INTERNATIONAL ISO/IEC
STANDARD 10165-4

First edition
1992-09-01

AMENDMENT 3
1998-12-15

Information technology — Opeéen Systems
Interconnection — Structure>of
management informationi-Guidelines for
the definition of managed objects

AMENDMENT 3. Guidelines for the use of Z in
formalizing the behaviour of managed objects

Technologies devinformation — Interconnexion de systémes ouverts +
Structures des‘informations de gestion: Partie 4. Principes directeurs pour
la définition_des objets gérés

AMENDEMENT 3: Principes directeurs pour l'utilisation de Z dans la
formalisation du comportement de l'objet géré

sol1EC
I\KSQZQ () Reference number
ISO/IEC 10165-4:1992/Amd.3:1998(E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4:1992/Amd.3:1998(E)

Contents

Page
1) TADIE Of CONLENES ...ttt e e e oo oo oo oo oo oot ettt e s ¢ m——— £ £ 4244222222242 244511000000 1
2) YU] - L £ 3740 PSSP 1
3) NEW SUDCIAUSE 2.3 ...ttt ettt e e e e e e e e e e e e e s e e e e nnnnebes b e s s s s s nnsnene s LD e 1
4) N =TT AN T = G = USROS SR 1
Annex B — Guidelines for the use of Z in formalizing the behaviour of Managed Objects............... g, 2

© ISO/IEC 1998

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any formyombsnan electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office Case postale 6CH-1211 Genéeve 20 Switzerland
Printed in Switzerland

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

©|

SO/IEC ISO/IEC 10165-4:1992/Amd.3:1998(E)

Fd

IS
sp
de|
pa
int

In
Int]
Int]

Anmendment 3 to ISO/IEC 10165-4:1992 was prepared by Joint Technical Committee ISO/IEQr¥o@rktion tech

Su
R€g

reword

D (the International Organization for Standardization) and IEC (the International Electrotechnical Commis
bcialized system for worldwide standardization. National bodies that are members of SO or IEC pa

rticular fields of technical activity. 1ISO and IEC technical committees collaboratecin-fields of mutual i
ernational organizations, governmental and non-governmental, in liaison with ISO andMEC, also take part in

the field of information technology, ISO and IEC have established a joint‘technical committee, 1SO/IE(
prnational Standards adopted by the joint technical committee are circulated to national bodies for voting. H
ernational Standard requires approval by at least 75 % of the national bodies casting a vote.

bcommittee SC 3Bistributed application servicesn collaboratien with ITU-T. The identical text is published
c. X.722/Amd.3.

sion) form th
ticipate in th

velopment of International Standards through technical committees established by the.réspective organization to deal \

hterest. Othel
he work.

C JTC 1. Draf
Publination as

nology
as ITU-T

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — OPEN SYSTEMS INTERCONNECTION —
STRUCTURE OF MANAGEMENT INFORMATION: GUIDELINES FOR
THE DEFINITION OF MANAGED OBJECTS

(E)

> >

> DN

(@%)]

> N

AMENDMENT 3
Guidelines for the use of Z in formalizing the behaviour of managed objects

) Table of contents
dd the following reference to the table of contents:

nnex B — Guidelines for the use of Z in formalizing the behaviour of managed(ebjects

) Subclause 2.1

dd the following reference to 2.1:

— CCITT Recommendation X.731 (1992) | ISO/IEC.10164-2:18%8rmation technology — Open Sys
Interconnection — Systems Management: State.management function

) New subclause 2.3
dd a new subclause as follows:
3 Additional references
— ISO/IEC 13568, Information technology — Z specification language
1) Presently at the stage of draft.
) New Annex B
dd a new Annex B, as follows

stems

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

1

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

Annex B

Guidelines for the use of Z in formalizing the behaviour of Managed Objects

(This annex does not form an integral part of this Recommendation | International Standard)

B.1 Introduction

Tlhis annex contains a technical guide on the use of the Z language for defining the behaviour of managed.d
support OSI management interworking. It is informative and not normative. It does not require Férmal
Tlechniques (FDTs) to be used to specify MO behaviour. If FDTs are to be used, it does not require Z'to bs
languages such as SDL are also suitable. Even if Z is to be used, other ways of specifying MO behaviour are

Hormal specifications of MO behaviour can be directly valuable because they are clear and-unambiguousg
producing a formal specification forces the details of the behaviour to be analysed closely.| Fhus, it can also
tpol to identify and correct ambiguities which might go undetected in a specification relying solely on natura
Hor these reasons formal specification can be useful to improve behaviour specification.

Tlhis annex contains an illustrative example that demonstrates current best practice. It aims to establish a ¢
and understanding of this particular formal approach which will help achieve Consistency in similar develd
should provide a useful starting point for GDMO users wishing to use Z to limprove their behaviour specificatid

I

Q

nd the Z language.

xpressive power to be able to describe single classes of managed objects.

D

owever, there exists no notion of encapsulation in Z. A Z specification typically consists of a model of some

S 0 o T

ecessary to describe managed- objects which inherit variables and behaviour from other managed object cla

= 4

pspects Z is suitablesfer expressing single classes of managed objects.

3 What:needs to be translated

= 4

is aimed at an audience familiar with the basic concepts of managed object specification using the GDM(

Hor the remainder of this annex, the terms “managed object’ and “MO” will be used to refer to a managed
definition given using the GDMO templates.

B.2 Language issues

Tlhe Z notation is a formal specification notation based on set theory and predicate calculus. It possess

pllection of operations to modify the state. There is no method built into Z to parcel the state and its operatid
ngle module and re-use it in, another specification. The consequence of this becomes apparent when it becomes

he effect of inheritance tan be achieved by the technique of schema inclusion at the expense of some clarit

he behaviour definitions, or parts there of, need to be translated from the informal description into Z. Th
hich'the remaining parts of the GDMO templates need to be formalized depends largely on the needs of the

bjects which
Definition
used; other
possible.
. The act of

be used as a
language.

pmmon basis
pments. It
ns.

D templates,

pbject class

es sufficient

state and a
ns up into a

5s definitions.

y. In all other

e extent to
specifier.

T
Z specification using these ASN.1 definitions as a basis for types used in the Z specification, and this saves
amount of work.

e GDMOtemptates aiready inciude—a semi-format—defimitiom of datatypes T ASN It s possitte—t

write a
a significant

However, if a specification is written in this way, then it makes it a greater task for the specifier to ensure that it is
syntactically correct. Without Z specifications of the ASN.1 definitions, it is not possible to use existing Z tools which

provide support for checking the syntax and static semantics of a Z specification.

In summary, it is possible to improve the behaviour definitions by using Z without re-writing the ASN.1 data

types, but

there is a significant benefit to be gained by a full translation of the ASN.1 data types into Z. Examples of how to convert

ASN.1 Basic Types into Z are provided in B.7.1.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)
B.3.1 From GDMO templates to Z

This subclause contains general guidelines of how to go about translating a managed object from its informal description
as given in this Recommendation | International Standard into Z. It should be stressed at the outset that such a translation
can only be carried out informally since a formal translation would require, as a minimum, that both the source and target
languages be formal.

Moreover, as with any mapping between two distinct languages, there is bound to be some mismatch between their
constructs. The problem multiplies when one of the languages happens to be informal or to include informal components.

In this subclause some of the main features of the templates defined in this Recommendation | International Standard are
lifted Together with the ways In which they differ from or correspond to constructs in Z. In the process, gengral ways of
resolving the mismatch or advice on how they may be tackled individually on an ad-hoc basis is offered.

—

his annex will concentrate on what is necessary to describe the behaviour of a managed object. Additional information
n how to convert ASN.1 types is provided in B.6.

Q

B.3.2 Datatypes

he first step is to rewrite the datatypes from this Recommendation | International Standard as Z types. ASIN.1 provides
e usual facilities of datatyping but its constructors are biased towards the desegription of datastreams cgmmunicated
tween systems.

= 4

ASN.1, the type constructors are defined as forms of list. In Z, types are sets. Although it is possible t¢ model the
SN.1 type constructors as sequences in Z, it is sometimes more natural to consider the operations avdilable on the
SN.1 types and to map them to Z types which more clearly describe their structure. The ASN.1 sequence and set types
an be mapped to Z tuples. The ASN.1 sequence-of type can be mapped to a Z sequence. The ASN.1 set-pf type can b
apped to a Z set.

SoOrr=

b~

SN.1 includes special support for encoding, such as type labels and default values. This does not need to e representec
n Z since it doesn't affect the behaviour definition.

n

ubclause B.6.2 provides additional information on how'to convert ASN.1 types.

H.3.3 MO Attributes

lanaged objects are defined to have certain management attributes. These attributes have a datatype defined in ASN.1
hey are assigned object identifiers. They also may have a matches-for property. Two ways to model such aftributes have
een proposed:

o - =

* simple attribute types; and
e attribute types as schemas.

The simplest is to represent the MO attribute within the MO as a Z variable with the appropriate datatype. Then
separately we willmeed a constant definition which represents the object identifier of that attribute. This congtant will be
related to the actual attribute by convention only. We can use the actual fixed matches-for property when matching
operations aredefined for that attribute. An example of this is given in B.6.3.

It is alse-possible to encapsulate all these properties of an attribute in a single schema type which will then ble the type of
e Z\ariable modelling the MO attribute. Thus, the schema will include the value of the attribute as well ag the object
identifier and the matches-for property if any. An example of this is given in B.6.4. Where matching rules [other than
equality are required, It IS pOSSI Or parameter as a Z relation over the type of the value of the
attribute. This allows the formal representation of arbitrary ad-hoc matching rules, which may be important for scoping,
filtering and object selection.

It is difficult to model ASN.1 type ANY in Z. One case where this is common is to give lists of attribute values. Thus, a
fully formal model will probably require a Z free type combining the attribute types already defined. An example of this
can be found in B.6.1 and B.6.5.

Obiject identifiers are formally modelled by a given set.

[OBJECTID]

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 3

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

B.3.4 Other Object Identifiers

Many things besides attributes also have an Object Identifier. It is convenient to introduce them all as constants in

axiomatic definitions. The convention of suffixing them with “Oid” will be used. Typically such constants will b
for classes, packages and notifications.

An example is:

packagesPackageOid : OBJECTID

e needed

Il loab Il Ol RO TL
cUTUTTIUTPTIS T AdLRayTuUIu . UDJE U TTY

topClassOid : OBJECTID

B.3.5 Inheritance and Compatibility

Z can be used to build inheritance hierarchies of MOs by using schema inclusion to model inheritance and specialization.
Tlhis does correctly model the behaviour of an MO class and its sub-types but, it fails to make explicit the [strong sub-
typing relationship that is really present. For that, a language that models inheritdnce explicitly is needed.

Tlhus Z can be used to define individual MOs satisfactorily, but to be able to-talk about inheritance and compgtibility, the

additional power of a language that models inheritance explicitly is needed.

mheritance is not supported by Z. It can be modelled by simple sehema inclusion of state schemas.

he definition of MO inheritance requires sub-classes to%be compatible. Unfortunately this does not
Lb-classes to be sub-types in Z. Thus, typically an MO can_report its actual class. Since the actual class at
bports an object’s actual class, a sub-class cannot repoft the class of a super-class. Therefore a sub-class
e same behaviour as its super-class in returning the value of its actual class attribute (i.e. it is not substitut
tlis behaving allomorphically. Therefore managed-object class sub-classing is not equivalent to Z sub-types,
pe would exhibit the same behaviour as its‘super-type. However, a sub-class exhibits very little “unsu
ehaviour.

= 0 -

—

o2

this way it can be seen that MO inheritance as defined in this Recommendation | International Standard al
haviour in a parent which is inconsistent with the behaviour of its children. Since there is a very limited am|
non-substitutable behaviour, an MQ, class can be represented by two class specifications. One captures the
ny instance and also any extended MO must exhibit. The other is a specialization and captures that behav
nly by instances of the compatible class and not by any extensions. It is this latter specification that is in
give the complete behaviour of an actual MO instance.

3.6 Packages

ecommendation | International Standard describes this process by grouping functionality into conditiong
hen, each.MO instantiates appropriate packages. In Z functionality cannot be provided in this conditional
ssible‘to-make the behaviour of the MO depend on which packages are instantiated. This is straightforwar
O must contain a management attribute called packages which lists the object identifiers of the packa
instantiated. Thus, to model behaviour in a conditional package, the behaviour itself becomes conditional on

B.3.7

The Class

To define an MO class it is necessary to represent its attributes and its operations. Attributes become part
schema and operations become Z operation schemas.

B.3.7.1 Attributes

equire the
ribute always
cannot exhib
gble), even
where a sub-
bstitutable”

ows specific
ount of this
behaviour tha
our exhibited
stantiated to

any parts of, the functionality of a class may be present in some individual MOs and not in others. This

| packages.
bay but it is
because the
es actually
he presence

of the Z state

The attributes of the managed object are declared in a state schema. Each attribute is given a type, which may be of a typs

declared in the ASN.1 part of the GDMO template, or which may use types declared in Z in a fully formal mod

4 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

el.

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998

B.3.7.2 The Get operation

(E)

The manager may request a Get operation to be performed on an MO. The CMISE definition of M-Get has many
parameters but most of these are concerned with access control and object selection and so on. In this instance Get ma

be modelled at the Managed Object Boundary ignoring these issues and replacing the single Get operation
of Get<name> operations, where <name> is a single attribute.

B.3.7.3 The GetAll operation

A GetAll operation, which has no input, is also modelled. It returns a non-empty set of Attribute Values.

by a number

A R] '
B MNTHPIaLT UpTrativrio

et on an individual MO is requested by the CMISE M-Set operation. This specification models the Replacq

Operations

seen at the MO Boundary instead. In this specification, Replace Operations refers to the attribute, Operatipns set, set to

default, add and remove.

he consequence of this is that a Z schema to represent each modification is specified.

.3.7.5 Notifications

otifications are unrequested messages sent by the MO to report events within it. However they are not

perations. Instead they are modelled as outputs from operations that happen on'the MO. Thus, any opera
invoked by the manager or internally by the resource) can generate output andhif’it causes a notification tha
should be part of that operation’s output.

his means that the output of a Z operation schema that can cause notifications shostd dienatifications. Th

those occasions on which it does not emit a notification can be repreSénted by giving an empty set as output.

Tlhe data in a notification consists of an EventType which is_the object identifier of its standard definitio
followed by various information relevant to that particular notification. The object identifier can typically be de
cpnstant and the particular data as a schema-type. The behaviour of the notification is included in any obje
generate the notification.

H.3.7.6 Actions

b~

ctions are operations performed by the manager on the MO. They are very naturally represented by Z operg

m

.3.8 Specification of the system of abjects

he rest of the annex describes How to represent the behaviour of a single object. When consids
reation/deletion, name bindingsyxgontainment and naming, it is necessary to describe the state of the syst
bjects reside. Object creationvand deletion can be represented by a change of state of this system. Nam
pntainment can be represented by a relation over the set of objects. Naming can then be defined in terms of

0O 0 0O -

B.4 An example

m this subclause-example definitions for the MO class top and State Management attributes are given. Si

cpncern of this-guide is the modelling of behaviour, the creation of Z types from ASN.1 types is not prese
spbclause~Afull formal definition is given in B.7.
B.4.1 top

modelled as
tion (whether
notification

n. This is
fined as a
ct which can

tions.

bring object
em where the
e binding anc
this relation.

nce the main
hted in this

top has four management attributedjectClasspackages, allomorphand nameBindingobjectClassholds the obj
identifier of the class, whilpackagesolds the object identifiers of the packages it instantiag®seBindingholds t
object identifier of the name binding used to instantiate the objecaliordorphsholds the object identifiers of the

classes to which the object can be allomorphic. Since management attributes can be in packages, the attributes present i
MOs of a given class can vary. This is modelled by including an additional modelling attributeatizitedes which

holds the object identifiers of the attributes that are actually instantiated in the individual MO. Note that all thesattribute
present irtop are fixed for the lifetime of any individual MO.

ect
he

Z does not explicitly model interfaces, and so it is not possible to formally define which operations are invoked internally

or externally by the manager.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

5

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

TopState

allomorphs: FOBJECTID
objectClass: OBJECTID
nameBinding: OBJECTID

packagesF OBJECTID
attributes:/ OBJECTID

{objectClassOid, nameBindingOid} attributes
allomorphsPackageOid packages= allomorphsOide attributes

packagesz &J = packagesOidt attributes

in
1
P

T

Q

attributesis not an MO attribute but a new state component defined for convenience. It lists the-MO attribu
cludes. Thus, the invariant enforces that it must contain the object identifiers of the appropriate attributes as described

B.3.3 (and defined in B.7.4hbjectClas andnameBindingare mandatorypackagesis present if any regist
ackage is instantiated apart frpeckagesPackagén this case this meaaiomorphsPackage

he operationTopGetNameBindingnterrogates the MO and returns the value of theeBindingattribute, withd
hangingTopStateTopGetNameBindingg invoked by the manager.

TopGetNameBinding

= TopState
resultl: OBJECTID

result! = nameBinding

T

I

O —

he operationFopGetAllomorphsTopGetObjectClasandTopGetPackagelsave not been defined here. Note tha
no operation to getttributes sinceattributesismot a real MO attribute as specified in the GDMO template.

opGetAll gets all the attribute values .ofi an object. It always returns valuesbfectClassand nameBinding
pnditional packages or allomorphs arégresent, then it gets thoep&etAllis invoked by the manager.

TopGetAll

= TopState
result!: PAttributeMalues

attributes = #Tesult!

ObjectClassValue objectClagsresult!

NameBindingValue nameBindirg result!

PackagesOid: attributes= packagesValue packagesresult!
AllomorphsOide attributes= allomorphsValue allomorphs result!

tes an MO

ered

ut

there

TopEventReporis a way to model notificationg.opEventReporbccurs spontaneously and represents the way event
reports are not controlled by the manager.

= TopState
notification!: Eventinfo

TopEventReport

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

B.4.2 StateManagement class

This class does not reflect any specific MO class. Instead it reflects the behaviour of any object which includes any of
certain standard attributeadministrativeStateoperationalState and usageStatelt is more convenient within this
framework to understand this inclusion as inheritance and it does serve as a useful example.

The state schema includes thepStatedefinitions and predicates, and defines some additional variables and predicate
conjunctions.

StateManagementState

TopState

administrativeState:
AdministrativeState
operationalState: OperationalState
usageState: UsageState

operationalState = disabled= usageState = idle
administrativeState = locked» usageState = idle
usageState = idlez administrativeState shuttingDown

N

tate Management inherits the operations from Top. Although there is no meehanism built into Z to inherit operations, it
straightforward to redefine the operations in terms of the new state.\Fhe predicate $tatefanagementState

ollows from the definition of the State Management function in CCITT Rec. X.721 (1992) | ISO/IEC 10165-2;1992 and

CITT Rec. X.731 (1992) | ISO/IEC 10164-2:1992.

@

—h

he operatiorBMGetNameBindingan be easily defined, since it-has no effect upon the new state variables declared in
tateManagementStafehe definition ofTopGetNameBindingan ‘be-fe-used:

n - Q

SMGetNameBinding

B TopGetNameBinding
E'StateManagementState

efinitions for operations to get the ather attributeStafteManagementStatave also been omitted from this example.
he operationSMGetAllomorphsSMGetObjectClasand SMGetPackagesan re-use the definitions from Top gs for
MGetNameBindindNew operations will need to be defined @etSMAdministrativeStat&etSMOperationalStatand
MGetUsageStatSMEventRepottnay also be re-used.

nmn4Hg

he SMGetAllschema also makes use of an operation definetbpBtate It includes the definition ofopGetAlland
trengthens the postcendition.

0 -

SMGetAll

Z StateManagementState
ToepGetAll

administrativeStateOié attributes
= aommnistratvestate value agminisratve Staresult!
OperationalStateOidk attributes
= operationalStateValue operationalStateesult!
UsageStateOid attributes
= usageStateValue usageStatesult!

The SMReplaceAdministrativeStadgperation describes behaviour specific to the State Management class whereby the
administrative state is replaced by another value supplied as an input. Depending on the state of the object when the
operation is carried out, the usage state may also be changed. The operational state is not altered by the operation.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 7

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

SMReplaceAdministrativeState

AStateManagementState
ETopState
input?: AdministrativeState

administrativeState:
IF usageStatesidle
THEN { unlocked— unlocked,locked-locked,
shuttingDowrslocked,locked—shuttingDown,

shuttingDowa- shi mmgngmn;ﬂi input?y 2
C T J

ELSE {unlocked— unlocked, locked- locked,
shuttingDown- locked} ¢ { input?}/
administrativeState' = lockeek usageState' = idle
administrativeState* locked= usageState' = usageState
operationalState' = operationalState

he behaviour specified in the predicate part of the schema is a formalization ofy'the informal des
CITT Rec. X.731 | ISO/IEC 10164-2. For completeness, operations to replace the gperational state and th
hould also be defined.

[e

Im this subclause, the main issues encountered in the course of the translation from GDMO-based man
specifications to Z are listed. Where anzissue relates to Z not having a corresponding construct for a particu
anaged objects specification, the proposed informal treatment used in this annex will also be included.

5.1 Behaviour Definition intManaged Objects

In the templates, the term(‘behaviour definition’ is used for almost all entities whether they are data or proce
latter case, it may include information about the actual behaviour (in the strict sense), or just static informatid
ntity such as its intended use, or both. When translating, one needs to analyse the text which comes unde
nd extract the relevant behavioural information for the entity concerned. This behavioural information will be
formal translationywhile the actual text may be included as a comment inside the Z specification.

5.2 Internal operations in Z

cription in
e usage state

class. These

be continued

and repetitior

Hinally there are a number of other operations which describe behaviour specifie’to the State Management
operations are not listed here, although they may be found in B.7. These“operations $hCalgacityDecrease
YMCapacitylncreasé&sMDisable SMEnable SMNewUseandSMUserQuit

B.4.3 Instantiable classes

Neither of the classes described above can be instantiated. Fhe’ procedure that has been followed can
YtateManagemerman be re-used to define a class calddCUILT,»\which in turn can be used to deflEEIRCUIT and
hence the instantiable cla&stualECircuit

This has been omitted from the guide, since the procedures are exactly the same as those that have outlined
adds nothing.

B.5 Outstanding Issues

aged objects
ar feature of

bsses. In the
n about the

this heading
used in the

n internal operation in a managed object represents the case where a notification is emitted spontaneodisly (with no

amagement invocation involved). Internal operations are also a desired feature of many other systems. CU

rrently, in Z,

this\feature is represented informally by a comment in the natural language text which is an important feature

of any well-

written Z specification.

B.5.3 Abstract classes in Z

Sometimes it is useful to identify abstract classes: i.e. classes with no instantiations of their own. Some MO
top) cannot be instantiated. It would be helpful to be able to show which parts of the corresponding Z sp
represent classes that can be instantiated. This is taken care of by informal annotation at present.

B.5.4 PARAMETER semantics

classes (like
ecifications

The incorporation of PARAMETER semantics into objects is not considered in this Recommendation | International

Standard.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

B.6 Converting ASN.1 Datatypes to Z

Issues for translation will be described for each ASN.1 constructor in turn.

B.6.1 Simple types

ASN.1 includes some simple types which are built-in. These do have a standardized structure but it is usually not
interesting in the context of these specifications and so they can mostly be represented as given sets. There are a wide
variety of character string types:

[NUMERICSTRING, PRINTABLESTRING, TELETEXSTRING,
IDEOTEXSTRING,VISIBLESTRING, IA5SSTRING,
GRAPHICSTRING, GENERALSTRING]

—

wo of these have synonyms:

—

61STRING == TELETEXSTRING
bO64STRING == VISIBLESTRING

Qf the other simple types, Integer can be representéd Bgolean and Null by free types:
Boolean ::= btrue | bfalse

Null ::= null
N
F
S

ote that these free types also define the value notation for these types.

eal, Bit String, and Octet String, can usually be taken to be givenssets (though it may sometimes be necessary to
fructure the Bit and Octet String types).

[REAL,BITSTRING,OCTETSTRING]

Tlhis Recommendation | International Standard also describes another special type which will be provided as p given set.

DBJECTID]
ereOBJECTIDrepresents an ASN.1 Object Identifier.

bject Identifiers are in fact non-empty sequences afd it may be convenient to model them as such, insteaq of as a
iven set. In this case some thought must be given to an appropriate value notation.

here are also some “useful” types which are defined in ASN.1 within the ASN.1 standard. Thus, although they could be
efined in terms of the other ASN.I constructs, it is again convenient to provide them as given sets.

O - © 0O I =

[GENERALIZEDTIME,'WTCTIME, OBJECTDESCRIPTOR, EXTERNAL]

Any

ASN.1 allews a special type ANY which can contain any other ASN.1 type at all. Such a type is not allowed wjithin Z and

itt would be difficult to extend it to include one. However given any known set of types, it is possible to define a Z free

type which can mclude any of those other types. An alternatlve strategy is to define ANY as a given set for typechecking
s iymaie his

P
is defined below.

B.6.2 Structured types
Other types in ASN.1 are built up by constructors.
Set

ASN.1 Sets can be represented as either tuples or schemas in Z. Z tuples do not allow components to be named and s
schemas may be more appropriate. However the Z value notation for schemas is less convenient. Tagging is neither
needed nor possible in Z since the components of the “set” can always be discriminated either by their position in a tuple
or their component name in a schema.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 9

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

Components in this and other structured types cabRSHONAL This can be represented in Z by augmenting the type of
the optional component with a special “absent” vaRiEFAULT values cannot be conveniently represented as a feature

(o)

f a datatype. It is possible to represent behaviour implied by the default within any operations on that data.

Sequence

ASN.1 Sequences can be modelled in exactly the same way as ASN.1 Sets since the only difference is that there is an
explicit order. Because this is the case, it could be argued that a tuple is more appropriate but schemas can also be used.

Set-of

ASN.1 Set-of types are actually bags and can be defined in Z as such. It should be noted that the MIM explicitly requires

V]

B
T
d

1
A
A

afl such bags to be treated as sets and so It IS In fact more appropriate to model the type as a Z set.

Vhen subtyping of an ASN.1 type is required, it is usually necessary to add a predicate constraint to{the' ty
pses, for example integer or schema sub-types, this can be done in the type definition itself. Otherwise (for
Lb-types) the constraint must be applied to variables defined to be of that type.

equence-of

SN.1 Sequence-of types can be conveniently modelled as Z sequences.

hoice

SN.1 Choice types are straightforward enumerations and can be modelled byZ free types.

his type introduces a serious scoping problem. Within ASN.1 the constructors within a Choice are local t
hus, a single constructor name can be used in more than one enumeration. In Z these names are global
p-used. This problem must usually be resolved by changing the names of the constructors, typically by pr
ith the name of their type.

similar problem arises when ASN.1 Types are generated, that’are synonyms for Integer (say) but with ng
ked by changing the names of the constructors.

.6.3 Simple attribute types

he simplest is to represent the MO attribute within the MO as a Z variable with the appropriate datatype.
efinition which represents tteBJECTID of that’attribute will be needed. When matching operations are def

that attribute, the actual standardized value ‘of the matches-for parameter can be used.

hus consider the MO attribute administrativeState. We will have defined a type:
dministrativeState ::= unlocked |[\locked | shuttingDown

constant to represent the-attribute’s Object Identifier can be defined:

administrativeState®id : OBJECTID

he aCtual value of the identifier can be presented a constraint on that axiomatic definition.

pe. In some
example bag

b that type.
and cannot b
efixing them

med values.

hese named values are local to the synonym type in ASN=I but global synonyms for integers in Z. Again this must be

A constant
ined for

—

hen within the MO a state variable will be defined:

MOState

r administrativeState: AdministrativeState

This solution is straightforward and convenient but does require lI€2BAECTIDaxiomatic definitions. It also makes
the link between the name of the attribute an@BIECTIDpurely syntactic. The convention of suffixing widhd has

b

1

een adopted.

0 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

B.6.4 Attribute types as schemas

It is also possible to encapsulate these features of an attribute in a single schema type which will be the type of the Z
variable modelling the MO attribute:

AdministrativeStateType

value:AdministrativeState
Oid:OBJECTID

Oid= (4,3,19,27,1,3

f is important to provide a value for ti@BJECTIDhere since it is necessary to imply that it cannot beschanged even
though the value can.

A structure forOBJECTIDhas not been defined, but writing:

QBJECTID ==seq N

i3 one possibility that would make the previous schema make sense. Thisisehema could also hold the| matches-for
arameter if it was thought important to represent this within the specification.

P
Tlhen the MO would contain an attribute with this type:

MOState

administrativeState : AdministrativeStateType

|

eference to its value or its Oid would be made via.component selectioadsiimistrativeState.value

his technique conveniently gives semantics to,the connection between an attribut®O&I¥EET 1D However, it njay
pem strange to specification readers that the*Oid is present in the MO state even though it cannot change (@nd is in fact ¢
lobal constant known at specification time).

s mentioned above, it is difficult to model ASN.1 type ANY in Z. One case where this is common is to giye lists of
ttribute values. A Z free typée.definition combining the attribute types already defined will be required. Thig approach

F
Tl
S
g
B.6.5 AttributeValues type
A
a
works as long as the set of aftributes in use is fixed at specification time. Then, typically, it will look something|like:
A

ttributeValues ::= administrativeStateVal@dministrative State! |
objectClassValuéOBJECTID/) |
nameBindingValu§OBJECTID) |
packagesValu§” OBJECTIDY |
allomafphsValue(2OBJECTID/|
operationalStateValuéOperationalState) |
UsageStateValu@UsageState)

B.7 A full example

This subclause presents the full formal model on which the example in B.4 is based. It is presented in the traditional
Z style of declaration before use: that is, the type definitions converted from ASN.1 appear at the start and the behaviour
definitions appear at the end.

One point of specification style is worth commenting on. The definithdtributeValuesand OBJECTINSTANCHEre
mutually recursive. This is technically illegal in Z, and so the following has been done to permit the definition.
AttributeValues has been introduced as a given S8BJECTINSTANCEis then defined using the given set
AttributeValues This definition ofOBJECTINSTANCES then used to introduce the restrictions #tibuteValuess
allowed to take. The proof obligation to show that such sets actually exist has been discharged, but is not presented.

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 11

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)
B.7.1 ASN.1 basic types

[NUMERICSTRING, PRINTABLESTRING, TELETEXSTRING, VIDEOTEXSTRING]
[VISIBLESTRING, IASSTRING, GRAPHICSTRING, GENERALSTRING]

T61STRING == TELETEXSTRING

ISO64STRING == VISIBLESTRING

oolean ;.= ptrue | bralse

Null ::= null

[REAL,BITSTRING,OCTETSTRING]

[lOBJECTID]

[|ANY]

[[GENERALIZEDTIME,UTCTIME,OBJECTDESCRIPTOR,EXTERNAL]

m

7.2 MO Attributes

—

he following given set is a placeholder for a more complex and complete free type definition given increr
ach new class is defined.

D

—

AttributeValues]

b~

ttributeValuesOptional ::= presertt Attributealles” | absent

pul

elativeDistinguishedName == AttributeValues

pul

DNSequence =seqRelativeDistinguishedName

jwo]

istinguishedName =z RDNSequence

QBJECTINSTANCE ::= distinguishedNaffiaistinguishedNamé | nonSpecificFormii/)
| localDistinguishedN&RBNSequenc

nentally as

B.73 Notifications

ProbableCause == OBJECTID

Specificldentifier ::= globalvalu6OBJECTIDY | localValueV)
SpecificProblems =+ Specificldentifier

SpecificProblemsOptional ::= sPPreséfBpecificProblem¥| sPAbsent

12 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

PerceivedSeverity ::= indeterminate | critical | major | minor | warning | cleared

BackedUpStatus == Boolean
BackedUpStatusOptional ::= bUSPreséfBackedUpStatug | bUSAbsent

ObjectinstanceOptional ::= olPresefffOBJECTINSTANCE | olAbsent

Trendindication ::= lessSevere | noChange | moreSevere
TrendindicationOptional ::= tIPresert Trendindication! | tIAbsent
QbservedValue ::= in{/A/| real({REALY

ObservedValueOptional ::= oVPresefitObservedValug | oVAbsent

—

hresholdLevellnd ::=
up { ObservedValueObservedValueOptiona¥
| down({ ObservedValue ObservedValueOptiona

TlhresholdLevellndOptional ::= tLIPreserifThresholdLevelind’| ttlAbsent

b~

rmTimeOptional ::= aTPresefGENERALIZEDTIME] aTAbsent

Tlhresholdinfo ==
OBJECTIDx ObservedValue ThresholdLevellnd©ptionat ArmTimeOptional

ThresholdinfoOptional ::= thiPreserifThresholdinfd’| thIAbsent
Notificationldentifier ==

NotificationldentifierOptionaly:= nIPresenf(Notificationldentifier | nlAbsent
GorrelatedNotifications:*==/2((# Notificationldentifier)x ObjectinstanceOptional)
GorrelatedNotifisationsOptional ::= cNPreserff CorrelatedNotifications’ | cNAbsent

AttributeValueChangeDefinition =£(OBJECTIDx AttributeValuesOptionak AttributeValues)

AttributeValueChangeDefinitionOptional ::=
aVCDPresertf AttributeValueChangeDefinitiof | aVCDAbsent

MonitoredAttributes ==POBJECTID
MonitoredAttributesOptional ::= mAPreserif MonitoredAttributeg!| mAAbsent
ProposedRepairActions =2 Specificldentifier

ProposedRepairActionsOptional ::= pRAPreséfiProposedRepairActions| pRAAbsent

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 13

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

AdditionalTextOptional ::= adTPresenf GRAPHICSTRING' | aDTAbsent

ManagementExtension == OBJECTMBooleanx ANY
Additionallnformation == ManagementExtension

AdditionalinformationOptional ::= alPresenfAdditionalinformation! | alAbsent

Yourcelndicator ::= resourceOperation | managementOperation | slUnknown

YourcelndicatorOptional ::= sIPreseff Sourcelndicator) | slAbsent

b~

ttributeldentifierList == OBJECTID

b~

ttributeldentifierListOptional ::= atIPresent(AttributeldentifierList” | atlAbsent

Attribute == OBJECTIDx AttributeValues

b~

ttributeList ==/ Attribute

b~

ttributeListOptional ::= al Present({ AttributeList/)| aLAbsent

Alarminfo

probableCause: ProbableCause

specificProblems: SpecificProblemsQptional
perceivedSeverity: PerceivedSevefity

backedUpStatus: BackedUpStatusOptional
backUpObiject: ObjectinstaneceOptional

trendindication: TrendIndicationOptional

thresholdinfo: ThresholdlnfoOptional
notificationldentifier: NetificationldentifierOptional
correlatedNotifications: CorrelatedNotificationsOptional
stateChangeDefinition: AttributeValueChangeDefinitionOptional
monitoredAttributes: MonitoredAttributesOptional
proposedRepairActions: ProposedRepairActionsOptional
additionalText: AdditionalTextOptional
additionallnformation: AdditionallnformationOptional

AttributeValueChangelnfo

sourcelndicator: SourcelndicatorOptional

attributeldentifierList: AttributeldentifierListOptional
attributeValueChangeDefinition: AttributeValueChangeDefinitionOptional
notificationldentifier: NotificationldentifierOptional
correlatedNotifications: CorrelatedNotificationsOptional

additionalText: AdditionalTextOptional

additionallnformation: AdditionallnformationOptional

14 ITU-T Rec. X.722 (1992)/Amd.3 (1997 E)

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

ISO/IEC 10165-4 : 1992/Amd.3 : 1998 (E)

Objectinfo

sourcelndicator: SourcelndicatorOptional

attributeList: AttributeListOptional

notificationldentifier: NotificationldentifierOptional
correlatedNotifications: CorrelatedNotificationsOptional
additionalText: AdditionalTextOptional
additionallnformation: AdditionallnformationOptional

RelationshipChangelnfo

sourcelndicator: SourcelndicatorOptional

attributeldentifierList: AttributeldentifierListOptional
relationshipChangeDefinition: AttributeValueChangeDefinitionOptional
notificationldentifier: NotificationldentifierOptional
correlatedNotifications: CorrelatedNotificationsOptional
additionalText: AdditionalTextOptional

additionallnformation: AdditionallnformationOptional

SecurityAlarminfo

notificationldentifier: NotificationldentifierOptional
correlatedNotifications: CorrelatedNotificationsOptional
additionalText: AdditionalTextOptional
additionallnformation: AdditionallnformationOptional

StateChangelnfo

sourcelndicator: SourcelndicatorQgptional

attributeldentifierList: AttributeldentifierListOptional
stateChangeDefinition: AttributeVValueChangeDefinitionOptional
notificationldentifier: NotificationldentifierOptional
correlatedNotifications=C€errelatedNotificationsOptional
additionalText: AdditionalTextOptional

additionallnformation: AdditionallnformationOptional

ventinfo ::=-attributeValueChand@ttributeValueChangelnfd
| cemmunicationsAlarf@larminfo))

|)énvironmentalAlarfflarminfo

| equipmentAlarfflarminfa))

| integrityViolation{ SecurityAlarminfd’

| objectCreatioffObjectinfo?

| objectDeletioffObjectinfo)

| operationalViolatioffSecurityAlarmInfd’
| physicalViolatioffSecurityAlarmInfd’

| processingErrdéfAlarminfa

| qualityOfServiceAlarfthlarminfo)

ITU-T Rec. X.722 (1992)/Amd.3 (1997 E) 15

https://iecnorm.com/api/?name=874e14fb582ee70501ec1dcd9e90affd

