IEC TR 62453-42:2016-04(en)

IEC IEC TR 62453-42

®

Edition 1.0 2016-04

TECHNICAL

R

EPORT

<O(b’ “ colour

inside

Field device tool (FDT) interface specificatio
l 42: Object model integration profile — Q) mon Language Infrastructu

Pari

pn]

e

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2016 IEC, Geneva, Switzerland

your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch

Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

About|the IEC
The Injternational Electrotechnical Commission (IEC) is the leading global organization that prepares and pu
Interngtional Standards for all electrical, electronic and related technologies.

Aboutl IEC publications
hnical content of IEC publications is kept under constant review by the IEC. Please makesure that you hg
latest ¢dition, a corrigenda or an amendment might have been published.

The t

IECC
The
bibliog
Techni
docum|
iPad.

talogue - webstore.iec.ch/catalogue

tand-alone application for consulting the entire
aphical information on IEC International Standards,
cal Specifications, Technical Reports and other
ents. Available for PC, Mac OS, Android Tablets and

IEC pyblications search - www.iec.ch/searchpub

The a
variety|
commi
and wi

vanced search enables to find IEC publications by a

of criteria (reference number, text, technical
Itee,...). It also gives information on projects, replaced
hdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay u
details

b to date on all new IEC publications. Just Published
all new publications released. Available online ahd

also orjce a month by email.

Electropedia - www.electropedia.org

The world's leading online\dictionary of electron
electrical terms containing’20 000 terms and definit
English and French, with equivalent terms in 15 ad
languages. Also known as the International Electrote|
Vocabulary (IEV)©nline.

IEC Glossary--'std.iec.ch/glossary

65 000 electrotechnical terminology entries in Engli
French-extracted from the Terms and Definitions clg
IEC publications issued since 2002. Some entries hav
collected from earlier publications of IEC TC 37, 77,

CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publicg
need further assistance, please contact the Customer
Centre: csc@iec.ch.

lishes

ve the

c and
ons in
Hitional
thnical

h and
use of
e been
B6 and

tion or
bervice

mailto:info@iec.ch
http://www.iec.ch/
http://webstore.iec.ch/catalogue
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://std.iec.ch/glossary
http://webstore.iec.ch/csc
mailto:csc@iec.ch
https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42

Edition 1.0 2016-04

TECHNICAL
REPORT

“ colour
inside

Field device tool (FDT) interface specification—~<
Part 42: Object model integration profile - Gommon Language Infrastructufe

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.40; 35.100.05; 35.110 ISBN 978-2-8322-3226-2

Warning! Make sure that you obtained this publication from an authorized distributor.

® Registered trademark of the International Electrotechnical Commission

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-2- IEC TR 62453-42:2016 © IEC 2016

CONTENTS

O T T 1 PP 19
LN 75 16 L@ L] P 21
1 S o0 o = Y0P 23
2 NOIrMAtiVE FEIEIENCES. ... e e e e 23
3 Terms, definitions, abbreviations and conventions ... 23
3.1 Terms and definifioNS 23
3.2 A DI EVIAtIONS .. 30
3.B CONVENTIONS ...t e en e (e ...30

4 mplementation ConCepto N ...31
4.1 Technological orientation..............oooi O .31
4.p Implementation of abstract FDT object model31
4.8 FDT Frame Application (FA) ... O T ...32
4.4 DTM BuUSINESS LOGIC....iuuiiiiiiiiiiiiiiiciic e ...33
1.4.1 GeNETAl e e ...33
1.4.2 Implementation of DTM, DTM Device Type, and Device Ident Info............. ...34
1.4.3 Implementation of DTM device parameter access«/...........ccooevviiiiiiiininnn. ...35
1.4.4 Process Data INfOooviiiiiii S ...35
.4.5 Diagnostic Data INfo........ccooiiiiii ...36
1.4.6 Network Management INfo...........ooo el), ...36
1.4.7 FUNCtion INfo. ... e .. 37
1.4.8 RePOrt INfO. .o .37
1.4.9 Document Reference INfo... s e .37

4.6 Implementation of DTM FuncCtionsS.o .37
1.5.1 DTM User Interface ... ol e .37
1.5.2 Function access CONIrOL.o e ...38
1.5.3 Handling of standard Ul elements in modeless DTM Ul interfaces38
1.5.4 Command fURCHIONS ..o e ...39

4.6 USer Management . e ...39
1.6.1 T2 Lo =T PP ...39
1.6.2 MU EUSEr @CCESS i ...39
1.6.3 US B dEVEIS .o ...39

4. Implementation of FDT and system topology.......c.ccoeviiiiiiiiiiiii e ...42
.71 (=Y o= = ...42
1.7.2 Topology ManagemMent e ...43

1, 7.3 Data exchange between Frame Applications ...45

4.8 Implementation of Modularity..........cccooiiiiii i 45
4.9 Implementation of FDT communication ... 45
4.9.1 Handling of communication requests ..o 45
4.9.2 Handling of communication ©rrorscooviiiii e 46
4.9.3 Handling of 1oss of connection...... ... 46
4.9.4 Point—to-point communication..............cooiiiii i 46
4.9.5 Nested communication 47
4.9.6 Dynamic changes in Network 47
410 1dentifiCation ... 48
4.10.1 DTM instance identification ... 48
4.10.2 Hardware identification............ooiiiii 48

4.11 Implementation of DTM data persistence and synchronization.............................. 49

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -3-

4.11.1 Persistence OVErVIEW e 49
4.11.2 Relations of DTMDataSet.......coouiiiiiii e 50
4.11.3 DTMDataSet StrUCTUrE......ceei e 51
4.11.4 Types of persistent DTM data.........oooiiiii e 52
4.11.5 Data synchronization..........cooiiiii i 52
4.12 Implementation of access to device data and 10 information 53
4.12.1 Exposing device data and IO information ... 53
4.12.2 Data acCess CONTIOl ... e 54
4.12.3 Routed 10 information ... 56
122 Comparison of DTV and JEVICE TaTa --rvovvremorornreermsmamseneersaaaaeeegnes ...56
1.12.5 Support for multirole deviCes ... N .57
4.N13 Clone of DTM iNStancCesc.ooiuiiiiiiiiii e S T ...58
1.13.1 GENETAl oo e ...58
1.13.2 Replicating a part of topology with Parent DTM and a subset ofjits Child
[N 1Y P PUSPPRN S SUPPRTR ...58
1.13.3 Cloning of a DTM without its children.............ccooo G ...58
1.13.4 Delayed CloNiNg ...c.ooviiiiiii e ST ...58
4014 LifeCYCle CONCEPES . ceie i T e e ...59
405 Audittrail ..o S ...59
1.15.1 LY o= - ...59
1.15.2 Audit trail events ... S ...59
5 [echnical CoONCEPtS ... O Y ...60
5.1 LT a1 - Y P ...60
5P Support of .NET Common Language-Runtime versionsccccovvieeiieiinnnn. 62
b.2.1 GENETAL 1ot R e 62
b.2.2 Rules for FDT .NET assemblies. ... 62
b.2.3 [Y S 62
b.2.4 Frame Application PUIES. ... 62
b.2.5 FDT CLR extension CONCept......ocuiiiiiiiii e 63
5.B Support for 32-bit(and 64-bit target platformscooiiiiiiiii 63
5.4 Object activation and deactivation ..o, ...64
b.4.1 L T= T a1 T PP 64
b.4.2 Assembly loading and object creation.............cooiiiiiii i, ...64
b.4.3 ASSEMDIlY depPendenCiesc.oiuiiiiiii i ...65
b.4.4 Shared asSemMbBIIES. . ..o ...65
b.4.5 Object deactivation and unloadingcoooeiiiiiiiiiiii ...66
5.p D E=) 21474 0 1= Y- T PP ...67
9.5 L€ 1= =7 - | 67
5.5.2 Serialization / deserialization ..o 67
5.5.3 SUPPOIt Of XML ..o e 68
5.5.4 Optional elementso 68
5.5.5 R 68
5.5.6 L0 Lo o 68
5.5.7 B QUALS e 69
5.5.8 S £ PP 69
5.5.9 NUIDIE . e e e e e e 70
5.5.10 ENUMEration ... e 70
5.5.11 Protocol-specific datatypes.o 70
5.5.12 CUSTOM datatyPeS .o 72

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-4 - IEC TR 62453-42:2016 © IEC 2016

5.6 General object INteraCtion.....o 73
5.6.1 LY 1= = | 73
5.6.2 Decoupling Of FDT ODbjJECES....uitiiiiiiie e 73
5.6.3 Parameter interchange with .NET datatypescoooiii 74
5.6.4 Interaction Patterns ..o 74
5.6.5 PO S e e 74
5.6.6 Synchronous Methods e 74
5.6.7 ASYNChronous MethOds e 75
5.6.8 EVveNnts pattern ..o 81
b.6.9 EXCEPTION MANANNG ..o e e e e e e e e e ne e omns ...82

5.F TRrEAAING et T ...86
b.7.1 INtrodUCHION.....coeii i S ...86
b.7.2 Threading rules eV ...87

5.B Localization support ..o A BT ...88
5.8.1 GENETAL ot e ...88
b.8.2 Access to localized resources and culture-dependent fuaetions................. ...89
b.8.3 Handling of cultures ..o e, ...89
b.8.4 Switching the User Interface language..........c.o. (g ...90

5P DTM User Interface implementation..............ooo 88, ...90
5.9.1 GENETAL i R ...90
b.9.2 RESIZING v ...90
5.9.3 Private dialogscovvnieiiii S ...92

510 DTM User Interface hosStingccuoieiitia NN e ...92
5.10.1 LT 1= - | P ...92
b.10.2 Hosting DTM WPF CoNntrols o e ...92
5.10.3 Hosting DTM WinForms coORtrolsooooiiiiiiii e ...93

5.11 Static Function implementation ..o ...94

D12 PerSiSteNCE . e e ...96
b.12.1 OVEIVIBW . i ettt et ...96
5.12.2 Data format. .97
b.12.3 Adding / reading / writing / deleting of data97
5.12.4 Searching for data......ccoiiiiii ...99

5.3 Compartisen of DTM and device data100
b.13.1 Comparison of datasets using IDeviceData / linstanceData....................... .100
b.13.2 Comparison of datasets using IComparisoncooeeiiiiiiiiiiiiiiiieeeeen .101

TN (Sl N = T3 1 o o [PP .101

5.6/ Report generation101
0.15.1 [T=Y == 1 101
5.15.2 (R o o] o A 47/ ¢ 1= P 102
5.15.3 DTM report data format ... 102
5.15.4 Report data eXChange ..o 103

LT G S = Y o1 U | 1 103
5.16.1 LT 1= - | 103
5.16.2 Strong naming of assemblies. ..., 103
5.16.3 Identification of Origino 104
5.16.4 COdE ACCESS SECUNITY ..iuitii i e aas 104
5.16.5 Validation of FDT compliance certificationooon 104
FDT Objects and iNterfaces. ... e 106

6.1 GBNEBIAL. .. 106

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -5-

6.2 Frame Application ... 107
6.3 DTM BUSINESS LOGIC. . uiiiiitiiiiiiie e e e 109
6.3.1 DTM BL iNTEITACES . iviiiiiieie e 109
6.3.2 State machines related to DTM BL ..., 114
6.3.3 State machine of instance data...............coooiii 120
6.4 DTM User Interface ..o e 123
6.5 Communication Channel....... ..o 124
6.6 Availability of interface methodscooiiiii i 125
N o B o F-=1 2= 14 o 1= Y- 126
7 (=Y =Y =Y . .126
7. DatatypPes — BaSe ... i N 127
7.B General datatypPes ..o a L 127
7.4 Datatypes — DtmInfo / Typelnfo128
7.b Datatypes — DeviceldentInfo..........coooiiiiiiii o e .130
7.p Datatypes for installation and deployment..............coo @V, .135
y.6.1 Datatypes — SetupManifest..........coocoeiiiiiiiiiin e .135
y.6.2 Datatypes — DtmManifestcoooviiiiiiii e A S, .136
y.6.3 Datatypes — DtmUiManifest ... g .137
7. Datatypes — Communicationccoeiiiiiinin e N 137
7.8 Datatypes — BusCategorycoooviiieiiiinis O e, .143
7.p Datatypes — Device / Instance Data ... i .143
y.9.1 General ..o e Y .143
y.9.2 Datatypes used in reading and writing DeviceData.............c..coooiiiniinn. .150
7.10 Datatypes for export and import...... @i .o i .152
y.10.1 Datatypes — TopologylmportEXport152
y.10.2 Datatypes — ImportExportDataset ..o .153
7.11 Datatypes for process data“description154
y.11.1 Datatypes — ProcessDatalnfo154
y.11.2 Datatypes — Pro€ess Imageo .159
7.12 Datatypes — Address information160
7.13 Datatypes — NetworkDatalnfocooiiiiiii .164
7.4 Datatypes £ DTM fuNCIONS. ..o .166
7.5 Datatypes= DTM MeESSAQEScuiiiiii it e e e .168
7.16 Datatypes for delegation of DTM Ul dialog actionsccccoeiiiiiiiiiiniiinennn, .170
7.17 Datatypes — CommunicationChannellnfo............oooiiiiiii e, .170
7.18 (Datatypes — Hardwareldentification and scanningc.ccoocoviiiiiiinicneineenn, A72
y <181 GBNEIAl . e e 72
7.18.2 Datatypes — DeviceScanInfo... ..o 172
7.18.3 Example — Hardwareldentification and scanning for HARTc.cooeiienie, 173
7.19 Datatypes — DTM report tyPesS ... 174
7.20 Information related to device modules in a monolithic DTMc.coooiiiiiineennen. 174
8 WO OW S ot 176
8.1 LT T - Y PP 176
8.2 Instantiation, loading and releasecooviiiiiii i 176
8.21 Finding @ DTM BL ODjeCt .. c.iuii e 176
8.2.2 Instantiation of a new DTM BL ... 178
8.2.3 Configuring access rights ... 180
8.2.4 Loading @ DTIM BL ..ouiiiiie e e 181

8.2.5 Loading a DTM with Expert user level...........ocoiiiiiiiiii e 182

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-6- IEC TR 62453-42:2016 © IEC 2016

8.2.6 Release of @ DTM BL ..o 183
8.3 Persistent storage of @ DTM ... e 184
8.3.1 Saving instance data of @ DTM ..o 184
8.3.2 Copy and versioning of a DTM instance...........coooiiiiiiiiinii e 185
8.3.3 Dataset commit failed.........oooiiiiii 186
8.3.4 Export a DTM dataset to file ... 186
8.4 Locking and DataTransactions in multi-user environmentsc.ccooiiinenn.. 187
8.4.1 LCT=Y a1 - Y PP 187
8.4.2 Propagation of Changes..........ooiiiiiii 188
B 4.3 Synchronizing D TMS TN MUIt-USET ENVITONMENTSooeoeeeseeeeeeeneonns .190
8.pb Execution of DTM FUNCHiONS ... TS 191
B.5.1 GENETAl o e S .191
B.5.2 Finding a DTM User Interface object............cooiiiiiiininiin 191
8.5.3 Instantiation of an integrated DTM graphical user interface .,.{5................ .192
B.5.4 Instantiation of a DTM Ul triggered by the DTM BLco.0¢7ociicieinnnnnn. .193
B.5.5 Instantiation of a modal DTM Ul triggered by DTM BL .. A0 i, .194
B.5.6 Release of a DTM User Interface..........coooovviii o b0, .195
8.5.7 Release of a DTM Ul triggered by the DTM BL...(C i, .196
8.5.8 Release of a DTM User Interface triggered bysitself ..., 197
8.5.9 Release of a non-modal DTM User Interface triggered by a standard
ACHION Lo S .198
8.5.10 Progress indication for prolonged DTN aCtionscoooiiiiiiiiiiiiinn. .199
B.5.11 Starting an application200
B.5.12 Terminating applications 0 e .201
8.5.13 Execution of command functions ..o .201
B.5.14 Execution of a command fudnction with user interfaceco. .201
8.5.15 Opening of dOCUMENTS A . e e .202
B.5.16 Interaction between<DITM User Interface and DTM Business Logic203
8.5.17 Interaction between DTM Business Logic and DTM User Interface205
B.5.18 Interaction between DTM User Interface and DTM Business Logic with
CaANCEl et e .206
B.5.19 Retrieving information about available Static Functions............................. .207
8.5.20 Executing a Static Function208
B.5.21 Executing a Static Function with multiple argumentsonn. .209
8.p DT M COMMUNICAtION ... e e .210
B.6.1 LT o= = .210
B.6",2 Establishing a communication connection ..., .21
B G 3 Cancel estabhlishment of communication connection 212
8.6.4 Communicating with the device ..., 212
8.6.5 Frame Application or Child DTM disconnect a device..............cooeeiiiiiiin. 213
8.6.6 Terminating a communication connectioncoociiiii 214
8.6.7 DTM aborts communication connection..............c..ooooiiiiiiiiiicii e 215
8.6.8 Communication Channel aborts communication connection......................... 216
8.7 Nested commUNICAtION ... e 216
8.7.1 LY o 1= = 216
8.7.2 Communication request for a nested connection.................coooiiiiiiinn. 217
8.7.3 Propagation of errors for a nested connection.............ccocooviiiiiiiiinineene. 218
8.8 TOPOIOGY PlanMiNgG ... e 219

8.8.1 GENEIAL ... 219

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

—7-

8.8.2 Adding a DTM to the topologycuviiiiiii e 219
8.8.3 Removing @ DTM from topology.....c.veiiiiii e 220
8.8.4 Frame Application creates topologyooeviiiiiiiii 221
8.8.5 DTM generates sub-topology......c.ovuuieiiiniiiii e 222
8.8.6 Physical Layer and DatalinkLayer..........cc.ooooiiiiiiiiiii e 224
8.9 Instantiation, configuration, move and release of Child DTMs...................oo.. 224
8.9.1 LY 1= = 224
8.9.2 Instantiation and configuration of Child DTM BL........c..ccoviiiiiiiiiiiicen, 224
8.9.3 Interaction between Parent DTM and Child DTM.........coooiiiiiiiiiin, 225
B 94 nteraction between Parent DTV and Child DTM using IDtmMessaging227
8.9.5 Parent DTM moves a Child DTM.....ooi eI .227
B.9.6 Parent DTM removes Child DTMc.ccoiiiiiiiiiiiiii ST .228
8.10 Topology SCAN....cuii e D .229
8.10.1 GENEIAl e e .229
B.10.2 Scan of Network toPologYvvviii i R T .229
8.10.3 Cancel topology SCaANccuiiviiiiiiiiiieieeeeee e N .230
B.10.4 Scan based DTM assignment ... e .231
8.10.5 Manufacturer-specific device identification.........(... .232
8.11 Configuration of communication networks88 i, .234
B.11.1 Configuration of a fieldbus master i .234
8.11.2 Integration of a passive device235
8.12 Using 10O informationc.coouiiniii i S .235
B.12.1 Assignment of symbolic name to process data..............oocooiiiiiii i, .235
8.12.2 Creation of Process IMmageco . i .237
8.12.3 Validation of changes in process image while PLC is running.................... .238
8.12.4 Changing of variable names using process image interface....................... .239
8.13 Managing addreSSeS ..o s e e .240
B.13.1 Set DTM address with' user interface ..o, .240
B.13.2 Set DTM addresses without user interface..............ccooiiiiie, .241
B.13.3 Display or madify addresses of all Child DTMs with user interface............. .242
8.14 Device-initiated.data transfer...........cooiiiii i .243
8.15 Reading and Writing data ..o .244
B.15.1 Readiwrite instance data244
B.15.2 Read/write device data.........coocuiiiiiiiiiii .246
816 CompParing dataoouiieii .248
B.16:1 Comparing device dataset and instance datasetcocoiilL .248
B.16.2 Comparing different instance datasets...........ccccooiiiiiii i .248
8.17 Reassigning a different DimDeviceType at a device node 249
8.17.1 GENETAI .o 249
8.17.2 DTM detects a change in connected device type.........coooiiiiiiiiiiinnn, 250
8.17.3 Search matching DtmDeviceTypes after incompatible device exchange....... 252
8.17.4 Reassign DtmDeviceType after incompatible device exchange.................... 253
8.18 Copying part of FDT TOPOIOGY ..ueniiiiiiiie e 255
8.18.1 Cloning of a single DTM without Children...............c..ooii i, 255
8.18.2 Cloning of a DTM with all its Children ... 256
8.19 Sequences for audit trail...........ccoiiiiiiii 256
8.19.1 LCT=Y a1 - Y PP 256
8.19.2 Audit trail of parameter modifications in instance dataset............................ 256
8.19.3 Audit trail of parameter modifications in device dataset............................... 257

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

9

10

11

-8 - IEC TR 62453-42:2016 © IEC 2016

8.19.4 Audit trail of function calls ... 258
8.19.5 Audit trail of general notification ... 259
NS Al At 0N . .. 259
9.1 GBIl . e 259
9.2 COMMION TUIES e e e e e e e 259
9.2.1 Predefined installation paths ... 259
9.2.2 Manifest filles ... 262
9.2.3 Paths in manifest files ..., 263
9.2.4 Common command line argumentscccoiiiiiii i 263
D.2.5 Digital signatures of setup components..............coooviiiiiii e .264
B Installation of FDT core assemblies ..o g e .264
A Installation of communication protocols.............cccoooiiiiiiiiiiiiaa .264
D.4 .1 GeNEral e D .264
D.4.2 Registration ..o e D e .264
D.4.3 Protocol manifest ... @MV .264
.p Installation of DTMS ..o 265
D.5.1 GeNEral ..o AL S .265
D.5.2 Registration ..o L e .266
D.5.3 DTM manifest ..o Y .267
D.5.4 DTM User Interface manifest..............o . O .268
.p DTM SEIUD ot e e .269
D.6.1 SHUCIUIE....ii i Y .269
D.6.2 DTM setup manifest ... s e .270
D.6.3 DTM device identification manifestoooiii .271
D.6.4 Setup creation rules ... e .273
.y DTM deployment .. oo e 274
B Paths and file information ..o .276
D.8.1 Path information provided by a DTM ..., .276
D.8.2 Paths and persiSteNCe276
D.8.3 MUII-USEE SYSEBIMS ..o e e ens .276
I TN o e TN o] g Lo =Y o) A P .276
TO. 1 GENeral. .276
10.2 TecChniCal .CoNCEPt ..o e e 277
10.2.1 (=Y 1Y - | PP 277
10.2.2 DtmManifest / DIMINTO..278
10.2.3 TYPEINTO e .278
10.2°4 Supported DataSet formatsooiiiiiiiiii .279
10.2.5 DeviceldentInfo 279
10.2.6 D -] = 1-T=) PPt 280
10.2.7 DeVvIiCeSCaNINTO 280
T0.3 DT M SO U coniiin i e 280
10.4 Life CYCle SCONAIIOS .ouuieiiiii e e e e 281
10.4.1 OV B VI BW . e e e e e 281
10.4.2 Search for device type in DTM setups......cooiiiiiiiii e 282
10.4.3 Search forinstalled DTMS ..., 283
10.4.4 Dataset migration for reassigned DTM ..., 285
Frame Application architeCturesooou i 286
e I B € 1Y o 1= - | PP 286

11.2 Standalone application ..., 286

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -9-

11.3 Remoted user Interface 286
11.4 Distributed multi-user application ... 287
R T © 1 = 2 U 287
Annex A (normative) FDT2 Use case mModel ..o 289
A1 Use Case MOl OVEIVIEW ... 289
A.2 o3 o = 289
A3 L0 LT o= 1T PP 290
A.3.1 USE CASE OVEIVIBW L..eiiie it ettt e e e e e eenaes 290
A.3.2 ObSErvation USE CaSESiiuii i 291
N.3.3 OPEration USE CaASESiuiiii ittt e e e e e e e .292
N.3.4 MaintENaANCE USE CaASES . iuiiiiiii ittt e g s .294
\.3.5 Planning USE CasSeS .. cuiiiiiiii e e .299
\.3.6 Main Operationccoooiiiiiii e e .301
N.3.7 OEM ServiCe. oo fanea e .302
\.3.8 Administration @ VS .302
Anngx B (normative) FDT interface definition and datatypes 0 ., .303
Anngx C (normative) Mapping of services to interface methods.../ZA .304
cl1 General.o N .304
CJ2 DTM SEIVICES e e .304
Cl3 Presentation object Services308
cu General channel SErviCesooviiiiiii o e .308
Cl5 Process Channel SEIVICESc.iiuiiii e s e .308
Cle Communication Channel Services ... e .309
Clr Frame Application ServiCesamf i .310
Anngx D (normative) FDT version interopgrability guide...........c.cooiiiiiiiiiiiiiieea .313
DI OVEIVIEW ... N e .313
DJ2 LT =Y =T =Y P .313
D3 Component interoperalilityo .314
Anngx E (normative) FDT1.2.X/'IEC 62453-42 Backward-Compatibility........................... .315
E[1 L@ AT Y .315
E] Parallel FDFOPOIOGIES315
E[B Mixed FDT f0POI0OGIES. ...ueeiiiei e .316
El FDT1.2X 7 IEC 62453-42 AdAPLers ouuoeniiiiiiiie et .318
E[B FDTH2.x XML / IEC TR 62453-42 Datatype Transformers.........cc.cooeveeiieiinnnnn. .319
E.5.1 G BNl e e .319
E.5.2 Installation and Registration of Protocol-specific Transformers.................. .320
E5-3 trteractionbetween BT 2ard FBT -2 componentsusinrgTranstermers—. 321

E.6 Sequences related to backward compatibilitycooooiiii 322
E.6.1 LT 1= - | 322
E.6.2 Dataset migration from FDT1.x DTM to FDT2. X DTM......cccocviiiiiiiiiiiien. 322
Annex F (informative) Implementation Hintso 324
F.1 IAsyNCResUIt pattern ... 324
F.2 Threading Best PractiCes ..o 325
Annex G (informative) Trade NamEScoiiiiiiiii e e as 326
Annex H (informative) UML Notation 327
H.1 LT =Y o = =Y 327
H.2 Class diagram . e e e 327

H.3 Statechart diagram 330

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

H.4 USE CASE AIAQIaIM ..ottt 331

H.5 Y=o [UT=T oot [F= Vo | =1 o PP 332

H.6 L@ o) 1= o1 0o T =T | - o 1R P 336
Annex | (informative) Physical Layer EXxamples... ... 337

1.1 LT T - Y PP 337

1.2 N T DUS S e 337

1.3 PROFIBUSttt ettt e e e et e e e e 337

I.4 O L 1N | 337
Annex J (informative) Predefined Semanticlds.............coooiiiiiiiii 339

J.| GBNEIAL . e (g .339

J.p DAt e e N .339

J.B T g =T = PP PP S AP .339

J.4 DOCUMENES ...t e .339
Bibliggraphy ... e .341
Figune 1 — Relation of IEC 62453-42 to the IEC 62453 series..........ueeiiiiiiiiiiiinininnn, .21
Figune 2 — IEC 62453-42 Object Model........couiiiiiiiiiiii e e .32
Figune 3 — Frame Application ... e S ...32
Figune 4 — DTM BUSINESS LOGIC . ..uuinieiiii e O e ...34
Figune 5 — DTM, Device Type and Device Ident Info ... o8 oo ...35
Figue 6 — Process Data INfo......c.ooiiiii e ...36
Figune 7 — Logical topology and physical topologyl. ..o ...43
Figune 8 — FDT and logical topology s e ...43
Figude 9 — DTMs and physical topology ..o . e i ...44
Figue 10 — Point—to-point communiCationo e ...46
Figune 11 — Nested communiCationio e .47
Figune 12 — Identification of connected deviCesc.oooiiiiiiiiiiiiii e ...49
Figude 13 — FDT storage and-synchronization mechanism..................cooiis ...50
Figude 14 — Relation between DTMDataSet, DTM instance, and device.............cc.ccceeviennes ...50
Figurle 15 — DTMDataSet StrUCIUIEvoieie e ...51
Figune 16 — DatacSynchronization. ..o ...53
Figude 17 — Routed [0 information....o ...56
Figune 18 —MUILIrole DEVICE.......cu i e e .57
Figuned9' — FDT .NET ASSEMDIIES ...oeeiiit e ...60
Figure 20 — FDT Object implementation.............cooiiiiiiii e 61
Figure 21 — FDT CLR eXtension CONCEPLiuiiiii e 63
Figure 22 — Example: Assembly.LoadFrom().......ocuuveuiiiiiii e 64
Figure 23 — Example: Assembly dependencCies ..o 65
Figure 24 — Example: Datatype definition ... 67
Figure 25 — Example: Data ClONING e 69
Figure 26 — Example: Methods without data cloning...........cocooviiiiiii 69
Figure 27 — Protocol-specific datatypescco.iiiiiiiii e 70
Figure 28 — Protocol manifest and type info attributes...............coooi 71

Figure 29 — Example: Protocol assembly attributes ... 72

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -1 -

Figure 30 — Example: Handling of protocol-specific assemblies in Frame Application............ 72
Figure 31 — Decoupled FDT Objects in IEC 62453-42cciviiniiiiiiiii e 73
Figure 32 — IAsyncResult pattern: blocking call...........coooiii 76
Figure 33 — Example: Blocking use of asynchronous interfaceccoooiiiin, 76
Figure 34 — IAsyncResult pattern (simplified): blocking call.............c.cooiiiiiiii 77
Figure 35 — IAsyncResult pattern: non-blocking call..............oooiiii 77
Figure 36 — Example: Non-blocking use of asynchronous interfacecocooiiiini, 78
Figure 37 — IAsyncResult pattern (simplified depiction): non-blocking call 78
Figune 38 — [AsyncResult pattern: canceling an operation ... o ...80
Figune 39 — IAsyncResult pattern: providing progress eventsccoovevviiiiienen O e ...81
Figue 40 — Frame Application's host window providing scroll bars.....................at Mo .91
Figude 41 — Control using internal scrollbars............coocoiiiii 91
Figune 42 — Example: Hosting a DTM WPF control in a WPF Frame Application93
Figune 43 — Example: Hosting a DTM WPF control in a WinForms Framg, Application93
Figure 44 — Example: Hosting DTM WinForms controls in a WinForms Frame

Y o 111 3= 1[0 o I ...94
Figude 45 — Example: Hosting a DTM WinForms control in a WPF Frame Application94
Figurle 46 — Relation of StaticFunctionDescription to StaticdRunctiononilL ...95
Figune 47 — DTMDataset StruCtUre...... ..o e ...96
Figue 48 — Example: Initialization of DTMDataSubset with DTM data...............ccooeiieniis ...98
Figude 49 — Example: Writing of DTM data in DTMDataSubset.............ccooiiiiiiinns ...98
Figurle 50 — Example: Reading of DTM data from a DTMDataSubset.................cooiiiiniis ...99
Figune 51 — Example: Creation of a BulkData.DTMDataSubset with descriptor100
Figude 52 — Example: Searching for DIMDataSubsets with specific descriptor................. .100
Figune 53 — Skeleton of a DTM-speécific report fragment..............ooiiiiiii .103
Figure 54 — Example: AuthenticOde Check104
Figune 55 — Example: Conformity record fileccooiiiiiii e .105
Figue 56 — Example: checking conformity record file106
Figue 57 — Frame Application interfaces...........oooiiiii 107
Figurle 58 — DTM:Business Logic interfaces (Part 1)oooiiiiiiiiiii e .110
Figune 59 — DTM Business Logic interfaces (Part 2) ..o A1
Figue 60—State machine of DTM BL115
Figuges8J — Online state machine of DTM ... A17
Figure 62 — Modifications of data through a DTM ..o 120
Figure 63 — ModifiedInDtm: State machine of instance data........................ool 121
Figure 64 — ModifiedInDevice: State machine related to device datao. 122
Figure 65 — DTM Ul INTEIrfaCesouiiiii e 123
Figure 66 — Communication Channel interfacesc.ooooiiiiiiiiiiii e 124
Figure 67 — FdtDatatype and FAtList ... 127
Figure 68 — DtmiInfo / Typelnfo — datatypes ..o 129
Figure 69 — DeviceldentInfo — datatypes........coooiii i 131
Figure 70 — Deviceldentinfo — Example for HART ..o 132

Figure 71 — Example: Deviceldentinfo creation ..., 134

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-12 - IEC TR 62453-42:2016 © IEC 2016

Figure 72 — Example: Using DeviceldentInfo ... 135
Figure 73 — Example: DeviceldentinfoTypeAttribute.............cooiiiiiii e 135
Figure 74 — SetupManifest — datatypes...... ..o 135
Figure 75 — DtmManifest — datatypes ..o 136
Figure 76 — DtmUiManifest — datatypescooiiiiiiii 137
Figure 77 — Communication datatypes — Connectoooiiiiiiii i 138
Figure 78 — Communication datatypes — Transactionccooiiiiiiiii e 138
Figure 79 — Communication datatypes — DiSCONNECt ..o, 139
Figune 80 — Communication datatypes — Subscribe...........c.ooi e e .139
Figune 81 — Communication datatypes — Scanning............coooeiiiiiiiiiiic e O .140
Figude 82 — Communication datatypes — Address settingcccocoviviiin Mo .140
Figude 83 — Example: Communication — Connect for HARTcooiiiim .142
Figurle 84 — Example: Communication — CommunicationType for HART ... 0 ol .143
Figune 85 — BusCategory — datatypes........cocoeviviiiiiiiiiieiveeee i .143
Figure 86 — Device / Instance data — datatypesccooviiiiiiii T .144
Figude 87 — Example: Providing information on data of a HART deyvice...........c..ccooeiiiniis .146
Figurle 88 — Example: Providing information on module data of.a PROFIBUS device......... 147
Figune 89 — Example: Providing information on datac..5 ..o .148
Figude 90 — Example: Providing information on strucfured data................cocoiiis .149
Figude 91 — Enumlinfo — datatype...... ..o e e .150
Figure 92 — Read and Write Request — datatypescviiiiiii e .150
Figune 93 — Responselnfo — datatype 5 i .151
Figure 94 — TopologylmportExport — datatypes ..o .152
Figune 95 — ImportExportDataset — datatypes153
Figurle 96 — ProcessDatalnfo — datatypesoouvviiiiiii i .154
Figune 97 — 10Signalinfo — dat@lypesccoiriiiiii .155
Figude 98 — Example: ProcessDatalnfo for HART (UML) ..o .157
Figude 99 — Example: ProcessDatalnfo creation for HART158
Figune 100 — Example: Using ProcessData for HARTcooiiiiiiiiiiiii e .159
Figune 101 — Example: 10SignallnfoType attribute159
Figure 102 <\ProcessIimage — datatypeso .160
Figude 103~ AddressInfo — datatypes161
Figune 104 — Example: Addressinfo creation.............ceovieeiieenieenieenienniennienieeniieniiniiniiees .162
Figure 105 — Example: Using AddressInfoc.ooiiiiiiii e 163
Figure 106 — Example: DeviceAddressTypeAttribute ..o, 163
Figure 107 — NetworkDatalnfo — datatypesc.ooeiiiii e 164
Figure 108 — Example: NetworkDatalnfo creation example..........cccocoviiiiiiiiiiiiciiee, 165
Figure 109 — Example: NetworkDatalnfo using example............coooiiiiiiiiiii e 166
Figure 110 — Example: NetworkDataTypeAttribute example ... 166
Figure 111 — DTM Function — datatypes ..o 167
Figure 112 — DTM Messages — datatypes 169
Figure 113 — Actionltem — datatypPes ... 170

Figure 114 — CommunicationChannellnfo — datatypes...........ccooiiiiiiiii 170

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -13 -

Figure 115 — Example: Channel information ... 171
Figure 116 — DeviceScanInfo — datatypes.......cooiiniiiiiii e 172
Figure 117 — Example: HARTDeviceScanInfo — datatypeccooooiiiiiiiiiiie, 173
Figure 118 — DTM Report — datatypesc.uiniiiiii e 174
Figure 119 — Information related to device modulescooiiiiiiiiiiii e, 175
Figure 120 — Finding @ DTM BL ObjJEC......iuiiiii e 177
Figure 121 — Instantiation of a new DTM BL ... 179
Figure 122 — Configuration of user permisSSionscoviiiiiiiiii e, 181
Figunle 123 — Loading a DTM BL ... e g .182
Figune 124 — Loading a DTM with Expert userlevelccocoiiiiiiiiiii O .183
Figude 125 —Release of a DTM BL......ooiiiiiiii e .184
Figue 126 — Saving data of a DTM ..o e .185
Figurle 127 — Dataset commit failedcooooiiiiiiiiii e .186
Figune 128 — Export a DTM dataset tofile.........ccooiiiiiiiii G .187
Figure 129 — Propagation of changes ... T .189
Figude 130 — Synchronizing DTMs in multi-user environments...(.g...ccoooiiiiiiiiiiiioinns .190
Figurle 131 — Finding a DTM User Interfacecoooiiiiiee N o .192
Figune 132 — Instantiation of a DTM User Interfacec..54 i .193
Figude 133 — Instantiation of a DTM Ul triggered by DIM BL........ooooiiiiiiiiiis .194
Figude 134 — Instantiation of a modal DTM Ul triggered by DTM BL..........coooiiiiiiiiinnns .195
Figurle 135 — Release of a DTM User Interface ..o . oo .196
Figune 136 — Release of a DTM Ul triggeredby the DTM BLcooiiiiiiiiiiiiiiceen .197
Figude 137 — Release of a DTM User Interface triggered by itself.............cocos .198
Figude 138 — Release of a non-modal BDTM Ul triggered by a standard action................... .198
Figurle 139 — Progress indication forprolonged DTM actionS..........ccoviiiiiiiiiiiiniieieeens .199
Figune 140 — Starting an appheation200
Figude 141 — Execute a command functiono .201
Figune 142 — Executeacommand function with user interface202
Figurle 143 — Opening/a dOCUMENT. e e e e e enas .203
Figune 144 — Interaction triggered by the DTM User Interfaceccoooiiiiiiiiiiiiiinienn. .204
Figure 145 <\Interaction triggered by the DTM Business LOGICccoeeiiiiiiiiniiiiiiiiennes .205
Figude 146)~ Interaction triggered and canceled by the DTM User Interface206
Figune 147 — Retrieving information about available Static Functionsceoeeeen.. .207
Figure 148 — Example: Information about available Static Functionsll. 208
Figure 149 — Executing a Static Function...........ooo e 209
Figure 150 — Executing a Static Function with multiple Argumentsccocoiiins. 210
Figure 151 — Establishing a communication connection ... 211
Figure 152 — DTM cancels ongoing Connect operationcooiviiiiiiiiiii e 212
Figure 153 — Communicating with the device ... 213
Figure 154 — Child DTM diSCONNECES ...uuiiiiiiii e 214
Figure 155 — Child DTM terminates @ connectioncooiiiiiiii i 215
Figure 156 — Child DTM aborts @ CONNECLiONiiniiiiii e 215

Figure 157 — Communication Channel aborts a connectionccooooiiiin e, 216

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 14 - IEC TR 62453-42:2016 © IEC 2016

Figure 158 — Example: Nested communication behaviorcocoiiiiiiie, 217
Figure 159 — Example: Nested communication data exchangeccccoiviiiicnenns 218
Figure 160 — Add DTM 0 tOPOIOGY «.ueeniiiiiii e 220
Figure 161 — Removing @ DTM from topologycouiiniiiiiii e 221
Figure 162 — Frame Application creates topologyooiiiiiii e 222
Figure 163 — DTM generates sub-topologyooeiniiiiniii e 223
Figure 164 — Instantiation and configuration of Child DTM BLccooiiiiiiiiiien 225
Figure 165 — Interaction between Parent DTM and Child DTM ..o 226
Figune 166 — Interaction using IDtmMessaging ... e .227
Figune 167 — Parent DTM moves a Child DTM ... O .228
Figude 168 — Parent DTM removes Child DTM.........cocoiiiiiiiiie e .229
Figue 169 — Scan of network topology ..o .230
Figurle 170 — Cancel topology SCANc.iiiiiiiiiiic e B e e .231
Figune 171 — Scan based DTM assignment.............cocooviiiiiiiinin o, .232
Figune 172 — Manufacturer-specific device identification« T, .233
Figude 173 — Configuration of a fieldbus master..........c..coooii Cogn .234
Figurle 174 — Integration of a passive deviCe.........cooviiiiiie e N e .235
Figune 175 — Assignment of process data............cooiiits S .236
Figure 176 — Creation of proCess iMagec.iiniin i e .238
Figude 177 — Validation of changes while PLC iS rblRNINGcooiiiiiiiiiie e .239
Figurle 178 — Changing of variable names using process image interface240
Figune 179 — Set DTM address with Ul ... e .241
Figude 180 — Set DTM addresses without Ul242
Figude 181 — Display or modify child addresses with Ul............c.ocoiiii .243
Figurle 182 — Device-initiated data fransfercocoiiiiiiii e .244
Figune 183 — Read/write instanGe datacooiiiiiiii e .245
Figure 184 — Read/write deviCe data ..o .247
Figude 185 — Comparing-device dataset and instance dataset..................coocoiiis .248
Figurle 186 — Compare instance data with persisted dataset...............cocoiiiiiiinn s .249
Figune 187 — DTMtriggers ActiveTypeChanged event.............cooiiiiiiiiici e .251
Figude 188 <\Eind matching DtmDeviceTypes after incompatible device exchange253
Figude 189)~ Reassign a DtmDeviceType after incompatible device exchange.................. .254
Figue 90 — Clone DTM without childrenoceeieeiienieii i .255
Figure 191 — Clone DTM with all children ... 256
Figure 192 — Audit trail of parameter modifications in instance dataset............................... 257
Figure 193 — Audit trail of parameter modifications in device...................... 258
Figure 194 — Audit trail of function calls..........cooiiiii i 258
Figure 195 — GAC and FDT _REGISIIY ..iviiii e 261
Figure 196 — Installation paths (with example DTM) ... 262
Figure 197 — Example: Protocol manifest...........oooiii e 265
Figure 198 — Search for installed DTIMS........ooiiiii e 266
Figure 199 — Example: DImMManifest.... ... 268

Figure 200 — Example: DImUIManifest.... ... 269

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -15 -

Figure 201 — DTM Setup StrUCLUIEceuiii e 270
Figure 202 — Example: DtmSetupManifest ..o 271
Figure 203 — Example: DeviceldentManifest 273
Figure 204 — DTM deployment et 275
Figure 205 — Overview DTM identification............ooiiiiiiiiiiii e 277
Figure 206 — Identification attributes in DTM setupcooiiiiiii e 281
Figure 207 — Check DTM Setup for list of supported typesccooiiiiiiiiiiiie 283
Figure 208 — Scan installed DTIMS 284
Figune 209 — Dataset migration to a reassigned DtmDevicelype............ccccoiiiiiiiii i ae .285
Figune 210 — Client / Server Application ... O .286
Figude 211 — Example for distributed multi-user application................c.ccoo Mo .287
Figude 212 — OPC UA server based on [EC TR 62453-42 ..o .288
Figune A.1 — Main use case diagramc.cooiiiiiiiiiiiiiiieeeeeeee i .289
Figune A.2 — Observation USe CasesS.........ccocoveiiiiiviiiiiiiiiieeeeeee i M 291
Figue A.3 — Operation USE CASES ...cuuiiuiiiiiiiiiiiiieiie e e e .293
Figude A.4 — Maintenance use CasesScovevvvenvenienienneenenneens (g .295
Figune A.5 — Planning USE CaSeSceoiuiiiiiiiiiiiiiieieeeeiee N e .299
Figune E.1 — Example: IEC TR 62453-42 Frame Application-with FDT1.2.x backward-

COMEAAtIDIlITY SUPPOIT .. e e e e e .315
Figude E.2 — IEC TR 62453-42 Frame Application with FDT1.2.x Device DTM316
Figune E.3 — IEC TR 62453-42 Frame Applicationnwith FDT1.2.x Comm. and Gateway

DTM et e .317
Figune E.4 — IEC TR 62453-42 Frame Application with FDT1.2.x Gateway DTM317
Figune E.5 — IEC TR 62453-42 — FDT1.:2linteraction using transformer............................. .322
Figude E.6 — Dataset migration fromEFDT1.x DTM to FDT2.Xx DTM......cooiiiiiiiiiiiis .323
Figune Hol — NOTe L T e e .327
FiguNe H.2 — Class oo e e e e e e .327
Figune H.3 — ASSOCIatioN ..l e e e .327
Figue H.4 — Navigable ASSOCIatioNccuiiiiii e .328
Figurne H.5 — ComPOSI iON e e e e aas .328
Figurne H.6 — AGOTegation ... e .328
Figune H. 7o PeNdENCYo e .328
Figurne 43.8"— ASSOCIAtION ClaSSouiiiii e .328
Figure H-9—Abstracttlass, Generatizationandtmterface - 329
Figure H.10 — Interface related notations...........coo i 329
Figure H. 11 — MUIIPICIY ..o e e e 330
Figure H.12 — Enumeration datatype ..o 330
Figure H.13 — Elements of UML statechart diagrams.............cooiiiiiiiiiii e, 330
Figure H.14 — Example of UML state chart diagram ... 331
Figure H.15 — UML USE CaSE SYNTAX ..uuiuiiiiiiiiiii et et 331
Figure H.16 — UML SeqUENCEe diagramot 332
Figure H.17 — Empty UML sequence diagram framecoeieiiiiiiiiiiiniiieeeecee e 332
Figure H.18 — Object with life line and activation.................coooiiii 333

Figure H.19 — Method Calls ... 333

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-16 - IEC TR 62453-42:2016 © IEC 2016

Figure H.20 — Modeling guarded call and multiple calls............cooooiiiiiiiii e 333
Figure H.21 — Call {0 1Sl . ..o e 334
Figure H.22 — Continuation / Statelnvarianto 334
Figure H.23 — Alternative fragmento 335
Figure H.24 — Option fragment 335
Figure H.25 — Loop combination fragmentc.oooiiiiiiii e 335
Figure H.26 — Break notation ... 335
Figure H.27 — SeqUENCE referEnCeuiieiiii e 336
e[0T Y 24 ST @] o) =3 = 336
e H.29 — Object @ass0oCiation........c.oouiiii O 336
@ 1 — FDT USer leVvels. ... e ...40
¢ 2 — Role dependent Access Rights and User Interfaces for DTMs...4. 0 oooiieenne. .41
¢ 3 — Description of properties related to data access control....... oo, ...55
@ 4 — Supported CLR VErsioNSooiiiiii e o T, ...62
¢ 5 — Frame Application interfaces.............cooi i L .108
¢ 6 — DTM Business Logic interfacescoooovviiiiiie N o, 12
¢ 7 — Availability of interfaces depending of type of DTM........ccoiiiiiiiiiiiiien, 113
¢ 8 — Definition of DTM BL state machine o8)i, .116
¢ 9 — Definition of online state machine ... o0 118
¢ 10 — Description of instance dataset statesocooiiiiiiii 121
¢ 11 — Description of dataset states regarding online modifications 122
@ 12 — DTM Ul INterfaces ..o i e e e e e .124
¢ 13 — Communication Channel interfaces125
¢ 14 — Availability of DTM BL methods in different statesc.cocoiiiiiiinnn, .125
@ 15 — FDT base datatypes .. i e 127
@ 16 — FDT General datatypes.......cociiuii e, .128
¢ 17 — DtmInfo datatype description.......129
¢ 18 — Deviceldentinfo datatype description..........ccoooiiiiiiiiiiii e, .131
¢ 19 — Deviceldentinfo — Example for HART133
¢ 20 — SetupManifest datatype description..........oooiiiii i .136
¢ 21(— DtmManifest datatype description136
¢ 22— DtmUiManifest datatype descriptioncvveiieeiinieneeiiiiiiieiieiieieeeeeeeene 137
Table 23 — Communication datatype description...........c.oooiiiiiiii e 141
Table 24 — BusCategory datatype descriptionc.ooiiiiiii e, 143
Table 25 — DeviceData datatype descriptiono 145
Table 26 — Reading and Writing datatype description...........coooiiiiiii e 150
Table 27 — Reading and Writing datatype description...........ccoooiiiiiiiiieeee 151
Table 28 — TopologylmportExport datatype description ... 153
Table 29 — ImportExportDataset datatype description ... 153
Table 30 — ProcessDatalnfo datatype descriptioncoooiiiiiiiii e, 155
Table 31 — IOSignallnfo datatype descCription..........ccoiiiiiii e 156

Table 32 — Processimage datatype description...........cooiiiiii e 160

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -17 -

Table 33 — Addressinfo datatype description ... 161
Table 34 — NetworkDatalnfo datatype descriptionoooiiiiiii e 165
Table 35 — DTM Function datatype descriptioncoooiiiiii e 168
Table 36 — DTM Messages datatype descriptiono 169
Table 37 — Actionltem datatype descriptiono 170
Table 38 — CommunicationChannellnfo datatype description.............ccooiiiiiiiiiinn 171
Table 39 — DeviceScanlInfo datatype description...........coooiiiiiiiii 172
Table 40 — Example: HARTDeviceScanlnfo datatype description ..., 173
¢ 41 — Reporting datatype descCription....... ... e g 174
¢ 42 — Predefined FDT installation paths259
¢ 43 — Predefined setup properties ..o .263
¢ 44 — Setup command line parameters263
¢ 45 — DTM identification..........cocoooiiiiiii e A .278
¢ 46 — DtmType — user readable description of supported types...(~ oo, .278
¢ 47 — Typelnfo identification..........coooi i O T, .279
¢ 48 — DtimType — Dataset support identificationo (g .279
¢ 49 — Dataset identification ... N .280
¢ 50 — DeviceScanlInfo — scanned device identifications/..................cooo, .280
@ 51 — Setup information281
@ 52 — Changing DTM—- OVEIVIEW ... e .282
B AL — ACTOIS Lo R e .290
@ A.2 — ODbSEervation USE CaASES ...o.iuii ettt .291
@ A.3 — OPEration USE CaSES.......i e .293
@ A4 — MainteNaNCe USE CaSES .l it .296
@ A5 — Planning USE CaS @S e it ittt e .299
@ C.1 — GENEral SBIVICE S N ettt .304
¢ C.2 — DTM services related to installation ..., .304
¢ C.3 — DTM servicerelated to DTM Information304
¢ C.4 — DTM services related to DTM state machinecooooiiiin, .305
¢ C.5 — DTM services related to function ..., .305
¢ C.6 —DTM services related to documentation ..., .306
¢ C.7 +'DTM services to access the instance data306
¢ C:8 — DTM services to access diagnOSiS .ovuueueeeiieiieiieiiie i iieieieieiieiiieeieeeeenee .306
Table C.9 — DTM services to access to device dataoovviiiiiiiiiii e, 306
Table C.10 — DTM services related to network management information 307
Table C.11 — DTM services related to online operation ... 307
Table C.12 — DTM services related to FDT-Channel objects..........c.coooviiiiiiiiiii, 307
Table C.13 — DTM services related to import and export..........oooiiiiiiii i 308
Table C.14 — DTM services related to data synchronization ..., 308
Table C.15 — DTM Ul state control ... e 308
Table C.16 — General ChanNel SEIVICEiiuiiiiiiiie e 308
Table C.17 — Channel services for 10 related information...............coocoiiiiii i, 309

Table C.18 — Channel services related to communication ... 309

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-18 - IEC TR 62453-42:2016 © IEC 2016

Table C.19 — Channel services related sub-topology management..............ccoooviiiiiiiinnennen. 309
Table C.20 — Channel services related to functionsccooooiiiiiiii 310
Table C.21 — Channel services related t0 SCaNcoviiiiii i 310
Table C.22 — FA services related to general events ..., 310
Table C.23 — FA services related to topology management...........c.cooiiiiiiiiiiiiicinincnen, 311
Table C.24 — FA services related to redundancCy.........c.cooiiiiiiiiiiici e 311
Table C.25 — FA services related to storage of DTM data ..o, 311
Table C.26 — FA services related to DTM data synchronizationcooooiiiinn. 311
Table C.27 — FA related to presentation ... e .312
Tabli C.28 — FA services related to audit trailo.oooiii O .312
Tablg¢ D.1 — Interoperability between components of different versions...............&..W....... .314

Tablg¢ E.1 — Adapter interface mappingsoooe i .319

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -19 -

9)

The maindask of IEC technical committees is to prepare International Standards. Howev
technical’committee may propose the publication of a technical report when it has coll

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION -

Part 42: Object model integration profile —
Common Language Infrastructure

FOREWORD
The International Electrotechnical Commission (IEC) is a worldwide organization for standardization~com
all| national electrotechnical committees (IEC National Committees). The object of IEC js| to py

end and in addition to other activities, IEC publishes International Standards, Technical Specific
Telchnical Reports, Publicly Available Specifications (PAS) and Guides (hereafter, (feferred to as
Publication(s)”). Their preparation is entrusted to technical committees; any IEC Natiopal'\Committee inte|
in |[the subject dealt with may participate in this preparatory work. International \governmental ang
gojernmental organizations liaising with the IEC also participate in this preparatien'”/IEC collaborates (
with the International Organization for Standardization (ISO) in accordanceswith™ conditions determin
agfeement between the two organizations.

Thie formal decisions or agreements of IEC on technical matters express, as nearly as possible, an intern
cohsensus of opinion on the relevant subjects since each technical <committee has representation fr
interested IEC National Committees.

IEC Publications have the form of recommendations for international use and are accepted by IEC N
Cdmmittees in that sense. While all reasonable efforts are madé to ensure that the technical content
Publications is accurate, IEC cannot be held responsible~for/the way in which they are used or f
miginterpretation by any end user.

rising
omote
Hs. To
tions,

“IEC
Fested

non-
losely
ed by

htional
bm all

htional
bf IEC
r any

In |order to promote international uniformity, IEC Natienal Committees undertake to apply IEC Publicjations

transparently to the maximum extent possible in their national and regional publications. Any dive
befween any IEC Publication and the corresponding-national or regional publication shall be clearly indicg
th¢ latter.

IEC itself does not provide any attestation of ¢onformity. Independent certification bodies provide conf
aspessment services and, in some areas, ‘access to IEC marks of conformity. IEC is not responsible f
sefvices carried out by independent certification bodies.

Alllusers should ensure that they have the latest edition of this publication.

Nd liability shall attach to IEC orits’directors, employees, servants or agents including individual exper
mgmbers of its technical committees and IEC National Committees for any personal injury, property dam
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fee
expenses arising out of.the publication, use of, or reliance upon, this IEC Publication or any othg
Publications.

Atfention is drawn to_the Normative references cited in this publication. Use of the referenced publicati
indispensable for the‘correct application of this publication.

Atfention is drawn to the possibility that some of the elements of this IEC Publication may be the sub
pafent rights, |[EC shall not be held responsible for identifying any or all such patent rights.

gence
ted in

ormity

br any

s and
hge or
) and
r IEC

ons is

ect of

er, a

pcted

data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC TR 62453-42, which is a technical report, has been prepared by subcommittee 65E:
Devices and integration in enterprise systems, of IEC technical committee 65: Industrial-
process measurement, control and automation:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

The t

-20- IEC TR 62453-42:2016 © IEC
ext of this technical report is based on the following documents:
Enquiry draft Report on voting
65E/439/DTR 65E/486/RVC

2016

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A lis
interf

The
the o

D

-

€

e W

tability date indicated on the IEC web site under "http://webstore.jecych" in the
relat¢d to the specific publication. At this date, the publication will be

confirmed,

ithdrawn,

-

q

e a

A bilingual version of this publication may be issued at a later date.

of all parts of the IEC 62453 series, under the general title Field Device Tool
ace specification, can be found on the IEC website.

committee has decided that the contents of this publication will remain unchanged

placed by a revised edition, or

mended.

FDT)

until
data

IMPC
that

unddrstanding of its contents. Users should therefore print this document usir

colo

)IRTANT — The 'colour inside' logo on'the cover page of this publication indic
it contains colours which are considered to be useful for the cor

Ir printer.

hAtes
rect

g a

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -21 -

INTRODUCTION

This Part of IEC 62543, which is a technical report, is an interface specification for developers
of FDT (Field Device Tool) components for function control and data access within a
client/server architecture. The specification is a result of an analysis and design process to
develop standard interfaces to facilitate the development of servers and clients by multiple
vendors that need to interoperate seamlessly.

With the integration of fieldbuses into control systems, there are a few other tasks which need
to be performed In addition to fleldbus and deV|ce speC|f|c tools there is a need to integrate
use
in extensive and heterogeneous control systems the unamblguous definition of engmring

A deyYice-specific software component, called DTM (Device Type Manager), is supplied by the
field device manufacturer with its device. The DTM is integrated into engineering tools vig the
FDT [interfaces defined in this specification. The approach to integration, ‘in"general, is [open
for afl kind of fieldbusses and thus meets the requirements for integrating different kinds of
deviges into heterogeneous control systems.

Figue 1 shows how IEC TR 62453-42 is related to the IEC 62453,series.

IEC 62453-42
Common Language Infrastructure
Integration Profile

IEC

Figure 1T — Rkelation o - o the series

The document structure is:

e Clause 3 explains the used terms, definitions and conventions
e Clause 4 introduces the general concepts of IEC 62453-42

e Clause 5 describes the technical concepts used to implement IEC 62453-42 and how FDT
concepts are mapped to .NET Framework

e Clause 6 provides an overview of the FDT Objects, their interfaces and behavior
e Clause 7 presents an overview of the IEC 62453-42 datatypes
e Clause 8 shows the interaction of FDT Objects at runtime

e Clause 9 explains rules related to installation and deployment of DTMs

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 22 - IEC TR 62453-42:2016 © IEC 2016

e Clause 10 explains how FDT life cycle concepts are implemented

e Clause 11 shows examples for Frame Application architectures

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 23 -

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION -

Part 42: Object model integration profile —
Common Language Infrastructure

1 Scope

are i
inter

This

2 Normative references

The following documents, in whole or in part, are normatively referenced in this documen
ndispensable for its application. For dated references, ornly-the edition cited applieqd.
undafed references, the latest edition of the referenceéd document (including

are i

amery

IEC ¢
quide

IEC ¢

detai

3 1

3.1

For
IEC ¢

3.11
actio
exec
Obje

ThisFart of IEC 62453, which is a technical report, defines how the common FDT pring

plemented based on the .NET technology, including the object behavior and @
ction via .NET interfaces.

document specifies FDT version 2.0.

dments) applies.

2453-1:—1, Field Device Tool (FDT) interface“specification — Part 1: Overview
nce

2453-2:—", Field Device Tool (FDT)cifterface specification — Part 2: Concepts
ed description

[erms, definitions, abbreviations and conventions

Terms and definitions

the purposes of this® document, the terms and definitions given in IEC 624
2453-2 as well as-the following apply.

n
Lition of ‘afunction which may involve several calls to interface methods of different
Cts

iples
bject

t and

For
any

and

and

53-1,

FDT

3.1.2
asyn
meth

chronous methods
ods that trigger execution of asynchronous operations

Note 1 to entry: See also 5.6.7.

3.1.3
asyn

chronous operation

operation that is performed while the FDT object (client) that has requested the operation

does

not wait for the result, but the client is notified when the operation is finished

1 Tobe published concurrently with this technical report.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 24 - IEC TR 62453-42:2016 © IEC

3.1.4

bulk

data

device node-specific persisted data, which is stored besides DTM instance data

Note 1 to entry: Example for bulk data: accumulated historical data, used for trend analysis.

3.1.5

bulk

operation

operation to perform one or more tasks at a group of devices nodes

2016

Note 1 to entry: Examples for bulk operation: up- or download for a group of devices, parameter adjustment for a

group

3.1.6

of devices-orreportageneration-fora-group-of devices.
g =4 4 L

cloni DTM instance
S

proc

Note 1

Note 4 to entry: The identification attributes of the device are changed.

3.1.7

Com

comgy

3.1.8

com

munication Channel

patibility

feature of a component (hardware or software) that enables it to be interoperable with an
compgonent

3.1.9
backward compatibility
e

feat

e of a component (hardware or s@ftware) that enables it to replace an other versi

the cpmponent

3.1.1
com

attrib)

0
patibility attributes

compatibility after a component replacement

Note 1 to entry: Compatibility attributes are required to check whether a component is compatible with a
compqgnent.

Note 2 to entry:_Compatibility attributes are used to define compatibility in regard to 3.1.8.2, compatibility.

3.1.1

1

copy| DTFM instance
process of creating a new device node in the FDT topology based on an existing device node

onent representing access to a fieldbus segment or to other means of communicatign

s of creating a new device node in the FDT topology based on an existing device node

to entry: This includes copying DTM instance(see 3.1.11) and resetting device nodésspecific DTM dafta.

pther

bn of

utes used to find, compatible components, to replace components or to validate

hother

Note 1 to entry: This includes loading the original DTM dataset to initiate the new DTM instance.

Note 2 to entry: The identification attributes of the device are not changed.

3.1.1

2

copy device node in FDT Topology

(see

3.1.1
Data

3.1.11 copy DTM instance)

3
Transaction

transaction regarding the data of a DTM (persistent or device data)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 25—

3.1.14
delegate
reference type that can be used to encapsulate a method

3.1.15
device configuration
process of changing data related to device-specific characteristics/basic behavior

Note 1 to entry: Example for such characteristics may be the structure of a remote 1/O or the type of
measurement procedure like absolute pressure or differential pressure.

3.1.16
devic¢e data
configuration data that resides on the device

311
devi¢e parameterization
procgss of changing device-specific data in order to adjust application-specific behavior

3.11
devi¢ce node
node|in the topology, which represents a device

Note 1 to entry: A DtmDeviceType is assigned to a device node, which is instantiated to operate the deyice in
online|or offline modes. See Figure 14.

311
devi¢e type check
procegss of checking the device type when a DTM is going online with a connected physical
devide

Note 1 to entry: The DTM shall reject to go online if the connected physical device type is not supportedl. The
check|shall be based on same information as in 'Déviceldentinfo. See 6.3.2.3.

3.1.20
DD-Ipterpreter DTMs
DTMs which interpret device descriptions at runtime

3.1.211
DTM
softwlare component-containing device-specific application software, including DTM Bus|ness
Logig, DTM User‘Interface and related objects (e.g. Communication Channel)

Note 1 to entry:» Older FDT specification documents used the term “DTM” for the object DTM Business Logic as
well ag for the whole component consisting of DTM BL, DTM Ul and channels.

3.1.22
DTM Business Logic

DTM BL

part of the DTM, which contains all the functionality to access storage and communication and
which manages the instance data of a DTM

3.1.23
DTM Identifier
identifier, which is used to identify a DTM (DTM BL class)

Note 1 to entry: In order to uniquely identify a DTM BL class, the property Dtminfo.ld is used.

3.1.24
DTM instance modal
prevents user interaction with other windows of the DTM instance (see modal window)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 26 - IEC TR 62453-42:2016 © IEC 2016

3.1.25
DTM User Interface (DTM Ul)
part of the DTM, which is displayed to a human user

3.1.26
DtmType
either DtmDeviceType, DtmModuleType or DtmBlockType

Note 1 to entry: All DtmTypes provide identification in DtmInfo class.

Note 2 to entry: DtmType is described by Typelnfo.

3.1.2
DtmDeviceType
elemgnt of a DTM software supporting one or more device types

Note 1 to entry: DtmDeviceType is described by DeviceTypelnfo class.

3.1.2
DtmModuleType
elemgnt of a DTM software supporting one or more device module types

Note 1 to entry: DtmModuleType is described by class ModuleTypelnfo.

3.1.29
DtmBlockType
elemgent of a DTM software supporting one or more block types

Note {1 to entry: DtmBlockType is described by class BlockTypelnfo.

3.1.30
FDT Object
objegt defined by FDT (e.g. Frame Application, DTM Business Logic, DTM User Intefface,
Communication Channel)

3.1.31
FDT Protocol Annex
document defining support-for a communication protocol for FDT

Note 1 to entry: Examples for such documents are “PROFIBUS protocol annex” and “HART protocol apnex”.
Within| IEC 62453 the standard parts with numbers 3xy define support for communication protols.

3.1.32
FDT Application Profile Annex
document-defining support for a type of application for FDT

Note iQ nnfry' An nvnmr\ln for such a document is the “PLC Tool interface” (r‘lnfinnd for EDT1 7) Qthel such
documents may be defined at a later time also for FDT2.

3.1.33
fieldbus message
data in a protocol-specific telegram

3.1.34
Frame Application modal
prevents user interaction with windows of the Frame Application (see modal window)

3.1.35
hardware platform
hardware on which FDT software is executed

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 27 -

Note 1 to entry: Different hardware platforms may be supported that are based on different architectures and

display formats, for example PC and others.

3.1.36
identification attributes

attributes which describe the identity of a component. These attributes are typically displayed

to users or used to validate and ensure compatibility of components

3.1.37
incompatibility

situation where a component is not interoperable or where a component can not replace an

other_component

3.1.38
instance data
configuration data that resides in the DTM instance

3.1.30
lifetime of DTM instance
time ppan of executing a DTM BL (from state ‘created’ till state ‘released’)

3.1.40
Link
logical relation of a DTM to a physical device (not the communication connection)

3.1.
modal window
prevents user interaction with all windows of the process

3.1.42
online data

configuration data that resides on the dévice and can be accessed by communicating with the

devide

Note {1 to entry: Online data may be.a_subset of device data (i.e it may be that not all device data is access

commpnicatng with the device).

3.1.
operption
procgdure that maylinvolve one or more method calls between FDT Objects

3.1.
pattgrn
a stapdard solution to common problems in software design

3.1.45
platform

ble by

combination of hardware platform, target platform and target CLR, that defines the

environment for execution of FDT software

3.1.46
project
generic term for the sum of information related to a set of devices

Note 1 to entry: The definition of project is specific for a Frame Application.

3.1.47
proxy object
object which functions as a representative of an other object

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 28 - IEC TR 62453-42:2016 © IEC 2016

Note 1 to entry: The proxy pattern is a often used software design pattern.

Note 2 to entry: |EC 62453-42 uses the proxy pattern for interaction between DTM BL and DTM Ul, between DTM
BLs, between DTM BL and Communication Channels, for supporting multiple .NET Framework versions in a Frame
Application and for providing backward compatibility to FDT1.2.x.

3.1.48
reassign

3.1.48.1

reassign

<DTM replacement>
Change the Typelnfo assigned to a device node from one Typelnfo.ld to the same Typelnfo.ld
in a qifferent DTM

3.1.48.2

reassign

<devjce replacement>

chanpe the Typelnfo.ld to another Typelnfo.ld within the same DTM or to another DTM

3.1.
reassignment
procegss of assigning a different DtimType to a device node with assigned DtmType

Note 1 to entry: It is possible that for the previously assigned DtmType“already a dataset exists. This dataset
should be considered in the reassignment.

3.1.50
repldcing installation
installation of a new version of a DTM which replaces a currently installed DTM version

Note 1 to entry: A Frame Application is notified abouf the installation, but the DtmDeviceTypes do not need to be
reassigned. DTM Updates (see update) and DTM Upgrades (see upgrade) replace installations of older versipns of
the DTMs.

3.1.501
revigion
identffication of modification of non-FDT components, e.g. device firmware or device hardware

Note 1 to entry: Not all fieldbus specifications supported by FDT and/or device types provide a Version
identiffjcation which allows totderive compatibility statements.

Note 3 to entry: In confrast to a version, revisions require additional fieldbus or device type-specific knowlefdge to
derivel compatibility orlinterchangeability predictions.

3.1.52
Semanticlnfo
identjfier'that provides a reference to semantics defined in a specific context

Note 1 to entry: The reference is provided by the Semanticld, the context is provided by the ApplicationDomain
that accompanies the Semanticld.

Note 2 to entry: There may be several semantics provided for an information item, e.g. a parameter may be
described in a fieldbus profile as well as in a device profile (e.g. for drives), that is why several semantic infos may
be provided for an information item.

3.1.53
set point
target value that an automatic control system will aim to reach

Note 1 to entry: For example a boiler control system may have a temperature set point, which is the temperature
the control system aims to attain.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 29 -

3.1.54

Sibling DTMs

DTM instances in an FDT Project, which are classified by their relation to the same
Communication Channel

3.1.55
surrogate process
process hosting an object on behalf of client processes

Note 1 to entry: A surrogate process can have other qualities than the client process. E.g. it can be used to load a
different .NET Framework.

3.1.5

synclhronous operation
operation that is performed while the object that requested the operation is waiting fdr the
resul

3.1.57
targgt CLR
comrmon language runtime, which defines the environment for execution’of FDT software

Note 1 to entry: An example for target CLR is the CLR 4.0.

3.1.5
targgt platform
native data size supported by the machine and operation system, on which the FDT soffware
is executed

Note 1 to entry: IEC 62453-42 defines support for 32-bit and for 64-bit target platforms.

3.1.59
trangformer
component for the translation between FDT1.2.x XML documents and I|EC 624%3-42
dataflypes

Note 1 to entry: Transformers are.pravided by the FDT Group for each communication protocol specified in an
FDT Hrotocol Annex specification.

3.1.6

update
procegss to replacel@ component with a later (up to date) revision (update revision) that
inclugles error corrections

3.1.6(1
update revision
(mingr)fevision of a component that includes error corrections and small enhancements

Note 1 to entry: In comparison to an upgrade revision an update revision includes no major functional
enhancements or new features . An Update Revision shall be backwards compatible to previous revisions of the
same component.

3.1.62

upgrade

process to replace a component with a later revision that includes functional enhancements
and/or new features (upgrade revision)

3.1.63

upgrade revision

revision of a component that includes functional enhancements and/or new features compared
to a previous revision of the component

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 30 - IEC TR 62453-42:2016 © IEC 2016

Note 1 to entry: An Upgrade Revision shall be backwards compatible to previous revisions of the same
component.

3.1.64

version

an instance of a software product derived by modification or correction of a preceding
software product instance (see [33]2)

Note 1 to entry: The format of a version is: Major.Minor[.build[.revision]] for more information see
http://msdn.microsoft.com/en-us/library/hdxyt63s

Note 2 to entry: Version is used in FDT2 for identification of FDT software components and for corresponding

compatibility attributes
3.2 Abbreviations
For the purposes of this document, the abbreviations given in IEC 62453-1, |IEC 62453}{2 as
well as the following apply.

AP Application Programming Interface

BTM Block Type Manager

CLR Common Language Runtime

CLB Common Language Specification

CSis Cascading Style Sheet

DgS Distributed Control System

DD Device Description

DLL Dynamic Link Library

DgM Document Object Model

DTM Device Type Manager

FA Frame Application

FD|T Field Device Tool

FD|T1.2.x FDT implementation according IEC 62453-41

FD[r2 FDT implemeéntation according IEC 62453-42

GUI Graphical Mser Interface

GUID Globally Unique Identifier (a UUID)

HART®3 Highway Addressable Remote Transducer

11D Interface ID

10 Input / Output

LC|D Locale ID

MYDN® Microsoft Developer Network

PLE Programmable Logic Controller

WPF Windows Presentation Foundation

XDR XML data reduced

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

3.3 Conventions

The conventions for the UML notation used in this document are defined in Annex H.

2 Numbers in square brackets refer to the Bibliography.

3 See Annex G.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -31-

This document specifies requirements to software. Different levels of requirement may be
recognized by the used wording.

Wording Indicates
‘shall’, ‘has to’, ‘have No exceptions allowed.
to’ ,or ‘Mandatory’
‘should’ or Strong recommendation. It may make sense in special exceptional cases to differ from
‘Recommended’ the described behavior.
‘conditional’ Function or behavior shall be provided, depending on defined conditions.
‘can’ or ‘Optional’ Function or behavior may be provided.
Further conventions are:
Convention Indicates
Note: Indicates text (in small letters), which does not express requirements,’but provides
additional information.
<MethiodName> Angle brackets are used to indicate a reference to an asynchropous method
NOTE If looking for definition in Annex B: Such methods are implemented as pair of
BeginMethodName()/EndMethodName()
Codg examples provided in this document are intended. for illustration of the desgribed

conc
the d
proto

4 |

4.1

The
libran

bpts. They should not be used as is. Developers of FDT software should consider W
eveloped code is applied and design the software accordingly. For exact specificati
col-specific implementations, refer to the FDT Protocol Annex documents.

mplementation concept

Technological orientation

NET Framework is a software framework by Microsoft. The Framework includes a
y and supports several programming language. Programs written for the

Framework execute in a software environment, named the Common Language Ru

(CLR
Micrg
1ISO/I

The
base

This

). The class library and“the CLR together constitute the .NET Framework. The CLR
soft-specific implementation of the definition provided by ISO/IEC 23271:2012
EC 23270:2006.

mplementatign~of FDT’s client/server architecture defined in this Technical Rep
d on the .NET Framework.

part.sof IEC 62453 specifies .NET interfaces (what the interfaces are), no

implgmentation (not the “how” of the implementation) of those interfaces. It specifie
beha)ier‘that the interfaces are expected to provide to client applications that use them
FDT-specification neither specifies the implementation of DTMs nor the implementation of
Frame Applications.

here
on of

large
LINET
ntime
is a
and

Drt is

the
5 the

The

Included are descriptions of architectures and interfaces which seemed most appropriate for
those architectures. Like all COM implementations, the architecture of FDT is a client-server
model where DTMs are the server components managed by the Frame Application.

4.2

Implementation of abstract FDT object model

Figure 2 provides an overview of how the FDT Objects (defined in IEC 62453-2) are
implemented in IEC 62453-42 and how their relationship to each other is implemented. The

FDT

Objects are implemented as .NET objects.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

—-32—

IEC TR 62453-42:2016 © IEC 2016

IEC 62453-42 defines a simplification in regard of the implementation of the object model.

Within this implementation the only Channels are Communication Channels.

Process

Channels are mapped to ProcessDatalnfo objects. Communication Channels may not have
User Interfaces. The objects “Project” and “Host Channel” are considered as Frame
Application-specific implementations and are not defined within this Technical Report.

Frame Application

¢ ¢

1 1
— linked DTMs
. wan U“
devices | gsiness Logic ;
* L
1
DTM linked
communication commuhication
0.*| DTM Uls channels|0..* 0..*|channels
DTM Communication .
opened Uls| yger Interface Channel 0..
0.* FA
communication
channels

If the

Figure 2 — IEC 62453-42 Object Model

IEC

Frame Application is a distributed software-system, the Frame Application is respor

to organize the instantiation of the objects (based on a vendor-specific implementation).

4.3 FDT Frame Application (FA)

A Fr

me Application is the runtime,environment for the DTMs and provides interfaces

sible

vhich

enable the DTM Business Logic_andthe DTM User Interfaces to interact with its environgnent.
In addition, the Frame Application manages the interaction between the DTM Business

and

>

DTM
User Interface

User

Interface

Ul Messages /
DTM Events

Frame Application

e DTM User Interface®yproviding a standard messaging interface (see Figure 3).

L ogic

Ul Messages /
DTM Events
Business
Logic DTM
>S Business Logic

Figure 3 — Frame Application

IEC

The messaging interface is used for the transport of DTM-specific messages and events.
Contents and format of the messages are proprietary and not understood by the Frame

Application.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -33 -

The Frame Application User Interface represents all functions of the frame related to user
interface. The Frame Application Business Logic represents all frame functions related to
business logic. Both are not specified by this Technical Report, but are implementation
specific parts of the Frame Application (e.g. functional parts or structural parts). These two
parts can be comprised in one single application or in separated applications, for example in a
server and client application.

Frame Applications can have no, one or multiple Frame Application User Interfaces.

The Frame Application Business Logic part is responsible to execute the DTM Business
Logic. It provides services which enable the DTM Business Logic to:

e persist data in the Frame Application persistence storage (see 4.11.1),
e cpmmunicate with associated device,

e request displaying of further user interfaces (e.g. user dialogs, additional DTM [User
Interface),

o browse the FDT topology and interact with other DTMs,

infform the Frame Application regarding events (error / trace messages, progress etc.)

ifteract with the DTM User Interface.

The Frame Application user interface part makes the DTM services available to the userp, for
example the functions and user interfaces supported by ayDTM (see 4.5). It hosts the |[DTM
User|interfaces as part of its own user interface and provides services to:

interact with the DTM Business Logic (see 4.4)

e request displaying of further user interfaces” (e.g. user dialogs, additional DTM [User
Interface)

e browse the FDT topology and interact with other DTMs

L]
=

form the Frame Application regardifnlg events (error / trace messages, progress etc.)
4.4 DTM Business Logic
4.4.1 General

The Frame Application jnteracts with the DTM Business Logic through defined interfaces| (see
Anngx B). Figure 4 shows the information objects which are used by the interface defin|tions
implgmented by the(D,TM Business Logic.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

NOTE

(E.g.
inform|

4.4.2

In or
GetT
class

interface to provide information as defined for-a DTM (see IDtmInformation in Annex B)

main

NOTE
condit

Figur
thesd
supp

2016

- 34 - IEC TR 62453-42:2016 © IEC
Device Scan Device Data Process Data Network
Info Info 0.1 0.1 Info Management Info
0.1 0.* 0.* 0..* 0.2
?r'll;l\oﬂ offline online Function
data data Info
1 *
0..
1
1.7 0..1
DTM . 1 DTM 1 Report
evice-Tvne-lnfo. = = = 0.* nfo.
- Type-lat Businesstoygic at
1 1

1

8. / \ Document
Device Reference
Ident Info Info

IEC

Since this subclause describes the general concept of FDT, the actual implementation in a DTM may
f a network protocol uses network management, it will be mandatory to/provide network manag
ation.)

Figure 4 — DTM Business LogicC

Implementation of DTM, DTM Device Type,iand Device Ident Info
Her to increase performance in creation of libraries and selection of DTMs, the sqg
). The DtminfoBuilder is installed together with the DTM. It implements the

advantage of DtmInfoBuilder is, that it can be used without instantiating the DTM.

1 By using the DtminfoBuilder it is~possible to adapt the available Typelnfos depending on
ons (e.g. DD-Interpreter DTMs maysprovide Typelnfos depending on installed DD files).

e 5 shows the informationodatatypes that are provided by a DTM in order to su

prted devices (see 7.4 and 7.5 for detailed description).

differ.
ement

rvice

ypelnformation shall be provided by a separate class (the so called DtminfoBuilder

same
The

arious

pport

Frame Application fanction and how this info datatypes are used to describg¢ the

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 35—

. DTM :
DtminfoBuilder i [describes
provides Info 1 ‘
1
1. : DTM Business Logic
DTM 1.* 1
Device Type Info
i DTM Device DTM Device DTM Device
Type 1 Type 2 Type 3
! 7
0 %
. o >
Device N % %
1. O
tdentinfo zg >
=g Ja —= i
el — e
— === T’
= 2' - ;
£ 32 & = = =
§ Manufacturer: XYz Manufacturer: XYz Manufacturer: YZ
describes TVpe: Type 1 Type: Type2 Type: Type 3
Software Rev.: | <...> Software Rev.: ~ <. » Software Rev.: >
Hardware Rev.: | <...> Hardware Rev.:".<...> Hardware Rev.: >
IEC

Figure 5 — DTM, Device Type and Device 'ldent Info

NOTE|2 Since this subclause describes the general concept of FDT; the actual implementation in a DTM may
differ.

The fepresentation for a particular physical device type within the DTM is called DTM Dgvice
Typel] A DTM may provide one or more DTM:Device Types. The concrete design[and
implgmentation of the DTM Device Types is not'in“scope of FDT.

Information about physical device types, which can be handled by the DTM Device Types is
returped by the service IDtmInformationiGetDeviceldentinfo (see definition of IDtmInformlation
in Annex B). Such information is for~example manufacturer, type, hardware and embedded
software version of the device. The DTM may even return regular expressions for $ome
specific device identification elements to signal that the DTM Device Type can be used fpr all
devides for which the expression matches (e.g. the character asterisk **’ for the hardware
versipn may signal that the DFM Device Type supports all hardware versions).

The |nformation returned by service IDtmInformation:GetDeviceldentIinfo is fieldbus-spgcific
and therefore defined by the document describing the protocol profile integration in HDT2.
Howgver, FDT defines the means to transform the information into a protocol-indepemndent

4.4.3 Implementation of DTM device parameter access

data (offline data) and directly in the connected device (online data). This data is represented
by Datalnfo (see 4.12.1 for detailed description).

A DTM has to expose a defined set of device parameters which are publicly available (see
4.12 for detailed description). Parameters are provided in a bus neutral structure allowing
their use without knowledge of the fieldbus protocol.

4.4.4 Process Data Info

Process data provided by devices (e.g. 10 signals) are integrated into the functional planning
of the control system. The process data related information for the integration of the device
into the control system like datatype, signal direction, engineering units, and ranges is
provided by the DTM Business Logic for each DTM Device Type (Figure 6), but may also
depend on the device instance configuration.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 36 — IEC TR 62453-42:2016 © IEC 2016

Process Data

Info h ;
T TEPresents

T ¢
r
0“* II-O I‘
;“ > signals

1 .
TV Device
Business Logic | | represents > :
. & ;
IEC

Figure 6 — Process Data Info

The process values provided by a device, both the numberiand type, may depend op the
configuration of the DTM. Thus the number of available Process Data Info objects may| also
depehd on the device configuration. A Frame Application is able to inform the DTM| that
further configuration changes shall be prohibited.‘because the process data is aljeady
integfated into functional planning of the control system. In this case the DTM shall not pllow
any ghanges which will affect the definition of the ‘available process values.

The process information is protocol-specific." Each FDT Protocol Annex defines a ddrived
class| defining which information shall be_contained. However, the properties in the base tlass
Procgéss Data Info provide common infétmation (e.g. 10 signal name, tag etc.) in a profocol-
independent format to enable Frame Applications without protocol-specific knowledge to
integfate the process variables into.the system (see 7.11.1 for detailed description).

If th¢ process data value (isyalso available as Device Data Info, then the corresponding
elempnt is referenced by, the Process Data Info element (see |OSignalRefs in 7.11.1).

A Prpcess Data Info ,element may have a relation to a Communication Channel. This| is a
typical case for atGateway DTM for a remote 10 (see |IEC 62453-2:—, 4.2.3.2.4). The relation
is represented within the Process Data Info element (see 10SignalRef in 7.11.1).

NOTE| The-Process Data Info replaces Process Channel as defined in FDT1.2.x.

4.4.5 Diagnostic Data Info

A DTM provides a service to retrieve the status of the related device. The status is encoded in
a protocol independent way, according to [7].

4.4.6 Network Management Info

The DTM supports an interface to read and write network management information which can
for example be used for address management and bus master configuration (see 8.11.1).

The Network Management Info is protocol-specific. It may contain device bus-address, tag
and additional bus-specific configuration settings. Each FDT Protocol Annex defines a derived
class defining the protocol-specific record. However, the base class Network Management
Info provides common information (e.g. bus-address, tag) in a protocol-independent format to
enable Frame Applications without protocol-specific knowledge to use it (see 7.13 for detailed
description).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 37 -

4.4.7 Function Info
Each DTM may provide a set of functions comprised by

— DTM User Interfaces,
— DTM functions without DTM User Interface (CommandFunctions) and
— references for external documents.

The Function Info object provides the information about the functions such as name, status
(enabled / disabled), etc. (see 7.14 for more detailed description).

A fynction should provide printable information. A Frame Application may cal|l the
documentation interface (see [4], 7.2.7.1) of the DTM to retrieve printable information.| This
interfface returns a corresponding Report Info object which holds the printable information.
The Report Info object may indicate the relation to the function.

4.4.8 Report Info

If a DTM provides instance data and/or online data, then the DTM shall implement a dpvice
type-specific reporting of the provided data for documentation ap@/archiving purposes| The
DTM|BL may implement different types of reports that each cover a distinct subset df the
instahce or online data of a device.

The Report Info exposes a list of report types supported.by’a DTM (see 7.19). The list may be
grouped. The list is static over the lifetime of a DTM ,instance, there are no dependenci¢s on
the current application context.

4.4.9 Document Reference Info

A DTM may provide references to external*documents, which are displayed by the Fframe
Application. These references may be previded as part of the Typelnfo (as static information)
or ag| part of the Function Info (may change dynamically). The Frame Application may prpvide
an own viewer for the documents ortrely on the condition that external software is installgd for
the Hocument type. It is recommended, that DTMs use common document fofmats
(recdmmended formats are RPDF, CHM and HTML). Otherwise DTMs should provid¢ the
necepsary viewers.

4.5 Implementation of DTM Functions
4.51 DTM Userinterface

A DT|M User/nterface (DTM Ul) may be a graphical control which is integrated into the|user
interfface of-the Frame Application or a proxy object handling the interaction with an external
progtam provided together with the DTM.

A DTM Ul may be modeless or modal. A modal DTM Ul behaves modal only in respect to the
DTM instance. A DTM instance should expect that the modal DTM Ul blocks only activity in
regard to its own Ul (DTM instance modal) and that other Ul (Frame Application, other DTMs)
still may trigger actions. Modal DTM Uls should be used as sparingly as possible.

A Frame Application may also implement Frame Application modal behavior for modal DTM
Uls.

The contents and layout of the DTM User Interfaces is device-specific, but shall follow the
DTM Style Guide [6].

NOTE 1 A DTM may provide DTM User Interface for different platforms (e.g different display formats e.g. PC,
mobile device etc.). Which platform is supported by a DTM User Interface is described by corresponding Ul
Function Info element returned by the DTM (see 7.14). The FDT specification will define which platforms shall be
supported.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 38 - IEC TR 62453-42:2016 © IEC 2016

NOTE 2 The intention is for IEC 62453-42 to allow later extensions in regard to User Interface technologies and
platform support.

4.5.2 Function access control

The Frame Application can restrict the invocation of functions provided by a DTM, disable
actions (buttons) of the DTM Ul (e.g. Apply) and restrict DTM transition to certain states (e.g.
restrict transition to state Online by not calling the method EnableCommunication()).

The Frame Application will get the list of the functions provided by the DTM in
IFunction.Functioninfo property. The DTM shall expose all functions available in the DTM in
all modes. When the functions are not applicable for the current mode of operations,
Functionltem.Enabled property will indicate that. A DTM shall expose always the same_get of
functjons for a device node (even if the DTM instance was terminated and loaded again)| The
number and type of listed functions shall not change, but the status of the functions-in r¢gard
to availability and visibility may change. Frame Application should hide the functions| with
Hiddén property set to TRUE.

The DTM shall indicate when the state of Enable is changed, by IFunction:FunctionsChanged
even.

When a user interface for the DTM is invoked, the DTM shall pot allow switching the cgntext
from [within the DTM user interface.

For Bxample:
If a [Diagnostic Function is invoked by the Frame<{Application, the DTM will presenft the
diagnostic information in the user interface. The_user should not be allowed to invoke the
configuration screen from within the DTM user intetface for the diagnostic function withoyt the
permjission from the frame. The user shall be able’ to invoke the configuration screen from the
functjons exposed to the Frame Application.ifthe permissions in the Frame Application pllow
it.

If thg MainOperation Function is invoked by the Frame Application, the DTM will presept all
availgble functions within the user'interface. The user may invoke the Configuration s¢reen
from |within the DTM user interface as well as the Diagnostic function or any other integfated
functjon.

4.5.3 Handling of standard Ul elements in modeless DTM Ul interfaces

Modgless DTM Uls_shall delegate the presentation and handling of their standard dialog
elemgnts to the Erame Application. The standard dialog elements are:

— agtions with standardized semantics (Apply / Close / Online Help) (see Action Area ip [6])
apd

— DIFM Ul-specific status information (data source, summary parameter modification $tate,

Utoperatiommodeactivationrof-servicemode)(seeStatus Bar-inf6h)———

To ensure a consistent user interface appearance between the different DTM vendors, a DTM
Ul may delegate presentation and handling of additional DTM application-specific actions to
the Frame Application. Nonetheless DTM Uls are allowed to implement non-standard dialog
actions within their own Ul area (see Application Area in [6]).

The set of standard dialog actions and their respective semantics is fixed. However, the
availability of these actions may change at any time depending from the internal state of the
DTM Ul. The set of application-specific actions including their individual availability is not
fixed. A DTM Ul may add, remove, rename, enable or disable application-specific actions at
any time depending from its individual requirements. A DTM Ul shall inform a Frame
Application whenever the availability of its standard actions or the set or availability of its
custom actions changes (see events IStandardActions.StandardActionltemSetChanged and
IApplicationSpecificActions.ApplicationSpecificActionltemSetChanged in Annex B).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -39 -

A Frame Application may use dedicated Ul elements, e.g. button controls, to provide direct
access to the standard dialog actions, as well as indirectly invoke them in the context of user
interaction with other Frame Application Ul elements. A Frame Application shall always show
all custom actions exposed by a DTM Ul with dedicated Ul elements. These shall be
unambiguously associated with the DTM Ul as described in the DTM Style Guide [6].

4.5.4 Command functions

Command functions are used to execute actions (commands) either on the DTM BL or within
the context of the graphical user interface. Command functions in context of the DTM BL shall
not have a GUI, but Ul Command functions may show a GUI (see 6.4).

A Cdmmand function may have parameters. The information about the parameters,which is
provided by the DTM BL, may include default values of the parameters. The actual,parameter
valugs are passed when the Command function is executed.

4.6 User management
4.6.1 General

FDT |does not define a standard system for user management. The ‘user management ig part
of pfoduct-specific definitions and may be implemented differently for different Frame
Applications. However it is still necessary to define alCommon handling for ag¢cess
permfissions, access rules and how components fromx different vendors commurficate
information regarding access permissions.

4.6.2 Multi-user access

Som¢ Frame Applications provide multi-user capability. Such a system provides accegs for
multiple users at the same time and may.be distributed over several computers.| This
specification considers the distributed environment as one Frame Application. The Frame
Application and the DTM are equally résponsible to provide the multi-user access apd to
ensufe consistency of data.

If, within one Frame Application;tmultiple users access the same device or the same dpvice
dataget, the Frame Application~shall start a separate DTM instance for each user. All these
DTMlinstances shall have same DTM type, shall be instantiated for the same DtmDeviceType
and for the same physical. device. Each DTM instance manages a separate instance dafaset.
Thesg instance dataséts‘are synchronized by means of the persistent dataset (see 4.11.59).

NOTE| An example<architecture for multi-user scenarios is found in 11.4.
4.6.3 User levels

4.6.3[1 Introduction

DTMs may be integrated in different Frame Applications, which may have varying
requirements to restrict visibility and accessibility of device and persistent data, for example
for plant safety reasons or to present a customized view to the user. The grade of restriction
varies with the types of users supported by a system. Examples for users requiring data
access restrictions are:

e a user assigned to observe a plant shall not have access to calibration-specific device
parameters and consequently shall not see related DTM functionality,
e a device commissioning specialist needs to have access to calibration data and functions,

e a user assigned to operate a plant shall be able to change (write) set point values and be
offered appropriate functionality while a user assigned to observe a plant is not allowed to
execute such changes.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

—-40 - IEC TR 62453-42:2016 © IEC 2016

4.6.3.2 Access Control Concept

FDT uses a role based access control concept. A Frame Application initializes a DTM
Business Logic and the associated User Interface with the same FDT-specific user level (see
definition of IDtm.Init() and IDtmUIFunction.<Init()> in Annex B). The user level is immutable
over the lifetime of the Business Logic/User Interface instances.

In terms of access control, every actor in an FDT system may have one of the following three
user levels at the interface of a DTM (Table 1):

Table 1 — FDT User levels

User|Level Name Description ?\\0
o\
Obserper This user level stands for an actor that observes the current process only.
Exper This user level stands for an actor who has to execute specific use cases,'e.d operatidn

use cases (operation expert) or device maintenance use cases (maintenance expert). [This
user level allows the Frame Application to configure access and privileges.

Enginger This user level stands for an actor that has to do the plant plannihg, device
configuration/parameterization and plant maintenance.

The pser levels allow a stepwise extension of permissions, (The Observer typically Has a
minimum permission set, the Expert has an intermediate permission set (which is configured
by the Frame Application) and the Engineer has a full permission set.

The |Expert user level may be considered as a_super-set of the actors “Operator’] and
“Maintenance” as defined in IEC 62453-2. Since_a Frame Application may configuri the
acceps permissions for the Expert, it is possible.toyapply fine grained permissions, that can be
adapted to different application scenarios.

NOTE]| For an explanation of the fundamental usefilevels and use cases that were considered for the design|of the
FDT gpecification see Annex A. A Frame Application may support only a subset of these use cases or additional
use cgses not defined in the annex.

According to the role set by the "Frame Application, the DTM Business Logic and |[User
Interface shall control accessito device and persistent data (see definition of interfaces
lInstgnceData and IDeviceData in Annex B) as well as adapt its user interface appearance.
This |includes to hide some-.data or display it as read-only, but also to partially disable PTM-
specific functionality (see definition of IFunction.FunctionIinfo in Annex B), if it requires|data
access rights that are'not associated with the specified user level.

It is mandatory for a DTM to implement a safe and read-only usage for the “Observer’|user
levell It is also ‘mandatory for a DTM to implement unlimited usage for the “Engineer”| user
level] It is-Gptional for a DTM to implement configurable custom usage for “Expert” user |evel.
If “Expert*level is not implemented by a DTM but is set by the Frame Application, the[DTM
shallluse&’the behavior for “Observer” user level.

Table 2 gives an overview about the user interfaces and functions that are expected to be
available for the individual user levels. The data access rights should be defined to allow for
the execution of these use cases.

The assignment of roles to individual users is Frame Application-specific. The Frame
Application may implement an own user management sub-system or use fixed user levels.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

—41 -

Table 2 — Role dependent Access Rights and User Interfaces for DTMs

Use Case Sub Cases User level
Engineer(M) Expert(O) Observer(M)
System Planning Network Management IfaDTM If the DTM -*)
- - implements implements
Busmaster Configuration these use these use -
Channel Assignment case, it shall cases and _
expose all supports the
System Generation Network Management related user role o {rn
- commands and | “Expert”, it
DTM matching user shall allow O{r}
Devict i interfaces. Frame i
Confiduration Application to
onfiguratio configure
Simulation (Force) - access to the »
exposed data’
Offling Operation Offline Parameterization commands and | -
. : user interfaces
Persistent Data Comparison -
Onling Operation Online Functions (reset + other IfaDTM If the DTM -
functionality that requires online device implements implements
connection) these use these use
- . cases, it shall cases and
Online Parameterization expose all supports the -
: : related user role
Calibration commands’and | “Expert”, it
Device/Persistent Data Comparison user shall allow -
interfaces. Frame
Adjust SetValues Application to O {r}
configure
Upload access to the)
Download exposed data, -
commands and
Bulk Qperation Upload user interfaces | -
Download -
Onling View Network Scan O {r}
Online Status M {r}
Online Trend M {r}
Device Identifieation M {r}
Onlineiew Parameter Set O {r}
Reporf Generation - M {r}
Devicg-specific Device vendor-specific (or extended) -
Operations DTM functions after DTM/Device-
specific OEM Service login
M Mgndatory (if-a DTM implements this use case, it shall expose all related commands and user interfaces|in the
spEcified user level)
O Ogtional (a DTM may expose the related commands and user interfaces in the specified user level)

r User level shall have read access to all data related to the use case

w User level shall have write access to all data related to the use case

- Use case not supported in this user level (DTM shall not expose any related commands/user interfaces)

*) A DTM shall allow all user levels to set the device address in the DTM with the method SetAddressinfo().

4.6.3.3

Frame Application configured access control

It is very difficult and may even be impossible for the DTM vendor to provide correct access
control settings for all occasions. The data, which can be accessed, and the functions, which
can be used, are changed by the user; depending on where the DTM is used or what is the
operational phase of the plant. Here are some examples:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

—-42 - IEC TR 62453-42:2016 © IEC 2016

a) The same user may have different permissions for the same device controlled by the same
DTM when the device is connected in the plant or in the instrument shop. In the instrument
shop, the user may have all equipment to calibrate the instrument and the corresponding
privileges should be granted. Little or no changes may be allowed when the instrument is
connected later to the actual running control system.

b) The same user may have full control when the plant is being engineered, but the changes
to the device may be significantly restricted, when the plant is in running state.

c) The same group of users may have different permissions for different instruments — some
of the maintenance personell may be trained to work with transmitters, other may be
specialized in valve maintenance.

have unlimited access to all device maintenance procedures but in a big appllcat|on often
the access is controlled according to the individual experience of the technical staff.

To afidress the different cases, an “Expert” user level is provided. When thepDTM sup|ports
the ‘[Expert” user level, the data which can be accessed and the function which cgn be
invoKed are restricted by the Frame Application depending on the rulesyin)the plant, oh the
operational phase, the individual user or team experience and other factors.

The Frame Application can use the Expert user level to create additional levels of access to
the QTM data and functions for individual user or for a group of users. For example, wheph the
access control is configured for the Operation Expert, the Frame Application may enable the
access to Set Point Values, to the Tuning parameters and to Diagnostic functions. In anpther
exanjple, the Frame Application may enable the accesg to-the Calibration parameters, tp the
calibfation functions and to the Online Parameter View~when the Device DTM is invokged in
the instrument shop environment.

NOTE| Bbe aware that the user level “Operator” as defined.in FDT1.x specification is not supported in IEC §2453-
42. The term Operator in this document is used to describé an expert for plant operations.

4.7 Implementation of FDT and system topology
4.71 General

IEC 62453-42 differentiates two-topology views: logical topology and physical topology|(see
Figurde 7).

A lodgical topology is created by a hierarchy of DTMs. Child DTMs are connected to Pprent
DTMs$ via the Communication Channel of the Parent DTM. A Parent DTM may have myltiple
childfen. This relation’ is managed by the Parent DTM. This means that a Parent DTM khows
all it Child DTMs:

A Chjld DTMsmay be assigned to multiple parents (e.qg. if different network paths may be|used
to access._a device). A Child DTM is not notified if it is assigned to a Parent DTM, but i may
requesti/a list of parents from the Frame Application by using the method
ITopology.GetParentNodes().

A Child DTM can use only one communication path at a time to access the respective device.
The Parent DTM providing this communication path will be marked by the Frame Application
as ‘primary parent’.

This means, that the logical topology describes the logical relations between the devices on
an abstraction level that supports managing the communication between DTMs and devices.

A physical topology is created by defining physical connections between DTMs. Connections
are defined between Ports of the DTMs. This means the physical topology describes the
actual hardware installation. The connections are managed by the Frame Application. It is
possible to use these connections for representation of all kind of network structures.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 —43 -
Conceptual depiction of
reality

PROFINET :
Communication DTM

Modbus TCP :
Communication DTM

Ethernet

Ethernet with PROFINET and Modbus TCP

PROFINET

Fieldbus

[| Device 1

Device 2

Ethernet
Port Interface
PROFINET Modbus TCP
Communication Channel Communication Channel
Ethernet Switch
0000000
Gateway : Gateway DTM Modbus TCP Device : Ethernet (e mie e e e
Device DTM Ethernet [] Port
H Modbus TCP
Gateway | Fieldous Device
Fiel§bus : Communication Channel B Port
Fieldbus Fieldbus
Port Port
[Delice 1: Device DTM] [Device 2: Device DTM]

4.7.2
4.7.21

Figure 7 — Logical topology and physical topology

Topology management

Logical topology

Modbus TCP

Device

IEC

The Frame Application is responsible for managing the logical topology — it is mandatqry to
suppprt the logical topology. That means the Frame Application shall organize the routing of

data|for accessing a device in the plani~8ome Frame Applications may require

user

interactions; others may support automaticvoperations such as topology import or fieldbus
scanping. The sum of all links betweep;DTMs according the logical topology is called| FDT

topolpgy and further described in IEC.62453-2.

A DTM exposes all required information (see 4.4.2) which enables the Frame Application|(and
the User) to choose the appropriate DTM for a device, for example name, vendor, versipn of
suppprted device types and corresponding identification properties.

Communication DTM
Business Logic

1
0..*

Communication Channel

Fieldbus =

Interface

= i

— e

ICommunication %

Frame Application

>

ICommunication

Device DTM
Business Logic

Fieldbus

AT R
SRR

Device

Figure 8 — FDT and logical topology

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 44 - IEC TR 62453-42:2016 © IEC 2016

As shown in Figure 8 a Communication Channel is used as the linking element between
Communication DTM and Device DTM. The Communication Channel provides access to the
fieldbus.

The link between a Communication Channel and a DTM is created by the Frame Application.
However, final decision whether a DTM shall be linked or not shall be made by the
Communication Channel. The Frame Application has to call the method
ISubTopology.<ValidateAddChild()> (see definition in Annex B) before link is created. The
Communication Channel shall at least check whether the required network protocol of the
DTM to be linked fits to its own supported protocol. If this is not the case, then the linking
shall be rejected. In addition, the Communication Channel may perform further checks, for
exanfpte whether the number of IINKed DTMS exceeds a mit.

Neither the Communication Channel (or corresponding DTM) nor the linked DTM shall nefed to
mangge topology information in order to access the respective physical devicé. -The Fframe
Application supports to request topology information by the meihods
ITopology.GetParentNodes(), ITopology.GetSiblingNodes() (and ITopology-GetChildNodes()
(for gll see definition in Annex B).

The qules for identification of DTMs and devices are described in 4.10-

For Jome communication protocols the order of the devices linked to the network affects the
configuration of the network itself. This order is defined whén inserting the corresponding
DTM[into the logical topology (ITopology.BeginAddChild()) and can be modified latgr via
ITopplogy.BeginRepositionChild(). The Frame Application always has to maintain this prder
wher returning collections of DTMs in ITopology.GetChildNodes() and
ITopplogy.GetSiblingNodes().

If thg Frame Application provides a view on the channel, it shall show all Child DTMs in|their
respgctive order. In this view, the Frame Application shall allow the user to insert a new|DTM
at a[specific position between the existing Sibling DTMs or to change the position ¢f an
existing DTM in regard to its Sibling DTMs.

4.7.2.2 Physical Topology

Advanced topology management requires the additional planning of cable bound or wirgless
conngctions between devices. This capability is provided by the Physical Topology.

The management of the Physical Topology is the responsibility of the Frame Application| It is
optiohal for a Frame Application to support the Physical Topology. It is mandatory for a|]DTM
to eqpose all information which is required to determine whether a physical connectipn is
poss|ble or-not. The Physical Topology may not have dependencies to the Logical Topplogy
and ghall-be handled separately as shown in Figure 9.

Logical topology ﬁ

e 4
p

sibling | child yd

DTM1 : DeviceDTM DTM2 : DeviceDTM

connection
Port1_1 : Port Port1_2 : Port Q Port2_1: Port Port2_2 : Port

Logical topology %

Figure 9 — DTMs and physical topology

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 —45 -

The connections are managed by the Frame Application. Information regarding connections
may be accessed with the interface IPhysicalTopology. See Annex B for a detailed
description.

4.7.2.3 Communicating and non-communicating devices

An automation system integrates communicating devices,as well as devices which do not
communicate and therefore are not configurable via communication (e.g. power supplies and
other network infrastructure elements). Information about such devices may be essential
during the planning phase of the communication system and can be used to verify integrity of
the network, for instance in regard to bus power overload, communication distance limitations,
Va“d ty Uf t;lc dUbiUll (Cu bUIIUbt tcllll;lldt;ull). ill Uldcl tU illtcgldtc bubil dcvibca ill all DT'
basefl system, a DTM may be provided to represent such a ‘passive device’. Thé&|DTM
provides information about the device/equipment to the Communication DTM{ whi¢h is
capaple to use this information.

Diffefent protocols require specific information to be provided and may have different
limitdtions to be enforced. Information provided from DTMs for passivéy.devices has fo be
provided in a standard way and format (in Network Management dnfo), so that different
Cominunication DTMs can use it in a standard way. DTMs for caommunicating devices| may
need| to provide similar information. Protocol-specific extensions have to defing the
information provided by the communicating devices and by the,non-communicating deyices
and also how this information is used. For example, Communi¢ation DTMs for a bus powered
protgcol can use information from non-communicating devices (defining the power source)
and ¢ommunicating devices (defining the power consumption) in order to balance the gower
on the network.

4.7.3 Data exchange between Frame Applications

The interaction between different Frame Applications is not in the scope of FDT, but thel FDT
specfification defines datatypes (see TopologylmportExport definition in Annex B) which can
be uged for this purpose. These datatype* classes may be used by one Frame Applicatipn to
expoft the FDT topology information-to an XML file which then can be imported in anpther
Frame Application.

4.8 Implementation of Modularity

Different fieldbus protocéls ‘use different device models. FDT supports the following different
apprdaches to describing the structure of the device:

onolithic DTM™ with topology description in NetworkDatalnfo, ProcessDatalnfo,
rocessimagelnfo, Datalnfo and CommunicationChannelinfo

|
P
— Module BIM, and
B[T M.

4.9 —Imptementatiomrof FDT commumication
491 Handling of communication requests

In order to optimize the communication, the interface of a Communication Channel allows
passing multiple transaction requests in one call to <CommunicationRequest> (as a list).

The Communication Channel is expected to process the transaction requests in the order they
are provided in the list. The results of the transaction requests may be passed back to the
client of Communication Channel sequentially as part of the Progress callback (partial results)
and the complete result shall be passed back at the end of the <CommunicationRequest>
according to the extended AsyncResult pattern (see 5.6.7.2).

The relation between communication requests and communication responses can be
managed by the IAsyncResult handle that is passed to a client in the call to

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 46 - IEC TR 62453-42:2016 © IEC

2016

<CommunicationRequest>. The transaction responses for these specific transaction requests
will be received by that specific IAsyncResult handle. Each transaction can be identified by an
ID, the same ID is provided in the transaction response.

The cancel of <CommunicationRequest> stops execution of the transaction requests. The
results of already executed transactions shall be provided back to the client. For each
transaction request, that has been not executed a CommunicationError “Cancelled” shall be
provided to the client.

4.9.2

Handling of communication errors

Sincg¢ it is possible to pass multiple transaction requests within one gall to

<Con
<Con
comr
(Com

4.9.3
After

hmunicationRequest>, multiple transaction responses will be provided in the ires
hmunicationRequest>. This set of transaction responses may contain a mixyeb po
hunication results (e.g. communication data) and negative communication rg
municationError).

Handling of loss of connection

sending an Abort notification the Communication Channel shall not send any fy

CommunicationResponses to the communication client. For“all pending requests

exce
ignor

btion FDTConnectionAbortedException shall be thrown.The communication client s
e any CommunicationResponse received after receiving.an Abort notification.

4.9.4 Point-to-point communication

The

Frame Application manages the interaction between the DTM Business Logic an

ComiEunication Channel. The Frame Application-"passes a communication interface

inter
point

It is
devid
DTM
allow

In or

ce ICommunication in Annex B) to the DTM, which provides in each case a poi
connection between a DTM Business Logic and a device.

under the control of the Frame ‘Application to enable a DTM to communicate wi
e. The Frame Application has toprovide the communication interface to be used t
by calling the method IDtm.EnableCommunication()(see definition in Annex B) and
ing communication access;

jer to access the device, the DTM uses this interface as shown in Figure 10.

Communication DTM —
® Business Logic

1 iy
Communication Channel Fieldbus —
_ P —
> < Interface —

it of
Sitive
sults

rther
the
hould

l the
(see
nt-to-

h its
D the
thus

ICommunication J\ e R Lomw

Y Fieldbus
Frame Application |

ICommunication J)
Device DTM
o — Business Logic

¥y ’
Device

IEC

Figure 10 — Point-to-point communication

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 47 -

The Frame Application starts the corresponding Communication DTM and forwards the
communication requests to the Communication Channel which then communicates with the
hardware.

A DTM shall call the Communication Channel method ICommunication.<Connect()> (see
definition in Annex B) in order to establish a communication connection to the device. After
the connection has been established the DTM is able to communicate to the device by calling
the ICommunication.<CommunicationRequest()> (see definition in Annex B). It is general
expectation, that a DTM tests if it is connected to the intended device. See also 8.6.2.

4.9.5 Nested communication

In a hested communication scenario the Frame Application manages the interaction/betiveen
the Device DTM Business Logic and the Gateway Communication Channel as) well as
betwegen the Gateway DTM Business Logic and the fieldbus Communication Ehannel.|(see
Figune 11).

Communication DTM

> —| Business Logic

1
0..*

Communication Channel

Fieldbus
Interface

Y
A

ICommunication é
™

Frame Application v

=

Fieldbus

ICommunication 5%

Gateway DTM
— Business|Logic

'
0.*

Communicatign.Channel

Gateway

ICommunication 5#

I€ommunication S%

= Device
Device DTM .

>— Business Logic " ‘i :

IEC

Figure 11 — Nested communication

Like in the point—-to-point communication all DTMs simply use the communication interface
with their devices without the awareness of the nested communication

See 8.7 for sequences related to nested communication.

4.9.6 Dynamic changes in network

Many fieldbusses provide a mechanism for temporarily disconnecting devices or switching
between distinct groups of devices during operation (e.g. tool change for roboters,
docking/undocking of transportation vehicles). Such mechanisms lead to changes in the
communication network (called “dynamic configurations”) — devices may be disconnected. The

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 48 - IEC TR 62453-42:2016 © IEC 2016

Frame Application (and the network configuration tool as part of the Frame Application) are
able to manage the current device states at the DTM (see
NetworkDatalnfo.DeviceMayBeDisconnected and NetworkDatalnfo.DevicelsDisconnected in
Annex B).

4.10 Identification
4.101 DTM instance identification

4.10.1.1 System Tag

An FRDI_Erame Applin:\finn shall Qeeign a ||niqnn identifier for each DTM instance This u ique

identjfier is referred to as “System Tag ”. The System Tag is used by DTMs

— fqr navigation in the FDT topology;
— fqr the management of Child DTMs in the FDT topology (e.g. address setting);

— tq identify a DTM instance at the event interface of the Frame Application.

The $ystem Tag is defined as GUID.

4.101.2 Assignment of System Tag
Following rules apply to assignment and use of System Tag:

— A Frame Application shall not change the value of,the System Tag of a DTM ins{ance
dpring the complete lifecycle of a DTM instance. This means the same system_tag_yalue
ig used to identify the DTM instance in all interfages (e.g. IChildDtmEvents, ITopology and
$ubTopology).

hen a project is persisted the Frame Application shall save the System Tag of the PTMs
ich that they will be the same system _tag value when loading as before.

5sociated to the same Device Node(see Figure 14). This means it is not allowed to feuse

W

S

— Al Frame Application shall use the-same system_tag value only for DTM instgnces
a

system_tag values for other DT M, instances.

— A[DTM shall not persist the yalue of its own System Tag.

Sincg the System Tag uniquely identifies a DTM instance, it is possible that DTMs |store
Syst¢m Tags as references-to other DTMs. For example if a Parent DTM needs to keep [track
of its|children and thesdata they expose (e.g. for Address Setting or Busmaster Configuration),
then [the Parent DTM may cache information published by its children. The Parent DTM can
store| the cached information using the System Tag as a key.

NOTE| If multiple)users work on the same Device Node, each user has an own instance of the DTM, but alll DTM
instanpes usesthe same System Tag.

4.10.2 Hardware identification

A DTM supports the method IHardwarelnformation.<HardwareScan()> (see definition in
Annex B) that enables to read device information online from the connected device (see
Figure 12).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 49 -

Fieldbus Interface : Communication DTM)
Fieldbus
1 Interface
ICommunicationChannel ? ~ 4
Fieldbus : Communication Channel
| Fieldbus
:
1
Al
1
: Device 1: Device DTM
Address: 1 - =
IHafdwarelnformation { DTM Device Tag: tag xy 20
Type 2 ==
provides | O Serial No.: 123-456 = Device1
- '
Manufacturer: | XYZ
j— Type: Type 2
— | | describes Software Rev.: |2.091
—— Hardware Rev.: 1,22

Devicecaninfo

Figure 12 — Identification of«connected devices

IEC

The '1‘nethod IHardwarelnformation.<HardwareScan()> returns device type related information,
whic is fieldbus-specific like the information returned by
IDtm|nformation.GetDeviceldentinfo() (see “definition in Annex B). The transformatign to
protgcol-independent format is implemepted by the protocol-specific datatypes. See examples
in7.5%.

4.11| Implementation of DTM-data persistence and synchronization

4111 Persistence overview

The
This

Frame Application\is responsible for the persistent storage of data (data persiste
includes topology~“information as well as data managed by the DTM itself (e.g. d

parameters). IEC62453-42 only defines the interfaces, which shall be used by the DT

data
is sp

persistence (see Figure 13). While the implementation of the persistent storage sy
ecific fof ‘@ Frame Application, the format of stored data is specific for each DTM.

are not in_scope of the FDT specification.

nce).
bvice
M for
stem
Both

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

The
its d
data

The
data

4.11.2 Relations of DTMDataSet

The
DTM

- 50 - IEC TR 62453-42:2016 © IEC 2016

DTM data storage and
synchronization interface
\

\ get dataset information /
\ save / load / delete
\ commit / lock / unlock dataset
Frame __d O<-———\- __________________ DTM
Application :- Business Logic
— @ —
\ data synchronization

- data change notification
\ - locked/unlocked notification
\

\

data management

I
t
1
i
I
I
I
|
and synchronization |
I
I
I
[

data change
notification

Frame £ | >
Application |
project storage !
I

N
DTMDataSet -

IEC

Figure 13 — FDT storage and synchronization mechanism

Frame Application storage interface provides the DTM Business Logic methods to ac
itaset (called DTMDataSet) in the Frame Application%storage implementation, e.g,
ase or file persistence.

Frame Application has to guarantee the data consistency for multi-user and multi-
access and provides corresponding methodssand events to the DTM Business Logic

Frame Application manages for each physical device one DTMDataSet and the re

cess
in a

Client

lated

instance as shown in Figure 14.
Frame .
Application administrates
1 1
0..*
Project
1
0." DTI\OIIH
Device Node | 1 0.1 Business Logic
;D GDD;BIIUUI tU
T 1 0..1
0.1 DTMDataSet 1
has offline | 0..1
data of
1
is represented by ? is configured by
1 g 1
Device

IEC

Figure 14 — Relation between DTMDataSet, DTM instance, and device

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -51 -

NOTE For multi-user scenarios, the multiplicities on the DTM Business Logic all have an upper limit of ‘many’
(see 11.4).

The Project is part of internal model of the Frame Application. It is an abstract, logical object
used here to describe the management of device-instances. FDT does not define any
interfaces for the Project object, since it is a pure Frame Application internal object and may
have different specific implementations.

The Device Node also is part of internal model of the Frame Application. It is an abstract,
logical object used here to represent a physical device in the Frame Application. It controls
the lifetime and data of device-instances within a Frame Application. FDT does not define any
interfaces for the Device Node object, since it's a pure Frame Application internal object and
may phave different specific implementations.

A Frgme Application typically (vendor-specific) saves DTMInfo and Typelnfo information ¢f the
corrgsponding DTM (see 7.4) together with the DTMDataSet to be able toystart the [DTM
Business Logic, which originally saved the data.

4118 DTMDataSet structure

Figurle 15 shows the structure and content of a DTMDataSet.

<<interface>>

DTMDataSet
777777 ~ IDataset
Formatld : Guid
1
0.* -
<<interface>>
DTMDataSubset IDataSubset

Key : string
Descriptor : string

IEC

Figure 15 — DTMDataSet structure

The PTMDataSet has-atproperty Formatld, which is a unique identifier for the format qf the
data.| This ID is created by the device (DTM) vendor. The DTM Business Logic can us¢ this
inforfnation to decide“how to load the data, e.g. to migrate the data from an older version

A DTM always) writes the DTMDataSet in one specific format, but may be able to read| also
othen data“formats. In such a case a DTM can declare to support more than one Formafld. If
diffefent,\DTMs declare to support the same Formatld the following scenario cap be
suppprted:

A DTM vendor can provide a scenario to migrate the data from an old version of a DTM to a
newer DTM version. The new DTM version declares to support the old Formatld as well as the
new Formatld. The Frame Application detects the old Formatld and creates the new DTM. The
new DTM loads the DTMDataSet, migrates the data and saves the data with the new format
(identified by a new Formatld).

NOTE This scenario may work for DTMs of one vendor or for DTMs from different vendors. However the
definitions necessary to support such a scenario are out of scope of this specification.

A DTMDataSet can have one or more DTMDataSubsets. The DTMDataSubsets contain the
persistent data of a DTM. The DTM Business Logic can explore the DTMDataSet and add or
remove DTMDataSubsets to/from the DTMDataSet. The DTMDataSubsets are identified by an
ID which is created by the DTM. The DTM can use the IDs to read or write the data.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-52 - IEC TR 62453-42:2016 © IEC

2016

Which data is stored in one DTMDataSubset is DTM-specific. The DTM should group data in
one DTMDataSubset if it belongs to one functional unit and needs to be loaded together. In
order to improve the system performance a DTM should avoid loading of unnecessary data
whenever possible, especially at start-up of the DTM. The following grouping should be
considered:

e Basic data which is needed during the complete lifetime of a DTM instance (e.g. Network
Management Info)

o Device parameter group information which is needed if corresponding DTM User Interface
is opened (e.g. a page in a dialog) or if the Frame Application requests data (e.g.

DeviceDatalnfo objects (see 7.9))

e Process data information which is needed if Frame Application requests ProcessDatElnfo
opjects (see 7.11.1)

s ejc.

The PTMDataSubset data format is DTM-specific. Any serializable datatypefean be used| The

Frame Application is not allowed to modify the data.

4114 Types of persistent DTM data

Two fypes of DTM related data are considered:

e |Instance-related data (called “instance data”). Instancé:related data belongs to the|DTM
itself. It is specific for a DTM which data it stores but the DTM has to guarantee that it is
aple to represent the stored device instance by loading these data;

e Bulk data. DTM-specific data, for example histofical data. A DTM can save bulk dafa as
separate DTMDataSubsets in the DTMDataSét in the same way as instance-related|data
(¢ach in a separate collection). Configuration data shall not be stored in the bulk [data.
DITM shall be prepared to be loaded without previously stored bulk data.

Inst:rce-related data and Bulk data may“'be stored in separate storages in order to allow a

Frame Application to distinguish,® instance related DTMDataSubsets and |bulk

DTMPataSubsets for management.purposes.

4115 Data synchronization

If my
same
acce
multi

ble users access the same Frame Application (see 11.4).

Itiple users access‘the same device, systems shall start several DTM instances qf the
DTM type and for-the same physical device (see 4.6.2). The different DTM instgnces
5s the same DTMDataSet. This is for example the case in a distributed system where

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 53 -

DTM DTM
e User Interface . . User Interface o
Frame
Application

User 1 % $ User 2

read / write read / write
lock / unlock. lock / unlock
commit / rollback commit / rollback $
Ve 4 N N
DTM __>:’ o -——— ‘o<__ .DTM)
Business Logic | | Business Logic
ol - .
7
Z 1 T N
4 | |
data change | | dat_a chgnge
notification | | notification
S 9 fm———— -
[
[
[
Manage DTMDataSet [
read / writes, locks, - [
change notifications S \|/\|/
- Frame
Application
project storage
~ DTMDataSet

Data Server

Figure 16 — Data Synchronization

To sppport such a scenario the Frame Applicationishall support interfaces which alloy the
realization of a dataset locking and changing notifications concept (see Figure 16).

FDT2 uses a pessimistic locking concept en,’'DTMDataSet (device) level. The concept works
as following:

— AIDTM shall try to lock its DTMDataSet before execution of an operation that may lepd to
data changes (e.g. opening of a‘parameterization user interface).

If locking was successful, then data changes are allowed

If locking failed, e.g. because another DTM instance has already locked the data,/then
no data changes are‘allowed (e.g. opened user interface shall disable input fields)

DTM that has no_lock can only read the last committed data from the DTMDataSet
DTM that has the lock can read and write the data in the DTMDataSubsets.

Al
Al

— Changes ,in¢the DTMDataSet are only visible to the DTM that holds the lock until [DTM
cpmmitssthe changes and until the Frame Application sends TransactionCommitted to
other DTMs.

— Uncommitted changes are automatically discarded if the DTM unlock the DTMDataSe

— The Frame Application notifies all other DTM instances working with the same
DTMDataSet if

e Data in a DTMDataSubset has changed and changes are committed (DTM should re-
read and display the data)

e DTMDataSet is locked or unlocked (DTM should change the state of Uls, e.g. input
fields are enabled / disabled)

4.12 Implementation of access to device data and 10 information
4.12.1 Exposing device data and 10 information

In addition to device-specific functions and user interfaces a DTM provides access to device
data and to instance data via the programming interface(see definition of lInstanceData,
IDeviceData, Datalnfo, Read-Write Request and Read-Write Response in Annex B).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 54 - IEC TR 62453-42:2016 © IEC

2016

It is recommended, that a DTM exposes all parameters, which are accessible in the user
interfaces of the DTM, also by linstanceData and IDeviceData. A DTM shall expose at least
all parameters defined in applicable profiles of FDT Protocol Annexes and FDT Application
Profile Annexes. If a DTM is supporting a device with a device description (e.g. EDD or EDS),
parameters should be exposed with the same name and label as in the corresponding DD (for
example EDD: parameter name should be the identifier of the corresponding EDD-Variable).

Device data and instance data may expose different sets of parameters. Device data may
expose dynamic data like process value, device status and operating hours, whereas instance

data

should not expose such dynamic data.

The

acce
insta
meas
servi

The
DTM

5s to parameters). DTMs shall update the list of exposed parameters during runtim

urement principle). Parameters, which are only available if the DTM _i§) in an
Ce mode, shall not be exposed.

DTM should expose the data in DataGroups in the same organization as present
user interfaces. Parameters shall be exposed in a way (format and sem

DTM shall adapt the list of exposed parameters according to the user level (e.g. r?trict

, for

hce when parameters become inaccessible due to a changed configuration (erg:-“changed

OEM

ed in
antic

information) which allows the processing of the data without fieldbus/knowledge. For example,

inste
numse

FDT
devid

A Fr
comy

4.12.
The

interfaces to read the description(for all data and all data groups exposed by the

indeq
The

label
Admi
Appli
a list

Each

propgrties related to data access control (Table 3).

ad of raw data in hex format, a parameter shall be exposed-as readable value W
ric datatype and provide additional information like unit and_range.

Protocol Annex specifications may define additional requirements regarding the exp
e data.

bme Application may use the exposed data- for various use cases, for instanc
arison. For examples see the following sections.

2 Data access control

Frame Application can use IDeviceCustomConfiguration/linstanceCustomConfigur

endent of the current settings of the device and independent of the mode of opera
Frame Application can use:the information to present the list of exposed data, the n
descriptor, read/writestatus and semantic information to the user and le
nistrator create custom access permissions for each user or group of users. The F|
cation can enable~access to individual data using the method <EnableParameters>
of IDs for all parameters that shall be changeable.

data item’~is represented by an object of class AccessibleData. This class dsg

ith a

osed

e for

ation
DTM
ions.
ame,

the
rame
with

fines

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 55—

Table 3 — Description of properties related to data access control

AccessibleData Description
Properties
IsReadable Specifies whether the value can be read from the device or DTM instance.

The value may change depending on the internal business logic of the device / DTM.

IsWritable Specifies whether the value can be written to the device or to the DTM instance.
The value may change depending on the internal business logic in the device / DTM.

IsChangeEnabled This attribute is applicable only when the DTM has been initialized with Expert user
level. It specifies whether the FA has enabled changes to the data for the current
user. This property controls what can be changed directly by the user through the
DTM-UI or through the methods called by the Frame Application.

TRUE: Allows the parameter to be changed by the FA using IDATA or by the usef
through the DTM User Interface

FALSE: Parameter access is restricted and the value cannot be changed‘by the FA
using IDATA or by the DTM User Interface

The Frame Application has to verify that the values of IsChangéEmnabled and
IsWritable attributes are both set to TRUE for the parametep-to’be writable in the
DTM.

The [IsChangeEnabled” property value is provided by the DTM and can be set only by the
Frame Application. It cannot be changed by the DTM. The dsChangeEnabled property|shall
be s¢t to FALSE by default by the DTM for the user with Expert user level. The value of
IsChangeEnabled property shall be ignored by the DTM and by the Frame Application vhen
the user level is Observer or Engineer.

The | Frame Application can enable the change of a data item by setting| the
“IsChangeEnabled” flag to TRUE. Setting the Is€hangeEnabled flag to TRUE is requirgd to
allow| the change of the data item in the DTM/ device. The device/DTM may have addifional
restrictions, e.g. the data or data group may remain read only, the value of a data item| may
be rgstricted by the value of other data-items, the data item may be read only in the dqvice,
etc.

When “IsChangeEnabled” attribute for a data item is FALSE, the data item cannot be modified
by the Frame Application or-by-the user through the Ul of the DTM. It is not expected that
“IsChangeEnabled” attribute~will change the visibility of a parameter in the user interfage of
the DTM, but the DTM shall present the value as read only if “IsChangeEnabled” is det to
FALSE.

When a parameter-‘value is set in the DTM BL, it may apply additional internal logid and
modify the values of the related parameters even if the “IsChangeEnabled” flags for fhose
related parameters are set to FALSE. The user will be able to see the modified values fqr the
related parameters but wiII not be able to modify their values since the “IsChangeEnabIed"

may , hese pa eters
cannot be modified d|rectly This means that the ° IsChangeEnabIed flag is only used to
control the modification of data items by the user or by the FA, not by the DTM or the device
itself.

When the FA wants to set the “IsChangeEnabled” flag to TRUE for a data group, it has to set
the “IsChangeEnabled” flag to TRUE for each of the data items in the respective group. If a
DTM has a user interface that shows a group of parameters, it is recommended to create the
user interface in a way, which allows to control which parameter in the group is changeable
and which is non-changeable. If the DTM cannot control the access to parameters of a group
individually, then the entire user interface may be enabled for change for all parameters of the
group if one of the parameters in the group is changeable.

Note that IData exposes the list of parameters according to the actual status or device mode.
However, the DTM has to expose all parameters independent of state or device mode or role

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 56 - IEC TR 62453-42:2016 © IEC 2016

through <GetAllDatalnfo()> method. The Frame Application will provide the list of changeable
parameters to the DTM by calling the <EnableParameters()> method. The DTM shall apply the
“IsChangeEnabled” values set by this method to the individual data groups and data items.
The settings shall be applied to all parameters, independent of the device mode.

The <EnableParameters()> methods (for instance data items and for device data items) shall
be called only once in running state before any function or any other method is invoked in the
DTM. Once set, the DTM shall preserve the settings for "IsChangeEnabled" flag during the
lifetime of the DTM instance and shall reject any other request to <EnableParameters()>.

The DTM shall not save the value of the IsChangeEnabled flag in its instance data set. It shall

initia
insta
<En3g
level

Ther
ICus
the H

and the Frame Application will not be able to make it changeable.

4.12.

If a

e the flag to the default state ("IsChangeEnabled" = FALSE) any time a new
hce is created and initialized with Expert user level. The Frame Application shall if
bleParameters()> each time a new instance of the DTM is initialized with Expert

e might be device data or instance data that cannot be exposed as_parameter and
omConfiguration interface cannot be used to modify the "IsChangeEnabled" prope
xpert user level. By default, the DTM is expected to create this data as non-chang

3 Routed 10 information

device (for instance a gateway device) delivers (O signals that originated frg

DTM
voke
user

thus
Fty in
bable

m a

conngcted device, then the 10 Signal Info items of the’ProcessDatalnfo(see 7.11.1) retdrned
by cqrresponding Gateway DTM Business Logic shallydescribe this relation (see Figure 1f).
Communication DTM
® | Business Logic
ot ®
Communication Channel .
Fieldbus =
Interface mm—
ICommunication e —— -

Frame Application

Fieldbus

ICommunication J)
T describes
P— Gateway DTM (routed) 10 Signal Info
Business Logic *
i
1 ? i
0.* :
Communication Channel :
|
ICommunication J) : references
N |
i
T ! a -
ICommunication ,(JTZ ¢
Device
[&—— Device DTM 10 Signal Info
Business Logic LA

IEC
Figure 17 — Routed 10 information

The 10 Signal Info items of the Gateway DTM shall reference the 10 Signal Info items of the
Device DTM by the SystemTag of the Device DTM and the Id of the 10 Signal Info.

4.12.4 Comparison of DTM and device data

FDT supports comparison of DTM and device data, for example:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 57 -

e Comparison of persisted data with data in the device
e Comparison of historical data with current data
e Comparison of data from different devices

In order to support these scenarios, FDT defines two alternative comparison concepts:

a) DTM publishes all data in the corresponding interfaces. In this case the Frame Application
is responsible to perform the comparison (see 5.13.1).

b) DTM provides the comparison interface. In this case the Frame Application shall call this
interface for the comparison. (see 5.13.2)

4.12.|Z Support for multirole devices
1

4.12.5. General

Next| to Master/Slave Gateways, which are described by Gateway DTMs, Slave/$lave
Gatefvays do exist. As these kinds of devices do not open a new type of communication | they
are modeled as Device DTMs or Module DTMs which may be part of more than one Iqgical
topolpgy (see Figure 18). Both slave roles may support the same or differént bus protocols.

Furthermore, some bus protocols allow sharing of devices and/or modules between myltiple
masters. These shared devices are part of multiple topologies{ teo.

DTM Business Logic Communication DTM Communication DTM

T T T

Communication Channel Communicatien, Channel

< = Logical links managed
P e by frame application
& \\ ,/ ------ MR
Protocolld/Roleld 2 ...~ ‘\‘\ ol

P LR PP '
] Protocolld/Roleld 1
Device DTM

represents

Figure 18 — Multirole Device

Fieldbus
Interface 1

eldbus
erface 2

Fieldbus 1

IEC

Diffefent roles” are assumed in different topologies, e.g. the same device may act in one
topolpgy(as' slave and may act as master in an other topology. In one topology only|data
relevintfor a certain protocol or for the respective role is of interest to the Frame Applica|tion.

It is the responsibility of the Frame Application to handle the instantiation and release of one
DTM in multiple topologies.

4.12.5.2 Accessing multirole related data

The support of multirole devices is optional for Frame Application and DTMs. If both support
multirole devices, instead of direct access to interfaces at the DTM, role related data can be
accessed by way of the IDtmRoleAccess and IDtmProxyRoleAccess interfaces (see definition
in Annex B). It is in the responsibility of the DTM to provide role related data only when
accessed by the IDtmRoleAccess or IDtmProxyRoleAccess interface.

If a DTM accesses Sibling DTMs, which provide role related data, the accessing DTMs should
support access via role access interfaces.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 58 - IEC TR 62453-42:2016 © IEC 2016

4.13 Clone of DTM instances
4.13.1 General

A Frame Application may offer the functionality to copy a part of the FDT topology (i.e.
multiple DTMs) e.g.for “copy and paste”.

If a part of the FDT topology is copied, then the System Tag for all cloned DTMs of the copy
shall be changed by the Frame Application. Otherwise the System Tag would not be unique
any more.

To cHeate a cloned DTM instance the Frame Application shall perform 1ollowing steps.

e Clopy the DTMDataset to the new device node;

e (Create a new DTM instance using the same DTM (unique class identifier).

Depgnding on the use case the Frame Application should ask the user,t0 set the cqrrect
fieldjus address in the DTM, to set a correct TAG and to adjust DTMxoffline paramleters
beforle the dataset is downloaded, for example:

e dgvice position-specific parameters like settings related to moudnting related settings

e dgvice instance-specific parameters like device calibrations linearization

A DT|M shall reset cached online parameters (e.g. device serial number, operating hours|etc.)
and ¢onsider removing bulk data subsets when LoadData() is called with argument isCloned
set tfue. The Frame Application applies the argument/isCloned to all DTMs involved ip the
cloniphg operation.

If a Parent DTM is storing the System Tagscof its children then these are invalid aftgr the
Parept DTM was cloned.

If a Parent DTM instance is cloned and has cached the System Tags of its children, then it
shall|rebuild its internal data structure based on the list of changed topology nodes passgd to
IDtm{LoadData().

413 Replicating a part-of topology with Parent DTM and a subset of its Child DTMs

Cloning of a DTM with-only some of its children is not supported. A Frame Application should
not gffer this function—to the user. This restriction is to avoid inconsistencies. If a Frame
Application offered™ this functionality, then the rules which are implemented in
ISubTopology.<ValidateRemoveChild()> could not be applied.

4133 Cloning of a DTM without its children

If a DTM which has children is cloned without its children, then the internal data structure
used to manage children most likely is invalid. If IDtm.LoadData() has an empty list of
changed topology nodes, then a Parent DTM shall release the complete set of data
associated to its children (See 8.18.1 for the workflow).

4.13.4 Delayed cloning

If a Frame Application allows delayed cloning (“copy” the DTM, then make changes to the
topology, then paste the DTM) then a Parent DTM is responsible for ensuring the consistency
of its internal data structure used to manage children. This is done by keeping track of the
topology via ISubTopology.<ValidateAddChild()> and ISubTopology.<ChildAdded()> (see
8.8.2 for the workflow).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 59 -

4.14

Lifecycle concepts

Automation systems in process industry typically have a life time of 10 to 15 years or more.
Over time hardware and software components in a system will be exchanged, which may
require updates or upgrades of FDT related components.

The FDT2 life cycle concepts rely on identification and versioning of components which may
change during the plant lifetime.

The concept defines rules to identify software and hardware components and rules to ensure
backward compatibility of a component from one version to another.

The
conc

4.15
4.15.

Audit
were
shall

Framle Applications can use this information for:

* ré
9
e e

Thes
guidg

4.15.

A DT
the
trans

The following notifications are defined:

e F
te

A

general lifecycle guidelines are described in [23]. The implementation of life
bpts with IEC 62453-42 is described in Clause 10 of this document.

Audit trail
1 General

trail is about recording who has accessed an automation system and what operg
performed during a given period of time. FDT defines Frame“Application services V
be used by the DTM to record operations performed on the. dssociated device.

cording the information, date and time of operator/entries and actions
bnerating the records, e.g. for inspection and.reviews

valuating the system

e features are for example needed.for a Frame Application to comply with FDA
lines.

2 Audit trail events

M shall send an Audit Trail notification to the Frame Application to record any chang
jevice. DTMs shall only send notifications for changes and not for internal
tions (e.g. the instantiation of a user interface shall not trigger Audit Trail events).

Linction Notification: Notifies the Frame Application that a function was called (e.g
st functienality of the device or download was executed).

funetion notification shall indicate the start of a function and the end of a functi

cycle

tions
vhich

[22]

es in
state

self

bn. A
was

=]

ptification about the end of a function shall contain the information if the function

executed successfully, cancelled or executed with a failure. A DTM shall also fire
notifications for operations which are triggered by the Frame, e.g. Download parameters.

T

he notifications related to functions are:
'Function_name' started
'Function_name' finished successfully
'Function_name' finished with error 'error_reason'.

'Function_name' cancelled by user

e Parameter Change Notification: Notifies the Frame Application that a parameter was
changed. Contains the old value of the parameter as well as the new value.

A DTM shall group notifications which belong to one logical operation (changes set) into
one single notification. This means that there shall be e.g. one single notification for the
complete set of parameters which are part of a download.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 60 -

The notification related to parameter change is:

IEC TR 62453-42:2016 © IEC 2016

Parameter ‘Parameter_name’ changed from ‘old_value’ to ‘new_value’.

If the DTM supports different cultures and languages (see 5.8), then the Audit Trail
notifications also shall be localized.

It is up to Frame Application to request an additional comment from the user e.g. to document
the reason of a performed action. The Frame Application may request this comment when an
operation is started on a DTM, for example

comment during execution of the DTM action. If a comment is needed thejuser shou
askefl for the comment before the DTM action is started or after the action\.is’finished.

chanpeable parameters. The Frame Application may providé\the notifications fo
modifications in the list of changeable parameters without invoking the DTM.

5 Technical concepts

5.1 General

FDT |Objects shall be build upon the Microsoft, .NET Framework[8] and executed in the
Cominon Language Runtime (see 5.2).

The |services, specified in the IEC 62453-2 specification [3], [4], are modeled as

interfaces passing .NET datatype arguments (see chapter 7). These interfaces and data
are Used for FDT Object interaction-and data exchange. In addition, .NET exception clg
(see

The
diffefent .NET assemblies* (FDT core assemblies). Figure 19 shows the assemblies and
depehdencies to each.other.

Upload/Download,

D[TM functions are started, or

DITM User Interface is started.

Frame Application shall not disturb the user interaction with the DTM by ‘fequest

DTM does not need to provide any Audit Trail Information for’the changes in the |

5.6.9.4) are defined for returning error information in an interface method call.

FDT .NET interfaces,” argument datatypes, and exception classes are defined in

FDT (Core)Specification FDT <Protocol> Annex Specifications

ng a
d be

st of
the

.NET

.NET

ypes
SSes

three
their

FDT Interface
Assembly | ______ FDT Datatype
Assembly L
(Edt Interfaces dll) ':
| (Fdt.Datatypes.dll) :
| |
: : FDT <Protocol>
: —_———— 1 Datatype Assembly
|
|
: : (Fdt.Datatypes.<Protocol>.dll)
! NV = :
__ FDT Exception :
Assembly |, ____________| 4 |
(Fdt.Exceptions.dll)

IEC

Figure 19 — FDT .NET Assemblies

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -61-

The assemblies are provided together with this specification and shall be used for the
development of Frame Applications and DTMs.

Some of the interface methods have to exchange protocol specific information. These
methods work with abstract base classes defined in the FDT Datatype assembly (e.g.:
communication interface, see ICommunication interface definition in Annex B). Protocol-
specific classes defining the protocol-specific data to be exchanged are derived from these
base classes. These classes are defined in separated .NET assemblies, which are provided
together with corresponding FDT Protocol Annex specifications or by the DTM vendor in case
of a vendor-specific protocol.

All FDT assemblies (FDT core assemblies and FDT protocol assemblies) are strong-named
(see|5.16.2) and additionally signed with an authenticode key (see 5.16.3) owned“by| FDT
Group, installed into the Windows Global Assembly Cache (see 9.3 and 9.4), and shared
between the different FDT Objects.

The PTM Business Logic, Communication Channels and User Interfaces _shall be realiz¢d by
clasges and controls implemented in separate .NET assemblies (seekigure 20), which are
installed and registered by the DTM setup (see 9.5).

In order to increase performance in loading the GUI, it is recommended to provide the
diffenent DTM User Interfaces in different assemblies.

DTM User Interface
Assembly

DTM
2O User O DTM UI
Interface Control
\

<DtmUl>.dIl

Frame Application

FDT Interfaces

Frame
User
Interface

il

DTM Business Logic
Frame Assembly

Business
O DTM H
FDT Interfaces
o< BL / Channel

Logic
<DtmBL>.dIl

T

IEC
Figure 20 — FDT Object implementation

The DTM:-specific assemblies shall be signed with a vendor-specific key.

The DTM Business Logic and Communication Channels shall be simple .NET classes
implementing the interfaces defined in the FDT Interface assembly (Fdt.Interfaces.dll).

The implementation of the DTM User Interfaces depends on the type (see 5.10). User
Interface controls which can be embedded into the Frame Application User Interface shall be
implemented as pairs of two objects, a DTM Ul class (.NET class) and a DTM Ul control
(.NET WinForms control or Windows Presentation Foundation control). A User Interface which
cannot be embedded shall be implemented as DTM Ul class (.NET classes), which handles
the interaction between the actual DTM User Interface (i.e. an external application) and the
Frame Application.

The DTM Business Logic and User Interface classes / controls shall be “creatable”:

¢ marked as public (non abstract)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 62 - IEC TR 62453-42:2016 © IEC 2016

e provide a public default constructor with no arguments

The implementation of the Frame Applications is not in scope of FDT. FDT only defines the
interfaces which shall be provided to the DTM Business Logic and User Interface for
callbacks.

5.2 Support of .NET Common Language Runtime versions
5.2.1 General

Specrflc .NET CLR (Common Language Runtime) ver5|ons are released for executlon of
softwa : 4 is
for e ample used to execute software components burlt W|th NET Framework 4

Diffefent .NET CLR versions are not fully compatible. That means software components| built
with B specific .NET Framework version may not execute correctly in a differefnt €CLR vefsion.
For ¢xample a .NET Framework 3.5 software component may not executeycorrectly in the
.NET|CLR 4.

FDT Group defines the .NET CLR versions which shall be supported’by FDT Software.
This persion of the FDT standard supports the CLR version as/shown in Table 4.

Table 4 — Supported CLR versions

Supported CLR v@}k?n
CLR4.0

In future, FDT Group may define support for additional CLR versions. That is why this
document describes support for multiple GER versions.

The use of other CLR versions is_ not allowed until the standard FDT .NET assemblies|(see
5.1) are released for these versions:. To enforce this rule, the standard datatype classes throw
exceptions if executed in an upsupported CLR.

5.2.2 Rules for FDTW.WNET assemblies
In orfer to support(interoperability with FDT 1.2.x (see [31]) the FDT .NET Assemblieg and

the RDT protocoltassemblies are compiled for CLR2. They work in both CLR2 and (LRA4.
They|are compiled for the “any” platform in order to support 32bit and 64bit target platforms.

5.2.3 DIM rules

A DTM.shall support at least one of the CLR versions listed in Table 4. The suppprted
version(s) shall be exposed in the DTM manifest (see 7.6.2). Support in this context means
that the DTM vendor guarantees the correct function of the DTM in this CLR (e.g. verified by
tests).

5.24 Frame Application rules

A Frame Application shall support all CLR versions listed in Table 4. This also means that the
Frame Application is responsible for installation of the supported CLR runtime versions. The
Frame Application shall check the CLR versions supported by the DTM before a DTM
Business Logic or DTM User Interface is started. If the same CLR version which is used by
the Frame Application is supported, then the DTM Business Logic and the DTM User Interface
may be loaded and executed directly in the Frame Application main process. Otherwise the
Frame Application shall execute the DTM in a separate process with corresponding CLR
version loaded.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

I[ECT

R 62453-42:2016 © IEC 2016 - 63 -

A Frame Application shall support an extension concept for the support of further CLR
versions, for example for versions released after the Frame Application has been developed.
For an explanation of the concept see 5.2.5.

In ord

5.2.5

er to support backward compatibility, a Frame Application may need to support CLR2.

FDT CLR extension concept

This section describes a concept for CLR extension support for Frame Applications.

Fdt.SurrogageProxy
TTTTaTESt

_| FDTCLR
Surrogate
Proxys
reference
Frame Application .NET CLR Surrogate Process
DTM User Interface
Assembly
____________ DTM Proxy DTM Stub
! e s R >0— DTMUI
Frame | ey, Assembly Assembly hEDT Interfaces| | Class
ser Proxy — Le--——d >0 >0— b AT
Interface | |nterfaces r::;gl ul D;':VI ;JI |
Xy ul Lo
o< <DtmUI>.di
DTM DTM HO< DTM Business Logic
A BL/ Channel BL Channel | Assembly
Frame FDT + >0— Proxy 2Q— Stub FT==
Business Proxy I i i DTM
i Interfaces | FDT Interfaces BL / Channel
Logic Fdt.ClrSurrogate. Fdt.CIrSurrogate. 1 Class
Proxys.dil Stubs.dll
<DtmBL>.dll

If a R
only
Fra
Fra

IEC

Figure21 — FDT CLR extension concept

rame Application detects that a DTM Business Logic or a DTM User Interface supfports
CLR versions not_Supported by the main process of the Frame Application, thep the
e Application utilizes the proxy classes supporting the CLR version which is used by the
e Application itself (see Figure 21).

The Frame Application loads the proxy .NET assembly, creates an instance of the proxy

clasg
proxy
DTM

, and_delegates the execution of the DTM Business Logic or DTM User Interface t¢ this
. The proxy starts a process with the required CLR (surrogate process) and executgs the

stand
DTM

5.3

Business Logic or DTM User Interface in this process. The proxy classes providg the
o - o o) o AR ih the

- o AWaN 2 an - ho o

Business Logic or with the DTM User Interface executed in the surrogate process.

Support for 32-bit and 64-bit target platforms

DTMs should support 32-bit operating system as well as 64-bit. This means that they should
be compiled using the “any”- platform target.

If it is not possible to support both platforms, then a DTM shall support at least one of the
platform targets. For instance, if dependent dlls are not available as 64-bit target, then a DTM
may be available in 32-bit only.

A DT

M shall expose the information whether it supports 32-bit, 64-bit or both target platforms

in the corresponding setup manifest (see 9.6.2).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 64 - IEC TR 62453-42:2016 © IEC

2016

64-bit Frame Applications shall support 32-bit DTMs (e.g. if the DTMs do not have a 64-bit

varia

5.4

5.4.1

nt). This can be implemented, for instance, by using a surrogate process.

Object activation and deactivation

General

A Frame Application needs to find and load the DTM-specific .NET assemblies dynamically
into the memory and execute the contained DTM Business Logic and User Interface classes
by calling corresponding FDT interfaces. Finally, the created objects need to be destroyed
and unloaded from the memory.

This

5.4.2

The
the O
file c
Ul cg

The
and

chapter describes the means which shall be utilized for object activation and deactivation
and the corresponding rules that shall be followed by Frame Applications and by DTMs.

Assembly loading and object creation

DTM-specific .NET assemblies are installed by the DTM setup. Thelsetup also reg
TM by installing “DTM manifest” file(s) in an FDT-defined directory ((see 9.5). A ma
bntains the information where to find the .NET assemblies and which DTM classes a
ntrols are contained (see 7.6.1 and 7.6.2).

classles / methods for this purpose:

ssembly.LoadFrom() and .Createlnstance() (namespace System.Reflection)

ppDomain.CreatelnstanceFrom() (namespace System)

e 22 outlines the use of the methods provided by the Assembly class as an examplej

sters
hifest
hd/or

Frame Application shall use this information for loading and execution of the DTM clgsses
J| controls by using the LoadFrom mechanism. The .NET Framework provides follgwing

public object CreateFdtObject (stxrdrtg filePath, string fullClassName)

Assembly assembly = Assemnb%y.LoadFrom(filePath);
return assembly.Createlistance (fullClassName) ;

NOTE

Figure 22 — Example: Assembly.LoadFrom()

The method«System.Reflection.Assembly.LoadFrom() behaves as following:

LoadFroni() loads the assembly addressed with the file path and also the referenced assemblies in|
directory.

If @an*assembly is loaded with LoadFrom(), and later an assembly in the “load context” attempts to lo
same assembly by display name, then this load attempt fails.

same

ad the

If/an assembly with the same identity is already loaded (e.g.: by another DTM), then LoadFrom returlns the

10aded assemply, even IT a difTerent 1ie patn was specliied.

4. If an assembly is loaded with LoadFrom(), and the probing path includes an assembly with the
identity (e.g.: in Global Assembly Cache, application directory), then this assembly is loaded, even if a

different file path was specified.

5. LoadFrom() requires the permissions FilelOPermissionAccess.Read

FilelOPermissionAccess.PathDiscovery, or WebPermission, on the specified path.

6. If a native assembly image (generated by ngen.exe) exists for the specified file path, then it is not
The assembly cannot be loaded as domain neutral (assembly cannot be shared between

Beca

ApplicationDomain, each loads its own copy).

use of this behavior FDT defines the following rules:

a) Rules regarding assembly dependencies (see 5.4.3)

b) O

nly LoadFrom shall be used in the context of FDT. The use of other .NET

c) assembly loading / object creation means is not allowed.

d) R

ules regarding shared assemblies (see 5.4.4).

same

and

used.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 65—
e) DTM assemblies shall be installed to a path which is browseable and readable.
f) DTM assemblies shall not be precompiled using ngen.exe (or similar tools).

The security aspects regarding loading and execution of assemblies are described in chapter
5.16.

The next steps after creation depend on the object type:

o Steps for the DTM Business Logic: 6.3.2.
e Steps for the DTM User Interfaces: 5.10.

5.4.3 Assembly dependencies
5.4.3(1 Introduction

DTMtspecific .NET assemblies may depend on other .NET assemblies, for\éxample |on a
devide vendor-specific library or on a 3rd party library as outlined in Figure/23.

| DTM User Interface | 3rd Party Ul Framework
Assembly Assembly
'h Ul
O D(;I;:Isgl T >0 Frathework
Ul Framework Gonfrols
| specific
<DtmUI>.dll Interfaces 2UIFramework>.dll
‘ DTM Business Logic ‘ Vendor Specific Library
Assembly Assembly
o DTM H .
BO/ Channel >0— Library
Class H Classes
DTM specific
L!: Interfaces
<DtmBL>.dll <DtmLibrary>.dll
IEC

Figure 23 — Example: Assembly dependencies

These dependencies and the interaction between the classes / controls contained ip the
assenblies are DTM-specific, but the DTMs have to follow some rules in order to furlction
correctly and to tavoid problems in conjunction with other DTMs executed in a Frame
Application.

5.4.3(2 Loading of dependent assemblies

The Frame Application loads the .NET assemblies — containing the DTM main class / control —
by calling the .NET Framework LoadFrom() method (see 5.4.2).

Referenced assemblies which are stored in the same directory or in the GAC are
automatically loaded together with this .NET assembly.

Referenced assemblies which are stored in other locations (e.g. in a sub-directory) have to be
loaded specifically by the DTM. The DTM shall load such assemblies also by using the
LoadFrom() method provided by the .NET Framework. Loading assemblies with other.NET
Framework methods is not allowed (see 5.4.2).

5.4.4 Shared assemblies

Special attention is necessary for assemblies which are shared. Shared in this context means
that an assembly with the same identity is used by another software on the computer (see

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 66 - IEC TR 62453-42:2016 © IEC 2016

LoadFrom() behavior description 3.and 4. In the Note to 5.4.2). This applies to assemblies
containing DTM BL, DTM Ul as well as all other used assemblies.

NOTE 1 The identity of strong named assemblies consists of the assembly simple name, version, culture and
public key token.

NOTE 2 The behavior described here applies to all shared assemblies independent of the location of the
assembly.

If a shared assembly is used, then following rules apply:

a) Any |ncompat|ble change to the shared assembly shall lead to a new identity (e.g.

d IIUIUIII. VUIOIUII IIUIIIIJUI}
b) {hared assemblies shall not presume to be loaded from a specific installation _path|(e.g.
ly that some files are stored in the same directory or in a sub-directory).

—

Static variables in shared assemblies are also shared if the assembly is loaded intp the
spme ApplicationDomain. Thus static variables shall not have sideyeffects in |such
stenarios. It's strongly recommended not to use static variables in a shared assembly.

c)

If thg rules above cannot be ensured by a DTM vendor, then the assembly shall not be |used
as a phared assembly. That means either the assembly gets a DTMxspecific identity or it|shall
not be used at all.

5.4.5 Object deactivation and unloading
5.4.5.1 Introduction

Destfoying of DTM Business Logic and User Interfaces and unloading of corresponding |[NET
assemblies have to be considered separately.

5.4.5(2 Destroying of objects

Step$ to destroy an object depend on.the object type. The procedure for the DTM Bus|ness
Logig is defined in 6.3.2. The procedure for the DTM User Interfaces is defined in 8.5.¢ and
the following sections.

For all object types providing“the interface IDisposable, the method IDisposable.Disppse()
shall|be called by the Frame Application at the instance. This call shall be used to frge all
used|resources (e.g. close opened files, stop running threads) and release the references to
othern objects (set to-null). The instance is not destroyed. This happens sometimes later by the
NET [garbage collector.

5.4.5(3 Unloading of assemblies

A NET assembly which is loaded into a process respectively into an ApplicationDomain is

p y pp
assembly and all dependent assemblies are never unloaded unless the appllcatlon is closed.

The DTM assemblies shall be developed with this .NET Framework behavior in mind. To
reduce the memory consumption it’'s recommended

e to minimize the use of static variable, because these increase the memory consumption of
the assembly.

o to move DTM functionality which is not always (or rarely) needed to separate assemblies.
These assemblies are loaded only (automatically or manually) (see 5.4.2) if corresponding
code is executed.

¢ to use shared assemblies whenever possible (see 5.4.4).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 67 -

Frame Application should consider the execution of .NET assemblies in a separate
ApplicationDomain in order to have the ability to unload them.

5.5 Datatypes
5.5.1 General

.NET data classes (datatypes) are used for the data exchange between the different FDT
objects. Instances of these classes are passed as arguments in the FDT interface methods,
properties, and events.

The [datatypes are defined in the . assembly .Datatypes.dll, which 1s distriputed
together with this specification document. This assembly shall be used for the developmént of
FDT Pbjects.

The fatatypes are designed as so called “Data Contract” classes. These are’classes {ising
the gttributes defined in the .NET Framework System.Runtime.Serialization ‘namespace| The
actugl data is provided by properties with corresponding [DataMember] attribute set as shown
in Figure 24.

usihg System.Runtime.Serialization;
usiphg Fdt;

<summary~>

// /| Description of SomeDatatype

/ </ summary>

[DafaContract]

public class SomeDatatype : FdtDatatype<SomeDatatyp&>

summary>
'// Description of data provided by the groperty
/77 "':fi,','flt\f’
[DataMember (IsRequired = true)]
public string DataPropertyl { get;_.set; }

// <summary>
/ [Optional] Description ofkddta provided by the property

ary>

é o] (isRequired =+flalse)]
public FdtList<SomeSubWPatatype> DataProperty2 { get; set; }

Figure 24 — Example: Datatype definition

The attributes control the serialization / deserialization of the instances (see 5.5.2) and also
definpes which properties are mandatory and optional (see 5.5.4).

All data classes are directly or indirectly derived from the base class FdtDatatype (see 7.1),
which provides methods to verify (see 5.5.5) or clone instances (see 5.5.6).

5.5.2 Serialization / deserialization

The data classes support serialization / deserialization of data in different formats over the
DataContractSerializer class provided in the .NET Framework System.Runtime.Serialization
namespace (e.g. binary format and XML) [9]. This may for example be used by the Frame
Application to transport the data classes in WCF interfaces (Windows Communication
Foundation) or for remote interaction in a network, but such use cases are out of scope of this
specification.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 68 - IEC TR 62453-42:2016 © IEC 2016

5.5.3 Support of XML

FDT defines W3C compliant XML Schemas defining the format for XML serialization /
deserialization. The name of the Schema is defined in the [DataContract] attribute assigned to
the corresponding data class (see Figure 24). This may for example be used by the Frame
Application to exchange device related data with other applications running in a non Windows
operating system, but this is out of scope of FDT.

NOTE The interaction between FDT Objects is based on .NET datatypes (see 5.5.1) and is not based on XML.

554 Optional elements

Properties with [DataMember(IsRequired = true)] attribute assigned are mandatory,|(see
DataProperty1 in Figure 24). That means they shall not be set to null (or string.Empty) |f the
instapce is passed over an FDT interface.

Properties with [DataMember(IsRequired = false)] attribute assigned ase” optional |(see
DataProperty2 in Figure 24). That means they may be set to null if the ‘instance is pgdssed
over @gn FDT interface.

For petter distinction optional properties are marked with an<\“[Optional]...” cominent.
Additionally, all data classes provide a constructor for mandatory properties, which mgy be
used|to initialize a class instance with required data. The use’ of this constructor is optijonal.
The mandatory properties can also be set later, but befofe the instance is passed ovér an
FDT jnterface.

5.5.5 Verify

All data classes provide a Verify() method, which checks the rules defined for the [data.
Depgndent on the class this may only be theZbasic mandatory / optional rules or addifional
rules|defined in the data class description.

The FDT object receiving data from-another object may use this method to check whether
data fis valid. However, the use of:this method is optional. The receiving object may use pther
means to handle invalid data (€:g- check used properties whether they are null manually) or
provide a specific mode whichrallows to switch verification on/off. This may be a good dption
to reach maximum performance during runtime, but to provide a fallback strategy for trouble-
shooting.

5.5.6 Clone

All data classes*provide a Clone() method, which creates a new object that is a deep-copy of
the galled instance. That means all objects are duplicated — the top-level objects ip the
properties- provided by the data class itself, as well as all lower level objects in properties of
the sub<classes.

The cloning of data class instances is mandatory if an FDT object class member variable is
passed over an FDT interface as argument or return value. This rule applies to methods,
events and properties of interfaces.

This is necessary because of two reasons:

a) The receiving object may change the property values of received data instance. This
would also affect internal data if only a reference is passed.

b) The receiving object may keep a reference to the received data instance. Further changes
to the original data instance after the call returned may lead to unexpected results and
threading issues.

If references are passed (e.g. interface reference or AsyncResult objects), no cloning shall be
used.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 69 -

Figure 25 shows two examples where cloning is necessary.

public class MyDtm
{

private SomeDatatype _someData = new SomeDatatype (/* init with data */);

public SomeDatatype DoSomethingl ()
{
return _someData.Clone();

}

public void DoSomething2 ()
{

MyOtherObject anotherOb] = new MyOtherObject();
anotherObj.DoSomethingWithMyData (_someData.Clone());

Figure 25 — Example: Data cloning

If dafla class instances are created each time a method is called and‘no internal instancejs are
referenced, then passing of instance references is allowed as shown in Figure 26.

public class MyDtm
{
public SomeDatatype DoSomethingl ()

eDatatype someData = new SomeDatatype (/%finit with data */);

return someData;

}
public SomeDatatype DoSomething?2 ()
{

SomeDatatype someData = new SeddDatatype(/* init with data */);

AnotherObject anotherObj s new AnotherObject ();
anotherObj.DoSomethingWithMyData (someData) ;

return someData;

IEC
Figure 26 — Example: Methods without data cloning

5.5.7 Equals

The EqQuals() method compares the identity of objects, it can not be used to comparg the
contentsof different oDJeCls.

In order to compare the contents of objects, developers need to implement the comparison.

5.5.8 Lists

The generic class FdtList<> is used for listing of data class instances (see 7.1). Like
FdtDatatype this class provides methods to verify or clone the content of the FdtList<>
instances itself and all contained elements.

If an FdiList is passed over an FDT interface, then the instance shall never be empty. If the
corresponding property is optional, then the property shall be set to null instead.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-70 - IEC TR 62453-42:2016 © IEC 2016

5.5.9 Nullable

Nullable represents an object whose underlying type is a value type to which also ‘null’ can be
assigned. (like a reference type)

5.5.10 Enumeration

Enumeration is a distinct type consisting of a set of named constants.

5.5.11 Protocol-specific datatypes

5.5. 1t —General

Protqcol-specific datatypes shall be defined in .NET assemblies which are provided g¢ither
together with the corresponding FDT Protocol Annex specifications or by DTM yenddrs in
case|of vendor-specific protocols.

The protocol-specific assemblies shall contain datatypes derived from thercoerresponding|base
classes in the FDT Datatype assembly (see Figure 27).

FDT Datatype
Assembly

Datatype
Base
Class

(Fdt.
Datatypes.dll)

FDT <Protocol>
Datatype Assembly
Datatype
Class
(Fdt.Datatypes.<Protoco/>.dll)

IEC

Figure 27 — Protocol-specific datatypes

Som¢ of the FDT interface methods exchange protocol-specific information. These methods
are defined with the protocol neutral base classes.

Protqcol-specific \assemblies shall support 32-bit platforms as well as 64-bit platforms.| This
mearns they shall be built using the “any”- platform target.

5.5.11.2,~“Interaction DTM - Frame Application

Typically, the DTMs create instances from the protocol-specific classes and pass them to the
Frame Application over an FDT interface. The Frame Application then works with the
properties and methods in the base classes. Thus, the Frame Application is able to handle
any DTM independent of the protocol. Subclause 7.5 provides examples for using the
Deviceldentinfo classes with protocol neutral data and protocol-specific data.

5.5.11.3 Interaction DTM - DTM

If protocol-specific datatypes are used for a DTM to DTM interaction, then one DTM typically
creates an instance of the protocol-specific classes and passes it over the corresponding FDT
interface. The DTM which receives the data then casts the reference back from the base class
to the protocol-specific datatype. Subclause 7.7 contains examples for using the protocol-
specific Communication classes.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -71 -

5.5.11.4 Installation and registration

The protocol-specific .NET assemblies shall be installed and registered by the DTMs using
the protocol (see 9.4).

The protocol-specific .NET assemblies are installed in the Windows Global Assembly Cache.
The DTM-specific assemblies can use static references in order to load the protocol assembly
automatically together with itself (see 5.4).

In some cases the Frame Application also needs to load the protocol-specific assemblies and
create instances from the contained classes, e.g. for deserialization of a protocol-specific
dataflype. In order to support such scenarios the protocol-specific assemblies shgll be

regisfered with a corresponding manifest file (see 9.4.3). The Frame Application canlevdluate
the provided information and then load corresponding assembly specifically (see Figure 28).

Fdt.<Protocol>.manifest

Frame Application <Protocol>

Manifest

|
I
|
: reference
I
|

h\a

EDT <Protocol>
~< Datatype Assembly

T~ el A y [T reference D
yp
1 Attribute Class

(Fdt.Datatypes.<Protocol>.dIl)

IEC
Figure 28 — Protocol manifest and type info attributes

In addition, the assembly shall expose type information as attributes assigned to the assgmbly
itselff The Frame Application can use this information to create instances from the profocol-
specific classes. The atfribute classes are defined in the FDT Datatype assembly.

Following attributés-(and corresponding datatypes) shall be supported by a protocol-spgcific
assembly:

e Protocotinfo attribute(see 7.3)
o DeviceldentinfoType attribute(see 7.5)

e CommunicationType attribute (see 7.7)
e 10SignalinfoType attribute (see 7.11.1)
e DeviceAddressType (see 7.12)

o NetworkDataType attribute (see 7.13)

The example in Figure 29 shows the attributes assigned to the HART-specific datatype
assembly (Fdt.Datatypes.Hart.dll).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-72 - IEC TR 62453-42:2016 © IEC 2016

[assembly: ProtocolInfoAttribute (ProtocolId = Hart.Protocolld, ProtocolName =
Hart.ProtocolName)]

[assembly: DeviceldentInfoType (
DeviceIdentInfoType = typeof (D
ProtocolDeviceIdentInfoType = typeof(HaLLDkx;\oIdhr - Ir
DeviceScanInfoType = typeof (DeviceScanInfo<HartDevic
ProtocolDeviceScanInfoType = typeof (HartDeviceScanInfo))

viceldentInfo<HartDeviceldentInfo>),
o),
canInfo>),

]

[assembly: CommunicationType (AbortMessageType = typeof (HartAbortMessage),
ConnectRequestType = typeof (HartConnectRequest),
ConnectResponseType = typeof (HartConnectResponse),

D AectRedquestIpe—a—bpeot(HartlicconnactRacuast)
T T - - e

DisconnectResponseType = typeof({dr D
SubscribeRequestType = typeof (HartSubscr ”@quUv;f)
SubscribeResponseType = typeof (Harts
UnsubscribeRequestType = typeof (Hart
UnsubscribeResponseType = typeof (HartUnsub

T

nnectResponse),

Rqueat)
cribeRedponse))

[aspembly: I0SignallnfoType (I0OSignalInfoType = typeof (I0Signallnfo<HartIRSibnallnfo>),
ProtocolIOSignalInfoType = typeof (HartIOSighdIInfo))

IEC

Figure 29 — Example: Protocol assembly attributes

Protgcol-specific datatypes shall support the serialization/deserialization mechanisms as
defined in section 5.5.2. The example in Figure 30 shows how the Frame Application canl load
a proptocol-specific assembly and create an instance of a datatype class by using the
DatafContractSerializer.

public DeviceldentInfo DeserializeDevicelIdentInfo (ProtocolManifest manifest, Stream strdam)
{
string longName = manifest.Assemblyinfo.Name + ", " +
"Version=" + manifiest.AssemblyInfo.Version + ", " +

"PublicKeyToken=!" + manifest.AssemblyInfo.PublicKeyToken;
Assembly assembly = Assembly.LoadFrom(longName) ;
Type attributeType = typéQflDeviceldentInfoTypeAttribute);
DeviceIdentInfoTypeAttfilhte deviceldentAttrib =
(DeviceldentInfoTypeAttribute)assembly.GetCustomAttributes (attributeType, false)

o

SerigdNer serializer =
pteactSerializer (deviceIdentAttrib.DeviceldentInfoType) ;
dentInfo)serializer.ReadObject (stream) ;

DataContra
new Date
return (De

IEC

Figure 30 — Example: Handling of protocol-specific assemblies in Frame Applicat1on

(o)

5.5.12 Custom datatypes

The FDT datatypes are not intended for customization, because they are used in cooperation
of software from different parties. That is why most FDT-datatypes are sealed (protected
against changes/inheritance).

The only datatypes that can be extended are the base classes for protocol-specific datatypes
and for Ul-messaging datatypes. If extending such datatypes, following rules shall be applied:

— Use the [DataMember] attribute for all newly declared class members.

— All class members must have serializable type. (l.e. it is not allowed to use reference
types, for instances interfaces.)

Protocol-specific datatypes (as described in 5.5.11) also shall be sealed.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC

5.6
5.6.
All

TR 62453-42:2016 © IEC 2016 -73 -

General object interaction
1 General
FDT Objects interact with each other exclusively via the interfaces defined by this

specification. These interfaces are defined according to the services specified in IEC 62453-2

[4].

The interfaces define properties and methods of the server object as well as events, that may
be received by the client object. In order for a client object to receive those events, the client
object has to register delegates for these events. If not explicitly defined otherwise for an

inte

5.6.

IEC
and

r-F coibtic aontioanal far tha Aliant Ahinat to ranictar foar tha avantc Af o intaerfoann
I T Ot OTaT TOT e~ T Do e CTtoOT C g ot Ot C—C Vv Tt o OTar T T tCTac s

2 Decoupling of FDT Objects

$2453-42 decouples the FDT Objects from each other. The Frame Application is thg one
only component that directly interacts with the DTM Business Logic, User Interface$ and

Commmunication Channels via the IEC TR 62453-42 interfaces corresponding to the serpices

defi

All

ned for the objects in IEC 62453-2 [4].

Frame
Application Instance.1):
O N DTM
J
(Business Logic
:l CO
[l
Interaction ||
Management] |
[l
(
| O D
| Instance 2 :
< C O DTM
Business Logic

IEC

Figure 31 — Decoupled FDT Objects in IEC 62453-42

cpmponent interactions are passed through the Frame Application or proxy components

(see |Figure 31)2"The Frame Application shall not change interactions or inject interdction

requests.

This pddresses the following objectives:

a)

b)

c)

Interoperability
The decoupling of the FDT objects by the Frame Application shall improve interoperability.

Tracing

The Frame Application is able to observe the complete interaction between FDT objects.
Thus it can implement a system wide tracing which is useful for diagnosis and trouble-
shooting.

Testing

Each component shall also be testable in a component test environment. The test support
can be achieved by tracing, replaying recorded sequences or by error injection. In the
testing use case the Frame Application is allowed to change interactions.

Threading / Synchronization
The Frame Application is responsible for the assignment of FDT Objects to processes. An
FDT Object shall not expect to be executed in the same thread, process or host like other

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 74 - IEC TR 62453-42:2016 © IEC

2016

related FDT Objects. The Frame Application can enforce rules in regard to method calls,

w
e) R

hereas the rules may differ between the different FDT Objects (see 5.7).
emoting

The Frame Application can pass the messages to a different process or a remote
computer (see 11.3)

An example for components, which are used for decoupling of FDT Objects, are proxy objects
(e.g. DTM Ul-proxy or channel proxy) that are used to interact with the respective FDT Object.

NOTE The Frame Application part handling the interaction between the different FDT objects — called Interaction
Management in Figure 31 — could be separated from the actual Frame Application implementation. It could be

realiz
effort

5.6.3

The
.NET]

e T
e D

The
this
back

In or
spec
by FI

ol o ol 4 Iaiala—ia—ilo ol liEf 4 ol Tl Lol ol £lo H !
oS Staret— comp ottt Wit IS teh uSeC— oy arrrerent ve oS S wotht—retuce— e premet

or the different Frame Application vendors and increase the interoperability with DTM.
Parameter interchange with .NET datatypes

brguments of interface methods are defined as .NET datatypes. The definition of
datatypes includes:
ype definition (e.g. definition as .NET class/structure)
efinition of standard methods for
Serialization to/from XML
Serialization to/from binary stream
Verification
XML format and the format for the binary stream/are well defined formats, specifi

echnical report. The XML format is basedron W3C schemas and may be use
vard compatibility to FDT1.2.x and for interaction with external applications

der to ensure interoperability for FDT\components, the .NET interfaces and data
fied by this technical report are implemented in primary assemblies, which are pro
DT Group. It is mandatory for all FDT components to use this primary assembly.

5.6.
In thi

Interaction patterns

technical report, the following interaction patterns are used:

Properties
Slynchronous meéthods

ynchronous-methods

— Ejents

Thesk pattérns and their usage is explained in the following sections.

tation

hese

Ed in
d for

ypes
Vided

5.6.5

Properties

Properties are used for simple get or set operations on simple data objects that are performed
synchronously. Other interfaces of an FDT object are also provided by properties.

5.6.6

Synchronous methods

Synchronous methods are used for simple operations that can be performed synchronously
within the calling thread. The called object shall not block the calling thread, e.g. by waiting
on asynchronous operations to finish or waiting on events.

Examples for synchronous methods are:

— Information Requests (e.g. IDtmInformation.GetDeviceldentinfo())

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 75—

— Simple state machine operations (e.g. IDtm.Init(), IDtm.EnableCommunication())
— Frame Application calls that do not require nested calls (e.g. ITopology.GetParentNodes())

5.6.7 Asynchronous methods
5.6.7.1 Introduction

Asynchronous methods are typically used to perform operations that may take a relatively
long time to complete, such as I/O or database operations, communication requests. Such an
asynchronous operation executes in a separate thread. When an application starts an
asynchronous operation, the application can continue execution while the asynchronous
operation—is—perfermed—Asyrehronous—methed e—mplementes irg—the—AsyreResult

5.6.7,.2 IAsyncResult pattern

The JAsyncResult pattern as defined in [14] is used for asynchronous calls toiservices.

Using this pattern an asynchronous operation is implemented as a set of methods:

— The BeginOperationName() method starts the asynchronous<operation OperationName.
The BeginOperationName method shall return control to the calling thread immediatgly. If
tHe BeginOperationName method throws exceptions, the éxceptions are thrown beforge the
asynchronous operation is started and the OperationNameCompleted() callback method is
npt invoked.
T

he EndOperationName() method ends the asynghronous operation OperationNamg and
retrieves the results of the operation. If .thé operation has not completed Wwhen
EndOperationName is called, EndOperationName blocks until the operation is finighed.
Exceptions which occurred during the asynchronous operation are thrown from the
EndOperationName method.
T
o]

he Callback delegate OperationNaméC€ompleted() (implemented by the client) is proyided
nly for a specific service call that triggers one specific event type that can be received.

For further information on how to implement the IAsyncResult pattern see F.1.

One pf the advantages of thejtAsyncResult-Pattern is, that the client may choose to usg the
servige in a blocking or in a.non-blocking way.

If a service is used (h,a blocking way, the client calls the Begin() method and immediately the
End() method (seé\Figure 32). The calling thread of the client will be blocked, until the sgrvice
execpition is finished.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 76 - IEC TR 62453-42:2016 © IEC 2016

sd IAsyncResult pattern: blocking call)

: Client : Server

Begin<Method>

: AsynResult
I i
Frigger
. ______\hsyncResultreference) _____| execution, e.g.
1 T> start worker
End<Method> - thread
I Wait
Complete +
| Set Result Execute
(Wait returns)
(SO N
<Method> (execution results)
o] F--——--— - L]

; |
| X |

IEC

Figure 32 — IAsyncResult pattern: blocking call

Figune 33 show an example how blocking “use of asynchronous operation may be
implgmented.
voifl SyncUpload (IDtm dtm, ICommunicatdoriChannelProxy channelProxy)

try
{

}

// go online and stay connect®&®”/ (synchronous)
dtm.EnableCommunication (chadnelProxy, ConnectMode.StayConnected);

// perform upload from(de¥ice (synchronous)

IOnlineOpe

IAsyncResult\pesult =
online@perations.BeginReadDataFromDevice (null, null, null);

onlineQperdtions.EndReadDataFromDevice (result) ;

MesgdgeBox.Show ("Upload finished");
catéh NException e)

1geBox.Show ("Upload failed! " + e.Message);

a@4dr onlineOperations = (dtm as IOnlineOperation);

// go offline
IAsyncResult offline result = dtm.BeginStopCommunication(null, null, null);
dtm.EndStopCommunication (offline result);

dtm.DisableCommunication () ;

(synchronous)

IEC

Figure 33 — Example: Blocking use of asynchronous interface

In order to simplify the presentation of interactions based on the |AsyncResult pattern, a
simplified presentation for blocking call is used throughout the document. Figure 34 shows the
simplified depiction of IAsyncResult pattern with blocking call:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 —-77 -

sd IAsyncResult pattern (simplified): blocking call)
: Client : Server
v <Method> I
<Method> (execution results)
e ;
T I

IEG

Figure 34 — IAsyncResult pattern (simplified): blocking\call
Rule] If the client follows the pattern for blocking execution, it shall grovide no callback.

If a dervice is used in a non-blocking way, the client calls the’ BeginOperationName() method
and |provides a callback delegate for OperationNameCompleted() (see Figure 35).| The
EndQperationName() method is called as part of handling the OperationNameComplgted()
callback.

sd IAsyncResult pattern: non-blocking call)

: Client : Server

T

Begin<Method>

> 1
Create
: AsynResult
T .
(AsyncResult reference) Trigger
—————————————— —|——————————————— execution, e.g.
start worker

I | thread
| | Complete +
I | Set Result Execute

| Wait
-
|-z >
<Method> (execution results)
- ————— | ———————————————

X .

IEC

Figure 35 — IAsyncResult pattern: non-blocking call

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

Rule:

- 78 - IEC TR 62453-42:2016 © IEC 2016

If the callbacks are provided, the client shall follow the pattern for non-blocking

execution.

{

void AsyncUpload(IDtm dtm, ICommunicationChannelProxy channelProxy)

// go online and connect only if necessary
dtm.EnableCommunication (channelProxy, ConnectMode.OnDemand) ;

IOnlineOperation onlineParam = (dtm as IOnlineOperation);
IAsyncResult result = onlineParam.BeginReadDataFromDevice (UploadProgress,
UploadComplete, dtm);

voi

voi

UploadProgress (ProgressIinfo progressInfo)

UpdateProgressBar (progressInfo.PercentComplete, progressInfo.Message);

UploadComplete (IAsyncResult result)
IOnlineOperation onlineParameter = result.AsyncState as IOnlineOperatWoyt;

try
{
onlineParameter.EndReadDataFromDevice (result) ;
SignalUploadFinishedToUI () ;
}
catch (Exception e)
{
SignalUploadErrorToUI () ;
throw;

}

// go offline (not waiting for results..)
_stop_result = dtm.BeginStopCommunication (§€opCommunicationProgress,
StopCommunicationComplete, dtm);

In th
avoid

In or
simp
show

IEC

Figure 36 — Example: Non-blocking use of asynchronous interface

b example given in Figure-36, the UploadProgress() delegate is decoupled in order to
blocking of the server.

der to simplify the-presentation of interactions based on the IAsyncResult pattern, a
ified presentation’/for non-blocking call is used throughout the document. Figure 37
s the simplified-depiction of IAsyncResult pattern with non-blocking call:

sd IAsyncResult pattern (simplified depiction): non-blocking call

: Client : Server

<Method()> |

IEC

Figure 37 — IAsyncResult pattern (simplified depiction): non-blocking call

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -79 -

NOTE Throughout the document the simplified depiction of IAsyncResult pattern is used to show how methods
are using the IAsyncResult pattern. The patterns for blocking and non-blocking calls can be used equivalently. The
use of one of the call pattern in a workflow does not prohibit the use of the other call pattern if not stated explicitly
otherwise.

5.6.7.3 Extended IAsyncResult pattern (Progress pattern)

In addition to the IAsyncResult pattern, the extended IAsyncResult pattern provides the
possibility to cancel an asynchronous operation and to receive progress notifications and
intermediate results during the processing of the operation. This pattern is used for operations
that may have long execution times.

For

gciToperation a setof methods s provided:

he BeginOperationName() method starts the operation.

he EndOperationName() method retrieves result of the operation. If the operation i
hished, the method blocks until the operation is finished. If an error ogcurred d
kecution of the operation, this method will throw an exception with the error informat

he CancelOperationName() method stops the operation. If the operation was canc

perationNameCompleted().

Figurle 38 shows how the method CancelOperationNameée() may be used.

s not
uring
on.

blled,

en the EndOperationName() method shall always throw the
HtOperationCancelledException.

he Callback delegates (implemented by the client) are(provided only for a spcific
beration. Possible delegates are: OperationNameProgress(),

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 80 -

IEC TR 62453-42:2016 © IEC 2016

sd IAsyncResult pattern: canceling an operation)

: Client

: Server

\J

T
(AsyncResult reference)

F

- execution, e.g.

]
Begin<Method>
(:AsynResult Create

Trigger

start worker
thread
iy

| Cancel execution +
Set Result

{ Execute

<Method> (exe:cution results)

X

R

1

Figure 38 — IAsyncResult pattern: canceling an operation

IEC

If Cancel() can not be executed, it may result in an FdtCancelFailedException. It may| also

occu
the c

The

Completed() eallback shall not be called within a call to Cancel() (avoid call-stacks).

that the operation finished at the same time as Cancel() was called. This may lepd to
pller receiving a pasitive result.

If Cancel().(is) called for an asynchronous operation, the End<Method> may throw a

corrg

After

sponding exception. See the documentation for each asynchronous operation.

oot

aecal ta Cancaell)l has csuccaadad it mav occurin an aveantional case-that thao opeflation
= A 0 B E. =3 N/ [TAY UTOoCT A A A N NLERACS | T LB 3 I B~ Ay Pooiiar oauooTttr et ot vrlvlu

finishes successfully. Therefore the caller shall be prepared to receive a positive result
instead of the corresponding exception.

Figure 39 shows how the progress callback may be used.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 81—

The

for e
the H

Rule

sd IAsyncResult pattern: providing progress events)

: Client : Server
T
Begin<Method>
»*
:AsynResult Create
L (AsyncResult reference) Trigger
________________ - ____

<Method>Progress *
i

| Complete +
Set Result
i F—
<Method>Completed
< 1
End<Method> |
! Wait T
_____________>
<Method>(execution results)
= >~

X

thread

Execute

T execution, e.g.
> start worker

Figure 39 — IAsyncResult pattern: providing progress events

non-iblocking*execution both callbacks shall be provided.

If the

5.6.8

Events pattern

An event is a message sent by an object to signal the occurrence of a condition.

IEC

Progress() delegate not only allows to pass progress information, but also can be us
transport partial resultstef the service execution. The transport of partial results is des
hch service speeifically. Even if the progress delegate is used to transport partial re
ndOperationName() method will provide the complete result of the operation.

haci ided. the cll L follow 1 E blocki ionl

led to
ghed
sults,

If the client follows the pattern for blocking execution, it shall provide no callbacK. For

This technical report uses the Events pattern as defined in the .NET Framework which is

based on delegates (see [21]).

Clients provide delegates for receiving events (without trigger). A client registers with a server
for receiving a specific event. Multiple clients may register with one server for receiving the
same event.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 82 - IEC TR 62453-42:2016 © IEC 2016

One advantage of the events pattern is that events are defined in the same interface like the
methods that may trigger those events. This allows to define the events methods in the same
context in which they are used.

5.6.9 Exception handling
5.6.9.1 General

Exceptions are the primary means of reporting errors in the .NET Framework. (refer to [10],
Clause 7]). They are used for both hard errors (e.g. passing of invalid arguments) as well as
logical errors (e.g. connection aborted).

An exception provides two pieces of information:

o the exception message, explaining to the developer what went wrong (and ow to fjx it).
Exception messages should be human readable text in English (not just anyefror number)
that describes what went wrong

o the exception type that is used by exception handlers to decide what programmatic gction
tq take

NOTE| In general error codes are not used as they can always be replaced by corresponding exception megsages
and exception types. However, there is one exception from the rule: communictation errors. Communication |errors
that og¢cur during communication requests with a device are reported within/dhe-Ccommunication response. Hoywever,
if the gerver fails to perform the transaction itself, this will throw an appropriaté exception.

The FDT specification defines the exceptions which shall be thrown if specific error situdtions
occuf when calling an FDT interface method or accessing a property. This shall be considered
as p3rt of the contract between the client and serverof an interface.

5.6.9(2 Throwing exceptions

Exceptions shall be thrown in cases of éxecution failures. An execution failure ogcurs
whenever an interface method or propefty can not do what it was designed for. For example,
if thel <ReadDataFromDevice()> methed cannot retrieve data from the device, it is considered
an execution failure and an exception shall be thrown. Exceptions are the primary means of
repoiting errors in the .NET Framework. Error codes shall not be used.

defingd for these methads. When the FDT method fails because of an FDT exception from an
invoed method, then)the FDT method shall throw the most appropriate FDT excegption
defined for the FDT_method and include any caught exception as an inner exception.| One
exanjple for thisss\if setting 10 signal information via the interface IProcessimage to the|DTM
fails [because-the dataset can not be locked. In this case an FdtOperationFailedExcgption
shall[be threwn by the IProcessimage:SetlOSignallnfo() method. This shall include the |inner
exception; e.g. FdtNoWriteAccessException.

If an| FDT method invokes other FDT methods it shall handle all FDT exceptions tha\ are

DTM-specific exceptions shatt—atso be nciuded i FDT exceptions as mner exceptions when

they occur within an FDT method.

Event-handlers are not allowed to throw exceptions. If an event-handler calls other methods
that may throw exceptions, the implementation of the event-handler shall catch those
exceptions in order to protect the event-source from those exceptions.

5.6.9.3 Handling exceptions

If an exception is handled, a rich and meaningful message should be provided to the end
user. The message should explain the cause of the problem and describe what could be done
to avoid the problem.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 83—

Since the exception message is targeted to developers, the user message should be based
on the exception type and the context of the caught exception.

If an exception is just caught in order to re-throw the exception, no user message should be
provided. The goal here is to avoid multiple user messages for a problem that occurred.

5.6.9.4 FDT exception types

For each FDT method a set of exceptions is defined that may occur on invocation of the
method. All FDT exceptions are derived from the serializable class FdtException that is
derived from System.Exception. Exceptions shall be serializable in order to work correctly
acrogs application domain and process boundaries.

The following is the list of FDT Exceptions:

FdtinvalidStateException
This exception shall be thrown when a property can not be set or when-a’method cah not
bg executed, because the FDT object is not in an appropriate state |(e.g.
IDtm:EnableCommunication() is called in DTM state ‘initialized’). Each implementatipn of
ah FDT interface member shall check whether the called object’is in an appropriate |state
tq execute the requested operation. If this is not the case, FdtinvalidStateException|shall
be thrown. For asynchronous operations this exception shall be thrown inl the
EndOperationName method.

Example: IDtm:EnableCommunication() is called in state “initialized”

FdtOperationFailedException
This exception shall be thrown when an operation can not be performed or completed
sticcessfully. For all asynchronous operations this exception may be thrown by the
EndOperationName method. If more specific exceptions are available, always the |most
specific exception shall be used.

F

HtOperationFailedException should not occur under normal operating conditions.

Example: IDtm:LoadData() is called with a valid dataset but still fails. In this case an FdtOperationFailedExdeption
is thrown. However, if IDtm:LoadData() is called with an invalid dataset, FdtinvalidDatasetException is thrown|.

Fdt

perationCancelledException
This exception shall be~thrown if an asynchronous operation has been cancelldd by
ncelOperationName .and the EndOperationName method is called. This happens ynder
nprmal operating conditions. The client shall handle this exception and abort its| own
operation.

FdtCancelFailedException
This excepfion*shall be thrown when a CancelOperationName method fails, e.g. beqause
tHe operation has been finished already or can not be cancelled for other reasons.|[Note
that this-mray happen under normal conditions because of the asynchronous executipn of
the operation. The client shall handle this exception and finish the calling operation. |f the
ugerihas triggered the cancel operation, the user should be informed that the operation
could not be cancelled.

FdtConfigurationErrorException
This exception shall be thrown when an operation can not be performed because of a
wrong configuration.

Example: A DTM performs a connect request. The Parent DTM can not perform the request as the communication
driver is not properly configured.

FdtCommunicationErrorException
This exception shall be thrown when a communication error occurs. Communication errors
that occur within a communication request are reported with the communication response.

Example: The Device DTM tries to establish a connection by calling ICommunication:BeginConnect() on the
provided Communication Channel proxy. The Communication Channel (or the device) is not able to establish the
connection with the device because of a communication error and throws FdtCommunicationErrorException in
method ICommunication:EndConnect().

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-84 - IEC TR 62453-42:2016 © IEC 2016

NOTE Protocol-specific communication error exceptions are not defined. However, subclasses may be defined by
protocol annexes if required.

FdtConnectRefusedException
This exception shall be thrown when an online operation can not be performed because
the connect request has been refused.

Example: IDtm:EnableCommunication() is called on a Device DTM. The Device DTM tries to establish a connection
by calling ICommunication.BeginConnect() on its Communication Channel proxy. The Communication Channel (or
the device) refuses the connect and throws FdtConnectRefusedException in method
ICommunication.EndConnect().

FdtConnectionAbortedException
This exception shall be thrown when an online operation can not be performed because
the connection has been aborted.

Example: The connection is aborted by the Communication Channel during a download to\the device.
10nlingOperation.EndWriteDataToDevice() throws an FdtConnectionAbortedException.

FdtDeviceTypeNotSupportedException
This exception shall be thrown when an online operation can not be performed bedause
tHe type of the connected device is not supported by the DTM.

Example: A download operation is started with 10nlineOperation.BeginWriteDataToDevice(). The DTM is ir| state
notCophnected and connects to the device. It checks the device type and detects,an unsupported device typg. The
operafion is aborted and 10nlineOperation.EndWriteDataToDevice() throws an
FdtDe)iceTypeNotSupportedException.

FdtinvalidUserPermissionsException
This exception shall be thrown when an operation can not be performed becausg¢ the
operation is not allowed with the current user permissions.

Example: A function is started with ICommandFunction:BeginExecute(). The user is logged in as Observer apd has
no acgess rights to perform this function. The DTM aborts theroperation. ICommandFunction:EndExecute() throws
an Fd{invalidUserPermissionsException.

FdtinvalidValueException
This exception shall be thrown when_an invalid value was given as an argument in the
request.

Example: A client tries to write a value via_llnstanceData/IDeviceData that is out of the valid range.
FdtinvalidTypeldException

This |exception shall be thrown when an invalid type id was given as an argument ip the
request.

Example: IDtm:InitData@)\.is called with a typeid that is not supported by the DTM and throys an
FdtinvfalidTypeldException/

FdtinvalidDataObjectException
This exception shall be thrown when an invalid data object was given as an argument in
the request.

ExampletAn invalid DtmSystemTag is given in ITopology:BeginGetDtm().

FdtinvalidReferenceException
This exception shall be thrown when an invalid reference to another object was given as
an argument in the request. FdtinvalidReferenceException should not occur under normal
operating conditions.

Example: An invalid IAsyncResult object is given in an EndOperationName or in a CancelOperationName method
FdtinvalidCommunicationChannelException
This exception shall be thrown when an invalid Communication Channel is set.

Example: The argument parentCommunicationChannel is set to a channel that is not supported (e.g. protocol is not
supported).

FdtinvalidDatasetException
This exception shall be thrown when an invalid dataset was given as an argument in the
request. FdtinvalidDatasetException should not occur under normal operating conditions.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 85—

Example: IDtm:LoadData() is called with a dataset that is not supported by the DTM type.

FdtNoReadAccessException
This exception shall be thrown when a read operation can not be performed because the
data object is not readable.

Example: A client tries to read a data object that is classified as write only. EndRead() throws an
FdtNoReadAccessException.

FdtNoWriteAccessException
This exception shall be thrown when a write operation can not be performed because the
data object is not writable.

Before—v g—any a e—3a a oRA—-6 o—datase with
IDatgset:StartTransaction() if this fails, the operation shall be aborted dnd an
FdtLockDatasetException shall be thrown in this case.

Example: A client tries to write a data object that is classified as read only. EndWrité() throws an
FdtNoWriteAccessException.

FdtLpckDatasetException
This exception shall be thrown when the dataset can not be locked,in order to pefform
transactions on the dataset or device.

Example: IOnlineOperation.BeginReadDataFromDevice() is called. The dataset cah not be locked as it is cufrently
locked by another instance. IOnlineOperation.EndReadDataFromDevice() throws an FdtLockDatasetException.

FdtClommitTransactionFailedException
This exception shall be thrown when a commit transaction fails. This may happen e.g.

when the database is located on a remote computer and the network connectipn is
d|srupted.
FdtCommitTransactionFailedException should® not occur under normal opefating
cpnditions.

FdtClannotCloseUiException
This exception shall be thrown if a user interface can not be closed. The user intefface
may have changed data items that'have not been committed yet or some active aqgtions
wjith the device that need to be finished.

n this case, the Frame Application shall inform the user that he needs to finish dctive
agtions with this user interfdce before it can be closed.

5.6.9/5 Standard exception types

In gelneral FDT exceptions shall be used where applicable (please refer to the corresponding
FDT [interface definitions). Following .NET standard exception types should be uséd in
situafions whereno' FDT exceptions are applicable.

InvalidOperationException
InvalidOperationException shall be thrown if the object is in an inappropriate state. |f the
opjectis a defined FDT object use FdtinvalidStateException.

ArgumentException, ArgumentNullException, ArgumentOutOfRangeException
ArgumentException or one of its subtypes shall be thrown if bad arguments are passed to
an interface member. The most derived exception type should be used where applicable.
The ParamName property represents the name of the parameter that caused the
exception to be thrown. Note that the property can be set by one of the constructor
overloads. Use “value” for the implicit value parameter of property setters.

5.6.9.6 Other standard exceptions

The following exceptions shall not be thrown by FDT objects. Argument checking shall be
performed to avoid throwing these exceptions.

e NullReferenceException,

¢ IndexOutOfRangeException,

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 86 — IEC TR 62453-42:2016 © IEC 2016

e AccessViolationException
The following exceptions shall not be thrown explicitly by FDT objects:

e StackOverflowException,
e OutOfMemoryException,
e InteropException,

e ComkException,

e SEHEXxception,

e ERecutionEngineException
5.7 Threading

5.71 Introduction
5.7.1|1 General

Multitthreading as supported by .NET runtime solves several probléms with regafd to
throughput and responsiveness, but in doing so it introduces new problems such as races$ and
dead|ocks. In order to avoid such problems in FDT2 some rulés\are defined that shall be
applied by all FDT components.

NOTE| The threading terms (e.g. apartment model) as used within the context of COM do not apply in .NET.

Additipnal information about Multi-threading and concurrency can<e)found in [30].
5.7.1|.2 Races

A rage is a failure which occurs because. @f improper synchronization between thr¢ads.
Depgnding on which of two or more threads.reaches a particular block of code first the fesult
of a|program (or a particular piece of -ode) cannot be predicted. When different thieads
acceps common memory concurrently,.the computing result may be correct or not.

Ther¢ are four conditions required_for a race to be possible:

a) There are memory locations that are accessible from more than one thread. Typigally,
lacations are globallstatic variables or are heap memory reachable from global/static
variables.

b) There is a property (invariant) associated with these shared memory locations that is
needed for the.program to function correctly. Typically, the property needs to hold true
before an update occurs for the update to be correct.

c) Thhe property does not hold during some part of the actual update.

d) Another thread accesses the memory when the invariant is broken, thereby capsing
incerrect behavior.

5.7.1.3 Locks

The most common way of preventing races is to use locks to prevent other threads from
accessing shared memory associated with an invariant while it is broken. This removes the
fourth condition mentioned above, thus making a race impossible.

The most common kind of lock is called a monitor (sometimes the same basic functionality is
named a critical section, a mutex, or a binary semaphore). A monitor provides Enter and Exit
methods, and once a thread calls Enter, all attempts by other threads to call Enter will cause
the other threads to block (wait) until a call to Exit is made. The thread that called Enter is the
owner of the lock, and it is considered a programming error if Exit is called by a thread that is
not the owner of the lock. Locks provide a mechanism for ensuring that only one thread can
execute a particular region of code at any given time.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 87 -

5.7.1.4 Deadlocks

A deadlock is a situation wherein two or more concurrent operations are each waiting for the
other to finish, and thus neither can make any further progress.

There are four conditions required for a deadlock to be possible:

a) Mutual exclusion. Only a limited number of threads may utilize a resource concurrently.

b) Hold and wait. A thread holding a resource may request access to other resources and
wait until it gets them.

c) i i ing the
résource.

d) Qircular wait. There is a set of {T1, ..., TN} threads, where T1 is waiting for-a_resgurce
held by T2, T2 is waiting for a resource held by T3, and so forth, up through ANWvaiting for
resource held by T1.

Q

Since multiple threads can access an FDT object concurrently, it is necessary to synchrpnize
the gccess to internal data objects or to user interface objects by.mutual exclusion|(see
cond|tion #1). Condition #2 is hard to avoid since multiple resources’are often requirgd to
perfdrm an operation. Resources that are locked can not be pre<empted from the cyrrent
owndr, so condition #3 can not be avoided as well. The most common and actiopable
cond|tion in FDT is condition #4, circular waits.

5.7.2 Threading rules
5.7.211 Implementation rules

The following rules shall be applied in order to%allow multithreading and using locks to avoid
raceg:

a) Software shall be prepared to receive ealls in any thread. Each FDT object shall be alple to
r¢gceive calls in any thread. Operatiohs that need to be performed in a dedicated thread
(¢.g. user interface thread) shall.be' synchronized to this thread internally.

b) Software shall protect internal_data against parallel access. Make static data and insfance
dpta thread safe. Ensure that all thread-shared, read-write data is protected by locks.

c) Hach lock shall be assigned to a specific region of memory (not a region of code!).| This
apsignment shall be well documented in the developer documentation.

d) Hach lock shall provide mutual exclusion for the region of memory that it is assigngd to.
o writes to {hat memory can occur without entering the same lock. Data structure
invariants have to hold any time the lock protecting the data structure is not held.

e) Iff two data)structures are related, locks for both structures shall be entered before ysing
that relationship.

Implgmeénters should also consider the following recommendations:

— Memory regions (e.g. data structures) that are protected by locks should not overlap.
Consider that mutual exclusion may not be guaranteed if you have overlapping regions
with different locks. If it would always be required to enter two or more locks, a single lock
would be more appropriate to protect the overlapping regions.

— Use as few locks as possible. The complexity grows quickly with the number of locks in
the system, so it is best to have few locks that protect large regions of memory and only
split them when lock contention is shown to be a bottleneck on performance. Generally,
the finer the granularity of the locks, the more of them that can be held at once—and the
longer they are held, the higher the risk of deadlock.

— Check whether read locks are required. Entering locks is not only required when writing to
memory but also when reading from shared memory. In general, when code needs a
program invariant, all locks associated with any memory involved with the invariant shall
be entered.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 88 - IEC TR 62453-42:2016 © IEC 2016

5.7.2.2 Avoiding deadlocks

For the reasons explained in 5.7.1.4, the following rules are defined to avoid deadlocks (list is
continued from previous subclause):

a) FDT objects are not allowed to call any FDT interface method or wait on incoming FDT
calls, callbacks or events while holding any locks. This avoids a circular wait across
multiple FDT objects.

If it is necessary to call other FDT objects in order to perform a complex operation, then
implementation as a state machine should be considered, because parallel requests may
be refused or queued until the running operation is finished.

Exceptions: It is allowed to call ITrace methods and asynchronous BeginXXX methods
ithin locked code areas. The interaction management will ensure that these calls are
decoupled and processed in a safe way.

b) Hach FDT object shall avoid that a circular wait can happen within a single/FDT object.
ultiple threads accessing the object at the same time may perform different taskg and
réquire multiple resources that need to be locked. Avoiding the circulan-wait condition is
usually done by acquiring locks always in a specific order or by lock'leveling. Thig is a
sfrategy where each lock is assigned a level. A thread can only{acquire locks with the

spme or lower level that it already holds.
5.7.2(3 FDT Object interaction rules

All FDT objects shall apply the following rules (list is continued from previous subclause):

a) Do not call FDT interfaces in the user interface thread.
he user interface thread of a process shall be dedicated to receive user inputd and
perform drawing tasks only. FDT objects shall*not use the user interface thread t¢ call
DT interface methods, perform callbacks or‘€évents.
b) Qo not block the user interface thread.

he user interface shall always stay\responsive. The user interface thread is shared
between the different FDT (user interface) objects for user input and drawing operations.
Iff one object blocks this thread in order to perform some processing, this would affe¢t the
responsiveness of other objects.

¢) 0o not block a BeginMethodName method call.
A BeginMethodName method shall only start an asynchronous operation. Therefgre it
shall not block the caller.

Do not block a symchronous method call.

A thread calling(a)FDT synchronous method shall not be blocked. It is not allowed tp call
ahy EndMethodName within a synchronous method or to wait on events, because this will
bJock the calling thread.

e) Hrocess‘events and callbacks asynchronously.
o FEDT,'operations shall be performed within an event handler or callback method. Afwork
item{shall be created that is processed asynchronously. The calling thread shall npt be
bIUkaUI.

5.8 Localization support
5.8.1 General

There are two main processes for developing software that supports different languages and
cultures.

— Globalization is the first process to design software that is capable of running with
different cultures and languages. This process is realized by separating the executable
code that is culture or language independent from those parts that are culture or language
dependent. Language dependent parts for example are such as user interfaces,
calendars, numbers, several string manipulation and comparison algorithms. The .NET
Framework as technological basis for |IEC 62453-42 supports this process through a

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -89 —

number of classes that are packaged in the .NET Framework under the namespace
System.Globalization.

— Localization is the second process to customize the software to a specific culture and
language. This is primarily achieved by translating the user interface. For .NET Framework
based applications, this results in a primary assembly that contains only culture-neutral
and language-neutral executable code and resources. Each additional culture, region or
language is provided in a separate satellite assembly.

The .NET Framework provides infrastructure to access the hierarchically organized resources.
First the framework classes attempt to access the resources that belong to the specified
region or country. If this access fails, the framework classes attempt to access the resources
that lpetong to the Specified Tanguage. T IS access also 1alls, the framework classes atlempt

to acgess culture-neutral or language-neutral resources.

It is fecommended to utilize the infrastructure provided by the .NET Framewotk: " Therg¢ are
sevefal translation tools on the market and the translation agencies know how 6 deal with the
XML |based as well as the binary resource files.

5.8.2 Access to localized resources and culture-dependent functions

The |[NET Framework provides two different ways to access_the ‘localized resourceq and
cultufe-dependent functions.

The preferred way is to use the automatic culture handling) Each thread within an appligation
provides information about the currently used culture and language setting. It can be retrleved
by [reading the properties CurrentCulture ~yand CurrentUICulture from [flass
Systeém.Threading.Thread. All user interface .related functions rely on the property
CurrgntUICulture whereas other culture-dependent functions use the property CurrentCulture.
The yalue of these two properties are initialized to the default values defined in the system
settings “Control Panel — Regional Settings’."The values of the properties can be overridden
by wiiting the property values.

The pecond way to access localized resources and culture-dependent functions is needed
only |n some rare cases. All culture=<dependent functions provide an overloaded variant where
the cplture can be specified explicitly.

5.8.3 Handling of cultures

As described in 5.8.2,/the .NET Framework handles the culture settings for each thread
sepafately and derives the start value from the system settings. The Frame Applicatipn is
respgnsible to synchronize the culture settings for all threads with outgoing function calls

Ther¢ aretwo properties defining the used language: Thread.CurrentUICulture| and
Threr.CurrentCuIture.

The Frame Application indicates the currently used language by setting the property
Thread.CurrentUICulture before the DTM is started. During initialization the DTM Business
Logic and DTM User Interface shall read this property in order to display the DTM User
Interface or any other output that is provided to the user (e.g. labels and descriptors). If the
DTM implementation relies on the resource management classes that are contained in the
.NET Framework class library, no additional implementation will be necessary. Otherwise, the
language-dependent resources need to be handled explicitly. Switching the Ul culture by the
Frame Application shall not trigger any notifications from the DTM (e.g. DatalnfoChanged).

If a DTM uses additional threads with outgoing function calls or if it raises events from
additional threads, it is responsible to synchronize the language settings of newly created
threads with the settings from the original thread.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-90 - IEC TR 62453-42:2016 © IEC 2016

The property Thread.CurrentCulture shall not be changed by any FDT component in order to
reflect the culture settings of the operating system.

The described mechanism results in the following behavior: Texts, pictures and similar user
interface elements will be displayed according to the language that was selected by the user
at the Frame Application (in Thread.CurrentUICulture). Whereas input direction, sort orders,
comparison, number formatting are determined by the culture settings of the operating system
(in Thread.CurrentCulture).

5.8.4 Switching the User Interface language

A Frame Application may provide a mechanism that allows switching the language of the| user
interface. It is specific to the Frame Application, whether switching is realized during.runtime
or whether it needs the restart of the Frame Application. The Frame Applicatien.sha|l not
switch the user interface language as long as any DTM or DTM component isyinstantiated.
The Frame Application may need to shutdown and restart the DTM objects in \order to switch
the language. The DTMs will start with the new language setting.

At the Frame Application the user might select a language that is not“available for cgrtain
DTMs. The DTM Business Logic and DTM User Interface shall operate as expg¢cted
indegendent of the selected language. If a DTM does not support the selected languape, it
shall|switch to a commonly used fallback language, which is English.

A DTM User Interface may provide a menu, where the usercan override the language sg¢tting
for tHis user interface. The DTM Business Logic and DTM User Interface shall not change the
propg¢rties Thread.CurrentUICulture and Thread.CurrentCulture, because this would inflyence
the Hehavior of other FDT components that share this thread. The language remains gctive
until fhe language setting is changed again or until-the user interface is closed.

5.9 DTM User Interface implementation

5.9.1 General

M Business Logic is operatediby DTM User Interface. Different kinds of user interfaces

M WPF controls [11] can be embedded into the user interface of the Frame Applic;ation.
These controls shall derive from the standard .NET WPF UserControl class (namegpace
System.Windows.Controls).

M WinForms ~controls can be embedded into the user interface of the Frame
Application,AThese controls shall derive from the standard WinForms UserControl tlass
(namespace-System.Windows.Forms).

M Applications are external DTM-specific user interfaces (e.g. executable applicafions)
hich -cannot be embedded into the Frame Application. These external applicationy are

. o) ” Ul
Application”, see Figure 65) which manage the interaction between the external user
interface and the Frame Application.

e DTM Ul CommandFunctions are similar to the CommandFunctions which can be executed
at the DTM Business Logic (see 7.14), but Ul CommandFunctions are allowed to open
private user interfaces (e.g. dialog boxes etc.). Such functions are represented by simple
.NET classes which contain the code to execute.

All four DTM User Interface types implement the same interface (see 6.4).

5.9.2 Resizing

The DTM WPF and WinForms Controls should be implemented in a resizable way. That
means the controls are responsible for supporting re-arrangement of the inner graphical
elements. In addition, a control shall specify its minimum size.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

—-91-—

The Frame Application may use the minimum size as a hint for the initial size to show the
control. If the Frame Application displays the control's host window smaller than the minimum
size of the control, then the Frame Application has to provide scrollbars.

When the Frame Application allows the user to resize the host window to a size smaller than
the minimum size of the control then the Frame Application has to show scrollbars for the

DTM Ul control (see Figure 40).

Frame Applications — DTM host Windowu 8 X
[—-————————=————-=--== —
1 e :‘ NG
] B S
| \)((\ | (&\' & N
| & > 0
& S AN
| @\0 1 S
: L I ¢
! & l
I O\
©]
| X
| S 1
| @9] Scrollbars
1 N : provideddby
: \%0\@ |O‘/___’_,/___.,./—-:‘;: FramfeApplication
] N [Reset] ’ Set to default]' ___________
L 2y
4 Il ! / o f
/O] [eoea] (29
! <

Independent of the scrollbars shown by the Frame Application the control itself may

1

/ \ i
DTM_ _ Standard blttons
specific provided\by,
buttons FrameApplication IEC

Figure 40 — Frame Application's host window providing scroll bars

show

additjonal scrollbars if appropriate“\This is needed for example if the application area requires

more| space than available (segFigure 41).

Frame Applications — DTM host Window

r DTM ldentification Area :
1 I
I [=] Standard Raraméters A|
| > I
1 xyz & I
| Ve =
1 S Text g oo |
X
| ‘\\(.:b .
| |
| &Q . OQ bQQ
] Vo
1 ’5\\% KQ”b N :
NGRS '
I L8
! 4 I R
:) '\\I
i DTM status bar \ \:
-- AW,
A\

‘-.,\

DTM provided application|
area scrollbars

Figure 41 — Control using internal scrollbars

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

5.9.3

-92 - IEC TR 62453-42:2016 © IEC

Private dialogs

Private dialogs are all kinds of graphical user interfaces such as:

e message boxes (i.e. standard message box);

o file or printer selection dialogs (i.e. provided by operating system);

o (default) web browsers;

o (default) mail clients;

e help file view;

2016

o
(2]

e ¢
e a
Any
but s
Appli

Appli
DTM

A D1
Busi

prop
exec

5.10
5.10.
The

For d
sequ

The

Frame Application yser interface element. The Frame Application shall implement follg

gene
a) L
b)
c) H

anuat VIEWET,
blash screens;
kKternal stand-alone applications,

Ny other windows.

DTM Ul (control, application and Ul command function)is allowed to.show private diz
bhould prefer use of the services supported by the Frame Application. If a F
cation needs to ensure that private DTM Uls are not overlapping critical F
cation Uls, then this needs to be implemented Frame Applicatioh-specific (e.g. do ng
Uls on such PCs, display on a second screen etc.).

M Business Logic is not allowed to open private dialogs or user interfaces. A
ess Logic shall always use the Frame Application<ser interface services (see IFrar
rty). This rule is necessary since operationsion the DTM Business Logic ma
ited unattended (e.g. batch processing).

DTM User Interface hosting
1 General

Frame Application can dynamically load the DTM User Interface.

ifferent DTM User Interface;types the activation and initialization is similar (see 5.4)
ence diagrams in 8.5 describe these operations in more detail.

DTM WPF controlstand DTM WinForms controls additionally need to be embedded
ral sequences

pad the assembly and create the control
heck-the type of the control (UiControlFunctioninfo.Type)

ost'the control in a parent user interface element

logs,
rame
rame
t run

DTM
ne.Ui
y be

The

in a
wing

d) Initialize the control (<Init()>)

e) Make the control visible and size it to the parent window size

The Frame Application shall initialize the controls before they are made visible. This enables
the control for example to load the correct device picture before it's displayed. The initialize
method of an DTM provided control shall return immediately. If the control need to perform
operations taking a longer time (e.g. communicate with the device), then this shall be done
asynchronously.

5.10.

2 Hosting DTM WPF controls

A WPF Frame Application shall embed DTM WPF controls in a layout element like Grid

contr

ol or Panel controls (see Figure 42).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 93 -

void HostWPFControlInWPFApp (string dtmUiAssemblyPath, string controlClassName)
{

// Load DTM User Interface assembly

Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath) ;

// Create WPF control
Type controlType = dtmUiAssembly.GetType (controlClassName) ;
UIElement wpfControl = Activator.Createlnstance (controlType) as UIElement;

// Host WPF control in layout element (e.g. Panel, Grid)
Panel parent = this.clientArea;
parent.Children.Add (wpfControl) ;

Ioitald

(wpfControl as IDtmUiFunction) .Init (/* parameters */);

// Make visible
parent.Visibility = Visibility.Visible;

IEC

Figure 42 — Example: Hosting a DTM WPF control in a WPF Frame Application

A WinForms Frame Application shall embed DTM WPF controls®in~the ElementHost control
(System.Windows.Forms.Integration namespace) (see Figure 48).

id HostWPFControlInWinFormApp (string dtmUiAssemblyPéath, string controlClassName)

<

// Load DTM User Interface assembly
Assembly dtmUiAssembly = Assembly.LoadFrom (dUmUiAssemblyPath) ;

// Create WPF control
Type controlType = dtmUiAssembly.GetType (econtrolClassName) ;
UIElement wpfControl = Activator.Creat@&instance (controlType) ;

// Host WPF control in ElementHosfl
ElementHost host = new ElementHdgr () ;
host.Dock = DockStyle.Fill;
host.Child = wpfControl;
parent.Controls.Add (host) ;

// Initalize
(wpfControl as IDtmUSItnction).Init(/* parameters */);

// Make visible
parent.Visiblé =5 ‘“true;

IEC

Figure-43 — Example: Hosting a DTM WPF control in a WinForms Frame Applicatipn

5.10.3—Hosting DFM-WinForms—controts

A WinForms Frame Application shall embed DTM WinForms controls in layout elements like
Forms or Panels. (see Figure 44)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

—-94 - IEC TR 62453-42:2016 © IEC 2016

{
// Load DTM User Interface assembly
Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath) ;

// Create WinForm control
Type controlType = dtmUiAssembly.GetType (controlClassName) ;
Control winFormControl = Activator.CreateInstance (controlType) as Control;

// Host WinForm control in a WinForm layout element
Control parent = this;

winFormControl.Dock = DockStyle.Fill;
parent.Controls.Add (winFormControl) ;

void HostWinFormControlInWinFormApp (string dtmUiAssemblyPath, string controlClassName)

// Initalize
(winFormControl as IDtmUiFunction) .Init(/* parameters */);

// Make visible
parent.Visible = true;

EC

Figufe 44 — Example: Hosting DTM WinForms controls in a WinForms Frame Application

A WRF Frame Application shall embed DTM WinForms controls(in a WindowsFormsHost/| (see
Figure 45)
v¢id HostWinFormControlInWPFApp (string dtmUiAssembly®Rdth, string controlClassName)
{
// Load DTM User Interface assembly
Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath) ;
// Create WinForm control
Type controlType = dtmUiAssembly.GetType'(controlClassName) ;
System.Windows.Forms.Control winFormCehtrol = Activator.Createlnstance (controlTyps€|)
ag System.Windows.Forms.Control;
// Host WinForm control in a WPE layout element (grids, panel)
System.Windows.Controls.Pangl Jparent = this.clientArea;
WindowsFormsHost host = new WindowsFormsHost () ;
host.Child = winFormContg&al;
parent.Children.Add (host) ;
// Initalize
(winFormControl ®&s\IDtmUiFunction) .Init (/* parameters */);
// Make visible
parent.Visikility = Visibility.Visible;
}
IEC
Fi 5 _E le: H ti DTM WinE trol i WPE E A li tibn

5.11 Static Function implementation

Static Functions are implemented as .NET functions. Each function shall be implemented in a

separate assembly.

A DTM provides information about the available Static Functions (see StaticFunctioninfo in
Annex B) with the method IStaticFunctionInformation.GetStaticFunctions. The information
provided by the DTM describes the supported use case and the arguments of the function.

Since a Static Function can process all .NET datatypes, including FDT-specific datatypes, it is
possible that a Static Function processes CommunicationResponses from a device. In such
cases the description of the input argument contains the CommunicationRequest that is

needed to retrieve the respective CommunicationResponse from the device.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 95—

A StaticFunction and related communication requests are not allowed to change the status of
the device.

StaticFunctioninfo

StaticFunctionDescripti))) .
aficrunctionDescription Describes a StaticFunction, which

Applicationld : enum [0.1] | e | can be called via

Descriptor : string [0..1] IStaticFunction::BeginExecute().
Functionld : int
Label : string
Protocolld : Guid

¢ ¢

1111‘

StaticFunctionltems
1.%

Semanticinfos Semanticinfo

0. Semanticld : string .
ApplicationDomain : string Describes an Input parameter of
IStaticFunction::BeginExecute()
InputParameters FunctionArgumentDescription and
0..*| DataType : string
ResultArguments | DefaultValue : string [0..1] b Result parameter returned in
0. ze.sif]rt'ptm ¢ string [0..1] FunctienResult of
IsOptional : bool IStaticRuriction::EndExecute()
Label : string
% InputParameter list and N\
ResultParameter list collect itenps of
StaticFunctionArgumentDescription type FunctionArgumentDescrip‘ on.
CommunicationRequest : string [Q7] ™ (=me < When the function description id
ReadOnce : bool

evaluated and called, the Fram
Application shall cast the
parameters to type
StaticFunctionArgumentDescriptions

DyrniamicClassReference

ClassWhichContainsTheStaticFunction

ClassName : string

1

Assemblyinfo
AssemblyInfo
1 | Name : string

Path : Uri [0..1]
PublicKeyToken : string
SupportedTargetPlatform : enum [Only32bit, Any, Only64bit]
Version : Version

1
T SupportedCLRVersions TargetCLR
0

CLRVersionNumber : Vprsion

IEC

Eigure 46 — Relation of StaticFunctionDescription to Static Function

Figurle'46 shows the relation between description of a static function and the actual furction
that may be invoked. The StaticFunctionDescription describes a StaticFunction together with
its input arguments and its result arguments. For each argument of the StaticFunction there is
a corresponding description.

The input and result arguments of a static function may be of any datatype. The values of the
arguments are provided as string. The string contains the serialized value of the datatype.

It is possible to define that a StaticFunction is using a communication response
(TransactionResponse) as an input argument. In such a case the CommRequest attribute of
the corresponding StaticFunctionArgumentDescription contains the communication request
(TransactionRequest) necessary to retrieve the communication response.

In order to optimize the communication access the DTM may use the flad ReadOnce. If
ReadOnce is set to "TRUE", then the FA may issue the CommunicationRequest only one time

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 96 - IEC TR 62453-42:2016 © IEC 2016

(e.g. when starting an observation). The resulting CommunicationResponse can be used as
multiple times when executing the static function. If ReadOnce is set to "FALSE", then the FA
shall retrieve the CommunicationResponse each time when executing the static function.

5.12 Persistence
5.12.1 Overview

In the call to InitData() or LoadData() the DTM receives a reference to the |Dataset interface
provided by the Frame Application.

<<interface>>
IDataset

Formatld : Guid

DTMDataset ~ F—---- £ startTransaction()
CommitTransaction().
CloseTransaction()

IEnumerable<KeyValuePair<string, IDataSubset>>

i

IDataSubsetDictionary

Add(key, data, descriptor): DataSubset I ISR
Remove(key) ===
this[key]: DataSubset
Clear()

<<interface>>
IDataSubset

Key: string
Descriptor: string

0..* |Bulk 'p,.*|Instance
Data Data

DTMDataSubset |------

ReadData(): byte[]
WriteData(byte[])

Figure 47 — DTMDataset structure

The PTMDataset contains two DTMDataSubset dictionaries for the actual persistence off data
(see [Figure 47): InstanceData dictionary and BulkData dictionary. Each dictionary contains
DTMpPataSubsets:sThe DTMDataSubsets shall be used for grouping of persistence data] The
number and gantent of the DTMDataSubsets is DTM-specific. In order to improve the system
performancée.the DTM shall group data which need to be loaded and stored together in one
DTMpPataSubset. Furthermore, a DTM shall avoid unnecessary loading of data whempever
poss|ble; especially when starting the DTM Business Logic.

The InstanceData dictionary shall be used for data which is directly related to the represented
device instance, for example the device parameters, network information, etc. The DTM has
to guarantee that it is able to represent the device by loading this data. Following
DTMDataSubsets should be considered:

— Basic data which is needed during the complete lifetime of a DTM instance(e.g.
represented device type information, device tag and address and other identity
information).

— Device parameter information that is needed if corresponding DTM User Interface is
opened (e.g. a page in a dialog) or if the Frame Application requests data (e.g.
DeviceDatalnfo (see 7.9))

— 10 signal information which is needed if Frame Application requests ProcessDatalnfo
(see 4.4.4)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 97 -

The BulkData dictionary shall be used for further device instance-specific data, for example
for bulky trend or historical data, which is only needed in special scenarios. The Frame
Application may implement a special storage mechanism for bulk data, which might be
optimized for handling of big amount of data, but may be slower than the implementation for
the instance data storage.

Beside these data separation and grouping rules the DTM shall also follow the rules defined
for data searching (see 5.12.4) to support a maximum system performance.

5.12.

2 Data format

The

store
uniqy
expo

The
store

A DT
used

5.12.

By d
DTM
exan

The

stora
the H
IDtm

The
respq

Figur
with

ormat of the data persisted in the DTMDataSubsets is DTM-specific, but the DTM
information about the used format in the IDataset.Formatld property. The Formatic

5ed in the IDtm.ActiveType property.

DTM shall use the Formatld information to decide how to load the data,-e.g. to load
d in a different format by an older DTM version.

by the Frame Application to migrate data stored by a different DTM (see 8.17).

3 Adding / reading / writing / deleting of data

pfault the two DTMDataSubset dictionaries contained in the DTMDataset are empty
itself is responsible for adding the needed DTMDataSubsets to the dictionarieg
ple at first start-up in the call to InitData() (see 8.2.1).

DTMDataSubset dictionaries also provide“methods to remove data from the persis
ge managed by the Frame Application."However, in case of deleting of the DTM ins
rame Application itself is responsijbleito remove the data from the storage after the g
BeginRelease(deletelnstance=true) returned.

shall
is a

e identifier created by the DTM vendor, it shall correspond to the used\Forfatld

data

M may also expose further supported Formatlds in its Typelnfo{ This information may be

The
, for

ence
ance
all to

DataSubset interface provides methods to read and write binary data. The DTM itgelf is

nsible to serialize / deserialize the data.

e 48 shows an example implementation on how a DTM can initialize a DTMDataS
binary data by using the .NET Framework BinaryFormatter class for serialization.

ibset

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 98 - IEC TR 62453-42:2016 © IEC 2016

public void InitData (Guid dtmDeviceTypeld, IDataset dataset)
{

// initialize class members

_dataset = dataset;

_activeDtmDeviceType = supportedTypes.Find((item) =>
item.Id == dtmDeviceTypeld);
_deviceAddress = new DeviceAddress<HartDeviceAddress>(1,

new HartDeviceAddr (0, "SHORTTAG", "Long Tag",
HartDeviceAddre .AddressingModeSelection.ShortAddress,
new HartLongAddress())):
// start transaction (needed for adding of DataSubsets)
_dataset.StartTransaction();

reate binaru formattor noodad for cialization of dat
MemoryStream stream = new MemoryStream();
BinaryFormatter binaryFormatter = new BinaryFormatter();

// serialize ActiveType (Id) and DeviceAddress
binaryFormatter.Serialize(stream, activeDtmDeviceType.Id);
binaryFormatter.Serialize (stream,
_deviceAddress.ProtocolSpecificDeviceAddress.ShortAddress| ;
stream.Close () ;

// create data subset for "basic" DTM data and initialize with dgfgllt data
_dataset.InstanceData.Add("basicData", stream.GetBuffer());

// store used format and close transaction with auto commjit = "true
_dataset.FormatId = activeDtmDeviceType.DatasetFormats_AUsed;
_dataset.CloseTransaction (true);

IEC

Figure 48 — Example: Initialization of DTMDataSubset with DTM data

The IDTM has to provide a unique key forthe DTMDataSubset when adding it t¢ the
dictignary. The DTM can use the key to aceess DTMDataSubset, for example for reading and
writirlg of the binary data.

Figure 49 shows an example on how a DTM can write binary data into a DTMDataSubsjet by
using the .NET Framework BinaryFormatter class for serialization.

prptected void SaveBasicData ()

// start transagiion (needed for writing of DataSubset data)
_dataset.StartTxansaction();

// create pimary formatter needed for serialization of data
MemoryStf£@am stream = new MemoryStream();
BinaryFoywmatter binaryFormatter = new BinaryFormatter ();

//secialize ActiveType (Id) and DeviceAddress
binaryFormatter.Serialize(stream, _activeDtmDeviceType.Id);
binaryFormatter.Serialize (stream,

JEVICEAUJIESS. PTOCOCOISPECIT ICDEVICEAJJIESS. SO LAJATESS) ;

stream.Close () ;

// create datasubset for "basic" DTM data and initalize with default data
_dataset.InstanceData["basicData"].WriteData (stream.GetBuffer());

// close transaction with auto commit = true
_dataset.CloseTransaction (true);

IEC

Figure 49 — Example: Writing of DTM data in DTMDataSubset

Figure 50 shows an example on how a DTM can read data from a DTMDataSubset by using
the .NET Framework BinaryFormatter class for deserialization.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 99 -

public void LoadData (IDataset dataset)
{

_dataset = dataset;

// read persisted "basic" data
byte[] data = _dataset.InstanceData["basicData"].ReadData();

// create binary formatter which is insensitive regarding assembly version
// in which serialized classes have been defined

MemoryStream stream = new MemoryStream(data);
BinaryFormatter binaryFormatter = new BinaryFormatter();
binaryFormatter.AssemblyFormat = FormatterAssemblyStyle.Simple;
4 ciali tiveTyupn nd-Deuzi ddx dat
Guid dtmDeviceTypeld = (Guid)binaryFormatter.Deserialize (stream);
_activeDtmDeviceType = supportedTypes.Find((item) =>
item.Id == dtmDeviceTypeld) ;

// deserialize DeviceAddress data
int shortAddress = (int)binaryFormatter.Deserialize (stream);
_deviceAddress = new [eAddress<HartDeviceAddress> (1,
new HartDeviceAdc shortAddress, "SHORTTAG", "Long Tag . ..,
HartDeviceAddress.AddressingModeSelection.ShortAddness,
new HartLongAddress()));
stream.Close();

The

Figure 50 — Example: Reading of DTM data from a DTMDataSubset

DTM vendor shall consider loading of data created by an “older” version of the

Even| if the format of data has not changed alse the deserialization of data to new

versi

bns shall be considered. In the exampleciny'Figure 50 this is achieved by settin

BinaffyFormatter in an Assembly version insensitive mode.

5.12.

The

DTM
- B
- B

The
adva

The
provi
how

4 Searching for data

DTMDataSubset dictionaries, “provide several methods to find a part
DataSubset:

y Key
y Descriptor

hced searching-algorithms.

content(of*the Descriptor property is DTM-specific. A DTM can use this proper
e further information about the DTMDataSubset content. Figure 51 shows an ex4g
A DTM may save some trend data in the BulkData dictionary with additional desc

DTM.
class
) the

cular

bptional DTMDataSubset.Descriptor property can be utilized by the DTM to implgment

ty to
mple
riptor

information.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 100 - IEC TR 62453-42:2016 © IEC 2016

{

protected void SaveTrend (SomeTrendData someTrendData, DateTime createdAt)

// start transaction (needed for adding of DTMDataSubset)
_dataset.StartTransaction();

// create binary formatter and serialize TrendData
MemoryStream stream = new MemoryStream();
BinaryFormatter binaryFormatter = new BinaryFormatter();
binaryFormatter.Serialize (stream, someTrendData);
stream.Close () ;

// create trend data datasubset with Descriptor containing current date / time
byte[] data = stream.GetBuffer();

datasetBulkbDataAdd(Cuid NewCuid() ToString () data
"TrendData - " + createdAt.ToString("yyyy:MM:dd hh:mm:ss")(
// close transaction with auto commit = true

_dataset.CloseTransaction(true);

The
withag
from
is fag

Figur
Desc

Figure 51 — Example: Creation of a BulkData.DTMDataSubset with descriptor

Pescriptor property shall be used by the DTM to search for-specific DTMDataSu

t and has a low memory footprint.

riptors by using a .NET LINQ query.

IEC

bsets

ut reading the binary data. This enables the Frame AppliCation to read the binary|data
the persistence storage only if really needed by the DTM, Thus the searching algofrithm

e 52 shows an example on how a DTM can search for DTMDataSubsets with-spgcific

btected List<SomeTrendData> GetTrendsOfDayyDateTime date)

// (LINQ) query for all DTMDataSubs@ts containing trend data for a specific day
IEnumerable<IDataSubset> dataSubsets = from item in dataset.BulkData
where item.Valu€.Descriptor.Contains ("TrendData - " +
date.ToString ("yyyy:MM:dd"))
select iteéwm:Value;

// deserialize found tméQd data and return list to caller

List meTrendData> tkemds = new List<SomeTrendData>();
BinaryFormatter binaryFormatter = new BinaryFormatter();
binaryFormatter.AsgsemblyFormat = FormatterAssemblyStyle.Simple;
foreach (IDataSmhRsct dataSubset in dataSubsets)

{

MemoryStream stream = new MemoryStream(dataSubset.ReadDatal());
trends.Add (binaryFormatter.Deserialize (stream) as SomeTrendData);
}

return trends;

IEC

5.13

Figure 52 — Example: Searching for DTMDataSubsets with specific descriptor

Comparison of DTM and device data

5131 Comparison of datasets using IDeviceData / linstanceData

If a DTM does not provide the IComparison interface, then it shall publish all data relevant for

comp

arison in the IDeviceData / linstanceData interfaces (at least).

Some of the published data may not be relevant for comparison, for example dynamic data or
process data. Therefore the Frame Application should provide means (e.g. user interface) to
select data which is relevant for comparison.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 101 -

The Frame Application shall read the data via the IDeviceData and/or the linstanceData
interface and compare the values of data items with the same identifier. If a data item with the
same identifier is missing, then this shall be evaluated as not equal.

5.13.2 Comparison of datasets using IComparison

DTMs which do not publish all data shall implement the interface IComparison. If a DTM
implements this interface, then the Frame Application shall use this interface for comparison.

The IComparison interface provides methods to compare:

—

e tHe currently persisted dataset with the data in the device (Online Comparison)

—

e the currently persisted dataset with another persisted datasets (Offline Comparisen)

Be aware that a DTM can only compare a dataset which has a supported formdt| (format|ID is
equal the current format ID or to a supported format ID). The comparison shall include] only
the dataset of the DTM. Related FDT Objects (e.g. Child DTMs or Parént DTMs) ar¢ not
inclugled in the comparison provided by IComparison.

1”4

If it i$ necessary to compare multiple DTMs, the Frame Applicationds responsible to exgcute
the comparison method on all respective DTMs. For example the comparison of a Comgosite
Devige DTM may require also the comparison for the attached’Medule DTMs.

5.14(Tracing

For troubleshooting or debugging trace information¢(logging) is essential. Whenever mdltiple
comgonents need to interact it is of advantage if all components have a common place tp put
the trace information. This makes it easier tokdetect and resolve problems where segveral
components are involved.

An FDT Frame Application shall implement a dedicated interface ITrace (see 6.2), which is
used|by DTMs to send trace messages.

A trace message can be either a-human readable description or data as an array of objects.
An afray of objects is useful-if\a DTM developer wants to trace a complete exception dbject
and not only a description, if“a DTM sends a trace message with an array of objects it|shall
also provide a corresponding additional message with a human readable description.

A trace message includes an assessment of severity (e.g. verbose, warning or error) gnd a
clasdfification. Te.limit the amount of trace messages sent by a DTM an FDT Frame
Application caf¢et the minimum trace level using IDtm and IDtmUifunction.

How |[messages are collected, stored or displayed to the user is Frame Application-specific. It
is not inlthe scope of this specification.

A trace message is not intended to be shown to the user directly. It is dedicated to debugging
and troubleshooting. If a message is intended to be displayed to the user one of the message
box methods of interface IFrameUi shall be used.

A trace message shall be in English. It shall not contain a timestamp, because the timestamp
is provided by the Frame Application if necessary.

5.15 Report generation
5.15.1 General

Due to the shared responsibilities for data management in an FDT system, the generation of a
comprehensive report requires the compilation of report fragments delivered by different
components in the system. While the topological information is managed by the Frame

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-102 - IEC TR 62453-42:2016 © IEC

2016

Application, all the device-specific information is to be delivered by the constituent DTMs in a
project. To generate a report, a Frame Application uses the IReporting interface provided by
DTMs to request report fragments with the device-specific presentation of configuration or
parameterization data from each DTM.

5.15.

2 Report types

Complex devices may have a huge amount of configuration and parameter information. Frame
Applications shall be able to access only a subset of this data for the generation of context-
specific reports, e.g. a report only of network management related data, offline or online data,
IO signal information, bulk data, etc.

A DTM shall offer different types of reports, each covering a distinct subset of its device
If the report corresponds to a DTM function (a Function ID or Application ID)nit)she

refer

withqut reference to specific functions. The DTM informs the Frame Application"by mea

its R
chan

A Fr
gene

typeq from all DTMs to create a full report or offer a user intexface based on the Repo
properties to let the end user decide about which data to include in the report.

5.15.

A DTIM shall deliver its report fragment in form of a strictly conforming XHTML (XTHM

strict

NOTE
type d
paging
Rich T

S

e T
Cc

bnced in the report type. A DTM may provide additional report types for spegific purg

bportinfo property about the available report types. The list of available’reports sh
pe over the lifetime of a DTM BL instance.

hme Application may use only the report types with an associated Application
rate a standardized report on a specific aspect of a system, collect the data of all r

3 DTM report data format

document as specified in [24] (see Figure.53).

Since XHTML 1.0 is a reformulation of HTMk 4 ‘conforming to the XML 1.0 standard, documents wi
f markup can be processed by any XML compliant tool or library. This includes the XSL transforma
ted output formats like XSL-FO, that cancbe postprocessed for example to the 1ISO 19005 1 (PDF/A
ext Format (RTF). The final report format\of a Frame Application is out of scope of this specification.

eport fragment shall not contain any script or style (CSS) elements nor frames. It
If contained, that is it shall,;contain all the mandatory parts of an XHTML documer

mplify the postprocessing with standard XML tools and libraries.
cument type declaration (DOCTYPE) according to the XHTML 1.0 strict standard.

data.
Il be
oses
s of
Il not

D to
Eport
rtinfo

. 1.0

h this
ion to
1) or

shall
t, so

TF 8.
re to

ot <html> element with XHTML 1.0 namespace declaration and declaration of the

ntent,language. The content language shall be the same the DTM uses in its BL an
klang and lang-attributes shall always have the same value.

e <head> section with content type declaration including the character encoding. The
encoding shall be equal to the encoding defined in the XML Prolog; the declaration in the
prolog takes precedence. This declaration is for compatibility with older XHTML rendering
engines.

e <body> section with presentation of the device-specific data. As any other XHTML
document, report fragments may reference external resources, e.g. images.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 103 -

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8" />
<title>Title of report fragment</title>
</head>

Lod

. (Device specific data presentation here)
</body>

</html>

5.15.
DTM

frag
BL, i
with
Appli

If the
them
Base
refer
temp
<Gerf

Figure 53 — Skeleton of a DTM-specific report fragment

4 Report data exchange

ent for a device with a call to <GenerateReport()>, ofi)the IReporting interface of a
specifies a destination folder path, the Base-URIL-A DTM BL shall store the report

an arbitrary filename in the destination foldery'and return the filename to the H
cation as the result of the asynchronous call.

report fragment needs to reference extefnal resources, e.g. images, the DTM shall
likewise under the specified Base-URI: The DTM is free to create subfolder unde
-FURI to organize the external resources. A report fragment shall always use re
bnces to link to its external resources. A DTM shall assume that the Base-URI
prary identifier — it is aonly valid until the DTM returns completion Oof
erateReport()> call and may change between subsequent calls to <GenerateReport

Frame Applications have to'take appropriate measures to prevent name clashes betwee

URIs
diffen
for d
A typ

of report fragments and accordingly external resources of different DTMs; e.g
ent base URIs for\the reports of individual instances. Furthermore they are respor

ical implementation of a Frame Application creates an individual subfolder as Basg

for each DTM to be included in the report.

5.16

Security

and Frame Application exchange report fragments by’ means of a file system folder
whicrm can be accessed by the DTM BL. When a Frame “Application requests the r

eport
DTM
esult
rame

store
r the
ative
is a
the
)>.

h the

use
sible

sposal of the repoft fragments and external resources when they are not used any fnore.

-URI

5.16.

1 General

A Frame Application hosts DTM BL or DTM Ul which are, from the Frames perspective,
external components provided by third parties. Therefore the system is exposed to possibly
unknown code. The system shall be protected against security threads originating from
unknown code.

5.16.

2 Strong naming of assemblies

Strong naming of assemblies allows for checking if an assembly was tampered after it was
published.

All assemblies which are part of a DTM Setup shall have a strong name.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 104 - IEC TR 62453-42:2016 © IEC 2016

5.16.3 Identification of origin

Microsoft Authenticode [25] is a digital signature format to sign executable code, which allows
i.e. checking the origin of an assembly using a public-key cryptography approach.
Authenticode shall be used to allow for verification of origin and genuineness of a DTM.

DTM vendors shall obtain a code-signing certificate issued by one of the certification
authorities (CAs) that are trusted by default in Windows. Such a CA is referred to as
“Windows root certificate program member”’. Updates of the trusted root certificates in
Windows are automatically installed during Windows updates or can be downloaded from the
Microsoft website (see [26]).

The [following DTM assemblies (DTM binaries) shall be signed using a codessigning
certifjcate:

e DTM BL assembly

e D[TM Ul assemblies

e DitminfoBuilder if implemented in a separate assembly
e StaticFunction assemblies (if available)

o Installer application

Figune 54 shows how a Frame Application can verify the ofigin of a DTM assembly using the
.NET| Framework namespace System.Security.Cryptography.X509Certificates.

//| Create an X.509 certificate from the signed RTM assembly
X5p9Certificate x509Certificate = X509Certificalen CreateFromSignedFile (
@'c:\...\AdhenticodeSignedDemo.d1l1l") ;

//] Create a new X506Certificate? instance™Moy passing the previously created
//| X506Certificate instance
X5pP9%Certificate?2 x509Certificate?2 = newsX509Certificate? (x509Certificate);

//| Check if the chain of the created' X.509 certificate (represented by the
//| x509Certificate?2 instance) ixwalid
bopl i1sX509ChainvValid = x509Cettificate2.Verify();

IEC

Figure 54 — Example: Authenticode check

5.16 .4 Code access security

The INET Framework provides a security mechanism referred to as “Code Access Segurity
(CAS)” [27}» This mechanism allows to limit the access permissions (e.g. to file sygtem,
regisfry.ornetwork) of an assembly.

As this could mean limiting essential capabilities of a DTM, a Frame Application is not allowed
to limit code access permissions. That means Code Access Security shall not be used.

5.16.5 Validation of FDT compliance certification

The FDT Group defines an FDT compliance certification procedure for DTMs.

FDT supports the means to enable a Frame Application to validate the compliance
certification of a DTM. Certified DTMs shall install a conformity record file, which is generated
by an authorized FDT certification laboratory and signed using a public-key cryptography
approach.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 105 -

The conformity record file is digitally signed using a private key which is only known to the
FDT Group and authorized certification labs. Frame Applications can check the conformity
record file by checking the signature using the corresponding public key of the FDT Group.

The certification record file shall be signed according to the W3C XML Signature Syntax and
Processing recommendation [28].

A DTM certification record shall use the exactly same DTM vendor name as used in the
Authenticode signatures of DTM BL and Ul assemblies included in the DTM deployment
package.

Figurt 55 shows an example for a conformity record file. This is an xml serialized instan
the datatype “ConformityRecord”.

ce of

ANAY

<
<9

<Sid
SGsH
ue>

<
</Cd

1 version="1.0" encoding="utf-8"?>
formityRecord xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
s="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
estedDtmName>Name of DTM</TestedDtmName>
estedDtmVersion xmlns:d2pl="http://schemas.datacontract.org/2004/07/System">
<d2pl: Build>0</d2pl: Build>
<d2pl: Major>1</d2pl: Major>
<d2pl: Minor>0</d2pl: Minor>
<d2pl: Revision>1</d2pl: Revision>
TestedDtmVersion>
estedDtmId>6d0££d65-0936-420e-9e40-42d039£d8a98</TestedDtmId>
estedTypeId>00000000-0000-0000-0000-000000000000</TestedTypeldy
ateOfTest>2010-04-29T00:00:00</DateOfTest>
estedOSVersion>
<OSVersionNumber xmlns:d3pl="http://schemas.datacontract.Q¥g/2004/07/System">
<d3pl: Build>6002</d3pl: Build>
<d3pl: Major>6</d3pl: Major>
<d3pl: Minor>0</d3pl: Minor>
<d3pl: Revision>131072</d3pl: Revision>
</0SVersionNumber>
<ServicePack>Service Pack 2</ServicePack>
TestedOSVersion>
endorName>Vendor Ltd.</VendorName>
estLabName>AccreditedLabName</TestLabNamex
ignature xmlns="http://www.w3.0rg/2000%08/xmldsigH">
<SignedInfo>
<CanonicalizationMethod Algorithm=thttp://www.w3.0rg/TR/2001/REC-xml-c14n-20010315" />
<SignatureMethod Algorithm="https)//www.w3.0rg/2000/09/xmldsig#rsa-shal™ />
<Reference URI="">
<Transforms>
<Transform Algorithm#"hgtp://www.w3.0rg/2000/09/xmldsig#enveloped-signature" />
</Transforms>
<DigestMethod Algogithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<DigestValue>JfVQRECY /MuCpxyqgltJCVNBIeM8=</DigestValue>
</Reference>
</SignedInfo>

natureValue>LwCILPg6r3zLcl2Auk3ast8KrXXICLWmxHIWSYE611LpgQQPGFwgQP2aGhL38jNir90wnKeplNX5gIZGLPMG
q3giczAf6QN3aRQEJ28TDLXXXDKvz6£5HDSXT71CjWwGwY19JtkIxwKRmi1hOpURXxdN1NGkeaykl2ELTM=</SignatureVa

Signatuxe>
nformi€yRecord>

IEC

Figure 55 — Example: Conformity record file

Figure 56 shows how a Frame Application can check a certification record file.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 106 — IEC TR 62453-42:2016 © IEC 2016

public static Boolean VerifyXmlFile(String fileName, X509Certificate? certificate)
{

// Create a new XML document.

XmlDocument xmlDocument = new XmlDocument () ;

// Load the passed XML file into the document.
xmlDocument.Load (fileName) ;

// Find the "Signature" node and create a new

// XmlNodelList object.

XmlNodeList nodeList = xmlDocument.GetElementsByTagName ("Signature");
if (nodelList == null || nodelList.Count != 1)

{

return £

}

// Create a new SignedXml object and pass it
// the XML document class.
SignedXml signedXml = new SignedXml (xmlDocument) ;

// Load the signature node.
signedXml.LoadXml ((XmlElement)nodeList[0]);

// Check the signature and return the result.
return signedXml.CheckSignature (certificate, false);

IEC

Figure 56 — Example: checking conformity record file

6 FKDT Objects and interfaces

6.1 General
The DT interface specification includes;the following FDT Objects:

e D[TM Business Logic
e Presentation objects
—-| WPF Control
—| WinForms Contrgl
—| Standalone Application
—| Ul Command:Function

e Clommunieation Channel

[]
M

fame-Application

The pehavior of these objects and their interfaces are described in this clause. Develppers
implementing DTMs or parts of Frame Application like storage or communication objects shall
implement the functionality as defined in this clause.

This clause also references and defines expected behavior of FDT specific interfaces that
FDT-compliant objects shall implement.

In order to describe the availability of interfaces for the different FDT objects, following
abbreviations are used:

M: mandatory — the interface shall be provided

C: conditional — the interface shall be provided depending on conditions

O: optional — the interface may be provided based on product decisions

- not allowed — the interface shall not be provided

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 107 -

6.2 Frame Application

The class diagram shown in Figure 57 shows the interfaces which shall be implemented by a
Frame Application.

«interface» «interface»

: FrameUl
IFrameUi Topology ITopology

« BeginCloseDtmUi() : g:g::gi?g&;lg()
vBeg.anpenDth.l() «» BeginGetSupportedTypes()
wBeginOpenDtmUiModal() » BeginMoveChild()
 EndCloseDtmUi() » BeginRemoveChild()
% EndOpenDtmUiModal() « BeginRepositionChild()
% EndOpenDtmUi() ° EndAddChild()
e OpenDtmUiModal() EndGetDim()
ShowMessageBox() * EndGetSupportedTypes()
ShowProgress() * EndMoveChild()
“ EndRemoveChild()
“ EndRepositionChild()
“ GetChildNodes()
«interface» L “ GetDeviceldentinfo()
IFrame @ GetDtmInfokist()
«interface» - “ GetParentNodes()
P = FdtVersion() « GetSiblingNodes()
IProgressUi : IDisposable Se
w UpdateProgress() «interfacey, >’<
A IDtmProxy : IDisposable

= Comparison()

= Devi¢eData()

= DtmType()

¢ DtmSystemGuiLabel()
& DtmSystemTag()
Z*Hardwarelnformation()
InstanceData()

= NetworkData()

= Ports()

ProcessData()

= Reporting()

@ GetDtmProxyRoleAccess()

«interface»
ITrace Trace

l» TraceEvent()

«interface»

IAuditTrail i i
AuditTrail ProcessimageValidation. «interface»
l+ Notify() IProcessimageValidation
@ BeginValidateProcessimage()
. CancelValidateProcessima
«interface» PhysicalTopology| i ge(

EndValidateP |
IPhysicalTopology @ EndValidateProcessImage()

L BeginAddConnection() Frame «interface»

L EndAddConnection() Application provides to DTM-UI IDtmUiMessaging

b BeginMoveConnection() Y, = UiMessageTypes()

. EndMoveConnection() BeginSendMessages()

| BeginRemoveConnection() 1 CancelSendMessages()
EndSendMessages()

b EndRemoveConnection()

DtmSpecificEventOccured
TransactionClosed
TransactionCommittedd
TransactionStarted

b BeginGetConnections()
b EndGetConnections() 0..n

W%

g

DTM Dataset

«interface» S] «interface»
CommunicationChanrielProxy | Provides to DTM IDataset
¥ Communication() ﬁ;‘BquData()
I Scanning() =t Formatld()
¥ Subscription() = InstanceData()
[SupportedProtocols() 4 CloseTransaction()

KeyValuePair<string, DataSubset> % CommitTransaction()
% StartTransaction()

«interface»
System.Collections:IEnumerable # TransactionCommitted
TransactionClosed

A # TransactionStarted
I InstanceData
«interfface» 0 T T T T T T T T T T T T T T T BulkData
IDataSubsetDictionary [T~~~ T T T T T T T T T T T T T T T T
= ltem()
«interface»
@ Add() IDataSubset
@ Clear() — X
Icon UML stereotyp % ContainsKey() = Descriptor()
= <<property>> @ GetEnumerator() & Key()
@ <<method>> % Remove() % ReadData()
g <<event>> © TryGetValue() % WriteData()

IEC

Figure 57 — Frame Application interfaces

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 108 — IEC TR 62453-42:2016 © IEC

2016

The Frame Application implements the IFrame interface which is passed to the DTM Business
Logic and the DTM User Interface. The properties of IFrame interface, named FrameUi,
Topology, Trace and AuditTrail, provide access to the corresponding interfaces IFrameUi,
ITopology, ITrace and IAuditTrail (see Table 5).

IFrameUi can be implemented in a separate user interface part of the Frame Application.

ICommunicationChannelProxy is implemented as part of the Frame Application and is
provided to the DTM in IDtm.EnableCommunication().

DTM]

each

implgmented by frame-specific instances (shown as DTMDataSet class in the diagram) for

each|device node and passed to the DTM Business Logic. The DTMDataSubsets‘collected in

DTM{InstanceData or in DTM BulkData implement the interface IDataSubset.

Table 5 — Frame Application interfaces
L 4
Interface Availability Descrip,tj'op

IAudit[rail M Interface used to receive audit trail events from DTMs in ordpr to
record changes and actions performed on a device.

ICommunicationChannelProxy | M Proxy interface which enahles a DTM to interact with the linded
Communication Channel‘provided by the Parent DTM in the FDT
topology.

IDataget M Interface used to\read and store DTM instance-specific datalin a
dataset

IData$ubset M The DTMBbataSubsets contain the actual DTM persistent datp.

IData$ubsetDictionary M Represénts a collection of data subsets.

IDispdsable .NET ‘interface for disposable objects.

IDtmPfoxy M This interface is provided by DTM proxy objects. These objefts
enable a DTM to interact with another DTM instance
(represented by the proxy object).

IFrame M The IFrame interface is the main interface of a Frame
Application. It includes the services that shall be provided by the
Frame Application to the DTM Business Logic and the DTM User
Interfaces.

The reference to this interface is passed to the DTM Businegs
Logic and to the DTM User Interface in the call. The interfacg
provides references to further interfaces.

IFrameUi O This interface provides access to the Frame Application use
interface.

A Frame Application that provides a user interface shall proJide
this interface. If the Frame Application does not provide this
interface, the DTM knows explicitly that no GUI is available.

A DTM shall be able to adapt to the situation where it can not
show a user interface.

IPhysicalTopology (6] Interface used to manage physical connections between DTMs.
The ability to manage physical connections depends on the
availability of the IPorts interface at a DTM.

IProcessIimageValidation (0] In some automation systems it is a requirement to apply changes

to the process image while the PLC is running. This interface

provides the methods needed to validate whether a potential
change can be applied while the PLC is running.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 109 -

Interface Availability Description

IProgressUi O Interface to a Frame Application progress user interface opened
by IFrameUi.ShowProgress.

A Frame Application that provides a user interface shall provide
this interface. The interface can be used by DTM Ul to show
progress information.

For asynchronous operations that are executed in the DTM BL
the progress mechanism of extended AsyncResult pattern shall
be used.

ITopology M This interface provides the access to the FDT topology. A DTM
can request and release references to other DTM instances as
WUii doS LITdlo dlll.]I rerove L/illil.]I DT;V‘;D

ITrace M Trace interface that shall be used by DTMs to inform a Frampe
Application about trace message.

6.3 DTM Business Logic
6.3.1 DTM BL interfaces

The flass diagrams shown in Figure 58 and Figure 59 show the dnterfaces, which shall be
implgmented by a DTM Business Logic class. IDtm is implemented by the DTM Bus|ness
Logig and provides access to all other interfaces by corresponding properties.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 110 -

IEC TR 62453-42:2016 © IEC 2016

«lllgltxenr(f:?ic:rr Functions OnlineOperations Ionl;::t{e\rface»
21‘ FunctionInfo “ SupportedTransfers
& _StaticFunctioninfo + BeginReadDataFromDevice()
¥ FunctionChanged % BeginReadDeviceStatus()
% BeginWriteDataToDevice()
«interface» & CancelReadDataFromDevice()
IChannels Channels % CancelWriteDataToDevice()
Channellnfos & EndReadDataFromDevice()
CommunicationChannels % EndReadDeviceStatus()
@ EndWriteDataToDevice()
ChannelsChanged # DeviceStatusChanged
«interface» «interface»
IProcessData ProcessData NetworkData INetworkData
% BeginGetProcessData() = ActiveProtocols
& EndGptR Detat) —
% SetiOpignalinfo() % GetNetworkDatalnfa(
ProcepsDataChanged SetAddressInfo()
@ SetNetworkData()
interfaces NetworkInfoValidation + Addres8infoChanged
INefworkinfoValidation 7 NefworkDatalnfoChanged

& Begi
% Cand
% End\

ValidateNetworkInfo()
plValidateNetworkInfo()
alidateNetworkInfo()

IHar

«interface»
iwarelnformation

HardwareInformation

@ Begi
% Canc]
% EndH

HardwareScan()
bIHardwareScan()
rdwareScan()

D

«interface»
ImUiMessaging

DtmUiMessaging

« Begirl
& Cand
& Endg

SendMessages()
plSendMessages()
lendMessages()

Dtm§
Onlin
¢ Trans
Trans
Trans

&

IpecificEventOccured
pStateChanged
actionClosed
actionCommitted
actionStarted

«interface»
IDtm

#F ActiveType

= FdtVersion

% DtmSystemGuiLabel
= DtmSystemTag

#¢ TracelLevel

ChildDtmEvents

Reporting

«interface»
IChildDtmEvents|

% AddressinfoChanged
& DeviceDatalnfoChang
& GeneralChildDataChe
@ InstanceDatalnfoChai
% InstanceDataValueCH
@ NetworkDatalnfoChar
@ ProcessDatalnfoChar

)
led()
Inged()
ged()
nged()
ged()
jged()

= Z XX EEERE R R EE.

BeginConfiguration()
BeginRelease()

BeginStopCommunieation()

DisableCommunicatieri()
EnableCommunieation()
EndConfiguration()
EndRelease()
EndStepCemmunication()
Init()

InitData()

loadData()

Run()
GetDtmRoleAccess()

d

4
7

ActiveTypeChanged
CommunicationinProgressChanged|
DeviceTypeCheckFinished

DTM Business
Logic

Figure 58 — DTM Business Logic interfaces (Part 1)

«interface»
IReporting

“# Reports

& BeginGenerateRepol
& CancelGenerateRep
% EndGenerateReport(

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 111 -

«interface»
IDtm

= ActiveType()

' FdtVersion()

“ DtmSystemGuilLabel()
= DtmSystemTag()

= TraceLevel()

% BeginGetAllDatalnfo()

% BeginEnableParameters()
% EndGetAllDatalnfo()

% EndEnableParameters()

DeviceCustomConfiguratio

«interface»

S

DTM Business
Logic

IDeviceCustomConfiguration

«interface» L InstanceCustom Configuration|
linstancgCustomConfiguration ,\

Dtminformation

«interface»
IDtmInformation
 BeginetSupportedTypes()
& EndGgtSupportedTypes()
& GetDtnInfo()

& GetFdBitmap()
& GetFdtlcon()

«interfacen,
IPorts,

Ports

BeginGetPortInfo()
* EndGetPortinfo()

& GetDgviceldentinfo() «interface»
A IDisposable
« Dispose()

«interface»
IStaticFunction

1 |
«interface»
IDtmInfoBuilder

& Init()

& Init()

 BeginExecute()
 BeginRelease()
 CancelExecute()
 EndExecute()
% EndRelease()

StaticFunction

DtminfoBuilder Provider

are()
mpare()
pare()
are()

@ BeginConfiguration()
@ BeginRelease()
% BeginStopCommunication()
@ DisableCommunication()
% EnableCommunication()
% EndConfiguration()
- DimMessaging < % EndRelease() .
«interface» % EndStopCommunication() Comparison «interface»
IDtmMessaging @ Init() IComparison
» BegiffSenaMessages() — % BegninstanceDataCompare()
& CangelSendMessages() ¢ LoadData() < & BeginDeviceDataCom
% EndgendMessages() v zu;\é’)‘ RoleA = % CancellnstancéDataC:
Dtm$pecificEventOccured | ¥ GetDimRoleAccess() @ CancelDeviceDataCor
ActiveTypeChanged @ EndInstanceDataCom
CommunicationInProgressChanged % EndDeyiceDataCompdgre()
DeviceTypeCheckFinished
«interface» CommandFunction «interface»
ICustomConfiguration ICommandFuncti

S

BeginExecute()

7
& EndExecute()
@

CancelExecute()

Processlmage

InstanceData

«interface»
IProcessimage

BusMasterlnfo

 BeginGetProcessImagglInfo()
% CancelGetProcessimagelnfo()

% EndGetProcessimagel
% SetlOSignalinfo()

hfo()

ProcessImageChanged

«interface»
IData

BeginGetDatalnfo()
CancelGetDatalnfo()
BeginRead()
BeginWrite()
CancelRead()
CancelWrite()
EndGetDatalnfo()
EndRead()
EndWrite()

L 2R 2R S I S 2 S ¢

&

DatalnfoChanged

?

I Data

«interface»

“ ModifiedinDTM

DataValueChanged
ModifiedinDTMChanged

DeviceData

«interfacey

Figure 59 — DTM Business Logic interfaces (Part 2)

#* ModifiedinDevicg

IDeviceDgta

>

ModifiedInDevicq

[Changed

IEC

There is no state machine defined for DtminfoBuilder instances. DtmInfoBuilder objects are
created with new() and destroyed with Dispose().

Table 6 provides an overview on DTM
conditions interfaces shall be implemented

interfaces,

while Table 7 defines under which

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-112 - IEC TR 62453-42:2016 © IEC 2016

Table 6 — DTM Business Logic interfaces

Interface

Description

IChannels

This interface is used for accessing the Communication Channel objects of a
DTM.

IChildDtmEvents

Interface used by the Frame Application to inform the DTM about events occurred
in a Child DTM in the FDT topology.

ICommandFunction

This interface is used to execute command functions.

IComparison

This interface allows a Frame Application to request the DTM to compare the
dataset with another dataset or with the data in the physical device.

IDevideData This interface provides online access to specific parameters of a device.

IDtm This is the main interface of a DTM. It defines the methods to control the DTM
state-machine and general properties.

IDtmIfformation This interface provides general information about the DTM itselffand the
supported device types.

IDtmMessaging This interface is used for interaction between the DTM Business Logic of tw
DTMs (Composite and Module DTM).

IDtmUjiMessaging Interface used for interaction between the Busines$)Logic and DTM User
Interfaces.

IFunction This interface provides access to functions, user interfaces and documents
provided by a DTM.

IHardWarelnformation This interface is used by Frame Application to request hardware information|from

a device.

lInstapceData This interface provides accesst9"DTM instance data parameters.
INetworkData This interface provides netwerk management relevant information
INetworkinfoValidation In some automation systems it is a requirement to apply changes to the Network

Info (which leads to asghange in process image) while the PLC is running. This
interface provides the.needed methods to validate if a potential change can pe
applied while the.RLC is running.

10nlin

EOperation

This interface 'allows a Frame Application to request the DTM to exchange opline
data with the device.

IPorts The interface allows to request a list of ports from the DTM.

IProcgssData This\interface provides information related to process data of a field device for the
integration of the device into the control system like datatype, signal direction,
engineering units, and ranges etc.

IProcgssimage This interface provides access to the description of the process image provided by
a fieldbus master.

IRepofting This interface is used to report the current instance or device dataset of a DM
(online data allowed here), e.g. for printing or documentation.

The Frame Application may generate reports using linstanceData/IDeviceDafta
interfaces.

IStatigFungction This interface is used to execute static functions independently of the DTM.

IDeviceCustomConfiguration
lInstanceCustomConfiguration

These are optional interfaces . Only DTMs that allow customization of parameter
access for User Level “Expert” need to implement these interfaces. These
interfaces are supported only when the DTM is in the running state, before any
function is invoked on the DTM. In all other states, the DTM shall restrict access
to these interfaces.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

Table 7 — Availability of interfaces depending of type of DTM

- 113 -

Interface

Condition

Device
DTM

Comm
unicati
on DTM

Gatew

ay
DTM

Compo
site
Device
DTM

Module
DTM

BTM

IChannels

Interface shall be provided
by all DTMs that provide
communication access to
other DTMs.

0%

M

M

M

0%

ICommandFunction

ICom

narison
P

Interface shall be provided
L

if not all parameters of the
DTM/device can be
accessed by lInstanceData
/IDeviceData interfaces.

IDev

ceData

Interface shall be provided
for all devices which have
online data.

IDtm

IDtm

nformation

IDtm

Messaging

May be implemented in
case a tight coupling
between two DTMs of the
same vendor is required.

IDtm

UiMessaging

Interface shall be provided
for DTMs with user
interfaces.

IFun

Ction

IHar

warelnformation

lInst

hnceData

INet

orkData

22|12 |1=2

= I I

= I I

= I I

INet
n

vorkinfoValidatio

Only implemented-by DTMs
which represent a-fieldbus

Master and which are used
in automation“systems with
specific requirements.

ol

o2l

I1Onli

heOperation

Interface shall be provided
for,all devices which have
online data and shall be
loaded during
commissioning.

IPorts

The protocol-specific
specification annex defines
the rules for this interface.

IPro

essData

The protocol-specific

\)'JC\/III\JGIUUII dTITTCA, UTTITTC O
the rules for this interface. If
the protocol supports
process data and the
respective device provides
process data the DTM shall
provide this interface.

IProcessimage

Interface shall be provided
by Communication
/Gateway-DTMs that
provide the layout of a
process image of a master
device.

IReporting

Interface shall be provided
to support advanced
reporting capabilities.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 114 - IEC TR 62453-42:2016 © IEC 2016
Interface Condition Device Comm Gatew | Compo | Module | BTM
DTM unicati ay site DTM
on DTM DTM Device
DTM

IDeviceCustomConfig O O (0] O O O
uration
IInstanceCustomConf
iguration

*) Optional for DeviceDTM and ModuleDTM for instance because of possible BTM support.

For a DTM, which has set the flag Typelnfo.CommunicationSupport to value ‘PassiveDevice’,

all infferfaces related to communication (1.e. IChannels, 1DeviceData, THardwarelnformation,

IOnlipeOperation, IProcessimage) shall not be supported.

6.3.2 State machines related to DTM BL

6.3.2.1 General

The following state machines describe the behavior of the DTM in regard/to its interfaces
stateg are defined mainly to describe how a DTM is guided through-different stages
Frame Application and which interface methods can be used at a-Specific stage of the lif
of a
IEC 62453-2. It is extended to accommodate the specific needs of .NET f
implgmentation. The state machines provided here are intended as a general specificatig

The
by a
ptime

TM instance. The state machine is based on the general state machine as defingd in

ased
n for

all types of DTM and are not intended as implementation-design (e.g. in order to implgment

the “{enter state}” triggers an implementation might define additional states).

For information on which interface methods can_ be\used at specific states refer to 6.6.

6.3.2.2 DTM state machine

The DTM State Machine in Figure 60 shows the states and transitions that are controlled
Framie Application (the Frame Application has full control).

The diagram uses following notation:
e Method(): denotes a method used as a trigger for a state transition, the transition f{
oply, when the respective method returns

e [dondition expression]: denotes a condition (guard) that has to evaluate true fo
trensition to be\taken

o <method name>: denotes an asynchronous operation

by a

aken

r the

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 115 -
sm : DTM State Machine) initial final
Release by
new() Garbage
Collector
created released
Init()
[Init succeeded] EndRelease()
BeginRelease() A
initialized W BeginRelease() releasing
/
InitData()
[InitData succeeded]
LoadData()
[LoadData succeeded]
BeginRelease()
configuring
~ Run() <Configuration>
[<Configuration>
succeeded]
. ‘ BeginRelease()
running ‘
EnableCommunication() DisableCommunication()
[<StopCommunication> succeeded]
communicationAllowed
<StopCommunication>

Figure 60 — State machine of DTM BL

Table 8 provides a description of the state transitions with their conditions and actions.

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 116 -

Table 8 — Definition of DTM BL state machine

IEC TR 62453-42:2016 © IEC 2016

state
state
rame

the
state

Start state End state Trigger Condition
1 initial created new() new() succeeded
2 created initialized Init() Init() succeeded
3 created releasing BeginRelease() BeginRelease() succeeded
4 initialized running LoadData() LoadData() succeeded
5 initialized configuring InitData() InitData() succeeded
6 initialized releasing BeginRelease() BeginRelease() succeeded
7 configuring configuring BeginConfiguration()/ <Configuration> succeeded
EndConfiguration()
8 configuring running Run() <Configuration> succeeded.and
Run() succeeded
9 configuring releasing BeginRelease() BeginRelease() succeeded
10 running communication | EnableCommunication() Reference to parent
Allowed CommunicationChannel is valid
and EnableCommunication()
succeeded
11 running releasing BeginRelease() all ser interfaces are closed,
allroperations are finished
12 communication | communication | BeginStopCommunication()/ <StopCommunication>
Allowed Allowed L succeeded
EndStopCommunication()
13 communication | running DisableCommunication() <StopCommunication>
Allowed succeeded and
DisableCommunication()
succeeded
14 releasing released EndRelease()" *)
released final Remoyahby .NET
GarhkageCollector
*) Thig transition is taken, even if the methodfailed.
6.3.2.3 Online state machine
The | following state<.\machine (Figure 61) shows the internal states of
“‘communicationAllowed!. The DTM controls the internal states according to this
machine. The DTM\dobes not expose the substate, but fires events which inform the F
Application about.internal state transitions (OnlineStateChanged event). In order to pr¢pare
an g¢xit fromi¢he state “communicationAllowed”, the Frame Application performs
asynghronous/ <StopCommunication()> operation. The actual exit from
“communicationAllowed” is triggered by DisableCommunication() (see Table 8)
The statemachime s used to define state aependaent interrace and metnoad avallaDIIty n

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

117 -

sm : Online State Machine)

-~

communicationAllowed

initial

N

-

e

notConnected

~

inactive

standby ‘

=

disturbed

g

18
{automatic} M
3 [StepCommunicatig
connect trigger has-been requeste
[connect conditions] 6 17
connect finished . .
[connect failed or dis€onnect finished
5 caricelled] 11 [disconnect succeeded]
cancel connect disconnect|finished
[connection aborted ||
(disconnect succeeded &&
device type check failed)]
connecting disconnecting
J 13
7 connection 16
connect finished aborted by 10 disconnect finished
[connect succeeded] communication chebk finished / [disconnect failed]
[device type check disconnedt trigge
failed] [disconnect gonditiol
connected
®
checkingDevice 12 (online

check finished /

L

[device type check succeeded]

=]

14
I/
hs]

Figure 61 — Online state machine of DTM

bCCcur

Addi]lonal to the diagram notation explained above, Table 9 also shows triggers, that

automeaticaty-

The trigger {automatic} is a trigger, that activates automatically after the start state of the
transition has been reached (spontaneous transition).

The trigger {enter state} fires when a state is reached.

These triggers are not associated to specific transitions, but fire every time, when a transition
leads into the state. That is why those triggers are shown in the table without nhumber and
only with the start state.

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 118 -

IEC TR 62453-42:2016 © IEC 2016

Table 9 — Definition of online state machine

Start state End state Trigger Condition Action

1 |communication |notConnected |[{automatic}

Allowed

2 |notConnected |[standby { automatic } raise

OnlineStateChanged(not
(notConnected ConnectedStandby)
Standby)

3 |notConnected |[connecting connect trigger <StopCommunication>
Several triggers possible: has not been called
rOT blIiIU UTNIS.

- Immediate connect
because “StayConnected”
was requested in
EnableCommunication()

- online function
started(e.g. Download or
Online-GUI)

- reconnect after lost
connection

For CommDTM:

- Immediate connect
because “StayConnected”
was requested in
EnableCommunication()

- online function
started(e.g. Scan,
Download or OnlinesGUI)

- Child DTM requéésted
connection+)

4 onnecting++) {enter state} raise
OnlineStateChanged
(connecting)
initiate connectign:
For Child DTMs:

Call <Connect()>jon
parent channel

For Comm DTMs}+):
Use driver API tg
connect.

5 onnecting connecting cancel connect CancelConnect()f)

6 onneecting disturbed connect finished connect failed or raise

cancel succeeded OnlineStateChanged(
(notConnected NotConnectedDigturbed)
Disturbed)
7 |connecting connected connect finished connect succeeded
8 |connected Checking {automatic} raise
Device OnlineStateChanged(
ConnectedCheckingDevi
(connectedChe ce)
ckingDevice)

9 |[checkingDevice {enter state} If device has not been
checked, perform device
type check. *)

10 |checkingDevice|disconnecting |device type check finished device type check raise

failed

OnlineStateChanged
(Disconnecting)

raise
DeviceTypeCheckFinish
ed(UnsupportedDevice)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 119 -
Start state End state Trigger Condition Action
11 |disconnecting [Disturbed disconnect finished connection aborted by
communication ||
(notConnected (disconnect
Disturbed) succeeded && device
type check failed)
12 |checkingDevice [online device type check finished device type check raise
succeeded OnlineStateChanged(Co
(cqnnectgdChe (cor_mected nnectedOnline)
ckingDevice) |Online)
raise
DeviceTypeCheckFinish
ed(SupportedDevice)
13 |¢onnected notConnected |[connection aborted by For Child DTMs3
communication .
Handle pending
Abort notification received transactiops or a:ilve
from parent Communication online functions.|™)
Channel+) For/ParentDTMs
Abort all child
connections

14 |¢onnected disconnecting |disconnect trigger

Several triggers possible:

- all online functions

finished (and DTM is in

ConnectionMode

“OnDemand”)

- call to

<StopCommunication> has

been received

- Child DTM c¢atls

<Disconnect>

15 |disconnecting {enter state} raise

OnlineStateChanged(Dis
connecting)
terminate connedtion:
For Child DTMs:
Call <Disconnecf()> on
parent channel
For Comm DTMs}+):
Use driver API tg
disconnect.

16 |qdisconnectingl.online disconnect finished disconnect failed raise

OnlineStateChanged(Co
(connected nnectedOnline)
Online)
17 |diseonnecting |notConnected |disconnect finished disconnect succeeded
18 [notConnected [inactive {automatic} <StopCommunication>
has been requested
19 |inactive {enter state} raise
OnlineStateChanged(Ina
ctive)

20 |inactive final {automatic} <StopCommunication>

completed callback

NOTES:

*) Device type check means that the DTM checks if it is connected to the correct device type.
Device type check shall be performed at least once when state “checkingDevice” is entered the first time. The
Frame Application receives an event DeviceTypeCheckFinished, after the device type check has been
performed. For some devices a device type check may not be feasible. In this case, the DTM shall raise
DeviceTypeCheckFinished event with ‘NotChecked’ value.

**) Asynchronous operations shall always be finished by calling the ‘Completed’ callback method. If a connection
is aborted, each aborted transaction will raise an FdtConnectionAbortedException in its ‘End’-method.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 120 - IEC TR 62453-42:2016 © IEC 2016

+) Communication DTMs do not call <Connect> or <Disconnect> as they do not have a parent Communication
Channel. Instead Communication DTMs work on a driver APIl. For the same reason, the abort notification is
not valid for Communication DTMs, but a Communication DTM may receive a similar notification from the
driver.

++) When <StopCommunication> is called in state ‘connecting’, then the connection establishment is finished and
<StopCommunication> is handled in the following state.

6.3.3 State machine of instance data

6.3.3.1 General

pport Frame Applications in synchronizing DTM datasets with their respective , deyices.
broperties reflect the possible states of the data (instance data and online data)\n' r¢g
to maodifications (see Figure 62):

¢ modification in DTM: lInstanceData.ModifiedinDtm (see state machine” in Figure 63)
reflects changes in the instance data and

¢ modification in device: IDeviceData.ModifiedinDevice (see statecmachine in Figure 64)
flects changes in the online data.

-
Q.

Offline DTM-GUI

/4

Online DTM GUI

Flow of Flow of
modifications modifications

7

ModifiedInDevicg Instance Pata Set
Offline

ModifiedInDTM
Device
Parameters

ReadDataFrom Device() /
WriteDataToDevice()

Device
Data Set

Device

=€

Figure 62 — Modifications of data through a DTM

NOTE For description of the concept of Instance Data and Device Data see 4.12.1.

If the DTM supports the methods <ReadDataFromDevice()> and <WriteDataToDevice()>, then
the Frame Application may use these methods for synchronization of Instance Data Set and
Device Data Set. A DTM indicates in the property 10nlineOperation.SupportedTransfers
whether the respective device supports these methods.

6.3.3.2 Modifications in DTM

The property ModifiedinDtm can be used by a Frame Application to detect which DTMs have
modification of offline data that are not synchronized with the respective device.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -121 -
The state “default” indicates the initial status of the dataset (after InitData()).

Any offline modification of device parameters will lead to a state not equal to “default” (device
parameters here means subset of offline data that is synchronized with the device).

<ReadDataFromDevice()> or <WriteDataToDevice()> change the state to “dataLoaded”.

The state shall be exposed in lInstanceData property ModifiedInDtm and shall be read only
(see Figure 63). The DTM shall include the state in its persisted instance dataset and set the

state accordingly in LoadData(). When the state changes, the DTM fires an
lInstanceData I\Andifindlnnfm(\hnngnd() event

sm : linstanceData.ModifiedinDTM
initial

Read or write all data

default

First offling
modification

modifiedInDTM

Read or write @l data

Offline
Modification

(dataLoaded

IEC

Figure 63 — ModifiedinDtm: State machine of instance data

The rlneaning of the different states can be seen in Table 10.

Table 10 — Description of instance dataset states

State Meaning

default This state is set after creation of a new instance dataset in InitData(). The state is only
valid if the newly created dataset contains enough information to establish a proper
communication.

modifiedInDTM The offline instance dataset is modified and not synchronized with the device.

datalLoaded The offline instance dataset has been synchronized with the device. No further change
has been executed on the instance dataset since the synchronization.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 122 - IEC TR 62453-42:2016 © IEC 2016

6.3.3.3 Modifications in device

The property ModifiedInDevice can be used by a Frame Application to detect which DTMs
have modified the data in the device and have not synchronized their DTM dataset. Any
change to the device, which is performed or recognized by the DTM will lead to a state
“modifiedOnline”.

NOTE The status "modifiedOnline" is intended to indicate all changes in data intended to configure the device. It
is not intended to reflect changes in dynamic values (e.g. operating hours).

The state shall be exposed in IDeviceData property ModifiedInDevice and shall be read only.
(see Figure 64) The state shall be included in the persisted instance dataset. When the state
chanpes, an IDeviceData.ModifiedInDeviceChanged() event is fired.

sm: IDeviceData.ModifiedInDevice/

First instantiation of DTM

noKnownChanges

Online

Modification by DTM Read, or write all data

modifiedOnline

IEC
Figure 64 — ModifiedinDevice: State machine related to device data
The meaning of the different states can be seen in Table 11.

Table 11 —Description of dataset states regarding online modifications

Stw\ Meaning

noKngqwnChanges The dataset state regarding the device is unknown because

the DTM was not connected to the device or

the DTM has synchronized at some point of time with the device. The dptaset
as beemn upfoaded (IReadDataFromDevice(> or downtoaded
(<WriteDataToDevice()>). No further change has been executed on the
device by the DTM. But there may be changes on the device, which were
triggered from other sources.

modifiedOnline Parameters have been changed in the device but not in instance dataset
(E.g.: see use case Online parameterization, IDeviceData interface
definition)

‘modifiedOnline’ status shall be set only once in case the data in the device
has been changed by the DTM.

In case of successful Upload or Download of complete dataset, the state
shall be set to “noKnownChanges”.

Data in the device can also be modified directly by a tool out of the scope of the FDT. In this
case, it is recommended not to set the status to ‘modifiedOnline’.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 123 -

If an application is started, which may need to change the state in ModifiedInDevice (the
property is part of the instance dataset and can not be changed when the dataset is not
locked), then the dataset shall be locked (StartTransaction()).

For special operations it is useful to keep the device configuration and the instance dataset in
sync. Therefore it is strongly recommended that the DTM should ask the user whether the
data should be synchronized. This is necessary for user interface functions like Online
Parameterization and Offline Parameterization (see Table A.4).

IDeviceData methods shall not modify the instance dataset, but shall set the state in
ModifiedInDevice.

6.4 DTM User Interface

The ¢lass diagram shown in Figure 65 shows the interfaces, which shall be implementg¢d by
the djfferent DTM User Interface classes and controls.

«interface»
IDtmUiFunction

5 DtmSystemGuiLabel()

=F TraceLevel() «interfacé»
ICommandFunction
% Beginlnit()
“ EndInit() BegifExectute()
% BeginClose() CancelExecute()
% EndClose() » EndExecute()
I | [
| ! |
Y e 4 A | |
1 | |
DTM UI DTM UI
Application dinterfacen Command Function
IDtmUiControlFunction
% CreateControl()

“ ControlLoaded()

«interface» «interface»
IDtmUiFunctionModal IDtmUiFunctionNonModal

= CurrentDataSource()

= CurrentParameterSummaryState()
CustomActions()

' OperationMode()

& StandardActions() «WinForm» «WPF»

A User Control User Contr¢
|
|
|

| | i .

DTM UI DTM UI :
Modal Non Modal :
I

|

|

|

|

|

|_creates | pra i Control |
|

- ;

creates

creates

DTM Ul Control

creates

IEC
Figure 65 — DTM Ul interfaces

FDT supports following DTM User Interface types:

e WPF Controls can be embedded into the user interface of the Frame Application. These
controls shall derive from the standard .NET WPF User Control class (namespace
System.Windows).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 124 — IEC TR 62453-42:2016 © IEC 2016

e WinForms Controls can be embedded into the user interface of the Frame Application.
These controls shall derive from the standard WinForms User Control class (namespace
System.Windows.Forms).

e Applications are external DTM-specific user interfaces (e.g. executable applications) which
can not be embedded into the Frame Application. These are represented by simple .NET
classes (called “DTM Ul Application”) which may be used by the Frame Application to
control the external user interface via the interface IDtmUiFunction.

e UiCommandFunctions are similar to the command functions which can be executed at the
DTM Business Logic, but UiCommandFunctions are allowed to open own user interfaces
(e.g. dialog boxes, private dialogs etc.). Such functions are represented by simple .NET

classes whiceh-contain thao oada o Av st
SO T oW o COT It Tt oot C—ToO—C AT TOtCT

The different DTM Ul types can be accessed by API interfaces (Table 12):

Table 12 — DTM Ul interfaces

4
Interface Availability Description b((o
ICommandFunction (6] This interface is used to execute command-furictions (same
interface as implemented by the DTM Businéss Logic)
IDispdsable M .NET interface for disposable objects.
IDtmUjiFunction M This is the main interface of a D TM-UI function.
IDtmUjiFunctionModal (0] This interface is implemented.by DTM Uls which are executed
modal.
IDtmUjiFunctionNonModal O This interface is implémented by DTM Uls which are executed
modless.

6.5 Communication Channel

The {ollowing class diagram (Figure 66) shows the interfaces, which shall be implementéd by
a Communication Channel. A Communication Channel implements the main intefface
ICommunicationChannel and the interfaces ICommunication, ISubscription, IScanning|,and
ISubTopology, which are accessible-by corresponding properties of ICommunicationChannel.

sinterfaces .) cirterfaces
IC it Comm unication Scanning IS canning
% BeginConnect() .
% BeginDizconnect!) winterfaces % BeginScanRequest()
ICommuni cationChannel % CancelScanRequest)

% BeginCommunicationk eguest)
W CancelConned() S Communication()

% EndScanReguest(

% CancelComm unication R eque st0 = Scanningl) e

% EndConned(, -

% EndDiscoimett SubTopologyyl) = sinterfaces
@ EndGominUnication R eguest) T Subscription() 1SubTopology

5 SuppottedProtocols() BeginChildadded()

& BeginChildR e moved()
4 BeginChildR epositioned()

» BeginsSetChildrenAddresses()

«intettace: Sub scription I SubTopology

1Subscription | w BeainvalidateAddChild()
% BeginSubscriptioninitislizstion) I “ F.leg!nVal!dateRemo\.r?Chnd.()
™ CEO TS U STt T ST Tt oLy | - e
% Encl Sub scriptionl nitialization) | % EndChild Added)
L i inati A A @ EndChildR cl
» EndSubscriptionT emmination) Communlcatlon wEnn il Removed()

ch 0 & EndChildReposition edg)
Bl « EndSetChildren Acdresses()
o E nc*alidate Acdd Child()

 Endvalidate RemoveChild))
4 E nd¥alidate Re postionChild ()

IEC
Figure 66 — Communication Channel interfaces

Table 13 provides an overview on the interfaces of a Communication Channel.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 125 -

Table 13 — Communication Channel interfaces

Interface Availability Description

ICommunicationChannel M This is the main interface of a Communication Channel. It
provides access to all other channel interfaces and to channel
related information (e.g. supported protocols).

ICommunication M This interface is the communication entry point of a channel.

IScanning C This interface is used to request a scan of the sub-topology of a
Communication Channel.

This interface shall be provided for communication protocols that
DulJ'JUIt DDGIIII;IIS. Thc hUIIUDPUIId;IIy HIUtUhU: dAllTTITA Dha:l UCI: Ile

whether this interface is mandatory or not.

ISupscription C This interface extends the communication entry point of\a
channel with device initiated data transfer functionality.

This interface should be provided for communication“protocols
that allow for device initiated data transfer. Thé).corresponding
protocol annex shall define whether this interface is mandatory or
not.

ISubTopology M This interface provides methods for management of the sub-
topology for a Communication Channéel:

6.6 Availability of interface methods

Frame Application interfaces can always be called from ‘ether FDT objects as soon ap the
Framle Application provides access to these interfaces:

The availability of interface methods of the DTM-=related objects may depend on the stgte of
the OQTM instance.

Table 14 defines the interfaces of a DTM.BL which can be used by a Frame Application at the
showhn states.

Table 14 — Availability of DTM BL methods in different states

AN
Inter:
'@IMethod -
A Q
QD 3
O 3
= =
C) s | o | £ o E) e
g & 5| £ °| %)
& Sl E|lsg|=|c|¢e|=
O 1871
AN E
N £
o
o
IChannels *) X X
ICommandFunction X
IComparison:<InstanceDataCompare> X
IComparison:<DeviceDataCompare> X
IDeviceData
<GetDatalnfo()> X X
(all other methods)
IDtm)
Init() X
BeginRelease() X X X X
LoadData()

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 126 - IEC TR 62453-42:2016 © IEC 2016

Interface / Method
?
3
1o
= =
- g 3 o E g’ g
g & 5| £ °| %)
S| S|2|E 5|83
S| | 5| 2| || @
- o 5 Ll
£
£
o
o
InitData() X
BeginConfiguration()/ X
EndConfiguration()
Run()
DtmSystemGuilLabel, X X X X X
DtmSystemTag, FdtVersion,
TracelLevel
All other methods / interface X X X
properties
IDtmInformation ¥) X | X | X |“% 7 X
IDtmMessaging X X
IDtmUiMessaging X X
IFunction X X
IHardwarelnformation X
lInstanceData X
INetworkData X
INetworklInfoValidation X
IOnlineOperation X
IPorts X X
IProcessData X X
IProcessimage X X
IReporting X X
IDeviceCustemConfiguration X
lInstanceCustomConfiguration
*) ThenFrame Application shall not subscribe to events before the DTM is in state
JFUARInG’
Communijcation Channel interfaces can always be called from other FDT objects as so¢n as
the Qommunication Channel provides access to these interfaces.
DTM Ul interfaces can always be called from other FDT objects as soon as the DTM Ul

provides access to these interfaces.

7 FDT datatypes

71

General

Datatypes are defined in Annex B. This clause provides an overview on top-level datatypes

and
datat

how they are used. This clause (figures and tables) does not provide the complete
ype definition; please refer to Annex B for a complete datatype definition.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 127 -

7.2 Datatypes — Base

FDT defines two basic datatypes: FdtDatatype and FdtList<>. Figure 67 shows examples how
FdtDatatype and FdtList<> are used.

! T i «bind» <T->FdtDatatype>
]
1
]

FdtList A

Some
1.*| FDT Datatype

IEC

Used jn:

Figure 67 — FdtDatatypedand FdtList
Tablg 15 describes the base datatypes.

Table 15 — FDT base datatypes

Dptatype A’\@ Description
FdtDafatype Base class for all FDJI(datatype classes.

The class provides'the base implementation for the Verify() and Clone() methods. The type
parameter T is.always set to the derived class and is used to control these methods:

o Verify().checks whether all properties are valid (e.g. mandatory properties have a vdlue
etc,).

o _Clone() creates a new object that is a deep-copy of the instance. All objects are
duplicated — the top-level objects are duplicated as well as all the lower levels.

FdtLisf<> Generic list of FdtDatatypes. The type parameter T defines the type of the list elements,
FdtList<> is derived from System.Collections.Generic.List. and provides all functions of [ist.

The Verify() method enforces the rule that the list shall not be empty. If an empty list shall be
represented, the respective member shall return ‘null’.

Like FdtDatatype the FdtList<> also provides the methods Verify() and Clone().

7.3 General datatypes

General FDT datatypes are used in various other FDT datatypes.

Table 16 lists and describes the general FDT datatypes

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 128 - IEC TR 62453-42:2016 © IEC

Table 16 — FDT General datatypes

2016

Datatype name Description

BusCategory A bus category is a Universally Unique Identifier for a fieldbus protocol (or a point-to-
point communication protocol). A property indicates whether the bus category is
‘supported’ or ‘required’.

ChannelReference Unique identifier of a Communication Channel provided by a DTM.

Invokeld Unique identifier for an opened user interface.

PhysicalLayer Unique identifier for a physical layer of a fieldbus like PROFIBUS PA.

PortReference Lnique identifier of 2 Part provided by 2 DTM

Progrégssinfo Information about progress of an operation.

Progrgssinfo<T> Intermediated result and information about progress of an operation.

ProtoqolinfoAttribute This attribute class exposes general information about a protocol-specific assemply.

Semanticlnfo This class provides semantic information for a data object. For a‘range of predefined
Semanticlds see Annex J.

Userlrjfo Dtescription of the user level including information about permissions, current segsion
etc.

7.4 Datatypes — Dtminfo / Typelnfo

The [class diagram shown in Figure 68 describes the relations of DtmiInfo, Typelnfd and

asso

ciated classes.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

GetDtmlnfo()

- 129 —

DTM Business Logic

<GetSupportedTypes()> etDeviceldentinfo()

Dtminfo

Typelnfo
P Deviceldentinfo

DtmRef : DynamicClassReference
FdtVersion : Version

Version : Version

Id : Guid

CommunicationSupport : enum

Id : Guid

ProductName : string
ProductManufacturerName : string

ProgldsdfSupportedFdt1DTMs : List<string>

ClassName : string i N

ProductRevision . string
Vendor : g Roles : Role [0.."] Sl
Name : sfring B N

Date : string
Descriptor : string

"

BusCategory

BusCategories

DatasetFormats

1

DatasetFormats

Used : Glid
ReadSugported : DatasetFormat [0..*]

BlockTypelnfo

ModuleTypelnfo DeviceTypelnfo

Profile sint
ProfileRévision : int

DtmCategory

¢

1

1 4
DtmCategory

! BlockTypeCategory
Bitmaps
FdtBitmapinfo ‘ " i Category BlockCategory : Guid
‘ 0. 1 | BlockCategoryName : strin|
‘ Icons
‘ Fdtlconinfo ‘ 0" DeviceClassifications
1.*
DeviceClassification
ModuleClassifications
‘ Documents
Document 1.

ClassificationDgmainld

Used fn:
IDtmIn
IDtmIn
IDtmIn

IDtm.ActiveType

Tablg¢ \describes datatypes related to DimlInfo.

formation.GetDtmInfo()
formation.BeginGetSupportedTypes() / IDtmInformation.EndGetSupportedTypes()

formation.GetDeviceldentinfo()

| o+ E
1 1 g
Domainld Pov{erDlsmbunor

MotionControl

0.* | Measurement
Operatorinterfacq
ModulesAndContfollers
Communication

4 —————]

1 Classificatign

a

IEC

Figure 68 — DtmInfo / Typelnfo — datatypes

Table 17 — Dtminfo datatype description

Datatype

Description

BlockTypeCategory

A block type category is a Universally Unique Identifier for a block category (e.g. Analog
Input, Digital Output).

BlockTypelnfo

The representation for a particular block type within the DTM is called DTM Block Type.
A DTM may contain one or more DTM Block Types. The concrete design and
implementation of the DTM Block Types is not in scope of FDT. This class provides only
information about these pieces of software like name, version, vendor, supported
protocols etc.

BusCategory

A bus category is a Unique Identifier for a fieldbus protocol (or a point-to-point
communication). See also 7.8.

Classificationld

Unique identifier according to its primary measurement (IEC 62390 AnnexG).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 130 - IEC TR 62453-42:2016 © IEC 2016

Datatype

Description

ClassificationDomainld

Device classification domain groups (IEC 62390 AnnexG).

DatasetFormats

Dataset format identifiers of persisted data, used and supported by a DTM

DeviceClassification

Classification of a device according IEC 62390, Annex G

Deviceldentinfo

This class is used to describe physical device types which are supported by a Type. It
contains identification elements of a physical device type or device type group.

DeviceTypelnfo

The representation for a particular physical device type within the DTM is called DTM
Device Type. A DTM may contain one or more DTM Device Types. The concrete design
and implementation of the DTM Device Types is not in scope of FDT. This class
provides only information about these pieces of software like name, version, vendor,

sunnartad nrat le _otc
tppPoHee—Pp+ot T o

Document

Information about documents on hard disk or in the Web. This could be any device
manual, help file, spare part list etc. which is installed together with the DTM or
available on the Web.

A Document may also provide protocol-specific information for a Devicelype (e.g. EDS).
In such cases the document shall be categorized as ‘Technical Document’ and be
marked with an appropriate protocol-specific Semanticld.

Dtminfo

Dtminfo contains general information about a DTM such as name, version, identifiqr and
vendor of the software, the FDT version to which the DTM camplies.

FdtBitmaplinfo

Description of a bitmap for representation of a device/module or block in BMP format
(high resolution, 24 bit color and 8 bit transparency info (alpha channel))

Fdtlcgninfo

Information about device, module or block icon.

ModuleTypelnfo

The representation for a particular physical module type within the DTM is called OTM

Module Type. A DTM may contain one ordnore DTM Module Types. The concrete design
and implementation of the DTM Module/Types is not in scope of FDT. This class
provides information about DTM Module Types like name, version, vendor, supported
protocols etc.

Typelnpfo

Abstract base class used for definition of device type, block type or module type. A DTM
shall contain one or more Typelnfo objects.

7.5 Datatypes — Deviceldentinfo

The glass diagram shown in Figure 69 describes the relations of the Deviceldentinfo glass.
Devigeldentinfo can be requested from IDtmiInformation.GetDeviceldentinfo() for a given

Typeldent and BusCategory,

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

SupportLevel

- 131 -

Deviceldentinfo

Protocolld : Guid

(XXX XXX

(AR RRRARERE ProtocolDeviceldentinfo

_

Devi tLevel

| — al E i

Manufacturerld o 1 «bind» <T->ProtocolDeviceldentinfo> <Protocol>Deviceldentinfo

ot | o

DeviceTypeld Deviceldentinfo 1 /

0.1

ProtocolDeviceldentinfoType /

HardwareRevision /

0.1 /
DeviceldentValue<string> | SoftwareRevision /'l

0.1 /

ProtocolSpecificProperties

0.*

ProtocolldentificationProfile

Different types k
for‘each protocol

0.1

DeviceSpecificProperties

Protocc
Value : string [0..1]

e : string

0.*

Reg

1
larExpressions | 0..*

RegularExpression

IEC

Used fn:

IDtmInjfformation.GetDeviceldentinfo()
Figure 69 — Deviceldentinfo — datatypes

Tablg 18 describes datatypes related to DeviceldentInfo.

Table 18.~Deviceldentinfo datatype description
Datatype \’ . Description

Devic¢ldentinfo This class is used to describe physical device types which are supported by 4 DTM
Device Type. It contains identification elements of a physical device type or device
type group.
Remark: This class provides a protocol neutral access to the information ,
therefore it typically will be used by the Frame Application if no protocol-specjfic
handling is needed.

Devic¢ldentlnfo<T> The derived class Deviceldentinfo<T> provides a protocol-specific access to fhe
information which is more type-safe. This class should be used whenever pogsible.

defines the protocol-specific identification properties. These protocol-specific
properties are mapped to the properties:

* Manufacturerld

* DeviceTypeld

» SoftwareRevision

* HardwareRevision

* ProtocolldentificationProfile
* ProtocolSpecificProperties

which are defined in the base class Deviceldentinfo.

The generic type parameter T defines the type of the protocol-specific class which

DeviceldentValue<T>

Represents a single identification element of a physical device type or group.
example: Device Type Id, Manufacturer Id etc.

For

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 132 - IEC TR 62453-42:2016 © IEC 2016

Datatype

Description

DeviceSupportLevel

Enumeration which defines the support level of a DTM Device Type for a physical
device.

ProtocolDeviceldentinfo

Abstract base class for protocol-specific device identification properties.

Protocol-specific classes derive from this class and define the-specific device
identification properties. However, these protocol-specific properties can be
accessed in a protocol neutral way by accessing the corresponding properties in
the DeviceldentInfo class.

Protocolld

Universally Unique Identifier for a fieldbus protocol (or a point-to-point
communication).

ProtogeldentificationProfile

Deofines-the-protocol-specific-identification-profilewhich-is-used for device.

identificationr. (examplgs for PROFIBUS: I&FM, PA, DP). If a protocol does npt
support multiple identification profiles then this property shall be empty.

RegulgrExpression

Regular expression that defines which physical device types are supported by a
DTM Device Type.

The tlass diagram in Figure 70 shows the protocol-specific datatype Devieeldentinfo<T]> for

the example HART protocol.

ProtocolDeviceldentinfo

HartDeviceldentinfo

X

19

111 |11 1

| — —

BusProtocolVersion
1

Manufacturerld
1

DeviceTypeCode
1

DeviceProfile

1
SoftwareRevision

1
DeviceCommandRevisionLevel
1

DeviceFlags

1

HardwareRevisionLevel

1

PhysicalSignalingCode
1

Used jn:

Protoqol.specific Device DTM providing values for HART-specific DeviceldentInfo

IEC

Figure 70 — Deviceldentinto — Example for HART

Table 19 describes HART datatypes related to Deviceldentinfo.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 133 -

Table 19 — Deviceldentinfo — Example for HART

Datatype

Description

DeviceldentValue<T>

Represents an identification element of a device type
for a physical device type or group. For example:
Device Type Id, Manufacturer Id etc.

The generic type parameter T defines the type of the
identification value (e.g. int, float, string etc.)
corresponding to the format defined in the protocol.

The identification element can either be a specific value
or a regular expression (e.g. defining a range of
supported identification values)

HartD

bviceldentinfo

HART-specific device identification information.

Protod

olDeviceldentinfo

Abstract base class for protocol-specific dgyvice
identification properties.

Protocol-specific classes derive from this class an
define the specific device identification properties.
However, these protocol-specifie_properties can bg
accessed in a protocol neutral way by accessing

corresponding properties in\the' Deviceldentinfo clgss.

The
Devi

eldentinfo instance:

bxample in Figure 71 demonstrates how a (HART) Device)DTM creates and retufns a

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 134 - IEC TR 62453-42:2016 © IEC 2016

public DeviceldentInfo GetDevicelIdentInfo ()
{

// Create the HART specific identification properties first

// Manufacturer code of the device vendor is 17
HartDeviceldentInfo hartSpecificInfo = new HartDeviceldentInfol();
hartSpecificInfo.ManufacturerId = new DeviceldentValue<int?>(17);

// The ID of the supported device is 123
var identVal = new DeviceldentValue<int?>();
hartSpecificInfo.DeviceTypeCode = new DeviceldentValue<int?>(123);

// Device is a HART 5 Device
hartSpecificlnfo BusProt lVersicn = new Dovicaldantyaloacintoy (5Y .
- sLce

// This DTM is able to handle the software versions 1,2 and 3 of the devige
identVal = new DeviceldentValue<int?>();
identVal.RegularExpressions = new FdtList<RegularExpression> (

new RegularExpression ("1, 213™));
hartSpecificInfo.SoftwareRevision = identVal;

// This DTM is able to handle only the command revision level \o'.0f the devide
hartSpecificInfo.DeviceCommandRevisionLevel = new Deviceldedfalue<int?>(5);

// This DTM is able to handle all hardware versions of td#ils device

identVal = new DeviceldentValue<int?>();
identVal.RegularExpressions = new FdtList<RegularExppession> (

new Regulé&MNexpression(".*"));
hartSpecificInfo.HardwareRevisionLevel = identVal;

// Physical Signaling Code is not relevant fop Mdentification
identVal = new DeviceldentValue<int?>();
identVal.RegularExpressions = new FdtList<ReglularExpression> (
dew RegularExpression(".*"));
hartSpecificInfo.PhysicalSignalingCode =\ddentVal;

// Device Flags are not relevant for(identification
identVal = new DeviceldentValue<in¥?>();
identVal.RegularExpressions = new MltList<RegularExpression> (
new RegularExpression(".*"));
hartSpecificInfo.DeviceFlags &%dentval;

// Device ident informatighJ(protocol neutral)
DeviceldentInfo<HartDevifteldentInfo> deviceldentInfo =

new DeviceldentInfo<HartDevicelIdentInfo>();

// This DTM is desjigwed to support a specific device
deviceldentInfo.S8upportlLevel = DeviceSupportLevel.SpecificSupport;

// Set the px&tdcol specific info
deviceldentlnfo.ProtocolSpecificIdentInfo = hartSpecificInfo;

return dewiceIdentInfo;

IEC

Eigure71 —Example--Deviceldentinfocreation

The example in Figure 72 demonstrates how a Frame Application requests and uses the
Deviceldentinfo instance created in Figure 71. The protocol-specific properties shown in
Figure 71 are mapped automatically to the protocol-independent properties which are used in
Figure 72.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 135 -

public void ShowDevicelIdentInfo (IDtmInformation dtm, DeviceTypelnfo deviceTypelInfo)

{
FdtList<DeviceldentInfo> deviceldentInfo = dtm.GetDeviceIdentInfo (deviceTypelnfo.Id,

deviceTypelInfo.BusCategories([0]);

// Standard FDT2 ident properties
MessageBox.Show ("Manufacturer ID = " + devicelIdentInfo[0].ManufacturerId.Value + "\n" +
"Device Type ID = " + devicelIdentInfo[O0].DeviceTypeld.Value + "\n" +
" + deviceIdentInfo[0].SoftwareRevision.Value + "\n" +

"Software Rev. =
"Hardware Rev. = " + deviceIdentInfo[0].HardwareRevision.Value + "\n");

// Ident properties only defined in the protocol
// (for HART: DeviceCommandRevisionLevel and Device Flag)

foreach (DeviceldentValue<string> identValue
in deviceldentinfall]l Prot lSpecificProperties)
{
MessageBox.Show (identValue.ProtocolSpecificName + " = " + identValue.Value);

}

IEC

Figure 72 — Example: Using Deviceldentinfo

in Figure 73 demonstrates how the HART-spécific datatype assgmbly

The |example
te:

(Fdt.patatypes.Hart.dll) exposes the type information over the DeviceldentinfoTypeAttriby

[apsembly: DeviceldentInfoType

typeof (DeviceldentInfo<HartDeyiMeIdentInfo>),
_AxLhfo),
artDeviceScanInfo>),

canInfo)

DeficeIdentInfoType =
PrptocolDeviceIdentInfoType = typeof (HartDevicel
DeviceScanInfoType = typeof (DeviceScanInfoi
ProtocolDeviceScanInfoType = typeof (HartDewi

IEC

Figure 73 — Example: DeviceldentinfoTypeAttribute

7.6 Datatypes for installation and deployment

7.6.1 Datatypes — SetupManifest

A SetupManifest describes the setup of a DTM. It is used for installation and deployment.

(see P.6). Figure 74(shows a class diagram with related classes of SetupManifest.

SetupManifest

ProductCode : Guid
RebootRequired : bool
SetupName : string
SetupUrl : Uri

This is not referenced directly from B
VendorName : string the SetupManifest but serialized as
SetupVersion : Version Tles Tocated in a subdirectory .

MinimuninstallerVersion : Version See chapter deployment for details.

1 1 1 h
]
]
Dtminfos /(I
p Dtminfo Deviceldentinfos
W 1 0%
ProductFeatures
o ProductFeature
SupportedWindowsVersions
OSVersion
1.

IEC

Figure 74 — SetupManifest — datatypes

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 136 — IEC TR 62453-42:2016 © IEC

Table 20 describes SetupManifest class and its related classes.

Table 20 — SetupManifest datatype description

2016

Datatype

Description

DtmDeviceldentManifest

required for device identification.

A DtmDeviceldentManifest describes additional physical device parameters that are

Dtminfo Dtminfo contains general information about a DTM such as name, version, identifier and
vendor of the software, the FDT version to which the DTM complies.

OSVersion This class represents a version of the operating system.

ProduftFeature This class represents a product feature for installation.

SetupManifest A setup manifest describes the setup of a DTM, including identification of the product,
the vendor, version and included DTMs.

7.6.2 Datatypes — DtmManifest

A DtmManifest describes the components of a DTM (see 9.5.3). Figure 75 shows a
diagram with related classes of DtmManifest.

Tabld

DtmManifest

DtminitData : string [0..1]
DtmRootPath : string

¢

1 1

ConformityRecords
ConformityRecordRef

DTMInfoBuilderRef DynamicClassReference

1

ClassName : string

1
AssemblyInfo

1

Assemblyinfo

UiManifestRef

DTM User Interface
Manifest file

FileName
——————— >

0..* | FileName : string
ManifestType : string

IEC

Figure 75 — DtmManifest — datatypes

24 \describes DtmManifest datatype and its related classes.

class

Table 21 — DtmManifest datatype description

Datatype

Description

Assemblyinfo

Information about a .NET assembly.

ConformityRecordRef

Reference to a conformity record file.

DtmManifest

find it.

A DTM manifest describes the assembly of a DTM and the included DTM itself. The
manifest is used to register an installed DTM in order to enable Frame Applications to

DynamicClassReference

Information about a class e.g. a DtmInfoBuilder or a DTM.

DTM User Interface

manifest file

A DTM User Interface manifest file is used to register a DTM User Interface in the
system in order to enable Frame Applications to find it. The file contains a
DtmUiManifest (see 7.6.3).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 137 -

7.6.3 Datatypes — DtmUiManifest

This manifest describes a DTM Ul assembly and the included DTM User Interface functions.
The manifest is used to register installed DTM User Interface functions in order to enable the
Frame Applications to find and execute them. Figure 76 shows a class diagram with related
classes of DtmUiManifest.

DtmUiManifest

ManifestType : string

A

Tablg 22 describes DtmUiManifest<class and its related classes.

AssemblyInfo A
1

blyInfo

UiFunctioninfo
UiFunctionInfos
1. | Functionld : int
ClassName : string
InitData : string

UiCommandFunctioninfo UiControlFunctioninfo UiAppFunctioninfo
1
WinForm
WPF
Types\ M <<enum>> O~

UiControlType

IEC

Figure 76 — DtmUiManifest — datatypes

Table22 - DtmUiManifest datatype description

Datatype

@ Description
N

DtmUiManifest

TFhis manifest describes a DTM User Interface function. The manifest is used to rejgister
installed DTM User Interface functions in order to enable the Frame Applications o find
and execute them.

Assenpblylnfo

Information about a .NET assembly.

UiFunEtion|nfo

Abstract base class for a DTM User Interface description.

Frame Applications shall use this information to find the user interface function fof a
:r\nrifih function

UiCommandFunctioninfo | Information about a command function which is provided by a DTM User Interface

class.

UiControlFunctionlnfo

Information about a WinForms control or WPF control that can be embedded into the
Frame Application user interface.

UiAppFunctionInfo

Information about an application which can be started by a DTM User Interface class.

UiControlType

Enumerates possible user interface control types (WinForms, WPF etc.)

7.7 Datatypes — Communication

The communication datatypes are used to exchange data between a DTM and its parent
Communication Channel in order to:

— Establish a connection to the device

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 138 -

— Perform data exchange transactions with the device
— Release the connection

IEC TR 62453-42:2016 © IEC 2016

— Subscribe device initiated data transfer between a DTM and its parent Communication

Channel
— Request scanning of bus topology
— Request address setting of Child DTM

Figure 77 shows a class diagram with datatypes used to establish a connection to the device.

ConnectRequest

ConnectResponse

Protocolld : Guid
SystemTag : Guid

CommunicationReference : Guid

{Protocol}ConnectRequest

{Protocol}ConnectResponse

Different types for each protecol, 5

Used jn:

ConngctRequest: ICommunication.BeginConnect()

IEC

ConngctResponse is returned in ICommunication.EndConnect()

Figure 77 ~.€Communication datatypes — Connect

Figure 78 shows a class diagram with datatypes used to exchange data with the device.

TransactionRequest

TransactionResponse

Id.. string [0..1]

CommunicationReference : Guid
Id : string [0..1]

1?
Errorinformation | ¢ommunicationError

0.1

<Protocol>TransactionRequest

<Protocol>TransactionResponse

N\

N
Different types fotéach protocol 5

Used in:

TransactionRequest: ICommunication.BeginCommunicationRequest()

IEC

TransactionResponse is returned in ICommunication.EndCommunicationRequest()

Figure 78 — Communication datatypes — Transaction

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 139 -

Figure 79 shows a class diagram with datatypes used to release a connection to the device.

DisconnectRequest DisconnectResponse AbortMessage
AbortPendingTransactions : bool CommunicationReference : Guid CommunicationReference : Guid
CommunicationReference : Guid

<Protocol>DisconnectRequest <Protocol>DisconnectResponse <Protocol>AbortMessage

~o Y

-
~ \

\
N \ -
|

Different types for each protocol 5

/
\

IEC

Used jn:

DiscopnectRequest: ICommunication.BeginDisconnect()

DiscopnectResponse is returned in ICommunication.EndDisconnect()

AbortMessage: AbortCallback()

Figure 79 — Communication datatypes — Disconnect

Figune 80 shows a class diagram with datatypes used to subscribe and unsubscribe dgvice
initiated data transfer.

SubscribeRequest SubscribeResponse UnsubscribeRequest UnsubscribeResponse

qProtocol>SubscribeRequest <Protocol>SubscribeResponse

<Protocol>UnsubscribeRequest <Protocol>UnsubscribeResponse

Different types for each protocol %

IEC
Used in:

SubscribeRequest: ISubscription.BeginSubscriptionlnitialization()

SubscribeResponse is returned in ISubscription.EndSubscriptionlnitialization()

UnsubscribeRequest: ISubscription.BeginSubscriptionTermination()

UnsubscribeResponse is returned in ISubscription.EndSubscriptionTermination()

Figure 80 — Communication datatypes — Subscribe

Figure 81 shows a class diagram with datatypes used to request scanning of the sub-topology
of a Communication Channel.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 140 - IEC TR 62453-42:2016 © IEC 2016

ScanRequest

Protocolld : Guid

1 1
<<enum>>
ScanMode ScanMode

1

0..* | Ranges AllAddresses
RangeOfAddresses
OpenGui
BusScanAddressRange

Used

ScanR

Figur
Child

1 1 Y ProtocolDeviceAddress
RangeBegin DeviceAddress
1
RangeEnd Address : int
1| 1d - int

(mmmmmmmmee e, . g .
! «bind» <T->ProtocolDeviceAddress> <ProtocolsDeviceAddress

DeviceAddress

ProtocolSpecificDeviceAddress
1
]
1 /
!

Different types k
for each protocol

IEC

n:
equest: IScanning.BeginScanRequest()

Figure 81 — Communication datatypes — Scanning

e 82 shows a class diagram with~datatypes used to request setting of device addre
DTM of a Communication Channel.

DeviceAddressinfo

ErrorDescription : string [0..1]
Protocolld : Guid [0..1]
DtmSystemTag : Guid

¢

ss of

1 1
Address
0..1 DeviceAddress
SettingResultinformation <<enum>>
1 DeviceAddressSettingResult

IEC

Used in:

DeviceAddressinfo: ISubTopology.BeginSetChildrenAddresses()

DeviceAddressinfo Is returned from ISubTopology.EndSetChildrenAddresses()

Figure 82 - Communication datatypes — Address setting

Table 23 describes the communication datatypes.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 141 -

Table 23 — Communication datatype description

Datatype Description

ConnectRequest Fieldbus protocol independent base class for information needed to establish a
communication link.

ConnectResponse Fieldbus protocol independent base class for response information about an
established communication link.

TransactionRequest Fieldbus protocol independent base class for transaction request information.

TransactionResponse Fieldbus protocol independent base class for transaction results.

DisconnectRequest Fieldbus protocol independent base class for disconnection information.

DiscopnectResponse Fieldbus protocol independent base class for results of disconnect operation;

AbortMessage Information to specify an abort of a communication link.

SubscribeRequest Fieldbus protocol independent base class with information for initialization of device
initiated data transfer.

SubscribeResponse Fieldbus protocol independent base class for information abodt.communication|data
subscription.

UnsufscribeRequest Fieldbus protocol independent base class for termination/of’'subscription of devjce
initiated data transfer.

UnsufscribeResponse Fieldbus protocol independent base class for response to termination of subsciiption
of device initiated data transfer.

ScanHRequest Information for a request to scan the sub-topology of a Communication Channe]

BusSdanAddressRange Information about the address range of the'requested scan

Devic¢Addressinfo Address information which is used-fo _request the Communication Channel to s¢t the

address of its Child DTMs.

Devic¢ Address Address of the device in thetnetwork or fieldbus.

The example given in Figure 83 demonstratés how a (HART) Device DTM may connec{ to a
devide:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 142 - IEC TR 62453-42:2016 © |

EC 2016

bool Connect (Guid mySystemTag, ICommunication commChannel,

{

HartDeviceAddress myAddress, ref Guid communicationReference)

//Create ConnectRequest

//The required SystemTag is set by the Frame Application
//during creation of the DTM instance

//The Address will be set by the Communication Channel

var request = new HartConnectRegquest (mySystemTag, myAddress);

HartConnectResponse response;
try

{

Raoc L faka) tion from Command tiocn Chonnal
T

var asyncResult =
commChannel.BeginConnect (request, abortCallback, null, null, null);

//Wait for finalization of the connect request

response = commChannel.EndConnect (asyncResult) as HartConnectResponge;
}
catch (Exception ex)
{

MessageBox.Show ("Connection failed\n" + "Details: " + ex.Meés$age);

return false;

}

i f (response != null)
{
//verify response
try
{
response.Verify();
}
catch (Exception ex)
{
MessageBox.Show ("Connection failedAn" + "Details: " + ex.Message);
return false;

}

//Connection established

//the response contains theN8@mplete address information

//and the communication reference of the connection

communicationReference =\vesponse.CommunicationReference;

MessageBox.Show ("Succegsfully connected with device\n" +
"Short Address:+' s response.Address.ShortAddress + "\n" +
"Short TAG: "+ Wesponse.Address.ShortTag + "\n" +
"Long TAG: ", +-response.Address.LongTag + "\n");

return true;

}

return false;

Figure 83 — Example: Communication — Connect for HART

IEC

The example given in Figure 84 demonstrates how the HART-specific
assembly(Fdt.Datatypes.Hart.dll) exposes the type information over the CommunicationType
attribute:

datatype

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 143 -

[assembly: CommunicationType (
AbortMessageType = typeof (HartAbortMess
ConnectRequestType = typeof (HartConnectRequest
ConnectResponseType = typeof (HartConn
DisconnectRequestType = typeof (HartDic
DisconnectResponseType = typeof (HartDisconnectRes

SubscribeRequestType = typeof (HartSubscribeReq
SubscribeResponseType = typeof (Harts i
UnsubscribeRequestType = typeof (HartUns

UnsubscribeResponseType = typeof (HartUn

IEC

Figure 84 — Example: Communication — CommunicationType for HART

NOTE| Please be aware that the above examples demonstrate how a protocol-specific datatype gan be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be usgd. For
definitjon of the protocol-specific datatypes please refer to the respective specification document.

7.8 Datatypes — BusCategory

The ¢lass diagram shown in Figure 85 describes the relations of the\BusCategory class.

BusCategory

ProtocolName : string
Protocolld : Guid

1
CommunicationType <<enum>>

1 CategoryType

Required
Supported

IEC

Used jn:
Typelnfo

Figure 85 — BusCategory — datatypes
Tablg 24 describes thé datatype BusCategory and its elements

Table 24 — BusCategory datatype description

Datat(&-) Description

BusC4qtegory. Bus category is a Unique Identifier for a fieldbus protocol (or a point-to-point
communication).

CategoryType Defines whether BusCategory is supported or required.

7.9 Datatypes — Device / Instance Data
7.91 General

The Device / Instance Data classes describe device parameters or process values that can be
read from the device / instance data or written into the device / instance data. The class
diagram in Figure 86 shows the classes and relations.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 144 — IEC TR 62453-42:2016 © IEC 2016

Datalnfo

0..*| DeviceDataltems

Dataltem
: Semanticlnfo
Dataltems Descriptor : string [0..1] @ Semanticinfos
Label : string 1 0." | ApplicationDomain : string [1]
Name : string ParameterReadAddress : string [0..1]
0..1 | ParameterWriteAddress : string [0..1]
Semanticld : string [1]
; ‘ J/Datald Semanticinfo
it A Data 1%””01 DataRef |-
Apflicationld : string [0..1] Id : string o " P - .
escriptor : string [0..
DisplayFormat : string [0..1] 1
Id : string .
IsReadable : bool 10SignalRef| |os; I0Signalld OSi
IsWritable : bool 0.1 e >
IsChangeEnabled : bool [0..1]
Datatypelnfo - 1 1 <<enum>>
oup StructDataGroup 1 Datatyp: > Datatype Datatype
Modulgld : string Float
1Y Enumerator Double
Enuminfo .
0.1 -
— ¢
1 .
— UnitDataRef UnitDataRef
1 Data AlarmData UnitData 0"1' 2 e1 } ituteData RangeData
H1 ..
1
Datald Datald{/” \0%1| UnitDataRef Datald Ddtald
AlarmDataRefs]
0.*
RangeDataRefs
0."1 pataRef
SubstituteDataRef
0..1
UnitDataRef
0.1

0..1| Semanticinfo
Semanticlnfo

Address : string [0.,1]
ApplicationDomainy: string [1]
Semanticld« string [1]

IEC
Used jn:

returned in IDeviceData.EndGetDatalnfo() / linstanceData.EndGetDatalnfo()

Figure 86 — Device / Instance data — datatypes

Tablef 25,describes classes related to Device / Instance Data

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

— 145 —

Table 25 — DeviceData datatype description

Datatype

Description

AccessibleData

Abstract base class for data which is readable or writable.

The DTM shall provide a DisplayFormat for all AccessibleData variables with
numerical values

AlarmData Representation of an alarm parameter. An alarm shall always be of a numeric
type (Float, Double, Int, Long, Uint, Ulong) or Enumerator (checked by the
Verify() method).

Data Describes a device parameter or a process value that can be read or written.
ThU ;IIfUIIIIGt;UII hUIItG;IID dUOhI;Pt;VC attlibutco :;:\U manic do VVU:: do
information how the item is accessible.

DataGroup Groups information about available device-specific parameters and procéss
values.

Qatalnfo Contains information about available device-specific parameters and process
values.

Dataltem Abstract base class for device and instance data info classes:

DataRef Reference to an item in Datalnfo identified by its Id and optionally also
information about the type (semantic) of the reference.

Qatatype List of possible datatypes.

Datatypelnfo

Information about type of data (see DataValug).

DSignallnfo

Information about a single device 10 signal.

DSignalRef

Reference to an 10 signal identified-by its identifier.

NloduleDataGroup

Groups information about available module-specific parameters and process
values.

RangeData

Representation of a range parameter. A range shall always be of a numeric
type (Float, Double, lat; kong, Uint, Ulong) or DateTime (checked by the
Verify() method).

The RangeData may provide a reference to a UnitData. If no reference is
provided, the same unit is applied as in the Data that references the
RangeData.

Yemanticlnfo

This class_provides semantic information for a data object.

JtructDataGroup

Represents a data structure containing specific parameters and/or process
values.

JubstituteData

Describes the value which shall be used as a fall back e.g. in case there is a
disturbed communication.

The SubstituteData may provide a reference to a UnitData. If no reference is
provided, the same unit is applied as in the Data that references the
SubstituteData.

UnitData

Representation of a unit parameter.
Unit shall always be of type Enumerator (checked by the Verify() method).

Figure 87 shows how Datalnfo may expose information on data of a HART device.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 146 —

IEC TR 62453-42:2016 © IEC 2016

IsChangeEnabled : bool = true
IsReadable : bool = true
IsWritable : bool = true

Label : string = "Nachricht" O

Name - string = "M, el

: Datalnfo
: Data
See e.g. FDT 2 HART|
Descriptor : string = "Text that is associated with the field Annex Table "Basic
device. this text can be used by the user in any way . There Variables exported in
) is no recommended user"] R IDeviceData and
DeviceDataltem[0] | |q : string = "message" Q""" linstanceData

interfaces"
- column "ldentifier"

Translated string — in

Figun

ot |
ts-exampre-Germanr

language is set.

Semanticlnfos[0]

: Semanticinfo

If there is a different address to

ReadParameterAddress : string = "CMD12B0BOL192"
D WriteParameterAddress : string = "CMD17B0BOL 192"
o ApplicationDomain : string = "FDT_HART"
Semanticld : string = "CMD12B0B0L 192"

write this parameter, an optional
Property is added here :
"WriteParameterAddress"

Figure 87 — Example: Providing information on data of a HART device

e 88 shows how Datalnfo may expose information on data of a PROFIBUS device.

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 147 -

deviceData:Datalnfo

TempTransducer1
DeviceDataltems[0]

:ModuleDataGroup

Moduleld : string =, TB1*
Name : strin;

"TemperatureTransducerBlock_1“
Label : string = "Label"

TempTran: r2
iModuleDataGroup
DeviceDataltems(1] |

Unique identifier of the AN
N module described in

- NetworkDatalnfo
Name : string = "TemperatureTransducerBlock_2*
Label : string = "Label"

VIGauteld - stmg =, 182 <

j:
Dataltems[0] dataObj : Data
dataObjld : string = ,ProcessValueld"
dataObjName : string = ,Sensor Value*
dataObjLabel : string = ,Sensor Value*
dataObjlsReadable : bool = true
DataRefs[0] viceData:D: f
Datald : string = ,DeViceDatald“
10SignalRef "
deviceData:l0SignalRef
10Sighalld :'string = ,|0Signalld”
RangeDataRef[0! Data:10Si Ref
10Signalld : string = ,RangeObjldL*
RangeRataRef[1] j . A
deviceData:l0SignalRef
10Signalld : string = ,RangeObjldU* s
\
N\
\
\\ L
Dataltems[1] -angeDataObjL :RangeData Y
\
Id : string = ,RangeObjldL" <--- \
Name : string = "LOWER_SENSOR_LIMIT* \
Label : string = "RangeObjLabel" v
isReadable: bool = true
isWritable: bool = false

\
\
\
RangeType : enum = LowerRange
Datatypelnfo.Datatype : enum = Double

Semanticinfos[0]

:Semanticinfo

ApplicationDomain : string = ,ApplicationDomain®
Semanticld : string = ,LowerLimit*

Dataltems|[2]

rangeDataObjU:RangeData

Id : string = ,RangeObjldU" <~ee___ g
Name : string = "UPPER_SENSOR_LI

Label : string = "RangeObjLabel"
isReadable: bool = true

isWritable: bool = false

Range Type © enum = UpperRange
Datatypelnfo.Datatype : enum = Double

Semanticlnfos[0]

:Semanticinfo

ApplicationDomain : string = ,ApplicationDomain®
Semanticld : string = ,UpperLimit*

IEC
Figure 88 — Example: Providing information on module data of a PROFIBUS device

The example given in Figure 89 shows how to create Datalnfo with one Data-object and a
ModuleDataGroup that contains RangeData-items for lower and upper limit.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 148 — IEC TR 62453-42:2016 © IEC 2016

{

public DatalInfo GetDatalInfo ()

DatalInfo deviceData = new DatalInfol();

// Create a Data object (inherits from AccessibleData and Dataltem)

string dataObjId = "DataObjID";
string dataObjName = "DataObjName";
string dataObjLabel = "DataObjLabel";

bool dataObjIsReadable = true;
bool dataObjIsWritable = false;

DatatypeInfo dataObjDatatypeInfo = new DatatypelInfo(Datatype.Long);

Data dataObj = new Data(dataObjId, dataObjName, dataObjLabel,
dataObjIsReadable, dataObjIsWritable,
dataObjDatatypeInfo) ;

// Define refences to other Dataltems (Optional members)

Aot ﬁlv\J Datalkat — L’/-»lf:i»f in} 7,D,F L) L F—f—j)rwcl”r\ i IR R dallAY A

dataObj.IOSignalRef = new Fdt.Dtm.IO.IOSignalRef ("IO0OSignallID");

// Create a (Lower)RangeData object
// (inherits from AccessibleData and Dataltem)

string rangeObjIdL = "RangeObjIdL";
string rangeObjNameL = "LOWER SENSOR LIMIT";
string rangeObjLabell = "RangeObjLabell";

bool rangeObjIsReadablel = true;

bool rangeObjIsWritablelL = false;

DatatypelInfo rangeObjDatatypeInfol = new Datatypelnfo (Datatype.Double);
RangeType rangeTypel = RangeType.LowerRange;

RangeData rangeDataObjL = new RangeData (rangeObjIdL, rangeObjNamel,
rangeObjLabell, rangeObjIsReddablel,
rangeObjIsWritablel,
rangeObjDatatypeInfol, rangeTypel);

// Define SematicInfo-object for rangeDataObj

rangeDataObjL.SemanticInfos = new FdtList<SemanticInfo>(

new manticInfo ("ApplicationDomain", (DpWwerLimit"));

// Create an (Upper)RangeData object

// (inherits from AccessibleData and Dataltem)

string rangeObjIdU = "RangeObjIdUu";

string rangeObjNameU = "UPPER SENSOR LIMIT";

string rangeObjLabelU = "RangeObjLabel2";

bool rangeObjIsReadableU = true;

bool rangeObjIsWritableU = false;

DatatypeInfo rangeObjDatatypeInfoU = new Da®fiasypelnfo (Datatype.Double);
RangeType rangeTypeU = RangeType.UpperRangg&;

RangeData rangeDataObjU = new RangeData(fangeObjIdU, rangeObjNameU,
rangeObjLabelU,
rangeObjIsReadableU,
rangeObjIsWritableU,
rangeObjDatatypeInfoU, rangeTypeU) ;

// Define SematicInfo-objéct) for rangeDatalObj
rangeDataObjU.SemanticInfos = new FdtList<SemanticInfo>(
new Sema®ticInfo("ApplicationDomain", "UpperLimit"));

//Create a ModuleDgtdGroup with the two RangeData-items.
FdtList<Dse Item> dataltemsInGroup = new FdtList<Dataltem>() {rangeDataObjL,
rangeDataObjU};

ModuleDatafyewp rangeDataGroupObj = new ModuleDataGroup ("TB1",
"TemperatureTransducerBlock 1",
"Label",
dataItemsInGroup) ;

/ [/ Pt/ Dataltem objects into the list

deviteData.DeviceDataltems = new FdtlList<Dataltem>() { dataObj,

rancelataGrounQlbs 1 .

return deviceData;

If the data is structured data, then the StructDataGroup may be used to show the

Figure 89 — Example: Providing information on data

the data (see Figure 90).

IEC

structure of

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 149 —

deviceData:Datalnfo Refer to PROFIBUS specification
,PROFIBUS-PA Profile for Process

Control Devices"

PeviceDataltems{0] Al FB1 : ModuleDataGroup P

Name : string = ,AnaloglnputFB.1*
Label : string = ,Analog Input Temperature 1*
Moduleld : string = ,AnaloglnputFB.1*

PV : StructDataGroup

Dataltems|[0]

Name : string = ,0UT*
Label : string = ,Main Process Value*

ProcessValue:Data

Id : string = ,ProcessValueFB1"
Name : string = "PRIMARY_VALUE*
Label : string = "Primary Value"
DisplayFormat : string ,F2
isReadable: bool = true

isWritable: bool = false
Datatypelnfo.Datatype : enum = Float

Dataltems[0]

:Semanticinfo

ApplicationDomain : string = ,FDT_PROFIBUS_PA"
Semanticld : string = ,AnaloglnputFB.1.0UT.Valug*

Semanticlnfos[0]

:10SignalRef

10Signalld : string = ,ProcessValue_1"

10SignalRef:

Status:Data

Id%; string = ,ProcessValueFB1Status"
Name : string = "Status”

Label : string = "Status of process value"
isReadable: bool = true

Dataltems[t] isWritable: bool = false
Datatypelnfo.Datatype : enum = Byte

:Semanticinfo

ApplicationDomain : string = ,FDT_PROFIBUS_P;
Semanticld : string = ,AnaloglnputFB.1.0UT.Status

Semanticinfos[0]

IEC

Figure 90 — Example: Providing information on structured data

data described(in'the Datalnfo is provided as enumeration (DataValue = EnumValue),

If the
numinfo class lisjused to provide the description of the value range (see Figure 91).

the H

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 150 — IEC TR 62453-42:2016 © IEC 2016

DataTypelnfo

1L
DataType DataType

1

Enumerator

0.1

Enuminfo

'

1

1
DataType

1

DataType

EnumEntry

EnumEntries

" Descriptor : string [0..1]
1.7 | Index : uint
Label : string

<<enum>>

Type EnumType

1 | NumberEnumerator
BitEnumerator

IEC

Used fn:
IDevigeData.EndGetDatalnfo() / linstanceData.EndGetDatalnfo()

Figure 91 — Enuminfo — datatype

7.9.2 Datatypes used in reading and writing DeviceData
7.9.2(1 General

The |DeviceData interface provides online.ac¢ess to specific parameters of a device| The
following chapters define datatypes used in methods for reading and writing device data.

7.9.2(2 ReadRequest and WriteRequest Datatypes

ReadRequest datatype and the WriteRequest datatype (see Figure 92 and Table 26) are|used
to define specific parameters.which shall be read or written.

ReadRequest WriteRequest

Datald Datald

A ibleData

IEC

Used n:

ReadRequest: IDeviceData.BeginRead() / linstanceData.BeginRead()
WriteRequest: IDeviceData.BeginWrite() / linstanceData.BeginWrite()

Figure 92 — Read and Write Request — datatypes

Table 26 — Reading and Writing datatype description

Datatype Description
AccessibleData Abstract base class for device data which is readable or writable. (See
Figure 86)
ReadRequest Read request for a single entry in Datalnfo addressed by its Id. [J
WriteRequest Write request for a single entry in Datalnfo addressed by its Id.[]

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 151 -

79.2.3 Responselnfo Datatype

The Responselnfo datatype (see Figure 93 and Table 27) is used to return read or written

data requested by ReadRequest or WriteRequest.

Datald Datalnfo

Errorinfo

[XX 1?

rorinfo

0.1

1
ErrorType
yp DataA
1

LimitState
0.1

LimitState
Qualitylndica!o; Qualitylndi

TimeStamp
1 DateTime

DataValue D

0.1

BinaryHitArray

BooleanValue
Vafue

‘ DateTimeValue

‘ DoubleValue ‘ ‘ FloatValue ‘ ‘ LongValue ‘ ‘ StringValue ‘ ‘ Ti ‘ ‘ UL

BinaryByteArray

Value

‘ y

TimeSpanValue

IntValue SignedByte
Value

‘ UintValue

Used jn:
IDevigeData.EndRead()
lInstapceData.EndRead()
IDevigeData.EndWrite()

lInstapceData.EndWrite()

Figure 93 — Responselnfo — datatype

Table 27 — Reading and Writing datatype description

\ 4
,-é Datatype

Description

BinaryBitArrayValue

A compact array of bit values.

DITIAarypbyleAlTdy v daiuc

A LUMTTIPAatl ditdy U DyLlE Vdiucs.

ByteValue

An 8-bit unsigned integer.

DataAccessError

Information about the type of occurred error

DataAccessErrorinfo

Information about a data access error that occurred.

Datalnfo Information about available data, e.g. parameters and process
values

DataValue Abstract base class for data values provided by a DTM

DateTime .NET System namespace: Represents an instant in time, typically

expressed as a date and time of day

DateTimeValue

DataValue with a DateTime value

DoubleValue

A double-precision (64-bit) floating-point number.

EnumValue

DataValue with an enumerator value

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 152 - IEC TR 62453-42:2016 © IEC 2016

Datatype Description
FloatValue A single-precision (32-bit) floating-point number.
IntValue A 32-bit signed integer.

LimitState Limit status of device data.

LongValue A 64-bit signed integer.

QualityIndicator Quality status of device data.

QualityInfo Description of the quality of device data

Responselnfo Read or write response for a single entry in Datalnfo addressed
by its 1d0J

StringValue A string of Unicode characters.

TimeSpanValue DataValue with a TimeSpan value

UintValue A 32-bit unsigned integer. Not CLS-compliant.

UlongValue A 64-bit unsigned integer. Not CLS-compliant.

7.10(Datatypes for export and import
7101 Datatypes — TopologylmportExport
The ¢lass TopologylmportExport (see Figure 94) can be usedfor the data exchange betjveen

diffeflent Frame Applications. The export contains the FDT«topology structure informatign as
well as information about contained (FDT1.2.x / FDT2.x) DTFMs and their datasets.

TopologylmportExport

1 Sourcelnfo
Sourcelnfo

Description : string

1 Id : string
Label : string
DtmNodes
0.+ DtmNode

ChildDtmNodes
Address : string

DtmSystemGuiLabel : string 0.*
DtmSystemTag : Guid

ChannelNodes | communicationChannel

0.* Node
Descriptor : string [0..1]
Id : string
Label : string
Fdt1DtmNode Fdt2DtmNode
Dataset ; string [0..1] ’
DtmiInfoXML : string
1 1
Dtminfo
1 Dtminfo
ActiveT'
clivelype Typelnfo
1
ImportExportDataset ImportExportDataset
1

IEC

Used in:
<product specific function of Frame Application>

Figure 94 — TopologylmportExport — datatypes

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 1583 -
Table 28 describes the TopologylmportExport class and its related classes.

Table 28 — TopologylmportExport datatype description

Datatype Description

CommunicationChannelNode | Represents a CommunicationChannel in the FDT Topology that is linked to
further Child DTM nodes.

Dtmlinfo DtmIinfo contains general information about a DTM such as name, version,
identifier and vendor of the software, the FDT version to which the DTM
complies.

DtmNade Abstract class for a DTM node in the FDT topology

Fdt1ptmNode This class represents a FDT1.2.x DTM in a topology export.

Fdt2PptmNode This class represents a FDT2.x DTM in a topology export.

ImpagrtExportDataset Dataset containing the exported DTM Data Subsets.

Sourkelnfo Information about the source of a topology export like uniqué’identifier, labe

and description in the Frame Application that has exported\the data.

TopdlogylmportExport This class can be used for the data exchange between.different Frame
Applications. It contains the FDT topology structure,infermation as well as
information about contained (FDT 1.2.x / 2.x) DTMMs and their datasets.

Typdinfo Abstract base class used for definition of device type, block type or module
type. A DTM shall contain one or more Typelnfo objects.

710 Datatypes — ImportExportDataset

The ¢lass ImportExportDataset can be used for thed{data exchange between different Frame
Applications. The dataset contains a DTM dataset\(see Figure 95).

ImportExportDataset

Formatld : Guid

InstanceData | ImportExportDataSubset
0..*

Data : byte[]
BulkData Descriptor : string
0.* Key : string

IEC

Used jn:

DataContractSerializer.WriteObject()

Figure 95 — ImportExportDataset — datatypes
Table 29 describes the ImportExportDataset class and its related classes.

Table 29 — ImportExportDataset datatype description

Datatype Description

ImportExportDataset Dataset containing the exported DTM Data Subsets.

ImportExportDataSubset The DTMDataSubsets contains the exported binary DTM data.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 154 — IEC TR 62453-42:2016 © IEC 2016

7.11 Datatypes for process data description
7111 Datatypes — ProcessDatalnfo

The ProcessDatalnfo class provides IO process data related information for the integration of
the device into the control system. Figure 96 shows a class diagram with related classes of
ProcessDatalnfo.

ProcessDatalnfo

¢

1

0..*| ProcessDataltems

ProcessDataltem

ProcessDataltems
Descriptor : string [0..1]
Label : string

ProcessDataGroup 10Signalinfo
| 1
| T > ProtocollOSignalinfo |
i i
Routed Module . .
ProcessDataGroup ProcessDataGroup 10Signalinfo ProtocollOSignalinfo

1 ‘

1

<Protocol>I0Signalinfo

ProtocolSpecificlnfo

>
P

Different types for each protocol 5

IEC

Used jn:

Returged in IProcessData.EndGetProcessData()

Figure 96 — ProcessDatalnfo — datatypes

Table 30 describes the ProcessDatalnfo class and its related classes.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 155 —

Table 30 — ProcessDatalnfo datatype description

Datatype

Description

ProcessDatalnfo

Process data related information for the integration of the device into the

etc.

control system like datatype, signal direction, engineering units, and ranges

ProcessDataltem

Abstract base class for process data information.

ProcessDataGroup

Group of ProcessData.

RoutedProcessDataGroup

Information about routed 10 signals which are originally provided by a sub-
device (corresponding Child DTM in the FDT topology).

ModulgProcessDataGroup

Information about 10 signals provided by a DTM module.

10Sigmallnfo Information about a single device IO signal.

10Sigpallnfo<T> Information about a single device IO signal where T is protocolsspgcific
ProtocollOSignalinfo

ProtoqollOSignalinfo Abstract base class for protocol-specific 10 signal class.

< Protpcol>10Signallnfo

Protocol-specific 10 signal class.

The diagram shown in Figure 97 provides more details on 10Signalinfo, which is used no
for PfocessDatalnfo but also for ProcessIimage information.

10Signalinfo

Id : string
Name : string

IsLocked : bool
IsSafety : bool

FrameApplicationTag : string

RoutedIOSignalld : string [0..*]

10Signalld

$9149

1

|IECDat
aatyp1e |IECDatatype

ignalT
Signa yp1e SignalType

Semanticinfos | o icinfo
0.*
RangelnfoRefs 10SignalRef
0- l10SignalRef
AlarminfoRefs 1 0..1
0.*
. OfflineDataRef
SubstituteValueRef | |ogignalRefs ’1701
1 - DataRef
DeviceDataRef OnlineDataRef
0.1 ®; 0.1
UnitinfoRef
IEC

Used in:

ProcessDatalnfo class

ProcessimageSection class

IProcessData.SetlOSignallnfo()

Figure 97 — 10Signalinfo — datatypes

only

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 156 — IEC TR 62453-42:2016 © IEC 2016

Table 31 — 10Signalinfo datatype description

Datatype Description

DataRef Reference to an item in Datalnfo identified by its Id and optionally also
information about the type (semantic) of the reference.

IECDatatype IEC datatype of the 10 signal. (automatically set by protocol-specific 1O signal
class).

10Signalinfo Information about a single device 10 signal.

10Signallnfo<T> Information about a single device IO signal where T is protocol-specific
ProtocollOSignallnfo

10SignalRef Reference to an 10 signal identified by its identifier.

10SigmalRefs Reference to another 10Signalinfo, and/or DeviceDatalnfo. The me@aning ¢f the
references depends on the context where this class is used.

Semanticlnfo This class provides semantic information for a data object.

SignalType Type of the 10 signal.

The pbject diagram shown in Figure 98 shows for example a ProcessDatalnfo desciibing

analdg

g input values provided by a HART device. Please be awaredhat the example shows the

expefted use of datatypes defined in this document, the definition of HART related datatypes

may fdiffer from this example.

NOTE

Please be aware that the examples demonstrate how a protecol+specific datatype can be derived fr¢m the

datatypes defined in this document and how such a protocol-specijfic‘datatype is intended to be used. For definition

of the

protocol-specific datatypes please refer to the respective spegcification document.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 157 -

ProcessDataltems

DeviceXIOSi - 10Si f osi f —
2 = Defined in FDT Protocol
Id : string = ,Al_Signalld001" R | HART Annex Specification
Name : string = ,PV.DIGITAL_VALUE" Semanticinfos L =

FrameApplicationTag : string = ,PV.DIGITAL_VALUE" ApplicationDomain : string = ,‘HART”O’/
Descriptor : string =, This is the first analog input PV* Semanticld : string = ,CMD1B1B0L32"0~
IECDatatype : IECDatatype = REAL

IsLocked : bool = false

IsSafety : bool = false

Label : string = ,First analog input PV*

Routed|QSignalld - siring = “ (empty - only used when routed)
SignalType : SignalType = Input

RangelnfoRefs
U-Range : 10SignalRefs ‘
N ge Lol
Online : DataRef Al_URange » RangeData
i f via Id
OnlineDataRef | pqtq)q - sring = ,Al_URangeld001" refvia Id : string = ,Al\URaNngeld001"
T~ RangeType : RangeType = UpperRarjge
T T~ DTMs could also refer o
Offline:DataRef if data is
RangelnfoRefs _ - exposed in DataAccess.
— L-Range : 10SignalRefs -
- ine : Al_LRange : RangeData
OnlineDataRef Online : DataRef
refvia Id

Datald : string = ,Al_LRangeld001" Id : string = ,Al_LRangeld001"

RangeType : RangeType = LowerRpnge

Also available via

DeviceDataRef

DeviceData : 10SignalRefs ‘ IDeviceData,
-
-
Online : DataRef AlSignall ; AccessibleD
OnlineDataRef

) ref via Id
Datald : string = ,Al_Signafido0y” v

Id : string = ,Al_Signalld001"

T
Example shows that Alarm
Alarm : 10SignalRefs ‘ is exposed in IDeviceData

AlarminfoRefs

AlAlarm1 : AlarmData

OnlineDataRef Online : DataRef

ref via Id .
Datald"string = ,Al_Alarmid001" _ = Id : string = ,Al_AlarmId001"
SubstituteValueRef s itueVal : 10SignalRef: ‘
‘ M \Batarer Online : DataRef Al_OfflineSubstitute: Substitutelata

Datald : string = ,Al_Substitueld001" & Id : string = ,Al_Substitueld001"

UnitinfoRef Unit : {OSighalRefs ‘

offii DataRef Al_OfflineUnit : UnitData
. ine : DataRe!
OfflineDataRef ref via Id
Datald : string = ,Al_Unitld001" —— = |d:string = ,Al_Unitld001"
OnlineDataRef fvia Id
ref via i it : Unif
Datald : string = ,Al_Unitidoo1" Sk N Al_OnlineUnit ; UnitD:
Id : string = ,Al_Unitld001"
See HART 6: N
HCF_SPEC-183 : Table 34
Device Variable Code and
HrotogaiShegiicinfo DeviceXIOSignal : HartiOSignalinfo _ L1 HCF sPECA27 Cmd o
—= = Legend: Instance
DeviceVariableAssignment : enum VariableAssignment = PV l:l IProcessData provided instances

l:l IData provided instances

IEC

Figure 98 — Example: ProcessDatalnfo for HART (UML)

The example in Figure 99 demonstrates how a (HART) Device DTM creates and returns a
ProcessDatalnfo instance:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 158 —

IEC TR 62453-42:2016 © IEC 2016

protected ProcessDatalInfo GetProcessData ()
{
// HART PV information
HartIOSignalInfo hartPVInfo
//This value is the Primary Variable
hartPVInfo.ProcessVariableAssignment

//or command #33
hartPvVInfo.Index

= 0;
// HART PV information

IOSignalInfo<HartIOSignalInfo>
pvInfo.ProtocolSpecificInfo

pvInfo

hartPvVInfo;

new HartIOSignalInfol();

//Specify the index that is needed to read the value via command #9

new IOSignalInfo<HartIOSignalInfo>();

HartIOSignalInfo.VariableAssignment.PV;

pulnfo. Id = I SicnallIdonln.
Name = "EV.DIGITAL7VALUE";

Label "First analog input PV";
Descriptor

SignalType

IECDatatype
IsLocked =

IsSafety

pvInfo.
pvInfo.
pvInfo.
pvInfo.
pvInfo.
pvInfo.
pvInfo.

SignalType.Input;
= IECDatatype.REAL;
false;

false;

pvInfo.SemanticInfos

// HART PV unit information

var dataRefPvUnit new IOSignalRef
dataRefPvUnit.OfflineDataRef
pvInfo.UnitInfoRef dataRefPvUnit;

S

// HART PV range information
var ioURefPvUnit = new IOSignalRefs
var i1oLRefPvUnit new IOSignalRefs
pvInfo.RangeInfoRefs
// other references would come here..
// pvInfo.SubstituteValueRef

// Process Data Info

ProcessDatalInfo processData
processData.ProcessDataltems
processData.ProcessDataltems.Add (p¥Info

new

//

return processData

7

0

)

"This is the first analog input PV";

//Sematic info as defined in HART FDT Annex
new FdtList<SemanticInfo>(new SemanticInfo (("HKRT",

’

new DataRef ("AI UnitIdQel");

{IOSignalRef
{IOSignalRef
new FdtList<IOSignalRefs& () {ioLRefPvUnit,

ProcessDatalInfo
new SytList<Proces

// other Process Variableskxfdy follow here

// processData.ProcessRdtydItems.Add (svInfo);

YeMD1B1BOL32")) ;

}i
}i

new I0SignalRef ("AI URangeIdOO1"
new I0SignalRef ("AI LRangeIdO01"
ioURefPvUnit};

()
sDataltem> () ;

The
Proc
autor

Figure 99 — Example: ProcessDatalnfo creation for HART

example in Figure 100 demonstrates how a Frame Applications requests and us
pbs§Datalnfo instance. The protocol-specific properties shown in Figure 99 are ma

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 159 —

public void ReadIoSignalInfos (IDtm dtm, Guid protocolId)
{
IAsyncResult asyncResult =
(dtm as IProcessData) .BeginGetProcessData (protocolId, null, null);
ProcessDatalnfo processData =
(dtm as IProcessData) .EndGetProcessData (asyncResult) ;

ShowIoSignalInfos (processData.ProcessDataltems);
}

public void ShowIoSignalInfos (FdtList<ProcessDataltem> processDatas)
{
foreach (Proc

{

Dataltem data in processDatas)

1T (data 1s 1[051gnallnro)

nalInfo ioSignalInfo = (IOSignallInfo)data;
geBox.Show ("ID = " + ioSignallInfo.Id +
"Name = " + ioSignalInfo.Name +
"Label = " + ioSignalInfo.Label +
"SignalType = " + ioSignalInfo.SignalType);

else

{
ShowIoSignalInfos ((data as Proc

DataGroup) .ProcessDataltems) ;

}

IEC

Figure 100 — Example: Using ProcéssData for HART

The |example in Figure 101 demonstrates how" the HART-specific datatype assgmbly
(Fdt.patatypes.Hart.dll) exposes the type information over the 10SignallnfoType attribute

[agsembly: IOSignallInfoType (
IOSignalInfoType = typeof (I0SigdalInfo<HartIOSignallInfo>),
ProtocolIOSignallInfoType = typeof (HartIOSignallnfo))

IEC

Figure-101 — Example: 10SignalinfoType attribute

NOTE| Please be awane that the above examples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be usdd. For
definitjon of the protocol-specific datatypes please refer to the respective specification document.

711 Datatypes — Process Image

The Processimagelnfo class provides information about the process image by the bus-miaster

devidewhich s represented hy the DTM Figure 102 shows a class diagram with related

classes of Processimagelnfo.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 160 — IEC TR 62453-42:2016 © IEC 2016

Processimagelnfo

BusMasterld : string

1

0..* | Processlmageltems

1.*
Processimageltems

A\

()

ProcessimageGroup

Processimage Processimage
StatusSection Section

A\ :

From
Fdt:Dtm.IO namespace

1 7
Device Module Struct 10Signalinfo o
Prc ImageGroup Pr | Sroup Pr | Sroup
IEC
Used jn:
Returged in IProcesslmage.EndGetProcessimagelnfo()
Figure 102 — Processimage — datatypes
Tablg 32 describes Processimage classes.
Table 32 — Procéssimage datatype description
Datatype N \U Description
Devic¢ProcessimageGroup Groups process image items belonging to a specific device connected|to
the fieldbus.
10Sigallnfo Information about a single 10 signal.
NOTE The class is also used in IProcessData interface.
ModuleProcessimageGroup Groups process image items belonging to a specific device module
connected to the fieldbus.
Procegsimagelnfo Information about the fieldbus master process image, which enables fpr

example engineering tools to map the device I/O signals to variables ip an
IEC program for a PLC.

Procegsimageltem Abstract base class for process image information.

ProcessIimageGroup Groups process image information.

ProcessimageSection Represents a single process image section in which an 10 signal is
mapped.

StructProcessimageGroup Groups of process image items belonging to a structure 10 signal.

7.12 Datatypes — Address information

The Addressinfo class provides information about address(es) of the device which is
represented by the DTM. Figure 103 shows a class diagram with related classes of
Addressinfo.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 161 -

Addressinfo

Protocolld : Guid
1

0..*| DeviceAddresses

DeviceAddress

Address : string
Id :int

7

— [1'T>ProtocolDeviceAddress |
H 1

DeviceAddress

ProtocolDeviceAddress

<protocol>DeviceAddress

ProtocolSpecificDeviceAddress

P
-
-
-

Different types for each protocol 5

IEC

Used jn:
Addrepsinfo is returned by INetworkData.GetAddressInfo()

Singlel DeviceAddresses can be set by INetworkData.SetAddressinfo()

Figure 103 — Addressinfo — datatypes
Tablg 33 describes Addressinfo classand its related classes.

Table 33 ~ Addressinfo datatype description

7
Dataty&e’ . Description

Addrepsinfo Information about address(es) of the device which |is
represented by the DTM.

Devic¢ Address Address of the device in the network or fieldbus.
TheDeviceAddress.Id is used to indicate the relatign to
the corresponding NetworkData (which has the same Id
value).

Devic¢ Address<T> Address of the device in the network or fieldbus.

NOTE T represents the protocol-specific class Which
defines the protocol-specific address properties.

ProtocolDeviceAddress Abstract base class for protocol-specific device
addresses.

The example in Figure 104 demonstrates how a (HART) Device DTM creates and returns a
Addressinfo instance:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 162 -

IEC TR 62453-42:2016 © IEC 2016

public AddressInfo CreateAddressInfoForHart (int shortAddress,

string shortTag,

string longTag,
HartDeviceAddress.AddressingModeSelection addressingMode,

HartLongAddress longAddress)

var hartDeviceAddress =

DeviceA ess<HartDeviceZ ‘ess> deviceAddress =
new Dev ess<HartDeviceA ()
deviceAddress.ProtocolSpecificDeviceAddress =

deviceAddress.Id = 1;
AddressInfo adde

ess

Info = new AddraccTy

new HartDeviceAddress (shortAddress,
longTag,
longAddress) ;

hartDeviceAddress;

Lo (BAt Hoxt HaxtbskInf

shortTag,
addressingMode,

Drot 1Id) .

addressInfo.DeviceAddresses = new FdtList<DeviceAdd

return addressInfo;

5> (deviceAddress) ;

The
Addr

pssinfo instance created in Figure 104:

Figure 104 — Example: Addressinfo creation

example in Figure 105 demonstrates how a Frame Application-requests and use

IEC

the

o7

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 163 -

public void ShowDeviceAddress (IDtm dtm, Guid protocolId)
{
INetworkData networkData = dtm as INetworkData;
if (networkData == null)
{
//this shall never happen because INetworkData is mandatory
MessageBox.Show ("Failure: DTM does not provide INetworkData"):;
return;

}

AddressInfo addressInfo = networkData.GetAddressInfo (protocolId);
if (addressInfo == null)
{

g hall o haooaon b 2 reltlurn ST £
™

//GetAddressInfo () shall never be null
MessageBox.Show ("Failure: DTM does not provide AddressInfo");
return;

}

//Verify result
try
{
addressInfo.Verify();
}
catch (Exception ex)

{

MessageBox.Show ("Failure in verification of AddressInfo:" + ex.Message);
return;

}

if (addressInfo.DeviceAddresses == null)

{
//This may happen if the protocol doesp<¥ Jdefine an addressing mechanism
MessageBox.Show ("Device provides no ad8¢ess information.");

}

else

{

foreach (DeviceAddre

{

deviceAddnress in addressInfo.DeviceAddresses)

//verify DeviceAddress
try
{
deviceAddress.Werify () ;
}
catch (Exceptiqfijyex)
{
MessageBd¥.Show ("Failure in verification of DeviceAddress:"
+hex'.Message) ;
retadxm;

}

MgswsageBox.Show ("Device Address = " + deviceAddress.Address);

Figure 105 — Example: Using Addressinfo

IEC

The example in Figure 106 demonstrates how the HART-specific datatype assembly

(Fdt.Datatypes.Hart.dll) exposes the type information over the DeviceAddressinfoAttribute:

[assembly: DeviceAddressType (
DeviceAddressType = typeof (DeviceAddress<HartDevi

ceAddress>),
ProtocolDeviceAddressType = typeof (HartDeviceAddress

s))

Figure 106 — Example: DeviceAddressTypeAttribute

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 164 — IEC TR 62453-42:2016 © IEC 2016

NOTE Please be aware that the above examples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be used. For
definition of the protocol-specific datatypes please refer to the respective specification document.

7.13 Datatypes — NetworkDatalnfo

The NetworkDatalnfo class provides network management information which can for example
be used for bus master configuration. Figure 107 shows a class diagram with related classes
of NetworkDatalnfo.

NetworkDatalnfo

0..* | NetworkDataltems

1. NetworkData

NetworkDataltems ltem
NetworkData
NetworkDataGroup Id : int
IsWritable : bool

r
Zﬁ | T > ProtocolNetworkData
1

Modulelnfo NetworkData

ProtocolNetworkData

<protocol>NetworkData

1

ProtocolSpecificNetworkData

-
-
-

Different types for each protocol 5

IEC

Used jn:
NetworkDatalnfo isreturned by INetworkData.GetNetworkDatalnfo()

Singlel NetworkData items can be set by INetworkData.SetNetworkData()

Figure 107 — NetworkDatalnfo — datatypes

Table 34 describes NetworkDatalnfo class and its related classes.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 165 —

Table 34 — NetworkDatalnfo datatype description

Datatype Description

Modulelnfo Represents a hardware or software module of the device. It provides general
information like name, version, vendor and may also contain further
NetworkDataltems providing protocol-specific information.

NetworkData Base class for a single protocol independent network data item.
The NetworkData.ld is used to indicate the relation to the corresponding
DeviceAddress (which has the same Id value).

NetworkData<T> Represents a single protocol-specific network data item.
I’“!ICTE T IUFICOUIItQ d rJIUtU\;U: Dpcb;f;\l M:GDD VVh;bh dcf;llCD thc plUtU\;U: k=] CifiC

network data properties.

NetworkDataGroup Group of network data items provided by the DTM.

NetwdrkDatalnfo Contains network-specific information about the device.

NetworkDataltem Abstract base class for network data classes.

ProtoqoINetworkData Abstract base class for protocol-specific network data information classes.

The ¢xample in Figure 108 demonstrates how a (PROFIBUS) Device/DTM creates and returns

a Ne

workDatalnfo instance:

pub
{

| ic NetworkDataInfo GetNetworkDataInfo (Guid protocolId)

// verify protocolld
/] ...

// create network data for Profibus DP/V1 ani\set properties
ProfibusNetworkData networkData = new ProfibusNetworkData() ;
networkData.PrmDataldentNumber = 0x1234;
networkData.PrmDataMinTsdr = 11;

networkData.PrmDataFreezeMode = falsey
networkData.CfgData = new byte[3];
networkData.CfgDhata[0] = 0x30;
networkData.CfgData[l] = 0x42;
networkData.CfgData[2] = 0x27

//

// ... (properties are deWige specific)

//

var nwdi = new Netwbrkbatalnfo (protocolld, false);

nwdi.NetworkDataltems = new Fdt.FdtList<NetworkDataltem> (
new NetworkData<ProfibusNetworkData> (1l,networkData)) ;
return nwdi;

Figure 108 — Example: NetworkDatalnfo creation example

The example in Figure T09 demonstrates how a Communication DTM (representing a

master device) requests and uses the NetworkDatalnfo instance created in Figure 108:

IEC

bus-

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 166 — IEC TR 62453-42:2016 © IEC 2016

public void CheckNetworkData (INetworkData networkData, Guid protocolId)

{
var dtmNetworkData = networkData.GetNetworkDataInfo (protocolId);
|

if (dtmNetworkData != null)
{

// network data available
// Verify the data (if invalid data, the method exits with an exception)

dtmNetworkData.Verify () ;

foreach (NetworkDataltem item in dtmNetworkData.NetworkDatalItems)
{
if ((item is NetworkData<ProfibusNetworkData>))

{

ar—nblbDotaoltom — J1t+tom o Na iy rkData<PDrofilbusNotworkDot g
T

ProfibusNetworkData pbData = pbDataltem.ProtocolSpecificNetworkData,

// use the network data to check master configuration

//

IEC
Figure 109 — Example: NetworkDatalnfo using.example
The lexample in Figure 110 demonstrates how the PROFIBYS-specific datatype assgmbly
(Fdt.patatypes.Profibus.dll) exposes the type information over the NetworkDataTypeAttrihute:
[asdembly: NetworkDataType (
NetworkDataType = typeof (NetworkData<dPyxofi
ProtocolNetworkDataType = typeof (P¥ofibusNe
]
IEC
Figure 110 — Example:NetworkDataTypeAttribute example
NOTE| Please be aware that the above eXxamples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this docdment and how such a protocol-specific datatype is intended to be usdd. For
definitjon of the protocol-specific datatypes please refer to the respective specification document.
7.14| Datatypes — DTM-\functions
The following class(diagram (Figure 111) describes the relations of classes in the contgxt of

Func

tionInfo.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 167 —

Functioninfo FunctionResult

| ¢

Functionltems | o «

1

1.%
Functionltem

A\

Functionltems

4

Used
IFunct
IComr

IComr

A D1
funct
exec
Modu
distin
perfo
Func
user
Resu

FunctionGroup ExecutableFunction DocumentFunction

Z} A\ :

ModuleFunctionGroup

Moduleld : string 1 Document

UiFunction CommandFunction Document

¢

1 1 1

InputArguments | _* 0..* |OutputArgufments
0..* | FunctionArgumentDe. FunctionArgument 0.*
Parameters scription ResultParameters

IEC

n:
ion.FunctionInfo
handFunction.BeginExecute()

handFunction.EndExecute()

Figure111 — DTM Function — datatypes

M exposes all functions it provides in Functionlnfo, which can contain one or
ons. Each of theSfunctions can be a function providing one or more document
itable function~or/a function group. Function groups contain one or more func
leFunctionGroup is a special FunctionGroup. Two types of executable function
guished: a,function which requires opening a user interface and a function, whi
rmed in~the background without a user interface. UiFunctions provide one or
fionArguments, which describe function-specific information. For a list of functions

more
5, an
ions.
5 are
ch is
more
with

interface see 5.9.1. CommandFunctions define InputParameters as wel] as

[tParameters.

A DTM should not make any assumption in regard to how a Frame Application represents the
available functions of a DTM. For different use cases and on different platforms there are
alternative ways of presenting this information to the user. That is why a DTM should not
provide any customization(e.g. menu accelerators) for menus or for other GUI elements
displaying the function list.

Table 35 describes datatypes in Fdt.Dtm.Functions namespace.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 168 — IEC TR 62453-42:2016 © IEC 2016

Table 35 — DTM Function datatype description

Datatype Description

Functionlnfo Returns information about functions, user interfaces and documents provided by a
DTM.

Functionltem Abstract base class for a DTM function description class.

ExecutableFunction Abstract base class for functions of a DTM which are “executable” by calling
corresponding interface on the DTM Business Logic or creating a Ul object.

DocumentFunction Description of a document (file) provided by the DTM.

FunctionGroup Group of DTM function descriptions

FunctijonResult Result of a command function or a modal user interface.

UiFunEtion Description of a graphical DTM User Interface.

CommandFunction Description of a non-GUI function provided by the DTM Business Logie.

FunctipnArgument Information about a parameter of a CommandFunction or UiFynction.

Document Information about a document on file disk or in the Web.

7.15(Datatypes — DTM messages

The ¢lass diagram shown in Figure 112 describes the relatiofof classes used for intergction
between DTM Business Logic and DTM User Interface as ‘well as for interaction betveen
diffenent instances of DTM Business Logic of two related DDMs (e.g. for a Composite DTW).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 169 —

DtmRequestMessage DtmResponseMessage DtmEventMessage
DTM specific DTM specific DTM specific
DtmRequestMessage DtmResponseMessage DtmEventMessage
\ L
DtmMessageTypes \) /"/ e ”
dosneta - alizstion
" \ P -
1 1 1 i e
\\\ l// """"""
0..*
< MessageType
0..
0.*
IEC
Used |n:
IDtmUjiMessaging.BeginSendMessages()
IDtmUjiMessaging.EndSendMessages()
Event|IDtmUiMessaging.DtmSpecificEventOccured()
IDtmUjiMessaging.UiMessageTypes
And
IDtmMessaging.BeginSendMessages()
IDtmMessaging.EndSendMessages()
IDtmMessaging.PrivateMessageTypes
Figure 112 — DTM Messages — datatypes
Tablg 34 describes datatypes-related to DTM Messages.
Table 36 — DTM Messages datatype description
Datatyp},@o Description
DtmR¢questMessage This abstract class serves as a base for interaction between the DTM User
Interface and the DTM Business Logic as well as between DTMs (proprietary
DTM to DTM interaction). This class encapsulates a message where a DTM (I
or a DTM Business Logic requests information from a DTM Business Logic.

DTMS Sall aerive OWIT Classes 1To Dt REQUESt V ESSEQE angduse these o

the interaction.

DtmResponseMessage This abstract class serves as a base for interaction between the DTM User
Interface and the DTM Business Logic as well as between DTMs (proprietary
DTM to DTM interaction). This class encapsulates a message where a DTM
Business Logic responses to a previous request.

DTMs shall derive own classes from DtmResponseMessage and use these for
the interaction.

DtmEventMessage This abstract class serves as a base for interaction between the DTM
Business Logic and DTM User Interface.

DTMs shall derive own classes from DtmEventMessage and use these for the
interaction.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 170 - IEC TR 62453-42:2016 © IEC 2016

7.16 Datatypes for delegation of DTM Ul dialog actions

The Actionltem classes (see Figure 113) are used by DTMs to expose the status of their
standard dialog actions and the set and status of application-specific actions.

StandardActionltem ApplicationSpecificActionltem
Enabled : bool Enabled : bool
Actionld : StandardActionld Actionld : int
Label : string
Descriptor : string

IEC

Used fn:
ApplicationSpecificActionSet delegate
Event|IStandardActions.StandardActionltemSetChanged()

Event|lApplicationSpecificActions.ApplicationSpecificActionltemSetChanged()

Figure 113 — Actionltem — datatypes
Tablg 37 describes datatypes related to Actionltem.

Table 37 — Actionltem datatype description

Datatype AOXscrlptlon

StandardActionltem Represents standard DTM Ul dialog actions with a predefined semantic meaning

ApplicationSpecificActionltem | Represents DTM Ul dialog*actions which do not have a predefined semantic
meaning (application-spegific)

7.17| Datatypes — CommunicationChannelinfo

The | CommunicationChannelinfo «/class provides information about the modules| and
Cominunication Channels of a DTM (see Figure 114)

CommunicationChannelinfo

0..* | Channelltems

Channelltem 0.
Channelltems
¢
CommunicationChannelltem ModuleChannelGroup
Descriptor : string [0..1] Moduleld : string
Id : string
Label : string

IEC

Used in:

IChannels.CommunicationChannelinfos

Figure 114 - CommunicationChannellnfo — datatypes

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 -171 -
Table 38 describes CommunicationChannellnfo class and its related classes.

Table 38 — CommunicationChannellnfo datatype description

Datatype Description

CommunicationChannellnfo | Information about Communication Channels (and modules) supported by a DTM.

Channelltem Abstract base class for module and Communication Channel information
ModuleChannelGroup Information about a group of Communication Channels or underlying modules of a
DTM.

The ¢xample in Figure 115 demonstrates how channel information is provided by a DTM

two modules:

with

//Member variables for channel info and channel objects
CompnunicationChannelInfo myChannelInfo;
Diqtionary<string, ICommunication> myCommChannels;

prilvate void buildChannelInfos ()
{
//create first module info
ModuleChannelGroup modulel = new ModuleChannelGroup ("Modulel") ;
modulel.ChannellItems = new FdtList<ChannelIltem>();
CommunicationChannelItem channelModulel =

new CommunicationChannelItem("Modulel.Chnl", %Chwnnel of Modulel");

modulel.ChannellItems.Add (channelModulel) ;

//create second module info
ModuleChannelGroup module2 = new ModuleChannelGroup ("Module2");
module2.ChannellItems = new FdtList<ChafinelItem> () ;
CommunicationChannelItem channelModulg? =

new CommunicationChannelIltem("M@dlle?2.Chnl", "Channel of Module2");

module2.ChannelItems.Add (channelModule?) ;

//create info list

~myChannelInfo = new Commugi{cptionChannelInfo();
~myChannelInfo.Channelltems¥= new FdtList<ChannelItem>();
~myChannelInfo.Channellfems.Add (modulel);
_myChannelInfo.Channgdltems.Add (module2) ;

//create Communic@tion Channel objects and add them to dictionary
~myCommChannels &J\new Dictionary<string, ICommunication>();

MyCommChannelType channell = new MyCommChannelType () ;
~myCommChannels.Add (channelModulel.Id, channell);

MyCommeR¥nhel Type channel2 = new MyCommChannelType () ;
_myCommChannels.Add (channelModule2.Id, channel2);

}

//'r 3 e, Pl Ak ™ hl M o

I
public CommunicationChannelInfo ChannelInfos

{

get { return myChannelInfo; }

}

{
get { return myCommChannels; }

}

public IEnumerable<KeyValuePair<string, ICommunication>> CommunicationChannels

Figure 115 — Example: Channel information

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-172 - IEC TR 62453-42:2016 © IEC 2016

7.18 Datatypes — Hardwareldentification and scanning
7.18.1 General

The interface IHardwarelnformation is used by a Frame Application to detect if specific
communication hardware is available or to request information from a field device. The
method EndHardwareScan() returns a list of DeviceScaninfo. If the method is used to detect
communication hardware, multiple DeviceScaniInfo entries may be provided. If the method is
used to request information from a field device, a single entry will be returned only.

7.18.2 Datatypes — DeviceScaninfo

The methods of IScanning are used to scan the sub-topology of a Communication Chdnnel.
The |result of the scan is returned in DeviceScaninfo and contains protocol-spgcific
identjfication information of found devices (see Figure 116).

NOTE| DeviceScanlnfo properties contain protocol independent identification information asyname value ppirs in
string [format. This allows a Frame Application to display basic identification information of/a-scanned devide in a
human readable style even if the protocol-specific types are unknown.

DeviceScaninfo

Protocolld : Guid

Z%‘}1‘}11111111111 -
DeviceAddress|

Address | address : string
0.1] Id:int

CommunicationErrorinformation
0.1

ProtocolDeviceScaninfo

PhysicalLayer
0.1

P i ayer

DeviceScanValug

77777 bind» <T->ProtocolDeviceScaninfo Manufacturerlg

-

e <Protocol>DeviceS¢aninfo DeviceTypeld | Pr pecificName : ftring
DevfceScaninfo [0.7 Value : string

HardwareRevision

SoftwareRevision
0.1

? ProtocolSpecificScaninfo ProtocolSpecificProperties
0.1

Pre tificationProfile
0.1

Devi ificProperties
0.1

SerialNumber
0.1

Tag
0.1

IEC

Used fn:
IHardWarelnformation.EndHardwareScan()

IScanping.EndScanRequest()

Figure T16 — DeviceScanInfo — datatypes
Table 39 describes the classes related to DeviceScanlinfo

Table 39 — DeviceScaninfo datatype description

Datatype Description

DeviceAddress Abstract base class for protocol-specific device address.

For scan result the value of DeviceAddress.ld shall be set to 0.

CommunicationError Description of a fieldbus protocol independent error occurred during nested
communication

DeviceScaninfo This class is used to describe information from one single scanned physical
device

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 173 -

Datatype

Description

DeviceScanValue

Represents an identification element of a scanned device. For example: Device
Type Id, Manufacturer Id etc.

<Protocol>DeviceScaninfo

Is a placeholder for a DeviceScaninfo of a specific protocol. Example:
HARTDeviceScanlinfo

DeviceScanlInfo<T>

This class is used to describe information from scanned physical devices

ProtocolDeviceScanlnfo

Abstract base class for protocol-specific scan properties.

7.18.3 Example — Hardwareldentification and scanning for HART

Figune 117 shows for example the properties of the HartDeviceScanlnfo Datatype.

ProtocolDeviceScanlinfo

HartDeviceScaninfo

ProtocolDeviceAddress

Used jn:

IHardWwarelnformation.EndHardwareScan()

IScanping.EndScanRequest()

Figure- 17— Exampler HARTDeviceScaninfo—datatype |

1’1 Z}

HartDeviceAddress
Address

1 | LongTag : string [0%.1]
LongAddress “HARTLongAddress
ShortAddtess': int

ShortFag : string [0..1]

<<enum>>
AdressingModeSelection

. LongTag

AddressingMode LongAddress : HARTLongAddress
1| ShortAddress

ShortTag

ScahnedPhysicalLayer

PhysicalLayer
1

Id : Guid
Name : string

IEC

Table 40 describes classes related to HARTDeviceScanlinfo

Table 40 - Example: HARTDeviceScaninfo datatype description

Datatype

Description

ProtocolDeviceScaninfo

Abstract base class for protocol-specific scan properties.

HARTDeviceScanlnfo

Provides protocol-specific information returned in ScanRequest().

ProtocolDeviceAddress

Abstract base class for protocol-specific device addresses.

HartDeviceAddress

HART-specific device address.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 174 — IEC TR 62453-42:2016 © IEC 2016

7.19 Datatypes — DTM report types

The Reportinfo class is used by a DTM to expose information about the report types it
implements. Figure 118 shows the involved classes and their relations.

Reportinfo

1
AvailableReports TO..*

1.
Reportltems

Reportitem

/A

o ReportGroup ExecutableReport

IEC

Used jn:

IRepofting.Reports

Figure 118 — DTM Report — datatypes

A Rgportinfo object comprehends the description of one ‘or many report types. Each report
type (ExecutableReport) has a unique identifier, which tan be used by a Frame Applicatipn to
request a specific report from a DTM. Repoft types may be arbitrarily grouped
(RepprtGroups). They may have references to an Applicationld, that associates them with an
FDT |standard functionality (see definition of ApplicationID in Annex B and in Annex 4), or
they [may have a reference to a Functionld“that links the report type to a DTM-spEcific
functjonality.

Tablg¢ 41 summarizes the datatypes in-the Fdt.Dtm.Reporting namespace.

Table 41 — Reporting datatype description

Datatype N N .V Description
ExecufableReport Information about one specific report provided by the DTM.
ReportGroup Group of DTM report descriptions.

Reportinfo Provides information about reports provided by a DTM.
Reportltem Abstract base class for a report description class.

7.20 | <Information related to device modules in a monolithic DTM

A monolithic DTM provides information about a device with all its modules. The information
regarding the modules is distributed on different datatypes. Figure 119 shows an example
with involved data.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 175 -

Network Data Info

: NetworkDatalnfo
;; NetworkDataltems Process Data Information
Module1 : Modulelnfo : ProcessDatalnfo
Id : string ProcessDataltems

4 NetworkDataltems
/ Module1 :
/ : NetworkData ModuleProcessDataGroup
+ 7
/ - ProcessDataltems
-

1d : int
/ IsWritable : bool

: 10Signalinfo

~
\
\
\

- *

Module2 : Modulelnfo 7

7 1d - string 7

/ NetworkDataltems v
7
/ Module2 :
: NetwokData ModuleProcessDataGroup

ProcessDataltems

: 10Signalinfo |

7
] 1d int
 1§Writable : bool

BusMasterld : string

I

I

' /

| /

.
1

T

|

Device| | // J——_— T T T T T T T = - — ProcessImageltems|
Module 1 - T) Modulet :
ModuleProcessimageGroup
o~
A\ N = Meduleld : string
\ N e Processimageltems
~
Module 2 NN ~< _ _
\ \ ~ | : ProcessimageSection * y 10Signalljpfo
LEY} \ A = =~ ~
v N ~
~
\\ \ ~ o -
\ ~ :
\ \ ~ Q ModuIeP::I::::sIT:ageGmup
\ \ N Moduleld : string
‘ \ ~ ~ Processimageltems
\ ~
| \ N | : ProcessimageSection 10signalifo
I N 1 1
\ N N
| \
AN
| \ N
I \ \
I \\ N
Device Data Informatiop Function Information Communica}ic\m Channel Information
\
\

/ \
/ \
: Datalnfo : CommunicationChannelinfo
/ \

Functionltems
\ Channelltems

Module1 : ModuleFunctionGroup

DeviceDataltems /

Module: ModuleDataGroup
Moduleld : string [0..1]

Dataltems

: AccéssibleData I

¥

Modulet :
ModuleChannelGroup

Moduleld : string

I Channelltems
: CommunicationChannelitem

*

Moduleld : string

Functionltems

< Functionitem |

Descriptor : string [0..1]

1d: string
Label : string
Module2 : ModuleDataGroup Module2 : ModuleFunctionGroup ootz
loduleChanneiGroup
M, leld : str [0..1
lpduleld : string [0..1] Moduleld : string Moduleld : sting
Channelltems

Dataltems

, Functionitems
—

)
- : AccessibleData : Functionltem 5| :CommunicationChannelltem
*

Descriptor : string [0..1]
Id : string
Label : string

IEC

Figure 119 — Information related to device modules

Inside a monolithic DTM the modules of a device are identified by a unique Moduleld.

NOTE Examples for monolithic DTMs are DTMs for PROFIBUS PA devices, where a module would represent a
function block or transducer block, or DTMs for modular devices, where a module would represent a hardware

module.

The same Moduleld is used in the different datatypes (Modulelnfo, ModuleProcessDataGroup,
ModuleProcessimageGroup, ModuleDataGroup, ModuleFunctionGroup, and
ModuleChannelGroup) in order to show that this information describes the same module.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 176 - IEC TR 62453-42:2016 © IEC 2016

For a monolithic DTM it is expected that the data in lInstanceData and IDeviceData are also
grouped for the modules (see Figure 88).

With ModuleFunctionGroup it is possible to provide functions specifically for modules.

If the device is a modular device and if modules provide communication, it is possible to use
ModuleChannelGroup in order to associate the provided CommunicationChannels to their
respective modules.

8 Workflows

8.1 General

The jwork flows provided in this chapter are intended to explain the expected behavior.
Implgmented behavior may vary, but should follow the general rules explained here and in the
interflace definitions.

The ¢onventions for sequence diagrams are explained in H.5.

As explained in 5.6.2 all component interactions are passed through the Frame Applicatipn or
through proxy components. Since this passage shall not_change interactions or [nject
interaction requests, it will not change the general sequence of message calls. In order to
simplify the representation of sequences, the proxy objects)often are omitted in the seqyence
diagrams in this section. If the proxy objects are important to understand the sequenfe of
mesgage calls, then they are shown in the sequence diagrams.

8.2 Instantiation, loading and release
8.2.1 Finding a DTM BL object

In order to execute a DTM, the Frame Application needs to find the respective DTM Bus|ness
Logig object, which is located in an-assembly. This section describes the sequence of fihding
the OQTM BL object (see Figure 120)-

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 177 -

sd : Finding a DTM BL object/

: Frame
Application
1
Find DTM Manifest files in
D <FDT_DTMs> folder
. +
b DTM 1:DTM

Manifest

deserialize manifest file

- L]
Get DtmManifest information o-.—__

[~

Get UiManifestRefs L'J
Get DtmRootPath
Get DtminfoBuilderRef
Destroy o
Store in a frame X
[] specific way
Create

»»»»» | Get
ConformityRecords,

DtminitData

Implements‘therinterface
IDtmInfoBuilder, which
couldalso-be implemented
by DtmBusinessLogic.

N,

N

Init(dtmRootRath, ...)

: DtmInfoBuilder

GetDtminfo()

"]

<GetSupportedTypes()>

)

<GetSupportédTypes()> execution results : list of DTM information

GetFdtlcon()

GetFdtBitmap()

Destroy

D:| Store DTM information in a

frame specific way

x_g'_["_ Y

Used methods:
IDtmInfoBuilder.Init()

IDtmInfoBuilder.GetDtmInfo()

IDtmInfoBuilder.BeginGetSupportedTypes() / IDtmInfoBuilder.EndGetSupportedTypes()

IDtmInfoBuilder.GetFdtlcon()

IDtmInfoBuilder.GetFdtBitmap()

Figure 120 - Finding a DTM BL object

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 178 — IEC TR 62453-42:2016 © IEC 2016

Typically a Frame Application stores the information about the DTM BL in a catalogue. For a
more complete sequence for updating the device catalogue refer to 10.4.3.

8.2.2 Instantiation of a new DTM BL

A new DTM Business Logic is instantiated by the Frame Application with its full assembly
class name. The class name can be looked up in the DtmManifest for the selected
DtmDeviceType.

The Frame Application shall create a new DTMDataset object and pass a reference to
IDataSet as a parameter in IDtm.InitData() to the newly created DTM Business Logic
instapce. Within the InitData() call, the DTM Business Logic Instance adds | new
DTMpPataSubsets to the DTMDataset and writes its instance data into the DTMDataSupsets
(see [Figure 121).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 179 -

sd Instantiation of a new DTM BL)

: Frame
Application

] ref
| Sequence Finding a DTM BL object
DTM Information is known
|
Select \
DtmDeviceType |
to add |
| Create
:DTMDataSet

T
1 Create

DtmDataset.Instance
Data

: DTM Business
Logic

Init(dtmRootPath, ...)

InitData(typeld, dtmdataset)

1
»

;I
T

Multi User Frame
Application specific

transaction handling.

1
Register transaction events

T
StartTransaction()
'

Initialize
[instance data

|
|
|
T
Loop all data J 1
|
|
|

Add(key,data,descriptor)

Credte,

WriteData()

Set descriptor 6]
|
|

Add to
Dictionary

return DataSubset

Prepare all data
for a new
[Datagubset
\

Set Used Formatld

A

CommitTransaction()

CloseTransaction()

A

<Configuration()>

configurin

Set state
»ModifiedinDTM*

Set state

Run()

* Create subtopology

R e L

State running

,NoKnownChanges*

=U—

Used methods:

IDtm.Init()

IDtm.InitData()
|Dataset.StartTransaction()
IDataset.CommitTransaction()

IDataset.CloseTransaction()

Figure 121 — Instantiation of a new DTM BL

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 180 — IEC TR 62453-42:2016 © IEC 2016

8.2.3 Configuring access rights

The Frame Application can provide a separate function to configure the access rights for
individual users or for group of users, which will be working with the DTM. The function for
Access Rights configuration is usually available only for System Administrators, which are
responsible for the security of the plant.

To configure the access rights, the administrator has to instantiate the DTM with access rights
set to Engineer, get the list of all Data provided by the DTM by using
ICustomConfiguration::<GetAllDatalnfo()>. The Administrator will get the list of all functions
from IFunction.FunctionInfo property. The Administrator will use a specialized user interface,
proviqu' Iuy the—+rame App“baﬁun to—drefime—the pcllllibbiullb for bilallgillg data—amnd—mv)king
functjons.

This jnformation shall be saved by the Frame Application and used when the DTM .of thig type
is indtantiated.

The yser can invoke the DTM with Expert user level (see 8.2.5) and verjty- the correctngss of
the settings. The Administrator may come back to the specialized userinterface, provid¢d by
the Hrame Application, correct the permissions, save the data with‘the rest frame datg and
invoKe the DTM again.

The following sequence diagram illustrates the configuration.'6f the user permissions, when
custgm role is invoked (see Figure 122).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 181 -

sd : Configuration of user permission)

: Frame : DTM Business
Application Logic
|
select DTM DTM was started with
B ~
engineer role.
All parameters and
functions are enabled
- lcatall parm.ps_and_
functions to
IsEnabled=false
set user by default
permission to DTM <GetAllDatalnfo()>
collect all data and
functions of all
<GetAllDatalnfo()> execution results possible modes
< ____________________________
Get Function.Functions : Function|nfo a]
for each user role Display all parameters |
select parameters and [and functions
functions to be enabled |
B
save the permission |
for DTM'Device Type |
and particular Frame
defined user role. |
|
EC
Used methods:
ICustqmConfiguration::BeginGetAllDatalnfo()
ICustqmConfiguration::EndGetAllDatalnfo()
Figure 122 — Configuration of user permissions
8.2.4 kkeading a DTM BL
After| creation of a DTM Business Logic instance for an existing DTMDataset the Fframe
Applicatton shaftcatr mit{) and CoadDatal), pass the rdentifler of the represented type (device,

module, block) and the interface of the corresponding DTMDataset. The DTM checks the
Formatld of the DTMDataset and reads the InstanceData from the DTMDataset to initialize its

device data (see Figure 123).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 182 - IEC TR 62453-42:2016 © IEC

sd Loading a DTM BL J

2016

: Frame
Application
1 Create
:DTMDataset
Frame specific initialization I
=ﬁ Create g
[T T pIMDataSubset
I Create | : DTM Business
| Logic
Init() ! | |
I J |
LoadData(dtmDeviceTypeld, datased | ‘L'J Check if
Dataset.Formatld
| I B is ,Used" or
| I Register transaction events .ReadSuppofted”
o i
| I
Loop: all DataSubsets in InstanceData required for actual contexy
: . | Dataset.InstanceData[index]
¢‘ | ReadData()
- Update transient
I L!J instance data
| I t
Run() | | > !
1 >
| | State running
[optional] Register IDeviceData.ModifliedInDeviceChanged and IInstanceData.l\?lodifiedlnDlmChanged Events o !
gn
T I | ,
IEC
Used methods:
IDtm.1hit()
IDtm.JoadData()
IData$ubset.ReadData()
Event|IDeviceData.ModifiedInDeviceChanged)
Event|linstanceData.ModifiedinDtmChanged()
Figure 123 — Loading a DTM BL
A DTM Business Logic shall read DTMDataSubsets of Datasets InstanceData on demand
whern the data are required according to a business function context. When transient dat

not accessed any-more, a DTM shall release the transient data and reload it from the D

if neq

8.2.5

ded (see8.3.1).

Loading a DTM with Expert user level

are
taset

While iuau'illg the—DTvi—with E)\pclt usceT icvci, the—Frame Appiibaiiun stratt—set—the—access
rights using the ICustomConfiguration::<EnableParameters()>.

If the Frame Application does not invoke the ICustomConfiguration methods to grant
permissions, the user will have restricted access as if the DTM is invoked by the Observer

(see

Figure 124).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 183 -

sd : Loading a DTM with expert user role)

: Frame : DTM Business
Application Logic
Start DTM
with ExpertUser Role

load the permission for
: DTM Device Type and

HJ particular Frame

|
|
| i Experiser 7ol |
|
|

defined user role.

ref
Sequence Instantiation of a new DTM BL

State running
- First call in T
Enable offlin running state T ------------------- All parametefs
parameters are disable
... O//
*\ IInstanceCustomConfiguration::<EnableParameters()> |
X ,
Enable online™
<EnableParameters()> execution results
<_ __________________________________
N IDeviceCustomConfiguration::<EnableParameters()> |
1
e
<EnableParameters()> execution results
<_ __________________________________
L]
Device/lristance DataAccess call |
alt Data change and
change of all
[access enabled data] . dependent parametels
Device/Instance DataAccess call [according to DTM
execution results business rules
<_ __________________________________
[one or, more of accessed
parammeters is not change enabled] Fynction exception or Detect that paramete}
FdtNoWriteAccessException or is disabled
= FdtNoReadAccessException

IEC
Used methods:
lInstanceCustomConfiguration.BeginEnableParameters() / linstanceCustomConfiguration.EndEnableParameters()

IDeviceCustomConfiguration.BeginEnableParameters() / IDeviceCustomConfiguration.EndEnableParameters()

Figure 124 — Loading a DTM with Expert user level

8.2.6 Release of a DTM BL

In order to release a DTM BL all ongoing activities need to be terminated (see Figure 125).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 184 — IEC TR 62453-42:2016 © IEC

sd Release of a DTM BL)

: Frame : DTM Business
Application Logic
| |
| I
N |
[Ul open] Close Ul ref
> Sequence

Release of DTM User Interface

2016

[DTM is online] Go Offline ref

Sequence
GoOffline

v

T
|
<Release()> :

<Release()> execution results

< __
Release :
|
Destroyed by .NET Garbage Collector when \T‘
last reference to the objéctisreleased @ [T TTTT T R X
L]

Used

IDtm.H

8.3
8.3.1
The

methods:

eginRelease() / IDtm.EndRelease()

Figure 125 — Release of a DTM BL

Persistent.storage of a DTM
Saving instance data of a DTM

DTM-_instance saves its instance data on demand in a DataTransaction. The F

rame

Appli

cation can release a DTM only if no DataTransaction is active. If the Frame Applig

ation

performs an action which requires that all data is committed (i.e. saving of a project file) then
it shall check if there are no open transactions. If there are open transactions then the Frame
Application should inform the user and list the DTMs which have open transactions and
thereby may have uncommitted data (see Figure 126).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 185 —

sd : saving data of a DTM)

: DtmDataset. : DTM Business

2L LR InstanceData Logic

StartTransaction() —

|
i |
Frame specific |
handling |
| Loop all data J | Prepare all
| | data for a new
| | [DataSubset
| n Add(key,data,descriptor)
| Create
| :DataSubset
| WriteData(data) I
| Descriptor = descriptor '
- 0
| Add to |
| Dictionary |
| DataSubset i
_____________________ >
| CommitTransaction() \
' [
Frame internal |
Handling, e.g. |
propagation of changes | |
- CIoseTransaction() |
|
Frame specific | |
handling |
I e
1
II: (9
Used methods:
IData$et.StartTransaction()
|Data$et.CommitTransaction()

|DataSetCtoseTramsactiont)

IDataSubsetDictionary.Add()

Figure 126 — Saving data of a DTM

8.3.2 Copy and versioning of a DTM instance

Saved datasets can be copied by a Frame Application from one device node to a different
device node. The copied Dataset is loaded with LoadData() into instances of the
corresponding device node.

The Frame Application is responsible to handle the Frame Application-specific versioning
aspects and to manage the different instance datasets (e.g. fieldbus address and device tag)
for a device.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

8.3.3

Dataset commit failed

- 186 —

IEC TR 62453-42:2016 © IEC 2016

The following workflow describes the expected behavior if committing changes in the dataset
fails. This exception is usually caused by a serious problem in the Frame Application. The
Frame Application shall inform the user that the latest changes could not be saved and to
release the DTM (see Figure 127).

sd: Dataset commit fails /
Frame DTM1 : DTM :DTMDataset DTM2 : DTM
Application Business Logic Business Logic
<Write()> | | I
1 StartTransaction() I
TransactionStarted o TransactionStarted I
- >D
Change values in instance dat: |
CommitTransaction() The method fails due to dne o
> following reasons:
e.g.: writing - - The operatlion failed.A
[DTMDataset to - The commit transaction fof the
f dataset fails
e.g. FdtCommitTransactionFailedException| qEase failed |
<_ ________________________
CloseTransaction(false) I
TransactionClosed TransactionClosed l
- >
n 1]
IEC
Used methods:
IData$et.StartTransaction()
IData$et.TransactionStarted()
IData$et.CommitTransaction()
IData$et. TransactionClosedy()
IData$et.CloseTransaction()
IData$ubsetDictionary.Add()
Figure 127 — Dataset commit failed

8.3.4 " Export a DTM dataset to file

The diagram shown in Figure 128 shows the use of datatypes for exporting the data of a DTM

instance to a file.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

[; Create filestream

new

WriteObject(filestream, Ds)

: DataContractSerializer

IEC TR 62453-42:2016 © |IEC 2016 - 187 —
sd: Export a DTM dataset to fiIe)
Frame
Application
Select DeviceNode and l
% define filepath
R EEE— |
Export DTM Dataset
[New(DatasetFormatld) Ds:
ImportExportDataset
I
loop J '
All data subsets of instance data |
[

Fetch ByteArray for |

key from Frame-
specific Storage |
New(key, byteArray) Doy |
ImportExportDataSubset |
| |
Add DataSubset to Instance' Data |
I i
|
|°°PJ All data subsets of bulk data |
Fetch Byte Array for |
key |
New(key, byteArray) |
Dss : |
ImportExportDataSubset |
| |
Add DataSubset to Bulk Déta I
I 'u
T
|
T
[}

N
0
|

Used methods:

Figure 128 — Export a DTM dataset to file

8.4 Locking)and DataTransactions in multi-user environments

8.4.1 General

Within. a multi-user environment it is common, that more than one DTM instance has ag¢cess
to thg—mm—dmaﬁwymmbﬂmmmﬁmm—mm—dﬁ'] ifferent

PCs FDT provides a locking mechanism. Target for this event mechanism is that only one
DTM has read/write access to the instance dataset and to the device data. All other DTMs

have read access only.

For this reason a DTM shall lock its dataset with StartTransaction() only if required and only
during modification of the data. After the data is committed and the data is not further under
modification, the DTM shall unlock its dataset with CloseTransaction() immediately to enable

concurrent access to the data by other DTM instances within a multi-user environment.

e The DTM shall start a DataTransaction before an activity is started, that may change the
instance data (e.g. upload, linstanceData.<Write()>) or the data in the device (e.g.
OnlineParameterize). The DTM shall close the DataTransaction after the activity is

finished.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

If
D

e A

- 188 — IEC TR 62453-42:2016 © IEC 2016

instance data is changed, then the DTM shall save the Dataset before closing the
ataTransaction. E.g.:

While a DTM Ul is opened the DTM shall try to start a DataTransaction if write access
is needed. If successful, all user input fields can be enabled. If the start of the
DataTransaction failed, user input fields shall be disabled. After closing all DTM GUI
controls in case of a locked Dataset the DTM should write modified DTMDataSubsets
and commit the Dataset and close the DataTransaction after the Frame Application has
saved the Dataset.

Frame Application shall return a negative result when a DTM calls StartTransaction

while a second DTM has already an open DataTransaction. (The property

L

o T
th
e T
th
o |f
(d

W

f
W

o |f
in

8.4.2

ockResult Isl ocked will be set to false)

he Frame Application shall throw an exception if a DTM writes DTMDataSubsets’/while
is DTM does not have an open DataTransaction.

he DTM shall keep a DataTransaction open as short as possible. It is not 'allowed fo set
e lock for the whole time that a DTM is in states ‘running’ and ‘communicationAllowgd”.

committing the dataset fails, then the transaction shall be closed without sfving
LloseTransaction(false)) and the user shall be informed. It is~fecommended to|stop
orking with the DTM.

closing the transaction fails, then the user shall be informed.Nt is recommended to| stop
orking with the DTM.

a DTM receives the event TransactionCommitted(), it is mandatory to update the
stance data from storage.

Propagation of changes

When multiple DTM instances are executed in @multi-user environment for the same dpvice

(see
notifi
Tran

4.6.2) and one DTM instance is changingthe DataSet, the other DTM instance recpives
cations indicating the process of change (TransactionStarted, TransactionCommiitted,
sactionClosed).

Recediving the event TransactionCaommitted indicates that the data in the persisted DafjaSet

has &

The
one
DTM

een changed and that the DTM shall update the instance data from the storage.

sequence diagram shown in Figure 129 shows how changes in the instance dataget of
DTM instance (DTM4,) are propagated to other DTM instances (DTM2) and to the Pprent

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 189 —
sd: Propagation of changes/
Frame DTM1: DTM Dataset1 : DTM2 : DTM
Application Business Logic DTMDataset Business Logic
<Write()> l I
1 StartTransaction() |
_ TransactionStarted TransactionStarted |
Change values in instance dataset D
o ;
L1 !
CommitTransaction() |
TransactionCommitted > TransactionCommitted
DataValueChanged - ansactiont.o © > 4
loop All changed datasubsets
DatalnfoChanged Read changed datasubsets
< - Internal
Data
update
CloseTransaction T
<Write()> execution results > I
< _______________________
TransactionClosed TransactionClosed |
i i J
I :Parent DTM I |
| Business Logic I |
InstanceDataInfoChang:ed() | | |
InstanceDataValueChanged() | I I
| >
= Read data
| objects to | I
update as I
Ll | required |
1
EC
Used methods:
IDataget.StartTransaction() /«lDataset.CommitTransaction() / IDataset.CloseTransaction()

IDatag

linsta

Event

Event

et.TransactionStarted” |IDataset. TransactionCommitted /IDataset.TransactionClosed

ceData.BeginWrite() / linstanceData.EndWrite()

lInstancePata.DataValueChanged()

lInstanceData.DatalnfoChanged()

Event

IcnidbDimEvents.InstancebDataValueChanged()

Event IChildDtmEvents.InstanceDatalnfoChanged()

Figure 129 — Propagation of changes

The figure above shows how a DTM instance (“DTM2”) receives notifications on changes and
how it updates its instance data, because the dataset was changed by a different DTM
instance (“DTM1").

NOTE For simplification, it is not shown here how “DTM2” reads already committed data while “DTM1” is still
modifying data in an open transaction (refer to Figure 130, which shows this scenario).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 190 - IEC TR 62453-42:2016 © IEC 2016

8.4.3 Synchronizing DTMs in multi-user environments

The synchronization of DTMs is a mandatory feature to provide a better handling for the user
within a multi-user environment (see Figure 130).

sd: Sy izing DTMs in multi i)
: Frame
Application
€T
new() Dataset1 :
DTMDataset

Frame specific load from Database

=
new() DTM1 : DTM

T Business Logic %
Init() I \

|

T
LoadData(Dataset1)

v

Register Transaction

RegisterTransactionEvents N
9 Events Dataset copy .
in multiusel
Read InstanceData Subsets scenario
Initialize instance 7 rb
data and refresh Ul - %
Dataset1* : v

A

A

——CF —
\
\
\

new()

DTMDataset (L
rame specific load from Database %

}
|
A I
}
> DTM2: DTM
] new() m yo R i Logic
| Init() | & >,
v >

I LoadData(Dataset1*) l (-) g
I - " Register Transggtion

RegisterTransactionEvents
I Events
| & Read InstanceData Subsets

StartTransaction() : Initialize instande

|
i
[
|
|
|
|
%

|ﬂ% internal T
\J

T ionClosed()

Indicate write
permission in Ulfand

enable Ul-elements

-

Frame internal TransactionStarted(; :Q ? data and refresh Ul
Frame internal TransactionStarted(’ TransactionStarted() :
g Indicate WriteLck in
Ul and disable I
elements
[1..n] Write InstanceData |
CommitTransaction | R
Frame internal TransactionCommitted(| ACCE
Update modified datasubseis| |
Frame internal TransactionCommitted() TransactionCommitted() |
l tion(Read InstanceData Subsets .
-
Frame internal TransactionClosed(N | Update instance]
N C) R data and refreshjUl
S ses) ACCESS [

r

StartTransaction()

F'rame internal TransactionStarted ()

I
B 0O |
Frame internal TransactiofStarted | I
TransactionStarted()
¢ g Indicate WriteLock in
Ul and disable Ul
Q'~ | elements

7

@C)\ IEC
Used m)hods:

IDtm.Init()
IDtm.LoadData()

|Dataset.CloseTransaction()
IDataset.CommitTransaction()
|Dataset.StartTransaction()
IDataset.TransactionClosed()
IDataset.TransactionCommitted()

IDataset.TransactionStarted()

Figure 130 — Synchronizing DTMs in multi-user environments

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 191 -

The sequence diagram in Figure 130 describes an implementation example where a Frame
Application provides a copy of the last committed DTMDataset (Dataset1*) for concurrently
accessing DTM instances in multi-user scenarios. These instances cannot change the dataset
at the same time (FA rejects StartTransaction()), but can read from the dataset last
committed. How the Frame Application synchronizes the two instances of DtmDataset, is not
in scope of FDT but specific to the Frame Application (shown as Frame Internal methods).

8.5 Execution of DTM Functions

8.5.1 General

Th nnnnn ficatinn Aafinne Affarant v o of DTM llcor lntarfacac
is ppeeification-defines—differenttypes-eof BHW-Ysertnterfaces:

e WinForms controls or WPF controls that can be embedded into the Frame Application| user
ifterface

¢ Applications which can be started by a DTM User Interface class

e Clommand functions which are provided by a DTM BL or a DTM User Interface class

The $equence diagrams in this subclause show the different handlingof'these user interface
typeg.

8.5.2 Finding a DTM User Interface object

The Functioninfo property of IFunction interface provides(access to user interfaces proyided
by a|DTM. If a DTM provides user interfaces the Functioninfo property contains a l|st of
UiFupction objects. A UiFunction object represents ayBTM User Interface function. The gctual
infornation about the object which implements this_function is provided in a manifest file[(see
DtmNanifest.UiManifestRefs description). The.Frame Application shall use the property
UiFupction.Functionld to find the information ipthe manifest (see UiFunction description)| (see
Figure 131).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-192 - IEC TR 62453-42:2016 © IEC 2016

sd : finding a DTM User Interface)

Frame i
Application : DTMLE:iilness
- I

Get Function.Functions : Functioninfo

Select I
%m‘, Get IFunction : Functioninfo D
I

\}

\

Internal lookup
local DTM manifest-
file path
I tepa Create

Deserialize manifest-fiIeI

Loop : all UIManifestUIRefs) |

|
[
|
I |
I
I
I
I
|
|
|
|

: DtmManifest

>
»

Lookup local Ul |
[Manifest filename '
Create

| : UlManifest
Deserialize Ul manifest-file
L >
'
Get ClassName of Functionld with required Type |
>

T >

Close DtmUIManifest I-|—I
1 »C
|)

Close DtmManifest |

8 | x

GUI object found

IEC
Used methods:

IFuncfion.Functioninfo

Figure 131 — Finding a DTM User Interface

8.5.3 Instantiation of an integrated DTM graphical user interface

This [sequence diagram outlinés'the opening of a DTM User Interface for a DTM function
seledted by the user (e.g. i @ DTM-specific context menu) (see Figure 132). The seqyence
may plso be started by a.different trigger (e.g. by a Frame Application function).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 193 -

sd: Instantiation of a DTM User Interface)

: Frame : DTM Business
Application Logic

! |
Select |
Function
|

[GUI object found] I

[ClassName found] Create
I :DTM
Userlinterface
IDtmUIFunction::<Init()>
A

Register IDtmUiMessaging events

Register IDtmUiMessaging events Event registration is done using standard .NET

|
=HIJ mechanism.
|

See Figure 'Interaction between DTM Business
Logic and DTM User Interface'

A

require locking of dataset if the Ul

The DTM User Interfage calls methods of the
IDtmUiMessaging|provided in Init() and
implemented by the’Frame Application and
DTM Business Logic.

The Frame Application forwards the messages
front and to the DTM Business Logic.

can modify the instance data (e.g.

ref Preparation of response data may <
Offline Parameterization)

Sequence Interaction initiated by the DTM User Interface o--—

<Init()> execution result

Create Control |

. Create . bTM Ul Control

7 Frame Application must
perform this call in the User
Interface Thread.

D:' Show Ul control

return DTM UI Control

ControlLoaded() |

Invoke GUI Thread to
do something

|
|
F
|
|
- |
|
|
T
|
|
|
I
|
|
|

EC

Used methods:

IFunction.Functioninfo

IDtmUjiFunction.Beginlnit() / IDtmUiFunction.EndInit()
IDtmUjiControlFunction.CreateControl()
IDtmUjiControlFunction.CentrolLoaded()
IDtmUjiMessaging‘BeginSendMessages()

IDtmUjiMessaging.EndSendMessages()

Figure 132 — Instantiation of a DTM User Interface

8.54 Instantiation of a DTM Ul triggered by the DTM BL

In this scenario the DTM Business Logic requests to open one of its user interfaces (see
Figure 133).

If the user interface is successfully instantiated and initialized, the Frame Application returns
the Invokeld of the new user interface with the EndOpenDtmUi method.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 194 — IEC TR 62453-42:2016 © IEC 2016

sd:Instantiation of a DTM Ul triggered by DTM BL)

: Frame : DTM Business
Application Logic

|
| <OpenDtmUI()>

| |

ﬁ)
ref J

Sequence Instantiation of a DTM User Interface

:DTM
Userintérface

u <OpenDtmUi()> execution result I

- ! i

IFramgUi.BeginOpenDtmUi()

IEC

Used methods:

IFramgUi.EndOpenDtmUi()

Figure 133 - Instantiation ‘of a DTM Ul triggered by DTM BL

8.5.5 Instantiation of a modal DTM Ul triggered by DTM BL

In this scenario the DTM Business Logic requests to open one of its user interfaces mqdally
(see [Figure 134).

IFrameUi.OpenDtmUiModal() behaves always modal. The Frame Application has to efisure
that at least all user interface controls of the calling DTM are disabled; no further user [input
shall|be possible (DTM instance modal).

The ppened userinterface shall call the delegate CloseMeRequestHandler() if it needs fo be
closgdd. ThesFErame Application then closes the DTM User Interface and receives the fesult
wher calling the method IDtmUiFunctionModal. EndClose().

IFra ceUlL.<supenulmulivioddl()- shdll De Cdlled I a wdady lal the cdliel 1Is DIOCKed Un[l the
user interface is closed.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 195 —

sd: Instantiation of a modal DTM Ul triggered by DTM BL)

Frame : DTM Business
Application Logic
| <OpenDtmUiModal(function)> Request may also be sent from an
(_____| other DTM User Interface
ref J
Create

: DTM
Userlnterface

Sequence Interaction initiated by the DTM User Interface

Sequence Instantiation of a DTM User Interface

ref

i Interactiori

! > Ulteads data from
| | 'U business logic
Close | I
| CIoseMeRequestCaIIbacll O L L } Callback provided in
I
|
|
I

IDtmUiFunction::Init()

i=

<Close()>

ref J
Sequence Interaction initiated by the DTM\User Interface

Optional DTM specifie{preparations for ﬁ

releasing the User, Interface.
E.g. closing opericonnections to the device.

I
Unregister IDtmUiMessaging events

A

Unregister IDtmUiMessaging events

»
|

— [} —

<Close()> execution result

IEC
Used methods:

IFramgUi.BeginOpenDtmUiModal() / IFrameUi.EndOpenDtmUiModal()

CloseMeRedquestCallback()

IDtmUiFunction.BeginClose()

IDtmUiFunction.EndClose()

Figure 134 — Instantiation of a modal DTM Ul triggered by DTM BL

8.5.6 Release of a DTM User Interface

This sequence diagram outlines the closing of a DTM User Interface for a DTM function as a
result of a request to the Frame Application (e.g. windows system menu — close). If the Frame
Application releases a user interface of a DTM, it has to prepare the release by sending a
notification to the presentation object first (see Figure 135). After receiving the call to
IDtmUiFunction.BeginClose() the user interface shall release its references to other
components and can call DTM-specific releasing methods.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 196 — IEC TR 62453-42:2016 © IEC 2016

sd: Release of a DTM User Interface)

: Frame : DTM Business :DTM X
Application Logic UserlInterface 3t U Gt
Close Ul n | |
— >
<Close()> ,)
I
1 L1
ref Optional DTM specific preparations
B for releasing the User Interface.
Sequence: Interaction initiated by the DTM User Interface ... E.g. closing open connections to the
device.

Unregister IDtmUiMessaging events

A

Unregister IDtmUiMessaging events |
1
Unregister ApplicationSpecificActionltemSetChanged event

Unregister StandardActionltemSetChanged event
1

A

<Close()> execution result

| release

|
T |

Dol

T

Used

IDtmU
IDtmU
IDtmU

IDtmU

8.5.7

methods:

iFunction.BeginClose()
iFunction.EndClose()
iMessaging.BeginSendMessages()

iMessaging.EndSéndMessages()

Figure 135 — Release of a DTM User Interface

Release of a DTM Ul triggered by the DTM BL

This

IEC

sequence diagram outlines the closing of a DTM User Interface for a DTM function|as a

result of a request by the corresponding DTM BL (see Figure 136).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 197 -

sd: Release of a DTM Ul triggered by the DTM BL)

: Frame
Application

: DTM Business
Logic

:DTM
Userlinterface

<CloseDtmUi(invokeld)>

=

:

ref

Sequence Release of a DTM User Interface

Used
IFram

IFram

8.5.8

In thi
‘Clos|
Clos
close

methods:
bU|.BeginCloseDtmUi()

bUI.EndCloseDtmUi()

Release of a DTM User Interface-triggered by itself

Figure 136 — Release of a DTM Ul triggered by the DTM BL

5 scenario the DTM User Interfacerequests to close itself (e.g. after the user presse

EC

s the

button on the DTM Userc~Interface). The user interface shall call the delg¢gate
MeRequestHandler(), provided in the IDtmUiFunction.<Init()> method, if it needs
d (see Figure 137). The Etame Application then closes the DTM User Interface.

o be

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 198 — IEC TR 62453-42:2016 © IEC 2016

sd: Release of a DTM User Interface triggered by itself)

: Frame : DTM Business :DTM
Application Logic Userinterface

Close Ul

|
LK |

ref

| | >
I T L
i]\ CloseMeRequestCallback H
@ |
< |

Sequence Release of a DTM User Interface

Used methods:

CloseMeRequestCallback()

Figure 137 — Release of a DTM User Interface triggered by itself

8.5.9 Release of a non-modal DTM User Interface triggered by a standard action

For a modeless DTM Ul ,which supports the interface IDtmUiFunctionNonModal, the thigger
for closing always comes from the Frame. Application. Figure 138 shows the sequende for
closing such a DTM User Interface.

sdf Release of a non-modal DTM Ul triggered by a standard action)

: Frame : DTM Business :DTM
Application Logic Userinterface

I |
Close Ul | |
% InvokeStandardAction() o
| 'D
|
|

CloseMeRequest Callback
]
|

e !

ref

A

Sequence Release of a DTM User Interface

i X
| |

IEC

Used methods:

CloseMeRequestCallback()

Figure 138 — Release of a non-modal DTM Ul triggered by a standard action

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 199 —

8.5.10 Progress indication for prolonged DTM actions

Figure 139 shows how a Frame Application informs the user in the user interface about the

progress of prolonged DTM actions.

sd Progress indication for prolonged DTM actions/

Ul : Frame
Application

Device DTM :
DTM Business
Logic

1|rigger along
I@sting DTM function
1 Trigger a long lasting action

L T

=

Estimate oyeérall
number’of steps with
similar duration

alt) [real progress steps can be evaluated]

L

UpdateProgress ("Name of performed action", PercentComplete=0)

-
Display progress bar in
context of DTM instance
and action

loop J [all steps or error is detected]

UpdateProgress(PercentComplete = xxx)

perform a single step
of the action

{ Update progress display percentage
< UpdateProgress(PercentComplete = 100)
,‘ return action results or error

I
number of progress steps ‘@and/or required duration can not be evaluated]

UpdateProgress(PercentComplete = -1)

<
perform long lasting

Display generic progress [action
information

- UpdateProgress(PercentComplete = 100)

F return action results or error
|
. IProgressUl::Dispose()
-

hide progress bar of this
action

Used methods:
IProgressUl.UpdateProgress()
IProgressUl.Dispose()

Figure 139 — Progress indication for prolonged DTM actions

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 200 - IEC TR 62453-42:2016 © IEC 2016

DTMs shall use UpdateProgress() only for prolonged actions, which are not defined as
"Progress pattern" (see 5.6.7.3).

A Frame Application shall be prepared to handle several UpdateProgress() calls from different
DTM instances and for different actions in parallel.

8.5.11 Starting an application

In general the Frame Application uses the same mechanism to start an application and to
open an embedded DTM GUI. In order to start an application, a DTM has to provide a DTM Ul
Application object, which may be used to start the application and to interact with the
appligation.

The $equence diagram in Figure 140 shows how the Frame Application starts anjappligation
and how the application interacts with the DTM.

d : Starting an application)
: Frame : DTM Business
Application Logic
GUI object found |
o [ClassName found] Create :DTMWUI
! Application
|
<Init()> |
]
I
| 1, Create :Application
Register IDimUiMessaging events Application specific initialization _ ™
- | g
Register IDtmUiMessaging events |
> ay
g Application specific requests data
T <SendMessages()* <
L <SendMessages()> |
Preparation of
response data
<SendMessages()> execution,results
Preparation of response data may
| require locking of dataset if the Ui is
able to modify the instance data
| (e.g. Offline Parameterization)
<SendMessages§)> execution results
| Application receives data
<Init()> execution results [~
1
T | ! !
. . | [

Used ethods.:

IFunction.Functioninfo
IDtmUiFunction.Beginlnit() / IDtmUiFunction.EndInit()
IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Figure 140 — Starting an application

The DTM Ul Application object acts as an adapter to the external application and implements
the FDT interfaces so that the Frame Application may interact with the application. The
interactions between the DTM Ul Application object and the application is not in scope of the
FDT specification and may be implemented with private interfaces.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 201 -

8.5.12 Terminating applications

An application may be terminated similar to an embedded DTM Ul. See 8.5.6, 8.5.7 and 8.5.8.

8.5.13 Execution of command functions

The execution of a command function on the DTM BL is started via the ICommandFunction
interface. The execution of the command is triggered by BeginExecute() and EndExecute()
(see Figure 141).

sd: Execute a command function on DTM-BL)

: Frame : DTM Business
Application Logic

Eg.: N
a) Either Frame requests
values-from user

Select DTM and
Show DTM functions l

)))
Get IFunctions.Functioninfo

" o
fouzfgijr\:salll‘glt’ﬂ;}election | b) Frame uses default
Execute command parameter values from

—— P . Functioninfo
Determine parametelc')_ g
; values
{ <Execute(...parameter...)>

or

c) preconfigured e.g. by Frame
configuration

Process command

: function
<Execute()7 execution results

IEC

Used methods:
IFunction.FunctionlInfo

ICommandFunction.BeginExecute() / ICommandFunction.EndExecute()

Figure 141 — Execute a command function

8.5.1 Execution of a command function with user interface

Some Command Funciions may need to open user interfaces and therefore may require
knowing where DTM user interfaces are opened. First the UiCommandFunction is initialized
and then the execution of the command function is triggered. The following workflow
describes how a Frame Application starts the execution and passes command-specific
parameters (see Figure 142).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 202 - IEC TR 62453-42:2016 © IEC 2016

sd: Execute a command function with UICommandFunction)

: Frame :DTM
Application BusinessLogic
Select DTM and I
Show DTM functions I I
> . .
Get IFunctions.Functioninfo |
;I Offer available ITI
L furetonsfer-setlection
Execute command Refer to
B — .
Fdt.Deployment.CommandFunctioninfo
Determine parameter =
values //"’
ref) Crea%—

Sequence Instantiation of a DTM User Interface

Instantiated\on-the
computef where the

<Execute(.... parameter ...)> DTM-UI js shown

I
I
|
|
|
:DTM |
|
I
|
I
|

e« <SendMessages()>

This instance may open
Byererree a private user interface

| Procegs
commgnd
[functiop

<SendMessages()> execution results

<Execute()> execution results

Sequence Releaseof a,DTM User Interface

.
|

ref I
|
I
|
I

\ X

IEC

Used methods:

IFunction.Functioninfo

ICommandFunction.BeginExecute() / ICommandFunction.EndExecute()

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Figure 142 — Execute a command function with user interface

8.5.15 Opening of documents

In order to open a document which is provided by a DTM, the Frame Application opens the
default application for the Mime-Type of the document, for instance by calling the method
ProcessStartinfo() (provided by the operating system) (see Figure 143).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 203 -

sd: Opening a document /

: Frame
Application

Select DTM and I
Show DTM functions l
— P>

Get IFunctions.FunctionInfo

: DTM Business
Logic

—

QO Selecta

Show available
functions

opens the default application for the AN
Mime-Type of the document, e.g. with

\J

document function

Create /

=y b
T rocessStartmo:

: Viewer

Close Viewer

Application .

or Browser

Open window and

show document
content

E.g. pdf Reader

|
|
i
|
I
|
|
|
|
|
I
|
|
|

Used

IFunct

8.5.1

This
Logid

methods:

ion.Functioninfo

sequence diagram outlines, the interaction of a DTM User Interface with its Bus
over the messaging interface provided by the Frame Application (see Figure 144).

Figure 143 — @pening a document

6 Interaction between DTM User Interface and DTM Business Logic

EC

ness

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 204 —

IEC TR 62453-42:2016 © IEC 2016

sd Interaction triggered by the DTM User Interface/

: Frame
Application

: DTM Business
Logic

Erame annlication

|
<SendMessages(requestData, ProgressCallback, asyncState)>

I
I
I
Q> <SendMessages(requestData,

Progre Callback asyncState)

:DTM
Userlinterface

forwards message

) O — <

: Update Progress
to DTM Business
lel t
Logic) Ul element
ProgressCallBack(Progressinfo) ||
T |
e]
ProgressCallback(Progressinfo) I
>
> [
- Update of!
Processing of message Ukdiemerts
_ data may include
<SendMessage()> execution results | | asynchronous
et e operations e.g. upload of |
T data from the device.
D |
<SendMessages(AsyncResult)> execution results
Processing of
result data
e.g. update of
T T Ul elements
EC
Used methods:
IDtmUjiMessaging.BeginSendMessages()
IDtmUjiMessaging.EndSendMessages()

ProgrgssCallback()

NOTE
the Bg

In th
read
deriv|

The

Figure 144 <Interaction triggered by the DTM User Interface

The callback ProgressC€allback and the callback SendMessageCompleted are provided as a param
ginSendMessage

s scenario.the DTM User Interface requests data from the DTM Business Logic (e
measured. values from the device) by sending a DTM-specific request messa
ed from.the abstract DtmRequestMessage class.

DimUiMessaging interface is implemented by the DTM Business Logic and the F

pter of

g. to
ge(s)

rame

Application. The reference to the Frame Application implemented Interiace snall be passed to
a DTM User Interface with the IDtmUiFunction.<Init()> call. The Frame Application shall
forward the messages between the DTM User Interface and the DTM Business Logic.

The DTM Business Logic evaluates the requests and creates corresponding response
message(s) derived from the abstract DtmResponseMessage class. The response messages
contain the requested data and are sent back by calling the Progress and Callback methods.

More detailed information can be found in descriptions of:

IDtmUiMessaging

DtmRequestMessage

DtmResponseMessage

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 205 -

8.5.17 Interaction between DTM Business Logic and DTM User Interface

This sequence diagram outlines the sending of events from a DTM Business Logic to all its
opened DTM User Interfaces (see Figure 145).

sd Interaction triggered by the DTM Business Logity

Frame :DTM Business :DTM
Application Logic Userlinterface

NGamCaton, Which T -
F requires Ul notification Examples of changes which may

|
T
L<

I\

loop For all open DTM User Interfaces of this DTM Business Logic instance

O\ trigger this event:
+ Changes in instance data by

linstanceData::Write()
+ Changes from another DTM-UI
+ State changes like onlifie
offline state change

Event:DtmSpecificEventOccured(message data)

|

|

! I

Event:DtmSpecificEventOccured(message data) {

| Processing of
message data
| e.g. update of
Ul elements
|
1

Used methods:

Event|IDtmUiMessaging.DtmSpecificEventOccured()

Figure 145 - Interaction triggered by the DTM Business Logic

In this scenario the DTM Business Logi¢sends data to the DTM User Interface (e.g. in case of
a broken connection to the device).

The PTM User Interface(s) shall' register to IDtmUiMessaging events during initializatipn of
the OTM User Interface in ofder to receive the events.

The [Frame Applicatiop-shall forward the events from the DTM Business Logic to all DTM|User
Interfaces opened for this instance.

Following standard events are defined in IDtmUiMessaging:

— DtmSpeécificEventOccured

— TfansactionStarted

— TransactionCommitted
— TransactionClosed

The event DtmSpecificEventOccured can be used for DTM-specific notifications. The DTM
Business Logic creates corresponding event message(s) derived from the abstract
DtmEventMessage class and passes it to the event handler.

More detailed information can be found in descriptions of:

— IDtmUiMessaging

— DtmEventMessage

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 206 — IEC TR 62453-42:2016 © IEC 2016

8.5.18 Interaction between DTM User Interface and DTM Business Logic with Cancel

This sequence diagram outlines the canceling of a pending user interface message on
request of the user (see Figure 146).

sd Interaction triggered and canceled by the DTM User Interfacty

: Frame : DTM Business :DTM
Application Logic Userinterface

|
T
! <SendMessages()> |
I
I

Frame application
forwards message to

<SendMessages()> O—""i DTM Business Logic

ol
LV

Cancel

y

CancelSendMessages(AsyncResult)

2

L
%/

-

CancelSendMessages(AsyncResult)

Y

120

DTM cancels
asynchronous

<SendMessages()> result operation

- throws CanceledException

3

<SendMessages()> result

throws CanceledExegption -
__________ e =]

Frame application forwards
exception to DTM Ul

Used methods:
IDtmUjiMessaging.BeginSendMessages()
IDtmUjiMessaging*EndSendMessages()

IDtmUjiMessaging.CancelSendMessages()

Used pxceptions:

Fdt.FdtOperationCancelledException

Figure 146 — Interaction triggered and canceled by the DTM User Interface

In this scenario the DTM User Interface requests execution of an asynchronous operation
from the DTM Business Logic. During execution, the DTM User Interface sends a cancel
request. The Frame Application shall forward the CancelSendMessages() request to the DTM
Business Logic. The DTM Business Logic shall stop execution and throw an exception in the
EndSendMessages() method.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 207 -

8.5.19 Retrieving information about available Static Functions

In order to use a Static Function for a specific device, the Frame Application retrieves the
information about available static functions from the corresponding DTM instance (see
Figure 147).

sd : Retrieving information about available Static Functions)

DTM1 : DTM

: Frame Application Business Logic

get StaticFunctionInfo from IFunction
return StaticFunctioninfo o
<_____________________________\;“T\: _____
[StaticFunction of device is knoer T.His examplé describes a HART
=~ object instance of returned
m ““““““““““““ _ StatiekunctionInfo:
| The static functions for the device may be See example instance diagram
displayed to the user (e.g. as context menu) below
|

IEC

Used methods:
Event|IFunction.StaticFunctionsChanged()

IFuncfion.StaticFunctions()

Figure 147 — Retrieving information about available Static Functions

Figune 148 shows the example for-StaticFunctionlnfo data, which was retrieved from a DTM.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 208 — IEC TR 62453-42:2016 © IEC 2016

:StaticFunctioninfo

: StaticFunctionDescripti

StaticFunctionitem[0] | Applicationld = Diagnosis // optional !

Descriptor = "Retrieves the device status in Namur-Format"
Functionld = 1

Label = "GetDeviceStatus" // localized

Protocolld[0] = 036D 1498-387B-11D4-86E 1-00E0987270B9
Protocolld[1] = 98503B8F-0FFB-4EB7-BB67-F4AD6BD16DB8D
Protocolld[2] = E8624352-830D-470F-8D89-18A9EC4DB4D1
Protocolld[3] = 58001A08-C178-4A59-A76B-9EF9111CB83D
Protocolld[4] = EF708CB7-A2A1-42AF-890C-15CEB680CC12
Protocolld[5] = 2756000E-5EAB-4049-81B2-4174E4B8F4D2
Protocolld[6] = D122D172-FOC7-4B03-965B-512CD4CO871E
Protocolld[7] = 74D29D22-F752-40EF-A747-ACA72C791155

: Semanticinfo
Semanticinfos[0]

The Semanticld allows a Frame Appljcatiol
ApplicationDomain = "FDT" to distinguish different static function:
Semanticld = "NamurStatus” Or———ree ool These Semanticlds are defined by F
Group documents'to allow the identiffcation

) icF ionA D - of same StaticFunctions across diffefent
: StaticFunctionArgumentDescription DTM Viéhdors!

S

InputParameter[0] | DataType = "HartTransactionResponse" (...

Descriptor = "Cmd0 response of the device"

Id=1

IsOptional = false

Label = "DeviceData"

CommunicationRequest = "..." // insert here
<Hart CommunicationRequest(Command0) >
datatype serialized as XML

e I This stfing is used by the Frame Appl|catio|
to ideritify the FDT defined Datatype

example here : DataType returned in

CommunicationRequest()

ResultArguments[0] : StaticFunctionArgumentDeséription

DataType = "DeviceStatus"

Descriptor = "Device Status as.defined by FDT"
Id=2

IsOptional = false

Label = "DeviceStatus"

ClassWhichContainsTheStaticFunction| : DyqicClassReference

ClassNande =, "StaticFunctionProviderClass 1"

: Assemblyinfo

AssemblyInfo | Name = "ExampleAssembly"

Path = "file://xyz" // Uri

PublicKeyToken = "0123456789ABCDEF"
SupportedPlatforms = Any // enum PlatformSupport
Version = 1.89 // Version

RuntimeVersions : RuntimeVersion

StaticFunctionltem[1] CLRVersionNumber = 2.0
EEEEE——— 1 1

IEC

Figure 148 — Example: Information about available Static Functions

8.5.20 Executing a Static Function

After retrieving the information regarding the available static functions, the Frame Application
may provide triggers for execution of the Static Functions to the user (e.g. in a menu) or may
use internal triggers to execute a Static Function (see Figure 149).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 209 -
sd : Executing a Static Function)
Parent DTM : DeviceX : : DTM Static
: Frame Application Communication HART Devi.ce Function
Channel Assembly
I I I I
Static Function of device is I I I
known | | |
% show device status : : :
B
evaluate
I StaticEunctionDescrintion I I I
U for GetDeviceStatus | | |
<Connect()> | | |
[| |
establish communication I I
<Connect()> (execution results) »
o ormeclzloeatonrets) I |
<CommunicationRequest()> /|£ | |
) access device | |
<CommunicationRequest()> () »
(e] I
<Disconnect()> | | |
IIJ) I Communication D
términate communication | Response is
<Disconnect()> (execution results) » XML serialized
[D // T
Call to StaticFunction passing,CommunicationResponse as argument (//II/ !
I ! -
I I »
Static Function Result
S, . Sl o |
show DeviceStatus | | |
I I I

IEC

Used methods:
ICommunication.BeginConnect()
ICommunication.EndConnect()
ICommunication”BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

IComrpunjcation.BeginDisconnect()

ICommunication.EndDisconnect()
IStaticFunction.BeginExecute()

IStaticFunction.EndExecute()

Figure 149 — Executing a Static Function

8.5.21 Executing a Static Function with multiple arguments

If a Static Function is using multiple input arguments, that are CommunicationResponses,
then the Frame Application shall retrieve the CommunicationResponses in the same order
that is used to list the InputArgumentDescriptions (see Figure 150).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

-210 - IEC TR 62453-42:2016 © IEC 2016

sd : Executing a Static Function with multiple arguments)

Parent DTM : . Profibus : DTM Static
: Frame Application Communication : h Function
Device
Channel Assembly

Static Function of device is
known
% show device status
—————»
evaluate
[StaticFunctionDescription

<Connect()>

|5

establish communication
<Connect()> (execution results) »
bl
<CommunicationRequest(Profibus TransactionRequest 1)> |
access device
<CommunicationRequest()> (Profibus TransactionResponse 1) >
=

<CommunicationRequest(Profibus TransactionRequest 2)> |

= —r——— 0 —f———— — — —

access device

<CommunicationRequest()> (Profibus TransactionResponse 2)

1

<Disconnect()>

terminate communication
<Disconnect()> (execution results)
e

v
— 00— ——

' '
Call to StaticFunction : GetDeviceStatus (arg1 = ProfibusTransactionResponse_1, arg2 = ProfibusTransactionResponse_2)*

I | 4@5

DeviceStatus
Il

show DeviceStatus

Used methods:
ICommunication.BeginConnegt()
ICommunication.EndConnect()
ICommunication.BeginCommunicationRequest()
ICommunication®EndCommunicationRequest()

ICommunrication.BeginDisconnect()

ICommunication.EndDisconnect()
IStaticFunction.BeginExecute()

IStaticFunction.EndExecute()

Figure 150 — Executing a Static Function with multiple Arguments

8.6 DTM communication
8.6.1 General

Each communication connection for a DTM is established as a point-to-point connection. This
subclause describes the field communication related workflows. Communication Channels
implement the interface ICommunicationChannel. The interface ICommunication can be

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -211 -

accessed by the ICommunicationChannel property “Communication” and provides services for
fieldbus connection and communication requests.

In order to ensure that only the Frame Application can modify the sub-topology of a
Communication Channel, DTMs cannot directly access the ICommunicationChannel interface
of the parent channel. Instead the Frame Application provides a proxy for the channel
implementing the ICommunicationChannelProxy interface. This proxy provides access to all
Communication Channel interfaces except the interface for sub-topology management. The
proxy redirects all method calls to the Communication Channel.

8.6.2 Establishing a communication connection

The following sequence diagram describes the calling sequence of a DTM when connectiLg to

sd ishing a icati i)
Frame Ul : Child DTM : 7 ParentDTM :
Frame DTM Business Communication ‘Communication
Application Logic Channel Proxy Channel
T I I I
| I
EnableCommunication() o-—-—~___|__ ConnectMode: [\
> T T OnDemand or | I
StayConnected | I
State notConnected-standby | |
Onl hanged() — NotCor | |
%Onllne function started | | I
Lock the DTM dataset by calling | |
. PStartTransaction() <Connect()> |
W
/ |
4 C State connecting) m <Connect()>
‘ o
/| OnlineStateChanged () — Connecting)
/| |- | Establish
/ | <Connect()> (execution results) communication
/ to the device
/ <@onpect()> (execution results) u
//
/ C State connected — checkingDevice) ! |
/ L If device type is not checked, use first
Necessary only gn\ineSlateChanged() - ConnectedCheckingDev‘\cs communication to check the device type |
if device data will | ‘ - | |
be changed W All requests for device type check I
i f
\ ref
5\ Sequence Communicating with the device
\
\\ DeviceTypeCheSkFTnistied() T T
\ - T 1
\ C State connected - online) | I
\
\ Onli hanged() — Conr Online| | I
\
| |
\ ref
\ Sequence Communicating with the device
A
A | I
\\ E.g.: update user interface | |
\
\\ Save corresponding I I
&Unlock the DTM dataset by calling data if necessary
‘Comm\tTransacnon() and CloseTransaction() | |
[ConnectMode = OnDemand] ref |
> Sequence Child DTM disconnects I
) [|
T T T T

IEC

Used methods:
IDtm.EnableCommunication()
ICommunication.BeginConnect()
ICommunication.EndConnect()

Event IDtm.OnlineStateChanged()

Figure 151 — Establishing a communication connection

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

Online functions which affect the device data or the

-212 -

IEC TR 62453-42:2016 © IEC 2016

instance data

require a locked

DtmDataset. Prolonged locks shall be avoided to support multi-user Frame Applications.
Thus, it is a DTM-specific decision to balance between the granularity of online operations

and the drawback of prolonged loc

8.6.3

ks.

Cancel establishment of communication connection

This workflow describes how an ongoing connect request is canceled (see Figure 152).

If the connect action cannot be canceled, the call of the method CancelConnect() throws an

exception.

sd DTM cancels ongoing Connect operation)

: Frame I?'I'e:geusni?ens:s : Communication
Application Logic Channel Proxy

Channel

Parent DTM :
Communication

OnlineStateChanged() — Connecting
)

Cancel

<Connect()>

[

<Connect()>

s

Start establishing
connection

a)

[Cancel succeeds

CancelConnect()

>

CancelConnect()
-

L Stop establishing
CancelConnect() CancelConnect() connection
<Connect()> (FdtOperationCancelledException)
<Connect()> (FdtOperationCancelledException) [| - |
IE D ¥ N ——
OnlineStateChanged() — NotConnectedDisturbed
i |
Cancel fails CancelConnect()
FL ‘ CancelConnect()
- gl Stop establising
connection failed.
Exception FdtCannotCancelException L Connecting is
Exception FdtCannotCancelException " continued.
|
T . <Connect()> (execution results)
OnlineStateChanged () — ConnectedCheckingDevi%gi(io_nffc_t(_)i (_Efe_c_uﬂcin_r_eﬁu_ltf)_ 7777777777777777 v L]
| <
t Connect N\
succeeded
IEC
Used methods:

IDtm.EnableCommunication()
ICommunication.BeginConnect()
ICommunication.CancelConnect()
ICommunication.EndConnect()

Event IDtm.OnlineStateChanged()

Figure 152 — DTM cancels ongoing Connect operation

8.6.4

Communicating with the device

The following sequence diagram explains the Device DTM communication with the device

using a Communication Channel (

see Figure 153).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 -213 -

sd: Communicating with the device/

<CommunicationRequest()>

Child DTM : g Parent DTM :
DTM Business Communication Communication
Logic Channel Proxy Channel
T T
I |
1 |
I |
. |

|
|

T
|
|
|
|
|
|
|
<CommunicationRequest()> :

. N
i Communicate
|

<CommunicationRequest()> (execution results) with device

Used methods:
ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

Figure 153 — Communicating with-the device

8.6.5 Frame Application or Child DTM disconnect a device

Figune 154 shows the flow of messages, when a Frame Application sets a DTM offline.

It de'r)ends on the Child DTM, whether pending communication requests are finaliz¢d or
aborfed.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 214 — IEC TR 62453-42:2016 © IEC 2016

sd Child DTM disconnects)
Frame Ul : Child DTM : : Parent DTM :
Frame DTM Business Communication Communication
Application Logic Channel Proxy Channel
alt |

[DTMin state connected] State connected-online
<StopCommunication()> I
L

I
I
I
Or all online functions finished | |
I
I

is dependent on online function

DisconnectRequest.AbortPendingCommuncations
Stop communication

State disconnecting

QnlineStateChanged() — Disconnecting.

<Disconnect{DisconnectRequest)>

A

<Disconnect()>

:

alt
[DisconnectRequest. Finalize pending
AbortPendingTransactions = false] I

[DisconnectRequest. DZI Abort pending

AbortPendingTransactions = true] communication

communication

<Disconnect()> (execution results)

<Disconnect()> (execution results)

(State inactive)

OnlineStateChanged() — Inactive

LJ

State notConnected

<StopCommunication()> |

[DTM in state notConnected]

State inactive

OnlineStateChanged() — Inactive

<StopCommunication()> (execution results)

DisableCommunication()

\

_——— A

-

Used methods:
IDtm.BeginStopCommunication()
IDtm.EndStopCemmunication()

Event|IDtmOnlineStateChanged()

ICommunication.BeginDisconnect()

ICommunication.EndDisconnect()

IDtm.DisableCommunication()

Figure 154 — Child DTM disconnects

8.6.6 Terminating a communication connection

The sequence diagram shown in see Figure 155 shows how a communication connection is
terminated by a Child DTM.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 215 -

sd Child DTM terminates a connection/

Frame Ul : Child DTM : Parent DTM :
Frame DTM Business Communication
Application Logic Channel

DisconnectRequest.AbortPendingTransactions = false%
I

e

|
I
A

~
<Disconnect((3/> |
OnlineStateChanged() — disconnecting D
1)
Finalize pending
<CommunicationRequest()> execution results requests
8}
KE—mmmmm o2 R
Responses of outstanding
request
Release
<Disconnect()> execution results established
OnlineStateChanged() — notConnected e e communication
" T

Used methods:
ICommunication.BeginDisconnect()

ICommpunication.EndDisconnect()

Figure 155 — Child DTM terminates a connection

In cgse of a <Disconnect()> with argument, AbortPendingTransactions set to ‘false’, the
Communication Channel executes all outstanding communication requests. The Child|DTM
will receive responses with the respective.communication data.

8.6.7 DTM aborts communication connection

This |[sequence (Figure 156) describes the abort of a communication link to a device without
expefting any further communication response.

sd Child DTM aborts a connection)

Frame UL: Child DTM : Parent DTM :
Frame DTM Business Communication
Application Logic Channel
n I DisconnectRequest.AbortPendingTransactions = true %
| O |
. <Disconnect()>]
OnlineStateChanged() — disconnecting [i]
Abort
pending
<Disconnect()> execution results transactions
OnlineStateChanged() — notConnected | |=¢— -~ ___________________

IEC

Used methods:
ICommunication.BeginDisconnect()
ICommunication.EndDisconnect()

Event OnlineStateChanged()

Figure 156 — Child DTM aborts a connection

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 216 - IEC TR 62453-42:2016 © IEC 2016

In case of a <Disconnect ()> with argument AbortPendingTransactions set to ‘true’, the
Communication Channel cancels all outstanding communication requests. The Child DTM will
receive responses with the information that the communication request was not executed.

8.6.8 Communication Channel aborts communication connection

This sequence (Figure 157) describes how a Communication Channel aborts an active
communication connection to a device.

sd Communication Channel aborts a connection)

Child DTM : Parent Proxy: Parent DTM :
TM Business Communication Communication
Logic Channel Proxy Channel

Copnected-online : :
|

{'Framne

2 Applicafion

<CommunicationRequest()> *

Detect
communication
problems with

i) <CommunicationRequest()> *
I

AbortCallBack notificationo..__ .
AbortCallBack notification A device

1
- T .
Pass abort reason in
< nofConnected-disturbed > . AbortMessage.Details
OnlineStateChanged(NotConnectedDisturbed) |

»

| channel aborts all ’u

o . L pending communication
|<Commun|catlonRequest()> (execution results) requests |

(IAsyncResult) throws exceptions).
Further-calls (e.g. BeginCommunicationRequest() or
BeginDisconnect()) throw exceptions).

Corresponding End methods (e.g. EndCommunicationRequest |
I

IEC

Used methods:
ICommunication.BeginCommunicationRequest()
ICommunication.EndCommunicationRequest()
Used pvents:

AbortCallBack delegate

Event|OnlifeStateChanged()

EFigure 157 — Communication Channel aborts a connection

8.7 Nested communication
8.7.1 General

This subclause describes communication related to devices with gateway functionality like
remote I/Os. Nested communication is used to establish the connection to a device on a sub-
system.

The example in Figure 158 shows how a Device DTM communicates to a field device which is
connected to a Communication Channel of a Gateway DTM, which in turn is connected to a
Communication Channel of a Communication DTM. Since the Device DTM represents a HART
field device, it is communicating based on HART protocol. The Gateway DTM represents a
PROFIBUS/HART gateway (e.g. a Remote 10), that is why the Gateway DTM is

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 217 -

communicating to the gateway based on PROFIBUS protocol. The Communication DTM
represents the fieldbus interface, the DTM accesses the driver of the fieldbus interface. (This
example will also be used in other subclauses of 8.7).

Communication DTM

T represent > Fieldbus
Communication Channel Interface

PROFIBUS

PROFIBUS

Gateway DTM

Gat
? [represent > (aRelév?y

Communication Channel

HART

HART

Device DTM
[represents o Field device

Figure 158 — Example: Nested communication behavior

IEC

Gateway DTMs (e.g. for a remote I/O) have to provide one or more Communication Chapnels
that @are used by other DTMs:

The fequirement is that a DTM shall not need to know anything about the communigation
hierat{chy. Nevertheless, the structure of the sub-system is well known to Frame Appligation
and by the Gateway DTM.

The functionality for address management is always provided by the Frame Application pr by
the Rarent/DTM. Therefore each DTM has to allow setting the network parameters like| ‘tag’
and [Buslinformation’ according to the communication protocol (see also: INetworkpPata,
NetworkDatalnfo, Addressinfo).

8.7.2 Communication request for a nested connection

The sequence in Figure 159 shows an example how the HART Device DTM from Figure 158
communicates to its field device. The internal communication of the Gateway DTM and the
communication to the PROFIBUS Communication Channel are transparent to the Device
DTM.

To write a parameter to the device, the HART Child DTM calls BeginCommunicationRequest()
at the Communication Channel. The HART request is wrapped in the remote I/O channel to a
PROFIBUS communication message sent to the parent PROFIBUS Communication DTM.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 218 - IEC TR 62453-42:2016 © IEC

2016

The corresponding response is provided by the PROFIBUS Parent Communication DTM. After
extracting the HART response, the remote I/O Gateway DTM sends the response via the
Communication Channel to the HART Device DTM.

sd Example: Nested communication data exchange)

Internal service request

HART Device DTM : RIO : RIO : Profibus :
DTM Business Communication e .DTM Communication

Logic Channel way Channel
connected i | I
Write parameter | |
to device | |

i — <CommunicationRequest()>

' |

Protocel
transformation

ref

Sequence Communicating
with the device

L Internal service response,
<CommunicationRequest()> <,,,,,,,,,,,,p ,,,,, J

execution results

T T | !

Used methods:

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

Figure 159 — Example: Nested communication data exchange

8.7.3 Propagation of errors for a nested connection

In a pested communication hierarchy there may be several sources for communication e
If we|consider the example from Figure 158, possible sources are:

eld device responds to communication requests with errors (e.g. wire break)

ateway ~device (RIO) has communication problems (e.g. field device does

ateway device (RIO) has internal problems (e.g. module failure) and responds

[Tors.

not

with

F
G
cpmmupnicate) and responds with errors
G
e

[rOr'S

Fieldbus interface has communication problems (e.g. gateway device does
communicate) and responds with errors

not

Fieldbus interface has internal problems (e.g. not configured) and responds with errors

If errors occur during execution of communication requests, the error have to be propagated
back to the origin of the communication request (see 4.9.2).

In order to support fixing the problem, the DTM representing the component, where the error
occurred shall inform the user about the source of error within the CommunicationError. This
helps to avoid a situation, where the user receives several error reports (e.g. if gateway
device detects, that the field device does not respond, the Gateway DTM will produce a user
message and the Device DTM will produce a user message).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 219 -

If an intermediate component receives such a communication error, it shall in turn generate a
communication error, provide own additional information and shall pack the received
communication error as inner communication error into the generated communication error
(similar to exceptions/inner exceptions).

If the origin of communication request receives such a communication error, it shall inform the
user with a user message that includes the information from the inner communication errors.

8.8 Topology planning
8.8.1 General

The Frame Application is responsible to generate and manage the topology.

The requirement is that a DTM shall not need to know anything about the communidation
hierarchy. Nevertheless, the structure of the whole topology is well known to a Fframe
Applilcation.

Subdause 8.8.2 describes how a Frame Application creates a topology) The example in[8.8.5
shows how a Gateway DTM generates a sub-topology.

8.8.2 Adding a DTM to the topology

If a DTM is added new to the topology, a validation is exeCuted whether the DTM fits into the
topolpgy.

This |validation is executed by the Communication. Channel to which the new Child DTM is
addefd. During the validation the CommunicationiChannel may access the Child DTM.

Since the Child DTM at this point is not yet'part of the topology, the Child DTM does ngt yet
have|a Parent DTM and may not access;the Parent DTM (see Figure 160).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 220 - IEC TR 62453-42:2016 © IEC 2016

sd : Add DTM to topology)

: Frame Parent Channel :
Application Communication
Channel
*F |
Display DTM
Sg{l’es}a\iﬂd [Information of installed |
DTMs fi lecti
DTM to topology s for selection |
Ty
|
1

ref J

__________________ Child DTM T DTM
| Business Logic

Sequence Instantiation of a new DTM BL

<GetDtmInfo()>
T
<GetDtmlInfo()> execution results

< ,,
<ValidateAddChild(typelnfo, dtmSystemTag ..)> |

opt [child properties are validation relevant]

<GetDtm()> |
<GetDtm()> execution results : DtmProxy Access via DtmProxy I

<ValidateAddChild()> execution results !

T . .
Frame internal adding of | g:gdtPng,'\ngoa%;r?;:ls call
i
[the DTM to the topology | topology related operations
<ChildAdded()> | / |
<ChildAdded()> eXecution results Lb C)/ |
5 set ActiveProtocols D
|

IEC

Used methods:

IDtmIjformation.BeginGetlnfo()

IDtmIjformation.EndGetinfo()

ISubTppology.BeginValidateAddChild() / ISubTopology.EndValidateAddChild()

ISubTppolagy,BeginChildAdded() / ISubTopology.EndChildAdded()

INetworkData. ActiveProtocols

Figure 160 — Add DTM to topology

8.8.3 Removing a DTM from topology

Figure 161 shows how a DTM is removed from a topology. Before the Frame Application
removes the device node and its dataset from the topology, the Parent DTM shall validate the
removal, release all references to the Child DTM and update the internal list of modules.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 221 -

sd: Removing a DTM from topology /

Frame C;Elar;i":ig:‘gn : Child DTM
Application Channel Business Logic

Select DTM |

RNETTovVe MO OpuIvygy N

<ValidateRemoveChild()>

<ValidateRemoveChild()> execution results Validate=succesful

|
|
|
|
|
|
] |
|
|
|
|
|
|

<ChildRemoved()>
Releases all references
teChild DTM
<ChildRemoved()> and updates internal list
ISRttt of modules

ref

Sequence Release of a DTM Bl

I
Remove the;BTM |
Node from‘the

topologyand delete its |

dataset

IEC

Used methods:
ISubTppology.BeginValidateRemoveChild()
ISubTppology.EndValidateRemoveChild()
ISubTppology.BedinChildRemoved()

ISubTppology.EndChildRemoved()

Figure 161 — Removing a DTM from topology

8.8.4 Frame Application creates topology

The following sequence diagram (Figure 162) shows an example workflow how a Frame
Application first adds a Gateway DTM (for a remote 10) to the topology and afterwards adds a
Device DTM (for a HART device).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 222 - IEC TR 62453-42:2016 © IEC 2016

sd : Frame Application creates topology)

Frame
Application
Display Dtm
Information of installed
Select and add DTMs for selection
RIO DTM
—_——
ref Create

RIO : DTM
Business Logic

Sequence Instantiation of a new DTM BL

L
7777777777777777777 RIO:
Frame internal adding of Communication
[RIO-DTM to the topology | Channel
Add a DTM to RIO |
— Get IChannel.Channelinfos |
> |
Display Channelltems D |
L information l
Select a channel |
e
Display DtmDeviceTypes with | |
Select DTM with [') [
corresponding protocol for selection
same protocol | |
—_—>
ref Create | HART-DTM :
Sequence Add DTM to topology i DTM Business
I Logic

Used methods:

IChanpels.Channellnfos

Figure 162 — Frame Application creates topology

8.8.5 DTM generates sub-topology

This |sequence diagram shows the generation of the sub-topology triggered by a DTM|(see
Figune 163).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 223 -

sd: DTM generates sub-topology)

<AddChild()> execution results

<Configuration() execution result>
v

Ermm Parent DTM :
it Communication
Application Channel
|
Selectand (State running
add a child
GetDtminfoList()
Select DTM to add
<AddChild()>

e

| new() | CompositeDTM ;
: DTM Business |

| I Logic
nit
0 I < “
| C State initialized) \
InitData()) I
! V‘ ‘ Is also applicable to
St fiauri) other DIFM types,
<Configuration()> ! C ate contiguring e.d.ywith'BTM
I i
opt [Composite DTM has default child(ren)] I /
<AddChild(> | /
Get Channel Infos I f/

l new() Module DTM :

ref DTM Business

Sequence Add DTM to topology Logic

< State running >

Run()

I
|
|
|
1o |

Get Channels

(State running

»
>

=

<ValidateAddChild(..dtmSystemTag..)>

<GetDtm()>

I

<GetDtm()> execution results : DtmProxy
_____________________________>

<ValidateAddChild()> execution results

[Validate = successfull]
Frame internal adding
DTM to the topology

<ChildAdded()>

Access via DtmProxy

Update internal

subtopology
configuration

0
]

Used methods:

ITopology.GetDtmInfoList()
ITopology.BeginAddChild() / ITopology.EndAddChild()

ISubTopology.BeginValidateAddChild() / ISubTopology.EndValidateAddChild()

ISubTopology.BeginChildAdded() / ISubTopology.EndChildAdded()

Figure 163 — DTM generates sub-topology

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 224 — IEC TR 62453-42:2016 © IEC 2016

The same sequence can be used for adding Module DTMs to a Composite Device DTM and
for adding BTMs to Device DTMs.

8.8.6 Physical Layer and DataLinkLayer

IEC 61158-2 defines a wide range of possible physical media that is used by different fieldbus
protocols. Many fieldbus protocols support different physical media. For example HART
supports wired (4-20 mA) and wireless connections, while PROFIBUS supports RS485,
manchester-coded bus powered (MBP) and optical media. Even if a field device supports the
same fieldbus protocol as a communication component (e.g. fieldbus interface or gateway),
communication may be impossible, because device and communication component support

diffeW—mmmmmemees is
required.

In orfler to avoid such incompatibility during offline planning of a physical topotogy, a Frame
Application should use the physical layer information, which is exposed in<'the property
Port.PhysicalLayers.

On the other hand, different protocols may share the same physical layer/{e.g. Ethernet Hased
protocols). If a physical layer is shared between protocols, it depends additionally op the
IEC $1158-2 Data Link Layer, whether a physical connection is feasible or not.

In onder to facilitate such checks, a Frame Application, should use the data link [layer
information, which is exposed by the property Port.DataLinklayers.

For |comparison of the supported physical layér “and data link layer, the propérties
PhysjcalLayer and DatalLinkLayer are used.

The following rules apply for Frame Applications managing the physical topology:

— If|PhysicalLayer values do not match-and DataLinkLayer values do not match, the Ffame
Application shall reject the new connection.

— Iff PhysicalLayer values match-but DataLinkLayer values do not match, the Frame
Application may reject the new-connection.

— Iff PhysicalLayer values(do not match but DataLinkLayer values do match, the Fframe
Application may issue® a warning and accept the new connection, since the plgnned
physical topology miight contain transparent media converters, which are not part gf the
physical topology-in/the Frame Application.

[
=

both layers_match, the Frame Application shall accept the new connection.

See Annex | for‘examples of PhysicalLayer values.

8.9 Instantiation, configuration, move and release of Child DTMs

8.9.1 General

The following workflows describe interactions between Parent DTM and Child DTMs. Such
interactions may occur for instance between:

— Composite Device DTM and related Module DTMs
— Device DTM and related Block DTMs
— Gateway DTM and related Device DTMs

8.9.2 Instantiation and configuration of Child DTM BL

The Diagram in Figure 164 shows how a Parent DTM can create and configure its sub-
topology. In order to enable configuration of a sub-topology, the Parent DTM has to implement

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 225 —

the <Configuration()> method. The Frame Application shall call <Configuration()> when the
DTM is in state ‘configuring’.

Be aware that a Parent DTM shall add Child DTMs only to its own channels.

sd Instantiation and configuration of Child DTM BL)

Frame : Parent DTM
Application Business Logic
1 I

/ DTM in state configuring \

<Configuration()>

I
GetDtminfoList() ul)

Z Parent DTM checks which

D Child DTM types are available

GetChildNodes()

U Parent DTM determines.which

Child DTMs shall be addéd-to
complete configuration

loop All Child DTMs to add in sub-topology

ref

Sequence: DTM generates sub-topology L : Child DTM
(e.g. Composite Device DTM adds Module DTM to its sub-topelogy) Business Logic

loop / All Block / Module DTM in subtopology

ref (e.g. Composite Device DTM reads information from Module DTM:
Composite Device DTM configures Module DTMs using the methods:
Set Address,
Sequence: -

[Read Process Data information,
Read / Write Network Information,
Read / Write instance data
SendMessages)

Interaction between Parent DTM ‘and Child DTM -

<Configuration()> execution results
< ______________________________

EC

Used methods:

IDtm.BeginConfiguration()
IDtm.EndConfiguration()
ITopology.GetDtmInfoList()

ITopology.GetChildNodes()

Figure 164 — Instantiation and configuration of Child DTM BL

8.9.3 Interaction between Parent DTM and Child DTM

Figure 165 shows how a Parent DTM can exchange data with its Child DTM.

Be aware that for interaction between DTMs only the interfaces shall be used which are
provided by IDtmProxy.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

Used

- 226 —

IEC TR 62453-42:2016 © IEC 2016

sd:Interaction between Parent DTM and Child DTM

J

| -

u—»

Usage of these interactions
depends on protocol and DTM
specific requirements. They may
occur several times and in any
desired order.

<GetProcessData()> ’JT

Frame : Parent DTM : Child Dtm
Application Business Logic Business Logic
| <GetDtm()> l
% Create |
:DtmProxy |
<GetDtm()> : DtmProxy |
| I
I J DtmType ! |
’J_‘ Activel: 'r_\
|

<GetProcessData()>

<GetProcessData()> results

| <GetProcessData()> results

GetAddressinfo()

SetAddressinfo()

GetAddressinfo() ﬁ

D SetAddreésihtol) a]

GetNetworkDatalnfo(|

SetNetworkData()

) D GetNetworkDatalnfo() |

SetNetworkData()

<GetDatalnfo()>

4 <GetDatalnfo()>

<Read()> results

|
‘ <Read()> |

DQ__iﬁiaEQiieff'ls____ﬂ

<Write()> <Write()>
1 0 |
| <Write()> results
<Write()> results -D< *****************
<SendMessages()> - <SendM Jes()> |

Release

methods:

IEC

ITopology.BeginGetDtm() / ITopology.EndGetDtm()

IDtmProxy.Dispose()

IDtmProxy.DtmType

IDtm.ActiveType

IProcessData.BeginGetProcessData() / IProcessData.EndGetProcessData()
INetworkData.GetAddressInfo() / INetworkData.SetAddressinfo()
INetworkData.GetNetworkDatalnfo() / INetworkData.SetNetworkData()

linstanceData.BeginGetDatalnfo() / linstanceData.EndGetDatalnfo()

linstanceData.BeginRead() / linstanceData.EndRead()

linstanceData.BeginWrite() / linstanceData.EndWrite()

Figure 165 — Interaction between Parent DTM and Child DTM

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 227 -

8.9.4 Interaction between Parent DTM and Child DTM using IDtmMessaging

This sequence diagram outlines the interaction between two DTMs using the IDtmMessaging
interface.

sd Interaction using DtmMessaging interface)

: Frame Parent: DTM Child: DTM
Application Business Logic Business Logic

| |
| Al calls via DTM Proxy |

— |

'
<SendMessages(requestData, ProgressCallback, asyncState)>

1 <SendMessages(requestData, |

Progress, Callback, asyncState)> ﬁ
l> ProgressCallback(Progressinfo)

|

|

|

|

|

|

|

|
o Processing
of progress
information

<SendMessage()> execution results

S |

<SendMessages(AsyncResult)> execution results |

_____________________________ TN\ T T Processing of
result
messages

T Ly
[

IDtmMessaging.BeginSendMessages()

Frame application
forwards message
to DTM Business
Logic of Parent
(or child)

ProgressCallBack(Progressinfo)

-

Used methods:

IDtmMessaging.EndSendMessages()

Figure 166 — Interaction using IDtmMessaging

In this scenario_therDTM Business Logic of a Child DTM sends a list of proprietary mesdages
to its|Parent DTdvt. The Frame Application provides access to the IDtmMessaging by megns of
the IDtmProxy./It shall forward the messages to the corresponding DTM.

More| detailed information can be found in descriptions of:

— IDtmMessaging
— DtmRequestMessage

— DtmResponseMessage
8.9.5 Parent DTM moves a Child DTM

Figure 167 shows how a Parent DTM can move one of its Child DTMs from one channel to
another channel.

Be aware that a Parent DTM shall move Child DTMs only between its own channels.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 228 —

IEC TR 62453-42:2016 © IEC 2016

sd:Parent DTM moves Child DTM)

Sequence: Interaction between ParentDTM and Child DTM

Frame : Parent DTM Communication Cormmanication
Application Business Logic Channel 1 Channel 2
o I |
Move Child = It is expected that a DTM only calls
> MoveChild if the preconditions are |
N N N — fulfilled to avoid that later adding the
<MoveChild()> o— child to the target channel will fail. |
<ValidateRemoveChild()> | :
VattateRemMoveCHTiT) = A/aliday =
T I {F I
<ChildRemoved()> |
eleases all references to |
<ChildRemoved()> execution results Child DTM |
e, - And updates internal list of
| modules |
<ValidateAddChild()> | |
| %
<,,,,,,,,,,,,,,,,,,,,,,,,fYa”dE‘PﬁEdEhi"iQiefPE‘ifPDLEEE'ETl ,,,,,,,,,,,,,,,,,,,, %2 Validation
In case of failed ValidateAddChild, the Frame Application must | |
)-—— move the Module / Block back to the original channel. The DTM | |
is expected to accept the move to the original channel. | |
<ChildAdded()> |
T
| Updates
| internal
list of modules
ref

Used

ITopo

methods:

logy.BeginMove€hild() / ITopology.EndMoveChild()

ISubTppology.BeginValidateAddChild() / ISubTopology.EndValidateAddChild()

ISubTppology.BeginChildAdded() / ISubTopology.EndChildAdded()

ISubTppology.BeginValidateRemoveChild() / ISubTopology.EndValidateRemoveChild()

EC

ISubTopology.BeginChildRemoved() / ISubTopology.EndChildRemoved()

Figure 167 — Parent DTM moves a Child DTM

8.9.6 Parent DTM removes Child DTM

Figure 168 shows how a Parent DTM can remove one of its Child DTM

Be aware that a Parent DTM can remove only its own Child DTMs.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 229 —

sd:Parent DTM removes Child DTM /

Frame : Parent DTM 2 PG U : Child DTM

g I . Communication 7 "
Application Business Logic
Pp! g Channel Business Logic

| I
I I
I Remove child I
I I

i

I

<RemoveChild()>

I
I
I
I
I
1
|
I
<ValidateRemoveChild()> E‘]> |
I
I
I
I
I
I
I
I
|

i <ValidateRemoveChild()> execution results ﬂ Validate=succesful

<ChildRemoved()>

L

Releases all references
to Child DTM

<ChildRemoved()> execution results| and updates internal list

of modules

ref

Sequence Release of a DTM BL

EC

Used methods:
ITopology.BeginRemoveChild() / ITopelogy.EndRemoveChild()
ISubTppology.BeginValidateRemoveChild() / ISubTopology.EndValidateRemoveChild()

ISubTppology.BeginChildRemoved() / ISubTopology.EndChildRemoved()

Figure 168 — Parent DTM removes Child DTM

8.10(Topology scan
8.10f1 General

For a description of the general mechanism see IEC TR 624532:-, 6.2.

8.10.2 Scan of network topology

The following workflow describes, how a Frame Application can request a list of connected
devices and their protocol-specific device identification information from a Communication
Channel (see Figure 169).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 230 - IEC TR 62453-42:2016 © IEC 2016

Sd : Scan of network topology /

Frame Channel1:
o Communication
Application Channel
Scan N <ScanRequest(ScanRequest)>
—

Protocol specific

Ue}dmon of

device live list.

Loop: all devices/ .
Intermediate %et ?F;VI??
DeviceScaninfo identingguiory
- information

[1..n] ProgressCaIIback(O)//
Update progress indication.
I

Optional user interface refresh
{ to update list of found devices

<ScanRequest(DeviceScaninfo)> execution results

) J

ref Sequence
Scan based DTM assighment

Used methods:
IScanping.BeginScanRequest()
IScanfping.EndScanRequest()

ProgrgssCallback

Figure 169 — Scan of network topology

The final result data for'the scan received with the IScanning.EndScanRequest() contalins a
list of DeviceScanInfo objects where each object contains information about a single dpvice
found on the bus.\\f the order of devices is relevant for the protocol of the Communidation
Channel, the order of objects in the final result list shall match the order of the devices on the
bus. [Contrary_to the final result, the order of devices in the intermediate results may depend
fromthe scanning algorithm and may differ from the final result.

For imformatiom—omfrow—a protocot=specific DeviceScaminfo(T)—cam be—transformed—mto a
protocol-independent DeviceScanlnfo, please refer to the datatype definition (see Annex B).

8.10.3 Cancel topology scan

Scanning a sub-topology may take some time. The FDT methods are designed to be called
asynchronously. If a Frame Application calls the scan methods asynchronously,
CancelScanRequest() may be called to cancel an ongoing scanning operation in the
Communication Channel. The following sequence shows the related flow of events (see
Figure 170).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 231 -
sd : cancel topology scan/
Fr.ame' corcrzrl:::i?:l;t:ion
Application Channel
Scan I I
] <ScanRequest()>

Protocol specific
determination of

device Time Tist.

Intermediate
DeviceScanlInfo(T)

Loop J [all devices]

ProgressCallback(~)

Get device
identification

Update progress indication.
Optional user interface refresh
to update list of found devices

Cancel

information

Break J [cancelled]

CancelScanRequest(AsyncResult)

\J

Stop
requesting
device
identification

information

<ScanRequest()> execution results : Fdt-FdtOperationCancelledException
< ___

Frame Application specific handling and
E< indication of incomplete scan.

Used methods:
IScanping.BeginScanRequest()
IScanping.CancelScanRequest()

Callbgck ScanProgress

Figure 170 — Cancel topology scan

Scan based DTM assignment

events (see Figure 171).

1EQ

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 232 -

IEC TR 62453-42:2016 © IEC 2016

sd : Scan based DTM assignment/

Scan Network topology

Frame S
Application equence

Deviceldentinfo

DTM1: DTM
Business Logic

re
-
-
-

DeviceScanlnfo is availablg/
from scanning the
subtopology

T
loop J All DtmDeviceTypes of all DTMs with same Protocolld

I
I
I
I
I
I
Vi

GetDeviceldentInfo(typeld, busCategory) : FdtList<Deviceldentinfo>

Match(DeviceScaninfo) : DeviceldentMatchResult

y

\{

Apply Frame Application specific
rules to identify a proper DTM for
the scanned device based on
matching values

[; Optional: Request user confirmation

Assign DTMDeviceType to device
node. Add DTMDeviceType to
topology

|
i
|
|
|
|
|
|
|
|

I
I
;
I
i
I
:
I
I
I
I
I
I

ref

'

Sequence Set DTM addresses without Ul

[IdentSupportDTM] Optional start
of HardwareScan O

See Manufacturer
- specific device
identification

Used methods:
IDtmInjfformation.GetDeviceldentInfo()

Devicg¢ldentValue<T> Match()

implementing IHardwarelnformation interface to identif
specific operation shall be performed (see Figure 172).

Figure 171 — Scan based DTM assignment

EC

DTM

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 233 -

sd : Manufacturer-specific device identification)
Frame DTM2: DTM
Application Business Logic
Scan ref
—> Sequence
e — Scan of network topology

Search for best DtmDeviceType by evaluation of
DeviceldentMatchResult = DeviceldentInfo.Match(DeviceScaninfo)

DeviceScanlnfo available.
One or more matching

Deviceldentinfos found IdentSupportDTM
implements
IHardwarelnformation
Frame Application specific decision to assign the DTM
D:| with DeviceldentInfo.SupportLevel.ldentSupport
Create Ider@B/upportDTM:
DTM Business
Logic
Add DTM to topology and set bus
DZ' address at CommChannel |
Set DTM online
<HardwareScan()> ﬁ
Read device type
specific online
<HardwareScan()> execution result identification from

Set DTM offline

Search for best DtmDeviceType by evaluation of
DeviceldentMatchResult = Deviceldentinfo.Match(DeviceScaninfo)

opt
[Frame Appliction specific]

y
_ — — -

Remove
DZl IdentSupportDTM
from topology
ref

Release DTM Sequence
» Release DTM BL

Use protocol specific DeviceScanlnfo (e.g. ﬁ |

HARTDeviceScanlinfo) returned by
IHardwarelnformation::HardwareScan()

[
|
|
|
|
|
|
|
|
|
|
|
Pttt device |
|
|
|
1
|
|
|
|
|
|
|
|

=™

[DeviceScaninfo with O~ |
device(ident specific info] ref J Sequence
—f > Scan based DTM assignment
L (add DTM2 to topology and set address)
T

EC

Used methods:

IHardwarelnformation.BeginHardwareScan()

IHardwarelnformation.CancelHardwareScan()
IHardwarelnformation.EndHardwareScan()

DeviceScanlnfo

Figure 172 — Manufacturer-specific device identification

For more information on manufacturer-specific device identification refer to IEC TR 62453-
2:-,6.2.4.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 234 - IEC TR 62453-42:2016 © IEC 2016

8.11 Configuration of communication networks
8.11.1 Configuration of a fieldbus master

Device-specific bus parameters are needed to configure the fieldbus master or communication
scheduler. To retrieve these parameters an interaction between DTMs and a master
configuration tool (e.g. provided by Master Communication DTM or by Frame Application) is
required. Bus-specific data information is provided by Device DTMs in NetworkDatalnfo and
contains the device specific bus information according to the fieldbus-protocol-specification
(see FDT Protocol Annex specifications for protocol-specific definitions).

Whe W Sy O v AS; 3 O e can
comrission the fieldbus (see Figure 173). For that purpose, it uses protocol-specific\mjaster
configuration information from each network participant and calculates the bus parametgrs of
the cprresponding master device.

The master configuration can be provided by the DTM (Figure 173) repfesenting thg bus
master hardware or by a bus master-specific Frame Application.

sd Configuration of a fieldbus master /

o (T Master :
A' licati Communication Slave :
pplication DTM Device DTM

|
— Register to NetworkDatalnfoChanged Handler I

»

| g

Configure BusMaster o I Tosupport this sequence, all Device DTMs
=T should have write access to their dataset.
loop Al children GetNetworkDatalnfo()

Calculate new
configuration parts
for the slave devices
opt Only if busmaster configuration
changes slave\data

=
loop i
J Afgyircren SetNetworkData()

NetworkDatalnfoChanged()

I
|
[
i
|
|
|
|
|

May trigger further
> protocol specific
D" actions.

-
-

IChildDtmEvents::
NetworkDatalnfoChanged()

NetworkDatalnfoChanged()
<

IEC

Used methods:
INetworkData.GetNetworkDatalnfo()
INetworkData.SetNetworkData()

Event IChildDtmEvents.NetworkDatalnfoChanged()

Figure 173 — Configuration of a fieldbus master

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 235 -

The transfer of the network information to the network (master device and/or field devices) is
protocol-specific or product-specific. For description of protocol-specific rules please refer to
the respective protocol annex.

8.11.2 Integration of a passive device

This section shows the sequence when integrating information for a passive device as part of
network configuration (see Figure 174).

sd : Integration of a passive device /

: Frame c Mastgr : q Fieldbus Power Supply : Slave :
YR ommunication . .
Application DTM Device DTM Device-DTM

I I
Optionally register to NetworkDatalnfoChanged Handler

1 -
%

»
|

| i

Configure BusMaster l I
|

|

Read Info GetNetworkDatalnfo()
Power Supply

!
Returns information indicating power supply,tapabilities

|

]

|

|

|

|

|

|

. I

M All other GetNetworleataInfo() _ ﬁ
} >

I

I

|

|

|

|

|

children

1
Returns information indicating power consumption of device

Check if power

|
1
supply capabilities |
are sufficient to
supply all other I

devices

IEC

Used methods:

INetwoprkData.GetlNetworkDatalnfo()

Figure 174 — Integration of a passive device

Afterlrefrieving the NetworkDatalnfo from the Device DTM for the fieldbus power supply and
for the field devices, it is possible to compare the power consumption of the field devices with
the power provided by the fieldbus power supply. If the consumption exceeds the provided
power, the user should be informed.

8.12 Using IO information
8.12.1 Assignment of symbolic name to process data

Figure 175 shows an example workflow of how a PLC Tool Frame Application assigns an 10
Signal defined by IProcessData to a variable used for PLC programming.

NOTE The same mechanism is used for assignment of variables in DCS tools. This process may be referred to as
“DCS channel assignment”.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 236 — IEC TR 62453-42:2016 © IEC 2016

The Frame Application first fetches a list of available process data (10 signals) from the DTM.
It can then offer the user to assign a symbolic name to each of the IO signals contained in the
list of process data. (See IEC 61131-3:2003, 2.4.3.1, Type assignment)

The symbolic variable name defined in the PLC program is stored in the property
“FrameApplicationTag” of 10Signalinfo. If an 10 Signal is used by the Frame Application (in a
PLC program or otherwise), then this shall also be indicated by the property “IsLocked” of
IOSignalinfo. Setting of the FrameApplicationTag and IsLocked is done using the method
SetlOSignallnfo().

sd_: Assignment of process data J

B LRI : Child DTM IDataSet : ParentDTM
Application
e it

IProcessData::SetlOSignallnfo ()

|

<GetProcessData()> I
<GetProcessData()> execution results eﬁ) l
|

|

I

StartTransaction()

T

Intérnal apply

|

|

CloseTransaction() |

ProcessDataChanged Q
I

|

i

|

|
-

I
ProcessDatalnfoChanged()
|
L |

J

Used methods:
IProcqssData.BeginGetProcessData()
IProcqgssData.EndGetProcessData()
IProcqssData.SetlOSignallnfo()

IDatadet{StartTransaction()

IDataset.CloseTransaction()
Event IProcessData.ProcessDataChanged()

Event IChildDtmEvents.ProcessDatalnfoChanged()

Figure 175 — Assignment of process data

A Frame Application shall set only the FrameApplicationTag for 10 signals provided by a DTM
directly using IProcessData. If a DTM provides 10Signals for Child DTMs (see 4.4.4) then the
Frame Application shall set the respective properties at the Child DTMs, but not at the Parent
DTMs.

Alternatively the interface IProcessimage can be used if it is provided by the corresponding
Parent DTM (see 8.12.4) to change 10Signals properties for Child DTMs.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 237 -

Note that assignment of process data to a PLC variable using the interface IProcessData is
protocol-specific. Protocol independent assignment can be done using interface
IProcessimage.

8.12.2 Creation of Process Image

This sequence shows the creation and publishing of the process image by a DTM
representing a busmaster (see Figure 176). Note that this sequence diagram shows no
validation of changes. Validation is described in 8.12.3.

If the user changes the 10 Configuration e.g. on a DTM-specific interface of a Device DTM the
Frame Application receives a notification about this change. The notification is then forwarded
to the Busmaster DTM. Since the notification contains the IDs of accessible data which is
chanped, the Busmaster DTM can examine the changes. Depending on the kind-ofichgnges
the Busmaster DTM might fetch the process data of the Device DTM and .Cachq this
inforgnation.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 238 — IEC TR 62453-42:2016 © IEC 2016

sd : Creation of process image)
: Device DTM ENL BDI'.II.sJaSIer A;:)pFI:(a::Itie;)n BM : DataSet
I
Register process data changed event I I
L I
[— I
Register processimage changed event
Change ’T] |
Change of 10 I I I
Configuration | | |
ProcessDatfaChanged event . |
| >
I Call via Proxy % I Pro D foC 0 ’_LI_b I
I : L I
I I I
I <GetProcessData()> I I
" | |
<GetProcessData()> execution results I I
_______________________ = StartTransaction() | |
C
| Croae |
| D Image |
| Write to DataSubsetI
I Commit and CIoseTransa(I:tion()
J »
I ProcessimageChanged event I
I - |
:) <GetProcesslmagelnfo()> :
| [|
I <GetProcessimagelnfo()> execution result§ I
I N Use for - I
I | Application I
specific
I I purpose |
! | | |
IEC
Used methods:
IProcqssData.BeginGetProcessData()

IProcsq
Event
IProcq
IProcsq
IProcq
Event

IDatag

ssData.EndGetProcessData()
IProcessData.ProcessBataChanged()
sslmage.BeginGetProcessIimagelnfo()
sslmage.EndGetProcessImagelnfo()
sslmage.EndGetProcessimagelnfo()
IChildRimEvents.ProcessDatalnfoChanged()

et,8tartTransaction()

|Datad

8.12.

The sequence diagram shown in Figure 177 shows the validations which can be done in case
a PLC tool Frame Application supports changes of the configuration while the PLC is running.

let CloseTransaction()

Figure 176 — Creation of process image

3 Validation of changes in process image while PLC is running

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 239 -
sd : Validation of changes while PLC is running)
A PLC Tool Frame
Device DTM Busmaster DTM Application
: !
Change of | 1
10 Configuration | <validateMetworkInfo() > H
Call via ProxyDTM Analyze Impact
<validateProcessimage (=

Seguence

Creation of Process Image

Used methods:
INetw
INetw

IProcq

IProcq

8.12 4—€tanyging of varfabte mamesusing processimage-interface

rkinfoValidation.BeginValidateNetworkInfo()
rkinfoValidation.EndValidateNetworkInfo()
sslmageValidation.BeginValidateProcessimage()

ssImageValidation.EndValidateProcessimage()

Figure 177 — Validation of changes while PLC is running

Analyze
Ifnpact
alt [vilidation succeeded] <validateProcessimage()s execution result (= true)
<validateMetworklnfo()> execution result (= true)
-
L
[validation failed]) .
<validateProcessimage ()> execution result (= false)
lgnpre
Rollback Process-
Process Imque
<validateMetworkinfo ()= execution result (= false) Image
Rallback change of 10 | T
configuration 1 |
i |
1 |
| 1 |
T T T
! ! !
IEC

Figure 178 shows how a PLC Tool Frame Application can change the names of variables

using the Process Image interface.

The DTM shall also forward the call to corresponding Child DTMs by calling SetlOSignallnfo
on the Process Data interface of the Child DTM.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 240 -

IEC TR 62453-42:2016 © IEC 2016

sd : Changing of variable names using process image interface)

Change name
of a variable |
ST e

A

PL;:;::' 8 : Busmaster Busmaster DS :
LU DTM DataSet
Application

Child : DTM
Business Logic

[10 signal referenced by a
ProcessImageSection]
IProcessimage::SetlOSignalinfo()

>
>

StartTransaction()

Modify |

instance
data |

I

Child DS :
DataSet

=T

'
|IProcessData::SetlOSignallnfo()

StartTransaction()

Internal
]:| apply

Write DataSubstet

CloseTransaction()

»

alt
[SetlOSignallnfo()

succeeded]

ProcessimageChanged

[SetlOSignalinfo failed]

FdtOperationFailedException

CIoseTransaction(‘_))/
e —

Rollback changesy
No CommitTransaction()

—_——

>

Used methods:

IProcqssimage.SetlOSignallnfo()

IProcqssData.SetlOSignallnfo()

IDataget.StartTransaction()

IDataget.CommitTransaction()

IDataget.CloseTransaction()

8.13

8.13 . 4——Set DTFM-address—with-user-interface

Managing addresses

Figure/478 — Changing of variable names using process image interface

EC

In this scenario the Frame Application requests setting child device addresses at the parent
Communication Channel (e.g.: bus master DTMs). This sequence is started (see Figure 179)
for example when a new DTM is added to the topology. A similar sequence can be applied if a
Frame Application offers changing the address of a DTM manually.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 241 -

sd Set DTM address with Ul J

Alternatively, the DTM-UI could directly ask the

1
Request the current child address info.
Frame for the ChildDTM and request address info not

Create Child Proxy
<GetDtm()> (execution results)

]
I
I
|
I
\
‘H LE) GetAddresslnfo via Child Proxy
|
I
I
I
I

via ist DTM-BL
I

Y

e ParentDTM : ParentDTM :
Al lication DTM Communication
PP BusinessLogic Channel
L I
Add child 1 1
— > ref Create ChildDTM : DTM
> Sequence Add DTM to topology Logic

T T |
! Register AddressinfoChanged event I
I I gl

1
<SetChildrenAddresses(> o—— —— | |
I - = OpenUserinterface |
<OpenDtmUiModal()> :? I
N l | }

— Croate | A
User Interface I
Init | |
I

* <SendMessages()> via Proxy |
<GetDtm()> |
1

<SendMessages()> (execution result) via Proxy

Show current child
address

Request child bus

address/from user If address cannot be set, N\
FdtinvalidValueException is
thrown in SetAddressinfo.
Parent-DTM BL can inform
Parent-DTM Ul, which can
handle the situation.

|
|
|
|
|
a

Enter address and close

etAddressinfo() via Child Proxy

|
I
|
|
|+ <sendMessages()>
d
I

Check
validity of
address

1
[Address accepted]:AddressinfoChanged,event'

AddressInfoChanged I I
e — [Address set]
D Store new
)
u

address

<SendMessages()> (executionyestits)

H
IoseMeRequestCaHback
ref J
Sequence Release DTM User Interface
OpenDtmUiModal() (execution result) T

7777777777777777777777 : >D |
<SetChildrenAddresses()> (execution result) |
|

M

et

(
0 I
| ! I

IEC
Used methods:

ISubTppology.BeginSetChildrenAddresses() / ISubTopology.EndSetChildrenAddresses()
IFramgUi.BeginOpenDtmUiModal() / IFrameUi.EndOpenDtmUiModal()

IDtmUjiFunction Beginlnit() / IDtmUiFunction.EndlInit()
IDtmUjiMessaging.BeginSendMessages() / IDtmUiMessaging.EndSendMessages

CloseMeRequestHandler

ITopology.BeginGetDtm() / ITopology.EndGetDtm()
INetworkData.GetAddressInfo() / INetworkData.SetAddressinfo()
Event INetworkData.AddressInfoChanged()

Event IChildDtmEvents.AddressInfoChanged()

Figure 179 — Set DTM address with Ul

8.13.2 Set DTM addresses without user interface

The following example shows the sequence of setting Child DTM addresses after scanning
and DTM assignment. The Frame Application requests at a Communication Channel to set a
number of known device addresses at Child DTMs (see Figure 180).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 242 -

IEC TR 62453-42:2016 © IEC 2016

sd : Set DTM addresses without Ul /

S ETame Parent DTM :
Application Communication
PP Channel
' |
< DeviceScaninfo[] is available > |
w !
| 'oop/ |
Create
All ; Child DTM :
scanned | DTMLBu§iness
devices) | ogic
Init T
Register AddresslnfoChan'ged event 1_,_1
| =
Add child
[; to Frame topology I
|

addressList = ad

setAddressMode = NoUserlIntefface

dresses of scanhed devices 5

<SetChiIdrenAddresses(<f;

GetChildNodes()

S

A

loop J <GetDtm()>

All added I) <GetDTM()> execution results
DTMs s S

AddressinfoChanged event

SetAddressinfo()

\ J

AddressInfoChanged()

T A
v

<SetChildrenAddresses()> execution results
< ,,,,,,,,,,,,,,,,,,,,,,,,,,,

Used
ISubT

ITopo

methods:

bpolagy.BeginSetChildrenAddresses() / ISubTopology.End

logy:GetChildNodes()

SetChildrenAddresses()

ITopology.BeginGetDtm() / ITopology.EndGetDtm()

INetworkData.SetAddressInfo()

Event

Event

8.13.

INetworkData.AddressInfoChanged()

IChildDtmEvents.AddressIinfoChanged()

Figure 180 — Set DTM addresses without Ul

3 Display or modify addresses of all Child DTMs with user interface

In this scenario Frame Application requests to display or modify all Child DTM addresses at a
Parent DTM. This sequence (see Figure 181) for example is started when a user selects the
corresponding menu entry in context of a Communication DTM or a Gateway DTM.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 — 243 -
Sd Display or modify child addresses with UI)
Parent DTM : n .
:Frame . Child DTM :
Application SEUSTReSS DTM Business
Lol Logic
SetChildDTM [FunctionInfo() I
addresses
at the parent
DTM UI)
—>
ref
Parent DTM :
Sequence new() DTM User
Instantiation of a DTM User Interface Interface

GetChildNodes() I

<GetDtm()> |

A

All children

loop I _

|
> <GetDtm()> execution results

—

GetAddressinfo() via Proxy

Display addresslist
[of children

»

Change
child address

» SetAddresslinfo() via Proxy

I
I
I
I
|
I
I
|
I
I
I
I
I
I
I
I
I
I
AddressInfoChanged]
I
I
I
I
|

\

AddressInfoChanged()

>¢ DtmSpecificEventOccurred

Close DTM User Interface |
. ref
Sequence '

| Release DTM User Interface
T

EC

Used methods:

IFuncfion.Functioninfo

ITopology.GetChildNodes()
ITopology.BeginGetBtni() / ITopology.EndGetDtm()
INetworkData.GetAddressinfo()

INetworkDataySetAddressinfo()

EventUNetworkData-AddressinioChanged
Event IChildDtmEvents.AddressInfoChanged()
Event IDtmUiMessaging.DtmSpecificEventOccured()

Figure 181 — Display or modify child addresses with Ul

8.14 Device-initiated data transfer

Some protocols support data transfer services which are initiated by the device and not by the
DTM. A Communication Channel supports this by providing the ISubscription interface. For an
example of device initiated data transfer see Figure 182.

A Child DTM requests the ISubscription instance from the Communication Channel of the
Parent DTM to access the subscription services.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 244 — IEC TR 62453-42:2016 © IEC 2016

The infrastructure (e.g. filter, service queue) for such services is initiated by a protocol-
specific request of the DTM to initialize the subscription.

The device initiated data transfer is transported by multiple invocations of the
SubscriptionCallback() of the DTM with protocol-specific communication responses as
arguments.

The infrastructure for these services is terminated by a protocol-specific request of the DTM
to terminate the subscription.

d e Dovieoimtiatoddatetramctor_]

Parent : Parent :
: Device DTM Communication Communication : Device
ChannelProxy Channel
1 get Subscription interface

get Subscription interface

<SubscriptionInitialization()>

v
- —] — [— —

Setup of
Communication
Infrastructure

<Subscriptionlnitialization()> execution results
< _____________________________

Data Transfer from Device

J— — 1

A

SubscriptionCallback(transactionResponse)

SubscriptionCallback(transactionResponse)

T
<SubscriptionTermination()> : |

> <SubscriptionTermination()>

<SubscriptionTermination()> execution results

Termination of
communication
Infrastructure

<SubscriptionTermination()> éxecution results

EC

Used methods:
ICommunicationChannelProxy.Subscription()

ICommunicationChannel.Subscription()

ISubs ri:ﬁﬁnn Rncian|herrir\finnlniHnIi79Hr\n() L IQlthr‘rir\finn I:ndQl|herrir\finn|niHn|i79Hr\n()

Fdt.Communication.SubscriptionCallback()

ISubscription.BeginSubscriptionTermination() / ISubscription.EndSubscriptionTermination()

Figure 182 — Device-initiated data transfer

8.15 Reading and writing data
8.15.1 Read/write instance data

The following sequence diagram (Figure 183) shows how instance data is read from / written
to the instance dataset using lInstanceData interface.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

— 245 —

Read/write instance data)

<_ ______________________________

Fr_ame: :DTM Bu_siness o BE{Ee,
Application Logic
| ! I
| C DTM in state running) |
<GetDatalnfo()> I |
P |
<GetDatalnfo()> execution results I |
D] |
i |
loop / All data objects that shall be read
<Read()> | |
<Read()> execution results >
e |
Change values to be | |
[written
<Write()> B’] |
J‘> StartTransaction() |
Validate / change
values in instance
{ dataset
CommitTransaction()
DataValueChanged >
ModifiediInDtmChanged
[data structure has-changed] DatalnfoChanged
- CloseTransaction()
<\Write()> execution results '7

Used

linsta

IData

ceData.GetDatalnfo()

et.StartTransaction)/1Dataset.CommitTransaction) /L 1Dataset.CloseTransactionl)
7 7 7

IDataset.TransactionStarted / IDataset. TransactionCommitted /IDataset. TransactionClosed

linstanceData.BeginRead() / linstanceData.EndRead()

lInstanceData.BeginWrite() / linstanceData.EndWrite()

Event linstanceData.DataValueChanged()

Event lInstanceData.DatalnfoChanged()

Figure 183 — Read/write instance data

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 246 - IEC TR 62453-42:2016 © IEC 2016

8.15.2 Read/write device data

The following sequence diagram (Figure 184) shows how device data is read from / written to
the device using IDeviceData interface.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 — 247 -
Read/write device data)
: Fl_'amfz DTM Btllsiness : Dataset Commu.nication
Application Logic Channel

I

| DTM Business Logic

| is in state connected

L <GetDatalnfo()>

<GetDatalnfo()> execution results

-
loop / |All data objects that shall be read | _
— Dovosbalo e oo s
If> ___—{access.
StartTransa(%(;n()

|°°P) Read all values

<Communioa:tionRequest()

| from

<CommunicationRequest()>-execution result
~<-- L

Read

| device

<Read()> execution results

CloseTransaction(

5 I
] |
|

< _______________________________
ch lues to b N |
ange values to be
writteg | Dataset shall be locked to avoid concurrent]
[access to device and instance dataset.
<Write()> | In this sequence, values are not changed in
the instance dataset, only in the device!
o i
StartTransaction() |
| 4-0 [optional] <CommunicationRequest()> |
—— | » |
Optional if business rules-tequire [< | o
reading device values for |
validation Validate values| |
toop) write ail vai |
rite al values <CommunicJtionRequest()
i : Write
to
| device
<CommunicationReqt,|est()> execution result‘d]
CommitTransaction() |
ModifiedInDeviceChanged
<

-

CloseTransaction() |

<Write()> execution resuls

I

I

[data structure has changed] DatalnfoChanged | |
I

S |
I

...... g

Used methods:

linstanceData.GetDatalnfo()

|Dataset.StartTransaction() / IDataset.CommitTransaction() / IDataset.CloseTransaction()

IDataset.TransactionStarted / IDataset.TransactionCommitted /IDataset. TransactionClosed
IDeviceData.BeginRead() / IDeviceData.EndRead()
IDeviceData.BeginWrite() / IDeviceData.EndWrite()

Event IDeviceData.ModifiedInDeviceChanged()

Figure 184 — Read/write device data

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

8.16
8.16.1

— 248 — IEC TR 62453-42:2016 © IEC 2016

Comparing data

Comparing device dataset and instance dataset

In order to compare the data of a DTM instance with the data of the respective device, the
action <DeviceDataCompare()> (defined in 5.13.2) is executed (see Figure 185).

sd:

compare device data)

: Frame :DTM

Apphieation Busit gie

Compare n
— <DeviceDataCompare> |

<DeviceDataCompare> execution results
s ————————

Compare instance
data with device data

Used methods:

IComparison.BeginDeviceDataCompare() / IComparison.EndDeviceDataCompare()

Figure 185 — Comparing device dataset and instance

dataset

EC

The [comparison is executed for theldata in the DTM dataset and the data that cgn be

uplog

ded from the device. The comparison should include all identification, configuration

parameterization data. Dynamic¢- data and status data should not be included
comparison.

8.16.2 Comparing different instance datasets

in

. and
the

In orgder to compare_the data of one DTM instance with the data of a different DTM instance,
the action <InstanceDataCompare()> is executed (see Figure 186).

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 — 249 —

sd: Compare instance data with persisted dataset)
: Frame :DTM
Application BusinessLogic
Compare l
— |
<InstanceDataCompare(IDataset)> I
—1
L
Compare instance data
with dataset represented
<InstanceDataCompare> (execution results) by IDataset
<_ ____________________________________
L

Used methods:

IComparison.BegininstanceDataCompare() / IComparison.EndinstanceDataCompare()

Figure 186 — Compare instance data with(persisted dataset

8.17| Reassigning a different DtmDeviceType at adevice node

8.17/1 General

Over|the lifetime of the FDT Frame Application project it can be necessary to reassig
DtmDeviceType of a device node to a different DtmDeviceType (see Figure 189). Reasor
the rgassignment may be:

1) An engineer reassigns a DtmDeyviceType during offline planning of the FDT topology.

2) A DTM is available which.supports the same device type better than the cur

Q

ssigned DTM (for instancelinstead of a Generic DTM, a specific DTM can be assigne

NOTE| The DTM of the DtmDeviceType may be updated or upgraded. If the device of the device n
unchapged, a reassignment_is\not required due to FDT rules regarding DTM replacing installations fo
Updatps and DTM Upgradesy\(See chapter 10).

3) A physical device was or is going to be exchanged. This means, the device whi

lggically conpnected to a device node in the FDT topology will be replaced.
réeplacement may require a reassignment of the DtmDeviceType if the DtmDevice]

hich is\eutrently in use, does not support the new device type or the version of thg
device.

EC

N the
s for

ently
d).

de is
DTM

ch is
The

[ype,
new

NOTE|_Rélevant is _the identification of the device firmware. A device replacement as well as a firmware
can be incompatible in respect to the DtmDeviceType.

pdate

In regard to cases 1 and 2: Do not consider scanned information from a connected device.
Usually, an existing dataset cannot be migrated in these cases.

Subclause 8.17.2 describes the scenario, where a DTM detects that the device type of the
connected device can be better supported by a different DtmDeviceType.

Subclauses 8.17.3 and 8.17.4 show sequence diagrams explaining the steps in relation to use
case 3(device exchange).

Whenever a DtmDeviceType is reassigned, two post conditions need to be considered:

Device support:

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

a
D

NOTE
other

8.17.
This
conn
3 pos
a) T
t

b)
c)

- 250 - IEC TR 62453-42:2016 © IEC 2016

The new DtmDeviceType shall be able to operate the device connected to the device node
(refer to lifecycle concept regarding evaluation of device support in advance).

Dataset support:

Dependent on the dataset format support of old and new DtmDeviceType, the existing
dataset could be migrated to the new DtmDeviceType. The dataset migration is not
possible in all cases. If a migration is not possible, the existing dataset cannot be used by
the new DtmDeviceType. Frame Applications are responsible to inform the user about this
nd propose following action: An upload should be performed with the new
tmDeviceType in order to synchronize and store the device data with the project data.

In general all descriptions in this chapter do not only apply to DtmDeviceTypes, but also apply to the two
DtmTypes: DtmModuleTypes and DtmBlockTypes.

2 DTM detects a change in connected device type

subclause describes the scenario where a DTM detects that the devices/type of the
bcted device can be better supported by a different DtmDeviceType.

sible scenarios are shown in the sequence diagram in Figure 187

he connected device type can be better supported by a different DTM Type. In this|case
e DTM internally activates another DTM Type and informs, the Frame Application| with
ctiveTypeChanged about the change.

he connected device type cannot be supported by the-DTM
he unchanged connected device type: DtmDeviceType is not changed.

Scenjario a) may occur if a DTM connects to the device again, after the device has |been
replaced by a compatible device type. Also Scenario a) may occur when the DTM| was

assigd
deted
Dtm[

ned with a generic DtmDeviceType to the 'device (e.g. during offline engineering) and
ts that it can provide better support for the connected device with a different
eviceType.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © |IEC 2016 - 251 -
sd DTM triggers ActiveTypeChanged)
- F Device DTM : Parent DTM : .
A. E::ﬁm DTM Business Communication Ph sica.IDevice

PP Logic Channel Y
| | |
| ! Starting in state |
! : notConnected }
| [!
i Set DTM online ¢ i
! <Connect()> |
|
I

N

<Connect()> execution results

|
|
Read device type identification }

Device Type check

Evaluation of online
found device type
identification

—

Read device type identificatio

ActiveTypeChanged()

[device type check failed: new device type can be
supported by another Type (Typelnfo.ld) in this DTM]

[migrated data cannet be migratéd back]
request confirmationdo eontinue from user

[DTM internal
data migration]

Saveiinstance data
of pew Type

¢
Frame Application specific handling of
new Typelnfo connected to DeviceNode

-
<

} OnlineStateChanged() - ConnectedOnline
I

OnlineStateChanged() - Disconnecting

A

[device type check failed -new type cannot be supportedby-this DTM]

<Disconnect()>

OnlineStateChanged() - NotConnectedDisturbed

<Disconnect()> execution results

A

L S

close connection

S-di-——

[device ty,

©nlineStateChanged() - ConnectedOnline

3

e check succéeded — found online device type is same as a(]ve Type]

‘44: .

§
T
i

Used methods:

Event IDtm.OnlineStateChanged()

ICommunication.BeginConnect() / ICommunication.EndConnect()

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

ICommunication.BeginDisconnect() / ICommunication.EndDisconnect()

Event IDtm.ActiveTypeChanged()

Figure 187 — DTM triggers ActiveTypeChanged event

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 252 — IEC TR 62453-42:2016 © IEC 2016

8.17.3 Search matching DtmDeviceTypes after incompatible device exchange

After a device exchange, a Frame Application should support the verification of the
DtmDeviceType currently assigned to a device node in the FDT topology. In addition to the
identification of the device types supported by installed DTMs, FDT provides a concept to
explore DTM setups and the included DTMs before the DTMs are installed (see chapter 10).
This can be used to find out if there are DTMs available (uninstalled DTMs), which include
DtmDeviceTypes to support a scanned device.

The sequence diagram shown in Figure 188 shows how a list of matching DtmDeviceTypes in
installed DTMs and DTM setups can be determined by a Frame Application.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 253 -

sd : Find matching DtmTypes after incompatible device exchange/

: Frame Installed DTM :
A[;plication DTM Business
Logic o\\\

| RN

DeviceScanlinfo of device has changed,
currently assigned DtmDeviceType
does not support scanned device type
with actual DeviceScanlInfo

A

‘ Or alternatively DtmlnfoBuiIder%

Search matching
DtmDeviceTypes

—_—>

ref

y

Sequence scan

I

|

|

|

|

|

|

|

Select DeviceScaninfo of |
D:| changed device |
|

|

i

|

|

N

Optional: Exit if assigned ActiveType matches new DeviceScaninfo

loop All DTMs

alt
[Search Deviceldentinfo in installed DTMs]
GetDtminfo()
GetDeviceldentInfo(typeld, protocol) m
[Search Deviceldentinfo in DTM Setups] —I

Create : DeviceldentInfos

|
T
Deserialize file Setup/SupportedDevices_<Dtminfo.ld>\<Protocol_ID>.DtmDeviceldent.manifest |
1

< >
s |
|
|
|
|
|
|
|
|
|
|
|
I

loop J All Deviceldentinfos g |
See figure AN

"DtmSetup structure"

Check if DeviceldentInfo
matches to DeviceScaninfo

[match] Add to list of DtmDeviceType
reassignment candidates

All reassignment candidates

loop.
Check Dataset.Formatld against
DtmDeviceType.ld. Note if format is
supported.

IEC

Used methods:
IDtmInformation.GetDtmInfo()

IDtmInformation.GetDeviceldentinfo()

Figure 188 — Find matching DtmDeviceTypes after incompatible device exchange

8.17.4 Reassign DtmDeviceType after incompatible device exchange

The sequence diagram shown in Figure 189 shows how a Frame Application verifies the
validity of a currently assigned DtmDeviceType after a device change. The sequence diagram

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 254 — IEC TR 62453-42:2016 © IEC 2016

describes the DtmDeviceType reassignment if a better matching or newer DtmDeviceType is
found.

sd : Reassign a DtmDeviceType after incompatible device exchange)

Frame DeviceNode1:
Application Dataset

Device Node with saved dataset of a DtmDeviceType
Selected. Exchanged device type is not supported by
currently assigned DtmDeviceType

1

Reassign
—_—>
> ref Sequence: Find matching DtmTypes after incompatible device exchange

loop) All matching DtmDeviceTypes

Check
Dataset.Formatld = DtmDeviceTypelnfo.DatagetFormats.Used or
included in list of DtmDeviceTypelnfo.DatasetFormats.ReadSupported

List reassign candidates and indicate option
to migrate dataset to the user

alt

[Matching DtmDeviceType available]

Select and confirm
reassignment iR Create DTM2:-DTM

—» N 0

Logic
Init()]
alt
[Dataset supported]
[Dataset.Formatld = one of the Supported-Ids] LoadData(.Dataset)
| >
read Dataset.InstanceData
- Check Formatld and

migrate data

Write data with DTM2 Used DatasetFormat

[Dataset not supported]
Inform user that dataset is overwritten
and recommend to upload data/from:
Confirm device. Offer Cancel.
dataset
o%’ Remove DataSubsets fram'Dataset

InitData(empty Dataset)
!

A}

Initial write and save ‘
L

]

Frame internal replacement of
DtmDeviceType assigned to the
device node in the topology

| ref/ Sequence Generation of topology by Frame Application ‘

[no matchingDtmDeviceType found]

Inform user about missing
DtmDeviceType and support finding a
required DTM

IEC

Used methods:
IDtm.Init()
IDtm.InitData()
IDtm.LoadData()
IDataSubset.ReadData()

IDataSubset.WriteData()
IDtmInformation.GetDtmInfo()

IDtmInformation.GetDeviceldentinfo()

Figure 189 — Reassign a DtmDeviceType after incompatible device exchange

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

8.18 Copying part of FDT Topology

8.18.1

— 255 —

Cloning of a single DTM without Children

A Frame Application might provide functionality to copy and paste a DTM which has no
children to the same parent or to another one. Figure 190 shows the workflow for this
functionality.
sd Clone DTM without children)
R aame Parent of Clone:
PP IJIIvIL:;T;ncoa
Copy/paste | |
—
Create a copy of the original |
data of the DTM Dataset
Create Cloned: DTM |
Dataset |
| |
Save the copy to the cloned Dataset |
Create j Cloned:DTM |
| Businéss‘Logic |
Init(new SystemTag) | | |
| I !
LoadData (isCloned=true) [I |
| Load data |
O |
| | l
1908 Al i i I |
cloned DTMs with parent DTM in FDT topology <ValiddieAdsChild()> |
I) 1
! ! Optional:
| | read validation
| relevant information
<ValidateAddChild()> execution results
e Py |» 77777777777777777 r 77777777777777
alt) [ValidateAddChild succeeded] | | |
I
Frame internal addirg | I
DTM to the topol6gy <ChiIdAdde(§()> | |
I i
| I
<ChildAdded()> execjution results |
______ e~]
[ValidateAddChild failed] | | 1
f | | |
re Sequence |
Release DTM I
| |
Delete | I |
g | I
N X | |
| |
1 | I
IEC

Used methods:

IDtm.LoadData()

IDtm.Init()
ISubTopology.BeginValidateAddChild()
ISubTopology.EndValidateAddChild()
BeginChildAdded() / EndChildAdded()

Figure 190 — Clone DTM without children

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 256 — IEC TR 62453-42:2016 © IEC 2016

8.18.2 Cloning of a DTM with all its Children

A Frame Application might provide functionality to copy and paste a DTM with all its children
to the same parent or to another parent. Figure 191 shows the workflow of this functionality.

sd Clone DTM with all children)

Frame
Application

I
Copy/paste
%%ﬁ

loop / All cloned DTM child instances

Copy original child
DTM dataset

Create ClonedChild:
DTM Dataset

Frame specific initialization with
copy of original child dataset

"0
Store cloned child
dataset with new |
[systemTag in topology |
Enter old / new |
systemTag to
[newChildTopology list |
Release - |
>
Create ClonédParent:
DTM Dataset
Create a copy of the original parent DTM data set
Create | g!l?ﬁe::iPz!rent:
L

| Logic

Init(new parent.DtmSystemTag)
Il

| ’i

LoadData (parentDataset, isCloned=true, newChildTopology)
1

»l
| Load data .
[isCloned=true]
g Replace old child
DtmSystemTags by
| new DtmSystemTags

according
T | newChildTopology List

EC

Used methods:
IDtm.JoadData()

IDtm.lhit()

Figure t9t—="Ctonme DTMwith—=tchitdren
8.19 Sequences for audit trail

8.19.1 General

This section shows how the audit trail concept (described in 4.15) is implemented.

8.19.2 Audit trail of parameter modifications in instance dataset

Figure 192 shows how changes in the instance dataset are traced.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 257 —

-
=

.

sd: Audit trail of parameter modifications in instance dataset)
: Frame : DTM : Dataset
Application BusinessLogic .
IChange offline instance parameter n
1 > StartTransaction() |
I gn
| Parameter |
I] moditication 1
| Write to DataSubset |
| i
alt |
o . CommitTransaction |
[modification and commit succeeded] >

| IAuditTrail::Notify(), Q

sOnlineNoatification = fals

Handle notification

i g

[modification or save of transaction failed]
[

No audit trail notificatio
because any changeis [~ ~

rolled back.

CloseTransaction

Used methods:

IAudit[rail.Notify()

Figure 192 — Audit-trail of parameter modifications in instance dataset

8.1983 Audit trail 'of' parameter modifications in device dataset

Figun

e 193 shows-hiow changes in the device data are tracked.

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 258 —

IEC TR 62453-42:2016 © IEC 2016

sd: Audit Trail of parameter modifications in device /

: Frame
Application

:DTM
BusinessLogic

Communication
Channel

Change device parameter

o}
A

|
|
|
j >
|
|
|

[Write succeeded] IAuditTrail::Notify()
< o4

-

Handle notification

I
< Device is connected > |
I
I
|

Write Request

Writeto
Write Response device
- T

isOnlineNotification = true%
I

Used methods:

IAudit[rail.Notify()

8.19.4

Audit trail of function calls

Figude 194 shows how function calls aredracked.

Figure 193 — Audit trail of parameter modifications in device

sd: Audit Trail of function calls/

: Frame
Application

Call function

:DTM
BusinessLogic

IAuditTrail::Notify()

Execute
{ function

IEC

|
|
|
|
ﬁ<
Eﬁe‘ Handle notification
|

Used methods:

IAuditTrail.Notify()

IEC

Figure 194 — Audit trail of function calls

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

8.19.

This
Notifi

— 259 —

5 Audit trail of general notification

shall only be used in case it is not a Function Notification or a Parameter Change
cation. General notifications are used by the DTM to provide audit trail notifications in

the scenarios like device state information updates.

9 Installation

9.1 General
This h:\pfnr describes the installation of FDT caore assemblies FDT communication prnchols
and DTMs as well as the structure and rules for creating DTM setups.
9.2 Common rules
9.21 Predefined installation paths
This chapter defines the common installation paths where FDT core assemblies, FDT prdtocol
assemblies and DTMs are installed and registered (see Table 42, Figur® 195 and Figure [196).
Table 42 — Predefined FDT installation-paths
Path Name Value \\V Description
<GACp (OS version specific) This is the" Windows Global Assembly Cache.
<FDT]Registry> "<CommonApplicationData>\FDT\" Root folder for the registration of IEC 62453-42
DT Ms and protocols.
<FDT]DTMs> "<FDT_Registry>\DTMs" Folder contains the vendor-specific subfolders|with
DTM manifest files that are used for DTM
registration. Frame Applications search this folder
for installed DTMs in order to create a device
catalog.
<FDT|Protocols> | "<FDT_Registry>\Protocols! Folder contains the communication protocol
manifest files. Frame Applications search this
folder for installed communication protocols.
<FDT]GUls> "<FDT_DTMS>\<Vendor Name>\ Folder contains the user interface manifest filep.
<DTM Name>\User Interfaces" Frame Applications search this folder for installed
user interfaces.
<FDT|X86> "<CommonProgramFilesX86>\FDT" Folder for 32-bit / Any CPU FDT components.
<FDT3 "<CommonProgramFilesX64>\FDT" Folder for 64-bit FDT components.
<DTM] X86> "<EDT_X86>\DTMs\" Folder contains all 32-bit / Any CPU DTMs.
<DTMp "<FDT>\DTMs\"[] Folder contains all 64-bit CPU DTMs.
<DTMp> 32-bit / Any CPU DTM: "<DTM_X86>" | The folder name is used as short statement fo
- - “<DTM_X86> or <DTM>". The actual meaning
64-bit DTM: <DTM> depends on the environment supported by the
DIM.
<DTM_root> 32-bit / Any CPU DTM: The folder contains all DTM binaries (assemblies)
R and data files. This includes main DTM BL
<DTM_X86>\<Vendor Name>\<DTM assembly, DTMInfoBuilder assembly, DTM Ul
Name> assemblies, resource assemblies and other files.
64-bit DTM: NOTE <Vendor Name> is the name of the DTM
"<DTM>\<Vendor Name>\<DTM Vendor:
Name>"

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 260 — IEC TR 62453-42:2016 © IEC 2016

NOTE:

<CommonApplicationData> is the folder returned by the System.Environment.GetFolderPath() method for the
special folder ID CommonApplicationData

<CommonProgramFilesX86> is the folder returned by the System.Environment.GetFolderPath() method for the
special folder ID CommonProgramFiles (32-bit application) or CommonProgramFilesX86 (64-bit application)

<CommonProgramFilesX64> is the folder returned to a 64-bit application by the
System.Environment.GetFolderPath() method for the special folder ID CommonProgramFiles. This folder is
accessible from 64-bit applications / on 64-bit OS versions only (see [32])

NOTE It is a product-specific decision whether files are shared between different DTMs. The handling and version
management of these files are out of scope of FDT. One possible approach could be to store these files under the
folder|“<DTMs>\<Vendor Name>\" according to vendor-specific needs and use relative paths to reference|these
files.

The DT core assemblies (interfaces, datatypes, and exceptions) and communication prdtocol
assefnblies are installed in the Global Assembly Cache. Shared .NET assemblies/may als$o be
installed in the Global Assembly Cache. Please refer to 5.4.4 when using shared |[NET
asseblies.

All D[TMs are registered in the predefined path
“}.\<CommonApplicationData>\FDT\DTMs".

All communication protocols are registered in the predefined path
“}.\<CommonApplicationData >\FDT\Protocols”.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

- 261 -

Global Assembly Cache

‘"’,1 Fdt.Interfaces.dll

‘"’,1 Fdt.Datatypes.dll

ety

Fdt.Exceptions.dll

ety

Other shared
components

~; specific protocol assemblies

additional FDT or vendor

ey

. additional FDT common

component assemblies

|

Eg

Fdt.HART TransformerAssembly.dll

)

E.g:
Fdt.HART.dII

ey

‘W,, Fdt.<ProtocolName>.dll

/N

<FD]

A

i CommonApplicationData

1

| _Registry>

FDT_Protocols>

<FDT_DTMs>

<FDT_GUIs>

FDT

i Protocols

DTMs

@
Rl
1?

+| 18
=)

| ~.prétocol.manifest

L ,-i <Vendor Name>

S

i <DTM_Name>

defined in

e <DTM_Name>.dtm.manifest
=

i Userinterfaces

>

ProtocolGuid as

protocol annex

PP R _>

P

*

| <UI_Name>.dtmui.manifef

8

On3

Figure 195 — GAC and FDT_Registry

P~bit’operating systems all DTMs are installed in the predefined path

commonrFrogramriiesAco>\FU T\D TIVIS .

On 64-bit operating systems all DTMs built for 64-bit are installed in the predefined path
“<CommonProgramFilesX64>\FDT\DTMs”

and all DTMs built for 32-bit or for ‘any’-target are installed in the predefined path
“"<CommonProgramFilesX86>\FDT\DTMs". (see Figure 196)

IEC

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 262 -

IEC TR 62453-42:2016 © IEC 2016

Filesystem
of a 64-bit OS

¢

; Program Files

; Common Files

Filesystem
of a 32-bit OS

¢

<FDI> L Fi EDT
¢
<DTM> ; DTMs
— ; ProgramFilesX86 — ; Program Filés.
L ; Common Files L ;' Common Files
¢ t
<FD[l_X86> ; FDT <FDT (X86> ; FDT
<DTM_X86> ?7 ; DTMs £DTM_X86> L ; DTMs
—
X86 DTMs X86 DTMS
Any DTMs Any DTMS}

<DT|

Any DTMs

The folder striicture applies to
X64 DTMs,'X86 DTMs as well as

; <Vendor, Name>

N
M_Root>)

<FDT DTMs> /‘ See Figure ,GAC and FDT_Registry* ‘

i <DTM_Name>.dtm.manife§

T
[}
[}
1
1
1
[}
1
A4

:
I
I
<FDT_GUIs> |
:
|
I

@ <Ul_Name>.dtmul

.manifesﬁ

9.2.2

|
|
|
; <DTM_Name> @—— [<DTM>.dIl K -————————————— : |
2 |
1 *

|
! |
; Userinterfaces |
1 |
|
! |
O |
G DTMUPBPAIN K — — — — — — - — — —

* s

Figure 196 - Installation paths (with example DTM)

Manifest files

IEC

All components related to FDT provide manifest files in order to register the component in the
FDT system (except for the FDT core assemblies) or to provide pre-installation information.
Manifest files are XML-files, which follow a defined format. The format corresponds to .NET
datatypes, which are part of the FDT core specification.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016

9.2.3

- 263 —

Paths in manifest files

All manifest files may include paths to assembly or resource files.

If some parameter in any manifest file represents a path to an assembly, icon, bitmap,
documentation or data file, then it shall be relative to the component root path.

NOTE For example, if a PDF document is provided for a DTM, which is installed in “<DTMs>\Vendor1\MyDtm1”:
The document is located in “<DTMs>\Vendor1\MyDtm1\Documentation\help.pdf”, the reference to the document is
“Documentation\help.pdf’. The component is the DTM BL. The component root path is “<DTMs>\Vendor1\MyDtm1”.

In order to access the referenced files, the Frame Application shall add the componen

root

path fat the beginning of relative paths.

9.2.4

Common command line arguments

DTM|setups and its components shall have a unified way for installing apd-‘Uninstalling by

using

setup properties and setup command line parameters.

The following predefined setup properties shall be available (Table/43):

Table 43 — Predefined setup propetties

the standard Windows Installer command line. This includes support for preddfined

Sdqtup property Value range Default value </ O Description
FDT2¢_DTMBO “True”, “False”. True Installs only DTM Business Logic componepts
for selected device types.
FDT2¢_DTMUI “True”, “False” True Installs only DTM User Interface components

for selected device types.

FDT2(_LICENSEKEY

String license key

Transfers optional setup license key in casg if
product should be licensed.

Command line parameters shall be.supported as defined in Table 44.

Table 44 — Setup command line parameters

Cpmmand line parame@

Description

Example

/q /i “{msi-file}”

Install setup in silent mode.

msiexec.exe /q /i “*.msi”

/q /i “{ProductCode}’
REMQVE="ALL”"

Uninstall setup in silent mode.

msiexec.exe /q /i “{ProductCode
REMOVE="ALL”"

ADDLPCAL="{feature-list}”

Install setup with selected features
(DTMs/DeviceTypes).

msiexec.exe /q /i “*.msi”
ADDLOCAL="FEATURE1;FEATUREZ2”

REMQVE="{feature-list}”

Uninstall selected
features(DTMs/DeviceTypes).

REMOVE="FEATURE1:FEATU

/lv “{log-file}”

Install setup with log.

msiexec.exe /q /i “{ProductCoda}”
E2”

wik ”

msiexec.exe /q /lv “.\log.txt” /i “*.msi

FDT20_DTMUI="False”

Install DTM Business Logic
components only

msiexec.exe /q /i “*.msi”
FDT20_DTMUI="False”

FDT20_DTMBO="False”

Install DTM User Interface
components only

msiexec.exe /q /i “*.msi”
FDT20_DTMBO="False”

FDT20_LICENSEKEY="ABC”

Install DTM using specified license
key.

wik

msiexec.exe /q /i “*.msi”
FDT20_LICENSEKEY="ABC”

If only some selected DTMs should be installed, then Frame Application should read setup
installation groups (features) for these DTMs from setup manifest file (see 9.6.2 for details). If
this information is not available, then setup does not support this functionality.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 264 — IEC TR 62453-42:2016 © IEC 2016

NOTE During development of a setup it is necessary to observe the general limitation of operating systems in
regard to length of command line and length of pathname. For example see [34] and [35].

9.2.5 Digital signatures of setup components

The Windows Installer has an embedded mechanism for checking setup components
correctness based on digital signatures. The Windows Installer performs automatic signatures
verification for signed external cabinet files. If a cabinet file is corrupted during the download,
this will be detected by Windows Installer during the installation process. Additionally the
Windows Installer database (MSI file) can be also protected with a digital signature. Authors
of Windows Installer installations shall adhere to the following to ensure that all parts of the
installation are covered by a digital signature:

. dnly signed external cabinet files shall be provided.

(This means that the MsiDigitalSignature table and MsiDigitalCertificate table'need o be
alithored correctly).

e Custom actions stored within the package or installed with the package shall be used.

e The installation package shall be signed.

NOTE| The tool SignTool from CryptoAPl Tools can be used for signing of cabinet files. If the bootstfapper
applicption is used, then it should check MSI package signature itself using the Crypto API. For more detail§ refer
to [18][19].

Instﬂ;ation files provided by FDT Group (e.g. for core assemblies and protocol-specific [files)
will signed accordingly.

9.3 Installation of FDT core assemblies

FDT rore assemblies (see 5.1) shall be installed-by each Frame Application and by each|DTM
using the standard FDT Group merge modules. The FDT core assemblies are installed in the
Globgal Assembly Cache and are not registered otherwise.

9.4 Installation of communication\protocols
9.4.1 General

Each] Communication-/ Gateway-DTM shall install the supported communication protqcols.
The protocol assemblies (see’5.5.11) shall be installed in the Global Assembly Cache.

Protqcols defined by'an FDT Protocol Annex are provided as merge modules by the| FDT
Group. The merge modules of supported communication protocols shall be integrated ip the
Communication-Gateway-DTM setups. Vendor-specific communication protocol assemnblies
are ipstalled with"vendor-specific Communication-/ Gateway-DTMs.

9.4.2 Registration

Communication protocols are registered by protocol manitest 1les that are mstaiied i the
<FDT_Protocols> path. A protocol manifest file describes a communication protocol with its ID
and assembly reference.

9.4.3 Protocol manifest

A protocol manifest is used to register additional communication protocol assemblies in the
system in order to enable Frame Applications and DTMs to find it. Protocol manifest files shall
be installed in the <Protocols> path (see 9.2.1). The file name shall be composed of the
unique communication protocol ID and the suffix “.protocol.manifest”.

A protocol manifest xml file contains following information:

e AssemblyInfo: Information about the protocol assembly that contains the communication
protocol classes and data structures.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 — 265 —

e Protocolld: Unique identifier of the protocol (as UUID).

e ProtocolName: Human readable name of the protocol

Figure 197 shows an example for a protocol manifest.

<?xml version="1.0" encoding="utf-16"7?>

<Pro
xmln

tocolManifest xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
s="http://schemas.datacontract.org/2004/07/Fdt.Deployment">

<ProtocolId>b803f1b4-d992-44bc-a62d-08ec71b0bdcd</ProtocolId>
<ProtocolName>XyzBus</ProtocolName>
<AssemblyInfo>

<Name>Fdt .XyzBus</Name>

<
</PH

<Version xmlns:d3pl="http://schemas.datacontract.org/2004/07/System">
<d3pl: Build>0</d3pl: Build><d3pl: Major>1</d3pl: Major>
<d3pl: Minor>0</d3pl: Minor><d3pl: Revision>0</d3pl: Revision>
</Version>
<PublicKeyToken>1234567890123456</PublicKeyToken>
<RuntimeVersions>
<RuntimeVersion>
<CLRVersionNumber xmlns:d5pl="http://schemas.datacontract.org/2004/097/System">
<d5pl: Build>-1</d5pl: Build><d5pl: Major>2</d5pl: Major>
<d5pl: Minor>0</d5pl: Minor><d5pl: Revision>-1</d5pl: Revis{en
</CLRVersionNumber>
</RuntimeVersion>
<RuntimeVersion>
<CLRVersionNumber xmlns:d5pl="http://schemas.datacontract.org/2004/07/System">
<d5pl: Build>-1</d5pl: Build><d5pl: Major>4</d5pl s Wajor>
<d5pl: Minor>0</d5pl: Minor><d5pl: Revision>-1</&5p1: Revision>
</CLRVersionNumber>
</RuntimeVersion>
</RuntimeVersions>
<SupportedPlatforms>Any</SupportedPlatforms>
<Path i:nil="true" />
[AssemblyInfo>
otocolManifest>

9.5
9.5.1

Prior
respe

After

All D

Figure 197 — Example: Protocol manifest

Installation of DTMs
General

to installation of @\DTM, it is possible to retrieve information about a DTM fron
ctive DTM Setup.Manifest (see 9.6.2).

installation the respective information can be retrieved within the FDT system.

IEC

 the

TMs~shall be installed in the predefined <DTMs> path (see 9.2.1). Each DTM vendor

creatﬁs a-subfolder <Vendor Name>. Each DTM is placed in a subfolder <DTM Name>
. < > H i g

path i

The

ingle

DTM installation shall be installed in this path. The <DTM_root> folder may have a free
substructure according to product requirements. Following components of a DTM are installed

here:

e DTM BL assembly (see DTM component in Figure 195). It implements the main DTM
Business Logic. This assembly can use or reference some other dependent assemblies.
There are no limitations on file names.

e DTM User Interfaces assemblies (see DtmUI component in Figure 195). This component
implements one or more DTM User Interfaces. There are no limitations on file names.

e DTM Information Builder assembly (see DtmlInfoBuilder concept in 4.4.2). This component
implements support for getting dynamic DTM information (e.g. for DD-Interpreter DTMs).
There are no limitations in regard to file name. The DtmiInfoBuilder can be integrated with
the main DTM Business Logic assembly.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 266 - IEC TR 62453-42:2016 © IEC 2016

If a DTM uses some third-party components or re-uses some existing components from other
products (especially COM / ActiveX) that cannot be installed into the path <DTM_root>, then
they may be placed outside of this folder. In this case it shall be guaranteed that such
components do not corrupt other running products or setups (e.g. by updating a shared
component with a new revision).

NOTE Components that are used in multiple DTMs of a vendor could be installed in a common folder (e.g.
“<DTMs>\<vendor name>\Common”).

9.5.2 Registration

The Frame Application shall be able to retrieve information about installed DTMs and
suppprted device types. The registration of DTMs is performed using manifest files thgt are
installed in the predefined installation paths (see 9.2.1).

The KFDT_Registry> folder and its subfolders contain all manifest files that |describ¢ the
installed DTMs and their DTM User Interfaces. Following manifest files are defined:

* Jdtm.manifest.
This xml file describes an installed DTM (see chapter 9.5.3).

— *Jdtmui.manifest.
This xml file describes an installed DTM User Interface (see/chapter 9.5.4).

A Frgme Application searches for information about installed DTMs in three steps|(see
Figune 198):

a) The Frame Application reads all DTM manifest files,in <DTMs > path.

Flor each DTM, the Frame Application loads:\the referenced assembly and start$ the
OtminfoBuilder. Further information aboutidevice-, block-, module types, suppprted
protocols etc. is retrieved from the DtmInfoBuilder.

F

or each DTM, the Frame Application’ reads the DTM User Interface manifest| files
feferenced in *.dtm.manifest) and-stores user interface assembly and function informiation

J;.g. in a device catalogue).
d)

P

ter a DTM is found, the DTM Business Logic and the respective DTM User Intefface
may be executed.

2. read
DTM\Info {)é N Frame User[l)r;rt'zlrface
Builder | Appliction @ > — 1
1. explore | | L
T L 4 e 5
| B | Y
e | | |
=] FrcgrarF es | 3. update |
= [§ chF es —_—— I
- R I }% & User
[DTMs D4l I \'J
[2) Protocols '_ ; .
Local File System l— bu —> Busin[:,:'swLogic
Catalog F

IEC

Figure 198 — Search for installed DTMs

See the descriptions of DTM manifest and DTM Ul manifest datatypes for details about
different manifest files that are used for DTM registration.

A Frame Application can check if new DTMs are registered by comparing the date of the DTM
Manifest file with the last checking date.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 267 —

9.5.3 DTM manifest

A DTM manifest file is used to register a DTM in the system in order to enable Frame
Applications to find it. Therefore it contains references to the main DTM BL assembly and to
the class that implements the DtmInfoBuilder for the DTM. DTM manifest files shall be copied
to the vendor-specific subfolder of the <FDT_DTMs> path by the DTM setup during
installation or during update of the DTM. The file name is composed by a unique DTM name
and the suffix “.dtm.manifest”. A DTM vendor is responsible for the uniqueness of his DTMs
and DTM names within the vendor-specific name space.

A DTM manifest file (DtmManifest) contains following information:

NOTE]| Information about DTM device types is not included in the DTM(manifest file.

DTM|manifest files shall be created by using the DtmManifest datatype. See the descripti
DtmManifest datatype in 7.6.2 for further information‘about DTM manifest files.

Figune 199 shows an example for a DtmManifest.

namicClassReference: Information about DtminfoBuilder class, which shall be usgd to
request Typelnfos and corresponding device identification information supported*by the

mRootPath: Root installation path of the DTM (relative path from)c6mmon
installation path). The DTM main assembly and DtmInfoBuilder assembly (if providg
Igcated in this path.

DtmlInitData: [Optional] DTM initialization information. This string isOpassed to the DT
the IDtm.Init call.

ConformityRecords: [Optional] if the DTM has been certified; ,then this entry refereng
cpnformity record which tells details about the FDT compliance certification of the DTIM.

FDT
d) is

'M in

es a

Y

on of

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

— 268 — IEC TR 62453-42:2016 © |IEC 2016
<?xml version="1.0" encoding="utf-16"?>
<DtmManifest xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
<DtmRootPath>..\VendorX\DtmY\</DtmRootPath>
<DtmInfoBuilderRef xmlns:d2pl="http://schemas.datacontract.org/2004/07/Fdt.Dtm">
<d2pl:AssemblyInfo>
<Name>Fdt.VendorX.DtmY</Name>
<Version xmlns:d4pl="http://schemas.datacontract.org/2004/07/System">
<d4pl: Build>0</d4pl: Build><d4pl: Major>2</d4pl: Major>
<d4pl: Minor>3</d4pl: Minor><d4pl: Revision>0</d4pl: Revision>
</Version>
<PublicKeyToken>1234567890123456</PublicKeyToken>
<RuntimeVersions>
Runtim rsion
<CLRVersionNumber xmlns:dé6pl="http://schemas.datacontract.org/2004/07/Syst@n| >
<d6pl: Build>1</dépl: Build><dépl: Major>2</dé6pl: Major>
<d6pl: Minor>0</dépl: Minor><dépl: Revision>23456</dé6pl: Revision>
</CLRVersionNumber>
</RuntimeVersion>
</RuntimeVersions>
<SupportedPlatforms>Any</SupportedPlatforms>
<Path>..%5CVendorX%5CDtmY%$5C</Path>
</d2pl:AssemblyInfo>
<d2pl:ClassName>Fdt.VendorX.DtmY.DtmMainInfoBuilder</d2pl:ClassNamé>
</DtmInfoBuilderRef>
<DtmCategory>DeviceDTM</DtmCategory>
<UiManifestRefs>
<UiManifestRef>
<ManifestType>DtmY.Ui.Type</ManifestType>
<FileName>DtmY.Ui</FileName>
</UiManifestRef>
</UiManifestRefs>
<ConformityRecords i:nil="true" />
<DtmInitData>My Initialization Data</DtmInitDatal
</[ptmManifest>
IEC

Figure 199 — Example: DtmManifest

9.5. DTM User Interface manifest

A DT|M User Interface manifestAfile is used to register a DTM User Interface in the syst¢m in
ordel to enable Frame Applications to find it. These files shall be copied to the <FDT_QUIs>
path py the DTM setup during’installation or update of the DTM. The file name is composed of

the DTM User Interface \name (unique for the DTM) and the suffix “.dtmui.manifest”.
DTM|User Interface manifest file shall be referenced and declared in the DTM manifes
The DTM User Interface manifest contains following information:

semblylnfos*Information about the DTM User Interface assembly.

Each
t file.

— UlFunctieninfos: Information about the DTM User Interface functions included in the

apsembly described by Assemblyinfo.
— Information about type of user interface.

See the description of DtmUiManifest datatype in 7.6.3 for the syntax of DTM User Interface

manifest files.

Figure 200 shows an example of a DtmUiManifest.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 269 —

<?xml version="1.0" encoding="utf-16"?>
<DtmUiManifest xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
<AssemblyInfo>
<Name>Fdt.VendorX.DtmY.UI</Name>
<Version xmlns:d3pl="http://schemas.datacontract.org/2004/07/System">
<d3pl: Build>0</d3pl: Build>
<d3pl: Major>2</d3pl: Major>
<d3pl: Minor>3</d3pl: Minor>
<d3pl: Revision>0</d3pl: Revision>
</Version>
<PublicKeyToken>1234567890123456</PublicKeyToken>
<RuntimeVersions>

Runtim rsion

<CLRVersionNumber xmlns:d5pl="http://schemas.datacontract.org/2004/07/Systen>
<d5pl: Build>1</d5pl: Build>
<d5pl: Major>2</d5pl: Major>
<d5pl: Minor>0</d5pl: Minor>
<d5pl: Revision>23456</d5pl: Revision>
</CLRVersionNumber>
</RuntimeVersion>
</RuntimeVersions>
<SupportedPlatforms>Any</SupportedPlatforms>
<Path>..%5CVendorX%5CDtmY%5CUserInterfaces$5C</Path>
</AssemblyInfo>
<UiFunctionInfos>
<UiFunctionInfo i:type="UiControlFunctionInfo">
<FunctionId>1</FunctionId>
<ClassName>Fdt.VendorX.DtmY.UI01l</ClassName>
<Type>WinForm</Type>
</UiFunctionInfo>
<UiFunctionInfo i:type="UiControlFunctionInfo">,
<FunctionId>2</FunctionId>
<ClassName>Fdt.VendorX.DtmY.UI02</ClassName¥
<Type>WinForm</Type>
</UiFunctionInfo>
</UiFunctionInfos>
</IPtmUiManifest>

Figure 200 — Example: DtmUiManifest

9.6 DTM setup
9.6.1 Structure

The DTM setup structure defines the contents and structure of a DTM setup (see Figure
Each| DTM setup consists of following mandatory and optional parts:

— MSI file [mandatory]. This is main Windows Installer database file. It contains com
installation/logic and setup user interface. This file is always located in the setup
fqlderand is used to start the installation.

IEC

D01).

plete
root

— Setup” manifest file [mandatory]. This file describes the setup itself and con

tains

information about included DTMs. This file is always located in the setup root folder.

Setup Bootstrapper [optional]. This is a simple application (e.g. setup.exe) that

can

perform some additional actions before the MSI file is started (e.g. setup localization). In

order to provide better integration, it is not recommended to use a bootstrapper. Thi
is always located in setup root folder.

Cabinet files [optional]. These files contain compressed installation files of the DTM.
are always located in the Files subfolder.

s file

They

Device identification files [optional]. These files describe identification information for

device types that are supported by DTMs in this setup. These protocol-specific files are
always located in SupportedDevices_<Dtminfo.ld> folder. The files can be deserialized to

initialize the class DtmDeviceldentManifest.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 270 - IEC TR 62453-42:2016 © IEC

2016

i Setup

1 1
i <ProductCode> 1 setup.manifest

0100

1 1

¢

¢

¢ setup.msi
oty P

0.1

L2 setup.exe
oty p

0.* | | - 1 0.1 .. .
iles Lz <file>.cab
i - oy

0.*) 1 1. %
i SupportedDevices_<Dtminfo.ld> @———— —

O

e

] <Protoco|_|D>.DtmDeviceIdent.manilesﬁ

/,/
e

<Protocol_ID>.DtmDeviceldent.manifest is an XML ﬁ

persisted file of an instance of the class
BtmDeviceldentManifest. It lists all device
identifications of one DTM for the same protocol.

IEC
Figure 201 — DTM setup structure
9.6.2 DTM setup manifest
A sefup manifest describes a DTM setup and shall be provided together with a DTM setup.
Using this information the Frame Applications can check whether a DTM update is requirgd or

it can install the DTM automatically. The file name shall be composed of the SetupNamg¢ and

the spffix “setup.manifest”.

A DTM Setup manifest.-xml file contains following information:

- mIinfos: Infermation about DTMs which are included in the setup
— ProductCode: Unique identifier of the product (Windows Installer ProductCode)
— SetupName: Name of the DTM product setup.

— SgtupVersion: Version of the product setup.

— PublisherName: Name of the company that provides the DTM

— ProductFeatures: List of setup features that can be installed individually. This may be

used for DTM device types or additional features.
— SetupUrl: Reference to the setup msi file

SupportedWindowsVersions: Lists the versions (including service pack level) of the
operating system for which the DTMs contained in the Setup manifest are explicitly tested.

VendorName: Name of the company which provides the DTM.

MinimumlnstallerVersion: Required version of Windows Installer (minimum version). If the
required minimum version is not present on the system, the Frame Application shall use
the setup.exe (bootstrapper) to start the installation instead of the msi file.

See 7.6.1 for further information about setup manifest files.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 271 -

Figure 202 shows an example of a SetupManifest.

<?xml version="1.0" encoding="utf-16"7?>
<SetupManifest xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
<VendorName>VendorX</VendorName>
<SetupName>DtmY</SetupName>
<ProductCode>6b6719d5-12c0-488f-897c-af440e6c5a36</ProductCode>
<SetupVersion xmlns:d2pl="http://schemas.datacontract.org/2004/07/System">
<d2pl: Build>0</d2pl: Build><d2pl: Major>2</d2pl: Major>
<d2pl: Minor>3</d2pl: Minor><d2pl: Revision>-1</d2pl: Revision>

</SetupVersion>
<SetupUrl>../setup.msi</SetupUrl>
DIMINIOS XMINS:OZpI="NCLp://SChemas.datacontract.org/ 2004707/ Fdc.Dtm

<d2pl:DtmInfo>
<d2pl:DtmRef>
<d2pl:AssemblyInfo>
<Name>Fdt.VendorX.DtmY</Name>
<Version xmlns:d6pl="http://schemas.datacontract.org/2004/07/System!¥
<dépl: Build>0</dépl: Build><dépl: Major>2</dépl: Major>
<dépl: Minor>3</dépl: Minor><dépl: Revision>0</dépl: Revisiafh
</Version>
<PublicKeyToken>1234567890123456</PublicKeyToken>
<RuntimeVersions>
<RuntimeVersion>
<CLRVersionNumber
xnjlns:d8pl="http://schemas.datacontract.org/2004/07/System">
<d8pl: Build>1</d8pl: Build><d8pl: Major>2</dB8Dl: Major>
<d8pl: Minor>0</d8pl: Minor><d8pl: Revision23456</d8pl: Revision>
</CLRVersionNumber>
</RuntimeVersion>
</RuntimeVersions>
<SupportedPlatforms>Any</SupportedPlat Zyme>
<Path>..%5CVendorX%5CDtmY%5C</Path>
</d2pl:AssemblyInfo>
<d2pl:ClassName>Fdt.VendorX.DtmY.DtmMalh</d2pl:ClassName>
</d2pl:DtmRef>
<d2pl:Name>DtmY</d2pl:Name>
<d2pl:Vendor>VendorX</d2pl:Vendorx
<d2pl:Id>69cdeb55a-5bf8-45a4-90a3;-7bf20184d61£f</d2pl:Id>
<d2pl:Version xmlns:d4pl="http%»//schemas.datacontract.org/2004/07/System">
<d4pl: Build>0</d4pl: Buihd><d4pl: Major>4</d4pl: Major>
<d4pl: Minor>2</d4pl: MINpr><d4pl: Revision>-1</d4pl: Revision>
</d2pl:Version>
<d2pl:FdtVersion xmlnggd4pl="http://schemas.datacontract.org/2004/07/System">
<d4pl: Build>-1</d4pl: Build><d4pl: Major>2</d4pl: Major>
<d4pl: Minor>0</d4pl: Minor><d4pl: Revision>-1</d4pl: Revision>
</d2pl:FdtVersiomnw
</d2pl:DtmInfoy
</DtmInfos>
<MinimumInstalle¥Version xmlns:d2pl="http://schemas.datacontract.org/2004/07/System"
<d2pl: Busdd>0</d2pl: Build><d2pl: Major>4</d2pl: Major>
<d2pl: Mimer>5</d2pl: Minor><d2pl: Revision>0</d2pl: Revision>
</MinimymDn'stallerVersion>
<SuppexdediWindowsVersions>
<gSVegrsion>
<OSVersionNumber xmlns:d4pl="http://schemas.datacontract.org/2004/07/System">
<d4pl: Build>2600</d4pl: Build><d4pl: Major>5</d4dpl: Major>
<d4pl: Minor>1</d4pl: Minor><d4pl: Revision>196608</d4pl: Revision>
</0SVersionNumber>
<ServicePack>Service Pack 3, v.5657</ServicePack>
</0SVersion>
</SupportedWindowsVersions>
<ProductFeatures i:nil="true" />
</SetupManifest>

IEC
Figure 202 — Example: DtmSetupManifest
9.6.3 DTM device identification manifest

The device identification manifest file describes additional physical device parameters that
are required for device identification. These files are dependent on the respective

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 272 - IEC TR 62453-42:2016 © IEC 2016

communication protocol. Each file has to be placed into special subfolder that has the same
name as used communication protocol identifier. Device identification manifest files are used
only during setup. They are not required for installed DTMs because the DtminfoBuilder
deliver the same information.

The file name is composed of a unique name identifier and the fixed suffix
“.deviceident.manifest”.

A device type manifest xml file contains following information:

— Deviceldentinfo: This information is used to describe physical device types which are
stipported by a DTM Device Type. It contains identification elements of a physical-device
type or device type group.

roductFeatureRefs: [Optional] list of references to product feature(s) listed \in the setup
anifest. These features (e.g. device type) represent the required components that|shall
b installed to support the detected device type.

T3 T

Figune 203 shows an example of a DevicelndentManifest.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 - 273 -

<?xml version="1.0" encoding="utf-16"?2>
<DtmDeviceIdentManifest xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
<BusCategory xmlns:d2pl="http://schemas.datacontract.org/2004/07/Fdt">
<d2pl:CommunicationType>Required</d2pl:CommunicationType>
<d2pl:Physicallayers>
<d2pl:Physicallayer>
<d2pl:Id>bab209la-cl0a7-4614-b9de-fcc2709dcf5d</d2pl:Id>
<d2pl:Name>HART FSK Physical Layer</d2pl:Name>
</d2pl:Physicallayer>
</d2pl:Physicallayers>
<d2pl:ProtocolId>036d1498-387b-11d4-86e1-00e0987270b9</d2pl:ProtocolId>
<d2pl:ProtocolName>HART</d2pl:ProtocolName>

</BusCategory>
<DeviceldentInfos xmlns:d2pl="http://schemas.datacontract.org/2004/07/Fdt.Dtm">
,J’)L‘\.Y\ 2 Il Ll i + =l l7-1’\ i Lol E R = Ll ESnY i 1o ES o =P

<d2pl:DeviceSpecificProperties i:nil="true" />
<d2pl:SupportLevel>SpecificSupport</d2pl:SupportLevel>
<d2pl:ProtocolSpecificIdentInfo
xmflns:d4pl="http://schemas.datacontract.org/2004/07/Fdt.Dtm.Hart">
<d4pl:BusProtocolVersion>

<d2pl:ProtocolSpecificName i:nil="true" /> <d2pl:RegularExpressions i:nil="truel
/>Kd2pl:Value>5</d2pl:Value>
</d4pl:BusProtocolVersion>
<d4pl:DeviceCommandRevisionLevel>

<d2pl:ProtocolSpecificName i:nil="true" /> <d2pl:RegularExpressions jyn¥r="true" />
<dppl:Value>4</d2pl:Value>
</d4pl:DeviceCommandRevisionLevel>
<d4pl:DeviceFlags>

<d2pl:ProtocolSpecificName i:nil="true" /> <d2pl:RegularExpredsWhons i:nil="true" />
<dppl:Value>3</d2pl:Value>
</d4pl:DeviceFlags>
<d4pl:DeviceProfile>

<d2pl:ProtocolSpecificName i:nil="true" /> <d2pl:RegulagExXpressions i:nil="true" />
<dppl:Value>0</d2pl:Value>
</d4pl:DeviceProfile>
<d4pl:DeviceTypeCode>

<d2pl:ProtocolSpecificName i:nil="true" /><d2pfIRegularExpressions i:nil="true" />
<dppl:Value>123</d2pl:Value>
</d4pl:DeviceTypeCode>
<d4pl:HardwareRevisionLevel>

<d2pl:ProtocolSpecificName i:nil="true" > '<d2pl:RegularExpressions i:nil="true"
/>kd2pl:Value>1</d2pl:Value>
</d4pl:HardwareRevisionLevel>
<d4pl:ManufacturerId>

<d2pl:ProtocolSpecificName i:njilsftrue" /> <d2pl:RegularExpressions i:nil="true" />
<dppl:Value>98</d2pl:Value>
</d4pl:ManufacturerId>
<d4pl:PhysicalSignalingCode>

<d2pl:ProtocolSpecificName Y:nil="true" /> <d2pl:RegularExpressions 1i:nil="true" />
<dppl:Value>0</d2pl:Value>
</d4pl:PhysicalSignalingeude>
<d4pl:SoftwareRevisidn>

<d2pl:ProtocolSpeeificName i:nil="true" /> <d2pl:RegularExpressions 1i:nil="true" />
<dppl:Value>3</d2pl:Valuex

</d4pl:SoftwazeRewision>

</d2pl:Protocgl8pecificIdentInfo>
</d2pl:DeviceldentiInfo>
/DeviceldentInfos™>
ProductFeatu®es) 'i:nil="true" />
</ptmDeviceIldépeManifest>

IEC

Figure 203 — Example: DeviceldentManifest

9.6.4 Setup creation rules

This chapter describes the rules and recommendations that each DTM setup shall follow in
order to achieve a reliable and standardized behavior of setups. This is required in order to
enable a Frame Application to retrieve information about a DTM setup, automatically install or
remove it, perform updates, etc.

The (mandatory) rules are:

a) Use Windows Installer as base installation technology. The required version of
Windows Installer is indicated in the setup manifest for each DTM setup. The minimum
required version is 4.5. This version shall be provided by the Frame Application on each
target system.

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

- 274 - IEC TR 62453-42:2016 © IEC 2016

b) All Windows Installer rules should be followed. In order to achieve correct Windows
Installer setups all Windows Installer rules should be followed (see [15], [16], [17]). It is
strongly recommended for a setup, that it should not require a restart of the system. If the
setup may require a restart of the system, the documentation for the setup and the setup
manifest shall indicate this situation.

NOTE Especially for a DCS the reboot of a system is not a normal operation.

c) DTM setup shall be provided as standalone MSI package. The Windows Installer setup
file format is “.msi”. This file can be used for standalone installation as well as in context
of other installations. Output (progress, running actions, log and error messages) can be
integrated into external user interface (e.g. into Frame Application). Additionally, it
aptomaticalty—supports—fuH—Windows—tnstalte ofmand—tine—synts etp—bootstrapper

(e.g. setup.exe) may be used in addition if required.

OO0 GO 2 CO RLE=LEA® - A~

d) MSI packages shall be always executable in silent mode (when user interface tables
afe not processed). If custom actions are used, they should be started independent|from
the setup user interface.

e) Always sign external CAB files and MSI file with a digital signature. This actiyates
aptomatic check of setup consistency. If downloaded files arenbroken, then digital
s{gnature differs from the signature stored in the MSI file.

f) DITM setup features shall be self-consistent. Each feature\in setup componentg tree
that represents one DTM should be independent from other features. This means if[such
fgature is selected for installation, the DTM will be fully<installed and work. Uninstpll of
sfich feature removes the DTM completely. All ‘dependent components, shared
cpmponents etc. are installed or removed automatically-

g) All DTM components (assemblies) shall have strong name. This avoids DLL version
cpnflicts if some shared components are used between different DTMs or beteen
d|fferent versions of the same DTM.

h) Alll FDT components shall be installed using official FDT merge modules. FDT binary
files cannot be used directly in setups (e.g. as automatic dependencies). All centrall FDT
settings (e.g. Registry entries) shall*be entered by FDT merge modules only.|FDT
cpmponents that are installed in Global Assembly Cache shall be marked as shared.

i) Aln installation package shall(be uniquely identifiable within the operating system
djalog ‘Add / Remove Progtams’. That means support information (version numbef[and
blild index) shall be available to identify the version of the installation package| The
visible entry shown in ‘Add / Remove Programs’ shall start with the name of the [DTM
vendor.

The jecommendations-are:

i) viceTypes.should be used as setup-features. Other features are also possible. All
Setup-features shall be listed in setup manifest. Categories for setup features shall be
defined.—This also allows identifying the device types that are provided with a DTM setup.
In order to install only BL or Ul components a frame will use command line ogtions
(nealized as properties of the setup)

k) DTM setups should use features of Windows Installer 4.5. Newer versions of Windows
Installer engine (> 4.5) have many advanced features. On the other hand, OS version
limitations exist (e.g. Windows Vista is required). In this case also the additional Windows
Installer runtime distribution is required what is not convenient for the end user and makes
setup much larger (Windows Installer runtime shall be delivered too).

9.7 DTM deployment

A DTM setup shall support the features listed below in order to enable Frame Applications to
perform automatic DTM deployment.

e A DtmSetup manifest file containing basic DTM information (also used for DTM
registration, 9.6.2) is provided together with the setup

e The DTM setup can be executed from command line without a user interface (silent setup)

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviations and conventions
	3.1 Terms and definitions
	3.2 Abbreviations
	3.3 Conventions

	4 Implementation concept
	4.1 Technological orientation
	4.2 Implementation of abstract FDT object model
	4.3 FDT Frame Application (FA)
	4.4 DTM Business Logic
	4.4.1 General
	4.4.2 Implementation of DTM, DTM Device Type, and Device Ident Info
	4.4.7 Function Info
	4.4.8 Report Info
	4.4.9 Document Reference Info

	4.5 Implementation of DTM Functions
	4.5.1 DTM User Interface
	4.5.2 Function access control
	4.5.3 Handling of standard UI elements in modeless DTM UI interfaces
	4.5.4 Command functions

	4.6 User management
	4.6.1 General
	4.6.2 Multi-user access
	4.6.3 User levels

	4.7 Implementation of FDT and system topology
	4.7.1 General
	4.7.2 Topology management
	4.7.3 Data exchange between Frame Applications

	4.8 Implementation of Modularity
	4.9 Implementation of FDT communication
	4.9.1 Handling of communication requests
	4.9.2 Handling of communication errors
	4.9.3 Handling of loss of connection
	4.9.4 Point–to-point communication
	4.9.5 Nested communication
	4.9.6 Dynamic changes in network

	4.10 Identification
	4.10.1 DTM instance identification
	4.10.2 Hardware identification

	4.11 Implementation of DTM data persistence and synchronization
	4.11.1 Persistence overview
	4.11.2 Relations of DTMDataSet
	4.11.3 DTMDataSet structure
	4.11.4 Types of persistent DTM data
	4.11.5 Data synchronization

	4.12 Implementation of access to device data and IO information
	4.12.1 Exposing device data and IO information
	4.12.2 Data access control
	4.12.3 Routed IO information
	4.12.4 Comparison of DTM and device data
	4.12.5 Support for multirole devices

	4.13 Clone of DTM instances
	4.13.1 General
	4.13.2 Replicating a part of topology with Parent DTM and a subset of its Child DTMs
	4.13.3 Cloning of a DTM without its children
	4.13.4 Delayed cloning

	4.14 Lifecycle concepts
	4.15 Audit trail
	4.15.1 General
	4.15.2 Audit trail events

	5 Technical concepts
	5.1 General
	5.2 Support of .NET Common Language Runtime versions
	5.2.1 General
	5.2.2 Rules for FDT .NET assemblies
	5.2.3 DTM rules
	5.2.4 Frame Application rules
	5.2.5 FDT CLR extension concept

	5.3 Support for 32-bit and 64-bit target platforms
	5.4 Object activation and deactivation
	5.4.1 General
	5.4.2 Assembly loading and object creation
	5.4.3 Assembly dependencies
	5.4.4 Shared assemblies
	5.4.5 Object deactivation and unloading

	5.5 Datatypes
	5.5.1 General
	5.5.2 Serialization / deserialization
	5.5.3 Support of XML
	5.5.4 Optional elements
	5.5.5 Verify
	5.5.6 Clone
	5.5.7 Equals
	5.5.8 Lists
	5.5.9 Nullable
	5.5.10 Enumeration
	5.5.11 Protocol-specific datatypes
	5.5.12 Custom datatypes

	5.6 General object interaction
	5.6.1 General
	5.6.2 Decoupling of FDT Objects
	5.6.3 Parameter interchange with .NET datatypes
	5.6.4 Interaction patterns
	5.6.5 Properties
	5.6.6 Synchronous methods
	5.6.7 Asynchronous methods
	5.6.8 Events pattern
	5.6.9 Exception handling

	5.7 Threading
	5.7.1 Introduction
	5.7.2 Threading rules

	5.8 Localization support
	5.8.1 General
	5.8.2 Access to localized resources and culture-dependent functions
	5.8.3 Handling of cultures
	5.8.4 Switching the User Interface language

	5.9 DTM User Interface implementation
	5.9.1 General
	5.9.2 Resizing
	5.9.3 Private dialogs

	5.10 DTM User Interface hosting
	5.10.1 General
	5.10.2 Hosting DTM WPF controls
	5.10.3 Hosting DTM WinForms controls

	5.11 Static Function implementation
	5.12 Persistence
	5.12.1 Overview
	5.12.2 Data format
	5.12.3 Adding / reading / writing / deleting of data
	5.12.4 Searching for data

	5.13 Comparison of DTM and device data
	5.13.1 Comparison of datasets using IDeviceData / IInstanceData
	5.13.2 Comparison of datasets using IComparison

	5.14 Tracing
	5.15 Report generation
	5.15.1 General
	5.15.2 Report types
	5.15.3 DTM report data format
	5.15.4 Report data exchange

	5.16 Security
	5.16.1 General
	5.16.2 Strong naming of assemblies
	5.16.3 Identification of origin
	5.16.4 Code access security
	5.16.5 Validation of FDT compliance certification

	6 FDT Objects and interfaces
	6.1 General
	6.2 Frame Application
	6.3 DTM Business Logic
	6.3.1 DTM BL interfaces
	6.3.2 State machines related to DTM BL
	6.3.3 State machine of instance data

	6.4 DTM User Interface
	6.5 Communication Channel
	6.6 Availability of interface methods

	7 FDT datatypes
	7.1 General
	7.2 Datatypes – Base
	7.3 General datatypes
	7.4 Datatypes – DtmInfo / TypeInfo
	7.5 Datatypes – DeviceIdentInfo
	7.6 Datatypes for installation and deployment
	7.6.1 Datatypes – SetupManifest
	7.6.2 Datatypes – DtmManifest
	7.6.3 Datatypes – DtmUiManifest

	7.7 Datatypes – Communication
	7.8 Datatypes – BusCategory
	7.9 Datatypes – Device / Instance Data
	7.9.1 General
	7.9.2 Datatypes used in reading and writing DeviceData

	7.10 Datatypes for export and import
	7.10.1 Datatypes – TopologyImportExport
	7.10.2 Datatypes – ImportExportDataset

	7.11 Datatypes for process data description
	7.11.1 Datatypes – ProcessDataInfo
	7.11.2 Datatypes – Process Image

	7.12 Datatypes – Address information
	7.13 Datatypes – NetworkDataInfo
	7.14 Datatypes – DTM functions
	7.15 Datatypes – DTM messages
	7.16 Datatypes for delegation of DTM UI dialog actions
	7.17 Datatypes – CommunicationChannelInfo
	7.18 Datatypes – HardwareIdentification and scanning
	7.18.1 General
	7.18.2 Datatypes – DeviceScanInfo
	7.18.3 Example – HardwareIdentification and scanning for HART

	7.19 Datatypes – DTM report types
	7.20 Information related to device modules in a monolithic DTM

	8 Workflows
	8.1 General
	8.2 Instantiation, loading and release
	8.2.1 Finding a DTM BL object
	8.2.2 Instantiation of a new DTM BL
	8.2.3 Configuring access rights
	8.2.4 Loading a DTM BL
	8.2.5 Loading a DTM with Expert user level
	8.2.6 Release of a DTM BL

	8.3 Persistent storage of a DTM
	8.3.1 Saving instance data of a DTM
	8.3.2 Copy and versioning of a DTM instance
	8.3.3 Dataset commit failed
	8.3.4 Export a DTM dataset to file

	8.4 Locking and DataTransactions in multi-user environments
	8.4.1 General
	8.4.2 Propagation of changes
	8.4.3 Synchronizing DTMs in multi-user environments

	8.5 Execution of DTM Functions
	8.5.1 General
	8.5.2 Finding a DTM User Interface object
	8.5.3 Instantiation of an integrated DTM graphical user interface
	8.5.4 Instantiation of a DTM UI triggered by the DTM BL
	8.5.5 Instantiation of a modal DTM UI triggered by DTM BL
	8.5.6 Release of a DTM User Interface
	8.5.7 Release of a DTM UI triggered by the DTM BL
	8.5.8 Release of a DTM User Interface triggered by itself
	8.5.9 Release of a non-modal DTM User Interface triggered by a standard action
	8.5.10 Progress indication for prolonged DTM actions
	8.5.11 Starting an application
	8.5.12 Terminating applications
	8.5.13 Execution of command functions
	8.5.14 Execution of a command function with user interface
	8.5.15 Opening of documents
	8.5.16 Interaction between DTM User Interface and DTM Business Logic
	8.5.17 Interaction between DTM Business Logic and DTM User Interface
	8.5.18 Interaction between DTM User Interface and DTM Business Logic with Cancel
	8.5.19 Retrieving information about available Static Functions
	8.5.20 Executing a Static Function
	8.5.21 Executing a Static Function with multiple arguments

	8.6 DTM communication
	8.6.1 General
	8.6.2 Establishing a communication connection
	8.6.3 Cancel establishment of communication connection
	8.6.4 Communicating with the device
	8.6.5 Frame Application or Child DTM disconnect a device
	8.6.6 Terminating a communication connection
	8.6.7 DTM aborts communication connection
	8.6.8 Communication Channel aborts communication connection

	8.7 Nested communication
	8.7.1 General
	8.7.2 Communication request for a nested connection
	8.7.3 Propagation of errors for a nested connection

	8.8 Topology planning
	8.8.1 General
	8.8.2 Adding a DTM to the topology
	8.8.3 Removing a DTM from topology
	8.8.4 Frame Application creates topology
	8.8.5 DTM generates sub-topology
	8.8.6 Physical Layer and DataLinkLayer

	8.9 Instantiation, configuration, move and release of Child DTMs
	8.9.1 General
	8.9.2 Instantiation and configuration of Child DTM BL
	8.9.3 Interaction between Parent DTM and Child DTM
	8.9.4 Interaction between Parent DTM and Child DTM using IDtmMessaging
	8.9.5 Parent DTM moves a Child DTM
	8.9.6 Parent DTM removes Child DTM

	8.10 Topology scan
	8.10.1 General
	8.10.2 Scan of network topology
	8.10.3 Cancel topology scan
	8.10.4 Scan based DTM assignment
	8.10.5 Manufacturer-specific device identification

	8.11 Configuration of communication networks
	8.11.1 Configuration of a fieldbus master
	8.11.2 Integration of a passive device

	8.12 Using IO information
	8.12.1 Assignment of symbolic name to process data
	8.12.2 Creation of Process Image
	8.12.3 Validation of changes in process image while PLC is running
	8.12.4 Changing of variable names using process image interface

	8.13 Managing addresses
	8.13.1 Set DTM address with user interface
	8.13.2 Set DTM addresses without user interface
	8.13.3 Display or modify addresses of all Child DTMs with user interface

	8.14 Device-initiated data transfer
	8.15 Reading and writing data
	8.15.1 Read/write instance data
	8.15.2 Read/write device data

	8.16 Comparing data
	8.16.1 Comparing device dataset and instance dataset
	8.16.2 Comparing different instance datasets

	8.17 Reassigning a different DtmDeviceType at a device node
	8.17.1 General
	8.17.2 DTM detects a change in connected device type
	8.17.3 Search matching DtmDeviceTypes after incompatible device exchange
	8.17.4 Reassign DtmDeviceType after incompatible device exchange

	8.18 Copying part of FDT Topology
	8.18.1 Cloning of a single DTM without Children
	8.18.2 Cloning of a DTM with all its Children

	8.19 Sequences for audit trail
	8.19.1 General
	8.19.2 Audit trail of parameter modifications in instance dataset
	8.19.3 Audit trail of parameter modifications in device dataset
	8.19.4 Audit trail of function calls
	8.19.5 Audit trail of general notification

	9 Installation
	9.1 General
	9.2 Common rules
	9.2.1 Predefined installation paths
	9.2.2 Manifest files
	9.2.3 Paths in manifest files
	9.2.4 Common command line arguments
	9.2.5 Digital signatures of setup components

	9.3 Installation of FDT core assemblies
	9.4 Installation of communication protocols
	9.4.1 General
	9.4.2 Registration
	9.4.3 Protocol manifest

	9.5 Installation of DTMs
	9.5.1 General
	9.5.2 Registration
	9.5.3 DTM manifest
	9.5.4 DTM User Interface manifest

	9.6 DTM setup
	9.6.1 Structure
	9.6.2 DTM setup manifest
	9.6.3 DTM device identification manifest
	9.6.4 Setup creation rules

	9.7 DTM deployment
	9.8 Paths and file information
	9.8.1 Path information provided by a DTM
	9.8.2 Paths and persistence
	9.8.3 Multi-user systems

	10 Life cycle concept
	10.1 General
	10.2 Technical concept
	10.2.1 General
	10.2.2 DtmManifest / DtmInfo
	10.2.3 TypeInfo
	10.2.4 Supported DataSet formats
	10.2.5 DeviceIdentInfo
	10.2.6 Dataset
	10.2.7 DeviceScanInfo

	10.3 DTM setup
	10.4 Life Cycle Scenarios
	10.4.1 Overview
	10.4.2 Search for device type in DTM setups
	10.4.3 Search for installed DTMs
	10.4.4 Dataset migration for reassigned DTM

	11 Frame Application architectures
	11.1 General
	11.2 Standalone application
	11.3 Remoted user Interface
	11.4 Distributed multi-user application
	11.5 OPC UA

	Annex A (normative)FDT2 Use case model
	A.1 Use case model overview
	A.2 Actors
	A.3 Use cases
	A.3.1 Use case overview
	A.3.2 Observation use cases
	A.3.3 Operation use cases
	A.3.4 Maintenance use cases
	A.3.5 Planning use cases
	A.3.6 Main Operation
	A.3.7 OEM Service
	A.3.8 Administration

	Annex B (normative)FDT interface definition and datatypes
	Annex C (normative)Mapping of services to interface methods
	C.1 General
	C.2 DTM services
	C.3 Presentation object services
	C.4 General channel services
	C.5 Process channel services
	C.6 Communication Channel Services
	C.7 Frame Application Services

	Annex D (normative)FDT version interoperability guide
	D.1 Overview
	D.2 General
	D.3 Component interoperability

	Annex E (normative)FDT1.2.x / IEC 62453-42 Backward-Compatibility
	E.1 Overview
	E.2 Parallel FDT topologies
	E.3 Mixed FDT topologies
	E.4 FDT1.2.x / IEC 62453-42 Adapters
	E.5 FDT1.2.x XML / IEC TR 62453-42 Datatype Transformers
	E.5.1 General
	E.5.2 Installation and Registration of Protocol-specific Transformers
	E.5.3 Interaction between FDT2 and FDT1.2 components using Transformers

	E.6 Sequences related to backward compatibility
	E.6.1 General
	E.6.2 Dataset migration from FDT1.x DTM to FDT2.x DTM

	Annex F (informative)Implementation Hints
	F.1 IAsyncResult pattern
	F.2 Threading Best Practices

	Annex G (informative)Trade names
	Annex H (informative)UML Notation
	H.1 General
	H.2 Class diagram
	H.3 Statechart diagram
	H.4 Use case diagram
	H.5 Sequence diagram
	H.6 Object diagram

	Annex I (informative)Physical Layer Examples
	I.1 General
	I.2 Interbus S
	I.3 PROFIBUS
	I.4 PROFINET

	Annex J (informative)Predefined SemanticIds
	J.1 General
	J.2 Data
	J.3 Images
	J.4 Documents

	Bibliography
	Figures
	Figure 1 – Relation of IEC 62453-42 to the IEC 62453 series
	Figure 2 – IEC 62453-42 Object Model
	Figure 3 – Frame Application
	Figure 4 – DTM Business Logic
	Figure 7 – Logical topology and physical topology
	Figure 8 – FDT and logical topology
	Figure 9 – DTMs and physical topology
	Figure 10 – Point–to-point communication
	Figure 11 – Nested communication
	Figure 12 – Identification of connected devices
	Figure 13 – FDT storage and synchronization mechanism
	Figure 14 – Relation between DTMDataSet, DTM instance, and device
	Figure 15 – DTMDataSet structure
	Figure 16 – Data Synchronization
	Figure 17 – Routed IO information
	Figure 18 – Multirole Device
	Figure 19 – FDT .NET Assemblies
	Figure 20 – FDT Object implementation
	Figure 21 – FDT CLR extension concept
	Figure 22 – Example: Assembly.LoadFrom()
	Figure 23 – Example: Assembly dependencies
	Figure 24 – Example: Datatype definition
	Figure 25 – Example: Data cloning
	Figure 26 – Example: Methods without data cloning
	Figure 27 – Protocol-specific datatypes
	Figure 28 – Protocol manifest and type info attributes
	Figure 29 – Example: Protocol assembly attributes
	Figure 30 – Example: Handling of protocol-specific assemblies in Frame Application
	Figure 31 – Decoupled FDT Objects in IEC 62453-42
	Figure 32 – IAsyncResult pattern: blocking call
	Figure 33 – Example: Blocking use of asynchronous interface
	Figure 34 – IAsyncResult pattern (simplified): blocking call
	Figure 35 – IAsyncResult pattern: non-blocking call
	Figure 36 – Example: Non-blocking use of asynchronous interface
	Figure 37 – IAsyncResult pattern (simplified depiction): non-blocking call
	Figure 38 – IAsyncResult pattern: canceling an operation
	Figure 39 – IAsyncResult pattern: providing progress events
	Figure 40 – Frame Application's host window providing scroll bars
	Figure 41 – Control using internal scrollbars
	Figure 42 – Example: Hosting a DTM WPF control in a WPF Frame Application
	Figure 43 – Example: Hosting a DTM WPF control in a WinForms Frame Application
	Figure 44 – Example: Hosting DTM WinForms controls in a WinForms Frame Application
	Figure 45 – Example: Hosting a DTM WinForms control in a WPF Frame Application
	Figure 46 – Relation of StaticFunctionDescription to Static Function
	Figure 47 – DTMDataset structure
	Figure 48 – Example: Initialization of DTMDataSubset with DTM data
	Figure 49 – Example: Writing of DTM data in DTMDataSubset
	Figure 50 – Example: Reading of DTM data from a DTMDataSubset
	Figure 51 – Example: Creation of a BulkData.DTMDataSubset with descriptor
	Figure 52 – Example: Searching for DTMDataSubsets with specific descriptor
	Figure 53 – Skeleton of a DTM-specific report fragment
	Figure 54 – Example: Authenticode check
	Figure 55 – Example: Conformity record file
	Figure 56 – Example: checking conformity record file
	Figure 57 – Frame Application interfaces
	Figure 58 – DTM Business Logic interfaces (Part 1)
	Figure 59 – DTM Business Logic interfaces (Part 2)
	Figure 60 – State machine of DTM BL
	Figure 61 – Online state machine of DTM
	Figure 62 – Modifications of data through a DTM
	Figure 63 – ModifiedInDtm: State machine of instance data
	Figure 64 – ModifiedInDevice: State machine related to device data
	Figure 65 – DTM UI interfaces
	Figure 66 – Communication Channel interfaces
	Figure 67 – FdtDatatype and FdtList
	Figure 68 – DtmInfo / TypeInfo – datatypes
	Figure 69 – DeviceIdentInfo – datatypes
	Figure 70 – DeviceIdentInfo – Example for HART
	Figure 71 – Example: DeviceIdentInfo creation
	Figure 72 – Example: Using DeviceIdentInfo
	Figure 73 – Example: DeviceIdentInfoTypeAttribute
	Figure 74 – SetupManifest – datatypes
	Figure 75 – DtmManifest – datatypes
	Figure 76 – DtmUiManifest – datatypes
	Figure 77 – Communication datatypes – Connect
	Figure 78 – Communication datatypes – Transaction
	Figure 79 – Communication datatypes – Disconnect
	Figure 80 – Communication datatypes – Subscribe
	Figure 81 – Communication datatypes – Scanning
	Figure 82 – Communication datatypes – Address setting
	Figure 83 – Example: Communication – Connect for HART
	Figure 84 – Example: Communication – CommunicationType for HART
	Figure 85 – BusCategory – datatypes
	Figure 86 – Device / Instance data – datatypes
	Figure 87 – Example: Providing information on data of a HART device
	Figure 88 – Example: Providing information on module data of a PROFIBUS device
	Figure 89 – Example: Providing information on data
	Figure 90 – Example: Providing information on structured data
	Figure 91 – EnumInfo – datatype
	Figure 92 – Read and Write Request – datatypes
	Figure 93 – ResponseInfo – datatype
	Figure 94 – TopologyImportExport – datatypes
	Figure 95 – ImportExportDataset – datatypes
	Figure 96 – ProcessDataInfo – datatypes
	Figure 97 – IOSignalInfo – datatypes
	Figure 98 – Example: ProcessDataInfo for HART (UML)
	Figure 99 – Example: ProcessDataInfo creation for HART
	Figure 100 – Example: Using ProcessData for HART
	Figure 101 – Example: IOSignalInfoType attribute
	Figure 102 – ProcessImage – datatypes
	Figure 103 – AddressInfo – datatypes
	Figure 104 – Example: AddressInfo creation
	Figure 105 – Example: Using AddressInfo
	Figure 106 – Example: DeviceAddressTypeAttribute
	Figure 107 – NetworkDataInfo – datatypes
	Figure 108 – Example: NetworkDataInfo creation example
	Figure 109 – Example: NetworkDataInfo using example
	Figure 110 – Example: NetworkDataTypeAttribute example
	Figure 111 – DTM Function – datatypes
	Figure 112 – DTM Messages – datatypes
	Figure 113 – ActionItem – datatypes
	Figure 114 – CommunicationChannelInfo – datatypes
	Figure 115 – Example: Channel information
	Figure 116 – DeviceScanInfo – datatypes
	Figure 117 – Example: HARTDeviceScanInfo – datatype
	Figure 118 – DTM Report – datatypes
	Figure 119 – Information related to device modules
	Figure 120 – Finding a DTM BL object
	Figure 121 – Instantiation of a new DTM BL
	Figure 122 – Configuration of user permissions
	Figure 123 – Loading a DTM BL
	Figure 124 – Loading a DTM with Expert user level
	Figure 125 – Release of a DTM BL
	Figure 126 – Saving data of a DTM
	Figure 127 – Dataset commit failed
	Figure 128 – Export a DTM dataset to file
	Figure 129 – Propagation of changes
	Figure 130 – Synchronizing DTMs in multi-user environments
	Figure 131 – Finding a DTM User Interface
	Figure 132 – Instantiation of a DTM User Interface
	Figure 133 – Instantiation of a DTM UI triggered by DTM BL
	Figure 134 – Instantiation of a modal DTM UI triggered by DTM BL
	Figure 135 – Release of a DTM User Interface
	Figure 136 – Release of a DTM UI triggered by the DTM BL
	Figure 137 – Release of a DTM User Interface triggered by itself
	Figure 138 – Release of a non-modal DTM UI triggered by a standard action
	Figure 139 – Progress indication for prolonged DTM actions
	Figure 140 – Starting an application
	Figure 141 – Execute a command function
	Figure 142 – Execute a command function with user interface
	Figure 143 – Opening a document
	Figure 144 – Interaction triggered by the DTM User Interface
	Figure 145 – Interaction triggered by the DTM Business Logic
	Figure 146 – Interaction triggered and canceled by the DTM User Interface
	Figure 147 – Retrieving information about available Static Functions
	Figure 148 – Example: Information about available Static Functions
	Figure 149 – Executing a Static Function
	Figure 150 – Executing a Static Function with multiple Arguments
	Figure 151 – Establishing a communication connection
	Figure 152 – DTM cancels ongoing Connect operation
	Figure 153 – Communicating with the device
	Figure 154 – Child DTM disconnects
	Figure 155 – Child DTM terminates a connection
	Figure 156 – Child DTM aborts a connection
	Figure 157 – Communication Channel aborts a connection
	Figure 158 – Example: Nested communication behavior
	Figure 159 – Example: Nested communication data exchange
	Figure 160 – Add DTM to topology
	Figure 161 – Removing a DTM from topology
	Figure 162 – Frame Application creates topology
	Figure 163 – DTM generates sub-topology
	Figure 164 – Instantiation and configuration of Child DTM BL
	Figure 165 – Interaction between Parent DTM and Child DTM
	Figure 166 – Interaction using IDtmMessaging
	Figure 167 – Parent DTM moves a Child DTM
	Figure 168 – Parent DTM removes Child DTM
	Figure 169 – Scan of network topology
	Figure 170 – Cancel topology scan
	Figure 171 – Scan based DTM assignment
	Figure 172 – Manufacturer-specific device identification
	Figure 173 – Configuration of a fieldbus master
	Figure 174 – Integration of a passive device
	Figure 175 – Assignment of process data
	Figure 176 – Creation of process image
	Figure 177 – Validation of changes while PLC is running
	Figure 178 – Changing of variable names using process image interface
	Figure 179 – Set DTM address with UI
	Figure 180 – Set DTM addresses without UI
	Figure 181 – Display or modify child addresses with UI
	Figure 182 – Device-initiated data transfer
	Figure 183 – Read/write instance data
	Figure 184 – Read/write device data
	Figure 185 – Comparing device dataset and instance dataset
	Figure 186 – Compare instance data with persisted dataset
	Figure 187 – DTM triggers ActiveTypeChanged event
	Figure 188 – Find matching DtmDeviceTypes after incompatible device exchange
	Figure 189 – Reassign a DtmDeviceType after incompatible device exchange
	Figure 190 – Clone DTM without children
	Figure 191 – Clone DTM with all children
	Figure 192 – Audit trail of parameter modifications in instance dataset
	Figure 193 – Audit trail of parameter modifications in device
	Figure 194 – Audit trail of function calls
	Figure 195 – GAC and FDT_Registry
	Figure 196 – Installation paths (with example DTM)
	Figure 197 – Example: Protocol manifest
	Figure 198 – Search for installed DTMs
	Figure 199 – Example: DtmManifest
	Figure 200 – Example: DtmUiManifest
	Figure 201 – DTM setup structure
	Figure 202 – Example: DtmSetupManifest
	Figure 203 – Example: DeviceIdentManifest
	Figure 204 – DTM deployment
	Figure 205 – Overview DTM identification
	Figure 206 – Identification attributes in DTM setup
	Figure 207 – Check DTM Setup for list of supported types
	Figure 208 – Scan installed DTMs
	Figure 209 – Dataset migration to a reassigned DtmDeviceType
	Figure 210 – Client / Server Application
	Figure 211 – Example for distributed multi-user application
	Figure 212 – OPC UA server based on IEC TR 62453-42
	Figure A.1 – Main use case diagram
	Figure A.2 – Observation use cases
	Figure A.3 – Operation use cases
	Figure A.4 – Maintenance use cases
	Figure A.5 – Planning use cases
	Figure E.1 – Example: IEC TR 62453-42 Frame Applicationwith FDT1.2.x backward-compatibility support
	Figure E.2 – IEC TR 62453-42 Frame Application with FDT1.2.x Device DTM
	Figure E.3 – IEC TR 62453-42 Frame Application with FDT1.2.x Comm. and Gateway DTM
	Figure E.4 – IEC TR 62453-42 Frame Application with FDT1.2.x Gateway DTM
	Figure E.5 – IEC TR 62453-42 – FDT1.2 interaction using transformer
	Figure E.6 – Dataset migration from FDT1.x DTM to FDT2.x DTM
	Figure H.1 – Note
	Figure H.2 – Class
	Figure H.3 – Association
	Figure H.4 – Navigable Association
	Figure H.5 – Composition
	Figure H.6 – Aggregation
	Figure H.7 – Dependency
	Figure H.9 – Abstract class, Generalization and Interface
	Figure H.10 – Interface related notations
	Figure H.11 – Multiplicity
	Figure H.12 – Enumeration datatype
	Figure H.13 – Elements of UML statechart diagrams
	Figure H.14 – Example of UML state chart diagram
	Figure H.15 – UML use case syntax
	Figure H.16 – UML sequence diagram
	Figure H.17 – Empty UML sequence diagram frame
	Figure H.18 – Object with life line and activation
	Figure H.19 – Method calls
	Figure H.20 – Modeling guarded call and multiple calls
	Figure H.21 – Call to itself
	Figure H.22 – Continuation / StateInvariant
	Figure H.23 – Alternative fragment
	Figure H.24 – Option fragment
	Figure H.25 – Loop combination fragment
	Figure H.26 – Break notation
	Figure H.27 – Sequence reference
	Figure H.28 – Objects
	Figure H.29 – Object association

	Tables
	Table 1 – FDT User levels
	Table 2 – Role dependent Access Rights and User Interfaces for DTMs
	Table 3 – Description of properties related to data access control
	Table 4 – Supported CLR versions
	Table 5 – Frame Application interfaces
	Table 6 – DTM Business Logic interfaces
	Table 7 – Availability of interfaces depending of type of DTM
	Table 8 – Definition of DTM BL state machine
	Table 9 – Definition of online state machine
	Table 10 – Description of instance dataset states
	Table 11 – Description of dataset states regarding online modifications
	Table 12 – DTM UI interfaces
	Table 13 – Communication Channel interfaces
	Table 14 – Availability of DTM BL methods in different states
	Table 15 – FDT base datatypes
	Table 16 – FDT General datatypes
	Table 17 – DtmInfo datatype description
	Table 18 – DeviceIdentInfo datatype description
	Table 19 – DeviceIdentInfo – Example for HART
	Table 20 – SetupManifest datatype description
	Table 21 – DtmManifest datatype description
	Table 22 – DtmUiManifest datatype description
	Table 23 – Communication datatype description
	Table 24 – BusCategory datatype description
	Table 25 – DeviceData datatype description
	Table 26 – Reading and Writing datatype description
	Table 27 – Reading and Writing datatype description
	Table 28 – TopologyImportExport datatype description
	Table 29 – ImportExportDataset datatype description
	Table 30 – ProcessDataInfo datatype description
	Table 31 – IOSignalInfo datatype description
	Table 32 – ProcessImage datatype description
	Table 33 – AddressInfo datatype description
	Table 34 – NetworkDataInfo datatype description
	Table 35 – DTM Function datatype description
	Table 36 – DTM Messages datatype description
	Table 37 – ActionItem datatype description
	Table 38 – CommunicationChannelInfo datatype description
	Table 39 – DeviceScanInfo datatype description
	Table 40 – Example: HARTDeviceScanInfo datatype description
	Table 41 – Reporting datatype description
	Table 42 – Predefined FDT installation paths
	Table 43 – Predefined setup properties
	Table 44 – Setup command line parameters
	Table 45 – DTM identification
	Table 46 – DtmType – user readable description of supported types
	Table 47 – TypeInfo identification
	Table 48 – DtmType – Dataset support identification
	Table 49 – Dataset identification
	Table 50 – DeviceScanInfo – scanned device identification
	Table 51 – Setup information
	Table 52 – Changing DTM–- overview
	Table A.1 – Actors
	Table A.2 – Observation use cases
	Table A.3 – Operation use cases
	Table A.4 – Maintenance use cases
	Table A.5 – Planning use cases
	Table C.1 – General services
	Table C.2 – DTM services related to installation
	Table C.3 – DTM service related to DTM Information
	Table C.4 – DTM services related to DTM state machine
	Table C.5 – DTM services related to function
	Table C.6 – DTM services related to documentation
	Table C.7 – DTM services to access the instance data
	Table C.8 – DTM services to access diagnosis
	Table C.9 – DTM services to access to device data
	Table C.10 – DTM services related to network management information
	Table C.11 – DTM services related to online operation
	Table C.12 – DTM services related to FDT-Channel objects
	Table C.13 – DTM services related to import and export
	Table C.14 – DTM services related to data synchronization
	Table C.15 – DTM UI state control
	Table C.16 – General channel service
	Table C.17 – Channel services for IO related information
	Table C.18 – Channel services related to communication
	Table C.19 – Channel services related sub-topology management
	Table C.20 – Channel services related to functions
	Table C.21 – Channel services related to scan
	Table C.22 – FA services related to general events
	Table C.23 – FA services related to topology management
	Table C.24 – FA services related to redundancy
	Table C.25 – FA services related to storage of DTM data
	Table C.26 – FA services related to DTM data synchronization
	Table C.27 – FA related to presentation
	Table C.28 – FA services related to audit trail
	Table D.1 – Interoperability between components of different versions
	Table E.1 – Adapter interface mappings

