

INTERNATIONAL
STANDARD

ISO/IEC
10164-20

First edition
1999-06-01

**Information technology — Open Systems
Interconnection — Systems Management:
Time management function**

*Technologies de l'information — Interconnexion de systèmes ouverts
(OSI) — Gestion-systèmes: Fonction de gestion du temps*

IECNORM.COM : Click to view the full PDF of ISO/IEC 10164-20:1999

Reference number
ISO/IEC 10164-20:1999(E)

IECNORM.COM : Click to view the full PDF of ISO/IEC 10164-20:1999

©ISO/IEC 1999

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office • Case postale 56 • CH-1211 Genève 20 • Switzerland

Printed in Switzerland

Contents

	<i>Page</i>
1 Scope	1
2 Normative references.....	1
2.1 Identical Recommendations International Standards.....	2
2.2 Paired Recommendations International Standards equivalent in technical content.....	3
2.3 Additional references	3
3 Definitions	3
3.1 Management framework definitions.....	3
3.2 Systems management overview definitions	3
3.3 CMIS definitions	4
3.4 Management information model definitions	4
3.5 Guidelines for the definition of managed objects definitions.....	4
3.6 Implementation conformance statement proforma definitions	4
3.7 Additional definitions.....	4
4 Abbreviations	5
5 Conventions	5
6 Requirements	6
6.1 Time representation requirements	6
6.2 Time accuracy and precision requirements	6
6.3 Time distribution requirements	7
6.4 Time service reliability requirements	7
6.5 Local clock requirements	7
7 Model.....	7
7.1 Generic time functionality	8
7.2 Time Management Function.....	9
7.2.1 Time-related resources	9
7.2.2 Time management functions	9
7.2.3 Time management function managed objects	10
7.2.4 The clockSource managed object.....	10
7.2.5 The synchronizationProtocol managed object.....	11
7.3 Clock coordination function	12
7.3.1 Time synchronization protocol.....	12
7.3.2 Procedures for time synchronization	12
7.4 Time user function.....	13
8 Generic definitions	13
8.1 The representation of time.....	13
8.2 Managed object classes	14
8.2.1 Clock source.....	14
8.2.2 Local clock	14
8.2.3 Reference clock	15
8.2.4 Synchronization protocol	15
8.3 Attribute definitions	15
8.3.1 Clock Adjustment Interval	15
8.3.2 Clock Drift.....	15
8.3.3 Clock Estimated Error	15
8.3.4 Clock Event Code.....	15
8.3.5 Clock Event Counter	15

	<i>Page</i>
8.3.6 Clock Event Time.....	15
8.3.7 Clock ID	15
8.3.8 Clock Maximum Error	15
8.3.9 Clock Precision	15
8.3.10 Clock Status.....	15
8.3.11 Clock Stratum.....	15
8.3.12 Clock Value.....	16
8.3.13 Leap Second Count	16
8.3.14 Leap Second Indication.....	16
8.3.15 Local Clock Address	16
8.3.16 Peer Clock Addresses.....	16
8.3.17 Reference Clock Type.....	16
8.3.18 Synchronization Protocol ID	16
8.3.19 Synchronization Protocol Type	16
8.3.20 Synchronization Source Address.....	16
8.3.21 Synchronized Clock	16
8.3.22 Synchronizing Clock	16
8.4 Action definitions	16
8.4.1 Clock reset.....	16
8.4.2 Leap second.....	16
8.4.3 Protocol reset.....	16
8.5 Name binding definitions	17
8.5.1 Clock Source – System.....	17
8.5.2 Synchronization Protocol – System.....	17
9 Service definitions	17
9.1 PT-CREATE service	17
9.2 PT-DELETE service.....	17
9.3 PT-SET service	17
9.4 PT-GET service.....	17
9.5 State Change service	17
9.6 Clock Reset service	18
9.7 Leap Second service.....	18
9.8 Protocol Reset service	18
10 Functional units	20
11 Protocol.....	20
11.1 Elements of procedure.....	20
11.1.1 Clock reset procedure.....	20
11.1.2 Leap second procedure.....	20
11.1.3 Protocol reset procedure.....	21
11.2 Abstract syntax	21
11.2.1 Objects.....	21
11.2.2 Attributes.....	22
11.2.3 Actions	22
11.2.4 Name bindings.....	22
11.3 Negotiation of functional units.....	23
12 Relationships with other functions	23
13 Conformance	23
13.1 Static conformance	23
13.2 Dynamic conformance	23
13.3 Management implementation conformance statement requirements.....	23
Annex A – Definition of Time Management Information	24
A.1 Managed object classes	24
A.1.1 clockSource	24
A.1.2 localClock.....	25
A.1.3 referenceClock	25
A.1.4 synchronizationProtocol	25

	<i>Page</i>
A.2 Attribute definitions	26
A.2.1 clockAdjustmentInterval	26
A.2.2 clockDrift	26
A.2.3 clockEstimatedError	26
A.2.4 clockEventCode	26
A.2.5 clockEventCounter	26
A.2.6 clockEventTime	26
A.2.7 clockID	27
A.2.8 clockMaximumError	27
A.2.9 clockPrecision	27
A.2.10 clockStatus	27
A.2.11 clockStratum	27
A.2.12 clockValue	27
A.2.13 leapSecondCount	28
A.2.14 leapSecondIndication	28
A.2.15 localClockAddress	28
A.2.16 peerClockAddresses	28
A.2.17 referenceClockType	28
A.2.18 synchronizationProtocolID	28
A.2.19 synchronizationProtocolType	29
A.2.20 synchronizationSourceAddress	29
A.2.21 synchronizedClock	29
A.2.22 synchronizingClocks	29
A.3 Action definitions	29
A.3.1 clockReset	29
A.3.2 leapSecond	29
A.3.3 protocolReset	30
A.4 Name binding definitions	30
A.4.1 clockSource-system	30
A.4.2 synchronizationProtocol-system	30
A.5 ASN.1 definition module for management information	30
A.6 ASN.1 definition module for time representation	34

IECNORM.COM : Click to view the full PDF of ISO/IEC 10164-20:1999

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

In the field of information technology, ISO and IEC have established a joint technical committee ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.

International Standard ISO/IEC 10164-20 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 33, *Distributed application services*, in collaboration with ITU-T. The identical text is published as ITU-T Recommendation X.743.

ISO/IEC 10164 consists of the following parts, under the general title *Information technology — Open Systems Interconnection — Systems Management*:

- *Part 1: Object management function*
- *Part 2: State management function*
- *Part 3: Attributes for representing relationships*
- *Part 4: Alarm reporting function*
- *Part 5: Event report management function*
- *Part 6: Log control function*
- *Part 7: Security alarm reporting function*
- *Part 8: Security audit trail function*
- *Part 9: Objects and attributes for access control*
- *Part 10: Usage metering function for accounting purposes*
- *Part 11: Metric objects and attributes*
- *Part 12: Test management function*
- *Part 13: Summarization function*
- *Part 14: Confidence and diagnostic test categories*
- *Part 15: Scheduling function*
- *Part 16: Management knowledge management function*
- *Part 17: Change over function*

- *Part 18: Software management function*
- *Part 19: Management domain and management policy management functions*
- *Part 20: Time management function*
- *Part 21: Command sequencer for Systems Management*
- *Part 22: Response time monitoring function*

Annexes A, B, D and F to G form a normative part of this part of ISO/IEC 10164. Annexes C, H and I are for information only.

IECNORM.COM : Click to view the full PDF of ISO/IEC 10164-20:1999

Introduction

ITU-T Rec. X.700 series | ISO/IEC 10164 is a Series of Recommendations | International Standards developed according to ITU-T Rec X.200 | ISO/IEC 7498-1 and ITU-T Rec. X.700 | ISO/IEC 7498-4. ITU-T Rec. X.700 series | ISO/IEC 10164 is related to the following International Standards:

- CCITT X.710 | ISO/IEC 9595:1990, Information technology – Open System Interconnection – Common management information service definition;
- CCITT X.711 and CCITT X.712 | ISO/IEC 9596:1990, Information technology – Open System Interconnection – Common management information protocol specification;
- CCITT X.701 | ISO/IEC 10040:1992, Information technology – Open Systems Interconnection – Systems management overview;
- CCITT Recs. X.730, X.740 series and ITU-T Rec. X.750 series | ISO/IEC 10064:1992, Information technology – Open Systems Interconnection – Systems Management.

OSI management standardization inevitably involves coordinated work by a number of standards bodies. ITU-T SG 7 and ISO/IEC JTC 1 SC 21/WG 4 are jointly responsible for the development of Recommendations | International Standards that describe the architecture for OSI management, the services, protocols, and functions that are used for systems management, and the structure of management information. Other working groups, in ITU-T, ISO/IEC JTC 1 SC 21, ISO/IEC JTC 1 SC 6 and elsewhere, are responsible for the development of Recommendations | International Standards that describe the management aspects of particular layers of the OSI Basic Reference Model; these may describe (N)-layer management protocols, management aspects of (N)-layer operation, and managed objects that provide a "management view" of aspects of the layer operation and are visible to systems management.

INTERNATIONAL STANDARD**ITU-T RECOMMENDATION****INFORMATION TECHNOLOGY – OPEN SYSTEMS INTERCONNECTION –
SYSTEMS MANAGEMENT: TIME MANAGEMENT FUNCTION****1 Scope**

This Recommendation | International Standard defines a Systems Management Function that may be used by an application process in a centralized or decentralized management environment to interact for the purpose of systems management, as defined by ITU-T Rec. X.200 | ISO/IEC 7498-1. This Recommendation | International Standard defines a function which consists of generic definitions, services, and functional units. This function is positioned in the application layer of ITU-T Rec. X.200 | ISO/IEC 7498-1 and is defined according to the model provided by ISO 9545. The role of systems management functions is described by CCITT Rec. X.701 | ISO/IEC 10040.

This Recommendation | International Standard:

- defines a service for the management of clocks for use by OSI management and available for use by OSI applications and others;
- establishes user requirements for this Recommendation | International Standard;
- establishes a time management function model, addressing the components of a generic time service involving communication between systems, that relates the service and generic definitions provided by this function to the user requirements;
- defines generic object classes, attribute types, operation types, notification types, and parameters documented in accordance with CCITT Rec. X.722 | ISO/IEC 10165-4;
- specifies compliance requirements placed on other standards that make use of these generic definitions;
- defines the services provided by the function;
- specifies the management protocol that is necessary in order to provide the services;
- defines the relationship between these services and systems management operations and notifications;
- specifies the abstract syntax necessary to identify and negotiate the function unit in the protocol;
- defines relationships with other systems management functions;
- specifies conformance requirements to be met by implementation of this Recommendation | International Standard;
- identifies time synchronization protocols.

This Recommendation | International Standard does not:

- address the provision of time information within a local system;
- define the nature of any implementation intended to provide the Time Management Function;
- specify the manner in which management is accomplished by the user of the Time Management Function;
- define the nature of any interaction which results in the use of the Time Management Function;
- specify the services necessary for the establishment, use, and normal or abnormal release of a management association.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent

edition of the Recommendations and International Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunications Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

- ITU-T Recommendation X.210 (1993) | ISO/IEC 10731:1994, *Information technology – Open Systems Interconnection – Basic Reference Model – Conventions for the definition of OSI services*.
- CCITT Recommendation X.701 (1992) | ISO/IEC 10040:1992, *Information technology – Open Systems Interconnection – Systems management overview*¹⁾.
- CCITT Recommendation X.720 (1992) | ISO/IEC 10165-1:1993, *Information technology – Open Systems Interconnection – Structure of management information: Management Information Model*.
- CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2:1992, *Information technology – Open Systems Interconnection – Structure of management information: Definition of management information*.
- CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4:1992, *Information technology – Open Systems Interconnection – Structure of management information: Guidelines for the definition of managed objects*.
- ITU-T Recommendation X.723 (1993) | ISO/IEC 10165-5:1994, *Information technology – Open Systems Interconnection – Structure of management information: Generic management information*.
- ITU-T Recommendation X.724 (1996) | ISO/IEC 10165-6:1997, *Information technology – Open Systems Interconnection – Structure of management information: Requirements and guidelines for implementation conformance statement proformas associated with OSI management*.
- CCITT Recommendation X.730 (1992) | ISO/IEC 10164-1:1993, *Information technology – Open Systems Interconnection – Systems Management: Object management function*.
- CCITT Recommendation X.731 (1992) | ISO/IEC 10164-2:1993, *Information technology – Open Systems Interconnection – Systems Management: State management function*.
- CCITT Recommendation X.732 (1992) | ISO/IEC 10164-3:1993, *Information technology – Open Systems Interconnection – Systems Management: Attributes for representing relationships*.
- ITU-T Recommendation X.738 (1993) | ISO/IEC 10164-13:1995, *Information technology – Open Systems Interconnection – Systems Management: Summarization function*.
- ITU-T Recommendation X.739 (1993) | ISO/IEC 10164-11:1994, *Information technology – Open Systems Interconnection – Systems Management: Metric objects and attributes*.
- CCITT Recommendation X.740 (1992) | ISO/IEC 10164-8:1993, *Information technology – Open Systems Interconnection – Systems Management: Security audit trail function*.
- ITU-T Recommendation X.741 (1995) | ISO/IEC 10164-9:1995, *Information technology – Open Systems Interconnection – Systems Management: Objects and attributes for access control*.
- ITU-T Recommendation X.742 (1995) | ISO/IEC 10164-10:1995, *Information technology – Open Systems Interconnection – Systems Management: Usage metering function for accounting purposes*.
- ITU-T Recommendation X.745 (1993) | ISO/IEC 10164-12:1994, *Information technology – Open Systems Interconnection – Systems Management: Test management function*.
- ITU-T Recommendation X.746 (1995) | ISO/IEC 10164-15:1995, *Information technology – Open Systems Interconnection – Systems Management: Scheduling function*.

¹⁾ As amended by ITU-T Rec. X.701/Cor.2 | ISO/IEC 10040/Cor.2.

2.2 Paired Recommendations | International Standards equivalent in technical content

- CCITT Recommendation X.208 (1988), *Specification of Abstract Syntax Notation One (ASN.1)*.
ISO/IEC 8824:1990, *Information technology – Open Systems Interconnection – Specification of Abstract Syntax Notation One (ASN.1)*.
- CCITT Recommendation X.209 (1988), *Specification of basic encoding rules for Abstract Syntax Notation One (ASN.1)*.
ISO/IEC 8825:1990, *Information technology – Open Systems Interconnection – Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)*
- ITU-T Recommendation X.291 (1995), *OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – Abstract test suite specification*.
ISO/IEC 9646-2:1994, *Information technology – Open Systems Interconnection – Conformance testing methodology and framework – Part 2: Abstract Test Suite specification*.
- ITU-T Recommendation X.296 (1995), *OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – Implementation conformance statements*.
ISO/IEC 9646-7:1995, *Information technology – Open Systems Interconnection – Conformance testing methodology and framework – Part 7: Implementation Conformance Statements*.
- CCITT Recommendation X.700 (1992), *Management framework for Open Systems Interconnection (OSI) for CCITT applications*.
ISO/IEC 7498-4:1989, *Information processing systems – Open Systems Interconnection – Basic Reference Model – Part 4: Management framework*.
- CCITT Recommendation X.710 (1991), *Common management information service definition for CCITT applications*.
ISO/IEC 9595:1991, *Information technology – Open Systems Interconnection – Common management information service definition*.
- CCITT Recommendation X.711 (1991), *Common management information protocol specification for CCITT applications*.
ISO/IEC 9596-1:1991, *Information technology – Open Systems Interconnection – Common management information protocol – Part 1: Specification*.

2.3 Additional references

- ITU-T Recommendation M.3100 (1995), *Generic Network Information Model*.
- ITU-T Recommendation M.3101 (1995), *Managed object conformance statements for the Generic Network Information Model*.
- ISO/TR 8509:1987, *Information processing systems – Open Systems Interconnection – Service conventions*.

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Management framework definitions

This Recommendation | International Standard uses the following term defined in CCITT Rec. X.700 | ISO/IEC 7498-4:

- managed object;

3.2 Systems management overview definitions

This Recommendation | International Standard uses the following terms defined in CCITT Rec. X.701 | ISO/IEC 10040:

- a) managed object class;
- b) Management Information Conformance Statement (MICS);
- c) Managed Object Conformance Statement (MOCS);

- d) MICS proforma;
- e) MOCS proforma;
- f) notification.

3.3 CMIS definitions

This Recommendation | International Standard uses the following term defined in CCITT Rec. X.710 | ISO/IEC 9595:

- attribute.

3.4 Management information model definitions

This Recommendation | International Standard uses the following terms defined in CCITT Rec. X.720 | ISO/IEC 10165-1:

- a) action;
- b) behaviour;
- c) name binding;
- d) package;
- e) superclass.

3.5 Guidelines for the definition of managed objects definitions

This Recommendation | International Standard uses the following term defined in CCITT Rec. X.722 | ISO/IEC 10165-4:

- template.

3.6 Implementation conformance statement proforma definitions

This Recommendation | International Standard uses the following terms defined in ITU-T Rec.X.724 | ISO/IEC 10165-6:

- a) Managed Relationship Conformance Statement (MRCS);
- b) Management Conformance Summary (MCS);
- c) MCS proforma;
- d) MRCS proforma.

3.7 Additional definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.7.1 actual clock rate: The actual clock rate is the frequency or rate at which a clock increments, including any modifications resulting from frequency adjustment or clock training. The actual clock rate is equivalent to the basic clock rate in the absence of or prior to any frequency adjustment modifications.

3.7.2 accuracy: Accuracy is a measure of how well a local clock's time value and frequency compare to UTC.

3.7.3 adjustment rate: Adjustment rate is the frequency or rate at which a single time adjustment is applied to the local clock.

3.7.4 basic clock rate: The basic clock rate is the frequency or rate at which a clock increments in the absence of any modifications resulting from frequency adjustment.

3.7.5 Coordinated Universal Time (UTC): The time reference that is assumed to be universally correct. UTC was adopted by CCIR Recommendation 470 and described in CCIR Report 517. This is not the ASN.1 representation of generalized time.

3.7.6 correct clock: A clock where the absolute value of the error is less than its maximum error.

3.7.7 frequency offset: The first derivative of the clock's error. That is, the frequency offset is the actual rate of change of error of the clock.

3.7.8 **error of a clock:** The time offset between the clock's reading and UTC at a given instant.

3.7.9 **functioning clock:** A clock in which either the frequency offset is within the maximum frequency error of the clock or the clock is undergoing an adjustment. A functioning clock may be correct or incorrect.

3.7.10 **granularity:** The maximum precision permitted by a representation of time.

3.7.11 **local clock:** The collection of hardware and software that comprises a local source of time for a system.

3.7.12 **maximum drift of a clock:** The manufacturer's specified maximum value of frequency offset.

3.7.13 **maximum error of a clock:** The maximum error bound of the absolute value of the error of a clock.

3.7.14 **precision:** The smallest value by which a clock changes.

3.7.15 **rapport:** The state when the local clock is correct and the maximum error of the clock is within the user specified maximum error.

3.7.16 **synchronization domain:** The set of local clocks involved in the exchange of time information for the purposes of coordination. This includes local clock and clock coordination resources. The members of this set are defined by administrative, platform, or environmental considerations.

3.7.17 **synchronization source:** The source chosen by an algorithm or policy for time synchronization.

3.7.18 **time offset:** The algebraic difference between the readings of two clocks at a given instant in time.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:

DTS	Distributed Time Service
GPS	Global Positioning System
LAN	Local Area Network
NTP	Network Time Protocol
PCS	Probabilistic Clock Synchronization
RPC	Remote Procedure Call
UTC	Coordinated Universal Time

5 Conventions

This Recommendation | International Standard defines services for the Time Management function following the descriptive conventions defined in ISO/TR 8509.

The following notation is used in the service parameter tables:

- M The parameter is mandatory
- C The parameter is conditional
- (=) The value of the parameter is identical to the corresponding parameter in the interaction described by the preceding related service primitive
- U The use of the parameter is a service-user option
 - The parameter is not present in the interaction described by the primitive concerned

6 Requirements

Systems management functions have requirements to record accurately the time of occurrence of alarm notifications, fault event notifications, summarization notifications, and accesses of attribute values of managed objects. Observations of attribute values of managed objects can be observation time of attribute value, time that attribute value was changed, and time interval calculations. Also, system management includes the scheduling of managed objects. Scheduling includes the control of object attributes such as start-time, stop-time, begin-time, and end-time, and involves the tracking of seconds, hours, weeks, months, and years. In addition, applications beyond the scope of systems management require a stable robust time service.

The service objective of the Time Management function is to provide correct, accurate, and stable time among systems. The implementation of the Time Management function shall be consistent with the user's communication system application.

The derived requirements are summarized below and detailed in the following subclauses:

The time management function shall:

- define a representation of time that incorporates both a time value and an accuracy, has a granularity of at least 1 nanosecond, has a range of at least AD 1 to AD 3000, and represents time instants that occur with leap days;
- provide accurate and correct time;
- minimize the time and frequency error of each system;
- accommodate the distribution of time-related information to other systems;
- preserve the correctness of clocks;
- be robust against single failures;
- provide mechanisms to set or adjust the time value of the local clock;
- provide mechanisms to automatically configure the synchronization subnet; and/or
- provide mechanisms to adjust the frequency of the local clock.

6.1 Time representation requirements

The time management function shall define a representation of time that incorporates both a time value and an accuracy. The time representation shall have a granularity equal to or smaller than 1 nanosecond. The time representation range shall cover the period AD 1 to AD 3000.

NOTE – The following information is provided to illustrate the period of time and granularity that can be represented in 64 bits. A time representation of 64 bits with a granularity of 100 nanoseconds will cover approximately 59,973 years. Reducing the granularity to 1 nanosecond will reduce the time range represented to approximately 600 years.

The time representation shall represent time instants that occur within leap days.

The time representation need not permit the direct representation of time instants that occur within leap seconds.

6.2 Time accuracy and precision requirements

Each time value shall have an accuracy and precision associated with it. The precision is reflected in the accuracy as well as being a separate parameter. The accuracy can be represented in terms of an estimated error.

NOTE – For specialized environments, it may be necessary for accuracy and precision requirements to be specified. This is discussed under the context of the user time service in Annex I.

The accuracy of any system's clock shall not be constrained by parameters in the time management function or the underlying time synchronization protocol. A time synchronization protocol will minimize the error and maximum error of a system's clock, subject to the limitations of the underlying hardware and networks.

The bound on the deviation of any two system's clocks shall not be constrained by parameters in the time management protocol. The time management protocol will minimize the deviation between any two system's clocks, subject to the limitations of the underlying hardware and networks.

The time management protocol shall provide an indication of the maximum error at each system. (This implicitly bounds the maximum possible deviation, since it is the sum of the two maximum errors.)

Optionally, the time management function will provide the user with a management parameter that allows the required accuracy of the local clock to be specified.

6.3 Time distribution requirements

The time management function shall allow for the distribution of time management information between systems. The time management function shall be capable of operating over a wide-area network that may have large stochastic delays on the transmission paths.

The time management function shall have a mechanism for accommodating leap seconds.

6.4 Time service reliability requirements

The time management function shall preserve the correctness of clocks. If all the clocks in a synchronization domain are functioning and are correct at some time, they will remain correct at future times.

The time management function shall be configurable such that it will be robust against single failures, including intentionally induced failures. More precisely, it should be possible to configure the time management function such that in a managed network if the clock on a single system fails or is compromised, this will not affect the correctness of the clocks on any other system. This should include the failure of an external reference clock.

Each local time system shall maintain information about the state of its own time service as well as that of time services with which it is exchanging time information. Upon detection of a fault within itself or at a remote system, notifications shall be raised for potential transmission to a managing system.

The time management function shall be self-correcting in the presence of single failures. Specifically, if a single system in a managed network has an incorrect but functioning clock, it will converge to become a correct clock.

The local clocks shall be able to provide accurate and correct time even with relatively large stochastic delays on the transmission paths.

6.5 Local clock requirements

The implementation of a local clock is outside the scope of this Recommendation | International Standard. However, in order to support the time management function, a local clock has the following requirements.

A local clock shall provide mechanisms to set its time in the event of initialization or fault and to adjust its time periodically during normal operation.

As part of the procedures for periodically adjusting the time during normal operation, a local clock shall provide mechanisms to prevent itself from running backward. A local clock which has a positive error shall temporarily slow down, and a local clock which has a negative error shall temporarily speed up. The adjustment rate of the local clock must be greater than the maximum drift rate of the clock. A local clock shall converge to correct time.

NOTE 1 – Care must be taken to correctly tune the adjustment rate. An adjustment rate that is too fast will result in an unstable clock, and an adjustment rate that is too small will never converge.

Optionally, a local clock shall provide mechanisms to effect permanent adjustment of the basic clock rate of the local clock. This adjustment is reflected in a new actual clock rate for the local clock. This may be accomplished using mechanisms either within or outside of the time management function protocol.

In order to minimize the human configuration management of local clocks, the time management function shall have an automatic mechanism to configure their local clocks to the most accurate and stable clock (reference source) within its synchronization domain. A mechanism to allow a method for a new local clock to request information on available references shall be provided. Frequent changing among reference sources shall be minimized.

NOTE 2 – A directory service mechanism may be used here.

The time management function shall compensate for the expected frequency offset of the local clock used in the local system.

The local clock shall be able to switch reference clocks in the event that:

- a) the current reference fails to respond for a period of time that threatens the accuracy of the local clock; or
- b) the synchronizing dispersion indicates that statistical tolerance limits have been exceeded at the current reference.

7 Model

The purpose of the time management function is to manage the resources related to the provision of quality time information in a system. In this clause, the generic functionality involved in the provision of time information is defined

and the components of that functionality that are within the scope of the time management function are identified. The time-related resources in a system are identified. A model for the time management function is provided, and the clock coordination function is defined.

7.1 Generic time functionality

All of the components necessary to provide and manage time information in a system make up a set of generic time functions. The foundation of all these functions is a clock which includes a local clock and optionally external time references. These generic time functions can be organized as three basic components that interact with these clocks. These components are a clock coordination function, time management function, and time user function. Figure 1 illustrates generic time functionality.

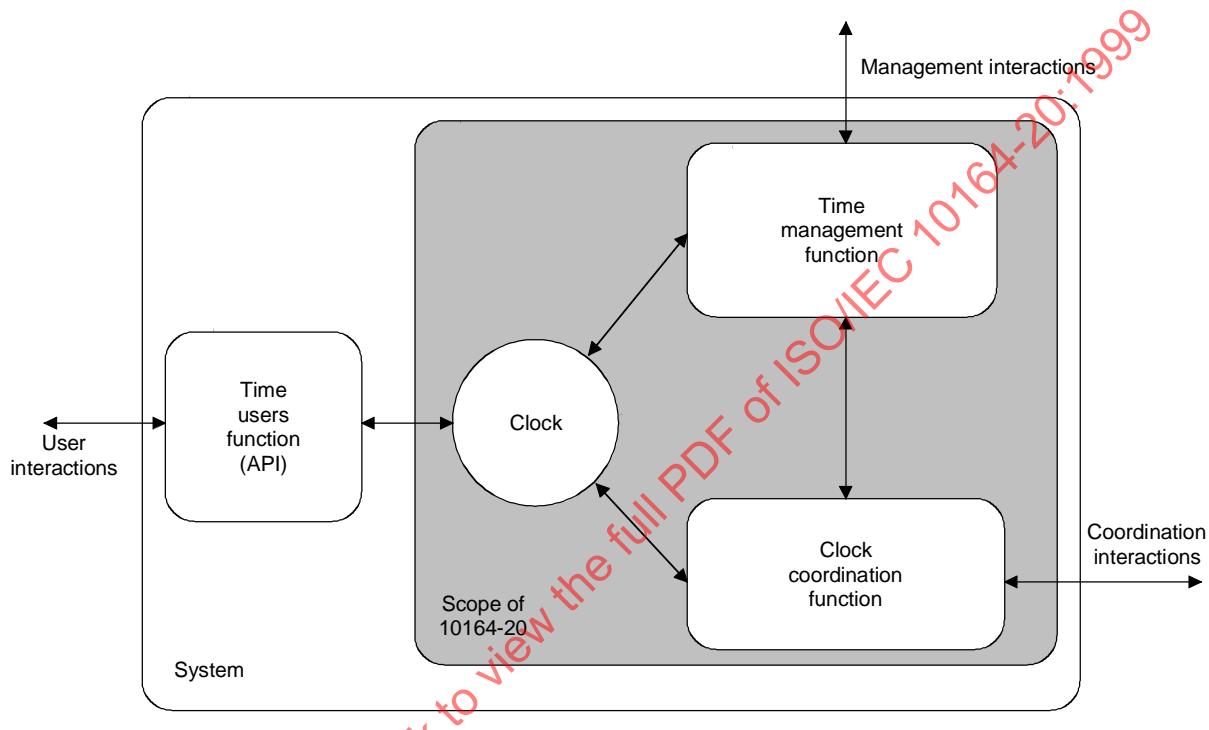


Figure 1 – Generic time functionality

The clock coordination function synchronizes individual clocks in different systems to each other and to national and international time standards. It includes the mechanisms necessary to exchange time information between individual local clocks and the algorithms required to process this information to arrive at meaningful conclusions. There may be multiple clock coordination solutions being utilized in a system.

The time management function includes the functionality necessary to monitor and control both the clocks and the clock coordination process.

Finally, the time user function of generic time functionality provides users with access to time information including the current time value and the accuracy of that value. A time user is any consumer of time values including application processes, operating systems, and OSI communication and management processes.

This Recommendation | International Standard addresses those components of generic time functionality that involve communication between systems. This includes the clock coordination and time management components defined above. Clock coordination is by its very nature a distributed algorithm; however, time management conforms to the standard manager/agent model present in other system management functions. The time user component, while very important to a local system, is considered a local issue and outside the scope of this effort.

NOTE – There are a number of issues related to the provision of a time user service in a local system. These are discussed in Annex I.

7.2 Time Management Function

This subclause identifies the resources managed by the Time Management Function and presents the model for the management of these resources.

7.2.1 Time-related resources

There are two resources related to the provision of time information to the users or consumers of that information. These resources are clocks and clock coordination tools.

Clocks can be either local clocks or external time references. A local clock is the collection of hardware and software components that comprises a single source of time information within a system. An external time reference is an interface located within a system that provides access to a specialized external clock with specified parameters and a relationship to national or international time standards.

Clock coordination is the collection of protocol mechanisms, procedures, and algorithms that are used to exchange time information between individual clocks and to process that information to provide for the coordination of the same clocks. Generally, this coordination takes place between local clocks in different systems using a clock coordination protocol. Clock coordination also takes place between local clocks and external references within a system. This coordination may be through either a clock coordination protocol or local means and is outside the scope of this Recommendation | International Standard.

The time management function is primarily concerned with managing two types of time-related resources, clocks and synchronization protocols. To this end, the time management function defines two classes and two subclasses of managed objects and the functions that pertain to the management of those objects. These objects include those that model time sources or clocks and those that model the clock coordination process. This relationship is shown in Figure 2.

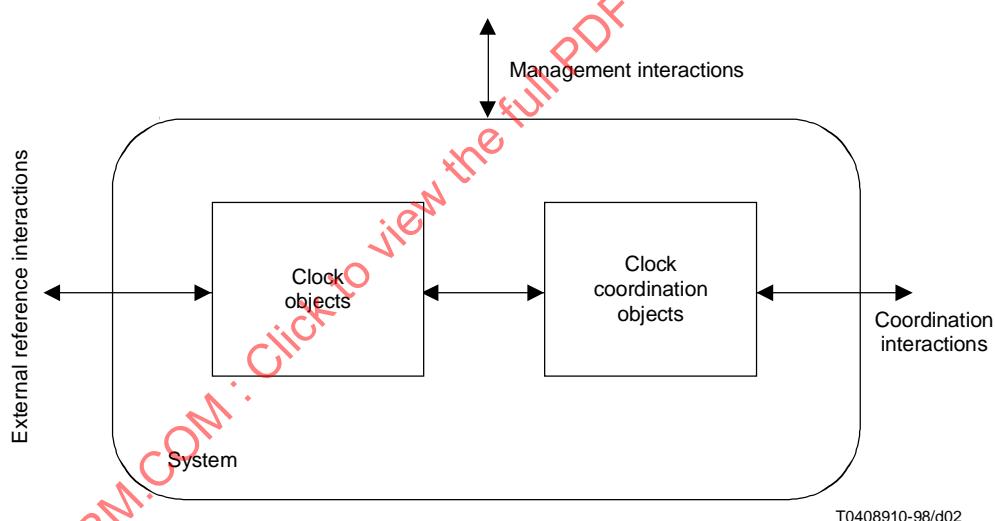
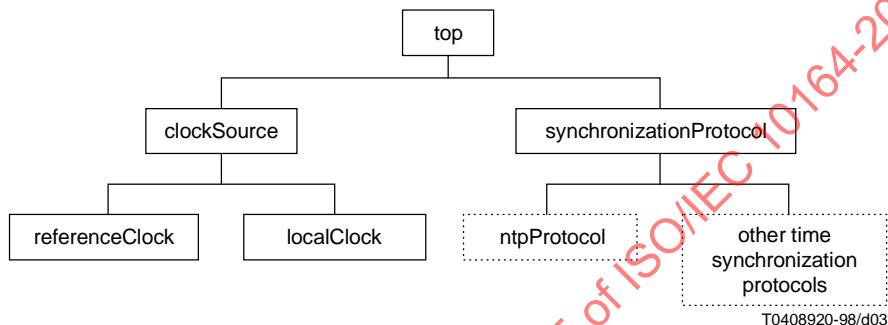


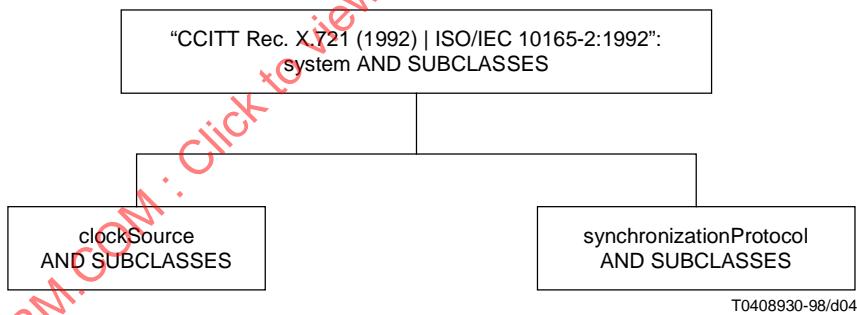
Figure 2 – Time-related resources

7.2.2 Time management functions

The following functions related to time management are identified. Of these, the first three are related to clock objects and the last four are related to clock coordination objects:


- Get Clock Status;
- Modify Clock parameters;
- Reset Clock;
- Distribute Leap Second Warning;
- Get Protocol Status (overall and per association);
- Modify Protocol Machine (add/remove peer, change polling interval, change required accuracy);
- Start/Stop Protocol Machine.

7.2.3 Time management function managed objects


The time management function defines four managed objects:

- 1) the clockSource object;
- 2) the localClock object;
- 3) the referenceClock object; and
- 4) the synchronizationProtocol object.

The first three objects are used to model time sources or clocks while the latter models the clock coordination process. The synchronizationProtocol object class can be specialized (i.e. subclassed) to represent specific time synchronization protocols. For example, Annex B specifies a subclass for the Network Time Protocol (NTP). The specification of further subclasses for additional time synchronization protocols is for further study. Figure 3 illustrates the inheritance hierarchy of the TMF, and Figure 4 shows the name bindings.

Figure 3 – Time management function inheritance hierarchy

Figure 4 – TMF name bindings

7.2.4 The clockSource managed object

The clockSource object models the dynamic state of a clock. Two subclasses are defined to further distinguish between internal system clocks and external reference clocks. The clockSource object must contain the following attributes:

- the identity of the clock;
- the operational state;
- the clock status;
- the clock value;
- the clock event counter;
- the clock event code; and
- clock event time.

The clockSource object may contain the following attributes:

- precision;
- clock drift;
- the maximum error;
- the estimated error;
- the time, date and form (insert/delete) of the next leap second; and
- the time, type and total count of leap second clock events.

The clockSource object provides an action to:

- reset the clock.

The clockSource object provides a notification for:

- state change.

7.2.4.1 The localClock managed object

Each source of time information in a real system is considered to be a local clock. A local clock is conceptually the hardware and software that constitutes the source of time information in the system. A functioning local clock is one in which the maximum frequency error of the clock does not exceed the manufacturer's tolerance specified for that clock.

The above statement requires very little of a clock. It asserts only that a clock must run at about one second per second. This statement makes no assertion about the current time or the clock's correctness. It also makes no assertion about predicting the future rate of the clock based on its previous behaviour. As a statement about the properties of the local clock, this statement is manifestly independent of the network and the network's properties.

The local clock object is the model of the local clock resource used in the time management function. This object is derived from the clockSource object and contains the following attributes in addition to those specified in the clockSource object:

- the network address of the clock;
- the network addresses of its peer clocks;
- the adjustment interval of the clock;
- the current synchronization source for this clock;
- the maximum error acceptable for this clock;
- the clock stratum.

7.2.4.2 The referenceClock managed object

The reference clock object provides a mechanism for modeling the interfaces to unique sources of external time. This include interfaces to such time sources as Global Positioning System (GPS), radio sources (WWV), and atomic oscillators (cesium clock standards). It is expected that there would only be a few of these in any particular synchronization domain. The referenceClock object is derived from the clockSource object and contains the following attribute in addition to those specified in the clockSource object:

- the source/type of the external time.

7.2.5 The synchronizationProtocol managed object

A synchronizationProtocol object represents an individual instantiation of a protocol used to exchange time information between various local clocks. The synchronizationProtocol object can be used (e.g. as in subclasses) to represent different time synchronization protocols. The synchronizationProtocol object includes attributes to indicate:

- the identify of the time synchronization protocol;
- the type of the time synchronization protocol;
- the local clock(s) currently being coordinated;
- the list of other clocks with which time information has been exchanged.

The synchronizationProtocol object provides actions to:

- distribute leap second indications;
- reset the coordination protocol.

The synchronizationProtocol object class can be specialized (i.e. subclassed) to represent specific time synchronization protocols. For example, Annex B specifies a subclass for the Network Time Protocol (NTP). The specification of further subclasses for additional time synchronization protocols is for further study.

7.3 Clock coordination function

The clock coordination function provides for the coordination of clocks for the purposes of time synchronization. The clock coordination function represents one of the resources being managed by the time management function. Because of the lack of an appropriate Recommendation | International Standard defined elsewhere, it has been decided to define one solution for this function within the scope of this Recommendation | International Standard.

Different clock coordination functions exist and may be used. Multiple clock coordination functions can exist in a single system. The interaction between these various clock coordination functions is outside the scope of this Recommendation | International Standard. Additionally, local clock coordination functions between local clocks and external references within a single system are outside the scope of this Recommendation | International Standard. For completeness, one clock coordination function will be defined as part of this Recommendation | International Standard.

For the purposes of modeling, clock coordination is divided into two components, the time synchronization protocol and the time synchronization procedures. The time synchronization protocol includes the mechanism used to exchange time information between clocks in a synchronization domain. The time synchronization procedures component incorporates the procedures and algorithms required to process and act on this information locally for the purposes of clock coordination. An overview of these procedures is given in the following subclauses.

7.3.1 Time synchronization protocol

The time synchronization protocol is used to exchange time information between systems for the purposes of synchronization. There are a number of current time synchronization protocols identified and discussed in Annex H. The time management function will enable the management of these protocols. In addition, this function will define a time synchronization protocol that addresses the requirements identified in clause 6. The following procedures are identified for the time synchronization protocol.

7.3.1.1 Time inquiry procedure

The **time inquiry procedure** provides a mechanism to obtain a time value. The time inquiry procedure is abstractly presented as a remote procedure call. A time inquiry procedure is the mechanism by which the local clock obtains time information from other entities. Abstractly, it consists of a remote procedure call to remote local clocks on other real systems. The remote local clock returns the following information regarding itself: the time and maximum error, a warning concerning the time of occurrence of the next leap second (as available from a national means of dissemination), and a minimum bound on the time delay associated with processing the request at that system.

7.3.1.2 Time transmit procedure

The **time transmit procedure** provides an optional mechanism to periodically broadcast the current time and maximum error. This permits light-weight local clock implementations which obtain the time by listening for this broadcast and adjusting their local clocks accordingly.

7.3.2 Procedures for time synchronization

Time synchronization procedures are used to process and make decisions with the information collected by the time synchronization protocol. The protocols described in Annex H incorporate aspects of both the time synchronization protocol and the time synchronization procedures components of clock coordination.

7.3.2.1 Time supply procedure

The **time supply procedure** provides a mechanism to provide a time value upon request. The local clock presents this time value. The local clock may maintain its maximum error as well as its time. For instance, if the local clock is implemented as a counter in memory which is incremented by the clock precision at each clock tick, a second counter (the maximum error) would be incremented by the product of the clock precision and the maximum drift (as specified by the clock manufacturer) of the clock at each tick. This maintenance of the maximum error must imply the statement that a clock which is functioning and initially correct remains correct. The two values (time value and accuracy) are consistent with each other in reference to the same point in time (i.e. they are atomic at the interface to the time service).

7.3.2.2 Time synchronization procedure

The **time synchronization procedure** is periodically invoked to compute a new time offset for the local clock. This is done by invoking the time inquiry procedure for each of the local clocks currently sharing time information with this particular local clock. After the information is gathered, a network time and maximum error are computed based on the

responses. This is compared to the local clock's time, and a time offset is calculated. Based on the value of the time offset and the management policies for a particular local clock, either a time adjustment or a time update is performed.

7.3.2.3 Time adjustment procedure

The **time adjustment procedure** provides a mechanism to advance or retard the frequency of the local clock for a specified period of time. This results in an adjustment of the local clock's value by small amounts, gradually reducing the clock's error. This adjustment should use the clock adjustment rate. In this case, since the purpose of the adjustment is to reduce the error of the local clock, the maximum error should be reduced during the course of the adjustment by the magnitude of the adjustment so far completed.

7.3.2.4 Time update procedure

The **time update procedure** provides a mechanism to abruptly change the value of a clock when gradual adjustments will not suffice. This is most commonly used during initialization and when it has been determined that the local clock is faulty. It could also be used instead of the time adjustment procedure to make the standard adjustments necessary to maintain synchronization. Changing the time of the local clock requires specifying a maximum error. The update of the time and maximum error must be consistent with each error (atomic at the interface to the time service).

7.3.2.5 Next leap second procedure

The **next leap second procedure** provides a mechanism to specify the time of the next leap second and whether it is to be inserted or deleted. When the time of the next leap second is reached, the clock adjusts its time to compensate for the leap second. Whether this adjustment is a step adjustment or a gradual adjustment is currently a local matter. Systems requiring a more stable timeframe around the occurrence of a leap second will need to address this issue in a more rigorous manner.

7.3.2.6 Frequency adjustment computation procedure

The **frequency adjustment computation procedure** is periodically invoked to compute a new frequency adjustment for the local clock to be used by the frequency adjustment procedure. This is an optional procedure that examines the time offset adjustments required by previous time synchronization procedures. If the local clock exhibits an explicit systematic pattern of time offsets required, the local clock's frequency (actual clock rate) may be adjusted within the limits of the hardware and clock software.

7.3.2.7 Frequency adjustment procedure

The **frequency adjustment procedure** provides a mechanism to adjust the apparent frequency of the local clock (sometimes referred to as clock training). This is an optional procedure that changes the apparent frequency (actual clock rate) of the local clock. In this case, the mechanism must also permit modifying the specified maximum drift of the clock. The two attributes should be atomically updated.

7.4 Time user function

The time user function component provides users with access to time information including time values in various formats, the quality (accuracy, precision, etc.) of the time values, time interval counters, etc. However, this portion of generic time functionality is considered a local issue and outside the scope of the time management function.

8 Generic definitions

8.1 The representation of time

A representation of time for use by the time management function and any OSI management functions or user applications requiring this service shall include a time value, a maximum error, and an epoch. There are several additional representations of time specified by various international standards bodies.

This representation of time is two values representing the number of seconds plus the number of nanoseconds since an epoch, with a base date of 0 hours, 0 minutes, 0 seconds GMT on January 1, 1970. This representation has a precision of 1 nanosecond and a range of approximately 600 years per epoch. The occurrence of leap seconds will be noted for conversion to other time formats; however, it will not cause a discontinuity in this time representation. Additionally, the local time zone is noted for conversion to other time formats.

The representation of the maximum error of the time stamp is an integer representing a number of nanoseconds. The maximum error has a range of zero nanoseconds to approximately 3 days (281 474 976 710 654 nanoseconds). The maximum value represents the condition where there is no estimate of the error available.

The representation of the local time zone is an integer representing the number of minutes east of GMT. Values outside of the range from 780 to -780 minutes are undefined or unknown. The local time zone indicates the timezone in which the timestamp was created.

The representation of an epoch is an integer representing the approximately 600 year period (4 294 967 296 seconds) being represented (with an epoch of 0 indicating the period beginning in 1970). The epoch effectively increases the range of the representation to between approximately 74 800 BCE and AD 79 400, representing a range of around 154 000 years.

8.2 Managed object classes

8.2.1 Clock source

This object class provides information concerning the dynamic state of a clock within a system. Two subclasses are also defined to further distinguish between internal system clocks and external reference clock interfaces. An instantiation of this object is required for each manageable clock.

The clockSource object provides access to and information about a source of time within a system. The clockStatus attribute is identified as state attribute. A change in the value of the operationalState attribute or in the clockStatus attribute causes a stateChange notification to be emitted. This managed object class is a subclass of "CCITT Rec. X.721 | ISO/IEC 10165-2":top and adds the following attributes:

- clockID;
- "CCITT Rec. X.721 | ISO/IEC 10165-2": operationalState;
- clockStatus;
- clockValue;
- clockEventCounter;
- clockEventCode;
- clockEventTime.

If an instance supports more detailed clock source information, the following attributes are present:

- clockPrecision;
- clockDrift;
- clockMaximumError;
- clockEstimatedError.

If an instance supports leap second information, the following attributes are present:

- leapSecondIndication;
- leapSecondCount.

This managed object class adds the following notification:

- "CCITT Rec. X.721 | ISO/IEC 10165-2": stateChange.

This managed object class provides the following action:

- clockReset.

8.2.2 Local clock

This object class provides information concerning the dynamic state of a local clock internal to a system. It is a subclass of the managed object class clock source. The localClock object provides access to and information about an internal source of time within a system. This managed object class adds the following attributes:

- localClockAddress;
- peerClockAddresses;
- synchronizationSourceAddress;
- clockStratum;
- clockAdjustmentInterval.

8.2.3 Reference clock

This object class provides information concerning the dynamic state of a clock interface residing in a system and providing that system access to an external time reference. This is a subclass of the managed object class clock source. It adds the following attribute:

- referenceClockType.

8.2.4 Synchronization protocol

This object provides general information about clock coordination function present in a system and provides access to the basic parameters of the time synchronization protocol. It is a subclass of "CCITT Rec. X.721 | ISO/IEC 10165-2":top. It adds the following attributes:

- synchronizationProtocolID;
- synchronizationProtocolType;
- synchronizedClock;
- synchronizingClocks;

It adds the following actions:

- leapSecondAction;
- protocolResetAction.

8.3 Attribute definitions

8.3.1 Clock Adjustment Interval

This attribute specifies the interval over which gradual phase adjustments to the local clock are to be applied.

8.3.2 Clock Drift

This attribute indicates the clock manufacturer's specified value of drift.

8.3.3 Clock Estimated Error

This attribute indicates the estimated error of the clock.

8.3.4 Clock Event Code

This attribute identifies the latest clock system exception event.

8.3.5 Clock Event Counter

This attribute specifies a counter indicating the number of system exception events that have occurred since the last time the counter was checked and cleared.

8.3.6 Clock Event Time

This attribute indicates the time at which the latest system exception event occurred.

8.3.7 Clock ID

This attribute identifies the clock being modeled by the managed object.

8.3.8 Clock Maximum Error

This attribute indicates the maximum error of the clock.

8.3.9 Clock Precision

This attribute indicates the precision of the clock.

8.3.10 Clock Status

This attribute indicates the current status of the clock.

8.3.11 Clock Stratum

This attribute indicates the current stratum value for this local clock in this node.

8.3.12 Clock Value

This attribute indicates the current time of the clock.

8.3.13 Leap Second Count

This attribute specifies the cumulative number of leap seconds that have occurred since January 1, 1972.

8.3.14 Leap Second Indication

This attribute indicates that a leap second is going to occur at the end of the current day.

8.3.15 Local Clock Address

This attribute indicates the network address of this node.

8.3.16 Peer Clock Addresses

This attribute lists the network addresses of the peers currently being maintained by this node.

8.3.17 Reference Clock Type

This attribute specifies the type of reference clock or external source that this object represents.

8.3.18 Synchronization Protocol ID

This attribute identifies the synchronization protocol being modeled by the managed object.

8.3.19 Synchronization Protocol Type

This attribute identifies the synchronization protocol type being modeled.

8.3.20 Synchronization Source Address

This attribute specifies the network address or the reference clock type of the current synchronization source for this node.

8.3.21 Synchronized Clock

This attribute specifies the clock being synchronized by this instance of the time synchronization protocol.

8.3.22 Synchronizing Clocks

This attribute specifies the set of clocks exchanging information with this clock for the purposes of synchronization.

8.4 Action definitions

The set of generic action parameters and semantics defined by this Recommendation | International Standard provide the detail for the following general parameters of the M-ACTION service defined by CCITT Rec. X.710 | ISO/IEC 9595:

- action type;
- action information;
- action reply.

8.4.1 Clock reset

The clock reset action provides the capability to reset an instance of a clock source to a given value. This service uses the M-ACTION service and procedures defined in CCITT Rec. X.710 | ISO/IEC 9595.

8.4.2 Leap second

The leap second action provides the capability to distribute an indication that a leap second is about to occur. It includes a mechanism to set the appropriate parameters in the protocol. This service uses the M-ACTION service and procedures defined in CCITT Rec. X.710 | ISO/IEC 9595.

8.4.3 Protocol reset

The protocol reset action provides the capability to restart the time synchronization protocol. This service uses the M-ACTION service and procedures defined in CCITT Rec. X.710 | ISO/IEC 9595.

8.5 Name binding definitions

8.5.1 Clock Source – System

This name binding is used for naming a clock source object with respect to a system object.

8.5.2 Synchronization Protocol – System

This name binding is used for naming a synchronization protocol object with respect to a system object.

9 Service definitions

This Recommendation | International Standard defines three services; clock reset, leap second distribution, and protocol reset. These services are defined below. In addition, the use of services defined in other functions is described below.

Clock functions include:

- creation of a clock managed object;
- deletion of a clock managed object;
- modification of clock parameters;
- accessing clock status;
- reset of clock.

Clock coordination functions include:

- creation of clock coordination managed object;
- deletion of clock coordination managed object;
- modification of clock parameters;
- accessing clock coordination protocol status;
- reset of clock coordination protocol machine;
- leap second notification distribution.

9.1 PT-CREATE service

The PT-CREATE service defined in CCITT Rec. X.730 | ISO/IEC 10164-1 is used to allow one open system to request that another open system create a managed object to model either the clock or the clock coordination resources available in that system for the purposes of management. This does not create the underlying resource.

9.2 PT-DELETE service

The PT-DELETE service defined in CCITT Rec. X.730 | ISO/IEC 10164-1 is used to allow one system to request that another open system delete a managed object modeling either the clock or the clock coordination resources available in that system for the purposes of management. This does not delete the underlying resource.

9.3 PT-SET service

The PT-SET service defined in CCITT Rec X.730 | ISO/IEC 10164-1 is used to allow one open system to request that another open system change the value of settable attributes in either clock or clock coordination managed objects.

9.4 PT-GET service

The PT-GET service defined in CCITT Rec. X.730 | ISO/IEC 10164-1 may be used to retrieve any of the readable attributes of the clock or clock coordination managed objects.

9.5 State Change service

The State Change notification service defined in CCITT Rec. X.731 | ISO/IEC 10164-2 may be used to monitor the state status of the clock or clock coordination managed objects.

9.6 Clock Reset service

The Clock Reset service allows a manager to request that another open system (the managed system) reset the clock. Table 1 lists the parameters for this service.

The Clock Reset service uses the parameters defined in clause 8 in addition to the general M-ACTION service parameters defined in CCITT Rec. X.710 | ISO/IEC 9595.

Table 1 – Clock reset parameters

Parameter name	Req/Ind	Rsp/Conf
Invoke Identifier	P	P
Linked Identifier	–	P
Mode	P	–
Base object class	P	–
Base object instance	P	–
Scope	P	–
Filter	P	–
Managed object class	–	P
Managed object instance	–	P
Access Control	P	–
Synchronization	P	–
Clock reset type	M	C(=)
Clock reset info	M	–
Clock Value	M	–
Current time	–	P
Errors	–	C

9.7 Leap Second service

The Leap Second service allows a manager to request that another open system (the managed system) initiate distribution of a leap second indication. Table 2 lists the parameters for this service.

The Leap Second service uses the parameters defined in clause 8 in addition to the general M-ACTION service parameters defined in CCITT Rec. X.710 | ISO/IEC 9595.

9.8 Protocol Reset service

The Protocol Reset service allows a manager to request that another open system (the managed system) reset the time synchronization protocol. Table 3 lists the parameters for this service.

The Protocol Reset service uses the parameters defined in clause 8 in addition to the general M-ACTION service parameters defined in CCITT Rec. X.710 | ISO/IEC 9595.

Table 2 – Leap second parameters

Parameter name	Req/Ind	Rsp/Conf
Invoke Identifier	P	P
Linked Identifier	–	P
Mode	P	–
Base object class	P	–
Base object instance	P	–
Scope	P	–
Filter	P	–
Managed object class	–	P
Managed object instance	–	P
Access Control	P	–
Synchronization	P	–
Leap second type	M	C(=)
Leap second info	M	–
Leap Indication	M	–
Date of Leap	M	–
Current time	–	P
Errors	–	C

Table 3 – Protocol reset parameters

Parameter name	Req/Ind	Rsp/Conf
Invoke Identifier	P	P
Linked Identifier	–	P
Mode	P	–
Base object class	P	–
Base object instance	P	–
Scope	P	–
Filter	P	–
Managed object class	–	P
Managed object instance	–	P
Access Control	P	–
Synchronization	P	–
Protocol reset type	M	C(=)
Protocol reset info	M	–
Current time	–	P
Errors	–	C

10 Functional units

Two functional units are defined in this Recommendation | International Standard for the management of time:

- a) clock control functional unit;
- b) clock coordination functional unit.

The clock control functional unit requires the support of the PT-CREATE, PT-DELETE, PT-SET, PT-GET, State Change, and Clock Reset services. The clock coordination control functional unit requires the support of the PT-CREATE, PT-DELETE, PT-SET, PT-GET, State Change, Leap Second and Protocol Reset services.

11 Protocol

11.1 Elements of procedure

11.1.1 Clock reset procedure

11.1.1.1 Manager role

11.1.1.1.1 Invocation

The clock reset procedure is initiated by the clock reset primitive. On receipt of a clock reset primitive, the SMAPM shall construct an MAPDU and issue a CMIS M-ACTION request service primitive with parameters derived from the clock reset primitive. The confirmed mode shall be used.

11.1.1.1.2 Receipt of response

On receipt of a CMIS M-ACTION confirm service primitive containing an MAPDU responding to a clock reset operation, the SMAPM shall issue a deliver confirmation primitive to the Clock Reset service user with parameters derived from the CMIS M-ACTION confirm service primitive, thus completing the clock reset procedure.

NOTE – The SMAPM shall ignore all errors in the received MAPDU. The Clock Reset service user may ignore such errors, or abort the association as a consequence of such errors.

11.1.1.2 Agent role

11.1.1.2.1 Receipt of request

On receipt of a CMIS M-ACTION indication service primitive containing an MAPDU requesting the Clock Reset service, the SMAPM shall, if the MAPDU is well formed, issue a clock reset indication primitive to the Clock Reset service user with parameters derived from the CMIS M-ACTION indication service primitive. Otherwise, the SMAPM shall construct an appropriate MAPDU indicating the error, and shall issue a CMIS M-ACTION response service primitive with an error parameter present.

11.1.1.2.2 Response

The SMAPM shall accept a clock reset response primitive and shall construct an MAPDU confirming the operation and issue a CMIS M-ACTION response service primitive with parameters derived from the clock reset response primitive.

11.1.2 Leap second procedure

11.1.2.1 Manager role

11.1.2.1.1 Invocation

The leap second procedures are initiated by the leap second primitive. On receipt of a leap second primitive, the SMAPM shall construct an MAPDU and issue a CMIS M-ACTION request service primitive with parameters derived from the leap second primitive. The confirmed mode shall be used.

11.1.2.1.2 Receipt of response

On receipt of a CMIS M-ACTION confirm service primitive containing an MAPDU responding to a leap second operation, the SMAPM shall issue a deliver confirmation primitive to the Leap Second service user with parameters derived from the CMIS M-ACTION confirm service primitive, thus completing the leap second procedure.

NOTE – The SMAPM shall ignore all errors in the received MAPDU. The Leap Second service user may ignore such errors, or abort the association as a consequence of such errors.

11.1.2.2 Agent role

11.1.2.2.1 Receipt of request

On receipt of a CMIS M-ACTION indication service primitive containing an MAPDU requesting the Leap Second service, the SMAPM shall, if the MAPDU is well formed, issue a leap second indication primitive to the Leap Second service user with parameters derived from the CMIS M-ACTION indication service primitive. Otherwise, the SMAPM shall construct an appropriate MAPDU indicating the error, and shall issue a CMIS M-ACTION response service primitive with an error parameter present.

11.1.2.2.2 Response

The SMAPM shall accept a leap second response primitive and shall construct an MAPDU confirming the operation and issue a CMIS M-ACTION response service primitive with parameters derived from the leap second response primitive.

11.1.3 Protocol reset procedure

11.1.3.1 Manager role

11.1.3.1.1 Invocation

The protocol reset procedures are initiated by the protocol reset primitive. On receipt of a protocol reset primitive, the SMAPM shall construct an MAPDU and issue a CMIS M-ACTION request service primitive with parameters derived from the protocol reset primitive. The confirmed mode shall be used.

11.1.3.1.2 Receipt of response

On receipt of a CMIS M-ACTION confirm service primitive containing an MAPDU responding to a protocol reset operation, the SMAPM shall issue a deliver confirmation primitive to the Protocol Reset service user with parameters derived from the CMIS M-ACTION confirm service primitive, thus completing the protocol reset procedure.

NOTE – The SMAPM shall ignore all errors in the received MAPDU. The Protocol Reset service user may ignore such errors, or abort the association as a consequence of such errors.

11.1.3.2 Agent role

11.1.3.2.1 Receipt of request

On receipt of a CMIS M-ACTION indication service primitive containing an MAPDU requesting the Protocol Reset service, the SMAPM shall, if the MAPDU is well formed, issue a protocol reset indication primitive to the Protocol Reset service user with parameters derived from the CMIS M-ACTION indication service primitive. Otherwise, the SMAPM shall construct an appropriate MAPDU indicating the error, and shall issue a CMIS M-ACTION response service primitive with an error parameter present.

11.1.3.2.2 Response

The SMAPM shall accept a protocol reset response primitive and shall construct an MAPDU confirming the operation and issue a CMIS M-ACTION response service primitive with parameters derived from the protocol reset response primitive.

11.2 Abstract syntax

11.2.1 Objects

This Recommendation | International Standard references the following support objects, the abstract syntax for which is specified in Annex A.

- a) clockSource;
- b) localClock;
- c) referenceClock;
- d) synchronizationProtocol.

11.2.2 Attributes

This Recommendation | International Standard references the following specific management attributes, the abstract syntax for which is specified in Annex A.

- a) clockAdjustmentInterval;
- b) clockDrift;
- c) clockEstimatedError;
- d) clockEventCode;
- e) clockEventCounter;
- f) clockEventTime;
- g) clockID;
- h) clockMaximumError;
- i) clockPrecision;
- j) clockStatus;
- k) clockStratum;
- l) clockValue;
- m) leapSecondCount;
- n) leapSecondIndication;
- o) localClockAddress;
- p) peerClockAddresses;
- q) referenceClockType;
- r) synchronizationProtocolID;
- s) synchronizationProtocolType;
- t) synchronizationSourceAddress;
- u) synchronizedClock;
- v) synchronizingClocks.

11.2.3 Actions

This Recommendation | International Standard references the following specific action types, the abstract syntax for which is specified in Annex A.

- a) clockReset;
- b) leapSecond;
- c) protocolReset.

11.2.4 Name bindings

This Recommendation | International Standard references the following specific name bindings, the abstract syntax for which is specified in Annex A.

- a) clockSource-system;
- b) synchronizationProtocol-system.

11.3 Negotiation of functional units

This Recommendation | International Standard assigns the following object identifier:

{joint-iso-ccitt ms(9) function(2)part20(20) functionalUnitPackage(1)}

as a value of the ASN.1 type FunctionalUnitPackageId defined in CCITT Rec. X.701 | ISO/IEC 10040 for negotiating the following functional units:

- 0 clock control functional unit
- 1 clock coordination functional unit

where the number identifies the bit position assigned to the functional unit, and the name references the functional unit as defined in clause 10.

12 Relationships with other functions

The following function is provided by other Systems Management Functions:

- Support for security, covered by Objects and Attributes for Access Control (ISO/IEC 10164-9).

13 Conformance

Implementations claiming to conform to this Recommendation | International Standard shall comply with the conformance requirements as defined in the following subclauses.

13.1 Static conformance

The implementation shall conform to the requirements of this Recommendation | International Standard in the manager role, the agent role, or both roles. A claim of conformance to at least one role shall be made in Table D.1.

If a claim of conformance is made for support in the manager role, the implementation shall support at least one management operation or notification of the managed objects specified by this Recommendation | International Standard. The conformance requirements in the manager role for those management operations, notifications and actions are identified in Table D.3 and further tables referenced by Annex D.

If a claim of conformance is made for support in the agent role, the implementation shall support one or more instances of the managed object class and at least one clock coordination protocol specified in Table D.4 and further tables referenced by Annex D.

The implementation shall support the transfer syntax derived from the encoding rules specified in CCITT Rec. X.209 | ISO/IEC 8825 named {joint-iso-ccitt asn1(1) basicEncoding(1)} for the abstract data types referenced by the definitions for which support is claimed.

13.2 Dynamic conformance

Implementations claiming to conform to this Recommendation | International Standard shall support the elements of procedure and definitions of semantics corresponding to the definitions for which support is claimed.

13.3 Management implementation conformance statement requirements

Any MCS proforma, MICS proforma, MOCS proforma, and MRCS proforma which conforms to this Recommendation | International Standard shall be technically identical to the proformas specified in Annexes D, E, F, and G, preserving table numbering and the index numbers of items, and differing only in pagination and page headers.

The supplier of an implementation which is claimed to conform to this Recommendation | International Standard shall complete a copy of the Management Conformance Summary (MCS) provided in Annex D as part of the conformance requirements together with any other ICS proformas referenced as applicable from that MCS. A MCS, MICS, MOCS and MRCS which conforms to this Recommendation | International Standard shall:

- describe an implementation which conforms to this Recommendation | International Standard;
- have been completed in accordance with the instructions for completion given in ITU-T Rec.X.724 | ISO/IEC 10165-6;
- include the information necessary to uniquely identify both the supplier and the implementation.

Annex A**Definition of Time Management Information**

(This annex forms an integral part of this Recommendation | International Standard)

-- <GDMO.Document "ITU-T Rec. X.743 / ISO/IEC 10164-20:1998" --
 -- {joint-iso-ccitt ms(9) function(2) part20(20)}> --
 -- <GDMO.Version 1.3 "ITU-T Rec. X.743 / ISO/IEC 10164-20:1998"> --

A.1 Managed object classes**A.1.1 clockSource**

This object class provides information concerning the dynamic state of a clock within a system. Two subclasses are also defined to further distinguish between internal system clocks and external reference clock interfaces. An instantiation of this object is required for each manageable clock.

clockSource MANAGED OBJECT CLASS

DERIVED FROM "CCITT Rec. X.721 | ISO/IEC 10165-2":top;

CHARACTERIZED BY

clockSourcePkg PACKAGE

BEHAVIOUR clockSourceBeh BEHAVIOUR

DEFINED AS

"The clockSource object provides access to and information about a source of time within a system. Clock status attribute is identified as state attribute. A change in the value of the operationalState attribute causes a stateChange notification to be emitted. ";;

ATTRIBUTES

clockID GET SET-BY-CREATE NO-MODIFY

"Rec. CCITT X.721 | ISO/IEC 10165-2": operationalState GET NO-MODIFY,

clockStatus GET,

clockValue GET,

clockEventCounter GET,

clockEventCode GET,

clockEventTime GET;

ACTIONS

clockReset ;

NOTIFICATIONS

"CCITT Rec. X.721 | ISO/IEC 10165-2": stateChange;;

CONDITIONAL PACKAGES

clockSourceDetailPkg PACKAGE

BEHAVIOUR clockSourceDetailBeh BEHAVIOUR

DEFINED AS

"The clockSourceDetailPkg package provides detailed information about a source of time within a system. ";;

ATTRIBUTES

clockPrecision GET,

clockDrift GET,

clockMaximumError GET,

clockEstimatedError GET;

REGISTERED AS {TimeMF.clockSourceDetailPkgOID};

PRESENT IF !an instance supports it.!,

leapSecondPkg PACKAGE

BEHAVIOUR leapSecondBeh BEHAVIOUR

DEFINED AS

"The leapSecondPkg package provides access to and information about the leap seconds of a source of time within a system. ";;

ATTRIBUTES

leapSecondIndication GET-REPLACE SET-BY-CREATE,

leapSecondCount GET-REPLACE SET-BY-CREATE;

REGISTERED AS {TimeMF.leapSecondPkgOID};

PRESENT IF !an instance supports it.!,

REGISTERED AS {TimeMF.clockSourceOID};

A.1.2 localClock

This object class provides information concerning the dynamic state of a local clock internal to a system.

localClock MANAGED OBJECT CLASS

DERIVED FROM `clockSource`;

CHARACTERIZED BY

`localClockPkg` PACKAGE

BEHAVIOUR `localClockBeh` BEHAVIOUR

DEFINED AS

"The `localClock` object provides access to and information about an internal source of time within a system.";;

ATTRIBUTES

`localClockAddress` GET,

`peerClockAddresses` GET-REPLACE ADD-REMOVE SET-BY-CREATE,

`synchronizationSourceAddress` GET,

`clockStratum` GET,

`clockAdjustmentInterval` GET-REPLACE SET-BY-CREATE;

;;

REGISTERED AS {TimeMF.localClockOID};

A.1.3 referenceClock

This object class provides information concerning the dynamic state of a clock interface residing in a system and providing that system access to an external time reference.

referenceClock MANAGED OBJECT CLASS

DERIVED FROM `clockSource`;

CHARACTERIZED BY

`referenceClockPkg` PACKAGE

BEHAVIOUR `referenceClockBeh` BEHAVIOUR

DEFINED AS

"The `referenceClock` object provides access to and information about a source of external time information within a system.";;

ATTRIBUTES

`referenceClockType` GET;;

REGISTERED AS {TimeMF.referenceClockOID};

A.1.4 synchronizationProtocol

This object provides access to the basic parameters of the time synchronization protocol.

synchronizationProtocol MANAGED OBJECT CLASS

DERIVED FROM "CCITT Rec. X.721 | ISO/IEC 10165-2":top;

CHARACTERIZED BY

`synchronizationProtocolPkg` PACKAGE

BEHAVIOUR `synchronizationProtocolBeh` BEHAVIOUR

DEFINED AS

"The `synchronizationProtocol` object provides general information about clock coordination service present in a system.";;

ATTRIBUTES

`synchronizationProtocolID` GET SET-BY-CREATE NO-MODIFY,

`synchronizationProtocolType` GET,

`synchronizedClock` GET,

`synchronizingClocks` GET;

ACTIONS

`leapSecond`,

`protocolReset` ;;;

REGISTERED AS {TimeMF.synchronizationProtocolOID};

A.2 Attribute definitions

A.2.1 clockAdjustmentInterval

clockAdjustmentInterval ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.AdjustmentInterval;

MATCHES FOR EQUALITY;

BEHAVIOUR clockAdjustmentIntervalBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the interval over which gradual phase adjustments to the local clock are to be applied.";;

REGISTERED AS {TimeMF.clockAdjustmentIntervalOID};

A.2.2 clockDrift

clockDrift ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ClockDrift;

MATCHES FOR EQUALITY;

BEHAVIOUR clockDriftBeh BEHAVIOUR

DEFINED AS

"This attribute indicates the clock manufacturer's specified value of drift.";;

REGISTERED AS {TimeMF.clockDriftOID};

A.2.3 clockEstimatedError

clockEstimatedError ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ClockEstimatedError;

MATCHES FOR EQUALITY;

BEHAVIOUR clockEstimatedErrorBeh BEHAVIOUR

DEFINED AS

"This attribute indicates the estimated error of the clock.";;

REGISTERED AS {TimeMF.clockEstimatedErrorOID};

A.2.4 clockEventCode

clockEventCode ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ClockEventCode;

MATCHES FOR EQUALITY;

BEHAVIOUR clockEventCodeBeh BEHAVIOUR

DEFINED AS

"This attribute identifies the latest system exception event.";;

REGISTERED AS {TimeMF.clockEventCodeOID};

A.2.5 clockEventCounter

clockEventCounter ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ClockEventCounter;

MATCHES FOR EQUALITY, ORDERING;

BEHAVIOUR clockEventCounterBeh BEHAVIOUR

DEFINED AS

"This attribute specifies a counter indicating the number of system exception events that have occurred since the last time the counter was checked and cleared.";;

REGISTERED AS {TimeMF.clockEventCounterOID};

A.2.6 clockEventTime

clockEventTime ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ClockEventTime;

MATCHES FOR EQUALITY;

BEHAVIOUR clockEventTimeBeh BEHAVIOUR

DEFINED AS

"This attribute indicates the time at which the latest system exception event occurred.";;

REGISTERED AS {TimeMF.clockEventTimeOID};

A.2.7 clockID**clockID ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.ClockID;
 MATCHES FOR EQUALITY;
 BEHAVIOUR clockIDBeh BEHAVIOUR
 DEFINED AS
 "This attribute identifies the clock being modeled by the managed object.";;

REGISTERED AS {TimeMF.clockIDOID};

A.2.8 clockMaximumError**clockMaximumError ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.ClockMaximumError;
 MATCHES FOR EQUALITY;
 BEHAVIOUR clockMaximumErrorBeh BEHAVIOUR
 DEFINED AS
 "This attribute indicates the maximum error of the clock.";;

REGISTERED AS {TimeMF.clockMaximumErrorOID};

A.2.9 clockPrecision**clockPrecision ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.Precision;
 MATCHES FOR EQUALITY;
 BEHAVIOUR clockPrecisionBeh BEHAVIOUR
 DEFINED AS
 "This attribute indicates the precision of the clock.";;

REGISTERED AS {TimeMF.clockPrecisionOID};

A.2.10 clockStatus**clockStatus ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.Status;
 MATCHES FOR EQUALITY;
 BEHAVIOUR clockStatusBeh BEHAVIOUR
 DEFINED AS
 "This attribute indicates the current status of the clock";;

REGISTERED AS {TimeMF.clockStatusOID};

A.2.11 clockStratum**clockStratum ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.Stratum;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR clockStratumBeh BEHAVIOUR
 DEFINED AS
 "This attribute indicates the current stratum value for this local clock in this node.";;

REGISTERED AS {TimeMF.clockStratumOID};

A.2.12 clockValue**clockValue ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.ClockValue;
 MATCHES FOR EQUALITY;
 BEHAVIOUR clockValueBeh BEHAVIOUR
 DEFINED AS
 "This attribute indicates the current time of the clock.";;

REGISTERED AS {TimeMF.clockValueOID};

A.2.13 leapSecondCount

leapSecondCount ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.CumLeapSeconds;

MATCHES FOR EQUALITY, ORDERING;

BEHAVIOUR leapSecondCountBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the cumulative number of leap seconds that have occurred since January 1, 1972.";;

REGISTERED AS {TimeMF.leapSecondCountOID};

A.2.14 leapSecondIndication

leapSecondIndication ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.LeapIndication;

MATCHES FOR EQUALITY;

BEHAVIOUR leapSecondIndicationBeh BEHAVIOUR

DEFINED AS

"This attribute indicates that a leap second is going to occur at the end of the current day.";;

REGISTERED AS {TimeMF.leapSecondIndicationOID};

A.2.15 localClockAddress

localClockAddress ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ClockAddress;

MATCHES FOR EQUALITY;

BEHAVIOUR localClockAddressBeh BEHAVIOUR

DEFINED AS

"This attribute indicates the network address of this node.";;

REGISTERED AS {TimeMF.localClockAddressOID};

A.2.16 peerClockAddresses

peerClockAddresses ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.PeerClockAddresses;

MATCHES FOR EQUALITY;

BEHAVIOUR peerClockAddressesBeh BEHAVIOUR

DEFINED AS

"This attribute lists the network addresses of the peers currently being maintained by this node.";;

REGISTERED AS {TimeMF.peerClockAddressesOID};

A.2.17 referenceClockType

referenceClockType ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.ReferenceClockType;

MATCHES FOR EQUALITY;

BEHAVIOUR referenceClockTypeBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the type of reference clock or external source that this object represents.";;

REGISTERED AS {TimeMF.referenceClockTypeOID};

A.2.18 synchronizationProtocolID

synchronizationProtocolID ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.SynchronizationProtocolID;

MATCHES FOR EQUALITY;

BEHAVIOUR synchronizationProtocolIDBeh BEHAVIOUR

DEFINED AS

"This attribute identifies the synchronization protocol being modeled by the managed object. This attribute is used for naming";;

REGISTERED AS {TimeMF.synchronizationProtocolIDOID};

A.2.19 synchronizationProtocolType

synchronizationProtocolType ATTRIBUTE
 WITH ATTRIBUTE SYNTAX TimeMF.SynchronizationProtocolType;
 MATCHES FOR EQUALITY;
 BEHAVIOUR synchronizationProtocolTypeBeh BEHAVIOUR
 DEFINED AS
 "This attribute identifies the synchronization protocol type being modeled by the managed object.";;
 REGISTERED AS {TimeMF.synchronizationProtocolTypeID};

A.2.20 synchronizationSourceAddress

synchronizationSourceAddress ATTRIBUTE
 WITH ATTRIBUTE SYNTAX TimeMF.CurrSynchSourceAddress;
 MATCHES FOR EQUALITY;
 BEHAVIOUR synchronizationSourceAddressBeh BEHAVIOUR
 DEFINED AS
 "This attribute specifies the network address or the reference clock type of the current synchronization source for this node.";;
 REGISTERED AS {synchronizationSourceAddressOID};

A.2.21 synchronizedClock

synchronizedClock ATTRIBUTE
 WITH ATTRIBUTE SYNTAX TimeMF.SynchronizedClock;
 MATCHES FOR EQUALITY;
 BEHAVIOUR synchronizedClockBeh BEHAVIOUR
 DEFINED AS
 "The clock being synchronized by this instance of the time synchronization protocol.";;
 REGISTERED AS {TimeMF.synchronizedClockOID};

A.2.22 synchronizingClocks

synchronizingClocks ATTRIBUTE
 WITH ATTRIBUTE SYNTAX TimeMF.SynchronizingClocks;
 MATCHES FOR EQUALITY;
 BEHAVIOUR synchronizingClocksBeh BEHAVIOUR
 DEFINED AS
 "The set of clocks exchanging information with this clock for the purposes of synchronization.";;
 REGISTERED AS {TimeMF.synchronizingClocksOID};

A.3 Action definitions**A.3.1 clockReset**

clockReset ACTION
 BEHAVIOUR clockResetBeh BEHAVIOUR
 DEFINED AS
 "The BEHAVIOUR of this action is undefined in this Recommendation | International Standard. It provides the capability to distribute an indication to all instances of the time service to restart the time synchronization protocol.";;
 MODE CONFIRMED;
 WITH INFORMATION SYNTAX TimeMF.ClockResetInfo;
 REGISTERED AS {TimeMF.clockResetActionOID};

A.3.2 leapSecond

leapSecond ACTION
 BEHAVIOUR leapSecondActionBeh BEHAVIOUR
 DEFINED AS
 "The BEHAVIOUR of this action is undefined in this Recommendation | International Standard. It provides the capability to distribute an indication that a leap second is about to occur. It includes a mechanism to set the appropriate parameters in the protocol.";;
 MODE CONFIRMED;
 WITH INFORMATION SYNTAX TimeMF.LeapSecondInfo;
 REGISTERED AS {TimeMF.leapSecondActionOID};

A.3.3 protocolReset**protocolReset ACTION****BEHAVIOUR protocolResetBeh BEHAVIOUR****DEFINED AS**

"The BEHAVIOUR of this action is undefined in this Recommendation | International Standard. It provides the capability to distribute an indication to all instances of the time service to restart the time synchronization protocol.";;

MODE CONFIRMED;**WITH INFORMATION SYNTAX TimeMF.ProtocolResetInfo;****REGISTERED AS {TimeMF.protocolResetActionOID};****A.4 Name binding definitions****A.4.1 clockSource-system****clockSource-system NAME BINDING****SUBORDINATE OBJECT CLASS clockSource AND SUBCLASSES;****NAMED BY SUPERIOR OBJECT CLASS "CCITT Rec. X.721 | ISO/IEC 10165-2:1992": system AND SUBCLASSES;****WITH ATTRIBUTE clockID;****CREATE WITH-AUTOMATIC-INSTANCE-NAMING;****DELETE DELETES-CONTAINED-OBJECTS;****REGISTERED AS{TimeMF.clockSource-systemOID};****A.4.2 synchronizationProtocol-system****synchronizationProtocol-system NAME BINDING****SUBORDINATE OBJECT CLASS synchronizationProtocol AND SUBCLASSES;****NAMED BY SUPERIOR OBJECT CLASS "CCITT Rec. X.721 | ISO/IEC 10165-2:1992": system AND SUBCLASSES;****WITH ATTRIBUTE synchronizationProtocolID;****CREATE WITH-AUTOMATIC-INSTANCE-NAMING;****DELETE DELETES-CONTAINED-OBJECTS;****REGISTERED AS{TimeMF.synchronizationProtocol-systemOID};****A.5 ASN.1 definition module for management information***-- <ASN1.Version 1990,1994 TimeMF --**-- {joint-iso-ccitt ms(9) function(2) part20(20) asn1Module(2) timeMF(1)}> --***TimeMF {joint-iso-ccitt ms(9) function(2) part20(20) asn1Module(2) timeMF(1)}****DEFINITIONS IMPLICIT TAGS ::= BEGIN***-- EXPORTS everything --***IMPORTS****Attribute, ObjectInstance****FROM****CMIP-1 {joint-iso-ccitt ms(9) cmip(1) modules(0) protocol(3)}****SimpleNameType****FROM****Attribute-ASN1Module {joint-iso-ccitt ms(9) smi(3) part2(2) asn1Module(2) 1};***-- object identifier values --***timeManagement OBJECT IDENTIFIER ::= { joint-iso-ccitt ms(9) function(2) part20(20) }****clockSourceOID OBJECT IDENTIFIER ::= {timeManagement managedObjectClass(3) clockSource(0)}****localClockOID OBJECT IDENTIFIER ::= {timeManagement managedObjectClass(3) localClock(1)}****referenceClockOID OBJECT IDENTIFIER ::= {timeManagement managedObjectClass(3) referenceClock(2)}**

synchronizationProtocolOID OBJECT IDENTIFIER ::= {timeManagement managedObjectClass(3)
 synchronizationProtocol(3)}

ntpProtocolOID OBJECT IDENTIFIER ::= {timeManagement managedObjectClass(3) ntpProtocol(4)}

clockSourceDetailPkgOID OBJECT IDENTIFIER ::= {timeManagement package(4) clockSourceDetailPkg(0)}

leapSecondPkgOID OBJECT IDENTIFIER ::= {timeManagement package(4) leapSecondPkg(1)}

clockAdjustmentIntervalOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockAdjustmentInterval(0)}

clockDriftOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockDrift(1)}

clockEstimatedErrorOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockEstimatedError(2)}

clockEventCodeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockEventCode(3)}

clockEventCounterOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockEventCounter(4)}

clockEventTimeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockEventTime(5)}

clockIDOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockID(6)}

clockMaximumErrorOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockMaximumError(7)}

clockPrecisionOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockPrecision(8)}

clockStatusOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockStatus(9)}

clockStratumOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockStratum(10)}

clockValueOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) clockValue(11)}

filterSizeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) filterSize(12)}

filterWeightOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) filterWeight(13)}

leapSecondCountOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) leapSecondCount(14)}

leapSecondIndicationOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) leapSecondIndication(15)}

localClockAddressOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) localClockAddress(16)}

maximumClockAgeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumClockAge(17)}

maximumDispersionOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumDispersion(18)}

maximumDistanceOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumDistance(19)}

maximumPollIntervalOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumPollInterval(20)}

maximumSelectClockOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumSelectClock(21)}

maximumSkewOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumSkew(22)}

maximumStratumOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) maximumStratum(23)}

minimumDispersionOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) minimumDispersion(24)}

minimumPollIntervalOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) minimumPollInterval(25)}

minimumSelectClockOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) minimumSelectClock(26)}

peerClockAddressesOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) peerClockAddresses(27)}

reachabilityRegisterSizeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) reachabilityRegisterSize(28)}

referenceClockTypeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) referenceClockType(29)}

selectWeightOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) selectWeight(30)}

synchronizationProtocolIDOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) synchronizationProtocolID(31)}

synchronizationProtocolTypeOID OBJECT IDENTIFIER ::= {timeManagement attribute(7)
 synchronizationProtocolType(32)}

synchronizationSourceAddressOID OBJECT IDENTIFIER ::= {timeManagement attribute(7)
 synchronizationSourceAddress(33)}

synchronizedClockOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) synchronizedClock(34)}

synchronizingClocksOID OBJECT IDENTIFIER ::= {timeManagement attribute(7) synchronizingClocks(35)}

```

clockResetActionOID OBJECT IDENTIFIER ::= {timeManagement action(9) clockResetAction(1)}
leapSecondActionOID OBJECT IDENTIFIER ::= {timeManagement action(9) leapSecondAction(2)}
protocolResetActionOID OBJECT IDENTIFIER ::= {timeManagement action(9) protocolResetAction(3)}
synchronizationProtocol-systemOID OBJECT IDENTIFIER ::= {timeManagement nameBinding(6) synchronizationProtocol-
system(1)}
clockSource-systemOID OBJECT IDENTIFIER ::= {timeManagement nameBinding(6) clockSource-system(2)}
ntp SynchronizationProtocolType ::= { joint-iso-ccitt ms(9) function(2) part20(20) synchProtocolType(20) ntp(1) }

-- type references --

AdjustmentInterval ::= TimeInterval
ClockAddress ::= CHOICE {
    isoNsap [1] OCTET STRING (SIZE (0 | 3..20)),
    ip [2] SEQUENCE {
        host OCTET STRING (SIZE(4)),
        port INTEGER (0..65536)
    }
}

ClockDrift ::= REAL
ClockEstimatedError ::= TimeInterval
ClockEventCode ::= INTEGER {
    unspecified (0),
    restart (1),
    systemOrHardwareFault (2),
    newStatusWord (3),
    newSynchSourceOrStratum (4),
    systemClockReset (5),
    systemInvalidTimeOrDate (6),
    systemClockException (7),
    reserved8 (8),
    reserved9 (9),
    reserved10 (10),
    reserved11 (11),
    reserved12 (12),
    reserved13 (13),
    reserved14 (14),
    reserved15 (15)
}

ClockEventCounter ::= INTEGER (0 .. 255)
ClockEventTime ::= GlobalTime
ClockID ::= SimpleNameType
ClockMaximumError ::= TimeInterval
ClockValue ::= GlobalTime
CumLeapSeconds ::= INTEGER (0 .. 255)
ClockResetInfo ::= ClockValue
CurrSynchSourceAddress ::= CHOICE {
    refPeerAssoc [0] ClockAddress,
    refClockID [1] ReferenceClockType
}

DateOfLeap ::= GeneralizedTime
Dispersion ::= TimeInterval
    -- This field represents the dispersion (positive values only). --
FilterSize ::= INTEGER (0 .. 32)
FilterWeight ::= REAL (0 .. {mantissa 1, base 10, exponent 0})
GlobalTime ::= OCTET STRING (SIZE (8)) -- See 8.1.--

```

```

LeapIndication ::= ENUMERATED {
  noWarning          (0),
  minuteHas61Seconds (1),
  minuteHas59Seconds (2),
  alarmCondition     (3) }

LeapSecondInfo ::= SEQUENCE {
  leapIndication  LeapIndication,
  dateOfLeap       DateOfLeap
  }

MaxAperature ::= TimeInterval
MaxClockAge ::= TimeInterval
MaxDistance ::= TimeInterval
MaxSkew ::= TimeInterval
PeerClockAddresses ::= SET OF SinglePeerClock
PollInterval ::= INTEGER (0..MAX)
  -- This field represents the polling interval in seconds and can only contain positive values. --
Precision ::= TimeInterval
  -- This field represents precision and can only contain positive values. --
ProtocolResetInfo ::= SET OF Attribute
ReachRegSize ::= INTEGER (0 .. 32)
ReferenceClockType ::= INTEGER {
  unspecifiedOrUnknown (0),
  calibratedAtomicClock (1),
  radioVLForLF (2),
  radioHF (3),
  radioUHF (4),
  localNet (5),
  synch (6),
  wallclock (7),
  telephoneModem (8),
  gps (9),
  loranC (10),
  other (11)
  }

SelectClock ::= INTEGER (0 .. 255)
SelectWeight ::= REAL (0 .. {mantissa 1, base 10, exponent 0})
SinglePeerClock ::= SEQUENCE {
  assocNum [0] INTEGER,
  assocClock [1] ClockAddress
  }

Stratum ::= INTEGER (0..255)
  -- A value of zero means that the stratum is not specified. --
  -- A value of one indicates a primary reference. --
  -- Values from 2 to 255 indicate secondary references of increasing --
  -- distance from the root of the synchronization subnet .--

Status ::= INTEGER {
  operatingWithinNominals (0),
  replyTimeout (1),
  badReplyFormat (2),
  hardwareSoftwareFault (3),
  propagationFailure (4),
  badDateFormatOrValue (5),
  badTimeFormatOrValue (6)
  }

SynchronizationProtocolID ::= SimpleNameType
SynchronizationProtocolType ::= OBJECT IDENTIFIER

```

SynchronizedClock ::= ObjectInstance

SynchronizingClocks ::= SET OF ObjectInstance

TimeInterval ::= OCTET STRING (SIZE (8)) -- See 8.1. --

TSelect ::= OCTET STRING (SIZE (4))

END -- *End of syntax definitions* --

A.6 ASN.1 definition module for time representation

-- <ASN1.Version 1990,1994 TimeRepresentation --

-- {joint-iso-ccitt ms(9) function(2) part20(20) asn1Module(2) --

-- timeRepresentation(2) }> --

TimeRepresentation {joint-iso-ccitt ms(9) function(2) part20(20) asn1Module(2) timeRepresentation(2)}

DEFINITIONS ::= BEGIN

Epochs ::= INTEGER (-128 .. 127)

Seconds ::= INTEGER (0 .. 4294967295)

Nanoseconds ::= INTEGER (0 .. 999999999)

MaximumErrorInNanoseconds ::= INTEGER {noEstimate (281474976710655)}

(0 .. 281474976710654)

CumLeapSeconds ::= INTEGER (0 .. 65536)

TimeZone ::= INTEGER {unknown (781) } (-780 .. 781)

-- Represents minutes east of GMT. --

TimeStamp ::= SEQUENCE {

epoch Epochs,

second Seconds,

nanosecond Nanoseconds,

maximumError MaximumErrorInNanoseconds

}

ClockTime ::= SEQUENCE {

time TimeStamp,

leapSeconds CumLeapSeconds,

localTimeZone TimeZone

}

TimeInterval ::= SEQUENCE {

epochs Epochs,

seconds Seconds,

nanoseconds Nanoseconds

}

TimeDifference ::= SEQUENCE {

sign ENUMERATED {positive (0), negative (1)},

epochs Epochs,

seconds Seconds,

nanoseconds Nanoseconds,

maximumError MaximumErrorInNanoseconds

}

END

Annex B

The Network Time Protocol and Time Management Information

(This annex forms an integral part of this Recommendation | International Standard)

B.1 The Network Time Protocol

The Network Time Protocol may be implemented as the time synchronization service underlying this Time Management Function. If so, it is implemented in accordance with RFC 1305 (see [5] in H.4). The NTP managed object class is intended to be used with the Network Time Protocol time synchronization service.

B.2 The ntpProtocol managed object class definition

The ntpProtocol object provides access to the basic parameters of the Network Time Protocol (NTP) time synchronization protocol. It is a subclass of the synchronization protocol managed object class. The basic parameters of NTP include both the protocol to exchange time information and the procedures and algorithms used to process and act on the time information gathered. The ntpProtocol object includes attributes to indicate:

- the current state of the time synchronization protocol (polling intervals, modes of service, etc.) (specific to particular subclass);
- the offset, delay, maximum error (and other relevant data) associated with each clock with which time information has been exchanged.

ntpProtocol MANAGED OBJECT CLASS

DERIVED FROM synchronizationProtocol;

CHARACTERIZED BY ntpProtocolPkg PACKAGE

BEHAVIOUR ntpProtocolBeh BEHAVIOUR

DEFINED AS

"This object provides general information about the Network Time Protocol (ntp) time synchronization protocol.";;

ATTRIBUTES

maximumStratum GET,
maximumClockAge GET,
maximumSkew GET,
maximumDistance GET,
minimumPollInterval GET,
maximumPollInterval GET,
minimumSelectClock GET,
maximumSelectClock GET,
minimumDispersion GET,
maximumDispersion GET,
reachabilityRegisterSize GET,
filterSize GET,
filterWeight GET,
selectWeight GET;;;

REGISTERED AS {TimeMF.ntpProtocolOID};

B.3 Attribute definitions

B.3.1 filterSize

filterSize ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.FilterSize;

MATCHES FOR EQUALITY, ORDERING;

BEHAVIOUR filterSizeBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the size of the clock filter shift register.";;

REGISTERED AS {TimeMF.filterSizeOID};

B.3.2 filterWeight

filterWeight ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.FilterWeight;
MATCHES FOR EQUALITY;
BEHAVIOUR filterWeightBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the weight used to compute the filter dispersion.";;

REGISTERED AS {TimeMF.filterWeightOID};

B.3.3 maximumClockAge

maximumClockAge ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.MaxClockAge;
MATCHES FOR EQUALITY;
BEHAVIOUR maximumClockAgeBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum interval without an update that a reference clock will be considered valid.";;

REGISTERED AS {TimeMF.maximumClockAgeOID};

B.3.4 maximumDispersion

maximumDispersion ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.Dispersion;
MATCHES FOR EQUALITY;
BEHAVIOUR maximumDispersionBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum dispersion increment allowable, also specifies the dispersion assumed for missing data.";;

REGISTERED AS {TimeMF.maximumDispersionOID};

B.3.5 maximumDistance

maximumDistance ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.MaxDistance;
MATCHES FOR EQUALITY;
BEHAVIOUR maximumDistanceBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum acceptable synchronization distance.";;

REGISTERED AS {TimeMF.maximumDistanceOID};

B.3.6 maximumPollInterval

maximumPollInterval ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.PollInterval;
MATCHES FOR EQUALITY, ORDERING;
BEHAVIOUR maximumPollIntervalBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum polling interval allowable in the system.";;

REGISTERED AS {TimeMF.maximumPollIntervalOID};

B.3.7 maximumSelectClock

maximumSelectClock ATTRIBUTE

WITH ATTRIBUTE SYNTAX TimeMF.SelectClock;
MATCHES FOR EQUALITY, ORDERING;
BEHAVIOUR maximumSelectClockBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum number of peers considered for selection.";;

REGISTERED AS {TimeMF.maximumSelectClockOID};

B.3.8 maximumSkew**maximumSkew ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.MaxSkew;
 MATCHES FOR EQUALITY;
 BEHAVIOUR maximumSkewBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum offset error caused by the skew of a local clock over the interval specified by maximumClockAge.";;

REGISTERED AS {TimeMF.maximumSkewOID};

B.3.9 maximumStratum**maximumStratum ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.Stratum;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR maximumStratumBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the maximum stratum value that can be encoded as a packet variable, also interpreted as network unreachable.";;

REGISTERED AS {TimeMF.maximumStratumOID};

B.3.10 minimumDispersion**minimumDispersion ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.Dispersion;
 MATCHES FOR EQUALITY;
 BEHAVIOUR minimumDispersionBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the minimum dispersion increment for each stratum level.";;

REGISTERED AS {TimeMF.minimumDispersionOID};

B.3.11 minimumPollInterval**minimumPollInterval ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.PollInterval;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR minimumPollIntervalBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the minimum polling interval allowable in the system.";;

REGISTERED AS {TimeMF.minimumPollIntervalOID};

B.3.12 minimumSelectClock**minimumSelectClock ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.SelectClock;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR minimumSelectClockBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the minimum number of peers acceptable for synchronization.";;

REGISTERED AS {TimeMF.minimumSelectClockOID};

B.3.13 reachabilityRegisterSize**reachabilityRegisterSize ATTRIBUTE**

WITH ATTRIBUTE SYNTAX TimeMF.ReachRegSize;
 MATCHES FOR EQUALITY, ORDERING;
 BEHAVIOUR reachabilityRegisterSizeBeh BEHAVIOUR

DEFINED AS

"This attribute specifies the size of the reachability register.";;

REGISTERED AS {TimeMF.reachabilityRegisterSizeOID};

B.3.14 selectWeight

```
selectWeight ATTRIBUTE
  WITH ATTRIBUTE SYNTAX  TimeMF.SelectWeight;
  MATCHES FOR EQUALITY;
  BEHAVIOUR selectWeightBeh BEHAVIOUR
    DEFINED AS
      "This attribute specifies the weight used to compute the selection dispersion.";;
REGISTERED AS {TimeMF.selectWeightOID};

--<GDMO.EndDocument "ITU-T Rec. X.743 / ISO/IEC 10164-20:1997"
-- {joint-iso-ccitt ms(9) function(2) part20(20)}>--
```

Annex C

The Distributed Time service and Time Management Information

(This annex does not form an integral part of this Recommendation | International Standard)

C.1 The Distributed Time service

The Distributed Time service may be implemented as the time synchronization service underlying this Time Management Function. If so, it is implemented in accordance with the Distributed Time service as defined in OSF DCE 1.0 (see [5] in H.4).

C.2 The dtsProtocol managed object

A managed object class to support DTS is for further study.

Annex D²⁾

MCS proforma

(This annex forms an integral part of this Recommendation | International Standard)

D.1 Introduction

D.1.1 Purpose and structure

The Management Conformance Summary (MCS) is a statement by a supplier that identifies an implementation and provides information on whether the implementation claims conformance to any of the listed set of documents that specify conformance requirements to OSI management.

The MCS proforma is a document in the form of a questionnaire that, when completed by the supplier of an implementation, becomes the MCS.

D.1.2 Instructions for completing the MCS proforma to produce an MCS³⁾

The supplier of the implementation shall enter an explicit statement in each of the boxes provided. Specific instruction is provided in the text which precedes each table.

²⁾ Copyright release for MCS proforma

Users of this Recommendation | International Standard may freely reproduce the MCS proforma in this annex so that it can be used for its intended purpose, and may further publish the completed MCS.

³⁾ Instructions for completing the MCS proforma are specified in ITU-T Rec. X.724 | ISO/IEC 10165-6.

D.1.3 Symbols, abbreviations and terms

For all annexes of this Recommendation | International Standard, the following common notations, defined in ITU-T Rec. X.291 | ISO/IEC 9646-2 and ITU-T Rec. X.296 | ISO/IEC 9646-7, are used for the Status column:

- m Mandatory
- o Optional
- c Conditional
- x Prohibited
- Not applicable or out of scope

NOTE 1 – "c", "m", and "o" are prefixed by a "c:" when nested under a conditional or optional item of the same table.

NOTE 2 – "o" may be suffixed by ".N" (where N is a unique number) for mutually exclusive or selectable options among a set of status values. Support of at least one of the choices (from the items with the same values of N) is required.

For all annexes of this Recommendation | International Standard, the following common notations, defined in ITU-T Rec. X.291 | ISO/IEC 9646-2 and ITU-T Rec. X.296 | ISO/IEC 9646-7 are used for the Support column:

- Y Implemented
- N Not implemented
- No answer required
- Ig The item is ignored (i.e. processed syntactically but not semantically)

D.2 Identification of the implementation

D.2.1 Date of statement

The supplier of the implementation shall enter the date of this statement in the box below. Use the format DD-MM-YYYY.

Date of statement

D.2.2 Identification of the implementation

The supplier of the implementation shall enter information necessary to uniquely identify the implementation and the system(s) in which it may reside, in the box below.

D.2.3 Contact

The supplier of the implementation shall provide information on whom to contact if there are any queries concerning the content of the MCS, in the box below.

D.3 Identification of the Recommendation | International Standard in which the management information is defined

The supplier of the implementation shall enter the title, reference number and date of the publication of the Recommendation | International Standard which specifies the management information to which conformance is claimed, in the box below.

Recommendation | International Standard to which conformance is claimed

D.3.1 Technical corrigenda implemented

The supplier of the implementation shall enter the reference numbers of implemented technical corrigenda which modify the identified Recommendation | International Standard, in the box below.

D.3.2 Amendments implemented

The supplier of the implementation shall state the titles and reference numbers of implemented amendments to the identified Recommendation | International Standard, in the box below.

D.4 Management conformance summary

The supplier of implementation shall state the capabilities and features supported and provide summary of conformance claims to Recommendations | International Standards using the tables in this annex.

The supplier of the implementation shall specify the roles that are supported, in Table D.1

Table D.1 – Roles

Index	Roles supported	Status	Support	Additional information
1	Manager role support	o.1		
2	Agent role support	o.1		

The supplier of the implementation shall specify support for the systems management functional units, in Table D.2

Table D.2 – Systems management functional units

Index	Systems management functional unit name	Manager		Agent		Additional information
		Status	Support	Status	Support	
1	clock control functional unit	c1		c2		
2	clock coordination control functional unit	c1		c2		
c1: if D.1/1a then o else – c2: if D.1/2a then o else –						

The supplier of the implementation shall specify support for management information in the manager role, in Table D.3

Table D.3 – Manager role minimum conformance requirement

Index	Item	Status	Support	Additional information
1	Operations on managed objects	c3		
2	Clock reset action for local clock managed object	c4		
3	Clock reset action for reference clock managed object	c4		
4	Leap second action for synchronization protocol (or subclass) managed object	c5		
5	Protocol reset action for synchronization protocol (or subclass) managed object	c5		
6	State change notification for local clock managed object	c4		
7	State change notification for reference clock managed object	c4		

c3: if D.1/1a then o.2 else –
 c4: if D.2/1a then o.3 else (if D.1/1a then o.2 else –)
 c5: if D.2/2a then m else (if D.1/1a then o.2 else –)

The supplier of the implementation shall specify support for management information in the agent role, in Table D.4

Table D.4 – Agent role minimum conformance requirement

Index	Item	Status	Support	Additional information
1	Local clock managed object	c6		
2	Reference clock managed object	c7		
3	Synchronization protocol managed object	c8		
4	NTP protocol managed object	c9		

c6: if D.1/2a then m else –
 c7: if D.1/2a then o else –
 c8: if support of a synchronization protocol for which there is no specialized managed object class (e.g. DTS) then m else –
 (Indicate synchronization protocol in Additional information column)
 c9: if support of NTP protocol then m else –

The supplier of the implementation shall provide information on claims of conformance to any of the Recommendation | International Standards summarized in Tables D.5 to D.8. For each Recommendation | International Standard that the supplier of the implementation claims conformance to, the corresponding conformance statement(s) shall be completed, or referenced by, the MCS. The supplier of the implementation shall complete the Support, Table numbers and Additional information columns.

In Tables D.5 to D.8, the Status column is used to indicate whether the supplier of the implementation is required to complete the referenced tables or referenced items. Conformance requirements are as specified in the referenced tables or referenced items and are not changed by the value of the MCS Status column. Similarly, the Support column is used by the supplier of the implementation to indicate completion of the referenced tables or referenced items.

Table D.5 – PICS support summary

Index	Identification of the document that includes the PICS proforma	Table numbers of PICS proforma	Description	Constraints and values	Status	Support	Table numbers of PICS	Additional information
1	"CCITT Rec. X.730 (1992) ISO/IEC 10164-1:1993"	Annex E all tables	SM application context	–	o			
2	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	– (PICS proforma do not exist, indicate support only)	NTP protocol	–	c10			
3	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	– (PICS proforma do not exist, indicate support only)	DTS protocol	–	c11			
c10: if D.4/4a then m else – c11: if support of DTS protocol then m else –								

Table D.6 – MOCS support summary

Index	Identification of the document that includes the MOCS proforma	Table numbers of MOCS proforma	Description	Constraints and values	Status	Support	Table numbers of MOCS	Additional information
1	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table F.1-F.6	localClock	–	c12			
2	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table F.7-F.12	referenceClock	–	c13			
3	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table F.13-F.17	synchronizationProtocol	–	c14			
4	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table F.18-F.22	ntpProtocol	–	c15			
c12: if D.4/1a then m else – c13: if D.4/2a then m else – c14: if D.4/3a then m else – c15: if D.4/4a then m else –								

Table D.7 – MRCS support summary

Index	Identification of the document that includes the MRCS proforma	Table numbers of MRCS proforma	Description	Constraints and values	Status	Support	Table numbers of MRCS	Additional information
1	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table G.1/1	clockSource-system	–	o			
2	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table G.1/2	synchronizationProtocol system	–	o			

Table D.8 – MICS support summary

Index	Identification of the document that includes the MICS proforma	Table numbers of MICS proforma	Description	Constraints and values	Status	Support	Table numbers of MICS	Additional information
1	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table E.1	management operations	–	c16			
2	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table E.2	actions	–	c17			
3	"ITU-T Rec. X.743 (1998) ISO/IEC 10164-20:1998"	Table E.3	notification	–	c18			
c16: if D.3/1a then m else – c17: if D.3/2a or D.3/3a or D.3/4a or D.3/5a then m else – c18: if D.3/6a or D.3/7a then m else –								

Annex E⁴⁾

MICS proforma

(This annex forms an integral part of this Recommendation | International Standard)

E.1 Introduction

The purpose of this MICS proforma is to provide a mechanism for a supplier of an implementation which claims conformance, in the manager role, to management information specified in this Recommendation | International Standard, to provide conformance information in a standard form.

E.2 Instructions for completing the MICS proforma to produce a MICS

The MICS proforma contained in this annex is comprised of information in tabular form, in accordance with ITU-T Rec. X.724 | ISO/IEC 10165-6. In addition to the general guidance given in ITU-T Rec. X.724 | ISO/IEC 10165-6. The supplier of the implementation shall state which items are supported in the tables below and if necessary, provide additional information.

E.3 Symbols, abbreviations and terms

The MICS proforma contained in this annex is comprised of information in tabular form, in accordance with CCITT Rec. X.291 | ISO/IEC 9646-2.

The notations used in the Status and Support columns are specified in D.1.3.

E.4 Statement of conformance to the management information

E.4.1 Attributes

The specifier of a manager role implementation that claims to support management operations on the attributes specified in this Recommendation | International Standard shall import a copy of Tables E.1 to E.7 and complete them.

⁴⁾ Copyright release for MICS proforma

Users of this Recommendation | International Standard may freely reproduce the MICS proforma in this annex so that it can be used for its intended purpose, and may further publish the completed MICS.

Table E.1 – Attribute support

Index	Attribute template label	Value of object identifier for attribute	Constraints and values	Set by create		Get	
				Status	Support	Status	Support
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2: 1992": allomorphs	{2 9 3 2 7 50}	SET OF Objectless	o		o	
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": nameBinding	{2 9 3 2 7 63}	OBJECT IDENTIFIER				
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": objectClass	{2 9 3 2 7 65}	ObjectClass	0.5		0.5	
4	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packages	{2 9 3 2 7 66}	SET OF OBJECT IDENTIFIER	o		o	
5	clockId	{2 9 2 20 7 6}		–		0.5	
6	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": operationalState	{2 9 3 2 7 35}	ENUMERATED	–		0.5	
7	clockStatus	{2 9 2 20 7 9}		–		0.5	
8	clockValue	{2 9 2 20 7 11}		–		0.5	
9	clockPrecision	{2 9 2 20 7 8}		–		0.5	
10	clockDrift	{2 9 2 20 7 1}		–		0.5	
11	clockMaximumError	{2 9 2 20 7 7}		–		0.5	
12	clockEstimatedError	{2 9 2 20 7 2}		–		0.5	
13	leapSecondIndication	{2 9 2 20 7 15}		0.5		0.5	
14	leapSecondCount	{2 9 2 20 7 14}		0.5		0.5	
15	clockEventCounter	{2 9 2 20 7 4}		–		0.5	
16	clockEventCode	{2 9 2 20 7 3}		–		0.5	
17	clockEventTime	{2 9 2 20 7 5}		–		0.5	
18	localClockAddress	{2 9 2 20 7 16}		–		0.5	
19	peerClockAddresses	{2 9 2 20 7 27}		0.5		0.5	
20	synchronizationSourceAddress	{2 9 2 20 7 33}		–		0.5	
21	clockStratum	{2 9 2 20 7 10}		–		0.5	
22	clockAdjustmentInterval	{2 9 2 20 7 0}		0.5		0.5	
23	referenceClockType	{2 9 2 20 7 29}		–		0.5	
24	synchronizationProtocolID	{2 9 2 20 7 31}		–		0.5	
25	synchronizedClock	{2 9 2 20 7 34}		–		0.5	
26	synchronizingClocks	{2 9 2 20 7 35}		–		0.5	
27	maximumStratum	{2 9 2 20 7 23}		–		0.5	
28	maximumClockAge	{2 9 2 20 7 17}		–		0.5	
29	maximumSkew	{2 9 2 20 7 22}		–		0.5	
30	maximumDistance	{2 9 2 20 7 19}		–		0.5	
31	minimumPollInterval	{2 9 2 20 7 25}		–		0.5	
32	maximumPollInterval	{2 9 2 20 7 20}		–		0.5	
33	minimumSelectClock	{2 9 2 20 7 26}		–		0.5	
34	maximumSelectClock	{2 9 2 20 7 21}		–		0.5	
35	minimumDispersion	{2 9 2 20 7 24}		–		0.5	
36	maximumDispersion	{2 9 2 20 7 18}		–		0.5	
37	reachabilityRegisterSize	{2 9 2 20 7 28}		–		0.5	
38	filterSize	{2 9 2 20 7 12}		–		0.5	
39	filterWeight	{2 9 2 20 7 13}		–		0.5	
40	selectWeight	{2 9 2 20 7 30}		–		0.5	
41	synchronizationProtocolType	{2 9 2 20 7 32}		–		0.5	

Table E.1 (concluded) – Attribute support

Replace		Add		Remove		Set to default		Additional information
Index	Status	Support	Status	Support	Status	Support	Status	
1	–		–		–		–	
2	–		–		–		–	
3	–		–		–		–	
4	–		–		–		–	
5	–		–		–		–	
6	–		–		–		–	
7	–		–		–		–	
8	–		–		–		–	
9	–		–		–		–	
10	–		–		–		–	
11	–		–		–		–	
12	–		–		–		–	
13	0.5		–		–		–	
14			–		–		–	
15			–		–		–	
16	–		–		–		–	
17	–		–		–		–	
18	–		–		–		–	
19	0.5		0.5		0.5		–	
20	–		–		–		–	
21	–		–		–		–	
22	0.5		–		–		–	
23	–		–		–		–	
24	–		–		–		–	
25	–		–		–		–	
26	–		–		–		–	
27	–		–		–		–	
28	–		–		–		–	
29	–		–		–		–	
30	–		–		–		–	
31	–		–		–		–	
32	–		–		–		–	
33	–		–		–		–	
34	–		–		–		–	
35	–		–		–		–	
36	–		–		–		–	
37	–		–		–		–	
38	–		–		–		–	
39	–		–		–		–	
40	–		–		–		–	
41	–		–		–		–	

E.4.2 Create and delete management operations

The specifier of a manager role implementation that claims to support the create or the delete management operations on the managed objects specified in this Recommendation | International Standard shall import a copy of Tables E.2 to E.5 and complete them.

E.4.2.1 Local clock managed object class

See Table E.2.

Table E.2 – Create and delete support

Index	Operation	Constraints and values	Status	Support	Additional information
1	Create support	localClock MO	0.5		
1.1	Create with reference object	–	–		
2	Delete support	localClock MO	0.5		

E.4.2.2 Reference clock managed object class

See Table E.3.

Table E.3 – Create and delete support

Index	Operation	Constraints and values	Status	Support	Additional information
1	Create support	referenceClock MO	0.5		
1.1	Create with reference object	–	–		
2	Delete support	referenceClock MO	0.5		

E.4.2.3 Synchronization protocol managed object class

See Table E.4.

Table E.4 – Create and delete support

Index	Operation	Constraints and values	Status	Support	Additional information
1	Create support	synchronizationProtocol MO	0.5		
1.1	Create with reference object	–	–		
2	Delete support	synchronizationProtocol MO	0.5		

E.4.2.4 NTP protocol managed object class

See Table E.5.

Table E.5 – Create and delete support

Index	Operation	Constraints and values	Status	Support	Additional information
1	Create support	ntpProtocol MO	0.5		
1.1	Create with reference object	–	–		
2	Delete support	ntpProtocol MO	0.5		

E.4.3 Actions

The specifier of a manager role implementation that claims to support the actions specified in this Recommendation | International Standard shall import a copy of Table E.6 and complete it.

Table E.6 – Action support

Index	Action type template label	Value of object identifier for action type	Constraints and values	Status	Support	Additional information
1	clockReset	{2 9 2 20 9 1}		c1		
2	leapSecond	{2 9 2 20 9 2}		c2		
3	protocolReset	{2 9 2 20 9 3}		c3		

Table E.6 (concluded) – Action support

Index	Subindex	Action field name label	Constraints and values	Status	Support	Additional information
1	1.1	ClockResetInfo	Information Syntax ClockValue	c1		
2	2.1	LeapSecondInfo	Information Syntax SEQUENCE	c2		
	2.1.1	LeapIndication	ENUMERATED	m		
	2.1.2	DayOfLeap	GeneralizedTime	m		
3	3.1	ProtocolResetInfo	Information Syntax SET OF SEQUENCE	c3		
c1: if D.3/2a or D.3/3a then m else – c2: if D.3/4a then m else – c3: if D.3/5a then m else –						

E.4.4 Notification

See Table E.7.

Table E.7 – Notification support

Index	Notification type template label	Value of object identifier for notification type	Constraints and values	Status	Support		Additional information
					Confirmed	Non-confirmed	
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": stateChange	{2 9 3 2 10 14}		c4			

Table E.7 (concluded) – Notification support

Index	Subindex	Notification field name label	Value of object identifier of attribute type associated with field	Constraints and values	Status	Support	Additional information
1	1.1	StateChangeInfo		Information Syntax SEQUENCE	c4		
	1.1.1	sourceIndicator	{2 9 3 2 7 26}	ENUMERATED	c:m		
	1.1.2	attributeIdentifierList	{2 9 3 2 7 8}	SET OF AttributeId	c:m		
	1.1.3	stateChangeDefinition	{2 9 3 2 7 28}	SET OF SEQUENCE	c:m		
	1.1.3.1	attributeID	–	AttributeId	c:m		
	1.1.3.2	oldAttributeValue	–	ANY DEFINED BY attributeID	c:m		
	1.1.3.3	newAttributeValue	–	ANY DEFINED BY attributeID	c:m		
	1.1.4	notificationIdentifier	{2 9 3 2 7 16}	INTEGER	c:m		
	1.1.5	correlatedNotifications	{2 9 3 2 7 12}	SET OF SEQUENCE	c:m		
	1.1.5.1	correlatedNotifications	{2 9 3 2 7 12}	SET OF INTEGER	c:m		
	1.1.5.2	sourceObjectInst	–	ObjectInstance	c:m		
	1.1.6	additionalText	{2 9 3 2 7 7}	GraphicString	c:m		
	1.1.7	additionalInformation	{2 9 3 2 7 6}	SET OF SEQUENCE	c:m		
	1.1.7.1	identifier	–	OBJECT IDENTIFIER	c:m		
	1.1.7.2	significance	–	BOOLEAN	c:m		
	1.1.7.3	information	–	ANY DEFINED BY identifier	c:m		
c4: if D.8/3a then m else –							

Annex F⁵⁾

MOCS proforma

(This annex forms an integral part of this Recommendation | International Standard)

F.1 Introduction

The purpose of this MOCS proforma is to provide a mechanism for a supplier of an implementation of a Recommendation | International Standard which claims conformance to a managed object class, to provide conformance information in a standard form.

⁵⁾ Copyright release for MOCS proforma

Users of this Recommendation | International Standard may freely reproduce the MOCS proforma in this annex so that it can be used for its intended purpose, and may further publish the completed MOCS.

F.1.1 Instructions for completing the MOCS proforma to produce a MOCS⁶⁾

The MOCS proforma contained in this annex is comprised of information in tabular form, in accordance with ITU-T Rec. X.724 | ISO/IEC 10165-6. The supplier of the implementation shall state which items are supported in the tables below and if necessary provide additional information.

F.1.2 Symbols, abbreviations and terms

The MOCS proforma contained in this annex is comprised of information in tabular form, in accordance with ITU-T Rec. X.291 | ISO/IEC 9646-2.

The notations used in the Status and Support columns are specified in D.1.3.

F.2 localClock

F.2.1 Statement of conformance to the managed object class

See Table F.1.

Table F.1 – localClock Managed object class support

Index	Managed object class template label	Value of object identifier for class	Support of all mandatory features? (Y/N)	Is the actual class the same as the managed object class to which conformance is claimed? (Y/N)
1	localClock	{2 9 2 20 3 1}		

If the answer to the actual class question in Table F.1 is No, the supplier of the implementation shall fill in the actual class support Table F.2.

Table F.2 – localClock Actual class support

Index	Managed object class template for actual class	Value of object identifier for managed object class definition of actual class	Additional information

⁶⁾ Instructions for completing the MOCS proforma are specified in ITU-T Rec. X.724 | ISO/IEC 10165-6.

F.2.2 Packages

The supplier of the implementation shall state whether or not the packages specified by this managed object of this class are supported, in Table F.3.

Table F.3 – localClock Package support

Index	Package template label	Value of object identifier for package	Constraints and values	Status	Support	Additional information
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphicPackage	{2 9 3 2 4 17}	"if an object supports allomorphism"	c1		
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packagesPackage	{2 9 3 2 4 16}	"any registered package, other than this package, has been instantiated"	c2		
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": topPackage	–	Mandatory	m		
4	clockSourcePkg	–	Mandatory	m		
5	clockSourceDetailPkg	{2 9 2 20 4 0}	"if an instance supports it"	o		
6	leapSecondPkg	{2 9 2 20 4 1}	"if an instance supports it"	o		
7	localClockPkg	–	Mandatory	m		
c1: if F.1/1b then – else m c2: if F.3/1a then m else –						

F.2.3 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all of the packages instantiated in a managed object of this class are supported, in the Support and Additional information columns of Table F.4. The supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table F.4 – localClock Attribute support

Index	Attribute template label	Value of object identifier for attribute	Constraints and values	Set by create		Get	
				Status	Support	Status	Support
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphs	{2 9 3 2 7 50}	SET OF ObjectClass	c3		c4	
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": nameBinding	{2 9 3 2 7 63}	OBJECT IDENTIFIER	o		m	
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": objectClass	{2 9 3 2 7 65}	ObjectClass	m		m	
4	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packages	{2 9 3 2 7 66}	SET OF OBJECT IDENTIFIER	c5		c6	
5	clockId	{2 9 2 20 7 6}		x		m	
6	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": operationalState	{2 9 3 2 7 35}	ENUMERATED	x		m	
7	clockStatus	{2 9 2 20 7 9}		c8		m	
8	clockValue	{2 9 2 20 7 11}		c8		m	
9	clockPrecision	{2 9 2 20 7 8}		c10		c9	
10	clockDrift	{2 9 2 20 7 11}		c10		c9	
11	clockMaximumError	{2 9 2 20 7 7}		c10		c9	
12	clockEstimatedError	{2 9 2 20 7 2}		c10		c9	
13	leapSecondIndication	{2 9 2 20 7 15}		c11		c11	
14	leapSecondCount	{2 9 2 20 7 14}		c11		c11	
15	clockEventCounter	{2 9 2 20 7 4}		c8		m	
16	clockEventCode	{2 9 2 20 7 3}		c8		m	
17	clockEventTime	{2 9 2 20 7 5}		c8		m	
18	localClockAddress	{2 9 2 20 7 16}		c8		m	
19	peerClockAddresses	{2 9 2 20 7 27}		m		m	
20	synchronizationSourceAddress	{2 9 2 20 7 33}		c8		m	
21	clockStratum	{2 9 2 20 7 10}		m		m	
22	clockAdjustmentInterval	{2 9 2 20 7 0}		m		m	

Table F.4 (concluded) – localClock Attribute support

Replace			Add		Remove		Set to default		Additional information
Index	Status	Support	Status	Support	Status	Support	Status	Support	
1	–		–		–		–		
2	x		–		–		x		
3	x		–		–		x		
4	c7		c7		c7		c7		
5	x		–		–		x		
6	x		–		–		x		
7	c8		–		–		c8		
8	c8		–		–		c8		
9	c10		–		–		c10		
10	c10		–		–		c10		
11	c10		–		–		c10		
12	c10		–		–		c10		
13	c11		–		–		c12		
14	c11		–		–		c12		
15	c8		–		–		c8		
16	c8		–		–		c8		
17	c8		–		–		c8		
18	c8		–		–		c8		
19	m		m		m		c8		
20	c8		–		–		c8		
21	c8		–		–		c8		
22	m		–				c8		

c3: if F.3/1a then o else –
 c4: if F.3/1a then m else –
 c5: if F.3/2a then o else –
 c6: if F.3/2a then m else –
 c7: if F.3/2a then x else –
 c8: if F.1/1b then x else –
 c9: if F.3/5a then m else –
 c10: if F.3/5a and F.1/1b then x else –
 c11: if F.3/6a then m else –
 c12: if F.3/6a and F.1/1b then x else –

F.2.4 Action

See Table F.5

Table F.5 – localClock Action support

Index	Action type template label	Value of object identifier for action type	Constraints and values	Status	Support	Additional information
1	clockReset	{2 9 2 20 9 1}		m		

Table F.5 (concluded) – localClock Action support

Index	Subindex	Action field name label	Constraints and values	Status	Support	Additional information
1	1.1	ClockResetInfo	Information Syntax ClockValue	m		

F.2.5 Notification

See Table F.6

Table F.6 – localClock Notification support

Index	Notification type template label	Value of object identifier for notification type	Constraints and values	Status	Support		Additional information
					Confirmed	Non-confirmed	
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": stateChange	{2 9 3 2 10 14}		m			

Table F.6 (concluded) – localClock Notification support

Index	Subindex	Notification field name label	Value of object identifier of attribute type associated with field	Constraints and values	Status	Support	Additional information
1	1.1	StateChangeInfo		Information Syntax SEQUENCE	m		
	1.1.1	sourceIndicator	{2 9 3 2 7 26}	ENUMERATED	o		
	1.1.2	attributeIdentifierList	{2 9 3 2 7 8}	SET OF AttributeId	o		
	1.1.3	stateChangeDefinition	{2 9 3 2 7 28}	SET OF SEQUENCE	m		
	1.1.3.1	attributeID	–	AttributeId	m		
	1.1.3.2	oldAttributeValue	–	ANY DEFINED BY attributeID	o		
	1.1.3.3	newAttributeValue	–	ANY DEFINED BY attributeID	m		
	1.1.4	notificationIdentifier	{2 9 3 2 7 16}	INTEGER	o		
	1.1.5	correlatedNotifications	{2 9 3 2 7 12}	SET OF SEQUENCE	o		
	1.1.5.1	correlatedNotifications	{2 9 3 2 7 12}	SET OF INTEGER	c:m		
	1.1.5.2	sourceObjectInst	–	ObjectInstance	c:o		
	1.1.6	additionalText	{2 9 3 2 7 7}	GraphicString	o		
	1.1.7	additionalInformation	{2 9 3 2 7 6}	SET OF SEQUENCE	o		
	1.1.7.1	identifier	–	OBJECT IDENTIFIER	c:m		
	1.1.7.2	significance	–	BOOLEAN	c:o		
	1.1.7.3	information	–	ANY DEFINED BY identifier	c:m		

F.3 referenceClock**F.3.1 Statement of conformance to the managed object class**

See Table F.7.

Table F.7 – referenceClock Managed object class support

Index	Managed object class template label	Value of object identifier for class	Support of all mandatory features? (Y/N)	Is the actual class the same as the managed object class to which conformance is claimed? (Y/N)
1	referenceClock	{2 9 2 20 3 2}		

If the answer to the actual class question in Table F.7 is No, the supplier of the implementation shall fill in the actual class support Table F.8.

Table F.8 – referenceClock Actual class support

Index	Managed object class template for actual class	Value of object identifier for managed object class definition of actual class	Additional information

F.3.2 Packages

The supplier of the implementation shall state whether or not the packages specified by this managed object of this class are supported, in Table F.9.

Table F.9 – referenceClock Package support

Index	Package template label	Value of object identifier for package	Constraints and values	Status	Support	Additional information
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphicPackage	{2 9 3 2 4 17}	"if an object supports allomorphism"	c13		
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packagesPackage	{2 9 3 2 4 16}	"any registered package, other than this package, has been instantiated"	c14		
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": topPackage	–	Mandatory	m		
4	clockSourcePkg	–	Mandatory	m		
5	clockSourceDetailPkg	{2 9 2 20 4 0}	"if an instance supports it"	o		
6	leapSecondPkg	{2 9 2 20 4 1}	"if an instance supports it"	o		
7	referenceClockPkg	–	Mandatory	m		

c13: if F.7/1b then – else m
 c14: if F.9/1a then m else –

F.3.3 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all of the packages instantiated in a managed object of this class are supported, in the Support and Additional information columns of Table F.10. The supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table F.10 – referenceClock Attribute support

Index	Attribute template label	Value of object identifier for attribute	Constraints and values	Set by create		Get	
				Status	Support	Status	Support
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphs	{2 9 3 2 7 50}	SET OF ObjectClass	c15		c16	
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": nameBinding	{2 9 3 2 7 63}	OBJECT IDENTIFIER	o		m	
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": objectClass	{2 9 3 2 7 65}	ObjectClass	m		m	
4	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packages	{2 9 3 2 7 66}	SET OF OBJECT IDENTIFIER	c17		c18	
5	clockId	{2 9 2 20 7 6}		x		m	
6	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": operationalState	{2 9 3 2 7 35}	ENUMERATED	x		m	
7	clockStatus	{2 9 2 20 7 9}		c20		m	
8	clockValue	{2 9 2 20 7 11}		c20		m	
9	clockPrecision	{2 9 2 20 7 8}		c22		c21	
10	clockDrift	{2 9 2 20 7 1}		c22		c21	
11	clockMaximumError	{2 9 2 20 7 7}		c22		c21	
12	clockEstimatedError	{2 9 2 20 7 2}		c22		c21	
13	leapSecondIndication	{2 9 2 20 7 15}		c23		c23	
14	leapSecondCount	{2 9 2 20 7 14}		c23		c23	
15	clockEventCounter	{2 9 2 20 7 4}		c20		m	
16	clockEventCode	{2 9 2 20 7 3}		c20		m	
17	clockEventTime	{2 9 2 20 7 5}		c20		m	
18	referenceClockType	{2 9 2 20 7 29}		c20		m	

Table F.10 (concluded) – referenceClock Attribute support

Replace			Add		Remove		Set to default		Additional information
Index	Status	Support	Status	Support	Status	Support	Status	Support	
1	–	–	–	–	–	–	–	–	
2	x	–	–	–	–	–	x	–	
3	x	–	–	–	–	–	x	–	
4	c19	–	c19	–	c19	–	c19	–	
5	x	–	–	–	–	–	x	–	
6	x	–	–	–	–	–	x	–	
7	c20	–	–	–	–	–	c20	–	
8	c20	–	–	–	–	–	c20	–	
9	c22	–	–	–	–	–	c22	–	
10	c22	–	–	–	–	–	c22	–	
11	c22	–	–	–	–	–	c22	–	
12	c22	–	–	–	–	–	c22	–	
13	c23	–	–	–	–	–	c24	–	
14	c23	–	–	–	–	–	c24	–	
15	c20	–	–	–	–	–	c20	–	
16	c20	–	–	–	–	–	c20	–	
17	c20	–	–	–	–	–	c20	–	
18	c20	–	–	–	–	–	c20	–	
c15: if F.9/1a then o else – c16: if F.9/1a then m else – c17: if F.9/2a then o else – c18: if F.9/2a then m else – c19: if F.9/2a then x else – c20: if F.7/1b then x else – c21: if F.9/5a then m else – c22: if F.9/5a and F.7/1b then x else – c23: if F.9/6a then m else – c24: if F.9/6a and F.7/1b then x else –									

F.3.4 Actions

See Table F.11.

Table F.11 – referenceClock Action support

Index	Action type template label	Value of object identifier for action type	Constraints and values	Status	Support	Additional information
1	clockReset	{2 9 2 20 9 1}	–	m	–	

Table F.11 (concluded) – referenceClock Action support

Index	Subindex	Action field name label	Constraints and values	Status	Support	Additional information
1	1.1	ClockResetInfo	Information Syntax ClockValue	m		

F.3.5 Notification

See Table F.12.

Table F.12 – referenceClock Notification support

Index	Notification type template label	Value of object identifier for notification type	Constraints and values	Status	Support		Additional information
					Confirmed	Non-confirmed	
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": stateChange	{2 9 3 2 10 14}		m			

Table F.12 (concluded) – referenceClock Notification support

Index	Subindex	Notification field name label	Value of object identifier of attribute type associated with field	Constraints and values	Status	Support	Additional information
1	1.1	StateChangeInfo		Information Syntax SEQUENCE	m		
	1.1.1	sourceIndicator	{2 9 3 2 7 26}	ENUMERATED	o		
	1.1.2	attributeIdentifierList	{2 9 3 2 7 8}	SET OF AttributeId	o		
	1.1.3	stateChangeDefinition	{2 9 3 2 7 28}	SET OF SEQUENCE	m		
	1.1.3.1	attributeID	–	AttributeId	m		
	1.1.3.2	oldAttributeValue	–	ANY DEFINED BY attributeID	o		
	1.1.3.3	newAttributeValue	–	ANY DEFINED BY attributeID	m		
	1.1.4	notificationIdentifier	{2 9 3 2 7 16}	INTEGER	o		
	1.1.5	correlatedNotifications	{2 9 3 2 7 12}	SET OF SEQUENCE	o		
	1.1.5.1	correlatedNotifications	{2 9 3 2 7 12}	SET OF INTEGER	c:m		
	1.1.5.2	sourceObjectInst	–	ObjectInstance	c:o		
	1.1.6	additionalText	{2 9 3 2 7 7}	GraphicString	o		
	1.1.7	additionalInformation	{2 9 3 2 7 6}	SET OF SEQUENCE	o		
	1.1.7.1	identifier	–	OBJECT IDENTIFIER	c:m		
	1.1.7.2	significance	–	BOOLEAN	c:o		
	1.1.7.3	information	–	ANY DEFINED BY identifier	c:m		

F.4 synchronizationProtocol**F.4.1 Statement of conformance to the managed object class**

See Table F.13.

Table F.13 – synchronizationProtocol Managed object class support

Index	Managed object class template label	Value of object identifier for class	Support of all mandatory features? (Y/N)	Is the actual class the same as the managed object class to which conformance is claimed? (Y/N)
1	ntpProtocol	{2 9 2 20 3 3}		

If the answer to the actual class question in Table F.13 is No, the supplier of the implementation shall fill in the actual class support Table F.14.

Table F.14 – synchronizationProtocol Actual class support

Index	Managed object class template for actual class	Value of object identifier for managed object class definition of actual class	Additional information

F.4.2 Packages

The supplier of the implementation shall state whether or not the packages specified by this managed object of this class are supported, in Table F.15.

Table F.15 – synchronizationProtocol Package support

Index	Package template label	Value of object identifier for package	Constraints and values	Status	Support	Additional information
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992"; allomorphicPackage	{2 9 3 2 4 17}	"if an object supports allomorphism"	c24		
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992"; packagesPackage	{2 9 3 2 4 16}	"any registered package, other than this package, has been instantiated"	c26		
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992"; topPackage	–	Mandatory	m		
4	synchronizationProtocolPkg	–	Mandatory	m		
c25: if F.13/1b then – else m						
c26: if F.15/1a then m else –						

F.4.3 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all of the packages instantiated in a managed object of this class are supported, in the Support and Additional information columns of Table F.16. The supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table F.16 – synchronizationProtocol Attribute support

Index	Attribute template label	Value of object identifier for attribute	Constraints and values	Set by create		Get	
				Status	Support	Status	Support
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphs	{2 9 3 2 7 50}	SET OF ObjectClass	c27		c28	
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": nameBinding	{2 9 3 2 7 63}	OBJECT IDENTIFIER	o		m	
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": objectClass	{2 9 3 2 7 65}	ObjectClass	m		m	
4	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packages	{2 9 3 2 7 66}	SET OF OBJECT IDENTIFIER	c29		c30	
5	synchronizationProtocolID	{2 9 2 20 7 31}		m		m	
6	synchronizedClock	{2 9 2 20 7 34}		c32		m	
7	synchronizingClocks	{2 9 2 20 7 35}		c32		m	
8	synchronizationProtocolType	{2 9 2 20 7 32}		c32		m	

Table F.16 (concluded) – synchronizationProtocol Attribute support

Replace			Add		Remove		Set to default		Additional information
Index	Status	Support	Status	Support	Status	Support	Status	Support	
1	–		–		–		–		
2	x		–		–		x		
3	x		–		–		x		
4	c31		c31		c31		c31		
5			–		–				
6	c32		–		–		c32		
7	c32		c32		c32		c32		
8	c32		–		–		c32		

c27: if F.15/1a then o else –
 c28: if F.15/1a then m else –
 c29: if F.15/2a then o else –
 c30: if F.15/2a then m else –
 c31: if F.15/2a then x else –
 c32: if F.13/1b then x else –

F.4.4 Actions

See Table F.17.

Table F.17 – synchronizationProtocol Action support

Index	Action type template label	Value of object identifier for action type	Constraints and values	Status	Support	Additional information
1	clockReset	{2 9 2 20 9 1}		m		
2	leapSecond	{2 9 2 20 9 2}		m		
3	protocolReset	{2 9 2 20 9 3}		m		

Table F.17 (concluded) – synchronizationProtocol Action support

Index	Subindex	Action field name label	Constraints and values	Status	Support	Additional information
1	1.1	ClockResetInfo	Information Syntax ClockValue	m		
2	2.1	LeapSecondInfo	Information Syntax SEQUENCE	m		
	2.2	LeapIndication	ENUMERATED	m		
		DayOfLeap	GeneralizedTime	m		
3	3.1	ProtocolResetInfo	Information Syntax SET OF Attribute	m		

F.5 ntpProtocol

F.5.1 Statement of conformance to the managed object class

See Table F.18.

Table F.18 – ntpProtocol Managed object class support

Index	Managed object class template label	Value of object identifier for class	Support of all mandatory features? (Y/N)	Is the actual class the same as the managed object class to which conformance is claimed? (Y/N)
1	ntpProtocol	{2 9 2 20 3 4}		

If the answer to the actual class question in Table F.18 is No, the supplier of the implementation shall fill in the actual class support Table F.19.

Table F.19 – ntpProtocol Actual class support

Index	Managed object class template for actual class	Value of object identifier for managed object class definition of actual class	Additional information

F.5.2 Packages

The supplier of the implementation shall state whether or not the packages specified by this managed object of this class are supported, in Table F.20.

Table F.20 – ntpProtocol Package support

Index	Package template label	Value of object identifier for package	Constraints and values	Status	Support	Additional information
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphicPackage	{2 9 3 2 4 17}	"if an object supports allomorphism"	c33		
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packagesPackage	{2 9 3 2 4 16}	"any registered package, other than this package, has been instantiated"	c34		
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": topPackage	–	Mandatory	m		
4	synchronizationProtocolPkg	–	Mandatory	m		
5	ntpProtocolPkg	–	Mandatory	m		

c33: if F.18/1b then – else m
 c34: if F.20/1a then m else –

F.5.3 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all of the packages instantiated in a managed object of this class are supported, in the Support and Additional information columns of Table F.21. The supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table F.21 – ntpProtocol Attribute support

Index	Attribute template label	Value of object identifier for attribute	Constraints and values	Set by create		Get	
				Status	Support	Status	Support
1	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": allomorphs	{2 9 3 2 7 50}	SET OF ObjectClass	c35		c36	
2	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": nameBinding	{2 9 3 2 7 63}	OBJECT IDENTIFIER	o		m	
3	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": objectClass	{2 9 3 2 7 65}	ObjectClass	m		m	
4	"CCITT Rec. X.721 (1992) ISO/IEC 10165-2:1992": packages	{2 9 3 2 7 66}	SET OF OBJECT IDENTIFIER	c37		c38	
5	synchronizationProtocolID	{2 9 2 20 7 31}		m		m	
6	synchronizedClock	{2 9 2 20 7 34}		c40		m	
7	synchronizingClocks	{2 9 2 20 7 35}		c40		m	
8	maximumStratum	{2 9 2 20 7 23}		c40		m	
9	maximumClockAge	{2 9 2 20 7 17}		c40		m	
10	maximumSkew	{2 9 2 20 7 22}		c40		m	
11	maximumDistance	{2 9 2 20 7 19}		c40		m	
12	minimumPollInterval	{2 9 2 20 7 25}		c40		m	
13	maximumPollInterval	{2 9 2 20 7 20}		c40		m	
14	minimumSelectClock	{2 9 2 20 7 26}		c40		m	
15	maximumSelectClock	{2 9 2 20 7 21}		c40		m	
16	minimumDispersion	{2 9 2 20 7 24}		c40		m	
17	maximumDispersion	{2 9 2 20 7 18}		c40		m	
18	reachabilityRegisterSize	{2 9 2 20 7 28}		c40		m	
19	filterSize	{2 9 2 20 7 12}		c40		m	
20	filterWeight	{2 9 2 20 7 13}		c40		m	
21	selectWeight	{2 9 2 20 7 30}		c40		m	
22	synchronizationProtocolType	{2 9 2 20 7 32}		c40		m	

Table F.21 (concluded) – ntpProtocol Attribute support

Replace			Add		Remove		Set to default		Additional information
Index	Status	Support	Status	Support	Status	Support	Status	Support	
1	–		–		–		–		
2	x		–		–		x		
3	x		–		–		x		
4	c39		c39		c39		c39		
5	x		–		–		x		
6	c40		–		–		c40		
7	c40		c40		c40		c40		
8	c40		–		–		c40		
9	c40		–		–		c40		
10	c40		–		–		c40		
11	c40		–		–		c40		
12	c40		–		–		c40		
13	c40		–		–		c40		
14	c40		–		–		c40		
15	c40		–		–		c40		
16	c40		–		–		c40		
17	c40		–		–		c40		
18	c40		–		–		c40		
19	c40		–		–		c40		
20	c40		–		–		c40		
21	c40		–				c40		
22	c40		–		–		c40		
c35: if F.20/1a then o else – c36: if F.20/1a then c40 else – c37: if F.20/2a then o else – c38: if F.20/2a then c40 else – c39: if F.20/2a then x else – c40: if F.18/1b then x else –									

F.5.4 Actions

See Table F.22

Table F.22 – ntpProtocol Action support

Index	Action type template label	Value of object identifier for action type	Constraints and values	Status	Support	Additional information
1	clockReset	{2 9 2 20 9 1}		m		
2	leapSecond	{2 9 2 20 9 2}		m		
3	protocolReset	{2 9 2 20 9 3}		m		

Table F.22 (concluded) – ntpProtocol Action support

Index	Subindex	Action field name label	Constraints and values	Status	Support	Additional information
1	1.1	ClockResetInfo	Information Syntax ClockValue	m		
2	2.1	LeapSecondInfo	Information Syntax SEQUENCE	m		
	2.2	LeapIndication	ENUMERATED	m		
		DayOfLeap	GeneralizedTime	m		
3	3.1	ProtocolResetInfo	Information Syntax SET OF Attribute	m		

Annex G⁷⁾**MRCS proforma for name binding**

(This annex forms an integral part of this Recommendation | International Standard)

G.1 Introduction

The purpose of this MRCS proforma for name bindings is to provide a mechanism for a supplier which claims conformance to a name binding to provide conformance information in a standard form.

G.2 Instructions for completing the MRCS proforma for name binding to produce a MRCS²⁸⁾

The supplier of the implementation shall state which items are supported in the tables below and if necessary provide additional information.

G.3 Statement of conformance to the name binding

See Table G.1.

⁷⁾ Copyright release for MRCS proforma

Users of this Recommendation | International Standard may freely reproduce the MRCS proforma in this annex so that it can be used for its intended purpose, and may further publish the completed MRCS.

⁸⁾ Instructions for completing the MRCS proforma are specified in ITU-T Rec.X.724 | ISO/IEC 10165-6.