further p
existing g
the devel
documen

7.3 The functional perspective

7.3.1 Introduction

The func
(e.g., asp
unaware

ing of prg

ional perspective groups presentation and interaction functionality“in terms familiar to an applica
cts of time, geometry, etc.) and functionality necessary to achieve cCertain effects, where the progra
f the underlying techniques used to achieve these effects (e.gs, forms of anti—aliasing, colour represe
sentation data).

The functional architecture is restricted to a conceptual description of the functionality, leaving further detail or

foundatig
ing differ

n and non—foundation components. It identifies the fiictional areas common to all media components,
ent realizations in each environment.

The funcfional architecture explains the nature of theritles for components and profiles such that they can be ¢

tion programmer
mmer is possibly
atations, structur-

realization to the
but possibly hav-

bmbined (config-

ured) and|linked to other standardized or external non—standard components. The selection of components to agsemble the func-
tionality peeded for a given application and in©yder to be able to run on a target platform is based on criteria spich as:
— how components can interface to.0n€ another,
— how new components may reuse parts of older components, and
— how components can befealized on the corresponding part of the implementation platform.
7.3.2 Description techniques
PREMO functionality'ts described in terms of object behaviour. Each PREMO object is specified by giving:
a) a definition of its interface;
b) a desefiption of the object’s behaviour. Such a description specifies the object’s visible hehaviour, theleffects of opera-

tions on the object’s internal state, the output parameters of each operation request it is capable of receiving, and the input
parameters of these requests”.

The notat

ional conventions used for object specifications are described in clause A.3 and Annex B.

D Descriptions of the objects’ behaviour, using formal description techniques, are being developed separately and may be published as accompanying technical

reports.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) © ISO/IEC

7.3.3 The object model

An object—oriented description technique is used to specify PREMO functionality. The object—oriented terminology and formal-
ism constitute an object model in which objects and object types are composed and made to interact. The manner in which PRE-
MO is described is independent of both the techniques used to construct PREMO implementations and the languages to which
those implementations may be bound. PREMO can be bound to, and implemented in, both object—oriented and non object—ori-

ented programming languages. The object model is described in clause 8.

7.3.4

A component is a

Components

collection of profiles where specific profiles are defined to offer particular sets of functionality in the

form of

object and non—ob
encies on profiles
and the object and

The exact rules for
part. These rules fi

7.4 The sy

74.1

The functionality
using, and extendi

NOTE — For exam
rendering functions
operations on regul
photorealistic image}
diagrams.

7.4.2

Instances of PREN
these object instan

NOTE — For examyj
are moving and man
his/her view of the

devices to communi
installed as remote
copies of the scene r

74.3 Commu

Configufring PREMO-based applications

Distributed multimedia

ject types. Each profile is defined in terms of its dependencies on other profiles (either internal, i.€);
pelonging to the same component, or external, i.e., dependencies on profiles belonging to another.com
non—object types it provides for other components.

components and profiles are given in clause 9 with the notational conventions described'in clause A.
rm the basis for the properties of configuration, customization, extensibility, and inferoperability.

Stem perspective

f PREMO is realized by a set of object types. The PREMO architecture provides mechanisms for o
ng the standardized object types and non—object types.

le, in a PREMO implementation that provides traditional cemputer graphics functionality, there could be mode
with different capabilities. Modellers range from powerful geometric modellers which perform union and int
r and free form 3D bodies to simple 2D graphics modellers. Renderers can include high performance rend
 and generators for an animated sequence of imaggs from key frames as well as generators for 2D business

1O object types are conceptually location independent. There are no inherent constraints on the loc
Ces, thus allowing a PREMOQrimplementation to be easily distributed.

le, an application built using PREMO might create a multi-user interface in a virtual reality setting where severa
pulating within the same)scene. Each player uses his/her own renderers with his personal viewing parameters to
cene, hears his/her (personal version of sound associated with the objects in the scene, and activates his/her o
Cate with the common scene. If this example were realized in a distributed environment, different renderers 1
rocesses eacli with a copy of the scene. In this case, scene updates could be performed in such a way that the
main congistent with each other.

nication in PREMO

Hepend-
ponent)

V of this

reating,

ling and
trsection
prers for
lgraphics

htion of

players
penerate
vn input
night be
different

Since PREMO supports distributed applications, as well as multiple processor implementations, the invocation of PREMO op-
erations may involve communication. Objects can learn of each other’s existence and invoke each other’s operations. Synchro-
nization may be provided, since two objects could invoke operations on a third object concurrently. Communication among
PREMO objects and between PREMO objects and their client applications requires the use of underlying support facilities that
are not addressed in this standard.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

8 Object model

8.1 Introduction

This clause describes the common semantics for specifying the externally visible characteristics of PREMO objects in an imple-
mentation—-independent way. It specifies the common features that all conforming systems shall support. It includes a formal
model of types, operations, and subtyping.

PREMO uses an object model to support design portability and reuse of object definitions. The use of an object-oriented design
leads to a natural description and provides, in particular, a way for explaining extensibility and configuration aspects for PREMO
objects. It should be noted that the description techniques used in this document focus on design and allow different bindings of
an object|s interface (i.e., the declaration of its operations) to programming languages, communication techniques, and imple-
mentatiors. Although the PREMO Object Model defines types and operations as concepts, systems that egnforin with the model

need not provide objects that correspond to these concepts (e.g., if PREMO was implemented using a'hon objgct—oriented pro-

gramming language, like Fortran).

It must bg emphasized that the requirements described in this clause are valid for PREMO objects only, i.e., fdr objects defined
in this or subsequent parts of ISO/IEC 14478. Even if PREMO is implemented in an object.oriented environments, it is nof man-
dated thaj all objects in this environment behave exactly as described in this clause, only those which are defined by PREMO.

8.2 Basic concepts

The PREMO Object Model is based on a small number of basic concepts-objects, object types, and subtypinlg. An object can
model an} kind of entity, e.g., a person, a ship, a document, a graphi¢.§egment, or a colour value. A basic characteristic of an
object is ifs distinct identity, which is immutable, persists for as longjasthe object exists, and is independent of the properties and
behaviouf of the object.

Operations are applied to objects. Thus, for example, to determine the colour of a graphic segment, the colour] operation might
be appliedl to the segment object. As another example, in‘a‘windowing system a relationship between two winlows may be de-
fined as ap operation parent, which, when applied to one window object, returns another window object. The operations associ-
ated with Jan object collectively characterize its behaviour.

Objects afe created as instances of object types-(e.g., person, colour, segment). An object type defines the behaviour of its in-
stances by describing operations that can be'applied to those objects. Types can be related to one another through supertype/sub-
type relatfonships.

State is required in an object systém, because it captures internal information that may affect the outcome of ofjerations. For ex-
ample, anfoperation serColouf might take a segment object and a colour object as input arguments and produde side effects on
the latter pbject. State captures these side effects, and a subsequent application of the colour operation will pr¢sumably yield a
result thaf differs from a.previous invocation. In the PREMO Object Model, operations are used to model the dxternal interface
to state.

An object|typecan also be described in terms of attributes. Attributes represent a notational convention only; anlattribute is func-
tionally equialent to declaring a pair of accessor and mutator operations, to retrieve the value of the attribute an{ to set the value

of the attrlbute_As a further notational convenienceattributes may also be labelled-as‘retrieve-only—which-means that the mu-

TOTT

tator operation, though conceptually present, does not change the value of the attribute. In other words, the corresponding value
can only be changed by the object itself, based on the object’s internal state transition, or through other, dedicated operations.

8.3 Non-object types

Things that are not objects are called non-objects. These do not have an object reference, and therefore cannot be the controlling
parameter for an operation request (see 8.6). Each non—object can be considered to belong to a type, called a non—object (data)
type. This is analogous to objects being instances of types. Non-object types, however, do not belong to the PREMO object type
hierarchy. Examples of non—objects are, e.g., an integer or a real number.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) © ISO/IEC

84 Object types

Objects support only certain operations. The object type defines these operations, and thus characterizes the behaviour of objects.
Objects are created as instances of their object types, and, in the PREMO Object Model, objects shall not change their type.

Each operation has a signature, which consists of a list of input and output parameter types (see 8.6). The set of operation names
with their respective signatures, defined for a type, is called the interface of that type, which is a distinct notion from the type
itself. The interface includes signatures that are inherited from supertypes (see 8.7). The interface of a type can be applied to all
instances of that type.

Types are arranged mto a type hrerarchy that forms a drrected acyclrc graph PREMO Ob_]CCtS inherit from type PREMOObject
which defines the p R ping from
PREMOObject or| ype as a
value. The set of 4

its subtypes Havmg a smgle root allows programs to declare a parameter that takes an ObjCCt of any
11 object types is referred to as OTypes.

8.5 Object identity and object reference

In the PREMO Object Model, an object reference is an object name which reliably denotes a particular object. Specifi
object reference i‘]'l:entifies the same object each time the reference is used in a request. The typeof the object may be
from an object reference.

cally, an
inferred

Object references|are represented in PREMO by opaque non—object types. For each object of type T, an object referefjce type,

referring to object
type of object refe

An object referen
are available amo,

8.6

An operation des
eration request, Sj

The consequences

a) an immedi
b) side effect

c) exceptions

Formally, an oper

instances of type T, automatically exists in PREMO. As a notational convention, RefT denotes the no
rence referring to object instances of type T.

e referring to no object instances has a distinguishable valueswhich is referred to as NULLObject. Oy

Operdtions

ribes an action that can be applied to an ebject, using parameters. An operation invocation, also callg
ecifies the operation and parameters,possibly causing results to be returned.

of a request can include:

hte set of results;

, manifested as changes:in the state of the object; and

ation Q hasdhe signature:

*y

hg those defined for PREMO objects in general to check whether a reference has a NULLObject valug

h—object

erations
or not.

d an op-

O (X 10X 00, .., X, :0,) (Y P Y2 Py s Yyt Pyy)

where is the name of the operation. The operation signature specifies n 2 1 input parameters with names x; and types c; and
m 20 output parameters with names y; and types p;.

In the PREMO Object Model, operations are always specified with a special parameter called the controlling parameter, which
is used to control the way operations are dispatched: its role is to differentiate among several possible implementations of an op-
eration with the same name and signature (see 8.7.4). For discussion purposes in this clause, we assume that the first parameter
x is the controlling parameter, although this choice is not required by the model. Each object type T € OTypes has a set of op-
etations:

Ops(T) =

er.al,...1.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

An operation is part of the interface of the type T of its controlling parameter and of all subtypes of T (see 8.7). An operation is
defined on the type of its controlling parameter; e.g., Q is defined on ¢ . All operations defined on a type have either distinct
names or, if names are identical, have a distinct signature. In the PREMQO Object Model an operation is defined on a single type
(the type of the controlling parameter), so there is no notion of an operation independent of a type, or of an operation defined on
two or more types.

In the PREMO Object Model, operations can only be defined on object types, not on non—object types. The controlling parameter
type shall be an element of OTypes. All other parameters are restricted to be non—object data types. Note that references to objects
are expressed by non—object data types; hence, this restriction does not introduce a limitation on functional expressiveness.

An operation may have side effects. The PREMO Object Model does not specify anything about the execution order for opera-
tions. For example, whether or not callers issue requests sequentially or concurrently and whether or not requests get serviced
sequentiglly or concurrently is not part of the PREMO Object Model. Although the PREMO Object Model dogs not specify sup-
port for fhulti—process synchronization, it does allow several styles of operation request semantics (see 8.9))

In the PREMO Object Model operations are not objects, neither are requests (i.e., operation invocations).

NOTE —In line with a common practice, the object issuing an operation request is also referred to as a_client (of the obj¢ct whose operation
is invoked).

8.7 Subtyping and inheritance

8.7.1 Overview

Subtyping is a relationship between types, based on their interfaces. It'defines the rules by which objects of one type are deter-
mined to|be acceptable in contexts expecting another type. Inheritance is a mechanism for reuse; as a notatiopal convenience a
type may be defined in terms of another type. This clause defines thie two concepts separately, but then explicit]y states how they
are relatdd in the PREMO Object Model.

8.7.2 Subtyping

The PRHMO Object Model supports subtyping fofbject types. Intuitively, one type S is a subtype of anothgr type T, if S is a
specializption or a refinement of 7. Operationally;'this means that any object of type S can be used in any context that expects an
object of|type T. In other words, objects of type"S are also of type T. Subtypes can have multiple supertypes, with the implication
that an opject that is an instance of a type S'is also an instance of all supertypes of S. The relationships between types define a
type hierprchy, which can be drawn @s;a*directed, acyclic graph (see Figure 1; see also clause C for the graphical conventions
used in the figures in ISO/IEC 14478).

An objeqt is a direct instancé of a type T, if it is an instance of T and not an instance of any subtype of 7. Th¢ PREMO Object
Model refstricts objects to be direct instances of exactly one type. That one type is the immediate type of the object. The PREMO
Object Model has no mechanism to change the immediate type of an object.

An objeqt type Ths-an immediate supertype of S, if it is a supertype of S, and there is no type Q such that Q i$ a supertype of §
and T is g supértype of Q.

In the PF EMQO nhjp(‘f Mnﬂp]y the fypp Hpm'gnpr 1S rpqnirpr] to declare the intent rh_at a typn S 1c a cnbhtune ~Ff T Forma“y’ lf S iS

T oaoty pC—oT

declared to be a subtype of T, then for each operation Q7 € Ops(T) there exists a corresponding operation Q€ Ops(S) such
that the following conditions hold:

a) the names of the operation match;
b) the number and types of the parameters shall be the same (except that the controlling parameter types shall differ);

¢) the number and types of the results shall be the same.

Thus, for every operation in T there shall be a corresponding operation in S, though there may be more operations in Ops(S) than
in Ops(T).

15

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E)

© ISO/IEC

The set of all sup
type. For examplg
sisting of A, B, (
mechanism, nor d
subtype with iden

The above typing
mon subtype. Sup

8.7.3

Inheritance is a nq
S inherits all the g
T are also defined
operation inherite
plementations of
in8.7.4.

If the interface P
The PREMO Obj

The PREMO Obj
multiple types (se}

Subtyping is a rel

Figure 1 — Type graph

ertypes of a type, including the recursively defined supertypes, plus the type itself, form the type graj
, if the object type D is a subtype of B and C, and both B and C are subtypes of A (see Figure 1), the

and D forms the type graph of D. The PREMO Object Model does-not provide a name—conflict rq
oes it allow subtypes to redefine inherited operation signatures (altheugh it is allowed to add operatio
tical name but a different signature).

rules prevent two types that have an operation with the same name but different signatures from havin
ertypes are used to characterize functionality that is common to their subtypes.

Inheritance

perations of T and may provide other operations. Intuitively, inheritance means that the operations de
for, and can be used by, S. When inheriting an interface, type S may include its own implementati
d from T or, alternatively, may rely onthe implementation provided with T. The choice among the vai
n operation when the operation is invoked is referred to as operation dispatching, as is described in m

nherits from Q, P may:also be referred to as derived interface, whereas Q is the base interface (of P)

ect Model relates subtyping and inheritance. If S is declared to be a subtype of T, then S also inherits

ect Model supports multiple inheritance, which is a notational mechanism for the definition of inher
e 8.7.2).

bh of the
set con-
solution
ns in the

o a com-

tational mechanism for defining operation reuse. If a type S inherits from another type T then the definition of

fined for
n for an
ious im-
re detail

rom 7.

tance of

itignship between types. Inheritance can be applied to both interfaces and implementations; i.e., both i

and implementati

nscan be inherited

hterfaces

The PREMO Object Model does not provide a conflict resolution mechanism in the case of name clashes.

8.74

Operation dispatching

When an operation request is issued, a specific operation implementation is selected for execution. This selection process is called
operation dispatching.

16

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)
A A
f f

p p
q(refA) q f q(refB) q :
B B
f f
a) b)
Figure 2 — Example for operation dispatching
The sele¢tion mechanism is based on the name and the signature of the operations the name of the operation ahd the non—object

types usd

of the op|

referencg

and, say|
RefS whg

returned

The prog
actual cal
In some

type. If the signature of an operation is:

®:(x; 10, Xy 00, ..., X, 1 G)Y 1P Yy Py -

Y Pm)

n invoking the operation ®. Also, if, say, P, is of type RefQ where Q is an object type, and R is a subty
value for parameter Yj is permitted to be of type RefR when the operation w returns.

ess of selecting which operation to invoke is based on the type of the object supplied as the controllin

Cases this choice can be done at eéompile time with no loss of flexibility, whereas in others it must be

cution tifne.

The efte
face inhd
inheritan
interface
interface
for S wil

NOTE —

supersedes (oroverloads) the implementation of the base interface. For example, if type S is a sub
of both S and T contains the operation w, then for all instances of type S the implementation of operati
prevailyeven if used in an operational context that expects an object of type T.

AR example will clanty the selecuon mechamsm (see also Fxoure 2).Let A and B be PREMO ObJCCl lypes suc

of A; furtherr 0 b 0
convention, the two lmplementanons w1ll be denoted by A.f and Bf, respectlvely Let P be another PREMO type and p an instance of this
type; finally let the operation g be defined for P. The parameter list of g should include one of type RefA. Finally, let us suppose that the
implementation of P.g issues an operation request on the operation f using its argument of type RefA. The operation dispatching rules
determine which of the possible implementations of f (i.e., A.f or B.f) will be invoked. Following the rules above, the operation p.g may be
invoked with actual parameters of non—object types of both RefA and RefB. In the former case the implementation of p.g invokes the operation

f on the referred object instance: the selected implementation should be A.f (case ‘a’

actual parameter of type RefB, the selection mechanism described above will choose B.f (case ‘b’ in Figure 2).

d as actual parameters used at the operation invocation (except for té-controlling parameter) shall m
tration specified for the object whose operation is invoked. An exception to this rule applies for paranpeters of an object

1. The operation of the given name‘defined on the immediate type of the controlling argument is chos

t of this selection mechanism is as follows. From the perspective of the object which requests an ope
ritance is of importange. However, from the perspective of the object which implements the operati
ce and implementation inheritance are of importance. In the PREMO Object Model the implementat|

atch the signature

o, is of type RefT where T is an object type, and $ i$ a subtype of 7, the actual parameter x; is permjtted to be of type

be of Q, the actual

b parameter of the
en for invocation.
Helayed until exe-

ration, only inter-
on, both interface
on of the derived
ype of T, and the
n ® implemented

that B is a subtype
his operation. As a

in Figure 2). In the case when p.g is invoked with an

17

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) © ISO/IEC

In the case an operation wishes to have a finer control over the selection mechanism, it can inquire the immediate type and the
type graph of the object referred to by its argument (see clauses 7.2 and 9.4 of ISO/IEC 14478-2), and it can use the cast facility,
(see 8.11). In the example above, if the implementation of p.g needs to access A.f in any case, it should inquire the type of the
object the actual parameter refers to and, if necessary, should generate a new object reference of type RefA with the help of the
cast facility.

These rules do not disambiguate all possible situations in the case of multiple inheritance. For example, let B, C, and D be types
such that D is a subtype of both B and C (see Figure 1). Let B and C have an implementation for the operation f (with identical
signature, except for the respective controlling parameter). Finally, let D simply inherit the operation f, without providing an im-
plementation. In this case, when using an object reference RefD, there is no unambiguous choice between the two possible im-
plementations of the operation f. In the PREMO Object Model, an exception is raised when no unambiguous choice exists. Note
that some environments may also offer compile time checking for such cases

8.8 Abstract Types

An abstract type in PREMO is a non—instantiable type, i.e., if T is defined to be abstract, then no PREMQO‘¢bject may bg a direct
instance of T (see] 8.7.2). Usage of abstract types makes the specification of object type hierarchies clearer and more $uccinct,
allowing the specifications to “abstract out” identical interfaces without forcing implementations tojprovide realizations for these
objects in isolatiop.

8.9 Oper4tion request semantics

The external behgviour of PREMO objects is based on the operations defined for tlig)object. Requests for operations prgvide the
only means of infprmation transfer among PREMO objects. All requests are delivered at most once to the object.

Internally, an objgct has a finer control over the actions it has to perform.to service the request. Conceptually, each operation has
an operation receptor, and an operation request amounts to putting a request into this receptor. Each receptor of an operafion may
be in one of three|modes: synchronous, asynchronous, or sampled. Fhis mode is specified as part of the operation spedjification
and is immutable [during the lifetime of the object. The default mode is synchronous (see also clause A.3 for the notatidnal con-
ventions used to define operations). The detailed semantics of the three modes are as follows:

— The operatiion receptor is synchronous. This means-that the request is placed in the operation’s receptor and the|caller is
then suspendefl until the callee has serviced the request. Data may be associated with the request, and the request njay have
return values. [The PREMO Object Model make$-no assumptions on the order of servicing of these requests if there|are sev-
eral waiting tg be serviced.

— The operafion receptor is asynchrenous. In this case, the request is placed in the operation’s service receptor but the
caller is not siispended. Data may beassociated to the request, but the request shall not have return values. The PREMO
Object Model makes no assumptions on the order of servicing of these requests.

— The operatjon receptor isssampled. In this case, the receptor may hold ar most one request; if several requests arriye at the
receptor withdut being serviced, their respective requests overwrite one another. The caller is not suspended. Datal may be
associated with the request, but the request shall not have return values.

While suspended,|afigbject can receive operation requests from other objects. These requests are managed in accordafice with
the behaviour destribed-above—7rsuspended-object may-atsocarry out imtermat-processing, - bur shat ot access information re-
lated to its own operation receptors.

NOTE — The ability of objects for continuing internal processing while being suspended is important for the support of multimedia
synchronization (see 7.9.1 of ISO/IEC 14478-2).

Apart from having several outstanding service requests on the same operation of an object, there may be several operation re-
quests on different operations waiting to be serviced. In this case, the object chooses one of these requests non—deterministically.
An object has also means to control which requests it wishes to service, depending on its internal state.

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

ISO/IEC 14478-1:1998(E)

An object instance can also issue an operation invocation to one of its own operations. In this case, all receptors are bypassed,
and the implementation of the operation is immediately invoked, i.e., deadlock shall not occur.

A subtype may provide a new implementation for an inherited operation. However, the operation request mode of an operation

shall not

8.10

be changed in the subtype.

Protected operations

An operation may be declared to be protected. The name and signature of a protected operation is part of the interface of the
object type just as with any other operations. However, for any object instance, a protected operation can only be invoked by the

instance 1
modify th
whether 3
a subtype|

Attribute
tected.

8.11

PREMO

Objects n|
of the req

instance

be immeq

clauses 7
the objec
an object
sponsibil

NOTE —

Objects n

a referen

— It

— T}
PREN
of any

— If

argun|

— If
objec

tself: no other object instance can invoke such an operation. Being part of the interface of the object, it is possible to

e behaviour of a protected operation in the subtype of the object, thereby specializing the object’sbe
n operation is protected or not is an immutable characteristics of the operation during the lifetime)of
cannot declare an inherited protected operation to be unprotected.

can also be declared to be protected; this simply means that the accessor and mutator operations for 4

Object and object reference life cycles

ay be created through the use of the create facility. If successfuly this facility returns an object refe
uested type. If the creation is successful, it can be safely assumed that this object reference refers to :
f the type specified by the argument of the create facilify. Using this object reference, operations
iately requested. This facility shall also invoke the (protected) initialize operation of the newly instan
2 and 9.4 in ISO/IEC 14478-2), which is available for'all PREMO objects; this invocation is done pri
reference to the caller. Parameters of the creatg facility include the necessary initialization param
might be unsuccessful; it is environment depeident how the caller of the facility is notified about th
ty of the caller to check the success of object'creation.

The create facility may, for example, returh NULLObject in the case of an unsuccessful object creation.

ay also be copied through the use'of the copy facility. copy also returns a reference to a new object, b
e to an already existing object:. The newly created object has the following characteristics:
has the same immediate'type as the object referred to by the argument of copy.

e initialize operation/is not invoked on the new object; however, another (protected) operation
10 objects, called“initializeOnCopy, which is invoked by the copy facility. The signature of initialig
arguments,

ent of cOpy.

cODy is deep, all attributes of the new object, except object references, are set to the values as ¢

haviour. The fact
the object. Also,

ttributes are pro-

hbjects are created and destroyed by facilities which are part of the boundary between PREMO and ifs environments.

ence to an object
n existing object
n the object may
tiated object (see
br to the return of
pters. Creation of
s and it is the re-

ut it also receives

s defined on all
eOnCopy is void

copy is shallow, all attributes of the new object are set to the values as retrieved from the object feferred to by the

ttrieved from the

Teferred 1o by e argument of Copy. For Object Teference atibutes, a deep copy 1S made for at

referred objects

(recursively) and the corresponding reference attributes of the newly created object will refer to these new objects.

NOTE — If the implementation of PREMO is based on a distributed environment, the caller of the create and copy facilities may also
control “where” the new object is created.

An object reference is of a non—object type and, as such, can be included as a parameter for other operation requests. The defini-
tion of operations shall specify whether the reference is used directly (in which case, conceptually, each such call constitutes the
creation of a new instance of these object references), or whether new objects and object references should be created by a (deep
or shallow) copying of the referred object. Whether this copying is performed by the caller (i.e., before the invocation of the op-

19

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E) © ISO/IEC

eration) or the callee (i.e., as a first action of the operation being invoked) is dependent on the implementation environment and
the programming language. This part of the operation specification is conceptually part of the signature of the operation, i.e., sub-
types cannot change this in the case of overloaded operations.

NOTE — An implementation may have a finer control over argument copying. For example, it may decide to copy part of a structure only, or
to stop recursive copying at some level. These decisions may be based on the semantics of the operation and/or the particularities of the
implementation. PREMO standardizes the minimum level of copying only, i.e., most of the time only shallow copy is required.

The facility cast can also be used to create new object references. This facility receives an object reference and an object type
as parameter, and creates an object reference which still refers to the same object instance, but of the type given as parameter.
PREMO requires that, if type A is a subtype of B, a is an instance of A, and the reference to a is given in the form of RefB, then
a new reference, of type RefA and referring to the same instance, can be created using a and A.

NOTE — Some object environments may offer richer casting facilities, but PREMO does not rely on those. An example for thiens ge of the
cast facility is when the caller receives an object reference to a type which is the supertype of the expected type. By inquirinig'the type graph
of the object and using the cast facility using a type appearing on this type graph, the caller may create an objeet ‘reference| with the
appropriate (sub)tyfle.

Object references|may conceptually be destroyed using the destroyReference facility. As a result of this conceptual de-
struction, the objeft instance is no longer accessible through this object reference. Other object references created, e.g., by argu-
ment passing or the usage of cast, may still be used to refer to the object instance. It is ingumbent on the applicatidn or the
implementation td delete object references which are no longer in use. Objects are automatically destroyed when no valid refer-
ence exist for them any more, but not before. In other words, the PREMO specification rfiakes the assumption that all alid ref-
erences also remajn valid.

The specification of the facilities create, copy, cast, and destroyRefeterice is independent of any particulaf imple-
mentation language, development environment, or execution environment. €0y ‘integration into a programming envifonment,
these facilities shdll be realized through an appropriate language binding.

NOTE — To incregse the efficiency of the implementations, some programming languages may choose to implement some categories of
objects as special data types and not as objects.

8.12 Exceptions

When servicing a particular request, a PREMO object may detect error conditions which make it impossible to fully service the
request. In such ajcase the PREMO object shall, ifistead of servicing the request, raise an exception. Exceptions are deffined as
special data structpires which may convey additional information on the error condition leading to the raise of the exceptfion.

Details of how exdeptions are raised are patt of the boundary between PREMO and its environment (see also 8.11). The Hetailed
specification depepds on a particularimplementation language, development environment, or execution environment. There are,
however, some simple rules which.shall always apply:

— If an excepfion is raiged‘by an object, the state of the object shall not change.

— Different efror cenditions result in different exceptions; the set of possible exceptions for a specific operation is part of
the detailed spgcification of the operation. When operations are redefined through subtyping, the set of possible ex¢eptions
may be extendeéd With new exceptions

— Facilities shall be available for the caller of an operation to detect whether an exception has been raised when the opera-
tion was executed or not, as well as to access the information stored in the exception data structure.

A special case is when an error condition occurs through the initialize or the initializeOnCopy operations of an object, i.e., when
the object is created (see 7.2.1 of ISO/IEC 14478-2). In such a case the corresponding exception is raised by the facilities man-
aging the object life cycle (see 8.11), the object is not created, and the create or the copy facilities shall return a NULLObject.

20

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

9 How PREMO components are described

Fundamentally, a component in PREMO is a set of related object types and non—object types that comply with the PREMO Ob-
ject Model. Components organize these object and non—object types in terms of profiles, whereby some set of the types defined
in the component are collected together for a particular view of their usage. A profile may be tailored towards a particular con-
stituency or application domain, for example.

A component may contain one or more profiles, one of which shall be designated as the basic profile for the component. The
basic profile of a component represents the minimal and hence mandatory set of types provided by the component implementa-
tion. All other profiles defined within the component shall be defined with respect to the component’s basic profile.

The specification of a protite sirati make expliicitihe dependencies tar the profite as with respect 1o ottier profijes within its own
componeft and with profiles defined in other components. These dependencies between profiles is expressed.gds follows.

a) A profile P belonging to component A may depend on profile Q of the same component if there are objdct types in P that
are either:

1)| subtyped from object types defined within Q (type dependency), or

2)| whose behaviour depends on operations defined by object types in Q (service dependency).
This fprm of dependency is referred to as internal dependency.

b) A profile P belonging to component A may depend on profile R of component B if there are object types in P that are
either

1)| derived from other object types defined within R (type dependency), or
2)| whose behaviour depends on services provided by object types defined within R (service dependendy).
This fprm of dependency is referred to as external dependency.

The variojs possible dependencies are non—exclusive; a component profile may have internal and external deperjdencies that may
be in ternps of both type and service dependencies.

The specification of a profile also includes the list of types which can be used to resolve type or service deperjdencies by other
profiles of by applications in general. A profile can,thereby restrict the usage of a type to, e.g., as a service provider only, i.e., the
operationg of the type are available for operation requests, but no subtyping of this type is possible. The PREMO specification
also includes restrictions describing which'part of the full PREMO object hierarchy can be used to resolve type dependencies (see
7.5 of ISQ/IEC 14478-2).

NOTE — Language bindings to PREMO shall provide details on how these notions are mapped onto a particular programming environment.
In some cgses the programming environment may not make it possible to enforce the difference between service and type dependencies.

The notatjonal conventions used for component and profile specification are defined in clause A.7.

The profife specifi¢ation of a PREMO component makes provision for PREMO implementations to offer autorpatic configuring
mechanisms. Sueh-mechanisms may allow for an implementation of a component and/or a profile to interoperatg with other com-
ponent inyplementations.

21

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

~

e

Value

-

~

pe specification and the constant definition. For exapie, the declaration

~ 14
1L

h
T

1

nstant vaiue o

ith a co

7

.1

O rely heavily on the conventions in this clause. Abstract data types are construcfed from

1

V]

t=1

o

1

ata type constructors. Values of these types for various programming languages ate deter-

7

1
.

r
1

ber o

1M

in various programming languages.

Constant values may be specified as foilows:

s of|operations in PREN

The definition

)

— This data ype construction is often referred to as “‘enumeration”

E

Jx

Data types which consist of sets of values of another type are defined usin

J

State == Integer

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

means that values of type NameSet consist of sets of values, each of type GenName.

Data types which consist of subranges of other data types are defined using a set comprehension construct. The general form of
this construct is:

TypeName == {declarations | predicate e expression}

The values of TypeName are just those values of ‘expression’ which satisfy the condition expressed by ‘predicate’. The ‘decla-
ration’ part declares the types of the variables used in the predicate and expression parts. For example, to define a tuple whose
components are restricted values of other types:

wCcqgra==R

PatSlize == {x,y : WCOrd | x>0 Ay>0e(x,y)}
This state$ that the values of the data type PatSize consists of pairs of values each of type WCOrd x WCOrd yhich satisfy the
predicate k > 0 A y > 0. This approach is used in preference to the equivalent approach of defining@subtype of WCOrd for strict-

ly positivg ordinate values and then defining PatSize as a Cartesian product on this data type.

Another ekample is:
WCOFdPos=={r: WCOrd | r>0er}

This declgres WCOrdPos to be a subtype of WCOrd. WCOrdPos consists ofithose values of the data type WCOnd which are pos-
itive.
For simpl¢ cases, shorthand forms of the declarations are used. If the predicate is omitted, the default predicate|true is assumed.

If the expfession is omitted, the default is the characteristic tuple.of the declaration part (the tuple of declared variables in the
order in which they are declared). For example, the type WCO#dPos could be written as:

WCOFdPos=={r: WCOrd | r>0}
Here the dxpression is omitted and the characteristic-tuple of the declaration part (r) is assumed.
Functions|are defined using the notation:

Selects == SelectCritType — SeléctCrit
This defines Selects as a function\from values of type SelectCritType to values of type SelectCrit.

The set offall functions mapping the set X to set Y can be expressed as:

X—-)

her extension of
hithe ordered pair

Where it is ecgssary to define a function whose source data type is the subtype of some other data type, a fur
the predicatenotation-is-used-—Eorexample,the notation(i,/ m means-that the value m is-associated wi
(i,J). Also:

Matrix23=={i,j :N,m:R | i<2,j<3 e (i,j) > m}
defines a subtype of:

Matrix==NxN —- R

which describes a matrix of dimension p X g . For thisMatrix23 the first index of the source is restricted to the values {1, 2} and
the second to the values {1,2,3}.

23

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E)

A2.2

Constructed type definitions

© ISO/IEC

In order to describe some of the PREMO operations in a concise manner, it is convenient to define data types which may take

any of the values

A.2.2.1 Tuples

of other types.

Ordered tuples are defined using the Cartesian product constructor ‘x’. For example:

Constraint == String X ConstraintOp

defines values of

he-datatune Comstraintto-consistof-apairof values—the first of tvune Strina tha ca £ty ma
HHe-arete-tyP: P SSTHHSHO Tty peoHHY,

A.2.2.2 Discriminated unions

One such constru

IntegerValues :

The definition sta
The constructor
because in some

tion. Types defin
only one of the ¢
component data

The main usage
IntegerTypd
Integd

The type Integer
the names of vari

A.2.2.3 Sequerces and arrays

The constructor *

CharString

defines values of

nd ral
55 e SCCoONRG Oy PC—Co#s

ction is the (discriminated) union. An abbreviated example is:

= short «Short»

long«Long »

unsignedShort«UShort »

tes that the values of the data type IntegerValues are either of the type Short, Long, or values of type
ames ‘short’, ‘long’, ‘unsignedShort’ are chosen to describe usage of the type following. Thi
ases, the type name alone either does not provide an adequaté€xplanation, or provides an ambiguous
ed in this way are disjoint unions of the component types- A.given value of the type corresponds to a

pmponent types. Thus in the example here, a value of the data type IntegerValues arises from only o
ypes Short, Long, and Ushort.

f such union types is exemplified by the followang:

s ::= SHORT | LONG | UNSIGNEDSHORT

r==IntegerTypes — IntegerValues

s a function from the source datatype IntegerTypes to range data type IntegerValues. The source type
pus variants of integers and the data type Integer associates a value with each of these integers.

eq’ defines atype‘whose values consist of a sequence of values of some other type, for example,
= seq Char

YP€ CharString to consist of sequences of values each of type Char. The constructor ‘seq’ allows sequ

raintOp.

UShort.
s is done
explana-
value in
he of the

denotes

ences of

length 0. An addi
ative integer n):.

seq, X == {f:seq X | #f>n}

seq, X == {f:seq X | #f mod2=0A#>1}

seq, X == {f:seq X | #f mod2=1A#21}

where the operator # delivers the length of the sequence.

24

TOTTat fammity Of SeqUeTnce TONSwuctors 5 provided by The folfowing Torms (Tor an arbitrary type X and non—neg-

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

Finally, a family of array constructors is defined with the following forms (for an arbitrary type X and size i):
array, X == {f:seq X | #f = i}
where i is a non—negative integer.

Specific sequences and arrays will also be denoted in the text as:

<Element,; Element,,...,Element >

----------- [=tE 3rets

A3 Object iype definitions

Object tyffes are described in term of their inheritance relationships and their operations. Type specificatipns’are|enclosed in type

schemas:

,: Typg Name

Superfypel redef (RedefinedOperationl, RedefinedOperation2)

Superfype2

short dlescription of the type in natural language

attribytel: AttributeType
attribyte2: AnotherType [Retrieve Only]

description of the attribute(s) in natural language

— opepation

paranmeterl;,: TypeOfParameterl

paraneter2,,,,: TypeOfParameter2
parameter3;,: TypeOfParameter3 [Shallow Copy]
parameterd,;,: TypeOfParameterd4 [Deep Copyl]

exceptions: { ExceptionValuel, ExceptionValue2}

behavioural description in natural language

Exceptions raised:
ExceptionValue Description.

—= Tyyle Name

The namd of the type appears on the top and the bottom lines of the schema; these lines enclose the set of inheritgnce relationships
and operation definitions which constitute the type specification. I the type 1s defined 1o be abstract (see€ 8.8), the keyword ab-
stract appears as a subscript of the type name in the top enclosing line.

A type schema encloses the following units:

— inheritance relationships: this follows the top enclosing line, and is a list of PREMO types, one per line, specifying the
set of immediate supertypes for the newly defined type. A simple listing of type names indicates that all operations defined
in these supertypes are inherited by the new type without change; if the new type provides new implementations for some
operations, these shall be listed between a pair of brackets, and this list shall be preceded by the keyword ‘redef’ (see the
schema above).

25

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E)

© ISO/IEC

—— short description of the type: a short description, comment, etc., which applies to the type as whole, in English prose.
This unit is optional.

— attributes: a separate sub-schema shall be used for attributes, which is functionally equivalent to declaring pairs of

accessor and mutator operations, to retrieve the value of the attribute and to set the value of the attribute, respectively. Each
attribute shall be defined with its type. Fx(‘ennnng may also be present in this sub-schema. denoting excentiong raised when

oule oC Ac COPRIONS INAY aisS0O DO PICSCIL 11 1S SUD-5LIICin &, UTHUULNE CACTPUUIS TAlSTCU Wil

setting the corresponding attribute value. The type name in an attribute may be followed by the remark [Retrieve Only],
which means that the operation to set the attribute, although conceptually present, does not change the value of the attribute.
In other words, although the attribute value may be changed by the object itself depending on its state and semantics, the
value cannot be set by other objects, or oni_y through dedicated, and separate, operations which are to be defined expiicit]y.

— operation schemas (one per

- The signature consists of a list of parameters, each with its type (using the declaration notation, seerctause A.3). The
keywords|in or out, appearing as a subscript to the parameter name, denote whether the parameter is an input or pn output
parameter| respectively. Note that the controlling argument (see 8.6) does not appear in this list.
The type gpecification of an argument may be followed by the remark [Deep Copy] or [Shaiiow Copy], in th¢ case the
type is an|object reference type. These remarks specify whether the object, referred to by the argument, shall be copied
on the cal] or not and, if yes, whether the copy is deep or shallow (see 8.11). If no remérk-is present, the object ig not cop-
ied, and thle value of the object reference shall be used by the operation.
The list of parameters is followed, if applicable, by a set of exceptions which cambe raised by the operation.
- The sgmantics description of the operation, in English prose.
- The sgmantics of each exception which can be raised by the operation. Unless stated otherwise the data aspigned to
exceptiong are empty; if this is not the case, the detailed information on the returned data is part of the semantjcs of the
exception

The request semantics of the operation (see 8.9) appears'in the name of the operation in the operation schemj: a char-

acter alor s in the subscript of the name denotes an*asynchronous or sampled operation, respectively. If nope of the
two chgracter appears as subscript, the operation is synchronous.
The name of the operations may be precededby the symbol ‘Z” which denotes that the operation is protected |(see 8.10
for the fefinition of protected operations):

There are some other, more succinct ways of defining operations, too. These are further described in clause A.6.

A4 Definition of finite state machines

The behaviour of|objects in RREMO are sometimes defined in terms of states and state transitions of finite state machihes. This

clause defines thd

State transitions g

notational ¢onventions used in the PREMO Standard for the specification of finite state machines.

redefined through state transition tables:

' To:| Statel State2 State3
From:
Statel Y I Y
State2 N N I
State3 Y Y
The symbol in the i row andj'h column can be either ‘Y’, ‘N’, or ‘I’, and the meaning is as follows.

26

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC

., on
‘N’

The name

ly the object may perform such a state transition internally;

means that the state transition from state i to state j is not allowed.

of the initial state is underlined.

ISO/IEC 14478-1:1998(E)

‘Y’ means that a transition from state i to state j is possible, and this transition can be requested by a client;

‘I’ means that a transition from state i to state j is possible, but this transition cannot be explicitly requested by a client,

States are specified in the functional specification of the objects using constant with integer values (although type synonyms may
be used to make the specification more readable). This makes extensions of finite state machines easy to describe.

AS

In some cases, e.g., to make the behavioural descriptions or various examples more concise, it is necessarj-fo-havg

to refer to

— If ¢
symbo
output
‘out’ s
value.

denote
1S invVO
ment i
specifi
only tH
can be

— If the symbol A refers to an object type, an object instance, or an object reference (depending on the g

symbo
tively.
an obV|

1S acce

1s also

In the behi
(i.e.,thea
to as the “

Reference to operations and oDJecCTs

an operation of an object type or an object instance. In PREMO, the following notation is tsed.

he symbol A refers to an object type, an object instance, or an object reference (depending on the d
frefers to the name of an operation, the symbol A.f will be used to denote this operation on A. If necg
arguments of the operation may also be given by listing them in a pair of brackets, each name followe
ibscripts to denote whether it is an input or output argument respectively, followed by a colon and th
Chis convention is analogous to the one used in the type schemas. For example:

A.flarg_one;, : 1234, arg_two,, : 3.456, arg_thréeg;, : output_value)

5 an operation with two input arguments (arg_one and arg_two) and one output argument (arg_three
ked by assigning the values /234 and 3.456 to the two input.arguments, respectively, and the value of]
b fed into output_value. The names of the arguments-appearing between brackets shall be present
bation schema of the object: the order of the argumeantis not significant. It is not necessary to list al
ose which are relevant in the context. Finally, if no argument notation is required for the context, the
missing altogether.

a refers to an attribute of the object, A.a>set and A.a-retrieve refer to the mutator and the accessor fu
[The symbol A.a may also be used as(@)shorthand for A.a-retrieve. Because A.a-set may have only on
ious argument name, it is not necessary to add the name or the argument if the bracketed notation is u

A.a-set(6.789)

ptable, although the notation:
A.a-set(a;, : 6.789)
correct (though redundant).

hviourahdescription of objects, the following notational convention is also used. Types and instancg
tual active objects) are distinguished as follows. If Foo is an object type or a generic type definition, th

a clear notation

ontext), and the
tssary, input and
i by the ‘in” and
e corresponding

. The operation
the output argu-
in the operation

I the arguments,

pair of brackets

ontext), and the
nctions, respec-
e argument with
sed, i.e.,

s of those types
e type is referred

ot tyuna’®

A.6

aa-abie o Foa tuna” \whila o cnanifin tnatanaca of 4 tuyna 1o rafarrad t0 a¢ g “Lha ahiant’
G09S S -6ty Pe—WHhHea-SPpecHHECHSHRCE- Oty pPeISTHeerrea+t0d—F66-09ject—

Sty pe

Shorthands for operation specifications

Using the notations for the references to operations and for finite state machines it is possible to define alternative ways of spec-
ifying operations in type schemas; these are presented in this clause. These shorthands are merely shorthand for the operation
specification schemas as described in clause A.3, and do not represent any new concepts. However, using these shorthands, the
object type specifications become more succinct.

27

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

ISO/IEC 14478-1:1998(E)

A.6.1

©

State transition operations of finite state machines

ISO/IEC

Objects implementing finite state machines may also have operations to perform state transitions. Although it is possible to de-
scribe such operations with operation schemas and a semantic description in English, the following notation is also possible:

I: Type Name

SuperType

transitionOp

o(TargetStateName ;) ®
o(TargetStateName,, StateName | ... |

ap

StateName,) ®

eNam

remarks on tH

—— Type Namé¢

This defines tran
separated by the (
state transition ta
the form:

— o(Target$|

— o(Target§|
current state i
— o(TargetS
range Target$
the general by
the scheme.

If the operation i
in 9.3 (page 29) g
A.6.2 Sequer

The schema

[: TypeName

SuperType;
SuperType,

operation

e transition operations in natural language (if necessary)

sitionOp to be an operation which may perform one of various possible state transitions (the possib
haracter ‘@’). The alternatives are taken from left to right; if a state transition s possible (i.e., is allow

ateName)): means a state transition of the object to state TargetStateName;

ateName, StateName | ... | StateName,,): state transition of the object to state TargetStateName,, pro
5 one of the range StateName, ..., StateName,,.

ateNames | ... | TargetStateName,,, StateName | ... | StateName,,): state transition to one of the sta
tateNames, ..., TargetStateName,,. The choice among'the various possibilities for the target state de
haviour of the object; the semantic details for thigtransition are described by the additional (Englis

invoked but none of the state transitions 4t permitted, the operation raises the exception WrongStard
t ISO/IEC 14478-2.

tial composition of operations

operation; 5 operation,

lities are
ed by the

ble), it is performed and the operation terminates. Each specification of a_state transition operation nhay be of

vided the

es in the
pends on
h) text in

, defined

remarks on th

—— TypeName

e operation in natural language (if necessary).

defines operation as a sequential composition of operation; and operationy. Both operation; and operation, may be either oper-
ations defined elsewhere in the type specification schema of TypeName or may be, for example, of the form SuperType;.op, i.e.,
referring to an inherited operation.

28

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

© ISO/IEC ISO/IEC 14478-1:1998(E)

Sequential composition means that the operations are performed sequentially in left to right order, unless one of the operations
is interrupted by raising an exception. In the latter case the whole operation is interrupted and raises the same exception. Only
operations without arguments are specified this way in PREMO.

Although the definition above describes the sequential composition of two operations it is possible, by natural extension and, if
necessary, through the usage of parentheses as delimiters, to extend the composition to an arbitrary number of operations. Also,
the formalism can be used with one operation without real sequential composition, meaning simply an identification of opera-
tions.

A7 Specification of components and profiles

Components and profiles are defined through component schemas. Each component shall contain one and only| one component
schema:

r— Name

— Basic

provides service

typel,|type2, type3
Profile 01

provides type

typel |type2, type3
Profile 02

requirnes service

Comppnent R1 Profile P1

requirles type

Comppnent R2 Profile P2

— Advanced

provides service

typel |type2, type3
Profile O3

provides type

typel | type2,“type3
I’rofille 04

L
requires service

Component R3 Profile P3

requires type

Component R4 Profile P4
Profile Basic

I— Name

29

https://iecnorm.com/api/?name=452cf92e4d12a84bf35a2f921abc6a94

