
RAPPORT
TECHNIQUE

CEI
IEC

TECHNICAL
REPORT

62056-51
Première édition

First edition
1998-11

Comptage de l'électricité – Echange de données
pour la lecture des compteurs, le contrôle
des tarifs et de la charge –

Partie 51:
Protocoles de couche application

Electricity metering – Data exchange for
meter reading, tariff and load control –

Part 51:
Application layer protocols

Numéro de référence
Reference number

CEI/IEC 62056-51:1998

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

Numéros des publications

Depuis le 1er janvier 1997, les publications de la CEI
sont numérotées à partir de 60000.

Publications consolidées

Les versions consolidées de certaines publications de
la CEI incorporant les amendements sont disponibles.
Par exemple, les numéros d’édition 1.0, 1.1 et 1.2
indiquent respectivement la publication de base, la
publication de base incorporant l’amendement 1, et la
publication de base incorporant les amendements 1
et 2.

Validité de la présente publication

Le contenu technique des publications de la CEI est
constamment revu par la CEI afin qu'il reflète l'état
actuel de la technique.

Des renseignements relatifs à la date de
reconfirmation de la publication sont disponibles dans
le Catalogue de la CEI.

Les renseignements relatifs à des questions à l’étude et
des travaux en cours entrepris par le comité technique
qui a établi cette publication, ainsi que la liste des
publications établies, se trouvent dans les documents ci-
dessous:

• «Site web» de la CEI*

• Catalogue des publications de la CEI
Publié annuellement et mis à jour régulièrement
(Catalogue en ligne)*

• Bulletin de la CEI
Disponible à la fois au «site web» de la CEI* et
comme périodique imprimé

Terminologie, symboles graphiques
et littéraux

En ce qui concerne la terminologie générale, le lecteur
se reportera à la CEI 60050: Vocabulaire Electro-
technique International (VEI).

Pour les symboles graphiques, les symboles littéraux
et les signes d'usage général approuvés par la CEI, le
lecteur consultera la CEI 60027: Symboles littéraux à
utiliser en électrotechnique, la CEI 60417: Symboles
graphiques utilisables sur le matériel. Index, relevé et
compilation des feuilles individuelles, et la CEI 60617:
Symboles graphiques pour schémas.

* Voir adresse «site web» sur la page de titre.

Numbering

As from 1 January 1997 all IEC publications are issued
with a designation in the 60000 series.

Consolidated publications

Consolidated versions of some IEC publications
including amendments are available. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to
the base publication, the base publication
incorporating amendment 1 and the base publication
incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under
constant review by the IEC, thus ensuring that the
content reflects current technology.

Information relating to the date of the reconfirmation of
the publication is available in the IEC catalogue.

Information on the subjects under consideration and
work in progress undertaken by the technical
committee which has prepared this publication, as well
as the list of publications issued, is to be found at the
following IEC sources:

• IEC web site*

• Catalogue of IEC publications
Published yearly with regular updates
(On-line catalogue)*

• IEC Bulletin
Available both at the IEC web site* and as a
printed periodical

Terminology, graphical and letter
symbols

For general terminology, readers are referred to
IEC 60050: International Electrotechnical Vocabulary
(IEV).

For graphical symbols, and letter symbols and signs
approved by the IEC for general use, readers are
referred to publications IEC 60027: Letter symbols to
be used in electrical technology, IEC 60417: Graphical
symbols for use on equipment. Index, survey and
compilation of the single sheets and IEC 60617:
Graphical symbols for diagrams.

* See web site address on title page.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

RAPPORT
TECHNIQUE – TYPE 2

CEI
IEC

TECHNICAL
REPORT – TYPE 2

62056-51
Première édition

First edition
1998-11

Comptage de l'électricité – Echange de données
pour la lecture des compteurs, le contrôle
des tarifs et de la charge –

Partie 51:
Protocoles de couche application

Electricity metering – Data exchange for
meter reading, tariff and load control –

Part 51:
Application layer protocols

 Commission Electrotechnique Internationale
 International Electrotechnical Commission

Pour prix, voir catalogue en vigueur
For price, see current catalogue

 IEC 1998 Droits de reproduction réservés  Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni
utilisée sous quelque forme que ce soit et par aucun
procédé, électronique ou mécanique, y compris la photo-
copie et les microfilms, sans l'accord écrit de l'éditeur.

No part of this publication may be reproduced or utilized in
any form or by any means, electronic or mechanical,
including photocopying and microfilm, without permission in
writing from the publisher.

International Electrotechnical Commission 3, rue de Varembé Geneva, Switzerland
Telefax: +41 22 919 0300 e-mail: inmail@iec.ch IEC web site http: //www.iec.ch

CODE PRIX
PRICE CODE V

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 2 – 62056-51 © CEI:1998

SOMMAIRE

Pages

AVANT-PROPOS ... 4

Articles

1 Généralités .. 8

1.1 Domaine d'application ... 8

1.2 Références normatives ... 8

2 Présentation générale .. 8

2.1 Vocabulaire de base.. 8

2.2 Sous-couches et protocoles .. 10

2.3 Langage de spécification... 10

3 Sous-couche Transport .. 10

3.1 Protocole Transport+... 10

3.2 Généralités ... 10

3.3 Classes de protocole de transport ... 12

3.4 Services et primitives de service de transport .. 12

3.5 Description des unités de données du protocole transport (TPDU) 14

3.6 Paramètres de transport.. 16

3.7 Transitions d'état .. 16

3.8 Répertoire et traitement des erreurs .. 18

4 Sous-couche Application .. 20

4.1 Protocole Application+... 20

4.2 Généralités ... 20

4.3 Sécurité des échanges .. 20

4.4 Authentification du Client et du Serveur ... 22

4.5 Confidentialité des données échangées... 24

4.6 Contexte d'application ... 24

4.7 Contexte DLMS... 26

4.8 Services et primitives de service d'application ... 26

4.9 Description des unités de données du protocole application (APDU) 26

4.10 Gestion des échanges... 30

4.11 Paramètre d'application... 30

4.12 Transitions d'état .. 30

4.13 Répertoire et traitement des erreurs .. 50

Annexe A (normative) Langage de spécification .. 52

Annexe B (normative) Liste des erreurs fatales ... 58

Annexe C (normative) Authentification et nombres aléatoires .. 60

Annexe D (normative) Algorithme de brouillage pour la confidentialité des données 64

Annexe E (normative) Identifiants et mode de brouillage ... 68

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 3 –

CONTENTS

Page

FOREWORD 5

Clause

1 General .. 9

1.1 Scope ... 9

1.2 Normative references .. 9

2 General description .. 9

2.1 Basic vocabulary ... 9

2.2 Sub-layers and protocols ... 11

2.3 Specification language .. 11

3 Transport sub-layer .. 11

3.1 Transport+ protocol ... 11

3.2 General information... 11

3.3 Transport protocol classes .. 13

3.4 Transport services and service primitives .. 13

3.5 Description of transport protocol data units (TPDUs) ... 15

3.6 Transport parameters.. 17

3.7 State transitions .. 17

3.8 List and processing of errors ... 19

4 Application sub-layer .. 21

4.1 Application+ protocol ... 21

4.2 General information... 21

4.3 Security of exchanges ... 21

4.4 Authentication of Client and Server.. 23

4.5 Confidentiality of exchanged data .. 25

4.6 Application context .. 25

4.7 DLMS context ... 27

4.8 Application services and service primitives .. 27

4.9 Description of application protocol data units (APDUs)... 27

4.10 Management of exchanges.. 31

4.11 Application parameter ... 31

4.12 State transitions .. 31

4.13 List and processing of errors ... 51

Annex A (normative) Specification language ... 53

Annex B (normative) List of fatal errors ... 59

Annex C (normative) Authentication and random numbers .. 61

Annex D (normative) Masking algorithm for data confidentiality ... 65

Annex E (normative) Identifiers and masking mode ... 69

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 4 – 62056-51 © CEI:1998

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

–––––––––––––

COMPTAGE DE L'ÉLECTRICITÉ – ÉCHANGE DE DONNÉES
POUR LA LECTURE DES COMPTEURS, LE CONTRÔLE DES TARIFS

ET DE LA CHARGE –

Partie 51: Protocoles de couche application

AVANT-PROPOS

1) La CEI (Commission Electrotechnique Internationale) est une organisation mondiale de normalisation composée
de l'ensemble des comités électrotechniques nationaux (Comités nationaux de la CEI). La CEI a pour objet de
favoriser la coopération internationale pour toutes les questions de normalisation dans les domaines de
l'électricité et de l'électronique. A cet effet, la CEI, entre autres activités, publie des Normes internationales.
Leur élaboration est confiée à des comités d'études, aux travaux desquels tout Comité national intéressé par le
sujet traité peut participer. Les organisations internationales, gouvernementales et non gouvernementales, en
liaison avec la CEI, participent également aux travaux. La CEI collabore étroitement avec l'Organisation
Internationale de Normalisation (ISO), selon des conditions fixées par accord entre les deux organisations.

2) Les décisions ou accords officiels de la CEI concernant les questions techniques représentent, dans la mesure
du possible un accord international sur les sujets étudiés, étant donné que les Comités nationaux intéressés
sont représentés dans chaque comité d’études.

3) Les documents produits se présentent sous la forme de recommandations internationales. Ils sont publiés
comme normes, rapports techniques ou guides et agréés comme tels par les Comités nationaux.

4) Dans le but d'encourager l'unification internationale, les Comités nationaux de la CEI s'engagent à appliquer de
façon transparente, dans toute la mesure possible, les Normes internationales de la CEI dans leurs normes
nationales et régionales. Toute divergence entre la norme de la CEI et la norme nationale ou régionale
correspondante doit être indiquée en termes clairs dans cette dernière.

5) La CEI n’a fixé aucune procédure concernant le marquage comme indication d’approbation et sa responsabilité
n’est pas engagée quand un matériel est déclaré conforme à l’une de ses normes.

6) L’attention est attirée sur le fait que certains des éléments de la présente Norme internationale peuvent faire
l’objet de droits de propriété intellectuelle ou de droits analogues. La CEI ne saurait être tenue pour
responsable de ne pas avoir identifié de tels droits de propriété et de ne pas avoir signalé leur existence.

La tâche principale des comités d'études de la CEI est d'élaborer des Normes internationales.
Exceptionnellement, un comité d'études peut proposer la publication d'un rapport technique de
l'un des types suivants:

• type 1, lorsque, en dépit de maints efforts, l'accord requis ne peut être réalisé en faveur de
la publication d'une Norme internationale;

• type 2, lorsque le sujet en question est encore en cours de développement technique ou
lorsque, pour une raison quelconque, la possibilité d'un accord pour la publication d'une
Norme internationale peut être envisagée pour l'avenir mais pas dans l'immédiat;

• type 3, lorsqu'un comité d'études a réuni des données de nature différente de celles qui
sont normalement publiées comme Normes internationales, cela pouvant comprendre, par
exemple, des informations sur l'état de la technique.

Les rapports techniques de types 1 et 2 font l'objet d'un nouvel examen trois ans au plus tard
après leur publication afin de décider éventuellement de leur transformation en Normes
internationales. Les rapports techniques de type 3 ne doivent pas nécessairement être révisés
avant que les données qu'ils contiennent ne soient plus jugées valables ou utiles.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 5 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

––––––––––––––

ELECTRICITY METERING – DATA EXCHANGE FOR METER READING,
TARIFF AND LOAD CONTROL –

Part 51: Application layer protocols

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International Organization
for Standardization (ISO) in accordance with conditions determined by agreement between the two
organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical reports or guides and they are accepted by the National Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. In
exceptional circumstances, a technical committee may propose the publication of a technical
report of one of the following types:

• type 1, when the required support cannot be obtained for the publication of an International
Standard, despite repeated efforts;

• type 2, when the subject is still under technical development or where for any other reason
there is the future but not immediate possibility of an agreement on an International
Standard;

• type 3, when a technical committee has collected data of a different kind from that which is
normally published as an International Standard, for example “state of the art”.

Technical reports of types 1 and 2 are subject to review within three years of publication to
decide whether they can be transformed into International Standards. Technical reports of
type 3 do not necessarily have to be reviewed until the data they provide are considered to be
no longer valid or useful.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 6 – 62056-51 © CEI:1998

La CEI 62056-51, rapport technique de type 2, a été établie par le comité d’études 13 de la
CEI: Equipements de mesure de l’énergie électrique et de commande des charges.

Le texte de ce rapport technique est issu des documents suivants:

Projet de comité Rapport de vote

13/1131/CDV 13/1167/RVC

Le rapport de vote indiqué dans le tableau ci-dessus donne toute information sur le vote ayant
abouti à l'approbation de ce rapport technique.

Le présent document est publié dans la série des rapports techniques de type 2
(conformément au paragraphe G.3.2.2 de la partie 1 des Directives ISO/CEI) comme «norme
prospective d’application provisoire» dans le domaine de l’échange de données pour la lecture
des compteurs, le contrôle des tarifs et de la charge car il est urgent d’avoir des indications sur
la meilleure façon d’utiliser les normes dans ce domaine afin de répondre à un besoin
déterminé.

Ce document ne doit pas être considéré comme une «Norme internationale». Il est proposé
pour une mise en œuvre provisoire, dans le but de recueillir des informations et d’acquérir de
l’expérience quant à son application pratique. Il est de règle d’envoyer les observations
éventuelles relatives au contenu de ce document au Bureau Central de la CEI.

Il sera procédé à un nouvel examen de ce rapport technique de type 2 trois ans au plus tard
après sa publication, avec la faculté d’en prolonger la validité pendant trois autres années, de
le transformer en Norme internationale ou de l’annuler.

Les annexes A, B, C, D et E font partie intégrante de ce rapport technique.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 7 –

IEC 62056-51, which is a technical report of type 2, has been prepared by IEC technical
committee 13: Equipment for electrical energy measurement and load control.

The text of this technical report is based on the following documents:

Committee draft Report on voting

13/1131/CDV 13/1167/RVC

Full information on the voting for the approval of this technical report can be found in the report
on voting indicated in the above table.

This document is issued in the type 2 technical report series of publications (according to
G.3.2.2 of part 1 of the IEC/ISO Directives) as a “prospective standard for provisional
application” in the field of data exchange for meter reading, tariff and load control, because
there is an urgent requirement for guidance on how standards in this field should be used to
meet an identified need.

This document is not to be regarded as an “International Standard”. It is proposed for
provisional application so that information and experience of its use in practice may be
gathered. Comments on the content of this document should be sent to IEC Central Office.

A review of this type 2 technical report will be carried out not later than three years after its
publication, with the options of either extension for a further three years or conversion to an
International Standard or withdrawal.

Annexes A, B, C, D and E form an integral part of this technical report.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 8 – 62056-51 © CEI:1998

COMPTAGE DE L'ÉLECTRICITÉ – ÉCHANGE DE DONNÉES
POUR LA LECTURE DES COMPTEURS, LE CONTRÔLE DES TARIFS

ET DE LA CHARGE –

Partie 51: Protocoles de couche application

1 Généralités

1.1 Domaine d'application

Le présent rapport technique décrit une architecture de couche application utilisée pour
communiquer avec les équipements de comptage en général, quels que soient le support
physique et les protocoles de couches basses qui y sont associés dans un modèle réduit à
trois couches.

Le présent rapport technique spécifie les protocoles à mettre en oeuvre pour la couche
application à l’exception du modèle DLMS (Distribution Line Message Specification), qui est
couvert par la CEI 61334-4-41.

1.2 Références normatives

Les documents normatifs suivants contiennent des dispositions qui, par suite de la référence
qui y est faite, constituent des dispositions valables pour le présent rapport technique. Au
moment de la publication, les éditions indiquées étaient en vigueur. Tout document normatif
est sujet à révision et les parties prenantes aux accords fondés sur le présent rapport
technique sont invitées à rechercher la possibilités d'appliquer les éditions les plus récentes
des documents normatifs indiqués ci-après. Les membres de la CEI et de l'ISO possèdent le
registre des Normes internationales en vigueur.

CEI 61334-4-41:1996, Automatisation de la distribution à l'aide de systèmes de communication
à courants porteurs – Partie 4: Protocoles de communication de données – Section 41:
Protocoles d’application – Spécification des messages de ligne de distribution

ISO/CEI 8824:1990, Technologies de l'information – Interconnexion de systèmes ouverts.
Spécification de la notation de syntaxe abstraite numéro 1 (ASN.1) (Publiée actuellement en
anglais seulement et édition retenue à titre provisoire)

2 Présentation générale

2.1 Vocabulaire de base

Toute communication fait intervenir deux équipements représentés par les expressions
système Appelant et système Appelé. L'Appelant est le système qui décide d'initialiser une
communication avec un équipement distant dit Appelé; ces dénominations restent valables
pendant toute la durée de la communication.

Une communication est décomposée en un certain nombre de transactions. Chaque
transaction se traduit par une émission de l'Emetteur vers le Récepteur. Au gré de
l'enchaînement des transactions, les systèmes Appelant et Appelé jouent tour à tour le rôle
d'Emetteur et de Récepteur.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 9 –

ELECTRICITY METERING – DATA EXCHANGE FOR METER READING,
TARIFF AND LOAD CONTROL –

Part 51: Application layer protocols

1 General

1.1 Scope

This technical report describes an architectured application layer used for communication with
metering equipments in general, whatever the associated physical medium and lower layer
protocols in a collapsed three-layer model are.

This technical report specifies the protocols to be applied for the application layer except
the DLMS (Distribution Line Message Specification) model, which is already covered by
IEC 61334-4-41.

1.2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this technical report. At the time of publication, the editions indicated
were valid. All normative documents are subject to revision, and parties to agreements based
on this technical report are encouraged to investigate the possibility of applying the most recent
editions of the normative documents indicated below. Members of IEC and ISO maintain
registers of currently valid International Standards.

IEC 61334-4-41:1996, Distribution automation using distribution line carrier systems – Part 4:
Data communication protocols – Section 41: Application protocols – Distribution line message
specification (DLMS)

ISO/IEC 8824:1990, Information technology – Open Systems Interconnection – Specification of
Abstract Syntax Notation One (ASN.1)

2 General description

2.1 Basic vocabulary

All communications involve two sets of equipment represented by the terms Caller system and
Called system. The Caller is the system that decides to initiate a communication with a remote
system known as the Called party; these denominations remain valid throughout the duration of
the communication.

A communication is broken down into a certain number of transactions. Each transaction is
represented by a transmission from the Transmitter to the Receiver. During the sequence of
transactions, the Caller and Called systems take turns to act as Transmitter and Receiver.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 10 – 62056-51 © CEI:1998

Les termes Client et Serveur ont le même sens que dans le modèle DLMS (voir CEI 61334-4-41).
Le Serveur est le système qui se comporte comme un VDE (voir CEI 61334-4-41) pour toute
soumission de requête de service particulière. Le Client est le système qui utilise le Serveur
dans un but spécifique à l'aide d'une ou plusieurs soumissions de requête de service.

Le schéma basé sur un Client Appelant et un Serveur Appelé correspond certainement au cas
de figure le plus fréquent. Mais on peut aussi imaginer une communication basée sur le couple
Serveur Appelant et Client Appelé, en particulier pour signaler l'occurrence d'une alarme
urgente.

2.2 Sous-couches et protocoles

Le modèle de couche Application décrit dans le présent rapport technique adopte un
découpage en trois sous-couches: Transport, Application et DLMS. Chacune de ces sous-
couches fait l'objet d'un protocole dont le nom est indiqué au tableau 1.

Tableau 1 – Sous-couches et protocoles

Sous-couches Protocoles

DLMS DLMS+

Application Application+

Transport Transport+

Les sous-couches Transport et Application forment un ensemble homogène appelé LLAC
(Logical Link Access Control).

Le protocole DLMS+ de la sous-couche DLMS est décrit dans la CEI 61334-4-41.

2.3 Langage de spécification

Dans le présent rapport technique, le protocole de chaque sous-couche est décrit par des
transitions d'état représentées sous forme de tableaux. La syntaxe utilisée pour la constitution
de ces tableaux est définie par un langage de spécification présenté à l'annexe A.

En cas de divergence d'interprétation entre une partie du texte et un tableau de transitions
d'état, c'est toujours le tableau qui fait référence.

3 Sous-couche Transport

3.1 Protocole Transport+

Le protocole Transport+ de la sous-couche Transport est conçu pour supporter le multiplexage
des connexions de transport. Il est strictement identique pour l'Appelant et pour l'Appelé
(comportement totalement symétrique).

3.2 Généralités

La sous-couche Transport est la première à prendre en charge des connexions directes entre
les systèmes aux extrémités des liaisons. On peut parler de liaison de bout en bout pour toutes
les connexions établies à ce niveau ainsi que pour celles situées au-dessus. Cette notion de
bout en bout indique que les entités de transport offrent des services complètement
indépendants des réseaux physiques.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 11 –

The terms Client and Server have the same meanings as in the DLMS model (see IEC 61334-4-41).
The Server is the system that acts as a VDE (see IEC 61334-4-41) for the submission of all
special service requests. The Client is the system that uses the Server for a specific purpose
by means of one or more service requests.

The situation involving a Caller Client and a Called Server is undoubtedly the most frequent
case, but a communication based on a Caller Server and a Called Client is also possible, in
particular to report the occurrence of an urgent alarm.

2.2 Sub-layers and protocols

The Application layer model described in this technical report uses a breakdown into three sub-
layers: Transport, Application and DLMS. Each of these sub-layers is the subject of a protocol
whose name is given in the table 1.

Table 1 – Sub-layers and protocols

Sub-layers Protocols

DLMS DLMS+

Application Application+

Transport Transport+

The Transport and Application sub-layers set up a homogeneous package called LLAC (Logical
Link Access Control).

The DLMS+ protocol of the DLMS sub-layer is described in IEC 61334-4-41.

2.3 Specification language

In this technical report, the protocol of each sub-layer is described by state transitions
represented in the form of tables. The syntax used in making up these tables is defined by a
specification language described in annex A.

In the event of a difference in interpretation between part of the text and a state transition
table, the table is always taken as the reference.

3 Transport sub-layer

3.1 Transport+ protocol

The Transport+ protocol of the Transport sub-layer is designed to support the multiplexing of
transport connections. It is strictly identical for the Caller and for the Called party (completely
symmetrical behaviour).

3.2 General information

The Transport sub-layer is the first one to handle direct connections between the systems at
the ends of the links. All the connections set up at this level and those at higher levels can be
considered as end-to-end links. This end-to-end notion indicates that the transport entities offer
services which are completely independent of the physical networks.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 12 – 62056-51 © CEI:1998

Les propriétés les plus importantes de la sous-couche Transport sont le transport de bout en
bout (déjà mentionné), la transparence (toute configuration binaire doit être acceptée par le
protocole de transport pour être délivrée sans modification, quel que soit son format ou sa
taille) et la sélection d'une qualité de service. La notion de qualité de service n'est mentionnée
ici que pour mémoire, dans la mesure où le protocole Transport+ est orienté sans connexion.

La sous-couche Transport est chargée de prendre les messages provenant de la sous-couche
Application. Etant donné que ces messages ont une taille dictée par l'application, la sous-
couche Transport doit les segmenter en paquets (appelés TPDU: unités de données du
protocole de transport) et les transmettre à la sous-couche Transport en correspondance.
Réciproquement, elle doit recevoir les paquets provenant de la sous-couche Transport en
correspondance puis assembler ceux-ci afin de les restituer sous forme de messages
cohérents à la sous-couche Application.

Le protocole Transport+ doit pouvoir transmettre en parallèle des données dans les deux sens
Appelant-Appelé et Appelé-Appelant. En outre, la solution du multiplexage des connexions de
transport sur le même circuit virtuel assure que plusieurs associations d'application peuvent
coexister dans une même communication.

Quelle que soit leur origine, les TPDU sont émises en utilisant les services de la couche
Liaison. Bien entendu, cette dernière ignore tout du multiplexage mis en oeuvre au niveau
supérieur.

3.3 Classes de protocole de transport

L'ISO propose différents types de services de réseaux en fonction des erreurs résiduelles dans
les transmissions aux niveaux inférieurs. Deux sortes d'erreurs sont identifiées: les erreurs
signalées (par exemple déconnexion autoritaire avec indication d'erreur) et les erreurs non
signalées (erreurs de transmission non détectées et non corrigées). Sur cette base, trois types
de réseaux existent et sont indiqués au tableau 2.

Tableau 2 – Types de services de réseaux en fonction des erreurs résiduelles

Type Définition

A Taux acceptable d'erreurs résiduelles (signalées et non
signalées)

B Taux acceptable d'erreurs non signalées
Taux inacceptable d'erreurs signalées

C Taux inacceptable d'erreurs des deux types

Le protocole Transport+ s'inspire de la classe 2 de l’ISO qui suppose un réseau de type A, et
qui est caractérisée par des fonctions de segmentation et d'assemblage avec multiplexage,
mais sans reprise sur erreur ni contrôle de flux.

3.4 Services et primitives de service de transport

L'utilisateur du protocole Transport+ dispose des services et primitives de service donnés au
tableau 3.

Tableau 3 – Services et primitives de service de transport

Service Primitive

T_DATA T_DATA.req(STSAP, DTSAP, Pr, TSDU)
T_DATA.ind(STSAP, DTSAP, TSDU)

T_ABORT T_ABORT.req(Strong)
T_ABORT.ind(ErrorNb)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 13 –

The most important properties of the Transport sub-layer are end-to-end transport (mentioned
above), transparency (any binary configuration must be accepted by the transport protocol and
delivered without modification, whatever its format or size) and selection of a quality of service.
The notion of quality of service is mentioned here for information only, as the Transport+
protocol is oriented without connection.

The Transport sub-layer accepts the messages from the Application sub-layer. As the size of
these messages is dictated by the application, the Transport sub-layer must segment them into
packets (called TPDUs: transport protocol data units) and transmit them to the correspondent
Transport sub-layer. Reciprocally, it must receive the packets from the correspondent
Transport sub-layer and assemble them into coherent messages for the Application sub-layer.

The Transport+ protocol must be able to transmit data in parallel in both directions, Caller-
Called and Called-Caller. Moreover, the multiplexing of transport connections on the same
virtual circuit means that several application associations can coexist in a given communication.

Whatever their origin, the TPDUs are transmitted using the services of the Data Link layer. Of
course, this sub-layer is not aware of the multiplexing implemented at the higher level.

3.3 Transport protocol classes

The ISO proposes different types of network services depending on the residual errors in the
transmissions at the lower levels. Two sorts of error are identified: the reported errors (for
example forced disconnection with error indication) and the unreported errors (undetected and
uncorrected transmission errors). On this basis, there are three types of network, summarized
in table 2.

Table 2 – Types of network services depending on residual errors

Type Definition

A Acceptable residual error rate (reported and unreported)

B Acceptable rate of unreported errors
Unacceptable rate of reported errors

C Unacceptable rate of both types of errors

The Transport+ protocol is derived from ISO class 2 which supposes a type A network, and
which is characterized by segmenting and assembly functions with multiplexing, but without
resumption after error or flow control.

3.4 Transport services and service primitives

Table 3 services and service primitives are available to users of the Transport+ protocol.

Table 3 – Transport services and service primitives

Service Primitive

T_DATA T_DATA.req(STSAP, DTSAP, Pr, TSDU)
T_DATA.ind(STSAP, DTSAP, TSDU)

T_ABORT T_ABORT.req(Strong)
T_ABORT.ind(ErrorNb)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 14 – 62056-51 © CEI:1998

Le rôle attribué à chaque primitive est le suivant:

– T_DATA.req(STSAP, DTSAP, Pr, TSDU) permet à la sous-couche Application de demander
à la sous-couche Transport le transfert avec la priorité Pr 1) d'un message TSDU depuis
une adresse de transport source STSAP vers une adresse de transport destination DTSAP
ou bien depuis une adresse de transport destination DTSAP vers une adresse de transport
source STSAP;

– T_DATA.ind(STSAP, DTSAP, TSDU) permet à la sous-couche Transport d'informer la
sous-couche Application de l'arrivée d'un message TSDU depuis une adresse de transport
source STSAP vers une adresse de transport destination DTSAP ou bien depuis une
adresse de transport destination DTSAP vers une adresse de transport source STSAP;

– T_ABORT.req(Strong) permet à la sous-couche Application de demander à la sous-couche
Transport de mettre fin à son activité avec la priorité Strong 2);

– T_ABORT.ind(ErrorNb) permet à la sous-couche Transport d'informer la sous-couche
Application de l'occurrence d'une erreur fatale repérée par le numéro ErrorNb.

3.5 Description des unités de données du protocole transport (TPDU)

Les messages échangés entre entités de transport sont acheminés par segments dans des
TPDU qui contiennent chacune un nombre entier d'octets.

Dans le protocole Transport+, il n'y a qu'un seul type de TPDU défini par les cinq champs
suivants:

– TPDUType (DT+) : 3 bits

– End : 1 bit

– STSAP : 2 bits

– DTSAP : 10 bits

– Packet : 0 octet à MaxPktSize octets

3
bits

1
bit

2
bits

10
bits

0 octet à MaxPktSize
octets

DT+ End STSAP DTSAP Packet

Figure 1 – Structure d'un TPDU

Le champ DT+ est toujours codé "101"B.

Lorsqu'il est positionné à 1, le bit du champ End indique que l'unité de données
correspondante est la dernière d'un message segmenté.

Le champ STSAP référence l'adresse de transport source et le champ DTSAP correspond à
l'adresse de transport destination. Par convention, la valeur "0000000000"B est réservée au
DTSAP du Serveur DLMS d'administration des protocoles de communication.

Enfin, le champ Packet correspond au segment de données courant.

–––––––––
1) Le niveau de priorité Pr permet de différencier le traitement des services urgents tels que InformationReport

(niveau Pr=1) de celui des autres services DLMS (niveau Pr=0).

2) Le paramètre Strong permet de différencier le traitement des erreurs fatales (Strong=1) de celui des autres
demandes de déconnexion physique (Strong=0) initialisées par la sous-couche Application.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 15 –

The role assigned to each primitive is as follows:

– T_DATA.req(STSAP, DTSAP, Pr, TSDU) enables the Application sub-layer to request the
Transport sub-layer to transfer with the priority Pr 1) a TSDU message from a source
transport address STSAP to a destination transport address DTSAP or from a destination
transport address DTSAP to a source transport address STSAP;

– T_DATA.ind(STSAP, DTSAP, TSDU) enables the Transport sub-layer to inform the
Application sub-layer of the arrival of a TSDU message from a source transport address
STSAP to a destination transport address DTSAP or from a destination transport address
DTSAP to a source transport address STSAP;

– T_ABORT.req(Strong) enables the Application sub-layer to request the Transport sub-layer
to terminate its activity with the priority Strong 2);

– T_ABORT.ind(ErrorNb) enables the Transport sub-layer to inform the Application sub-layer
of the occurrence of a fatal error identified by the number ErrorNb.

3.5 Description of transport protocol data units (TPDUs)

The messages exchanged between transport entities are routed by segments in TPDUs, each
of which contains a whole number of octets.

In the Transport+ protocol, there is only one type of TPDU defined by the following five fields:

– TPDUType (DT+) : 3 bits

– End : 1 bit

– STSAP : 2 bits

– DTSAP : 10 bits

– Packet : 0 octet to MaxPktSize octets

3
bits

1
bit

2
bits

10
bits

0 octet to MaxPktSize
octets

DT+ End STSAP DTSAP Packet

Figure 1 – Format of a TPDU

The DT+ field is always encoded "101"B.

When it is set to 1, the bit of the End field indicates that the corresponding data unit is the last
one of a segmented message.

The STSAP field contains the source transport address and the DTSAP field contains the
destination transport address. By convention, the value "0000000000"B is reserved for the
DTSAP of the communication protocols management DLMS Server.

Finally, the Packet field contains the current data segment.

–––––––––
1) The priority level Pr differentiates the processing of emergency services such as InformationReport (level Pr=1)

from that of the other DLMS services (level Pr=0).

2) The Strong parameter differentiates the processing of fatal errors (Strong=1) from that of the other physical
disconnection requests (Strong=0) initialized by the Application sub-layer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 16 – 62056-51 © CEI:1998

3.6 Paramètres de transport

En l'absence de phase de connexion explicite, le nombre de connexions de transport et la taille
des tampons ne sont pas négociés. Les règles à respecter sont les suivantes:

– au maximum 4 096 connexions de transport repérées chacune par un couple (STSAP,
DTSAP);

– un besoin d'espace mémoire pour l'ensemble des tampons en émission et en réception de
toutes les connexions de transport actives ne dépassant pas les capacités de l'équipement
distant.

La taille réelle de l'espace mémoire global dépend de chaque équipement mais ne doit pas être
inférieure à 512 octets. Une variable DLMS d'administration contient la valeur correspondante.
Cette variable, de nom BufferPoolSize, est accessible par l'intermédiaire du Serveur DLMS
d'administration des protocoles de communication.

La valeur du nombre MaxPktSize de taille du champ Packet doit être ajustée à la capacité des
trames de la couche Liaison.

3.7 Transitions d'état

La machine d'état de l'Appelant est strictement identique à celle de l'Appelé. Les deux
systèmes sont tour à tour Emetteur et Récepteur de TSDU. A tout instant, il n'existe qu'une
seule occurrence de cet automate dans chaque équipement.

Tableau 4 – Transitions d'état de Transport+

Etat initial Condition de déclenchement Ensemble d'actions Etat final

Stopped $true() init() Idle

Idle T_DATA.req(STSAP, DTSAP,
Pr, TSDU) &

bufferpool(TSDU)

SMsg=TSDU M.Sgt

Idle DL_DATA.ind(Pr, TPDU) &
check_sgt(TPDU) &
bufferpool(TPDU) &
not(last_sgt(TPDU))

tsap(TPDU, STSAP, DTSAP)
RMsg[STSAP, DTSAP, Pr]=

concat(RMsg[STSAP,
DTSAP, Pr],

extract_pkt(TPDU))

Idle

Idle DL_DATA.ind(Pr, TPDU) &
check_sgt(TPDU) &
bufferpool(TPDU) &
last_sgt(TPDU)

tsap(TPDU, STSAP, DTSAP)
T_DATA.ind(STSAP, DTSAP,

concat(RMsg[STSAP,
DTSAP, Pr],

extract_pkt(TPDU)))
RMsg[STSAP, DTSAP, Pr]=""

Idle

Idle (T_DATA.req(_, _, _, TSDU) &
not(bufferpool(TSDU))) |
(DL_DATA.ind(_, TPDU) &
check_sgt(TPDU) &
not(bufferpool(TPDU)))

T_ABORT.ind(ET-2F)
DL_ABORT.req(Strong=1)

Stopped

Idle DL_DATA.ind(_, TPDU) &
not(check_sgt(TPDU))

T_ABORT.ind(ET-1F)
DL_ABORT.req(Strong=1)

Stopped

Idle T_ABORT.req(Strong) DL_ABORT.req(Strong) Stopped

Idle DL_ABORT.ind(ErrorNb) T_ABORT.ind(ErrorNb) Stopped

M.Sgt size(SMsg)>MaxPktSize End=0
DL_DATA.req(Pr, concat(DT+, End,

STSAP, DTSAP,
substr(1, MaxPktSize, SMsg)))

SMsg=substr(MaxPktSize+1, SMsg)

M.Sgt

M.Sgt size(SMsg)<=MaxPktSize End=1
DL_DATA.req(Pr, concat(DT+, End,

STSAP, DTSAP, SMsg))
SMsg=""

Idle

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 17 –

3.6 Transport parameters

In the absence of an explicit connection stage, the number of transport connections and the
size of the buffers are not negotiated. The following rules are observed:

– a maximum of 4 096 transport connections each identified by a (STSAP, DTSAP) pair;

– a memory space requirement for all the transmission and reception buffers of all the active
transport connections that does not exceed the capacity of the remote equipment.

The actual size of the overall memory space depends on each equipment but shall not be less
than 512 octets. A DLMS management variable, BufferPoolSize, contains the corresponding
value. This variable is accessible through the communication protocols management DLMS
Server.

The value of the Packet field size, MaxPktSize, shall be adjusted to the frame capacity of the
Data Link layer.

3.7 State transitions

The state machine of the Caller is strictly identical to that of the Called system. The two
systems are in turn Transmitter and Receiver of TSDUs. At any time, there is only one
occurrence of this controller in each set of equipment.

Table 4 – Transport+ state transitions

Initial state Triggering condition Set of actions Final state

Stopped $true() init() Idle

Idle T_DATA.req(STSAP, DTSAP,
Pr, TSDU) &

bufferpool(TSDU)

SMsg=TSDU M.Sgt

Idle DL_DATA.ind(Pr, TPDU) &
check_sgt(TPDU) &
bufferpool(TPDU) &
not(last_sgt(TPDU))

tsap(TPDU, STSAP, DTSAP)
RMsg[STSAP, DTSAP, Pr]=

concat(RMsg[STSAP,
DTSAP, Pr],

extract_pkt(TPDU))

Idle

Idle DL_DATA.ind(Pr, TPDU) &
check_sgt(TPDU) &
bufferpool(TPDU) &
last_sgt(TPDU)

tsap(TPDU, STSAP, DTSAP)
T_DATA.ind(STSAP, DTSAP,

concat(RMsg[STSAP,
DTSAP, Pr],

extract_pkt(TPDU)))
RMsg[STSAP, DTSAP, Pr]=""

Idle

Idle (T_DATA.req(_, _, _, TSDU) &
 not(bufferpool(TSDU))) |
(DL_DATA.ind(_, TPDU) &
 check_sgt(TPDU) &
 not(bufferpool(TPDU)))

T_ABORT.ind(ET-2F)
DL_ABORT.req(Strong=1)

Stopped

Idle DL_DATA.ind(_, TPDU) &
not(check_sgt(TPDU))

T_ABORT.ind(ET-1F)
DL_ABORT.req(Strong=1)

Stopped

Idle T_ABORT.req(Strong) DL_ABORT.req(Strong) Stopped

Idle DL_ABORT.ind(ErrorNb) T_ABORT.ind(ErrorNb) Stopped

M.Sgt size(SMsg)>MaxPktSize End=0
DL_DATA.req(Pr, concat(DT+, End,

STSAP, DTSAP,
substr(1, MaxPktSize, SMsg)))

SMsg=substr(MaxPktSize+1, SMsg)

M.Sgt

M.Sgt size(SMsg)<=MaxPktSize End=1
DL_DATA.req(Pr, concat(DT+, End,

STSAP, DTSAP, SMsg))
SMsg=""

Idle

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 18 – 62056-51 © CEI:1998

Tableau 5 – Signification des états mentionnés au tableau 4

Etat Signification

Stopped Etat de démarrage commun à l'Appelant et à l'Appelé

Idle Etat d'attente d'une requête de la sous-couche Application
ou d'une indication de la couche Liaison

M.Sgt (Must Segment) Etat dans lequel un message est en cours de segmentation
sur une connexion de transport

Tableau 6 – Définition des procédures et des fonctions
classées par ordre alphabétique

Procédure ou fonction Définition

bufferpool(TPDU) ou
bufferpool(TSDU)

Vérification que l'unité de données TPDU ou TSDU peut
être stockée dans l'espace mémoire global défini par la
variable d'administration BufferPoolSize

check_sgt(TPDU) Vérification que le type de la TPDU reçue est égal à
DT+

concat(MsgPart, Packet) ou
concat(DT+, End, STSAP, DTSAP,

Packet)

Construction d'une chaîne binaire par concaténation de
plusieurs paramètres

extract_pkt(TPDU) Extraction du champ Packet de la TPDU reçue

init() Initialisation de DT+ à "101"B, de MaxPktSize et de
chacun des éléments du tableau RMsg[] à "". Le tableau
RMsg[] possède trois dimensions: la première repère le
numéro de STSAP, la seconde repère le numéro de
DTSAP et la troisième la priorité (0 ou 1)

last_sgt(TPDU) Vérification que la TPDU reçue possède un champ End
monté à 1

size(SMsg) Calcul de la taille en octets du message SMsg

substr(Begin, Length, SMsg) ou
substr(Begin, SMsg)

Extraction d'une partie du message SMsg à partir de
l'octet Begin sur la longueur Length en octets. Si la
longueur n'est pas précisée, la partie extraite
correspond à la fin du message partiel

tsap(TPDU, STSAP, DTSAP) Extraction des champs STSAP et DTSAP de la TPDU
reçue

3.8 Répertoire et traitement des erreurs

Les erreurs sont répertoriées selon le codage suivant:

ET erreur de la sous-couche Transport

– séparateur

N numéro de l'erreur

F erreur fatale

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 19 –

Table 5 – Meaning of the states listed in table 4

State Meaning

Stopped Startup state common to the Caller and the Called party

Idle State waiting for a request from the Application sub-
layer or an indication from the Data Link layer

M.Sgt (Must Segment) State in which a message is being segmented on a
transport connection

Table 6 – Definition of the procedures and functions
classified in alphabetical order

Procedure or function Definition

bufferpool(TPDU) or
bufferpool(TSDU)

Check that the data unit TPDU or TSDU can be stored
in the overall memory space defined by the
management variable BufferPoolSize

check_sgt(TPDU) Check that the type of the TPDU received is DT+

concat(MsgPart, Packet) or
concat(DT+, End, STSAP, DTSAP,

Packet)

Construction of a binary string by concatenation of
several parameters

extract_pkt(TPDU) Extraction of the Packet field from the received TPDU

init() Initialization of DT+ at "101"B, of MaxPktSize and of
each element of the array RMsg[] at "". The array
RMsg[] has three dimensions: the first indicates the
STSAP number, the second indicates the DTSAP
number and the third indicates the priority (0 or 1)

last_sgt(TPDU) Check that the received TPDU has an End field raised
to 1

size(SMsg) Calculation of the size of the SMsg message in octets

substr(Begin, Length, SMsg) or
substr(Begin, SMsg)

Extraction of part of the SMsg message from the Begin
octet over the length Length in octets. If the length is
not specified, the extracted part corresponds to the end
of the partial message

tsap(TPDU, STSAP, DTSAP) Extraction of the STSAP and DTSAP fields from the
received TPDU

3.8 List and processing of errors

The errors are listed with the following codes:

ET error in the Transport sub-layer

– separator

N number of the error

F fatal error

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 20 – 62056-51 © CEI:1998

Tableau 7 – Tableau récapitulatif des erreurs

ET-1F TPDU incorrecte. Cette erreur ne peut avoir comme origine qu'un type de TPDU
différent de DT+

Cette erreur conduit à réinitialiser la sous-couche Transport après avoir informé la
sous-couche Application et fait avorter la couche Liaison

ET-2F Saturation de l'espace mémoire global (en réception ou en émission)

Cette erreur conduit à réinitialiser la sous-couche Transport après avoir informé la
sous-couche Application et fait avorter la couche Liaison

Toute occurrence de l'une de ces erreurs fatales est remontée localement grâce à la primitive
de service T_ABORT.ind. La liste complète des numéros des erreurs fatales est fournie à
l'annexe B.

4 Sous-couche Application

4.1 Protocole Application+

Le protocole Application+ de la sous-couche Application adopte un comportement asymétrique
basé sur le modèle Client-Serveur de DLMS (voir CEI 61334-4-41).

4.2 Généralités

La sous-couche Application se trouve considérablement simplifiée par l'adoption de DLMS. Ce
modèle permet, du point de vue de la communication, une abstraction de tout équipement réel
en un ou plusieurs équipements virtuels appelés VDE (voir CEI 61334-4-41). Chaque VDE est
composé d'objets virtuels classés par type et accessibles par l'intermédiaire de services
spécifiques.

En intégrant le modèle DLMS dans une vision stratifiée des protocoles, le rôle principal de la
sous-couche Application devient l'encapsulation et le transport dans les deux sens des PDU
DLMS (voir CEI 61334-4-41). Cependant, il est également nécessaire d'assurer

– la connexion et la déconnexion physique, éventuellement,

– la gestion des associations d'application,

– l’adoption d’une syntaxe de transfert pour le codage des données,

– la sécurité des échanges.

4.3 Sécurité des échanges

La notion de sécurité des échanges comprend

– l'authentification du Client et du Serveur,

– la confidentialité des données échangées,

– le contrôle d'accès aux objets variables du Serveur.

L'authentification permet au Serveur de contrôler l'identité du Client afin de lui associer les
bons droits d'accès. Lorsque cette authentification est mutuelle, le Client peut aussi contrôler
le Serveur et détecter une possible substitution d'équipement.

La confidentialité des données est destinée à protéger les données échangées contre
d'éventuelles tentatives de lecture illicite par un tiers.

Quant au contrôle d'accès aux variables DLMS du Serveur, c'est le VDE-Handler (voir
CEI 61334-4-41) qui l'assure grâce à un système de protection vérifiant les tentatives de
lecture ou d'écriture du Client.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 21 –

Table 7 – Error summary table

ET-1F TPDU incorrect. The only possible cause of this error is a TPDU type different from DT+

This error results in reinitialization of the Transport sub-layer after informing the
Application sub-layer and causing the Data Link layer to abort

ET-2F Saturation of the overall memory space (reception or transmission)

This error results in reinitialization of the Transport sub-layer after informing the
Application sub-layer and causing the Data Link layer to abort

Any occurrence of one of these fatal errors is sent up locally by means of the service primitive
T_ABORT.ind. The complete list of fatal error numbers is given in annex B.

4 Application sub-layer

4.1 Application+ protocol

The Application+ protocol of the Application sub-layer has an asymmetrical behaviour based on
the DLMS Client-Server model (see IEC 61334-4-41).

4.2 General information

The Application sub-layer is considerably simplified by the adoption of DLMS. From the point of
view of the communication, this model enables the abstraction of any real equipment as one or
more virtual equipment sets called VDE (see IEC 61334-4-41). Each VDE comprises virtual
objects classified by type and accessible by means of specific services.

By integrating the DLMS model into a stratified view of the protocols, the main role of the
Application sub-layer becomes the encapsulation and the transport in both directions of DLMS
PDUs (see IEC 61334-4-41). However, it is also necessary to ensure

– physical connection and disconnection, if applicable,

– management of application associations,

– selection of a transfer syntax for data encoding,

– security of exchanges.

4.3 Security of exchanges

The security of exchanges includes

– authentication of the Client and the Server,

– confidentiality of exchanged data,

– control of access to the variable objects of the Server.

The authentication enables the Server to control the identity of the Client in order to provide
him with the proper access rights. When this authentication is mutual, the Client can also
control the Server and detect a possible substitution of equipment.

The confidentiality of data is designed to protect the exchanged data against possible
unauthorized readings.

The VDE-Handler (see IEC 61334-4-41) provides access to the DLMS variables of the Server
by means of a protection system controlling the Client read or write attempts.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 22 – 62056-51 © CEI:1998

4.4 Authentification du Client et du Serveur

L'authentification mutuelle est assurée par un double échange de messages cryptés durant la
phase de demande d'activation d'association d'application en provenance du Client.

Client Serveur

AuthenticationReqAPSE

AuthenticationRespAPSE

InitiateReqAPSE

InitiateRespAPSE

Figure 2 – Echanges d’authentification

Chaque équipement doit disposer d'un système de génération de nombres aléatoires.

L'authentification est obtenue par un échange de nombres aléatoires cryptés grâce à une clef
secrète spécifique à chaque type de Client (Client-type). Les nombres aléatoires sont définis
sur 8 octets (voir annexe C) et ils sont cryptés grâce à un algorithme utilisant une clef de
cryptage Ki sur 8 octets connue à la fois du Client et du Serveur.

Sur une demande d’Initiate, un nombre aléatoire Nc est d'abord généré par le Client et
transmis dans l'AuthenticationReqAPSE.

A l'arrivée sur le Serveur, Nc est crypté avec le même algorithme et la clef Ki pour obtenir le
nombre aléatoire crypté NcK. Débute alors la séquence interne d'authentification composée
d'un échange de deux PDU.

Le premier PDU (AuthenticationRespAPSE envoyé par le Serveur au Client) contient ce
nombre aléatoire crypté NcK et un nombre aléatoire Ns généré par le Serveur.

A la réception de ce PDU, le Client compare NcK à un nombre Nc' obtenu en cryptant le
nombre aléatoire Nc en utilisant le même algorithme avec la clef Ki. Si Nc' = NcK, le Client
considère alors que le Serveur appelé est authentifié. Sinon, il suppose qu'un imposteur essaie
de communiquer sur la ligne à la place de l'unité désirée et il ferme la communication.

Après avoir authentifié le Serveur, le Client crypte le nombre aléatoire Ns avec le même
algorithme et la clef Ki pour obtenir le nombre aléatoire crypté NsK et le transmettre ensuite
dans le second PDU, InitiateReqAPSE.

A la réception de ce PDU, le Serveur compare NsK à un nombre Ns' obtenu en cryptant le
nombre aléatoire Ns en utilisant le même algorithme avec la clef Ki. Si Ns' = NsK, alors le
Serveur considère que le Client est authentifié. Sinon, il suppose qu'un imposteur essaie de
communiquer sur la ligne et ferme la communication.

Sur chaque équipement Client et sur chaque équipement Serveur homologue, il existe une
table associant une clef privée à chaque valeur possible de Client-type. Il n'y a donc aucun
échange de clef pendant la communication.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 23 –

4.4 Authentication of Client and Server

Mutual authentication is provided by a double exchange of ciphered messages during the
phase of application association activation request from the Client.

Client Server

AuthenticationReqAPSE

AuthenticationRespAPSE

InitiateReqAPSE

InitiateRespAPSE

Figure 2 – Authentication exchanges

Each equipment shall have a random number generation system.

Authentication is carried out by an exchange of random numbers ciphered thanks to a secret
key specific to each type of Client (Client-type). The random numbers are defined in 8 octets
(see annex C) and they are ciphered thanks to an algorithm using an 8-octet ciphering key Ki
known both to the Client and the Server.

On an Initiate request, a random number Nc is first generated by the Client and transmitted into
the AuthenticationReqAPSE.

On arrival at the Server, Nc is ciphered by the same algorithm with key Ki to get the ciphered
random number NcK. Then the internal sequence for authentication occurs, which consists in
an exchange of two PDUs.

The first PDU (AuthenticationRespAPSE from Server to Client) contains this ciphered random
number NcK and a random number Ns generated by the Server.

On reception of this PDU, the Client compares NcK to an Nc' number obtained by ciphering the
random number Nc using the same algorithm with key Ki. If Nc’ = NcK; the Client then
considers the called Server as authenticated. Otherwise, it considers that an impostor is
attempting to speak on the line in place of the wanted unit and it aborts the communication.

After correct authentication of the Server, the Client ciphers the random number Ns by the
same algorithm with key Ki to get the ciphered random number NsK and then transmit it into
the second PDU, InitiateReqAPSE.

On reception of this PDU, the Server compares NsK to an Ns' number obtained by ciphering
the random number Ns using the same algorithm with key Ki. If Ns’ = NsK, then the Server
considers the Client as authenticated. Otherwise, it considers that an impostor is attempting to
speak on the line and it aborts the communication.

On all Client and opposite Server equipments, there is a table joining a private key to each
possible value of Client-type. Therefore, there is no exchange of key during the communication.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 24 – 62056-51 © CEI:1998

4.5 Confidentialité des données échangées

La confidentialité des données échangées est assurée en brouillant chaque message à
protéger. L'algorithme de brouillage et de débrouillage utilisé par le protocole Application+ pour
les échanges autres que l'authentification est décrit en détail à l'annexe D. Ses caractéristiques
principales sont les suivantes:

– le code est simple à élaborer et plus rapide à l'exécution que le code d'authentification;

– la fonction de brouillage est pseudo-aléatoire et de période longue;

– la fonction de débrouillage est la même que la fonction de brouillage (opération involutive);

– le seul paramètre de l'algorithme est une clef de brouillage de n bits calculée
automatiquement par le Serveur pour chaque association d'application.

4.6 Contexte d'application

Le protocole Application+ comprend un seul SASE (Specific Application Service Element) dont
le nom est APSE. Le APSE se divise en Client APSE et Server APSE.

En outre, pour qu'un échange puisse s'effectuer correctement, il faut que le Client et le Serveur
travaillent avec le même contexte d'application (ensemble de règles régissant l'échange
d'information sur une association d'application). Le protocole Application+ permet la
négociation de ce contexte d'application. Il existe, néanmoins, un contexte d'application par
défaut (identifié par la valeur entière 0) connu a priori du Client et du Serveur.

Une variable DLMS d'administration contient la liste des contextes d'application supportés par
le Serveur. Cette variable, de nom ApplicationContextNameList, est accessible par l'intermédiaire
du Serveur DLMS d'administration des protocoles de communication.

La liste des règles implicites du contexte d'application par défaut du APSE est la suivante:

– choix d’un profil de communication spécifique pour les couches basses;

– spécification de la syntaxe abstraite utilisée (voir ISO 8824);

– spécification des règles de codage et de décodage;

– liste des ASE impliqués (APSE) et description des APDU;

– mécanisme d'authentification par cryptage, ainsi que méthode de calcul des nombres
aléatoires définie à l'annexe C;

– algorithme de brouillage des échanges défini à l'annexe D, ainsi que mode de calcul de la
clef de brouillage;

– mode de brouillage spécifique à chaque classe de service DLMS en fonction du type
d'identifiant client (voir annexe E).

On notera que le contexte d'application par défaut ne contient aucun algorithme de
compression de données.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TS 62
05

6-5
1:1

99
8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 25 –

4.5 Confidentiality of exchanged data

The confidentiality of exchanged data is possible by masking each message to be protected.
The masking and unmasking algorithm used by the Application+ protocol for exchanges other
than authentication is described thoroughly in annex D. Its main characteristics are the
following:

– the code is simple to develop and its execution is quicker than the authentication code;

– the masking function is pseudo-random and of long period;

– the masking and unmasking functions are identical (involutive operation);

– the only parameter of the algorithm is a n bit masking key automatically calculated by the
Server for each application association.

4.6 Application context

The Application+ protocol includes a single SASE (Specific Application Service Element) called
APSE. APSE is divided into Client APSE and Server APSE.

In addition, for an exchange to be executed correctly, the Client and the Server must work with
the same application context (set of rules governing the exchange of information on an
application association). The Application+ protocol enables the negotiation of this application
context. However, there is a default application context (identified by the whole number 0)
known a priori by the Client and the Server.

A management DLMS variable, ApplicationContextNameList, contains the list of the application
contexts supported by the Server. This variable is accessible through the communication
protocols management DLMS Server.

The implicit rules of the APSE default application context are the following:

– choice of a specific communication profile for the lower layers;

– specification of the abstract syntax used (see ISO 8824);

– specification of the encoding and decoding rules;

– list of the ASEs involved (APSE) and description of APDUs;

– ciphering authentication mechanism and random number generation procedure described in
annex C;

– exchange masking algorithm described in annex D as well as masking key generation
procedure;

– masking mode specific to each DLMS service class depending on the Client identifier type
(see annex E).

It should be noted that the default application context does not contain a data compression
algorithm.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TS 62
05

6-5
1:1

99
8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 26 – 62056-51 © CEI:1998

4.7 Contexte DLMS

Les services DLMS ne transportent aucune information d'identification réciproque du Client et
du Serveur. En fait, ces informations sont directement contenues dans le contexte DLMS. Un
contexte DLMS comprend les éléments suivants:

– un contexte d'application tel que défini précédemment;

– un STSAP (TSAP Source);

– un DTSAP (TSAP Destination);

– le type du Client Client-type (voir annexe E);

– côté Client Appelant, l’adresse physique du Serveur Appelé;

– côté Serveur Appelant, la liste des adresses physiques des Clients appelables ainsi que
l'identifiant du Serveur Server-identifier (voir annexe E);

– si le Client est l'Appelant, l’adresse physique du Client;

– la valeur confidentielle de la clef d'authentification;

– la valeur confidentielle de la clef de brouillage des échanges.

En général, l'Appelant est un Client-type autorisé et l'Appelé un VDE Serveur caractérisé par
son adresse transport DTSAP. Toutefois, le contraire se produit lorsque des alarmes urgentes
doivent être remontées au Client. Dans ce cas, l'initialisation de l'association d'application est
une initiative du Serveur.

C'est toujours le Client-type qui repère sans ambiguïté un contexte DLMS. Cette notion
correspond très exactement à celle de VAAName (voir CEI 61334-4-41). Dans le protocole
Application+, les VAA sont considérées comme des objets statiques.

Un seul contexte DLMS est actif à un instant donné pour chaque connexion de transport active.
Côté Client Appelant, le contexte courant est supposé avoir déjà été activé par des moyens
locaux à chaque équipement et non décrits ici. Côté Serveur Appelé, en revanche, le contexte
est activé grâce au service Initiate (voir CEI 61334-4-41) et inactivé par une indication d'Abort
(voir CEI 61334-4-41).

4.8 Services et primitives de service d'application

L'utilisateur du protocole Application+ dispose de la totalité des services et primitives de
service définis dans la spécification DLMS, à l'exception des services non confirmés.

Côté Client, il est également nécessaire de disposer d'une requête de service non confirmé
A_Disconnect.req() afin de pouvoir, éventuellement, effectuer la déconnexion physique.

Pour la définition complète des services, primitives de service et PDU DLMS, se reporter à la
CEI 61334-4-41.

4.9 Description des unités de données du protocole application (APDU)

Les messages échangés sur une association d'application contiennent chacun un nombre
entier d'octets qui, en tout état de cause, doit toujours rester compatible avec la taille de
l'espace mémoire global de la sous-couche Transport.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 27 –

4.7 DLMS context

The DLMS services do not transport any Client or Server reciprocal identification information.
This information is, in fact, contained directly in the DLMS context. A DLMS context contains
the following elements:

– an application context as defined above;

– an STSAP (Source TSAP);

– a DTSAP (Destination TSAP);

– the Client-type (see annex E);

– at the Caller Client end, the physical address of the Called Server;

– at the Caller Server end, the list of the physical addresses of the Clients that can be called
and the Server identifier Server-identifier (see annex E);

– if the Client is the Caller, the physical address of the Client;

– the confidential value of the authentication key;

– the confidential value of the masking key.

In general, the Caller is an authorized Client-type and the Called system a VDE Server
identified by its transport address DTSAP. However, the converse is the case when emergency
alarms must be communicated to the Client. In this case, the application association is
initialized by the Server.

The Client-type always identifies a DLMS context unambiguously. This notion corresponds
exactly to that of VAAName (see IEC 61334-4-41). In the Application+ protocol, the VAAs are
considered as static objects.

Only one DLMS context is active at a given time for each active transport connection. At the
Caller Client end, the current context is assumed to have been already activated by means
local to each equipment system and not described here. In contrast, at the Called Server end,
the context is activated by means of the Initiate service (see IEC 61334-4-41) and inactivated
by an Abort indication (see IEC 61334-4-41).

4.8 Application services and service primitives

All the services and service primitives defined in the DLMS specification are available to the
users of the Application+ protocol, with the exception of unconfirmed services.

At the Client end, an unconfirmed service request A_Disconnect.req() is also required to be
able to carry out a physical disconnection, if applicable.

For a complete definition of services, service primitives and DLMS PDUs, see IEC 61334-4-41.

4.9 Description of application protocol data units (APDUs)

Each of the messages exchanged on an application association contains a whole number of
octets which, in all cases, shall always remain compatible with the size of the overall memory
space of the Transport sub-layer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 28 – 62056-51 © CEI:1998

Dans le protocole Application+, il y a dix types d'APDU comme l'indique la définition ASN.1 3)

suivante.

APSEPDU::=CHOICE {

confirmedRequest [0] ConfirmedReqAPSE,
confirmedResponse [1] ConfirmedRespAPSE,
confirmedError [2] ConfirmedErrorAPSE,
unsolicitedRequest [3] UnsolicitedReqAPSE,
authenticationRequest [4] AuthenticationReqAPSE,
authenticationResponse [5] AuthenticationRespAPSE,
initiateRequest [6] InitiateReqAPSE,
initiateResponse [7] InitiateRespAPSE,
initiateError [8] InitiateErrorAPSE,
abortRequest [9] AbortReqAPSE }

ConfirmedReqAPSE::=OCTET STRING
 -- obtenu après cryptage éventuel d'une PDU DLMS de type ConfirmedServiceRequest,
 -- GetStatusRequest, GetNameListRequest, GetVariableAttributeRequest, ReadRequest ou
 -- WriteRequest type

ConfirmedRespAPSE::=OCTET STRING
 -- obtenu après cryptage éventuel d'une PDU DLMS de type ConfirmedServiceResponse,
 -- GetStatusResponse, GetNameListResponse, GetVariableAttributeResponse,
ReadResponse ou
 -- WriteResponse type

ConfirmedErrorAPSE::=OCTET STRING
 -- obtenu directement à partir d'une PDU DLMS de type ConfirmedServiceError

UnsolicitedReqAPSE::=SEQUENCE {
server-identifier OCTET STRING,
client-type INTEGER(-32 768..32 767),
unsolicited-service-request OCTET STRING
 -- obtenu après cryptage éventuel d'une PDU DLMS de type UnsolicitedServiceRequest ou
 -- InformationReportRequest -- }

AuthenticationReqAPSE::=SEQUENCE {
client-type INTEGER(-32 768..32 767),
client-random-number BIT STRING(SIZE(64)) }

AuthenticationRespAPSE::=SEQUENCE {
ciphered-transformed-client-random-number BIT STRING(SIZE(64)),
server-random-number BIT STRING(SIZE(64)) }

InitiateReqAPSE::=SEQUENCE {
ciphered-transformed-server-random-number BIT STRING(SIZE(64)),
proposed-app-ctx-name INTEGER(0..255),
calling-physical-address OCTET STRING,
initiate-request OCTET STRING
 -- obtenu directement à partir d'une PDU DLMS de type InitiateRequest -- }

InitiateRespAPSE::=SEQUENCE {
negociated-app-ctx-name INTEGER(0..255),
initiate-response OCTET STRING
 -- obtenu directement à partir d'une PDU DLMS de type InitiateResponse -- }

–––––––––
3) ASN: Notation de Syntaxe Abstraite.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 29 –

In the Application+ protocol, there are ten types of APDU as indicated in the following ASN.1 3)

definition below.

APSEPDU::=CHOICE {

confirmedRequest [0] ConfirmedReqAPSE,
confirmedResponse [1] ConfirmedRespAPSE,
confirmedError [2] ConfirmedErrorAPSE,
unsolicitedRequest [3] UnsolicitedReqAPSE,
authenticationRequest [4] AuthenticationReqAPSE,
authenticationResponse [5] AuthenticationRespAPSE,
initiateRequest [6] InitiateReqAPSE,
initiateResponse [7] InitiateRespAPSE,
initiateError [8] InitiateErrorAPSE,
abortRequest [9] AbortReqAPSE }

ConfirmedReqAPSE::=OCTET STRING
 -- obtained after ciphering, if any, of a DLMS PDU of the ConfirmedServiceRequest,
 -- GetStatusRequest, GetNameListRequest, GetVariableAttributeRequest, ReadRequest or
 -- WriteRequest type

ConfirmedRespAPSE::=OCTET STRING
 -- obtained after ciphering, if any, of a DLMS PDU of the ConfirmedServiceResponse,
 -- GetStatusResponse, GetNameListResponse, GetVariableAttributeResponse,
ReadResponse or
 -- WriteResponse type

ConfirmedErrorAPSE::=OCTET STRING
 -- obtained directly from a DLMS PDU of the ConfirmedServiceError type

UnsolicitedReqAPSE::=SEQUENCE {
server-identifier OCTET STRING,
client-type INTEGER(-32 768..32 767),
unsolicited-service-request OCTET STRING
 -- obtained after ciphering, if any, of a DLMS PDU of the UnsolicitedServiceRequest or
 -- InformationReportRequest type -- }

AuthenticationReqAPSE::=SEQUENCE {
client-type INTEGER(-32 768..32 767),
client-random-number BIT STRING(SIZE(64)) }

AuthenticationRespAPSE::=SEQUENCE {
ciphered-transformed-client-random-number BIT STRING(SIZE(64)),
server-random-number BIT STRING(SIZE(64)) }

InitiateReqAPSE::=SEQUENCE {
ciphered-transformed-server-random-number BIT STRING(SIZE(64)),
proposed-app-ctx-name INTEGER(0..255),
calling-physical-address OCTET STRING,
initiate-request OCTET STRING
 -- obtained directly from a DLMS PDU of the InitiateRequest type -- }

InitiateRespAPSE::=SEQUENCE {
negociated-app-ctx-name INTEGER(0..255),
initiate-response OCTET STRING
 -- obtained directly from a DLMS PDU of the InitiateResponse type -- }

–––––––––
3) ASN: Abstract Syntax Notation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 30 – 62056-51 © CEI:1998

InitiateErrorAPSE::=OCTET STRING
 -- obtenu directement à partir d'une PDU DLMS de type ConfirmedServiceError

AbortReqAPSE::=OCTET STRING
 -- obtenu directement à partir d'une PDU DLMS de type AbortRequest

4.10 Gestion des échanges

Le protocole Application+ n'est pas symétrique puisque les rôles du Client et du Serveur ne
sont pas interchangeables.

Lorsqu'aucune connexion de transport n'est encore active côté Client, l'initialisation d'une
association d'application (requête de service Initiate de DLMS) prend en charge une éventuelle
connexion physique.

Dans tous les cas, il y a un échange de messages d'authentification et un contrôle du type du
Client par le Serveur. Si l'authentification a réussi, cette information associée à la valeur du
DTSAP permet au Serveur de réactiver l'association d'application et le contexte DLMS idoines;
elle permet aussi d'en déduire le VAA approprié.

Conformément à DLMS, le protocole Application+ n'admet pas de requête pendante. Après
l'envoi d'une requête de service confirmé, la sous-couche Application du Client attend toujours
une réponse venant de la sous-couche Application du Serveur avant d'émettre à nouveau.
Cette attente est contrôlée par le réveil MVRT (Maximum VDE Response Time), qu'il convient
de considérer comme un simple chien de garde logiciel armé pour une durée T2.

Après la phase d’authentification, toute erreur de cryptage détectée par le Serveur est
assimilée à une tentative de violation et conduit donc à l'arrêt de la communication au niveau
Application. En revanche, une erreur de cryptage n'est pas considérée comme fatale côté
Client.

Le niveau de priorité Pr permet de différencier le traitement des services non sollicités qui sont
considérés comme urgents (niveau Pr=1) de celui des autres services DLMS (niveau Pr=0).

Le paramètre Strong permet de différencier le traitement des erreurs fatales (Strong=1) de
celui des autres demandes de déconnexion physique (Strong=0) initialisées par la sous-couche
Application.

Enfin, côté Client, le service non confirmé A_Disconnect.req peut solliciter une déconnexion
physique conduisant à une libération du support physique et à la réinitialisation de toutes les
occurrences d'automate d'application.

4.11 Paramètre d'application

Le temps d'attente maximal, par le Client, d’une réponse en retour du Serveur avant
déconnexion logique doit être choisi tel que

T2 > RespTime + MaxReqTime + MaxRespTime
où RespTime représente le temps de réponse théorique du Serveur, MaxReqTime le temps
de transmission maximal d’une requête de service et MaxRespTime le temps de
transmission maximal d’une réponse de service.

4.12 Transitions d'état

Les machines d'état du Client et du Serveur sont différentes. En outre, pour des raisons de
clarté, chaque machine est découpée en trois tableaux: la gestion de contexte, la gestion des
services confirmés et la gestion des services non sollicités. De plus, dans chaque équipement,
il existe une occurrence de l'automate par connexion de transport active.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 31 –

InitiateErrorAPSE::=OCTET STRING
 -- obtained directly from a DLMS PDU of the ConfirmedServiceError type

AbortReqAPSE::=OCTET STRING
 -- obtained directly from a DLMS PDU of the AbortRequest type

4.10 Management of exchanges

The Application+ protocol is not symmetrical since the roles of the Client and the Server are
not interchangeable.

When no transport connection is active yet at the Client end, the initialization of an application
association (DLMS Initiate service request) takes over a possible physical connection.

In all cases, there is an authentication message exchange and a Client type control by the
Server. If the authentication has succeeded, this information, together with the DTSAP value,
enables the Server to reactivate the proper application association and DLMS context as well
as to deduce the appropriate VAA.

In accordance with DLMS, the Application+ protocol does not accept pending requests. After
sending a confirmed service request, the Application sub-layer of the Client always waits for a
response from the Application sub-layer of the Server before transmitting again. This wait is
controlled by the wakeup MVRT (Maximum VDE Response Time), which should be considered
as a simple software watchdog set for a time T2.

After the authentication phasis, any ciphering error detected by the Server is treated as a
violation attempt and thus causes the communication to stop at the Application level. In
contrast, a ciphering error is not considered as fatal at the Client end.

The priority level Pr differentiates the processing of unsolicited services which are considered
as urgent (level Pr=1) from that of the other DLMS services (level Pr=0).

The Strong parameter differentiates the processing of fatal errors (Strong=1) from that of the
other physical disconnection requests (Strong=0) initialized by the Application sub-layer.

Finally, at the Client end, the unconfirmed service A_Disconnect.req can solicit a physical
disconnection leading to the freeing of the medium and reinitialization of all the occurrences of
the application controller.

4.11 Application parameter

The maximum time waited by the Client for the return message from the Server before logical
disconnection shall be chosen such that

T2 > RespTime + MaxReqTime + MaxRespTime
where RespTime represents the theoretical response time of the Server, MaxReqTime
the maximum time for transmission of a service request and MaxRespTime the maximum
time for transmission of a service response.

4.12 State transitions

The state machines of the Client and the Server are different. Moreover, for clarity, each
machine is broken down into three tables: context management, confirmed service
management and unsolicited service management. In addition, in each equipment system,
there is one occurrence of the controller per active transport connection.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 32 – 62056-51 © CEI:1998

Tableau 8 – Tableau de gestion du contexte côté Serveur

Etat
initial

Condition de déclenchement Ensemble d'actions Etat final

Locked T_DATA.ind(STSAP, DTSAP, APSEPDU)
& check_tsap(STSAP, DTSAP) &
tasepdu_type(APSEPDU,
AuthenticationReqAPSE) &
extract_authentication_req(APSEPDU,
ClientType) & check_client_type(DTSAP,
ClientType)

APSEPDU=build_tasepdu(Authentication
RespAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

IR.E

Locked T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

IR.E T_DATA.ind(STSAP, DTSAP, APSEPDU)
& check_tsap(STSAP, DTSAP) &
tasepdu_type(APSEPDU,
InitiateReqAPSE)

Extract_OK=extract_initiate_req(APSEPDU,
AppCtx, CallingAddr, DLMSPDU)

Extract

IR.E T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

Extract Extract_OK set_dlms_context(AppCtx, STSAP, DTSAP,
ClientType, CallingAddr)
Initiate.ind(DLMSPDU)

Con.E

Extract not(Extract_OK) $none() Locked

Con.E Initiate.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, initiate) &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(InitiateRespAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Idle

Con.E Initiate.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, initiate-error) &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(InitiateErrorAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Locked

Con.E T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

Idle T_DATA.ind(STSAP, DTSAP, APSEPDU)
& check_tsap(STSAP, DTSAP) &
tasepdu_type(APSEPDU,
AuthenticationReqAPSE) &
extract_authentication_req(APSEPDU,
ClientType) & check_client_type(DTSAP,
ClientType)

build_evt(AbortIndication)
APSEPDU=build_tasepdu(Authentication
RespAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

IR.E

Idle T_DATA.ind(STSAP, DTSAP, APSEPDU)
& check_tsap(STSAP, DTSAP) &
tasepdu_type(APSEPDU, AbortReqAPSE)

Abort.ind() Locked

Idle T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 33 –

Table 8 – Server end context management table

Initial state Triggering condition Set of actions Final state

Locked T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
AuthenticationReqAPSE) &
extract_authentication_req(APSEPDU,
ClientType) &
check_client_type(DTSAP,
ClientType)

APSEPDU=build_tasepdu(Authentication
RespAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

IR.E

Locked T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

IR.E T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
InitiateReqAPSE)

Extract_OK=extract_initiate_req(APSEPDU,
AppCtx, CallingAddr, DLMSPDU)

Extract

IR.E T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

Extract Extract_OK set_dlms_context(AppCtx, STSAP, DTSAP,
ClientType, CallingAddr)
Initiate.ind(DLMSPDU)

Con.E

Extract not(Extract_OK) $none() Locked

Con.E Initiate.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, initiate) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(InitiateRespAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Idle

Con.E Initiate.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, initiate-
error) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(InitiateErrorAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Locked

Con.E T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

Idle T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
AuthenticationReqAPSE) &
extract_authentication_req(APSEPDU,
ClientType) &
check_client_type(DTSAP,
ClientType)

build_evt(AbortIndication)
APSEPDU=build_tasepdu(Authentication
RespAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

IR.E

Idle T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
AbortReqAPSE)

Abort.ind() Locked

Idle T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

LockedIECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 34 – 62056-51 © CEI:1998

Tableau 9 – Tableau de gestion du contexte côté Client

Etat initial Condition de déclenchement Ensemble d'actions Etat final

Locked Initiate.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
address(CallingAddr, CalledAddr)

Connect_OK=client_connect(CallingAddr,
CalledAddr)

Connect

Locked A_Disconnect.req() T_ABORT.req(Strong=0)
$purge()

Locked

Connect Connect_OK APSEPDU=build_tasepdu(Authentication
ReqAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
init_timer(T2)

AC.T

Connect not(Connect_OK) DLMSPDU=service_error(application-
unreachable)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Locked

AC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
AuthenticationRespAPSE)

D-decipher-OK=
d-decipher(AuthenticationRespAPSE, DKey)

D.Deciph

AC.T time_out() DLMSPDU=service_error(time-elapsed)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Locked

AC.T (T_ABORT.ind(ErrorNb) &
last_association()) |
(exist_abort_ind() &
not(last_association()))

DLMSPDU=service_error(provider-
communication-error)
Initiate.cnf(DLMSPDU)
store_error(ErrorNb)
inactivate_dlms_context()

Locked

D.Deciph D-decipher-OK APSEPDU=build_tasepdu(InitiateReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
update_dlms_context(_, DKey)

NC.T

D.Deciph not(D-decipher-OK) stop_timer()
DLMSPDU=service_error(deciphering-error)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Dis

NC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
InitiateRespAPSE)

stop_timer()
Extract_OK=extract_initiate_resp(APSEPDU,
AppCtx, DLMSPDU)

Extract

NC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
InitiateErrorAPSE) &
convert(APSEPDU, DLMSPDU)

stop_timer()
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Dis

NC.T time_out() DLMSPDU=service_error(time-elapsed)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Locked
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TS 62
05

6-5
1:1

99
8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 35 –

Table 9 – Client end context management table

Initial state Triggering condition Set of actions Final state

Locked Initiate.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
address(CallingAddr, CalledAddr)

Connect_OK=client_connect(CallingAddr,
CalledAddr)

Connect

Locked A_Disconnect.req() T_ABORT.req(Strong=0)
$purge()

Locked

Connect Connect_OK APSEPDU=build_tasepdu(Authentication
ReqAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
init_timer(T2)

AC.T

Connect not(Connect_OK) DLMSPDU=service_error(application-
unreachable)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Locked

AC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
AuthenticationRespAPSE)

D-decipher-OK=
d-decipher(AuthenticationRespAPSE, DKey)

D.Deciph

AC.T time_out() DLMSPDU=service_error(time-elapsed)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Locked

AC.T (T_ABORT.ind(ErrorNb) &
last_association()) |
(exist_abort_ind() &
not(last_association()))

DLMSPDU=service_error(provider-
communication-error)
Initiate.cnf(DLMSPDU)
store_error(ErrorNb)
inactivate_dlms_context()

Locked

D.Deciph D-decipher-OK APSEPDU=build_tasepdu(InitiateReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
update_dlms_context(_, DKey)

NC.T

D.Deciph not(D-decipher-OK) stop_timer()
DLMSPDU=service_error(deciphering-error)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Dis

NC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
InitiateRespAPSE)

stop_timer()
Extract_OK=extract_initiate_resp(APSEPDU,
AppCtx, DLMSPDU)

Extract

NC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
InitiateErrorAPSE) &
convert(APSEPDU, DLMSPDU)

stop_timer()
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Dis

NC.T time_out() DLMSPDU=service_error(time-elapsed)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Locked
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TS 62
05

6-5
1:1

99
8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 36 – 62056-51 © CEI:1998

Tableau 9 (fin)

Etat initial Condition de déclenchement Ensemble d'actions Etat final

NC.T (T_ABORT.ind(ErrorNb) &
last_association()) |
(exist_abort_ind() &
not(last_association()))

DLMSPDU=service_error(provider-
communication-error)
Initiate.cnf(DLMSPDU)
store_error(ErrorNb)
inactivate_dlms_context()

Locked

Extract Extract_OK update_dlms_context(AppCtx, _)
Initiate.cnf(DLMSPDU)

Idle

Extract not(Extract_OK) DLMSPDU=service_error(deciphering-error)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Dis

Idle A_Disconnect.req() T_ABORT.req(Strong=0)
$purge()

Locked

Idle Abort.req()
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(AbortReqAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
inactivate_dlms_context()

Locked

Idle Initiate.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(AuthenticationReqA
PSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
init_timer(T2)

AC.T

Idle (T_ABORT.ind(ErrorNb) &
last_association()) | (exist_abort_ind()
& not(last_association()))

store_error(ErrorNb)
inactivate_dlms_context()

Locked

Dis last_association() T_ABORT.req(Strong=0) Locked

Dis not(last_association()) $none() Locked

Tableau 10 – Tableau de gestion des services confirmés côté Serveur

Etat initial Condition de déclenchement Ensemble d'actions Etat final

Idle T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
ConfirmedReqAPSE)

Decipher_OK=decipher(APSEPDU, DLMSPDU) Decipher

Decipher Decipher_OK ConfirmedService.ind(DLMSPDU) CS.E

Decipher not(Decipher_OK) $none() Locked

CS.E ConfirmedService.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, confirmed-
service) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(ConfirmedRespAPS
E, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Idle

CS.E ConfirmedService.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, confirmed-
error) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(ConfirmedErrorAPS
E, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Idle

CS.E T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 37 –

Table 9 (concluded)

Initial state Triggering condition Set of actions Final state

NC.T (T_ABORT.ind(ErrorNb) &
last_association()) |
(exist_abort_ind() &
not(last_association()))

DLMSPDU=service_error(provider-
communication-error)
Initiate.cnf(DLMSPDU)
store_error(ErrorNb)
inactivate_dlms_context()

Locked

Extract Extract_OK update_dlms_context(AppCtx, _)
Initiate.cnf(DLMSPDU)

Idle

Extract not(Extract_OK) DLMSPDU=service_error(deciphering-error)
Initiate.cnf(DLMSPDU)
inactivate_dlms_context()

Dis

Idle A_Disconnect.req() T_ABORT.req(Strong=0)
$purge()

Locked

Idle Abort.req()
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(AbortReqAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
inactivate_dlms_context()

Locked

Idle Initiate.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(Authentication
ReqAPSE, _)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
init_timer(T2)

AC.T

Idle (T_ABORT.ind(ErrorNb) &
 last_association()) |
(exist_abort_ind() &
 not(last_association()))

store_error(ErrorNb)
inactivate_dlms_context()

Locked

Dis last_association() T_ABORT.req(Strong=0) Locked

Dis not(last_association()) $none() Locked

Table 10 – Server end confirmed service management table

Initial state Triggering condition Set of actions Final state

Idle T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
ConfirmedReqAPSE)

Decipher_OK=decipher(APSEPDU, DLMSPDU) Decipher

Decipher Decipher_OK ConfirmedService.ind(DLMSPDU) CS.E

Decipher not(Decipher_OK) $none() Locked

CS.E ConfirmedService.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, confirmed-
service) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(ConfirmedResp
APSE, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Idle

CS.E ConfirmedService.rsp(DLMSPDU) &
dlmspdu_type(DLMSPDU, confirmed-
error) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(ConfirmedError
APSE, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)

Idle

CS.E T_ABORT.ind(ErrorNb) store_error(ErrorNb)
$purge()

Locked

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 38 – 62056-51 © CEI:1998

Tableau 11 – Tableau de gestion des services confirmés côté Client

Etat initial Condition de déclenchement Ensemble d'actions Etat final

Idle ConfirmedService.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(ConfirmedReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
init_timer(T2)

CC.T

CC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
ConfirmedRespAPSE)

Decipher_OK=decipher(APSEPDU, DLMSPDU) Decipher

CC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
ConfirmedErrorAPSE) &
convert(APSEPDU, DLMSPDU)

stop_timer()
ConfirmedService.cnf(DLMSPDU)

Idle

CC.T time_out() DLMSPDU=service_error(time-elapsed)
ConfirmedService.cnf(DLMSPDU)

Locked

CC.T (T_ABORT.ind(ErrorNb) &
last_association()) |
(exist_abort_ind() &
not(last_association()))

DLMSPDU=service_error(provider-
communication-error)
ConfirmedService.cnf(DLMSPDU)
store_error(ErrorNb)
inactivate_dlms_context()

Locked

Decipher Decipher_OK stop_timer()
ConfirmedService.cnf(DLMSPDU)

Idle

Decipher not(Decipher_OK) stop_timer()
DLMSPDU=service_error(deciphering-error)
ConfirmedService.cnf(DLMSPDU)

Idle

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 39 –

Table 11 – Client end confirmed service management table

Initial state Triggering condition Set of actions Final state

Idle ConfirmedService.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)

APSEPDU=build_tasepdu(ConfirmedReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=0,
APSEPDU)
Init_timer(T2)

CC.T

CC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
ConfirmedRespAPSE)

Decipher_OK=decipher(APSEPDU, DLMSPDU) Decipher

CC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
ConfirmedErrorAPSE) &
convert(APSEPDU, DLMSPDU)

Stop_timer()
ConfirmedService.cnf(DLMSPDU)

Idle

CC.T time_out() DLMSPDU=service_error(time-elapsed)
ConfirmedService.cnf(DLMSPDU)

Locked

CC.T (T_ABORT.ind(ErrorNb) &
last_association()) |
(exist_abort_ind() &
not(last_association()))

DLMSPDU=service_error(provider-
communication-error)
ConfirmedService.cnf(DLMSPDU)
store_error(ErrorNb)
inactivate_dlms_context()

Locked

Decipher Decipher_OK stop_timer()
ConfirmedService.cnf(DLMSPDU)

Idle

Decipher not(Decipher_OK) stop_timer()
DLMSPDU=service_error(deciphering-error)
ConfirmedService.cnf(DLMSPDU)

Idle

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 40 – 62056-51 © CEI:1998

Tableau 12 – Tableau de gestion des services non sollicités côté Serveur

Etat initial Condition de déclenchement Ensemble d'actions Etat final

Idle Unsolicited.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP) &
check_client()

APSEPDU=build_tasepdu(UnsolicitedReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=1, APSEPDU)
build_evt(InformationReported)

Idle

Idle not(Unsolicited.req(_) &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP) &
check_client()) &
(exist_unsolicited_req() &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP)
 & not(check_client()))

T_ABORT.req(Strong=0)
$purge()

Locked

Locked Unsolicited.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP) &
address(CallingAddr, CalledList)

Connect_OK=server_connect(CallingAddr,
CalledList)

Connect

Connect Connect_OK APSEPDU=build_tasepdu(UnsolicitedReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=1, APSEPDU)
build_evt(InformationReported)

Alarm

Connect not(Connect_OK) build_evt(InformationNotReported) Locked

Alarm exist_unsolicited_req(Unsolicited.req
(DLMSPDU)) &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP) &
check_client()

APSEPDU=build_tasepdu(UnsolicitedReqAPSE,
DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=1, APSEPDU)
build_evt(InformationReported)

Alarm

Alarm not(exist_unsolicited_req()) |
exist_unsolicited_req() &
active_dlms_context(STSAP, DTSAP) &
check_tsap(STSAP, DTSAP) &
not(check_client())

$none() Dis

Dis last_association() T_ABORT.req(Strong=0) Locked

Dis not(last_association()) $none() Locked

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 41 –

Table 12 – Server end unsolicited service management table

Initial state Triggering condition Set of actions Final state

Idle Unsolicited.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
check_client()

APSEPDU=build_tasepdu(UnsolicitedReq
APSE, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=1,
APSEPDU)
build_evt(InformationReported)

Idle

Idle not(Unsolicited.req(_) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
check_client()) &
(exist_unsolicited_req() &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP)
 & not(check_client()))

T_ABORT.req(Strong=0)
$purge()

Locked

Locked Unsolicited.req(DLMSPDU) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
address(CallingAddr, CalledList)

Connect_OK=server_connect(CallingAddr,
CalledList)

Connect

Connect Connect_OK APSEPDU=build_tasepdu(UnsolicitedReq
APSE, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=1,
APSEPDU)
build_evt(InformationReported)

Alarm

Connect not(Connect_OK) build_evt(InformationNotReported) Locked

Alarm exist_unsolicited_req(Unsolicited.req
(DLMSPDU)) &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
check_client()

APSEPDU=build_tasepdu(UnsolicitedReq
APSE, DLMSPDU)
T_DATA.req(STSAP, DTSAP, Pr=1,
APSEPDU)
build_evt(InformationReported)

Alarm

Alarm not(exist_unsolicited_req()) |
exist_unsolicited_req() &
active_dlms_context(STSAP, DTSAP)
&
check_tsap(STSAP, DTSAP) &
not(check_client())

$none() Dis

Dis last_association() T_ABORT.req(Strong=0) Locked

Dis not(last_association()) $none() Locked

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 42 – 62056-51 © CEI:1998

Tableau 13 – Tableau de gestion des services non sollicités côté Client

Etat initial Condition de déclenchement Ensemble d'actions Etat final

Idle T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

Unsolicited.ind(DLMSPDU) Idle

Locked T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

set_dlms_context(ClientType)
Unsolicited.ind(DLMSPDU)

Locked

AC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

stop_timer()
Unsolicited.ind(DLMSPDU)
init_timer(T2)

AC.T

NC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

stop_timer()
Unsolicited.ind(DLMSPDU)
init_timer(T2)

NC.T

CC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

stop_timer()
Unsolicited.ind(DLMSPDU)
init_timer(T2)

CC.T

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 43 –

Table 13 – Client end unsolicited service management table

Initial state Triggering condition Set of actions Final state

Idle T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

Unsolicited.ind(DLMSPDU) Idle

Locked T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

set_dlms_context(ClientType)
Unsolicited.ind(DLMSPDU)

Locked

AC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

stop_timer()
Unsolicited.ind(DLMSPDU)
init_timer(T2)

AC.T

NC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

stop_timer()
Unsolicited.ind(DLMSPDU)
init_timer(T2)

NC.T

CC.T T_DATA.ind(STSAP, DTSAP,
APSEPDU) & check_tsap(STSAP,
DTSAP) & tasepdu_type(APSEPDU,
UnsolicitedReqAPSE) &
extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

stop_timer()
Unsolicited.ind(DLMSPDU)
init_timer(T2)

CC.T

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 44 – 62056-51 © CEI:1998

Tableau 14 – Signification des états mentionnés dans les tableaux précédents

Etat Signification

Locked Etat de démarrage commun au Client et au Serveur

AC.T (Authentication at the Client end &
waiting under Timer)

Sous le contrôle du réveil MVRT, l'utilisateur DLMS
Client attend une réponse d'authentification

IR.E (Initiate Request Expected) Attente d'une requête d'Initiate du Client après l'envoi
d'une réponse d'authentification du Serveur

NC.T (No Context & waiting under Timer) Sous le contrôle du réveil MVRT, l'utilisateur DLMS
Client attend une réponse d'initialisation

Con.E (Context Expected) Attente d'une réponse de l'utilisateur DLMS Serveur
après réception d'une requête d'Initiate du Client

CC.T (Confirmed service at the Client
end & waiting under Timer)

Sous le contrôle du réveil MVRT, l'utilisateur DLMS
Client attend une réponse de service confirmé

CS.E (Confirmed Service response
Expected)

Attente d'une réponse de l'utilisateur DLMS Serveur
après réception d'une requête de service confirmé du
Client

Idle La configuration du contexte DLMS est réussie (état
opérationnel d'attente de requêtes ou d'indications de
service)

D.Deciph Sous-état destiné à s'interroger sur la valeur
d'authentification reçue côté Client

Decipher Sous-état destiné à s'interroger sur le résultat d'une
opération de décryptage côté Client ou Serveur

Connect Sous-état destiné à s'interroger sur le résultat d'une
éventuelle connexion physique côté Client ou Serveur

Extract Sous-état destiné à s'interroger sur le résultat d'une
opération d'extraction et de décryptage côté Client ou
Serveur et sur la valeur d'authentification reçue côté
Serveur

Dis (Disconnection) Sous-état destiné à s'interroger sur l'opportunité d’une
éventuelle déconnexion physique

Alarm Sous-état réservé au traitement des requêtes de
services non sollicités en attente côté Serveur

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 45 –

Table 14 – Meanings of the states listed in the preceding tables

State Meaning

Locked Startup state common to the Client and the Server

AC.T (Authentication at the Client end &
waiting under Timer)

Under the control of the wakeup MVRT, the Client
DLMS user is waiting for an authentication response

IR.E (Initiate Request Expected) Wait for an Initiate request from the Client after
transmission of an authentication response by the
Server

NC.T (No Context & waiting under Timer) Under the control of the wakeup MVRT, the Client
DLMS user is waiting for an initialization response

Con.E (Context Expected) Wait for a response from the Server DLMS user after
reception of an Initiate request from the Client

CC.T (Confirmed service at the Client
end & waiting under Timer)

Under the control of the wakeup MVRT, the Client
DLMS user is waiting for a confirmed service response

CS.E (Confirmed Service response
Expected)

Wait for a response from the Server DLMS user after
reception of a confirmed service request from the Client

Idle DLMS context successfully configured (operational
state waiting for service requests or indications)

D.Deciph Sub-state intended to inquire about the authentication
value received at the Client end

Decipher Sub-state intended to inquire about the result of a
deciphering operation at the Client end or Server end

Connect Sub-state intended to inquire about the result of a
possible physical connection at the Client end or Server
end

Extract Sub-state intended to inquire about the result of an
extraction and deciphering operation at the Client end
or Server end and about the authentication value
received at the Server end

Dis (Disconnection) Sub-state intended to inquire about the appropriateness
of a possible physical disconnection

Alarm Sub-state reserved for the processing of pending
unsolicited service requests at the Server end

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 46 – 62056-51 © CEI:1998

Tableau 15 – Définition des procédures et des fonctions
classées par ordre alphabétique

Procédure ou fonction Définition

active_dlms_context(STSAP, DTSAP) Récupération du couple (STSAP, DTSAP) dans le
contexte DLMS actif mis à disposition

address(CallingAddr, CalledAddr) ou

address(CallingAddr, CalledList)

Mise à jour du contexte DLMS pour l'occurrence
courante de l'automate d'application

– cas du Client: récupération de l’adresse physique du
Client et de l’adresse physique du Serveur

– cas du Serveur: récupération de l’adresse physique
du Serveur et des adresses physiques des Clients à
partir de la variable d’administration
ForalArmClientList

build_evt(InformationReported) ou
build_evt(InformationNotReported) ou
built_evt(AbortIndication)

Coté Serveur, génération d'un événement externe
informant du résultat du traitement d'un message non
sollicité ou de la fin d'une association d'application. Il
convient de noter que la fonction $purge génère aussi
des événements de type AbortIndication automatique-
ment

build_tasepdu(APSEPDU_type,
DLMSPDU)

Construction d'une APSEPDU de type APSEPDU_type
après cryptage éventuel. Dans le cas particulier où le
type est AuthenticationReqAPSE,
AuthenticationRespAPSE, InitiateReqAPSE,
InitiateRespAPSE ou UnsolicitedReqAPSE, la fonction
récupère les informations manquantes dans le contexte
DLMS actif. Lorsque le type est
AuthenticationRespAPSE, il y a aussi mémorisation du
nombre aléatoire généré pour le calcul de la clef dédiée

check_client() Vérification que le type du Client contenu dans le
contexte DLMS actif correspond au destinataire de
l'alarme à délivrer. Dans le cas contraire, vérification
que ce destinataire est référencé par la variable
d’administration ForAlarmClientList en association avec
l’adresse physique du Client courant

check_client_type(DTSAP, ClientType) Pour un VDE repéré par son DTSAP, vérification de
l'identifiant du type du Client à partir de la variable
d'administration CallingIdentifierList

check_tsap(STSAP, DTSAP) Vérification qu'un DTSAP est connu du Serveur et qu'un
couple (STSAP, DTSAP) correspond à l'occurrence
courante de l'automate d'application

client_connect(CallingAddr, CalledAddr) La définition de cette fonction dépend du support de
communication utilisé et doit donc être précisée dans
chaque cas

convert(APSEPDU, DLMSPDU) Extraction sans décryptage d'une DLMSPDU à partir
d'une APSEPDU

d_decipher(AuthenticationRespAPSE,
DKey)

Du côté Client, décryptage des valeurs cryptées
contenues dans une AuthenticationRespAPSE,
vérification de la valeur du nombre décrypté, puis calcul
et mémorisation de la clef dédiée

decipher(APSEPDU, DLMSPDU) Extraction et décryptage d'une DLMSPDU en fonction
du mode de cryptage du contexte d'application

dlmspdu_type(DLMSPDU, initiate) ou
dlmspdu_type(DLMSPDU, initiate-error)
ou
dlmspdu_type(DLMSPDU, confirmed-
service) ou
dlmspdu_type(DLMSPDU, confirmed-
error)

Selon le cas, vérification qu'une DLMSPDU est de type:
– InitiateResponse

– ConfirmedServiceError sur erreur du service Initiate

– ConfirmedServiceResponse, GetStatusResponse,
GetNameListResponse,
GetVariableAttributeResponse, ReadResponse ou
WriteResponse

– ConfirmedServiceError sur erreur d'un service autre
que Initiate

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 47 –

Table 15 – Definition of the procedures and functions
classified in alphabetical order

Procedure or function Definition

active_dlms_context(STSAP, DTSAP) Retrieval of the (STSAP, DTSAP) pair in the active
DLMS context made available

address(CallingAddr, CalledAddr) or
address(CallingAddr, CalledList)

Updating of the DLMS context for the current
occurrence of the application controller

– case of the Client: extraction of the Client physical
address and extraction of the Server physical
address

– case of the Server: extraction of the Server physical
address and extraction of the Client physical
addresses from the management variable
ForAlarmClientList

build_evt(InformationReported) or
build_evt(InformationNotReported) or
built_evt(AbortIndication)

At the Server end, generation of an external event
reporting the result of the processing of an unsolicited
message or of the end of an association application. It
should be noted that the $purge function also generates
events of the type AbortIndication automatically

build_tasepdu(APSEPDU_type,
DLMSPDU)

Building of an APSEPDU of the type APSEPDU_type
after ciphering, if any. In the particular case where the
type is AuthenticationReqAPSE,
AuthenticationRespAPSE, InitiateReqAPSE,
InitiateRespAPSE or UnsolicitedReqAPSE, the function
retrieves the missing information in the active DLMS
context. If the type is AuthenticationRespAPSE, there is
also a storing of the random number used for the
generation of the dedicated key

check_client() Check that the Client type contained in the active DLMS
context corresponds to the addressee of the alarm to be
delivered. In the opposite case, check that this
addressee is included in the management variable
ForAlarmClientList in association with the physical
address of the current Client

check_client_type(DTSAP, ClientType) For a VDE identified by its DTSAP, check of the
identifier of the Client type from the management
variable CallingIdentifierList

check_tsap(STSAP, DTSAP) Check that a DTSAP is known by the Server and that a
(STSAP, DTSAP) pair corresponds to the current
occurrence of the application controller

client_connect(CallingAddr, CalledAddr) The definition of this function depends on the
communication medium used and shall therefore be
clarified in each case

convert(APSEPDU, DLMSPDU) Extraction without deciphering of a DLMSPDU from an
APSEPDU

d_decipher(AuthenticationRespAPSE,
DKey)

At the Client end, deciphering of values contained in an
AuthenticationRespAPSE, check of the deciphered
number value, then generation and storing of the
dedicated key

decipher(APSEPDU, DLMSPDU) Extraction and deciphering of a DLMSPDU according to
the ciphering mode of the application context

dlmspdu_type(DLMSPDU, initiate) or
dlmspdu_type(DLMSPDU, initiate-error)
or
dlmspdu_type(DLMSPDU, confirmed-
service) or
dlmspdu_type(DLMSPDU, confirmed-
error)

Check that a DLMSPDU is one of the type:
– InitiateResponse

– ConfirmedServiceError on an Initiate service error

– ConfirmedServiceResponse, GetStatusResponse,
GetNameListResponse,
GetVariableAttributeResponse, ReadResponse or
WriteResponse

– ConfirmedServiceError on another service than
Initiate error

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 48 – 62056-51 © CEI:1998

Tableau 15 (fin)

Procédure ou fonction Définition

exist_abort_ind() Vérification de l'existence d'un événement de type
T_ABORT.ind(ErrorNb)

exist_unsolicited_req() ou
exist_unsolicited_req(Unsolicited.req(DL
MSPDU))

Vérification de l'existence d'un événement de type
Unsolicited.req(DLMSPDU) ou consommation d'un
événement de type Unsolicited.req(DLMSPDU)

extract_authentication_req(APSEPDU,
ClientType)

Du coté Serveur, à partir d'une APSEPDU de type
AuthenticationReqAPSE, extraction du type du Client et
de la valeur cryptée, et décryptage de cette dernière

extract_initiate_req(APSEPDU, AppCtx,
CallingAddr, DLMSPDU)

Du coté Serveur, à partir d'une APSEPDU de type
InitiateReqAPSE, extraction, décryptage et vérification
de la valeur du nombre décrypté, du contexte
d'application proposé AppCtx, de l’adresse physique du
Client Appelant CallingAddr et d'une DLMSPDU avec
décryptage en fonction du mode de cryptage du
contexte d'application

extract_initiate_resp(APSEPDU, AppCtx,
DLMSPDU)

A partir d'une APSEPDU de type InitiateRespAPSE,
extraction du contexte d'application négocié AppCtx et
d'une DLMSPDU avec décryptage en fonction du mode
de cryptage du contexte d'application

extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

A partir d'une APSEPDU de type UnsolicitedReqAPSE,
extraction du type du Client cible et d'une DLMSPDU
avec décryptage en fonction du mode de cryptage du
contexte d'application

inactivate_dlms_context() Désactivation du contexte DLMS actif correspondant à
l'occurrence courante de l'automate d'application

init_timer(T2) Armement du réveil MVRT avec la valeur de la variable
T2

last_association() Vérification que l'association d'application courante est
bien la dernière

server_connect(CallingAddr, CalledList) La définition de cette fonction dépend du support de
communication utilisé et doit donc être précisée dans
chaque cas

service_error(application-reference-type)
ou
service_error(initiate-type)

Construction de la DLMSPDU de type
ConfirmedServiceError qui caractérise une erreur
repérée au niveau application-reference ou initiate du
type ServiceError (voir CEI 61334-4-41)

set_dlms_context(AppCtx, STSAP,
DTSAP, ClientType, CallingAddr) ou
set_dlms_context(ClientType)

Mise à jour et activation du contexte DLMS pour
l'occurrence courante de l'automate d'application

– cas du Serveur: si le contexte d'application proposé
AppCtx n'appartient pas à la variable d'administration
ApplicationContextNameList, c'est la valeur 0 qui est
utilisée. Les autres informations nécessaires sont
extraites de la variable d'administration
ConfidentialItem

– cas du Client: seul le type du Client est remonté

stop_timer() Désarmement du réveil MVRT

store_error(ErrorNb) Conservation du dernier numéro d'erreur fatale ErrorNb
dans la variable d'administration FatalError

tasepdu_type(APSEPDU,
APSEPDU_type)

Vérification qu'une APSEPDU est de type
APSEPDU_type

time_out() Déclenchement du réveil MVRT

update_dlms_context(AppCtx, DKey) Mise à jour du contexte DLMS actif du Client pour
l'occurrence courante de l'automate d'application avec
la valeur du contexte d'application négocié AppCtx et de
la clef dédiée DKey

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 49 –

Table 15 (concluded)

Procedure or function Definition

exist_abort_ind() Check of the existence of an event of the type
T_ABORT.ind(ErrorNb)

exist_unsolicited_req() or
exist_unsolicited_req(Unsolicited.req
(DLMSPDU))

Check of the existence of an event of the type
Unsolicited.req(DLMSPDU) or consumption of an event
of the type Unsolicited.req(DLMSPDU)

extract_authentication_req(APSEPDU,
ClientType)

At the Server end, from an APSEPDU of
AuthenticationReqAPSE type, extraction of Client type
and ciphered value, then deciphering of this value

extract_initiate_req(APSEPDU, AppCtx,
CallingAddr, DLMSPDU)

At the Server end, from an APSEPDU of the type
InitiateReqAPSE, extraction, deciphering and check of
the value of the deciphered number, of the proposed
application context AppCtx, of the physical address of
the Caller Client CallingAddr and of a DLMSPDU with
deciphering according to the ciphering mode of the
application context

extract_initiate_resp(APSEPDU, AppCtx,
DLMSPDU)

From an APSEPDU of the type InitiateRespAPSE,
extraction of the negotiated application context AppCtx
and of a DLMSPDU with deciphering according to the
ciphering mode of the application context

extract_unsolicited_req(APSEPDU,
ClientType, DLMSPDU)

From an APSEPDU of the type UnsolicitedReqAPSE,
extraction of the target Client type and of a DLMSPDU
with deciphering according to the ciphering mode of the
application context

inactivate_dlms_context() Inactivation of the active DLMS context corresponding
to the current occurrence of the application controller

init_timer(T2) Setting of the wakeup MVRT with the value of the
variable T2

last_association() Check that the current application association is the last
one

server_connect(CallingAddr, CalledList) The definition of this function depends on the
communication medium used and shall therefore be
clarified in each case

service_error(application-reference-type)
or
service_error(initiate-type)

Building of the DLMSPDU of the ConfirmedServiceError
type that characterizes a ServiceError type error
detected at the application-reference or initiate level
(see IEC 61334-4-41)

set_dlms_context(AppCtx, STSAP,
DTSAP, ClientType, CallingAddr) or
set_dlms_context(ClientType)

Updating and activation of the DLMS context for the
current occurrence of the application controller
– case of the Server: if the proposed application

context AppCtx does not belong to the management
variable ApplicationContextNameList, the value 0 is
used. The other necessary information is extracted
from the management variable ConfidentialItem

– case of the Client: only the Client type is sent up

stop_timer() Stopping of the wakeup MVRT

store_error(ErrorNb) Storing of the last fatal error number ErrorNb in the
management variable FatalError

tasepdu_type(APSEPDU,
APSEPDU_type)

Check that an APSEPDU is of the type APSEPDU_type

time_out() Triggering of the wakeup MVRT

update_dlms_context(AppCtx, DKey) Updating of the active DLMS context of the Client for
the current occurrence of the application controller with
the value of the negotiated application context AppCtx
and of the dedicated key Dkey

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 50 – 62056-51 © CEI:1998

4.13 Répertoire et traitement des erreurs

Les erreurs sont répertoriées selon le codage suivant:

EA erreur de la sous-couche Application

– séparateur

N numéro de l'erreur

F erreur fatale

Tableau 16 – Tableau récapitulatif des erreurs

EA-1 APSEPDU incorrecte (erreur de codage ASN.1)

Cette erreur conduit à simplement ignorer le message

EA-2 Erreur d'identification du Serveur ou type du Client non autorisé

Cette erreur ne peut se produire que côté Serveur. Elle conduit à générer une
confirmation négative de service

EA-3 Erreur d'adressage (DTSAP inconnu)

Cette erreur ne peut se produire que côté Serveur. Elle conduit à générer une
confirmation négative de service

EA-4 Erreur de décryptage côté Client

Cette erreur conduit à générer une confirmation négative de service

EA-5 Erreur de décryptage côté Serveur

Cette erreur conduit à simplement ignorer le message

EA-6 Expiration du délai T2 sans qu'aucune PDU correcte n'ait été reçue

Cette erreur ne peut se produire que côté Client. Elle conduit à générer une
confirmation négative de service

Les erreurs non fatales ne sont pas signalées.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 51 –

4.13 List and processing of errors

The errors are listed with the following codes:

EA error in the Application sub-layer

– separator

N number of the error

F fatal error

Table 16 – Error summary table

EA-1 APSEPDU incorrect (ASN.1 encoding error)

This error simply causes the message to be ignored

EA-2 Server identification error or Client type not authorized

This error can only occur at the Server end. It leads to the generation of a negative
service confirmation

EA-3 Addressing error (unknown DTSAP)

This error can only occur at the Server end. It leads to the generation of a negative
service confirmation

EA-4 Deciphering error at the Client end

This error leads to the generation of a negative service confirmation

EA-5 Deciphering error at the Server end

This error simply causes the message to be ignored

EA-6 Expiry of the period T2 without any correct PDU being received

This error can only occur at the Client end. It leads to the generation of a negative
service confirmation

Non-fatal errors are not reported.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 52 – 62056-51 © CEI:1998

Annexe A
(normative)

Langage de spécification

A.1 Vocabulaire et règles de fonctionnement

Pour décrire sans ambiguïté le rôle de chaque sous-couche, la spécification utilise un
formalisme en tableaux modélisant le comportement réel par un automate à nombre fini
d'états.

A chaque automate correspond un unique tableau logique qui peut éventuellement être
représenté sous la forme de plusieurs tableaux physiques. Ce découpage se justifie lorsque le
tableau logique est particulièrement important.

A chaque occurrence d'automate correspond une instance (copie active distincte) du tableau
logique de l'automate de référence.

Chaque tableau physique est composé de lignes appelées lignes d'état. Chaque ligne d'état
décrit la condition de déclenchement (colonne 2) pour que la machine passe d'un état initial
(colonne 1) à un état final (colonne 4) en exécutant un ensemble d'actions (colonne 3).

Le premier état initial est l'état de démarrage de l'automate. Cet état est unique; il est
particularisé au moyen de l'attribut souligné.

Un état d'arrêt de l'automate est un état final pour lequel aucune ligne d'état n'est définie avec
cet état comme état initial. Un automate est infini lorsqu'il ne possède aucun état d'arrêt. Un
automate fini peut posséder un ou plusieurs états d'arrêt. Ces états sont également
représentés avec l'attribut souligné. Compte tenu de cette convention, l'ordre dans lequel sont
présentés les états dans un tableau physique n'a aucune importance.

Cette même règle s'applique lorsque plusieurs lignes d'état référencent le même état initial car
les conditions de déclenchement sont toujours exclusives les unes des autres. L'ordre des
lignes d'un tableau physique n'est donc guidé que par de simples considérations de
présentation. Il est cependant logique de commencer par décrire les transitions de l'état de
démarrage.

Un ensemble d'actions d'une ligne d'état doit être considéré comme une section critique (c'est-
à-dire une séquence non interruptible). Les actions qui y sont décrites doivent être exécutées
dans l'ordre séquentiel où elles sont écrites. Une action est définie par un appel à une
procédure nommée instanciée avec une liste de zéro, un ou plusieurs paramètres entre
parenthèses. Toute procédure nommée référencée doit faire l'objet d'une description séparée.
Il existe cependant deux actions prédéfinies: l'affectation = et l'action vide $none() (absence
d'action).

La condition de déclenchement associée à une ligne d'état peut éventuellement être composée
de plusieurs sous-conditions. L'évaluation d'une condition de déclenchement composée passe
toujours par l'évaluation de toutes les sous-conditions qu'elle contient. Ainsi, l'ordre d'écriture
des sous-conditions est sans importance.

Les opérateurs supportés pour exprimer une condition composée sont, d'une part, les
opérateurs logiques & (et logique), | (ou logique), not() (non logique) et, d'autre part, les
opérateurs de comparaison (<, >, ≤, ≥, = et <>).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 53 –

Annex A
(normative)

Specification language

A.1 Vocabulary and operating rules

To describe the role of each sub-layer unambiguously, the specification uses a table formalism
modelling the real behaviour by a controller with a finite number of states.

To each controller corresponds a unique logic table; this logic table may be broken down into
several physical tables, if it is particularly large.

To each controller occurrence corresponds an instance (distinct active copy) of the logic table
of the reference controller.

Each physical table consists of lines known as state lines. Each state line describes the
triggering condition (column 2) for the machine to pass from an initial state (column 1) to a final
state (column 4) by executing a set of actions (column 3).

The first initial state is the startup state of the controller. This state is unique; it is particularized
by means of the underlined attribute.

A stop state of the controller is a final state for which no state line is defined with this state as
initial state. A controller is infinite when it does not have a stop state. A finite controller may
have one or more stop states. These states are also represented with the attribute underlined.
This convention means that the order in which the states are presented in a physical table is
not important.

The same rule applies when several state lines refer to the same initial state, because the
triggering conditions are always mutually exclusive. The order of the lines in a physical table is
therefore governed by presentation considerations only. Nevertheless, it is logical to begin by
describing the transitions of the startup state.

A set of actions in a state line shall be considered as a critical section (i.e. an uninterruptible
sequence). The actions described there shall be executed in the order in which they are
written. An action is defined by an invocation of a named procedure instantiated with a zero list,
one or more parameters between parentheses. All referenced named procedures shall be the
subject of separate descriptions. However, there are two predefined actions: assignment = and
empty action $none() (no action).

The triggering condition associated with a state line may be composed of several sub-
conditions. The assessment of a composite triggering condition always involves the
assessment of all the sub-conditions that it contains. Therefore, the order in which the sub-
conditions are written is unimportant.

The operators supported for expressing composite conditions are the logic operators & (logic
and), | (logic or), not() (logic no), and the comparison operators (<, >, ≤, ≥, = and <>).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

– 54 – 62056-51 © CEI:1998

Il existe deux types de condition de déclenchement.

Une condition de type simple est, par définition, évaluée instantanément. Elle peut
éventuellement être composée mais, dans ce cas, toutes les sous-conditions sont de type
simple. Une fonction nommée booléenne est un exemple de condition de type simple. Toute
fonction nommée booléenne référencée doit faire l'objet d'une description séparée.

Une condition de type événementiel exprime l'attente d'un événement. Elle peut
éventuellement être composée de plusieurs sous-conditions événementielles ou simples.

Lorsque l'évaluation d'une condition de déclenchement conduit à un résultat vrai, la condition
se trouve réalisée. La réalisation d'une condition de déclenchement conduit toujours à une
transition d'état.

Un événement peut être défini comme étant un élément contribuant à la réalisation d'une
condition de déclenchement de type événementiel.

Lorsque un événement est inclus dans une condition de déclenchement de type événementiel
qui se trouve réalisée, il est automatiquement consommé. Un événement ne peut être
consommé qu'une seule fois.

Tout événement survenant lorsque l'occurrence d'automate qui est susceptible de le
consommer se trouve dans un état où cette consommation est impossible est stocké
chronologiquement dans une zone appelée file inter-automate.

Ainsi, chaque automate dispose d'une unique file qu'il partage entre ses propres occurrences
d'automate. La taille de cette file est supposée quasi infinie; son organisation et sa gestion ne
sont pas décrites ici. Toutefois, il convient de noter qu'une purge partielle de la file (c'est-à-dire
liée aux seuls événements concernant l'occurrence d'automate courante) est automatiquement
effectuée pour toute transition d'état partant de l'état de démarrage.

Il doit exister également un mécanisme d'auto-purge conduisant à la suppression automatique
des événements entrants et manifestement non consommables. En outre, il existe une
procédure nommée prédéfinie $purge() qui correspond à l'action de purge totale de la file inter-
automate courante. Toutes les occurrences de l'automate correspondant se retrouvent alors
dans l'état de démarrage.

La production d'événements est assurée par certaines des actions décrites dans un ensemble
d'actions associé à une ligne d'état. Un événement interne ne peut être consommé que par
l'automate qui l'a produit. Un événement externe est toujours consommé par un autre
automate que celui qui l'a produit.

Il convient de noter que l'absence d'un événement (exprimé par une sous-condition de type
événementiel encapsulée dans l'opérateur logique not()) est toujours une sous-condition de
type simple.

Lorsque, pour un état initial, il existe une ligne d'état où la condition de déclenchement est d'un
certain type (simple ou événementiel), alors toutes les lignes d'état ayant le même état initial
doivent posséder des conditions de déclenchement du même type.

Lorsque ce type est simple, l'état initial est appelé sous-état. Un sous-état est particularisé au
moyen de l'attribut italique. Il est transitoire et peut toujours être éliminé; sa présence dans un
tableau physique n'est justifiée que par un souci de clarté de la présentation. Dans le cas
particulier d'un sous-état de démarrage, une condition particulière a été prédéfinie; il s'agit de
la condition $true(), qui est toujours vraie.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

62056-51 © IEC:1998 – 55 –

There are two types of triggering conditions.

A simple condition is, by definition, assessed instantaneously. It may be composite but, in such
cases, all the sub-conditions shall be of the simple type. A boolean named function is an
example of a simple condition. All referenced boolean named functions shall be the subject of
separate descriptions.

An event condition expresses the wait for an event. It may be composed of several event or
simple sub-conditions.

When the assessment of a triggering condition gives a true result, the condition is satisfied.
The satisfaction of a triggering condition always leads to a state transition.

An event can be defined as an element contributing to the satisfaction of an event-type
triggering condition.

When an event is included in an event-type triggering condition which is satisfied, it is
automatically consumed. An event can be consumed only once.

Any event that occurs when the controller occurrence that is likely to consume it is in a state
where this consumption is impossible is stored chronologically in an area known as the inter-
controller queue.

Each controller thus has a single queue that it shares among its own controller occurrences.
The size of this queue is assumed to be quasi-infinite; its organization and its management are
not described here. However, it should be noted that a partial purge of the queue (i.e. related
only to the events concerning the current controller occurrence) is automatically carried out for
any state transition starting from the startup state.

There must also be a self-purge mechanism for automatic deletion of incoming events that are
manifestly not consumable. Moreover, there is a predefined named procedure $purge() which
corresponds to the action of total purge of the current inter-controller queue. All the
occurrences of the corresponding controller then return to the startup state.

Events are produced by some of the described actions in a set of actions associated with a
state line. An internal event can be consumed only by the controller that has produced it. An
external event is always consumed by a controller other than the one that has produced it.

It should be noted that the absence of an event (expressed by an event sub-condition
encapsulated in the logic operator not()) is always a simple sub-condition.

When, for an initial state, there is a state line where the triggering condition is of a certain type
(simple or event), then all the state lines having the same initial state shall have triggering
conditions of the same type.

When this type is simple, the initial state is called sub-state. A sub-state is particularized by
means of the italic attribute. It is transient and can always be removed; its presence in a
physical table is justified only by improved clarity of presentation. In the special case of a
startup sub-state, a special condition, $true(), has been predefined, which is always true.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TS 62

05
6-5

1:1
99

8

https://iecnorm.com/api/?name=ccb1b104066e088effcca574bb3c3834

