

IEC TR 62453-42
Edition 1.0 2016-04

TECHNICAL
REPORT

Field device tool (FDT) interface specification –
Part 42: Object model integration profile – Common Language Infrastructure

IE
C

 T
R

 6
24

53
-4

2:
20

16
-0

4(
en

)

®

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2016 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC
copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or
your local IEC member National Committee for further information.

IEC Central Office Tel.: +41 22 919 02 11
3, rue de Varembé Fax: +41 22 919 03 00
CH-1211 Geneva 20 info@iec.ch
Switzerland www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.

IEC Catalogue - webstore.iec.ch/catalogue
The stand-alone application for consulting the entire
bibliographical information on IEC International Standards,
Technical Specifications, Technical Reports and other
documents. Available for PC, Mac OS, Android Tablets and
iPad.

IEC publications search - www.iec.ch/searchpub
The advanced search enables to find IEC publications by a
variety of criteria (reference number, text, technical
committee,…). It also gives information on projects, replaced
and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished
Stay up to date on all new IEC publications. Just Published
details all new publications released. Available online and
also once a month by email.

Electropedia - www.electropedia.org
The world's leading online dictionary of electronic and
electrical terms containing 20 000 terms and definitions in
English and French, with equivalent terms in 15 additional
languages. Also known as the International Electrotechnical
Vocabulary (IEV) online.

IEC Glossary - std.iec.ch/glossary
65 000 electrotechnical terminology entries in English and
French extracted from the Terms and Definitions clause of
IEC publications issued since 2002. Some entries have been
collected from earlier publications of IEC TC 37, 77, 86 and
CISPR.

IEC Customer Service Centre - webstore.iec.ch/csc
If you wish to give us your feedback on this publication or
need further assistance, please contact the Customer Service
Centre: csc@iec.ch.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

mailto:info@iec.ch
http://www.iec.ch/
http://webstore.iec.ch/catalogue
http://www.iec.ch/searchpub
http://webstore.iec.ch/justpublished
http://www.electropedia.org/
http://std.iec.ch/glossary
http://webstore.iec.ch/csc
mailto:csc@iec.ch
https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42
Edition 1.0 2016-04

TECHNICAL
REPORT

Field device tool (FDT) interface specification –
Part 42: Object model integration profile – Common Language Infrastructure

INTERNATIONAL
ELECTROTECHNICAL
COMMISSION

ICS 25.040.40; 35.100.05; 35.110

ISBN 978-2-8322-3226-2

® Registered trademark of the International Electrotechnical Commission

®

 Warning! Make sure that you obtained this publication from an authorized distributor.

colour
inside

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 2 – IEC TR 62453-42:2016  IEC 2016

CONTENTS

FOREWORD ... 19
INTRODUCTION ... 21
1 Scope .. 23
2 Normative references... 23
3 Terms, definitions, abbreviations and conventions .. 23

3.1 Terms and definitions .. 23
3.2 Abbreviations .. 30
3.3 Conventions .. 30

4 Implementation concept ... 31
4.1 Technological orientation ... 31
4.2 Implementation of abstract FDT object model .. 31
4.3 FDT Frame Application (FA) .. 32
4.4 DTM Business Logic.. 33

4.4.1 General ... 33
4.4.2 Implementation of DTM, DTM Device Type, and Device Ident Info 34
4.4.3 Implementation of DTM device parameter access ... 35
4.4.4 Process Data Info .. 35
4.4.5 Diagnostic Data Info ... 36
4.4.6 Network Management Info .. 36
4.4.7 Function Info .. 37
4.4.8 Report Info ... 37
4.4.9 Document Reference Info ... 37

4.5 Implementation of DTM Functions .. 37
4.5.1 DTM User Interface .. 37
4.5.2 Function access control .. 38
4.5.3 Handling of standard UI elements in modeless DTM UI interfaces 38
4.5.4 Command functions ... 39

4.6 User management ... 39
4.6.1 General ... 39
4.6.2 Multi-user access ... 39
4.6.3 User levels ... 39

4.7 Implementation of FDT and system topology .. 42
4.7.1 General ... 42
4.7.2 Topology management ... 43
4.7.3 Data exchange between Frame Applications ... 45

4.8 Implementation of Modularity ... 45
4.9 Implementation of FDT communication .. 45

4.9.1 Handling of communication requests .. 45
4.9.2 Handling of communication errors .. 46
4.9.3 Handling of loss of connection .. 46
4.9.4 Point–to-point communication ... 46
4.9.5 Nested communication ... 47
4.9.6 Dynamic changes in network .. 47

4.10 Identification ... 48
4.10.1 DTM instance identification .. 48
4.10.2 Hardware identification ... 48

4.11 Implementation of DTM data persistence and synchronization 49

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 3 –

4.11.1 Persistence overview ... 49
4.11.2 Relations of DTMDataSet ... 50
4.11.3 DTMDataSet structure .. 51
4.11.4 Types of persistent DTM data ... 52
4.11.5 Data synchronization .. 52

4.12 Implementation of access to device data and IO information 53
4.12.1 Exposing device data and IO information .. 53
4.12.2 Data access control ... 54
4.12.3 Routed IO information .. 56
4.12.4 Comparison of DTM and device data .. 56
4.12.5 Support for multirole devices .. 57

4.13 Clone of DTM instances .. 58
4.13.1 General ... 58
4.13.2 Replicating a part of topology with Parent DTM and a subset of its Child

DTMs ... 58
4.13.3 Cloning of a DTM without its children .. 58
4.13.4 Delayed cloning ... 58

4.14 Lifecycle concepts ... 59
4.15 Audit trail .. 59

4.15.1 General ... 59
4.15.2 Audit trail events .. 59

5 Technical concepts .. 60
5.1 General ... 60
5.2 Support of .NET Common Language Runtime versions .. 62

5.2.1 General ... 62
5.2.2 Rules for FDT .NET assemblies .. 62
5.2.3 DTM rules .. 62
5.2.4 Frame Application rules .. 62
5.2.5 FDT CLR extension concept ... 63

5.3 Support for 32-bit and 64-bit target platforms ... 63
5.4 Object activation and deactivation ... 64

5.4.1 General ... 64
5.4.2 Assembly loading and object creation ... 64
5.4.3 Assembly dependencies ... 65
5.4.4 Shared assemblies ... 65
5.4.5 Object deactivation and unloading .. 66

5.5 Datatypes ... 67
5.5.1 General ... 67
5.5.2 Serialization / deserialization .. 67
5.5.3 Support of XML .. 68
5.5.4 Optional elements .. 68
5.5.5 Verify ... 68
5.5.6 Clone ... 68
5.5.7 Equals ... 69
5.5.8 Lists .. 69
5.5.9 Nullable ... 70
5.5.10 Enumeration .. 70
5.5.11 Protocol-specific datatypes... 70
5.5.12 Custom datatypes .. 72

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 4 – IEC TR 62453-42:2016  IEC 2016

5.6 General object interaction.. 73
5.6.1 General ... 73
5.6.2 Decoupling of FDT Objects ... 73
5.6.3 Parameter interchange with .NET datatypes ... 74
5.6.4 Interaction patterns .. 74
5.6.5 Properties .. 74
5.6.6 Synchronous methods .. 74
5.6.7 Asynchronous methods .. 75
5.6.8 Events pattern ... 81
5.6.9 Exception handling ... 82

5.7 Threading ... 86
5.7.1 Introduction .. 86
5.7.2 Threading rules .. 87

5.8 Localization support .. 88
5.8.1 General ... 88
5.8.2 Access to localized resources and culture-dependent functions 89
5.8.3 Handling of cultures ... 89
5.8.4 Switching the User Interface language .. 90

5.9 DTM User Interface implementation ... 90
5.9.1 General ... 90
5.9.2 Resizing .. 90
5.9.3 Private dialogs ... 92

5.10 DTM User Interface hosting ... 92
5.10.1 General ... 92
5.10.2 Hosting DTM WPF controls .. 92
5.10.3 Hosting DTM WinForms controls .. 93

5.11 Static Function implementation .. 94
5.12 Persistence ... 96

5.12.1 Overview ... 96
5.12.2 Data format .. 97
5.12.3 Adding / reading / writing / deleting of data ... 97
5.12.4 Searching for data .. 99

5.13 Comparison of DTM and device data ... 100
5.13.1 Comparison of datasets using IDeviceData / IInstanceData 100
5.13.2 Comparison of datasets using IComparison .. 101

5.14 Tracing ... 101
5.15 Report generation ... 101

5.15.1 General ... 101
5.15.2 Report types .. 102
5.15.3 DTM report data format .. 102
5.15.4 Report data exchange .. 103

5.16 Security .. 103
5.16.1 General ... 103
5.16.2 Strong naming of assemblies .. 103
5.16.3 Identification of origin ... 104
5.16.4 Code access security ... 104
5.16.5 Validation of FDT compliance certification .. 104

6 FDT Objects and interfaces .. 106
6.1 General ... 106

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 5 –

6.2 Frame Application ... 107
6.3 DTM Business Logic.. 109

6.3.1 DTM BL interfaces ... 109
6.3.2 State machines related to DTM BL ... 114
6.3.3 State machine of instance data ... 120

6.4 DTM User Interface ... 123
6.5 Communication Channel .. 124
6.6 Availability of interface methods .. 125

7 FDT datatypes ... 126
7.1 General ... 126
7.2 Datatypes – Base .. 127
7.3 General datatypes ... 127
7.4 Datatypes – DtmInfo / TypeInfo ... 128
7.5 Datatypes – DeviceIdentInfo .. 130
7.6 Datatypes for installation and deployment .. 135

7.6.1 Datatypes – SetupManifest ... 135
7.6.2 Datatypes – DtmManifest ... 136
7.6.3 Datatypes – DtmUiManifest .. 137

7.7 Datatypes – Communication .. 137
7.8 Datatypes – BusCategory .. 143
7.9 Datatypes – Device / Instance Data ... 143

7.9.1 General ... 143
7.9.2 Datatypes used in reading and writing DeviceData 150

7.10 Datatypes for export and import ... 152
7.10.1 Datatypes – TopologyImportExport ... 152
7.10.2 Datatypes – ImportExportDataset ... 153

7.11 Datatypes for process data description .. 154
7.11.1 Datatypes – ProcessDataInfo ... 154
7.11.2 Datatypes – Process Image .. 159

7.12 Datatypes – Address information ... 160
7.13 Datatypes – NetworkDataInfo .. 164
7.14 Datatypes – DTM functions .. 166
7.15 Datatypes – DTM messages .. 168
7.16 Datatypes for delegation of DTM UI dialog actions ... 170
7.17 Datatypes – CommunicationChannelInfo .. 170
7.18 Datatypes – HardwareIdentification and scanning .. 172

7.18.1 General ... 172
7.18.2 Datatypes – DeviceScanInfo ... 172
7.18.3 Example – HardwareIdentification and scanning for HART 173

7.19 Datatypes – DTM report types ... 174
7.20 Information related to device modules in a monolithic DTM 174

8 Workflows ... 176
8.1 General ... 176
8.2 Instantiation, loading and release .. 176

8.2.1 Finding a DTM BL object .. 176
8.2.2 Instantiation of a new DTM BL .. 178
8.2.3 Configuring access rights ... 180
8.2.4 Loading a DTM BL ... 181
8.2.5 Loading a DTM with Expert user level ... 182

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 6 – IEC TR 62453-42:2016  IEC 2016

8.2.6 Release of a DTM BL ... 183
8.3 Persistent storage of a DTM .. 184

8.3.1 Saving instance data of a DTM ... 184
8.3.2 Copy and versioning of a DTM instance .. 185
8.3.3 Dataset commit failed ... 186
8.3.4 Export a DTM dataset to file ... 186

8.4 Locking and DataTransactions in multi-user environments 187
8.4.1 General ... 187
8.4.2 Propagation of changes.. 188
8.4.3 Synchronizing DTMs in multi-user environments ... 190

8.5 Execution of DTM Functions .. 191
8.5.1 General ... 191
8.5.2 Finding a DTM User Interface object ... 191
8.5.3 Instantiation of an integrated DTM graphical user interface 192
8.5.4 Instantiation of a DTM UI triggered by the DTM BL 193
8.5.5 Instantiation of a modal DTM UI triggered by DTM BL 194
8.5.6 Release of a DTM User Interface .. 195
8.5.7 Release of a DTM UI triggered by the DTM BL .. 196
8.5.8 Release of a DTM User Interface triggered by itself 197
8.5.9 Release of a non-modal DTM User Interface triggered by a standard

action .. 198
8.5.10 Progress indication for prolonged DTM actions ... 199
8.5.11 Starting an application ... 200
8.5.12 Terminating applications .. 201
8.5.13 Execution of command functions .. 201
8.5.14 Execution of a command function with user interface 201
8.5.15 Opening of documents ... 202
8.5.16 Interaction between DTM User Interface and DTM Business Logic 203
8.5.17 Interaction between DTM Business Logic and DTM User Interface 205
8.5.18 Interaction between DTM User Interface and DTM Business Logic with

Cancel ... 206
8.5.19 Retrieving information about available Static Functions 207
8.5.20 Executing a Static Function .. 208
8.5.21 Executing a Static Function with multiple arguments 209

8.6 DTM communication .. 210
8.6.1 General ... 210
8.6.2 Establishing a communication connection ... 211
8.6.3 Cancel establishment of communication connection 212
8.6.4 Communicating with the device .. 212
8.6.5 Frame Application or Child DTM disconnect a device 213
8.6.6 Terminating a communication connection ... 214
8.6.7 DTM aborts communication connection ... 215
8.6.8 Communication Channel aborts communication connection 216

8.7 Nested communication .. 216
8.7.1 General ... 216
8.7.2 Communication request for a nested connection ... 217
8.7.3 Propagation of errors for a nested connection ... 218

8.8 Topology planning ... 219
8.8.1 General ... 219

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 7 –

8.8.2 Adding a DTM to the topology .. 219
8.8.3 Removing a DTM from topology .. 220
8.8.4 Frame Application creates topology .. 221
8.8.5 DTM generates sub-topology .. 222
8.8.6 Physical Layer and DataLinkLayer .. 224

8.9 Instantiation, configuration, move and release of Child DTMs 224
8.9.1 General ... 224
8.9.2 Instantiation and configuration of Child DTM BL .. 224
8.9.3 Interaction between Parent DTM and Child DTM ... 225
8.9.4 Interaction between Parent DTM and Child DTM using IDtmMessaging 227
8.9.5 Parent DTM moves a Child DTM ... 227
8.9.6 Parent DTM removes Child DTM .. 228

8.10 Topology scan ... 229
8.10.1 General ... 229
8.10.2 Scan of network topology ... 229
8.10.3 Cancel topology scan ... 230
8.10.4 Scan based DTM assignment ... 231
8.10.5 Manufacturer-specific device identification .. 232

8.11 Configuration of communication networks .. 234
8.11.1 Configuration of a fieldbus master .. 234
8.11.2 Integration of a passive device ... 235

8.12 Using IO information ... 235
8.12.1 Assignment of symbolic name to process data .. 235
8.12.2 Creation of Process Image ... 237
8.12.3 Validation of changes in process image while PLC is running 238
8.12.4 Changing of variable names using process image interface 239

8.13 Managing addresses ... 240
8.13.1 Set DTM address with user interface .. 240
8.13.2 Set DTM addresses without user interface .. 241
8.13.3 Display or modify addresses of all Child DTMs with user interface 242

8.14 Device-initiated data transfer ... 243
8.15 Reading and writing data ... 244

8.15.1 Read/write instance data .. 244
8.15.2 Read/write device data ... 246

8.16 Comparing data .. 248
8.16.1 Comparing device dataset and instance dataset ... 248
8.16.2 Comparing different instance datasets .. 248

8.17 Reassigning a different DtmDeviceType at a device node 249
8.17.1 General ... 249
8.17.2 DTM detects a change in connected device type ... 250
8.17.3 Search matching DtmDeviceTypes after incompatible device exchange 252
8.17.4 Reassign DtmDeviceType after incompatible device exchange 253

8.18 Copying part of FDT Topology ... 255
8.18.1 Cloning of a single DTM without Children.. 255
8.18.2 Cloning of a DTM with all its Children ... 256

8.19 Sequences for audit trail .. 256
8.19.1 General ... 256
8.19.2 Audit trail of parameter modifications in instance dataset 256
8.19.3 Audit trail of parameter modifications in device dataset 257

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 8 – IEC TR 62453-42:2016  IEC 2016

8.19.4 Audit trail of function calls .. 258
8.19.5 Audit trail of general notification ... 259

9 Installation ... 259
9.1 General ... 259
9.2 Common rules ... 259

9.2.1 Predefined installation paths .. 259
9.2.2 Manifest files ... 262
9.2.3 Paths in manifest files .. 263
9.2.4 Common command line arguments ... 263
9.2.5 Digital signatures of setup components ... 264

9.3 Installation of FDT core assemblies ... 264
9.4 Installation of communication protocols .. 264

9.4.1 General ... 264
9.4.2 Registration ... 264
9.4.3 Protocol manifest ... 264

9.5 Installation of DTMs .. 265
9.5.1 General ... 265
9.5.2 Registration ... 266
9.5.3 DTM manifest .. 267
9.5.4 DTM User Interface manifest .. 268

9.6 DTM setup .. 269
9.6.1 Structure .. 269
9.6.2 DTM setup manifest ... 270
9.6.3 DTM device identification manifest ... 271
9.6.4 Setup creation rules ... 273

9.7 DTM deployment ... 274
9.8 Paths and file information .. 276

9.8.1 Path information provided by a DTM ... 276
9.8.2 Paths and persistence .. 276
9.8.3 Multi-user systems ... 276

10 Life cycle concept .. 276
10.1 General ... 276
10.2 Technical concept ... 277

10.2.1 General ... 277
10.2.2 DtmManifest / DtmInfo .. 278
10.2.3 TypeInfo .. 278
10.2.4 Supported DataSet formats .. 279
10.2.5 DeviceIdentInfo .. 279
10.2.6 Dataset .. 280
10.2.7 DeviceScanInfo .. 280

10.3 DTM setup .. 280
10.4 Life Cycle Scenarios ... 281

10.4.1 Overview ... 281
10.4.2 Search for device type in DTM setups ... 282
10.4.3 Search for installed DTMs .. 283
10.4.4 Dataset migration for reassigned DTM .. 285

11 Frame Application architectures ... 286
11.1 General ... 286
11.2 Standalone application .. 286

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 9 –

11.3 Remoted user Interface ... 286
11.4 Distributed multi-user application ... 287
11.5 OPC UA .. 287

Annex A (normative) FDT2 Use case model ... 289
A.1 Use case model overview .. 289
A.2 Actors ... 289
A.3 Use cases ... 290

A.3.1 Use case overview ... 290
A.3.2 Observation use cases ... 291
A.3.3 Operation use cases .. 292
A.3.4 Maintenance use cases .. 294
A.3.5 Planning use cases .. 299
A.3.6 Main Operation .. 301
A.3.7 OEM Service .. 302
A.3.8 Administration .. 302

Annex B (normative) FDT interface definition and datatypes ... 303
Annex C (normative) Mapping of services to interface methods ... 304

C.1 General ... 304
C.2 DTM services .. 304
C.3 Presentation object services .. 308
C.4 General channel services .. 308
C.5 Process channel services .. 308
C.6 Communication Channel Services ... 309
C.7 Frame Application Services ... 310

Annex D (normative) FDT version interoperability guide .. 313
D.1 Overview... 313
D.2 General ... 313
D.3 Component interoperability .. 314

Annex E (normative) FDT1.2.x / IEC 62453-42 Backward-Compatibility 315
E.1 Overview... 315
E.2 Parallel FDT topologies ... 315
E.3 Mixed FDT topologies .. 316
E.4 FDT1.2.x / IEC 62453-42 Adapters .. 318
E.5 FDT1.2.x XML / IEC TR 62453-42 Datatype Transformers 319

E.5.1 General ... 319
E.5.2 Installation and Registration of Protocol-specific Transformers 320
E.5.3 Interaction between FDT2 and FDT1.2 components using Transformers 321

E.6 Sequences related to backward compatibility ... 322
E.6.1 General ... 322
E.6.2 Dataset migration from FDT1.x DTM to FDT2.x DTM 322

Annex F (informative) Implementation Hints ... 324
F.1 IAsyncResult pattern ... 324
F.2 Threading Best Practices .. 325

Annex G (informative) Trade names ... 326
Annex H (informative) UML Notation .. 327

H.1 General ... 327
H.2 Class diagram ... 327
H.3 Statechart diagram .. 330

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 10 – IEC TR 62453-42:2016  IEC 2016

H.4 Use case diagram ... 331
H.5 Sequence diagram .. 332
H.6 Object diagram .. 336

Annex I (informative) Physical Layer Examples ... 337
I.1 General ... 337
I.2 Interbus S ... 337
I.3 PROFIBUS .. 337
I.4 PROFINET .. 337

Annex J (informative) Predefined SemanticIds .. 339
J.1 General ... 339
J.2 Data ... 339
J.3 Images .. 339
J.4 Documents .. 339

Bibliography ... 341

Figure 1 – Relation of IEC 62453-42 to the IEC 62453 series ... 21
Figure 2 – IEC 62453-42 Object Model .. 32
Figure 3 – Frame Application .. 32
Figure 4 – DTM Business Logic ... 34
Figure 5 – DTM, Device Type and Device Ident Info .. 35
Figure 6 – Process Data Info ... 36
Figure 7 – Logical topology and physical topology ... 43
Figure 8 – FDT and logical topology .. 43
Figure 9 – DTMs and physical topology ... 44
Figure 10 – Point–to-point communication ... 46
Figure 11 – Nested communication ... 47
Figure 12 – Identification of connected devices ... 49
Figure 13 – FDT storage and synchronization mechanism.. 50
Figure 14 – Relation between DTMDataSet, DTM instance, and device 50
Figure 15 – DTMDataSet structure .. 51
Figure 16 – Data Synchronization .. 53
Figure 17 – Routed IO information ... 56
Figure 18 – Multirole Device .. 57
Figure 19 – FDT .NET Assemblies .. 60
Figure 20 – FDT Object implementation ... 61
Figure 21 – FDT CLR extension concept ... 63
Figure 22 – Example: Assembly.LoadFrom().. 64
Figure 23 – Example: Assembly dependencies .. 65
Figure 24 – Example: Datatype definition .. 67
Figure 25 – Example: Data cloning .. 69
Figure 26 – Example: Methods without data cloning ... 69
Figure 27 – Protocol-specific datatypes ... 70
Figure 28 – Protocol manifest and type info attributes .. 71
Figure 29 – Example: Protocol assembly attributes .. 72

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 11 –

Figure 30 – Example: Handling of protocol-specific assemblies in Frame Application............ 72
Figure 31 – Decoupled FDT Objects in IEC 62453-42 .. 73
Figure 32 – IAsyncResult pattern: blocking call .. 76
Figure 33 – Example: Blocking use of asynchronous interface ... 76
Figure 34 – IAsyncResult pattern (simplified): blocking call .. 77
Figure 35 – IAsyncResult pattern: non-blocking call ... 77
Figure 36 – Example: Non-blocking use of asynchronous interface 78
Figure 37 – IAsyncResult pattern (simplified depiction): non-blocking call 78
Figure 38 – IAsyncResult pattern: canceling an operation .. 80
Figure 39 – IAsyncResult pattern: providing progress events ... 81
Figure 40 – Frame Application's host window providing scroll bars 91
Figure 41 – Control using internal scrollbars .. 91
Figure 42 – Example: Hosting a DTM WPF control in a WPF Frame Application 93
Figure 43 – Example: Hosting a DTM WPF control in a WinForms Frame Application 93
Figure 44 – Example: Hosting DTM WinForms controls in a WinForms Frame
Application ... 94
Figure 45 – Example: Hosting a DTM WinForms control in a WPF Frame Application 94
Figure 46 – Relation of StaticFunctionDescription to Static Function 95
Figure 47 – DTMDataset structure ... 96
Figure 48 – Example: Initialization of DTMDataSubset with DTM data 98
Figure 49 – Example: Writing of DTM data in DTMDataSubset ... 98
Figure 50 – Example: Reading of DTM data from a DTMDataSubset 99
Figure 51 – Example: Creation of a BulkData.DTMDataSubset with descriptor 100
Figure 52 – Example: Searching for DTMDataSubsets with specific descriptor 100
Figure 53 – Skeleton of a DTM-specific report fragment ... 103
Figure 54 – Example: Authenticode check ... 104
Figure 55 – Example: Conformity record file .. 105
Figure 56 – Example: checking conformity record file .. 106
Figure 57 – Frame Application interfaces ... 107
Figure 58 – DTM Business Logic interfaces (Part 1) .. 110
Figure 59 – DTM Business Logic interfaces (Part 2) .. 111
Figure 60 – State machine of DTM BL ... 115
Figure 61 – Online state machine of DTM .. 117
Figure 62 – Modifications of data through a DTM ... 120
Figure 63 – ModifiedInDtm: State machine of instance data ... 121
Figure 64 – ModifiedInDevice: State machine related to device data 122
Figure 65 – DTM UI interfaces .. 123
Figure 66 – Communication Channel interfaces ... 124
Figure 67 – FdtDatatype and FdtList ... 127
Figure 68 – DtmInfo / TypeInfo – datatypes ... 129
Figure 69 – DeviceIdentInfo – datatypes .. 131
Figure 70 – DeviceIdentInfo – Example for HART .. 132
Figure 71 – Example: DeviceIdentInfo creation .. 134

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 12 – IEC TR 62453-42:2016  IEC 2016

Figure 72 – Example: Using DeviceIdentInfo ... 135
Figure 73 – Example: DeviceIdentInfoTypeAttribute ... 135
Figure 74 – SetupManifest – datatypes .. 135
Figure 75 – DtmManifest – datatypes .. 136
Figure 76 – DtmUiManifest – datatypes ... 137
Figure 77 – Communication datatypes – Connect .. 138
Figure 78 – Communication datatypes – Transaction ... 138
Figure 79 – Communication datatypes – Disconnect .. 139
Figure 80 – Communication datatypes – Subscribe .. 139
Figure 81 – Communication datatypes – Scanning ... 140
Figure 82 – Communication datatypes – Address setting ... 140
Figure 83 – Example: Communication – Connect for HART .. 142
Figure 84 – Example: Communication – CommunicationType for HART 143
Figure 85 – BusCategory – datatypes .. 143
Figure 86 – Device / Instance data – datatypes ... 144
Figure 87 – Example: Providing information on data of a HART device 146
Figure 88 – Example: Providing information on module data of a PROFIBUS device 147
Figure 89 – Example: Providing information on data .. 148
Figure 90 – Example: Providing information on structured data .. 149
Figure 91 – EnumInfo – datatype ... 150
Figure 92 – Read and Write Request – datatypes .. 150
Figure 93 – ResponseInfo – datatype .. 151
Figure 94 – TopologyImportExport – datatypes .. 152
Figure 95 – ImportExportDataset – datatypes .. 153
Figure 96 – ProcessDataInfo – datatypes .. 154
Figure 97 – IOSignalInfo – datatypes .. 155
Figure 98 – Example: ProcessDataInfo for HART (UML) .. 157
Figure 99 – Example: ProcessDataInfo creation for HART ... 158
Figure 100 – Example: Using ProcessData for HART ... 159
Figure 101 – Example: IOSignalInfoType attribute ... 159
Figure 102 – ProcessImage – datatypes .. 160
Figure 103 – AddressInfo – datatypes ... 161
Figure 104 – Example: AddressInfo creation .. 162
Figure 105 – Example: Using AddressInfo ... 163
Figure 106 – Example: DeviceAddressTypeAttribute .. 163
Figure 107 – NetworkDataInfo – datatypes .. 164
Figure 108 – Example: NetworkDataInfo creation example ... 165
Figure 109 – Example: NetworkDataInfo using example ... 166
Figure 110 – Example: NetworkDataTypeAttribute example ... 166
Figure 111 – DTM Function – datatypes .. 167
Figure 112 – DTM Messages – datatypes .. 169
Figure 113 – ActionItem – datatypes ... 170
Figure 114 – CommunicationChannelInfo – datatypes .. 170

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 13 –

Figure 115 – Example: Channel information .. 171
Figure 116 – DeviceScanInfo – datatypes .. 172
Figure 117 – Example: HARTDeviceScanInfo – datatype ... 173
Figure 118 – DTM Report – datatypes ... 174
Figure 119 – Information related to device modules ... 175
Figure 120 – Finding a DTM BL object ... 177
Figure 121 – Instantiation of a new DTM BL .. 179
Figure 122 – Configuration of user permissions ... 181
Figure 123 – Loading a DTM BL .. 182
Figure 124 – Loading a DTM with Expert user level ... 183
Figure 125 – Release of a DTM BL .. 184
Figure 126 – Saving data of a DTM ... 185
Figure 127 – Dataset commit failed ... 186
Figure 128 – Export a DTM dataset to file .. 187
Figure 129 – Propagation of changes .. 189
Figure 130 – Synchronizing DTMs in multi-user environments .. 190
Figure 131 – Finding a DTM User Interface ... 192
Figure 132 – Instantiation of a DTM User Interface .. 193
Figure 133 – Instantiation of a DTM UI triggered by DTM BL .. 194
Figure 134 – Instantiation of a modal DTM UI triggered by DTM BL 195
Figure 135 – Release of a DTM User Interface .. 196
Figure 136 – Release of a DTM UI triggered by the DTM BL .. 197
Figure 137 – Release of a DTM User Interface triggered by itself 198
Figure 138 – Release of a non-modal DTM UI triggered by a standard action 198
Figure 139 – Progress indication for prolonged DTM actions .. 199
Figure 140 – Starting an application .. 200
Figure 141 – Execute a command function .. 201
Figure 142 – Execute a command function with user interface ... 202
Figure 143 – Opening a document ... 203
Figure 144 – Interaction triggered by the DTM User Interface .. 204
Figure 145 – Interaction triggered by the DTM Business Logic ... 205
Figure 146 – Interaction triggered and canceled by the DTM User Interface 206
Figure 147 – Retrieving information about available Static Functions 207
Figure 148 – Example: Information about available Static Functions 208
Figure 149 – Executing a Static Function ... 209
Figure 150 – Executing a Static Function with multiple Arguments 210
Figure 151 – Establishing a communication connection ... 211
Figure 152 – DTM cancels ongoing Connect operation .. 212
Figure 153 – Communicating with the device ... 213
Figure 154 – Child DTM disconnects ... 214
Figure 155 – Child DTM terminates a connection ... 215
Figure 156 – Child DTM aborts a connection ... 215
Figure 157 – Communication Channel aborts a connection .. 216

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 14 – IEC TR 62453-42:2016  IEC 2016

Figure 158 – Example: Nested communication behavior .. 217
Figure 159 – Example: Nested communication data exchange ... 218
Figure 160 – Add DTM to topology .. 220
Figure 161 – Removing a DTM from topology .. 221
Figure 162 – Frame Application creates topology .. 222
Figure 163 – DTM generates sub-topology .. 223
Figure 164 – Instantiation and configuration of Child DTM BL .. 225
Figure 165 – Interaction between Parent DTM and Child DTM ... 226
Figure 166 – Interaction using IDtmMessaging .. 227
Figure 167 – Parent DTM moves a Child DTM ... 228
Figure 168 – Parent DTM removes Child DTM ... 229
Figure 169 – Scan of network topology .. 230
Figure 170 – Cancel topology scan ... 231
Figure 171 – Scan based DTM assignment .. 232
Figure 172 – Manufacturer-specific device identification .. 233
Figure 173 – Configuration of a fieldbus master ... 234
Figure 174 – Integration of a passive device .. 235
Figure 175 – Assignment of process data .. 236
Figure 176 – Creation of process image .. 238
Figure 177 – Validation of changes while PLC is running ... 239
Figure 178 – Changing of variable names using process image interface 240
Figure 179 – Set DTM address with UI .. 241
Figure 180 – Set DTM addresses without UI .. 242
Figure 181 – Display or modify child addresses with UI .. 243
Figure 182 – Device-initiated data transfer .. 244
Figure 183 – Read/write instance data .. 245
Figure 184 – Read/write device data ... 247
Figure 185 – Comparing device dataset and instance dataset .. 248
Figure 186 – Compare instance data with persisted dataset ... 249
Figure 187 – DTM triggers ActiveTypeChanged event .. 251
Figure 188 – Find matching DtmDeviceTypes after incompatible device exchange 253
Figure 189 – Reassign a DtmDeviceType after incompatible device exchange 254
Figure 190 – Clone DTM without children .. 255
Figure 191 – Clone DTM with all children .. 256
Figure 192 – Audit trail of parameter modifications in instance dataset 257
Figure 193 – Audit trail of parameter modifications in device .. 258
Figure 194 – Audit trail of function calls ... 258
Figure 195 – GAC and FDT_Registry .. 261
Figure 196 – Installation paths (with example DTM) ... 262
Figure 197 – Example: Protocol manifest... 265
Figure 198 – Search for installed DTMs ... 266
Figure 199 – Example: DtmManifest .. 268
Figure 200 – Example: DtmUiManifest ... 269

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 15 –

Figure 201 – DTM setup structure ... 270
Figure 202 – Example: DtmSetupManifest ... 271
Figure 203 – Example: DeviceIdentManifest .. 273
Figure 204 – DTM deployment .. 275
Figure 205 – Overview DTM identification.. 277
Figure 206 – Identification attributes in DTM setup .. 281
Figure 207 – Check DTM Setup for list of supported types ... 283
Figure 208 – Scan installed DTMs ... 284
Figure 209 – Dataset migration to a reassigned DtmDeviceType .. 285
Figure 210 – Client / Server Application .. 286
Figure 211 – Example for distributed multi-user application .. 287
Figure 212 – OPC UA server based on IEC TR 62453-42 .. 288
Figure A.1 – Main use case diagram ... 289
Figure A.2 – Observation use cases .. 291
Figure A.3 – Operation use cases ... 293
Figure A.4 – Maintenance use cases ... 295
Figure A.5 – Planning use cases ... 299
Figure E.1 – Example: IEC TR 62453-42 Frame Application with FDT1.2.x backward-
compatibility support ... 315
Figure E.2 – IEC TR 62453-42 Frame Application with FDT1.2.x Device DTM 316
Figure E.3 – IEC TR 62453-42 Frame Application with FDT1.2.x Comm. and Gateway
DTM ... 317
Figure E.4 – IEC TR 62453-42 Frame Application with FDT1.2.x Gateway DTM 317
Figure E.5 – IEC TR 62453-42 – FDT1.2 interaction using transformer 322
Figure E.6 – Dataset migration from FDT1.x DTM to FDT2.x DTM 323
Figure H.1 – Note ... 327
Figure H.2 – Class .. 327
Figure H.3 – Association ... 327
Figure H.4 – Navigable Association ... 328
Figure H.5 – Composition .. 328
Figure H.6 – Aggregation .. 328
Figure H.7 – Dependency.. 328
Figure H.8 – Association class .. 328
Figure H.9 – Abstract class, Generalization and Interface .. 329
Figure H.10 – Interface related notations ... 329
Figure H.11 – Multiplicity ... 330
Figure H.12 – Enumeration datatype ... 330
Figure H.13 – Elements of UML statechart diagrams .. 330
Figure H.14 – Example of UML state chart diagram ... 331
Figure H.15 – UML use case syntax .. 331
Figure H.16 – UML sequence diagram ... 332
Figure H.17 – Empty UML sequence diagram frame .. 332
Figure H.18 – Object with life line and activation.. 333
Figure H.19 – Method calls ... 333

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 16 – IEC TR 62453-42:2016  IEC 2016

Figure H.20 – Modeling guarded call and multiple calls .. 333
Figure H.21 – Call to itself ... 334
Figure H.22 – Continuation / StateInvariant ... 334
Figure H.23 – Alternative fragment .. 335
Figure H.24 – Option fragment .. 335
Figure H.25 – Loop combination fragment ... 335
Figure H.26 – Break notation .. 335
Figure H.27 – Sequence reference .. 336
Figure H.28 – Objects ... 336
Figure H.29 – Object association ... 336

Table 1 – FDT User levels ... 40
Table 2 – Role dependent Access Rights and User Interfaces for DTMs 41
Table 3 – Description of properties related to data access control .. 55
Table 4 – Supported CLR versions .. 62
Table 5 – Frame Application interfaces .. 108
Table 6 – DTM Business Logic interfaces .. 112
Table 7 – Availability of interfaces depending of type of DTM ... 113
Table 8 – Definition of DTM BL state machine ... 116
Table 9 – Definition of online state machine .. 118
Table 10 – Description of instance dataset states .. 121
Table 11 – Description of dataset states regarding online modifications 122
Table 12 – DTM UI interfaces .. 124
Table 13 – Communication Channel interfaces .. 125
Table 14 – Availability of DTM BL methods in different states .. 125
Table 15 – FDT base datatypes ... 127
Table 16 – FDT General datatypes .. 128
Table 17 – DtmInfo datatype description .. 129
Table 18 – DeviceIdentInfo datatype description .. 131
Table 19 – DeviceIdentInfo – Example for HART ... 133
Table 20 – SetupManifest datatype description .. 136
Table 21 – DtmManifest datatype description .. 136
Table 22 – DtmUiManifest datatype description ... 137
Table 23 – Communication datatype description .. 141
Table 24 – BusCategory datatype description .. 143
Table 25 – DeviceData datatype description .. 145
Table 26 – Reading and Writing datatype description ... 150
Table 27 – Reading and Writing datatype description ... 151
Table 28 – TopologyImportExport datatype description .. 153
Table 29 – ImportExportDataset datatype description .. 153
Table 30 – ProcessDataInfo datatype description .. 155
Table 31 – IOSignalInfo datatype description ... 156
Table 32 – ProcessImage datatype description .. 160

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 17 –

Table 33 – AddressInfo datatype description ... 161
Table 34 – NetworkDataInfo datatype description .. 165
Table 35 – DTM Function datatype description .. 168
Table 36 – DTM Messages datatype description .. 169
Table 37 – ActionItem datatype description ... 170
Table 38 – CommunicationChannelInfo datatype description .. 171
Table 39 – DeviceScanInfo datatype description .. 172
Table 40 – Example: HARTDeviceScanInfo datatype description 173
Table 41 – Reporting datatype description ... 174
Table 42 – Predefined FDT installation paths .. 259
Table 43 – Predefined setup properties ... 263
Table 44 – Setup command line parameters .. 263
Table 45 – DTM identification .. 278
Table 46 – DtmType – user readable description of supported types 278
Table 47 – TypeInfo identification .. 279
Table 48 – DtmType – Dataset support identification ... 279
Table 49 – Dataset identification ... 280
Table 50 – DeviceScanInfo – scanned device identification .. 280
Table 51 – Setup information .. 281
Table 52 – Changing DTM–- overview ... 282
Table A.1 – Actors .. 290
Table A.2 – Observation use cases ... 291
Table A.3 – Operation use cases ... 293
Table A.4 – Maintenance use cases .. 296
Table A.5 – Planning use cases .. 299
Table C.1 – General services .. 304
Table C.2 – DTM services related to installation .. 304
Table C.3 – DTM service related to DTM Information ... 304
Table C.4 – DTM services related to DTM state machine ... 305
Table C.5 – DTM services related to function .. 305
Table C.6 – DTM services related to documentation .. 306
Table C.7 – DTM services to access the instance data .. 306
Table C.8 – DTM services to access diagnosis .. 306
Table C.9 – DTM services to access to device data ... 306
Table C.10 – DTM services related to network management information 307
Table C.11 – DTM services related to online operation .. 307
Table C.12 – DTM services related to FDT-Channel objects ... 307
Table C.13 – DTM services related to import and export .. 308
Table C.14 – DTM services related to data synchronization ... 308
Table C.15 – DTM UI state control .. 308
Table C.16 – General channel service ... 308
Table C.17 – Channel services for IO related information ... 309
Table C.18 – Channel services related to communication .. 309

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 18 – IEC TR 62453-42:2016  IEC 2016

Table C.19 – Channel services related sub-topology management 309
Table C.20 – Channel services related to functions ... 310
Table C.21 – Channel services related to scan .. 310
Table C.22 – FA services related to general events ... 310
Table C.23 – FA services related to topology management .. 311
Table C.24 – FA services related to redundancy .. 311
Table C.25 – FA services related to storage of DTM data .. 311
Table C.26 – FA services related to DTM data synchronization .. 311
Table C.27 – FA related to presentation .. 312
Table C.28 – FA services related to audit trail ... 312
Table D.1 – Interoperability between components of different versions 314
Table E.1 – Adapter interface mappings .. 319

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 19 –

INTERNATIONAL ELECTROTECHNICAL COMMISSION

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION –

Part 42: Object model integration profile –

Common Language Infrastructure

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, IEC publishes International Standards, Technical Specifications,
Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC
Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested
in the subject dealt with may participate in this preparatory work. International, governmental and non-
governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely
with the International Organization for Standardization (ISO) in accordance with conditions determined by
agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international
consensus of opinion on the relevant subjects since each technical committee has representation from all
interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in
the latter.

5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity
assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any
services carried out by independent certification bodies.

6) All users should ensure that they have the latest edition of this publication.

7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and
members of its technical committees and IEC National Committees for any personal injury, property damage or
other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and
expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC
Publications.

8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is
indispensable for the correct application of this publication.

9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a
technical committee may propose the publication of a technical report when it has collected
data of a different kind from that which is normally published as an International Standard, for
example "state of the art".

IEC TR 62453-42, which is a technical report, has been prepared by subcommittee 65E:
Devices and integration in enterprise systems, of IEC technical committee 65: Industrial-
process measurement, control and automation:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 20 – IEC TR 62453-42:2016  IEC 2016

The text of this technical report is based on the following documents:

Enquiry draft Report on voting

65E/439/DTR 65E/486/RVC

Full information on the voting for the approval of this technical report can be found in the
report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

A list of all parts of the IEC 62453 series, under the general title Field Device Tool (FDT)
interface specification, can be found on the IEC website.

The committee has decided that the contents of this publication will remain unchanged until
the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data
related to the specific publication. At this date, the publication will be

• reconfirmed,

• withdrawn,

• replaced by a revised edition, or

• amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates
that it contains colours which are considered to be useful for the correct
understanding of its contents. Users should therefore print this document using a
colour printer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 21 –

INTRODUCTION

This Part of IEC 62543, which is a technical report, is an interface specification for developers
of FDT (Field Device Tool) components for function control and data access within a
client/server architecture. The specification is a result of an analysis and design process to
develop standard interfaces to facilitate the development of servers and clients by multiple
vendors that need to interoperate seamlessly.

With the integration of fieldbuses into control systems, there are a few other tasks which need
to be performed. In addition to fieldbus- and device-specific tools, there is a need to integrate
these tools into higher-level system-wide planning or engineering tools. In particular, for use
in extensive and heterogeneous control systems, the unambiguous definition of engineering
interfaces that are easy to use for all those involved is of great importance.

A device-specific software component, called DTM (Device Type Manager), is supplied by the
field device manufacturer with its device. The DTM is integrated into engineering tools via the
FDT interfaces defined in this specification. The approach to integration, in general, is open
for all kind of fieldbusses and thus meets the requirements for integrating different kinds of
devices into heterogeneous control systems.

Figure 1 shows how IEC TR 62453-42 is related to the IEC 62453 series.

Figure 1 – Relation of IEC 62453-42 to the IEC 62453 series

The document structure is:

• Clause 3 explains the used terms, definitions and conventions

• Clause 4 introduces the general concepts of IEC 62453-42

• Clause 5 describes the technical concepts used to implement IEC 62453-42 and how FDT
concepts are mapped to .NET Framework

• Clause 6 provides an overview of the FDT Objects, their interfaces and behavior

• Clause 7 presents an overview of the IEC 62453-42 datatypes

• Clause 8 shows the interaction of FDT Objects at runtime

• Clause 9 explains rules related to installation and deployment of DTMs

IEC 62453-42
Common Language Infrastructure
Integration Profile

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 22 – IEC TR 62453-42:2016  IEC 2016

• Clause 10 explains how FDT life cycle concepts are implemented

• Clause 11 shows examples for Frame Application architectures

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 23 –

FIELD DEVICE TOOL (FDT) INTERFACE SPECIFICATION –

Part 42: Object model integration profile –
Common Language Infrastructure

1 Scope

This part of IEC 62453, which is a technical report, defines how the common FDT principles
are implemented based on the .NET technology, including the object behavior and object
interaction via .NET interfaces.

This document specifies FDT version 2.0.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and
are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any
amendments) applies.

IEC 62453-1:—1, Field Device Tool (FDT) interface specification – Part 1: Overview and
guidance

IEC 62453-2:—1, Field Device Tool (FDT) interface specification – Part 2: Concepts and
detailed description

3 Terms, definitions, abbreviations and conventions

3.1 Terms and definitions

For the purposes of this document, the terms and definitions given in IEC 62453-1,
IEC 62453-2 as well as the following apply.

3.1.1
action
execution of a function which may involve several calls to interface methods of different FDT
Objects

3.1.2
asynchronous methods
methods that trigger execution of asynchronous operations

Note 1 to entry: See also 5.6.7.

3.1.3
asynchronous operation
operation that is performed while the FDT object (client) that has requested the operation
does not wait for the result, but the client is notified when the operation is finished

1 To be published concurrently with this technical report.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 24 – IEC TR 62453-42:2016  IEC 2016

3.1.4
bulk data
device node-specific persisted data, which is stored besides DTM instance data

Note 1 to entry: Example for bulk data: accumulated historical data, used for trend analysis.

3.1.5
bulk operation
operation to perform one or more tasks at a group of devices nodes

Note 1 to entry: Examples for bulk operation: up- or download for a group of devices, parameter adjustment for a
group of devices or report generation for a group of devices.

3.1.6
clone DTM instance
process of creating a new device node in the FDT topology based on an existing device node

Note 1 to entry: This includes copying DTM instance(see 3.1.11) and resetting device node-specific DTM data.

Note 2 to entry: The identification attributes of the device are changed.

3.1.7
Communication Channel
component representing access to a fieldbus segment or to other means of communication

3.1.8
compatibility
feature of a component (hardware or software) that enables it to be interoperable with another
component

3.1.9
backward compatibility
feature of a component (hardware or software) that enables it to replace an other version of
the component

3.1.10
compatibility attributes
attributes used to find compatible components, to replace components or to validate
compatibility after a component replacement

Note 1 to entry: Compatibility attributes are required to check whether a component is compatible with another
component.

Note 2 to entry: Compatibility attributes are used to define compatibility in regard to 3.1.8.2, compatibility.

3.1.11
copy DTM instance
process of creating a new device node in the FDT topology based on an existing device node

Note 1 to entry: This includes loading the original DTM dataset to initiate the new DTM instance.

Note 2 to entry: The identification attributes of the device are not changed.

3.1.12
copy device node in FDT Topology
(see 3.1.11 copy DTM instance)

3.1.13
DataTransaction
transaction regarding the data of a DTM (persistent or device data)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 25 –

3.1.14
delegate
reference type that can be used to encapsulate a method

3.1.15
device configuration
process of changing data related to device-specific characteristics/basic behavior

Note 1 to entry: Example for such characteristics may be the structure of a remote I/O or the type of
measurement procedure like absolute pressure or differential pressure.

3.1.16
device data
configuration data that resides on the device

3.1.17
device parameterization
process of changing device-specific data in order to adjust application-specific behavior

3.1.18
device node
node in the topology, which represents a device

Note 1 to entry: A DtmDeviceType is assigned to a device node, which is instantiated to operate the device in
online or offline modes. See Figure 14.

3.1.19
device type check
process of checking the device type when a DTM is going online with a connected physical
device

Note 1 to entry: The DTM shall reject to go online if the connected physical device type is not supported. The
check shall be based on same information as in DeviceIdentInfo. See 6.3.2.3.

3.1.20
DD-Interpreter DTMs
DTMs which interpret device descriptions at runtime

3.1.21
DTM
software component containing device-specific application software, including DTM Business
Logic, DTM User Interface and related objects (e.g. Communication Channel)

Note 1 to entry: Older FDT specification documents used the term “DTM” for the object DTM Business Logic as
well as for the whole component consisting of DTM BL, DTM UI and channels.

3.1.22
DTM Business Logic
DTM BL
part of the DTM, which contains all the functionality to access storage and communication and
which manages the instance data of a DTM

3.1.23
DTM Identifier
identifier, which is used to identify a DTM (DTM BL class)

Note 1 to entry: In order to uniquely identify a DTM BL class, the property DtmInfo.Id is used.

3.1.24
DTM instance modal
prevents user interaction with other windows of the DTM instance (see modal window)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 26 – IEC TR 62453-42:2016  IEC 2016

3.1.25
DTM User Interface (DTM UI)
part of the DTM, which is displayed to a human user

3.1.26
DtmType
either DtmDeviceType, DtmModuleType or DtmBlockType

Note 1 to entry: All DtmTypes provide identification in DtmInfo class.

Note 2 to entry: DtmType is described by TypeInfo.

3.1.27
DtmDeviceType
element of a DTM software supporting one or more device types

Note 1 to entry: DtmDeviceType is described by DeviceTypeInfo class.

3.1.28
DtmModuleType
element of a DTM software supporting one or more device module types

Note 1 to entry: DtmModuleType is described by class ModuleTypeInfo.

3.1.29
DtmBlockType
element of a DTM software supporting one or more block types

Note 1 to entry: DtmBlockType is described by class BlockTypeInfo.

3.1.30
FDT Object
object defined by FDT (e.g. Frame Application, DTM Business Logic, DTM User Interface,
Communication Channel)

3.1.31
FDT Protocol Annex
document defining support for a communication protocol for FDT

Note 1 to entry: Examples for such documents are “PROFIBUS protocol annex” and “HART protocol annex”.
Within IEC 62453 the standard parts with numbers 3xy define support for communication protols.

3.1.32
FDT Application Profile Annex
document defining support for a type of application for FDT

Note 1 to entry: An example for such a document is the “PLC Tool interface” (defined for FDT1.2). Other such
documents may be defined at a later time also for FDT2.

3.1.33
fieldbus message
data in a protocol-specific telegram

3.1.34
Frame Application modal
prevents user interaction with windows of the Frame Application (see modal window)

3.1.35
hardware platform
hardware on which FDT software is executed

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 27 –

Note 1 to entry: Different hardware platforms may be supported that are based on different architectures and
display formats, for example PC and others.

3.1.36
identification attributes
attributes which describe the identity of a component. These attributes are typically displayed
to users or used to validate and ensure compatibility of components

3.1.37
incompatibility
situation where a component is not interoperable or where a component can not replace an
other component

3.1.38
instance data
configuration data that resides in the DTM instance

3.1.39
lifetime of DTM instance
time span of executing a DTM BL (from state ‘created’ till state ‘released’)

3.1.40
Link
logical relation of a DTM to a physical device (not the communication connection)

3.1.41
modal window
prevents user interaction with all windows of the process

3.1.42
online data
configuration data that resides on the device and can be accessed by communicating with the
device

Note 1 to entry: Online data may be a subset of device data (i.e it may be that not all device data is accessible by
communicatng with the device).

3.1.43
operation
procedure that may involve one or more method calls between FDT Objects

3.1.44
pattern
a standard solution to common problems in software design

3.1.45
platform
combination of hardware platform, target platform and target CLR, that defines the
environment for execution of FDT software

3.1.46
project
generic term for the sum of information related to a set of devices

Note 1 to entry: The definition of project is specific for a Frame Application.

3.1.47
proxy object
object which functions as a representative of an other object

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 28 – IEC TR 62453-42:2016  IEC 2016

Note 1 to entry: The proxy pattern is a often used software design pattern.

Note 2 to entry: IEC 62453-42 uses the proxy pattern for interaction between DTM BL and DTM UI, between DTM
BLs, between DTM BL and Communication Channels, for supporting multiple .NET Framework versions in a Frame
Application and for providing backward compatibility to FDT1.2.x.

3.1.48
reassign
3.1.48.1
reassign
<DTM replacement>
Change the TypeInfo assigned to a device node from one TypeInfo.Id to the same TypeInfo.Id
in a different DTM

3.1.48.2
reassign
<device replacement>
change the TypeInfo.Id to another TypeInfo.Id within the same DTM or to another DTM

3.1.49
reassignment
process of assigning a different DtmType to a device node with assigned DtmType

Note 1 to entry: It is possible that for the previously assigned DtmType already a dataset exists. This dataset
should be considered in the reassignment.

3.1.50
replacing installation
installation of a new version of a DTM which replaces a currently installed DTM version

Note 1 to entry: A Frame Application is notified about the installation, but the DtmDeviceTypes do not need to be
reassigned. DTM Updates (see update) and DTM Upgrades (see upgrade) replace installations of older versions of
the DTMs.

3.1.51
revision
identification of modification of non-FDT components, e.g. device firmware or device hardware

Note 1 to entry: Not all fieldbus specifications supported by FDT and/or device types provide a version
identification which allows to derive compatibility statements.

Note 2 to entry: In contrast to a version, revisions require additional fieldbus or device type-specific knowledge to
derive compatibility or interchangeability predictions.

3.1.52
SemanticInfo
identifier that provides a reference to semantics defined in a specific context

Note 1 to entry: The reference is provided by the SemanticId, the context is provided by the ApplicationDomain
that accompanies the SemanticId.

Note 2 to entry: There may be several semantics provided for an information item, e.g. a parameter may be
described in a fieldbus profile as well as in a device profile (e.g. for drives), that is why several semantic infos may
be provided for an information item.

3.1.53
set point
target value that an automatic control system will aim to reach

Note 1 to entry: For example a boiler control system may have a temperature set point, which is the temperature
the control system aims to attain.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 29 –

3.1.54
Sibling DTMs
DTM instances in an FDT Project, which are classified by their relation to the same
Communication Channel

3.1.55
surrogate process
process hosting an object on behalf of client processes

Note 1 to entry: A surrogate process can have other qualities than the client process. E.g. it can be used to load a
different .NET Framework.

3.1.56
synchronous operation
operation that is performed while the object that requested the operation is waiting for the
result

3.1.57
target CLR
common language runtime, which defines the environment for execution of FDT software

Note 1 to entry: An example for target CLR is the CLR 4.0.

3.1.58
target platform
native data size supported by the machine and operation system, on which the FDT software
is executed

Note 1 to entry: IEC 62453-42 defines support for 32-bit and for 64-bit target platforms.

3.1.59
transformer
component for the translation between FDT1.2.x XML documents and IEC 62453-42
datatypes

Note 1 to entry: Transformers are provided by the FDT Group for each communication protocol specified in an
FDT Protocol Annex specification.

3.1.60
update
process to replace a component with a later (up to date) revision (update revision) that
includes error corrections

3.1.61
update revision
(minor) revision of a component that includes error corrections and small enhancements

Note 1 to entry: In comparison to an upgrade revision an update revision includes no major functional
enhancements or new features . An Update Revision shall be backwards compatible to previous revisions of the
same component.

3.1.62
upgrade
process to replace a component with a later revision that includes functional enhancements
and/or new features (upgrade revision)

3.1.63
upgrade revision
revision of a component that includes functional enhancements and/or new features compared
to a previous revision of the component

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 30 – IEC TR 62453-42:2016  IEC 2016

Note 1 to entry: An Upgrade Revision shall be backwards compatible to previous revisions of the same
component.

3.1.64
version
an instance of a software product derived by modification or correction of a preceding
software product instance (see [33]2)

Note 1 to entry: The format of a version is: Major.Minor[.build[.revision]] for more information see
http://msdn.microsoft.com/en-us/library/hdxyt63s

Note 2 to entry: Version is used in FDT2 for identification of FDT software components and for corresponding
compatibility attributes.

3.2 Abbreviations

For the purposes of this document, the abbreviations given in IEC 62453-1, IEC 62453-2 as
well as the following apply.

API Application Programming Interface

BTM Block Type Manager

CLR Common Language Runtime

CLS Common Language Specification

CSS Cascading Style Sheet

DCS Distributed Control System

DD Device Description

DLL Dynamic Link Library

DOM Document Object Model

DTM Device Type Manager

FA Frame Application

FDT Field Device Tool

FDT1.2.x FDT implementation according IEC 62453-41

FDT2 FDT implementation according IEC 62453-42

GUI Graphical User Interface

GUID Globally Unique Identifier (a UUID)

HART®3 Highway Addressable Remote Transducer

IID Interface ID

IO Input / Output

LCID Locale ID

MSDN® Microsoft Developer Network

PLC Programmable Logic Controller

WPF Windows Presentation Foundation

XDR XML data reduced

XSL eXtensible Stylesheet Language

XSLT XSL Transformations

3.3 Conventions

The conventions for the UML notation used in this document are defined in Annex H.

2 Numbers in square brackets refer to the Bibliography.

3 See Annex G.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 31 –

This document specifies requirements to software. Different levels of requirement may be
recognized by the used wording.

Wording Indicates

 ‘shall’, ‘has to’, ‘have
to’ ,or ‘Mandatory’

No exceptions allowed.

 ‘should’ or
‘Recommended’

Strong recommendation. It may make sense in special exceptional cases to differ from
the described behavior.

‘conditional’ Function or behavior shall be provided, depending on defined conditions.

 ‘can’ or ‘Optional’ Function or behavior may be provided.

Further conventions are:

Convention Indicates

Note: Indicates text (in small letters), which does not express requirements, but provides
additional information.

<MethodName> Angle brackets are used to indicate a reference to an asynchronous method

NOTE If looking for definition in Annex B: Such methods are implemented as pair of
BeginMethodName()/EndMethodName()

Code examples provided in this document are intended for illustration of the described
concepts. They should not be used as is. Developers of FDT software should consider where
the developed code is applied and design the software accordingly. For exact specification of
protocol-specific implementations, refer to the FDT Protocol Annex documents.

4 Implementation concept

4.1 Technological orientation

The .NET Framework is a software framework by Microsoft. The Framework includes a large
library and supports several programming language. Programs written for the .NET
Framework execute in a software environment, named the Common Language Runtime
(CLR). The class library and the CLR together constitute the .NET Framework. The CLR is a
Microsoft-specific implementation of the definition provided by ISO/IEC 23271:2012 and
ISO/IEC 23270:2006.

The implementation of FDT´s client/server architecture defined in this Technical Report is
based on the .NET Framework.

This part of IEC 62453 specifies .NET interfaces (what the interfaces are), not the
implementation (not the “how” of the implementation) of those interfaces. It specifies the
behavior that the interfaces are expected to provide to client applications that use them. The
FDT-specification neither specifies the implementation of DTMs nor the implementation of
Frame Applications.

Included are descriptions of architectures and interfaces which seemed most appropriate for
those architectures. Like all COM implementations, the architecture of FDT is a client-server
model where DTMs are the server components managed by the Frame Application.

4.2 Implementation of abstract FDT object model

Figure 2 provides an overview of how the FDT Objects (defined in IEC 62453-2) are
implemented in IEC 62453-42 and how their relationship to each other is implemented. The
FDT Objects are implemented as .NET objects.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 32 – IEC TR 62453-42:2016  IEC 2016

IEC 62453-42 defines a simplification in regard of the implementation of the object model.
Within this implementation the only Channels are Communication Channels. Process
Channels are mapped to ProcessDataInfo objects. Communication Channels may not have
User Interfaces. The objects “Project” and “Host Channel” are considered as Frame
Application-specific implementations and are not defined within this Technical Report.

Figure 2 – IEC 62453-42 Object Model

If the Frame Application is a distributed software system, the Frame Application is responsible
to organize the instantiation of the objects (based on a vendor-specific implementation).

4.3 FDT Frame Application (FA)

A Frame Application is the runtime environment for the DTMs and provides interfaces which
enable the DTM Business Logic and the DTM User Interfaces to interact with its environment.
In addition, the Frame Application manages the interaction between the DTM Business Logic
and the DTM User Interface by providing a standard messaging interface (see Figure 3).

Figure 3 – Frame Application

The messaging interface is used for the transport of DTM-specific messages and events.
Contents and format of the messages are proprietary and not understood by the Frame
Application.

IEC

DTM
Business Logic

DTM
User Interface

Frame Application

UI Messages /
DTM Events

User
Interface

Business
Logic

UI Messages /
DTM Events

IEC

Communication
Channel

DTM
Business Logic

Frame Application
1

1

FA
communication
channels

1

*
devices

opened UIs

1

DTM UIs

DTM
communication

channels

linked
communication
channels

1

0..*

linked DTMs

DTM
User Interface

0..*

0..*

0..*

0..*
0..*

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 33 –

The Frame Application User Interface represents all functions of the frame related to user
interface. The Frame Application Business Logic represents all frame functions related to
business logic. Both are not specified by this Technical Report, but are implementation
specific parts of the Frame Application (e.g. functional parts or structural parts). These two
parts can be comprised in one single application or in separated applications, for example in a
server and client application.

Frame Applications can have no, one or multiple Frame Application User Interfaces.

The Frame Application Business Logic part is responsible to execute the DTM Business
Logic. It provides services which enable the DTM Business Logic to:

• persist data in the Frame Application persistence storage (see 4.11.1),

• communicate with associated device,

• request displaying of further user interfaces (e.g. user dialogs, additional DTM User
Interface),

• browse the FDT topology and interact with other DTMs,

• inform the Frame Application regarding events (error / trace messages, progress etc.),

• interact with the DTM User Interface.

The Frame Application user interface part makes the DTM services available to the users, for
example the functions and user interfaces supported by a DTM (see 4.5). It hosts the DTM
User Interfaces as part of its own user interface and provides services to:

• interact with the DTM Business Logic (see 4.4)

• request displaying of further user interfaces (e.g. user dialogs, additional DTM User
Interface)

• browse the FDT topology and interact with other DTMs

• inform the Frame Application regarding events (error / trace messages, progress etc.)

4.4 DTM Business Logic

4.4.1 General

The Frame Application interacts with the DTM Business Logic through defined interfaces (see
Annex B). Figure 4 shows the information objects which are used by the interface definitions
implemented by the DTM Business Logic.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 34 – IEC TR 62453-42:2016  IEC 2016

NOTE Since this subclause describes the general concept of FDT, the actual implementation in a DTM may differ.
(E.g. if a network protocol uses network management, it will be mandatory to provide network management
information.)

Figure 4 – DTM Business Logic

4.4.2 Implementation of DTM, DTM Device Type, and Device Ident Info

In order to increase performance in creation of libraries and selection of DTMs, the service
GetTypeInformation shall be provided by a separate class (the so called DtmInfoBuilder
class). The DtmInfoBuilder is installed together with the DTM. It implements the same
interface to provide information as defined for a DTM (see IDtmInformation in Annex B). The
main advantage of DtmInfoBuilder is, that it can be used without instantiating the DTM.

NOTE 1 By using the DtmInfoBuilder it is possible to adapt the available TypeInfos depending on various
conditions (e.g. DD-Interpreter DTMs may provide TypeInfos depending on installed DD files).

Figure 5 shows the information datatypes that are provided by a DTM in order to support
these Frame Application function and how this info datatypes are used to describe the
supported devices (see 7.4 and 7.5 for detailed description).

IEC

DTM
Info

Function
Info

DTM
Device Type Info

Device
Ident Info

Device Data
Info

Report
Info

Process Data
Info

1

1

1
0..1

0..*

0..1

1..*

0..*

Network
Management Info

1

1

1

1

1 11

1

1..*

0..*

0..*

0..*

0..*

online
data

offline
data

1..*

0..*

1

0..1

DTM
Business Logic

Document
Reference

Info

0..*

1

1

Device Scan
Info

1

0..1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 © IEC 2016 – 35 –

Figure 5 – DTM, Device Type and Device Ident Info

NOTE 2 Since this subclause describes the general concept of FDT, the actual implementation in a DTM may
differ.

The representation for a particular physical device type within the DTM is called DTM Device
Type. A DTM may provide one or more DTM Device Types. The concrete design and
implementation of the DTM Device Types is not in scope of FDT.

Information about physical device types, which can be handled by the DTM Device Types is
returned by the service IDtmInformation:GetDeviceIdentInfo (see definition of IDtmInformation
in Annex B). Such information is for example manufacturer, type, hardware and embedded
software version of the device. The DTM may even return regular expressions for some
specific device identification elements to signal that the DTM Device Type can be used for all
devices for which the expression matches (e.g. the character asterisk ‘*’ for the hardware
version may signal that the DTM Device Type supports all hardware versions).

The information returned by service IDtmInformation:GetDeviceIdentInfo is fieldbus-specific
and therefore defined by the document describing the protocol profile integration in FDT2.
However, FDT defines the means to transform the information into a protocol-independent
format to enable Frame Applications without protocol-specific knowledge to use it.

4.4.3 Implementation of DTM device parameter access

A DTM supports interfaces to read and write device parameters stored in the DTM instance
data (offline data) and directly in the connected device (online data). This data is represented
by DataInfo (see 4.12.1 for detailed description).

A DTM has to expose a defined set of device parameters which are publicly available (see
4.12 for detailed description). Parameters are provided in a bus neutral structure allowing
their use without knowledge of the fieldbus protocol.

4.4.4 Process Data Info

Process data provided by devices (e.g. IO signals) are integrated into the functional planning
of the control system. The process data related information for the integration of the device
into the control system like datatype, signal direction, engineering units, and ranges is
provided by the DTM Business Logic for each DTM Device Type (Figure 6), but may also
depend on the device instance configuration.

IEC

DTM Business Logic

DTM Device
Type 1

DTM Device
Type 2

DTM Device
Type 3

su
pp

or
ts

su
pp

o
rt

s supports

XYZ

Type 1

<…>

<…>

DTM
Info

DTM
Device Type Info

Device
Ident Info

1

1

1..*

0..*

1

1

1

1

1..*

1..*

describes

DtmInfoBuilder
provides

describes

describes

Software Rev.:

Hardware Rev.:

Type:

Manufacturer: XYZ

Type 2

<…>

<…>

Software Rev.:

Hardware Rev.:

Type:

Manufacturer: XYZ

Type 3

<…>

<…>

Software Rev.:

Hardware Rev.:

Type:

Manufacturer:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 36 – IEC TR 62453-42:2016 © IEC 2016

Figure 6 – Process Data Info

The process values provided by a device, both the number and type, may depend on the
configuration of the DTM. Thus the number of available Process Data Info objects may also
depend on the device configuration. A Frame Application is able to inform the DTM that
further configuration changes shall be prohibited because the process data is already
integrated into functional planning of the control system. In this case the DTM shall not allow
any changes which will affect the definition of the available process values.

The process information is protocol-specific. Each FDT Protocol Annex defines a derived
class defining which information shall be contained. However, the properties in the base class
Process Data Info provide common information (e.g. IO signal name, tag etc.) in a protocol-
independent format to enable Frame Applications without protocol-specific knowledge to
integrate the process variables into the system (see 7.11.1 for detailed description).

If the process data value is also available as Device Data Info, then the corresponding
element is referenced by the Process Data Info element (see IOSignalRefs in 7.11.1).

A Process Data Info element may have a relation to a Communication Channel. This is a
typical case for a Gateway DTM for a remote IO (see IEC 62453-2:−, 4.2.3.2.4). The relation
is represented within the Process Data Info element (see IOSignalRef in 7.11.1).

NOTE The Process Data Info replaces Process Channel as defined in FDT1.2.x.

4.4.5 Diagnostic Data Info

A DTM provides a service to retrieve the status of the related device. The status is encoded in
a protocol independent way, according to [7].

4.4.6 Network Management Info

The DTM supports an interface to read and write network management information which can
for example be used for address management and bus master configuration (see 8.11.1).

The Network Management Info is protocol-specific. It may contain device bus-address, tag
and additional bus-specific configuration settings. Each FDT Protocol Annex defines a derived
class defining the protocol-specific record. However, the base class Network Management
Info provides common information (e.g. bus-address, tag) in a protocol-independent format to
enable Frame Applications without protocol-specific knowledge to use it (see 7.13 for detailed
description).

IEC

I/O
signals

Process Data
Info

1

DTM
Business Logic represents

0..*

represents

Device

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 37 –

4.4.7 Function Info

Each DTM may provide a set of functions comprised by

– DTM User Interfaces,
– DTM functions without DTM User Interface (CommandFunctions) and
– references for external documents.

The Function Info object provides the information about the functions such as name, status
(enabled / disabled), etc. (see 7.14 for more detailed description).

A function should provide printable information. A Frame Application may call the
documentation interface (see [4], 7.2.7.1) of the DTM to retrieve printable information. This
interface returns a corresponding Report Info object which holds the printable information.
The Report Info object may indicate the relation to the function.

4.4.8 Report Info

If a DTM provides instance data and/or online data, then the DTM shall implement a device
type-specific reporting of the provided data for documentation and archiving purposes. The
DTM BL may implement different types of reports that each cover a distinct subset of the
instance or online data of a device.

The Report Info exposes a list of report types supported by a DTM (see 7.19). The list may be
grouped. The list is static over the lifetime of a DTM instance, there are no dependencies on
the current application context.

4.4.9 Document Reference Info

A DTM may provide references to external documents, which are displayed by the Frame
Application. These references may be provided as part of the TypeInfo (as static information)
or as part of the Function Info (may change dynamically). The Frame Application may provide
an own viewer for the documents or rely on the condition that external software is installed for
the document type. It is recommended, that DTMs use common document formats
(recommended formats are PDF, CHM and HTML). Otherwise DTMs should provide the
necessary viewers.

4.5 Implementation of DTM Functions

4.5.1 DTM User Interface

A DTM User Interface (DTM UI) may be a graphical control which is integrated into the user
interface of the Frame Application or a proxy object handling the interaction with an external
program provided together with the DTM.

A DTM UI may be modeless or modal. A modal DTM UI behaves modal only in respect to the
DTM instance. A DTM instance should expect that the modal DTM UI blocks only activity in
regard to its own UI (DTM instance modal) and that other UI (Frame Application, other DTMs)
still may trigger actions. Modal DTM UIs should be used as sparingly as possible.

A Frame Application may also implement Frame Application modal behavior for modal DTM
UIs.

The contents and layout of the DTM User Interfaces is device-specific, but shall follow the
DTM Style Guide [6].

NOTE 1 A DTM may provide DTM User Interface for different platforms (e.g different display formats e.g. PC,
mobile device etc.). Which platform is supported by a DTM User Interface is described by corresponding UI
Function Info element returned by the DTM (see 7.14). The FDT specification will define which platforms shall be
supported.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 38 – IEC TR 62453-42:2016  IEC 2016

NOTE 2 The intention is for IEC 62453-42 to allow later extensions in regard to User Interface technologies and
platform support.

4.5.2 Function access control

The Frame Application can restrict the invocation of functions provided by a DTM, disable
actions (buttons) of the DTM UI (e.g. Apply) and restrict DTM transition to certain states (e.g.
restrict transition to state Online by not calling the method EnableCommunication()).

The Frame Application will get the list of the functions provided by the DTM in
IFunction.FunctionInfo property. The DTM shall expose all functions available in the DTM in
all modes. When the functions are not applicable for the current mode of operations,
FunctionItem.Enabled property will indicate that. A DTM shall expose always the same set of
functions for a device node (even if the DTM instance was terminated and loaded again). The
number and type of listed functions shall not change, but the status of the functions in regard
to availability and visibility may change. Frame Application should hide the functions with
Hidden property set to TRUE.

The DTM shall indicate when the state of Enable is changed, by IFunction.FunctionsChanged
event.

When a user interface for the DTM is invoked, the DTM shall not allow switching the context
from within the DTM user interface.

For Example:
If a Diagnostic Function is invoked by the Frame Application, the DTM will present the
diagnostic information in the user interface. The user should not be allowed to invoke the
configuration screen from within the DTM user interface for the diagnostic function without the
permission from the frame. The user shall be able to invoke the configuration screen from the
functions exposed to the Frame Application if the permissions in the Frame Application allow
it.

If the MainOperation Function is invoked by the Frame Application, the DTM will present all
available functions within the user interface. The user may invoke the Configuration screen
from within the DTM user interface as well as the Diagnostic function or any other integrated
function.

4.5.3 Handling of standard UI elements in modeless DTM UI interfaces

Modeless DTM UIs shall delegate the presentation and handling of their standard dialog
elements to the Frame Application. The standard dialog elements are:

– actions with standardized semantics (Apply / Close / Online Help) (see Action Area in [6])
and

– DTM UI-specific status information (data source, summary parameter modification state,
UI operation mode, activation of service mode) (see Status Bar in [6]).

To ensure a consistent user interface appearance between the different DTM vendors, a DTM
UI may delegate presentation and handling of additional DTM application-specific actions to
the Frame Application. Nonetheless DTM UIs are allowed to implement non-standard dialog
actions within their own UI area (see Application Area in [6]).

The set of standard dialog actions and their respective semantics is fixed. However, the
availability of these actions may change at any time depending from the internal state of the
DTM UI. The set of application-specific actions including their individual availability is not
fixed. A DTM UI may add, remove, rename, enable or disable application-specific actions at
any time depending from its individual requirements. A DTM UI shall inform a Frame
Application whenever the availability of its standard actions or the set or availability of its
custom actions changes (see events IStandardActions.StandardActionItemSetChanged and
IApplicationSpecificActions.ApplicationSpecificActionItemSetChanged in Annex B).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 39 –

A Frame Application may use dedicated UI elements, e.g. button controls, to provide direct
access to the standard dialog actions, as well as indirectly invoke them in the context of user
interaction with other Frame Application UI elements. A Frame Application shall always show
all custom actions exposed by a DTM UI with dedicated UI elements. These shall be
unambiguously associated with the DTM UI as described in the DTM Style Guide [6].

4.5.4 Command functions

Command functions are used to execute actions (commands) either on the DTM BL or within
the context of the graphical user interface. Command functions in context of the DTM BL shall
not have a GUI, but UI Command functions may show a GUI (see 6.4).

A Command function may have parameters. The information about the parameters, which is
provided by the DTM BL, may include default values of the parameters. The actual parameter
values are passed when the Command function is executed.

4.6 User management

4.6.1 General

FDT does not define a standard system for user management. The user management is part
of product-specific definitions and may be implemented differently for different Frame
Applications. However it is still necessary to define a common handling for access
permissions, access rules and how components from different vendors communicate
information regarding access permissions.

4.6.2 Multi-user access

Some Frame Applications provide multi-user capability. Such a system provides access for
multiple users at the same time and may be distributed over several computers. This
specification considers the distributed environment as one Frame Application. The Frame
Application and the DTM are equally responsible to provide the multi-user access and to
ensure consistency of data.

If, within one Frame Application, multiple users access the same device or the same device
dataset, the Frame Application shall start a separate DTM instance for each user. All these
DTM instances shall have same DTM type, shall be instantiated for the same DtmDeviceType
and for the same physical device. Each DTM instance manages a separate instance dataset.
These instance datasets are synchronized by means of the persistent dataset (see 4.11.5).

NOTE An example architecture for multi-user scenarios is found in 11.4.

4.6.3 User levels

4.6.3.1 Introduction

DTMs may be integrated in different Frame Applications, which may have varying
requirements to restrict visibility and accessibility of device and persistent data, for example
for plant safety reasons or to present a customized view to the user. The grade of restriction
varies with the types of users supported by a system. Examples for users requiring data
access restrictions are:

• a user assigned to observe a plant shall not have access to calibration-specific device
parameters and consequently shall not see related DTM functionality,

• a device commissioning specialist needs to have access to calibration data and functions,

• a user assigned to operate a plant shall be able to change (write) set point values and be
offered appropriate functionality while a user assigned to observe a plant is not allowed to
execute such changes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 40 – IEC TR 62453-42:2016  IEC 2016

4.6.3.2 Access Control Concept

FDT uses a role based access control concept. A Frame Application initializes a DTM
Business Logic and the associated User Interface with the same FDT-specific user level (see
definition of IDtm.Init() and IDtmUIFunction.<Init()> in Annex B). The user level is immutable
over the lifetime of the Business Logic/User Interface instances.

In terms of access control, every actor in an FDT system may have one of the following three
user levels at the interface of a DTM (Table 1):

Table 1 – FDT User levels

User Level Name Description

Observer This user level stands for an actor that observes the current process only.

Expert This user level stands for an actor who has to execute specific use cases, e.g operation
use cases (operation expert) or device maintenance use cases (maintenance expert). This
user level allows the Frame Application to configure access and privileges.

Engineer This user level stands for an actor that has to do the plant planning, device
configuration/parameterization and plant maintenance.

The user levels allow a stepwise extension of permissions. The Observer typically has a
minimum permission set, the Expert has an intermediate permission set (which is configured
by the Frame Application) and the Engineer has a full permission set.

The Expert user level may be considered as a super-set of the actors “Operator” and
“Maintenance” as defined in IEC 62453-2. Since a Frame Application may configure the
access permissions for the Expert, it is possible to apply fine grained permissions, that can be
adapted to different application scenarios.

NOTE For an explanation of the fundamental user levels and use cases that were considered for the design of the
FDT specification see Annex A. A Frame Application may support only a subset of these use cases or additional
use cases not defined in the annex.

According to the role set by the Frame Application, the DTM Business Logic and User
Interface shall control access to device and persistent data (see definition of interfaces
IInstanceData and IDeviceData in Annex B) as well as adapt its user interface appearance.
This includes to hide some data or display it as read-only, but also to partially disable DTM-
specific functionality (see definition of IFunction.FunctionInfo in Annex B), if it requires data
access rights that are not associated with the specified user level.

It is mandatory for a DTM to implement a safe and read-only usage for the “Observer” user
level. It is also mandatory for a DTM to implement unlimited usage for the “Engineer” user
level. It is optional for a DTM to implement configurable custom usage for “Expert” user level.
If “Expert” level is not implemented by a DTM but is set by the Frame Application, the DTM
shall use the behavior for “Observer” user level.

Table 2 gives an overview about the user interfaces and functions that are expected to be
available for the individual user levels. The data access rights should be defined to allow for
the execution of these use cases.

The assignment of roles to individual users is Frame Application-specific. The Frame
Application may implement an own user management sub-system or use fixed user levels.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 41 –

Table 2 – Role dependent Access Rights and User Interfaces for DTMs

Use Case Sub Cases User level

Engineer(M) Expert(O) Observer(M)

System Planning Network Management If a DTM
implements
these use
case, it shall
expose all
related
commands and
user
interfaces.

If the DTM
implements
these use
cases and
supports the
user role
“Expert”, it
shall allow
Frame
Application to
configure
access to the
exposed data,
commands and
user interfaces

-*)

 Busmaster Configuration -

 Channel Assignment -

System Generation Network Management O {r}

 DTM matching O {r}

Device
Configuration

- -

Simulation (Force) - -

Offline Operation Offline Parameterization -

 Persistent Data Comparison -

Online Operation Online Functions (reset + other
functionality that requires online device
connection)

If a DTM
implements
these use
cases, it shall
expose all
related
commands and
user
interfaces.

If the DTM
implements
these use
cases and
supports the
user role
“Expert”, it
shall allow
Frame
Application to
configure
access to the
exposed data,
commands and
user interfaces

-

 Online Parameterization -

 Calibration -

 Device/Persistent Data Comparison -

 Adjust SetValues O {r}

 Upload -

 Download -

Bulk Operation Upload -

 Download -

Online View Network Scan O {r}

 Online Status M {r}

 Online Trend M {r}

 Device Identification M {r}

 Online View Parameter Set O {r}

Report Generation - M {r}

Device-specific
Operations

Device vendor-specific (or extended)
DTM functions after DTM/Device-
specific OEM Service login

-

M Mandatory (if a DTM implements this use case, it shall expose all related commands and user interfaces in the
specified user level)

O Optional (a DTM may expose the related commands and user interfaces in the specified user level)

r User level shall have read access to all data related to the use case

w User level shall have write access to all data related to the use case

- Use case not supported in this user level (DTM shall not expose any related commands/user interfaces)

*) A DTM shall allow all user levels to set the device address in the DTM with the method SetAddressInfo().

4.6.3.3 Frame Application configured access control

It is very difficult and may even be impossible for the DTM vendor to provide correct access
control settings for all occasions. The data, which can be accessed, and the functions, which
can be used, are changed by the user; depending on where the DTM is used or what is the
operational phase of the plant. Here are some examples:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 42 – IEC TR 62453-42:2016  IEC 2016

a) The same user may have different permissions for the same device controlled by the same
DTM when the device is connected in the plant or in the instrument shop. In the instrument
shop, the user may have all equipment to calibrate the instrument and the corresponding
privileges should be granted. Little or no changes may be allowed when the instrument is
connected later to the actual running control system.

b) The same user may have full control when the plant is being engineered, but the changes
to the device may be significantly restricted, when the plant is in running state.

c) The same group of users may have different permissions for different instruments – some
of the maintenance personell may be trained to work with transmitters, other may be
specialized in valve maintenance.

d) In a small application one person may be responsible for the entire application and he may
have unlimited access to all device maintenance procedures, but in a big application, often
the access is controlled according to the individual experience of the technical staff.

To address the different cases, an “Expert” user level is provided. When the DTM supports
the “Expert” user level, the data which can be accessed and the function which can be
invoked are restricted by the Frame Application depending on the rules in the plant, on the
operational phase, the individual user or team experience and other factors.

The Frame Application can use the Expert user level to create additional levels of access to
the DTM data and functions for individual user or for a group of users. For example, when the
access control is configured for the Operation Expert, the Frame Application may enable the
access to Set Point Values, to the Tuning parameters and to Diagnostic functions. In another
example, the Frame Application may enable the access to the Calibration parameters, to the
calibration functions and to the Online Parameter View when the Device DTM is invoked in
the instrument shop environment.

NOTE Bbe aware that the user level “Operator” as defined in FDT1.x specification is not supported in IEC 62453-
42. The term Operator in this document is used to describe an expert for plant operations.

4.7 Implementation of FDT and system topology

4.7.1 General

IEC 62453-42 differentiates two topology views: logical topology and physical topology (see
Figure 7).

A logical topology is created by a hierarchy of DTMs. Child DTMs are connected to Parent
DTMs via the Communication Channel of the Parent DTM. A Parent DTM may have multiple
children. This relation is managed by the Parent DTM. This means that a Parent DTM knows
all its Child DTMs.

A Child DTM may be assigned to multiple parents (e.g. if different network paths may be used
to access a device). A Child DTM is not notified if it is assigned to a Parent DTM, but it may
request a list of parents from the Frame Application by using the method
ITopology.GetParentNodes().

A Child DTM can use only one communication path at a time to access the respective device.
The Parent DTM providing this communication path will be marked by the Frame Application
as ‘primary parent’.

This means, that the logical topology describes the logical relations between the devices on
an abstraction level that supports managing the communication between DTMs and devices.

A physical topology is created by defining physical connections between DTMs. Connections
are defined between Ports of the DTMs. This means the physical topology describes the
actual hardware installation. The connections are managed by the Frame Application. It is
possible to use these connections for representation of all kind of network structures.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 43 –

Figure 7 – Logical topology and physical topology

4.7.2 Topology management

4.7.2.1 Logical topology

The Frame Application is responsible for managing the logical topology – it is mandatory to
support the logical topology. That means the Frame Application shall organize the routing of
data for accessing a device in the plant. Some Frame Applications may require user
interactions; others may support automatic operations such as topology import or fieldbus
scanning. The sum of all links between DTMs according the logical topology is called FDT
topology and further described in IEC 62453-2.

A DTM exposes all required information (see 4.4.2) which enables the Frame Application (and
the user) to choose the appropriate DTM for a device, for example name, vendor, version of
supported device types and corresponding identification properties.

Figure 8 – FDT and logical topology

IEC

Fieldbus
Interface

Fieldbus

Device

Communication Channel

1
0..*

ICommunication

Communication DTM
Business Logic

ICommunication

Device DTM
Business Logic

Frame Application

IEC

Physical TopologyPhysical TopologyLogical TopologyLogical Topology

PROFINET :
Communication DTM

PROFINET :
Communication Channel

Device 2 : Device DTMDevice 1 : Device DTM

Gateway : Gateway DTM

Fieldbus : Communication Channel

Conceptual depiction of
reality

Ethernet
Interface

Ethernet with PROFINET and Modbus TCP

Device 1 Device 2

Fieldbus

PROFINET
Gateway

PC

Ethernet
Port

Device 1

Fieldbus
Port

Device 2

Fieldbus
Port

Gateway Fieldbus
Port

Ethernet
Port

Ethernet Switch

Modbus TCP
Device

Modbus TCP Device :
Device DTM

Modbus TCP
 Device

Ethernet
Port

Modbus TCP :
Communication DTM

Modbus TCP :
Communication Channel

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 44 – IEC TR 62453-42:2016  IEC 2016

As shown in Figure 8 a Communication Channel is used as the linking element between
Communication DTM and Device DTM. The Communication Channel provides access to the
fieldbus.

The link between a Communication Channel and a DTM is created by the Frame Application.
However, final decision whether a DTM shall be linked or not shall be made by the
Communication Channel. The Frame Application has to call the method
ISubTopology.<ValidateAddChild()> (see definition in Annex B) before link is created. The
Communication Channel shall at least check whether the required network protocol of the
DTM to be linked fits to its own supported protocol. If this is not the case, then the linking
shall be rejected. In addition, the Communication Channel may perform further checks, for
example whether the number of linked DTMs exceeds a limit.

Neither the Communication Channel (or corresponding DTM) nor the linked DTM shall need to
manage topology information in order to access the respective physical device. The Frame
Application supports to request topology information by the methods
ITopology.GetParentNodes(), ITopology.GetSiblingNodes() (and ITopology.GetChildNodes()
(for all see definition in Annex B).

The rules for identification of DTMs and devices are described in 4.10.

For some communication protocols the order of the devices linked to the network affects the
configuration of the network itself. This order is defined when inserting the corresponding
DTM into the logical topology (ITopology.BeginAddChild()) and can be modified later via
ITopology.BeginRepositionChild(). The Frame Application always has to maintain this order
when returning collections of DTMs in ITopology.GetChildNodes() and
ITopology.GetSiblingNodes().

If the Frame Application provides a view on the channel, it shall show all Child DTMs in their
respective order. In this view, the Frame Application shall allow the user to insert a new DTM
at a specific position between the existing Sibling DTMs or to change the position of an
existing DTM in regard to its Sibling DTMs.

4.7.2.2 Physical Topology

Advanced topology management requires the additional planning of cable bound or wireless
connections between devices. This capability is provided by the Physical Topology.

The management of the Physical Topology is the responsibility of the Frame Application. It is
optional for a Frame Application to support the Physical Topology. It is mandatory for a DTM
to expose all information which is required to determine whether a physical connection is
possible or not. The Physical Topology may not have dependencies to the Logical Topology
and shall be handled separately as shown in Figure 9.

Figure 9 – DTMs and physical topology

IEC

DTM1 : DeviceDTM

Port1_1 : Port Port1_2 : Port

DTM2 : DeviceDTM

Port2_1 : Port Port2_2 : Port

sibling | child

Logical topology

connection

Logical topology

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 45 –

The connections are managed by the Frame Application. Information regarding connections
may be accessed with the interface IPhysicalTopology. See Annex B for a detailed
description.

4.7.2.3 Communicating and non-communicating devices

An automation system integrates communicating devices,as well as devices which do not
communicate and therefore are not configurable via communication (e.g. power supplies and
other network infrastructure elements). Information about such devices may be essential
during the planning phase of the communication system and can be used to verify integrity of
the network, for instance in regard to bus power overload, communication distance limitations,
validity of the design (e.g. correct termination). In order to integrate such devices in an FDT-
based system, a DTM may be provided to represent such a ‘passive device’. The DTM
provides information about the device/equipment to the Communication DTM, which is
capable to use this information.

Different protocols require specific information to be provided and may have different
limitations to be enforced. Information provided from DTMs for passive devices has to be
provided in a standard way and format (in Network Management Info), so that different
Communication DTMs can use it in a standard way. DTMs for communicating devices may
need to provide similar information. Protocol-specific extensions have to define the
information provided by the communicating devices and by the non-communicating devices
and also how this information is used. For example, Communication DTMs for a bus powered
protocol can use information from non-communicating devices (defining the power source)
and communicating devices (defining the power consumption) in order to balance the power
on the network.

4.7.3 Data exchange between Frame Applications

The interaction between different Frame Applications is not in the scope of FDT, but the FDT
specification defines datatypes (see TopologyImportExport definition in Annex B) which can
be used for this purpose. These datatype classes may be used by one Frame Application to
export the FDT topology information to an XML file which then can be imported in another
Frame Application.

4.8 Implementation of Modularity

Different fieldbus protocols use different device models. FDT supports the following different
approaches to describing the structure of the device:

– monolithic DTM with topology description in NetworkDataInfo, ProcessDataInfo,
ProcessImageInfo, DataInfo and CommunicationChannelInfo

– Module DTM, and
– BTM.

4.9 Implementation of FDT communication

4.9.1 Handling of communication requests

In order to optimize the communication, the interface of a Communication Channel allows
passing multiple transaction requests in one call to <CommunicationRequest> (as a list).

The Communication Channel is expected to process the transaction requests in the order they
are provided in the list. The results of the transaction requests may be passed back to the
client of Communication Channel sequentially as part of the Progress callback (partial results)
and the complete result shall be passed back at the end of the <CommunicationRequest>
according to the extended AsyncResult pattern (see 5.6.7.2).

The relation between communication requests and communication responses can be
managed by the IAsyncResult handle that is passed to a client in the call to

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 46 – IEC TR 62453-42:2016 Ó IEC 2016

<CommunicationRequest>. The transaction responses for these specific transaction requests
will be received by that specific IAsyncResult handle. Each transaction can be identified by an
ID, the same ID is provided in the transaction response.

The cancel of <CommunicationRequest> stops execution of the transaction requests. The
results of already executed transactions shall be provided back to the client. For each
transaction request, that has been not executed a CommunicationError “Cancelled” shall be
provided to the client.

4.9.2 Handling of communication errors

Since it is possible to pass multiple transaction requests within one call to
<CommunicationRequest>, multiple transaction responses will be provided in the result of
<CommunicationRequest>. This set of transaction responses may contain a mix of positive
communication results (e.g. communication data) and negative communication results
(CommunicationError).

4.9.3 Handling of loss of connection

After sending an Abort notification the Communication Channel shall not send any further
CommunicationResponses to the communication client. For all pending requests the
exception FDTConnectionAbortedException shall be thrown.The communication client should
ignore any CommunicationResponse received after receiving an Abort notification.

4.9.4 Point–to-point communication

The Frame Application manages the interaction between the DTM Business Logic and the
Communication Channel. The Frame Application passes a communication interface (see
interface ICommunication in Annex B) to the DTM, which provides in each case a point-to-
point connection between a DTM Business Logic and a device.

It is under the control of the Frame Application to enable a DTM to communicate with its
device. The Frame Application has to provide the communication interface to be used to the
DTM by calling the method IDtm.EnableCommunication()(see definition in Annex B) and thus
allowing communication access.

In order to access the device, the DTM uses this interface as shown in Figure 10.

Figure 10 – Point–to-point communication

IEC

Fieldbus
Interface

Device

Communication Channel

1
0..*

ICommunication

Communication DTM
Business Logic

Frame Application

ICommunication

Device DTM
Business Logic

Fieldbus

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 47 –

The Frame Application starts the corresponding Communication DTM and forwards the
communication requests to the Communication Channel which then communicates with the
hardware.

A DTM shall call the Communication Channel method ICommunication.<Connect()> (see
definition in Annex B) in order to establish a communication connection to the device. After
the connection has been established the DTM is able to communicate to the device by calling
the ICommunication.<CommunicationRequest()> (see definition in Annex B). It is general
expectation, that a DTM tests if it is connected to the intended device. See also 8.6.2.

4.9.5 Nested communication

In a nested communication scenario the Frame Application manages the interaction between
the Device DTM Business Logic and the Gateway Communication Channel as well as
between the Gateway DTM Business Logic and the fieldbus Communication Channel. (see
Figure 11).

Figure 11 – Nested communication

Like in the point–to-point communication all DTMs simply use the communication interface
with their devices without the awareness of the nested communication

See 8.7 for sequences related to nested communication.

4.9.6 Dynamic changes in network

Many fieldbusses provide a mechanism for temporarily disconnecting devices or switching
between distinct groups of devices during operation (e.g. tool change for roboters,
docking/undocking of transportation vehicles). Such mechanisms lead to changes in the
communication network (called “dynamic configurations”) – devices may be disconnected. The

IEC

Device

Communication Channel

1
0..*

ICommunication

Communication DTM
Business Logic

ICommunication

1
0..*

ICommunication

ICommunication

Fieldbus
Interface

Fieldbus

Gateway

Gateway DTM
Business Logic

Communication Channel

Frame Application

Device DTM
Business Logic

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 48 – IEC TR 62453-42:2016  IEC 2016

Frame Application (and the network configuration tool as part of the Frame Application) are
able to manage the current device states at the DTM (see
NetworkDataInfo.DeviceMayBeDisconnected and NetworkDataInfo.DeviceIsDisconnected in
Annex B).

4.10 Identification

4.10.1 DTM instance identification

4.10.1.1 System Tag

An FDT Frame Application shall assign a unique identifier for each DTM instance. This unique
identifier is referred to as “System Tag ”. The System Tag is used by DTMs

– for navigation in the FDT topology;
– for the management of Child DTMs in the FDT topology (e.g. address setting);
– to identify a DTM instance at the event interface of the Frame Application.

The System Tag is defined as GUID.

4.10.1.2 Assignment of System Tag

Following rules apply to assignment and use of System Tag:

– A Frame Application shall not change the value of the System Tag of a DTM instance
during the complete lifecycle of a DTM instance. This means the same system_tag_value
is used to identify the DTM instance in all interfaces (e.g. IChildDtmEvents, ITopology and
ISubTopology).

– When a project is persisted the Frame Application shall save the System Tag of the DTMs
such that they will be the same system_tag_value when loading as before.

– A Frame Application shall use the same system_tag_value only for DTM instances
associated to the same Device Node (see Figure 14). This means it is not allowed to reuse
system_tag_values for other DTM instances.

– A DTM shall not persist the value of its own System Tag.

Since the System Tag uniquely identifies a DTM instance, it is possible that DTMs store
System Tags as references to other DTMs. For example if a Parent DTM needs to keep track
of its children and the data they expose (e.g. for Address Setting or Busmaster Configuration),
then the Parent DTM may cache information published by its children. The Parent DTM can
store the cached information using the System Tag as a key.

NOTE If multiple users work on the same Device Node, each user has an own instance of the DTM, but all DTM
instances use the same System Tag.

4.10.2 Hardware identification

A DTM supports the method IHardwareInformation.<HardwareScan()> (see definition in
Annex B) that enables to read device information online from the connected device (see
Figure 12).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 49 –

Figure 12 – Identification of connected devices

The method IHardwareInformation.<HardwareScan()> returns device type related information,
which is fieldbus-specific like the information returned by
IDtmInformation.GetDeviceIdentInfo() (see definition in Annex B). The transformation to
protocol-independent format is implemented by the protocol-specific datatypes. See examples
in 7.5.

4.11 Implementation of DTM data persistence and synchronization

4.11.1 Persistence overview

The Frame Application is responsible for the persistent storage of data (data persistence).
This includes topology information as well as data managed by the DTM itself (e.g. device
parameters). IEC 62453-42 only defines the interfaces, which shall be used by the DTM for
data persistence (see Figure 13). While the implementation of the persistent storage system
is specific for a Frame Application, the format of stored data is specific for each DTM. Both
are not in scope of the FDT specification.

IEC

Fieldbus
Interface

Fieldbus

Fieldbus Interface : Communication DTM

Fieldbus : Communication Channel

Manufacturer:

Type:
Software Rev.:

Hardware Rev.:

XYZ

Type 2
2.091

1,22

Device 1: Device DTM

DTM Device
Type 1

DTM Device
Type 2

DTM Device
Type 3

IHardwareInformation

ICommunicationChannel

Device 1

DeviceScanInfo

provides

describes

Address: 1
Tag: tag xy
...
Serial No.: 123-456

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 50 – IEC TR 62453-42:2016 Ó IEC 2016

Figure 13 – FDT storage and synchronization mechanism

The Frame Application storage interface provides the DTM Business Logic methods to access
its dataset (called DTMDataSet) in the Frame Application storage implementation, e.g. in a
database or file persistence.

The Frame Application has to guarantee the data consistency for multi-user and multi-client
data access and provides corresponding methods and events to the DTM Business Logic.

4.11.2 Relations of DTMDataSet

The Frame Application manages for each physical device one DTMDataSet and the related
DTM instance as shown in Figure 14.

Figure 14 – Relation between DTMDataSet, DTM instance, and device

IEC

Frame
Application

Project

DTMDataSet

DTM
Business Logic

0..*

0..*

1

1 1

0..1

0..11

1 1

0..*

1

Device Node

0..1

1 1

1

0..1

1

administrates

is assigned to

is represented by

has offline
data of

is configured by

Device

IEC

Frame
Application

data management
and synchronization

get dataset information /
save / load / delete

DTM data storage and
synchronization interface

data synchronization
- data change notification
- locked/unlocked notification

commit / lock / unlock dataset
DTM

Business Logic

Frame
Application

project storage

DTMDataSet

data change
notification

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 51 –

NOTE For multi-user scenarios, the multiplicities on the DTM Business Logic all have an upper limit of ‘many’
(see 11.4).

The Project is part of internal model of the Frame Application. It is an abstract, logical object
used here to describe the management of device-instances. FDT does not define any
interfaces for the Project object, since it is a pure Frame Application internal object and may
have different specific implementations.

The Device Node also is part of internal model of the Frame Application. It is an abstract,
logical object used here to represent a physical device in the Frame Application. It controls
the lifetime and data of device-instances within a Frame Application. FDT does not define any
interfaces for the Device Node object, since it’s a pure Frame Application internal object and
may have different specific implementations.

A Frame Application typically (vendor-specific) saves DTMInfo and TypeInfo information of the
corresponding DTM (see 7.4) together with the DTMDataSet to be able to start the DTM
Business Logic, which originally saved the data.

4.11.3 DTMDataSet structure

Figure 15 shows the structure and content of a DTMDataSet.

Figure 15 – DTMDataSet structure

The DTMDataSet has a property FormatId, which is a unique identifier for the format of the
data. This ID is created by the device (DTM) vendor. The DTM Business Logic can use this
information to decide how to load the data, e.g. to migrate the data from an older version.

A DTM always writes the DTMDataSet in one specific format, but may be able to read also
other data formats. In such a case a DTM can declare to support more than one FormatId. If
different DTMs declare to support the same FormatId the following scenario can be
supported:

A DTM vendor can provide a scenario to migrate the data from an old version of a DTM to a
newer DTM version. The new DTM version declares to support the old FormatId as well as the
new FormatId. The Frame Application detects the old FormatId and creates the new DTM. The
new DTM loads the DTMDataSet, migrates the data and saves the data with the new format
(identified by a new FormatId).

NOTE This scenario may work for DTMs of one vendor or for DTMs from different vendors. However the
definitions necessary to support such a scenario are out of scope of this specification.

A DTMDataSet can have one or more DTMDataSubsets. The DTMDataSubsets contain the
persistent data of a DTM. The DTM Business Logic can explore the DTMDataSet and add or
remove DTMDataSubsets to/from the DTMDataSet. The DTMDataSubsets are identified by an
ID which is created by the DTM. The DTM can use the IDs to read or write the data.

IEC

DTMDataSet

1

0..*

Key : string
Descriptor : string

<<interface>>
IDataSubset

FormatId : Guid

<<interface>>
IDataset

DTMDataSubset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 52 – IEC TR 62453-42:2016  IEC 2016

Which data is stored in one DTMDataSubset is DTM-specific. The DTM should group data in
one DTMDataSubset if it belongs to one functional unit and needs to be loaded together. In
order to improve the system performance a DTM should avoid loading of unnecessary data
whenever possible, especially at start-up of the DTM. The following grouping should be
considered:

• Basic data which is needed during the complete lifetime of a DTM instance (e.g. Network
Management Info)

• Device parameter group information which is needed if corresponding DTM User Interface
is opened (e.g. a page in a dialog) or if the Frame Application requests data (e.g.
DeviceDataInfo objects (see 7.9))

• Process data information which is needed if Frame Application requests ProcessDataInfo
objects (see 7.11.1)

• etc.

The DTMDataSubset data format is DTM-specific. Any serializable datatype can be used. The
Frame Application is not allowed to modify the data.

4.11.4 Types of persistent DTM data

Two types of DTM related data are considered:

• Instance-related data (called “instance data”). Instance-related data belongs to the DTM
itself. It is specific for a DTM which data it stores but the DTM has to guarantee that it is
able to represent the stored device instance by loading these data;

• Bulk data. DTM-specific data, for example historical data. A DTM can save bulk data as
separate DTMDataSubsets in the DTMDataSet in the same way as instance-related data
(each in a separate collection). Configuration data shall not be stored in the bulk data.
DTM shall be prepared to be loaded without previously stored bulk data.

Instance-related data and Bulk data may be stored in separate storages in order to allow a
Frame Application to distinguish instance related DTMDataSubsets and bulk
DTMDataSubsets for management purposes.

4.11.5 Data synchronization

If multiple users access the same device, systems shall start several DTM instances of the
same DTM type and for the same physical device (see 4.6.2). The different DTM instances
access the same DTMDataSet. This is for example the case in a distributed system where
multiple users access the same Frame Application (see 11.4).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 53 –

Figure 16 – Data Synchronization

To support such a scenario the Frame Application shall support interfaces which allow the
realization of a dataset locking and changing notifications concept (see Figure 16).

FDT2 uses a pessimistic locking concept on DTMDataSet (device) level. The concept works
as following:

– A DTM shall try to lock its DTMDataSet before execution of an operation that may lead to
data changes (e.g. opening of a parameterization user interface).

· If locking was successful, then data changes are allowed

· If locking failed, e.g. because another DTM instance has already locked the data, then
no data changes are allowed (e.g. opened user interface shall disable input fields)

– A DTM that has no lock can only read the last committed data from the DTMDataSet
– A DTM that has the lock can read and write the data in the DTMDataSubsets.
– Changes in the DTMDataSet are only visible to the DTM that holds the lock until DTM

commits the changes and until the Frame Application sends TransactionCommitted to
other DTMs.

– Uncommitted changes are automatically discarded if the DTM unlock the DTMDataSet
– The Frame Application notifies all other DTM instances working with the same

DTMDataSet if

· Data in a DTMDataSubset has changed and changes are committed (DTM should re-
read and display the data)

· DTMDataSet is locked or unlocked (DTM should change the state of UIs, e.g. input
fields are enabled / disabled)

4.12 Implementation of access to device data and IO information

4.12.1 Exposing device data and IO information

In addition to device-specific functions and user interfaces a DTM provides access to device
data and to instance data via the programming interface(see definition of IInstanceData,
IDeviceData, DataInfo, Read-Write Request and Read-Write Response in Annex B).

IEC

data change
notification

Frame
Application
project storage

Manage DTMDataSet
read / writes, locks,
change notifications

DTMDataSet

Frame
Application

DTM
Business Logic

DTM
User Interface

read / write
lock / unlock
commit / rollback

DTM
Business Logic

DTM
User Interface

read / write
lock / unlock

commit / rollback

Data Server

User 2User 1

data change
notification

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 54 – IEC TR 62453-42:2016  IEC 2016

It is recommended, that a DTM exposes all parameters, which are accessible in the user
interfaces of the DTM, also by IInstanceData and IDeviceData. A DTM shall expose at least
all parameters defined in applicable profiles of FDT Protocol Annexes and FDT Application
Profile Annexes. If a DTM is supporting a device with a device description (e.g. EDD or EDS),
parameters should be exposed with the same name and label as in the corresponding DD (for
example EDD: parameter name should be the identifier of the corresponding EDD-Variable).

Device data and instance data may expose different sets of parameters. Device data may
expose dynamic data like process value, device status and operating hours, whereas instance
data should not expose such dynamic data.

The DTM shall adapt the list of exposed parameters according to the user level (e.g. restrict
access to parameters). DTMs shall update the list of exposed parameters during runtime, for
instance when parameters become inaccessible due to a changed configuration (e.g. changed
measurement principle). Parameters, which are only available if the DTM is in an OEM
service mode, shall not be exposed.

The DTM should expose the data in DataGroups in the same organization as presented in
DTM-user interfaces. Parameters shall be exposed in a way (format and semantic
information) which allows the processing of the data without fieldbus knowledge. For example,
instead of raw data in hex format, a parameter shall be exposed as readable value with a
numeric datatype and provide additional information like unit and range.

FDT Protocol Annex specifications may define additional requirements regarding the exposed
device data.

A Frame Application may use the exposed data for various use cases, for instance for
comparison. For examples see the following sections.

4.12.2 Data access control

The Frame Application can use IDeviceCustomConfiguration/IInstanceCustomConfiguration
interfaces to read the description for all data and all data groups exposed by the DTM
independent of the current settings of the device and independent of the mode of operations.
The Frame Application can use the information to present the list of exposed data, the name,
label, descriptor, read/write status and semantic information to the user and let the
Administrator create custom access permissions for each user or group of users. The Frame
Application can enable access to individual data using the method <EnableParameters> with
a list of IDs for all parameters that shall be changeable.

Each data item is represented by an object of class AccessibleData. This class defines
properties related to data access control (Table 3).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 55 –

Table 3 – Description of properties related to data access control

AccessibleData
Properties

Description

IsReadable Specifies whether the value can be read from the device or DTM instance.
The value may change depending on the internal business logic of the device / DTM.

IsWritable Specifies whether the value can be written to the device or to the DTM instance.
The value may change depending on the internal business logic in the device / DTM.

IsChangeEnabled This attribute is applicable only when the DTM has been initialized with Expert user
level. It specifies whether the FA has enabled changes to the data for the current
user. This property controls what can be changed directly by the user through the
DTM-UI or through the methods called by the Frame Application.

TRUE: Allows the parameter to be changed by the FA using IDATA or by the user
through the DTM User Interface

FALSE: Parameter access is restricted and the value cannot be changed by the FA
using IDATA or by the DTM User Interface

The Frame Application has to verify that the values of IsChangeEnabled and
IsWritable attributes are both set to TRUE for the parameter to be writable in the
DTM.

The “IsChangeEnabled” property value is provided by the DTM and can be set only by the
Frame Application. It cannot be changed by the DTM. The IsChangeEnabled property shall
be set to FALSE by default by the DTM for the user with Expert user level. The value of
IsChangeEnabled property shall be ignored by the DTM and by the Frame Application when
the user level is Observer or Engineer.

The Frame Application can enable the change of a data item by setting the
“IsChangeEnabled” flag to TRUE. Setting the IsChangeEnabled flag to TRUE is required to
allow the change of the data item in the DTM/ device. The device/DTM may have additional
restrictions, e.g. the data or data group may remain read only, the value of a data item may
be restricted by the value of other data items, the data item may be read only in the device,
etc.

When “IsChangeEnabled” attribute for a data item is FALSE, the data item cannot be modified
by the Frame Application or by the user through the UI of the DTM. It is not expected that
“IsChangeEnabled” attribute will change the visibility of a parameter in the user interface of
the DTM, but the DTM shall present the value as read only if “IsChangeEnabled” is set to
FALSE.

When a parameter value is set in the DTM BL, it may apply additional internal logic and
modify the values of the related parameters even if the “IsChangeEnabled” flags for those
related parameters are set to FALSE. The user will be able to see the modified values for the
related parameters, but will not be able to modify their values since the “IsChangeEnabled”
flag is set to FALSE. In a similar way, if the parameter value is set in the device, the device
may change multiple parameter values of dependent parameters even if these parameters
cannot be modified directly. This means that the “IsChangeEnabled” flag is only used to
control the modification of data items by the user or by the FA, not by the DTM or the device
itself.

When the FA wants to set the “IsChangeEnabled” flag to TRUE for a data group, it has to set
the “IsChangeEnabled” flag to TRUE for each of the data items in the respective group. If a
DTM has a user interface that shows a group of parameters, it is recommended to create the
user interface in a way, which allows to control which parameter in the group is changeable
and which is non-changeable. If the DTM cannot control the access to parameters of a group
individually, then the entire user interface may be enabled for change for all parameters of the
group if one of the parameters in the group is changeable.

Note that IData exposes the list of parameters according to the actual status or device mode.
However, the DTM has to expose all parameters independent of state or device mode or role

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 56 – IEC TR 62453-42:2016 Ó IEC 2016

through <GetAllDataInfo()> method. The Frame Application will provide the list of changeable
parameters to the DTM by calling the <EnableParameters()> method. The DTM shall apply the
“IsChangeEnabled” values set by this method to the individual data groups and data items.
The settings shall be applied to all parameters, independent of the device mode.

The <EnableParameters()> methods (for instance data items and for device data items) shall
be called only once in running state before any function or any other method is invoked in the
DTM. Once set, the DTM shall preserve the settings for "IsChangeEnabled" flag during the
lifetime of the DTM instance and shall reject any other request to <EnableParameters()>.

The DTM shall not save the value of the IsChangeEnabled flag in its instance data set. It shall
initiate the flag to the default state ("IsChangeEnabled" = FALSE) any time a new DTM
instance is created and initialized with Expert user level. The Frame Application shall invoke
<EnableParameters()> each time a new instance of the DTM is initialized with Expert user
level.

There might be device data or instance data that cannot be exposed as parameter and thus
ICustomConfiguration interface cannot be used to modify the "IsChangeEnabled" property in
the Expert user level. By default, the DTM is expected to create this data as non-changeable
and the Frame Application will not be able to make it changeable.

4.12.3 Routed IO information

If a device (for instance a gateway device) delivers IO signals that originated from a
connected device, then the IO Signal Info items of the ProcessDataInfo(see 7.11.1) returned
by corresponding Gateway DTM Business Logic shall describe this relation (see Figure 17).

Figure 17 – Routed IO information

The IO Signal Info items of the Gateway DTM shall reference the IO Signal Info items of the
Device DTM by the SystemTag of the Device DTM and the Id of the IO Signal Info.

4.12.4 Comparison of DTM and device data

FDT supports comparison of DTM and device data, for example:

IEC

Device

Communication Channel

1
0..*

ICommunication

Communication DTM
Business Logic

ICommunication

1
0..*

ICommunication

ICommunication

Fieldbus
Interface

Fieldbus

Gateway

Gateway DTM
Business Logic

Communication Channel

IO Signal Info

IO Signals

IO Signals

0..*1

0..*1

describes

describes

references

Frame Application

(routed) IO Signal Info

Device DTM
Business Logic

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 57 –

· Comparison of persisted data with data in the device

· Comparison of historical data with current data

· Comparison of data from different devices

In order to support these scenarios, FDT defines two alternative comparison concepts:

a) DTM publishes all data in the corresponding interfaces. In this case the Frame Application
is responsible to perform the comparison (see 5.13.1).

b) DTM provides the comparison interface. In this case the Frame Application shall call this
interface for the comparison. (see 5.13.2)

4.12.5 Support for multirole devices

4.12.5.1 General

Next to Master/Slave Gateways, which are described by Gateway DTMs, Slave/Slave
Gateways do exist. As these kinds of devices do not open a new type of communication, they
are modeled as Device DTMs or Module DTMs which may be part of more than one logical
topology (see Figure 18). Both slave roles may support the same or different bus protocols.

Furthermore, some bus protocols allow sharing of devices and/or modules between multiple
masters. These shared devices are part of multiple topologies, too.

Figure 18 – Multirole Device

Different roles are assumed in different topologies, e.g. the same device may act in one
topology as slave and may act as master in an other topology. In one topology only data
relevant for a certain protocol or for the respective role is of interest to the Frame Application.

It is the responsibility of the Frame Application to handle the instantiation and release of one
DTM in multiple topologies.

4.12.5.2 Accessing multirole related data

The support of multirole devices is optional for Frame Application and DTMs. If both support
multirole devices, instead of direct access to interfaces at the DTM, role related data can be
accessed by way of the IDtmRoleAccess and IDtmProxyRoleAccess interfaces (see definition
in Annex B). It is in the responsibility of the DTM to provide role related data only when
accessed by the IDtmRoleAccess or IDtmProxyRoleAccess interface.

If a DTM accesses Sibling DTMs, which provide role related data, the accessing DTMs should
support access via role access interfaces.

IEC

Fieldbus 1 Fieldbus 2

Device DTM

Communication Channel Communication Channel

DTM Business Logic

Logical links managed
by frame application

ProtocolId/RoleId 2

ProtocolId/RoleId 1

represents

represents

represents

Fieldbus
Interface 1

Fieldbus
Interface 2

Communication DTMCommunication DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 58 – IEC TR 62453-42:2016  IEC 2016

4.13 Clone of DTM instances

4.13.1 General

A Frame Application may offer the functionality to copy a part of the FDT topology (i.e.
multiple DTMs) e.g.for “copy and paste”.

If a part of the FDT topology is copied, then the System Tag for all cloned DTMs of the copy
shall be changed by the Frame Application. Otherwise the System Tag would not be unique
any more.

To create a cloned DTM instance the Frame Application shall perform following steps:

• Copy the DTMDataset to the new device node;

• Create a new DTM instance using the same DTM (unique class identifier).

Depending on the use case the Frame Application should ask the user to set the correct
fieldbus address in the DTM, to set a correct TAG and to adjust DTM offline parameters
before the dataset is downloaded, for example:

• device position-specific parameters like settings related to mounting related settings

• device instance-specific parameters like device calibration, linearization

A DTM shall reset cached online parameters (e.g. device serial number, operating hours etc.)
and consider removing bulk data subsets when LoadData() is called with argument isCloned
set true. The Frame Application applies the argument isCloned to all DTMs involved in the
cloning operation.

If a Parent DTM is storing the System Tags of its children then these are invalid after the
Parent DTM was cloned.

If a Parent DTM instance is cloned and has cached the System Tags of its children, then it
shall rebuild its internal data structure based on the list of changed topology nodes passed to
IDtm.LoadData().

4.13.2 Replicating a part of topology with Parent DTM and a subset of its Child DTMs

Cloning of a DTM with only some of its children is not supported. A Frame Application should
not offer this function to the user. This restriction is to avoid inconsistencies. If a Frame
Application offered this functionality, then the rules which are implemented in
ISubTopology.<ValidateRemoveChild()> could not be applied.

4.13.3 Cloning of a DTM without its children

If a DTM which has children is cloned without its children, then the internal data structure
used to manage children most likely is invalid. If IDtm.LoadData() has an empty list of
changed topology nodes, then a Parent DTM shall release the complete set of data
associated to its children (See 8.18.1 for the workflow).

4.13.4 Delayed cloning

If a Frame Application allows delayed cloning (“copy” the DTM, then make changes to the
topology, then paste the DTM) then a Parent DTM is responsible for ensuring the consistency
of its internal data structure used to manage children. This is done by keeping track of the
topology via ISubTopology.<ValidateAddChild()> and ISubTopology.<ChildAdded()> (see
8.8.2 for the workflow).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 59 –

4.14 Lifecycle concepts

Automation systems in process industry typically have a life time of 10 to 15 years or more.
Over time hardware and software components in a system will be exchanged, which may
require updates or upgrades of FDT related components.

The FDT2 life cycle concepts rely on identification and versioning of components which may
change during the plant lifetime.

The concept defines rules to identify software and hardware components and rules to ensure
backward compatibility of a component from one version to another.

The general lifecycle guidelines are described in [23]. The implementation of lifecycle
concepts with IEC 62453-42 is described in Clause 10 of this document.

4.15 Audit trail

4.15.1 General

Audit trail is about recording who has accessed an automation system and what operations
were performed during a given period of time. FDT defines Frame Application services which
shall be used by the DTM to record operations performed on the associated device.

Frame Applications can use this information for:

• recording the information, date and time of operator entries and actions

• generating the records, e.g. for inspection and reviews

• evaluating the system

These features are for example needed for a Frame Application to comply with FDA [22]
guidelines.

4.15.2 Audit trail events

A DTM shall send an Audit Trail notification to the Frame Application to record any changes in
the device. DTMs shall only send notifications for changes and not for internal state
transitions (e.g. the instantiation of a user interface shall not trigger Audit Trail events).

The following notifications are defined:

• Function Notification: Notifies the Frame Application that a function was called (e.g. self
test functionality of the device or download was executed).
A function notification shall indicate the start of a function and the end of a function. A
notification about the end of a function shall contain the information if the function was
executed successfully, cancelled or executed with a failure. A DTM shall also fire
notifications for operations which are triggered by the Frame, e.g. Download parameters.
The notifications related to functions are:
– 'Function_name' started
– 'Function_name' finished successfully
– 'Function_name' finished with error 'error_reason'.
– 'Function_name' cancelled by user

• Parameter Change Notification: Notifies the Frame Application that a parameter was
changed. Contains the old value of the parameter as well as the new value.
A DTM shall group notifications which belong to one logical operation (changes set) into
one single notification. This means that there shall be e.g. one single notification for the
complete set of parameters which are part of a download.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 60 – IEC TR 62453-42:2016  IEC 2016

The notification related to parameter change is:
– Parameter ‘Parameter_name’ changed from ‘old_value’ to ‘new_value’.

If the DTM supports different cultures and languages (see 5.8), then the Audit Trail
notifications also shall be localized.

It is up to Frame Application to request an additional comment from the user e.g. to document
the reason of a performed action. The Frame Application may request this comment when an
operation is started on a DTM, for example

• Upload/Download,

• DTM functions are started, or

• DTM User Interface is started.

The Frame Application shall not disturb the user interaction with the DTM by requesting a
comment during execution of the DTM action. If a comment is needed the user should be
asked for the comment before the DTM action is started or after the action is finished.

The DTM does not need to provide any Audit Trail Information for the changes in the list of
changeable parameters. The Frame Application may provide the notifications for the
modifications in the list of changeable parameters without invoking the DTM.

5 Technical concepts

5.1 General

FDT Objects shall be build upon the Microsoft .NET Framework[8] and executed in the .NET
Common Language Runtime (see 5.2).

The services, specified in the IEC 62453-2 specification [3], [4], are modeled as .NET
interfaces passing .NET datatype arguments (see chapter 7). These interfaces and datatypes
are used for FDT Object interaction and data exchange. In addition, .NET exception classes
(see 5.6.9.4) are defined for returning error information in an interface method call.

The FDT .NET interfaces, argument datatypes, and exception classes are defined in three
different .NET assemblies (FDT core assemblies). Figure 19 shows the assemblies and their
dependencies to each other.

Figure 19 – FDT .NET Assemblies

IEC

FDT <Protocol>
Datatype Assembly

(Fdt.Datatypes.<Protocol>.dll)

FDT <Protocol>
Datatype Assembly

(Fdt.Datatypes.<Protocol>.dll)

FDT Interface
Assembly

(Fdt.Interfaces.dll)

FDT Datatype
Assembly

(Fdt.Datatypes.dll)

FDT Exception
Assembly

(Fdt.Exceptions.dll)

FDT <Protocol>
Datatype Assembly

(Fdt.Datatypes.<Protocol>.dll)

FDT (Core) Specification FDT <Protocol> Annex Specifications

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 61 –

The assemblies are provided together with this specification and shall be used for the
development of Frame Applications and DTMs.

Some of the interface methods have to exchange protocol specific information. These
methods work with abstract base classes defined in the FDT Datatype assembly (e.g.:
communication interface, see ICommunication interface definition in Annex B). Protocol-
specific classes defining the protocol-specific data to be exchanged are derived from these
base classes. These classes are defined in separated .NET assemblies, which are provided
together with corresponding FDT Protocol Annex specifications or by the DTM vendor in case
of a vendor-specific protocol.

All FDT assemblies (FDT core assemblies and FDT protocol assemblies) are strong named
(see 5.16.2) and additionally signed with an authenticode key (see 5.16.3) owned by FDT
Group, installed into the Windows Global Assembly Cache (see 9.3 and 9.4), and shared
between the different FDT Objects.

The DTM Business Logic, Communication Channels and User Interfaces shall be realized by
classes and controls implemented in separate .NET assemblies (see Figure 20), which are
installed and registered by the DTM setup (see 9.5).

In order to increase performance in loading the GUI, it is recommended to provide the
different DTM User Interfaces in different assemblies.

Figure 20 – FDT Object implementation

The DTM-specific assemblies shall be signed with a vendor-specific key.

The DTM Business Logic and Communication Channels shall be simple .NET classes
implementing the interfaces defined in the FDT Interface assembly (Fdt.Interfaces.dll).

The implementation of the DTM User Interfaces depends on the type (see 5.10). User
Interface controls which can be embedded into the Frame Application User Interface shall be
implemented as pairs of two objects, a DTM UI class (.NET class) and a DTM UI control
(.NET WinForms control or Windows Presentation Foundation control). A User Interface which
cannot be embedded shall be implemented as DTM UI class (.NET classes), which handles
the interaction between the actual DTM User Interface (i.e. an external application) and the
Frame Application.

The DTM Business Logic and User Interface classes / controls shall be “creatable”:

• marked as public (non abstract)

IEC

DTM Business Logic
Assembly

DTM UI
Object

DTM UI
Object

DTM
BL / Channel

DTM User Interface
Assembly

DTM UI
Object

DTM UI
Object

DTM
User

Interface

<DtmUI>.dll

DTM UI
Control

DTM UI
Control

DTM UI
Control

Frame Application

Frame
User

Interface

Frame
Business

Logic
FDT Interfaces

FDT Interfaces

<DtmBL>.dll

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 62 – IEC TR 62453-42:2016  IEC 2016

• provide a public default constructor with no arguments

The implementation of the Frame Applications is not in scope of FDT. FDT only defines the
interfaces which shall be provided to the DTM Business Logic and User Interface for
callbacks.

5.2 Support of .NET Common Language Runtime versions

5.2.1 General

Specific .NET CLR (Common Language Runtime) versions are released for execution of
software components built with specific .NET Framework versions. The .NET CLR version 4 is
for example used to execute software components built with .NET Framework 4

Different .NET CLR versions are not fully compatible. That means software components built
with a specific .NET Framework version may not execute correctly in a different CLR version.
For example a .NET Framework 3.5 software component may not execute correctly in the
.NET CLR 4.

FDT Group defines the .NET CLR versions which shall be supported by FDT Software.

This version of the FDT standard supports the CLR version as shown in Table 4.

Table 4 – Supported CLR versions

Supported CLR version

CLR4.0

In future, FDT Group may define support for additional CLR versions. That is why this
document describes support for multiple CLR versions.

The use of other CLR versions is not allowed until the standard FDT .NET assemblies (see
5.1) are released for these versions. To enforce this rule, the standard datatype classes throw
exceptions if executed in an unsupported CLR.

5.2.2 Rules for FDT .NET assemblies

In order to support interoperability with FDT 1.2.x (see [31]) the FDT .NET Assemblies and
the FDT protocol assemblies are compiled for CLR2. They work in both CLR2 and CLR4.
They are compiled for the “any” platform in order to support 32bit and 64bit target platforms.

5.2.3 DTM rules

A DTM shall support at least one of the CLR versions listed in Table 4. The supported
version(s) shall be exposed in the DTM manifest (see 7.6.2). Support in this context means
that the DTM vendor guarantees the correct function of the DTM in this CLR (e.g. verified by
tests).

5.2.4 Frame Application rules

A Frame Application shall support all CLR versions listed in Table 4. This also means that the
Frame Application is responsible for installation of the supported CLR runtime versions. The
Frame Application shall check the CLR versions supported by the DTM before a DTM
Business Logic or DTM User Interface is started. If the same CLR version which is used by
the Frame Application is supported, then the DTM Business Logic and the DTM User Interface
may be loaded and executed directly in the Frame Application main process. Otherwise the
Frame Application shall execute the DTM in a separate process with corresponding CLR
version loaded.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 63 –

A Frame Application shall support an extension concept for the support of further CLR
versions, for example for versions released after the Frame Application has been developed.
For an explanation of the concept see 5.2.5.

In order to support backward compatibility, a Frame Application may need to support CLR2.

5.2.5 FDT CLR extension concept

This section describes a concept for CLR extension support for Frame Applications.

Figure 21 – FDT CLR extension concept

If a Frame Application detects that a DTM Business Logic or a DTM User Interface supports
only CLR versions not supported by the main process of the Frame Application, then the
Frame Application utilizes the proxy classes supporting the CLR version which is used by the
Frame Application itself (see Figure 21).

The Frame Application loads the proxy .NET assembly, creates an instance of the proxy
class, and delegates the execution of the DTM Business Logic or DTM User Interface to this
proxy. The proxy starts a process with the required CLR (surrogate process) and executes the
DTM Business Logic or DTM User Interface in this process. The proxy classes provide the
standard FDT interfaces. The Frame Application can use these interfaces to interact with the
DTM Business Logic or with the DTM User Interface executed in the surrogate process.

5.3 Support for 32-bit and 64-bit target platforms

DTMs should support 32-bit operating system as well as 64-bit. This means that they should
be compiled using the “any”- platform target.

If it is not possible to support both platforms, then a DTM shall support at least one of the
platform targets. For instance, if dependent dlls are not available as 64-bit target, then a DTM
may be available in 32-bit only.

A DTM shall expose the information whether it supports 32-bit, 64-bit or both target platforms
in the corresponding setup manifest (see 9.6.2).

IEC

.NET CLR Surrogate Process Frame Application

Frame
User

Interface

Frame
Business

Logic

FDT +
Proxy
Interfaces

DTM Proxy
Assembly

DTM User Interface
Assembly

<DtmUI>.dll

DTM UI
Object

DTM UI
Object

DTM UI
Class

DTM Business Logic
Assembly

<DtmBL>.dll

DTM UI
Object

DTM UI
Object

DTM
BL / Channel

Class

FDT Interfaces

FDT Interfaces

DTM
BL / Channel

Proxy

DTM UI
Proxy

FDT +
Proxy
Interfaces

Fdt.ClrSurrogate.
Proxys.dll

DTM Stub
 Assembly

DTM
BL / Channel

Stub

DTM UI
Stub

Fdt.ClrSurrogate.
Stubs.dll

FDT CLR
Surrogate

Proxys

Fdt.SurrogageProxy
.manifest

reference

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 64 – IEC TR 62453-42:2016  IEC 2016

64-bit Frame Applications shall support 32-bit DTMs (e.g. if the DTMs do not have a 64-bit
variant). This can be implemented, for instance, by using a surrogate process.

5.4 Object activation and deactivation

5.4.1 General

A Frame Application needs to find and load the DTM-specific .NET assemblies dynamically
into the memory and execute the contained DTM Business Logic and User Interface classes
by calling corresponding FDT interfaces. Finally, the created objects need to be destroyed
and unloaded from the memory.

This chapter describes the means which shall be utilized for object activation and deactivation
and the corresponding rules that shall be followed by Frame Applications and by DTMs.

5.4.2 Assembly loading and object creation

The DTM-specific .NET assemblies are installed by the DTM setup. The setup also registers
the DTM by installing “DTM manifest” file(s) in an FDT-defined directory (see 9.5). A manifest
file contains the information where to find the .NET assemblies and which DTM classes and/or
UI controls are contained (see 7.6.1 and 7.6.2).

The Frame Application shall use this information for loading and execution of the DTM classes
and UI controls by using the LoadFrom mechanism. The .NET Framework provides following
classes / methods for this purpose:

• Assembly.LoadFrom() and .CreateInstance() (namespace System.Reflection)

• AppDomain.CreateInstanceFrom() (namespace System)

Figure 22 outlines the use of the methods provided by the Assembly class as an example:

Figure 22 – Example: Assembly.LoadFrom()

NOTE The method System.Reflection.Assembly.LoadFrom() behaves as following:

1. LoadFrom() loads the assembly addressed with the file path and also the referenced assemblies in same
directory.

2. If an assembly is loaded with LoadFrom(), and later an assembly in the “load context” attempts to load the
same assembly by display name, then this load attempt fails.

3. If an assembly with the same identity is already loaded (e.g.: by another DTM), then LoadFrom returns the
loaded assembly, even if a different file path was specified.

4. If an assembly is loaded with LoadFrom(), and the probing path includes an assembly with the same
identity (e.g.: in Global Assembly Cache, application directory), then this assembly is loaded, even if a
different file path was specified.

5. LoadFrom() requires the permissions FileIOPermissionAccess.Read and
FileIOPermissionAccess.PathDiscovery, or WebPermission, on the specified path.

6. If a native assembly image (generated by ngen.exe) exists for the specified file path, then it is not used.
The assembly cannot be loaded as domain neutral (assembly cannot be shared between
ApplicationDomain, each loads its own copy).

Because of this behavior FDT defines the following rules:

a) Rules regarding assembly dependencies (see 5.4.3)
b) Only LoadFrom shall be used in the context of FDT. The use of other .NET
c) assembly loading / object creation means is not allowed.
d) Rules regarding shared assemblies (see 5.4.4).

IEC

public object CreateFdtObject(string filePath, string fullClassName)
{
 Assembly assembly = Assembly.LoadFrom(filePath);
 return assembly.CreateInstance(fullClassName);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 65 –

e) DTM assemblies shall be installed to a path which is browseable and readable.
f) DTM assemblies shall not be precompiled using ngen.exe (or similar tools).

The security aspects regarding loading and execution of assemblies are described in chapter
5.16.

The next steps after creation depend on the object type:

• Steps for the DTM Business Logic: 6.3.2.

• Steps for the DTM User Interfaces: 5.10.

5.4.3 Assembly dependencies

5.4.3.1 Introduction

DTM-specific .NET assemblies may depend on other .NET assemblies, for example on a
device vendor-specific library or on a 3rd party library as outlined in Figure 23.

Figure 23 – Example: Assembly dependencies

These dependencies and the interaction between the classes / controls contained in the
assemblies are DTM-specific, but the DTMs have to follow some rules in order to function
correctly and to avoid problems in conjunction with other DTMs executed in a Frame
Application.

5.4.3.2 Loading of dependent assemblies

The Frame Application loads the .NET assemblies – containing the DTM main class / control –
by calling the .NET Framework LoadFrom() method (see 5.4.2).

Referenced assemblies which are stored in the same directory or in the GAC are
automatically loaded together with this .NET assembly.

Referenced assemblies which are stored in other locations (e.g. in a sub-directory) have to be
loaded specifically by the DTM. The DTM shall load such assemblies also by using the
LoadFrom() method provided by the .NET Framework. Loading assemblies with other.NET
Framework methods is not allowed (see 5.4.2).

5.4.4 Shared assemblies

Special attention is necessary for assemblies which are shared. Shared in this context means
that an assembly with the same identity is used by another software on the computer (see

IEC

DTM User Interface
Assembly

<DtmUI>.dll

DTM UI
Object

DTM UI
Object

DTM UI
Class

DTM Business Logic
Assembly

<DtmBL>.dll

DTM UI
Object

DTM UI
Object

DTM
BO / Channel

Class

3rd Party UI Framework
Assembly

<UIFramework>.dll

DTM UI
Object

DTM UI
Object

UI
Framework

Controls

Vendor Specific Library
Assembly

<DtmLibrary>.dll

DTM UI
Object

DTM UI
Object

Library
Classes

DTM specific
Interfaces

UI Framework
specific

Interfaces

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 66 – IEC TR 62453-42:2016  IEC 2016

LoadFrom() behavior description 3.and 4. In the Note to 5.4.2). This applies to assemblies
containing DTM BL, DTM UI as well as all other used assemblies.

NOTE 1 The identity of strong named assemblies consists of the assembly simple name, version, culture and
public key token.

NOTE 2 The behavior described here applies to all shared assemblies independent of the location of the
assembly.

If a shared assembly is used, then following rules apply:

a) Any incompatible change to the shared assembly shall lead to a new identity (e.g.
different version number).

b) Shared assemblies shall not presume to be loaded from a specific installation path (e.g.
rely that some files are stored in the same directory or in a sub-directory).

c) Static variables in shared assemblies are also shared if the assembly is loaded into the
same ApplicationDomain. Thus static variables shall not have side effects in such
scenarios. It’s strongly recommended not to use static variables in a shared assembly.

If the rules above cannot be ensured by a DTM vendor, then the assembly shall not be used
as a shared assembly. That means either the assembly gets a DTM-specific identity or it shall
not be used at all.

5.4.5 Object deactivation and unloading

5.4.5.1 Introduction

Destroying of DTM Business Logic and User Interfaces and unloading of corresponding .NET
assemblies have to be considered separately.

5.4.5.2 Destroying of objects

Steps to destroy an object depend on the object type. The procedure for the DTM Business
Logic is defined in 6.3.2. The procedure for the DTM User Interfaces is defined in 8.5.6 and
the following sections.

For all object types providing the interface IDisposable, the method IDisposable.Dispose()
shall be called by the Frame Application at the instance. This call shall be used to free all
used resources (e.g. close opened files, stop running threads) and release the references to
other objects (set to null). The instance is not destroyed. This happens sometimes later by the
NET garbage collector.

5.4.5.3 Unloading of assemblies

A .NET assembly which is loaded into a process respectively into an ApplicationDomain is
never unloaded, except if the ApplicationDomain is destroyed. That means if the Frame
Application loads a DTM-specific assembly into the default ApplicationDomain, then these
assembly and all dependent assemblies are never unloaded unless the application is closed.

The DTM assemblies shall be developed with this .NET Framework behavior in mind. To
reduce the memory consumption it’s recommended

• to minimize the use of static variable, because these increase the memory consumption of
the assembly.

• to move DTM functionality which is not always (or rarely) needed to separate assemblies.
These assemblies are loaded only (automatically or manually) (see 5.4.2) if corresponding
code is executed.

• to use shared assemblies whenever possible (see 5.4.4).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 67 –

Frame Application should consider the execution of .NET assemblies in a separate
ApplicationDomain in order to have the ability to unload them.

5.5 Datatypes

5.5.1 General

.NET data classes (datatypes) are used for the data exchange between the different FDT
objects. Instances of these classes are passed as arguments in the FDT interface methods,
properties, and events.

The datatypes are defined in the .NET assembly Fdt.Datatypes.dll, which is distributed
together with this specification document. This assembly shall be used for the development of
FDT Objects.

The datatypes are designed as so called “Data Contract” classes. These are classes using
the attributes defined in the .NET Framework System.Runtime.Serialization namespace. The
actual data is provided by properties with corresponding [DataMember] attribute set as shown
in Figure 24.

IEC

Figure 24 – Example: Datatype definition

The attributes control the serialization / deserialization of the instances (see 5.5.2) and also
defines which properties are mandatory and optional (see 5.5.4).

All data classes are directly or indirectly derived from the base class FdtDatatype (see 7.1),
which provides methods to verify (see 5.5.5) or clone instances (see 5.5.6).

5.5.2 Serialization / deserialization

The data classes support serialization / deserialization of data in different formats over the
DataContractSerializer class provided in the .NET Framework System.Runtime.Serialization
namespace (e.g. binary format and XML) [9]. This may for example be used by the Frame
Application to transport the data classes in WCF interfaces (Windows Communication
Foundation) or for remote interaction in a network, but such use cases are out of scope of this
specification.

using System.Runtime.Serialization;
using Fdt;

/// <summary>
/// Description of SomeDatatype
/// </summary>
[DataContract]
public class SomeDatatype : FdtDatatype<SomeDatatype>
{
 /// <summary>
 /// Description of data provided by the property
 /// </summary>
 [DataMember(IsRequired = true)]
 public string DataProperty1 { get; set; }

 /// <summary>
 /// [Optional] Description of data provided by the property
 /// </summary>
 [DataMember(IsRequired = false)]
 public FdtList<SomeSubDatatype> DataProperty2 { get; set; }

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 68 – IEC TR 62453-42:2016  IEC 2016

5.5.3 Support of XML

FDT defines W3C compliant XML Schemas defining the format for XML serialization /
deserialization. The name of the Schema is defined in the [DataContract] attribute assigned to
the corresponding data class (see Figure 24). This may for example be used by the Frame
Application to exchange device related data with other applications running in a non Windows
operating system, but this is out of scope of FDT.

NOTE The interaction between FDT Objects is based on .NET datatypes (see 5.5.1) and is not based on XML.

5.5.4 Optional elements

Properties with [DataMember(IsRequired = true)] attribute assigned are mandatory (see
DataProperty1 in Figure 24). That means they shall not be set to null (or string.Empty) if the
instance is passed over an FDT interface.

Properties with [DataMember(IsRequired = false)] attribute assigned are optional (see
DataProperty2 in Figure 24). That means they may be set to null if the instance is passed
over an FDT interface.

For better distinction optional properties are marked with an “[Optional]...” comment.
Additionally, all data classes provide a constructor for mandatory properties, which may be
used to initialize a class instance with required data. The use of this constructor is optional.
The mandatory properties can also be set later, but before the instance is passed over an
FDT interface.

5.5.5 Verify

All data classes provide a Verify() method, which checks the rules defined for the data.
Dependent on the class this may only be the basic mandatory / optional rules or additional
rules defined in the data class description.

The FDT object receiving data from another object may use this method to check whether
data is valid. However, the use of this method is optional. The receiving object may use other
means to handle invalid data (e.g. check used properties whether they are null manually) or
provide a specific mode which allows to switch verification on/off. This may be a good option
to reach maximum performance during runtime, but to provide a fallback strategy for trouble-
shooting.

5.5.6 Clone

All data classes provide a Clone() method, which creates a new object that is a deep-copy of
the called instance. That means all objects are duplicated – the top-level objects in the
properties provided by the data class itself, as well as all lower level objects in properties of
the sub-classes.

The cloning of data class instances is mandatory if an FDT object class member variable is
passed over an FDT interface as argument or return value. This rule applies to methods,
events and properties of interfaces.

This is necessary because of two reasons:

a) The receiving object may change the property values of received data instance. This
would also affect internal data if only a reference is passed.

b) The receiving object may keep a reference to the received data instance. Further changes
to the original data instance after the call returned may lead to unexpected results and
threading issues.

If references are passed (e.g. interface reference or AsyncResult objects), no cloning shall be
used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 69 –

Figure 25 shows two examples where cloning is necessary.

IEC

Figure 25 – Example: Data cloning

If data class instances are created each time a method is called and no internal instances are
referenced, then passing of instance references is allowed as shown in Figure 26.

IEC

Figure 26 – Example: Methods without data cloning

5.5.7 Equals

The Equals() method compares the identity of objects, it can not be used to compare the
contents of different objects.

In order to compare the contents of objects, developers need to implement the comparison.

5.5.8 Lists

The generic class FdtList<> is used for listing of data class instances (see 7.1). Like
FdtDatatype this class provides methods to verify or clone the content of the FdtList<>
instances itself and all contained elements.

If an FdtList is passed over an FDT interface, then the instance shall never be empty. If the
corresponding property is optional, then the property shall be set to null instead.

public class MyDtm
{
 public SomeDatatype DoSomething1()
 {
 SomeDatatype someData = new SomeDatatype(/* init with data */);

 return someData;
 }

 public SomeDatatype DoSomething2()
 {
 SomeDatatype someData = new SomeDatatype(/* init with data */);

 AnotherObject anotherObj = new AnotherObject();
 anotherObj.DoSomethingWithMyData(someData);

 return someData;
 }
}

public class MyDtm
{
 private SomeDatatype _someData = new SomeDatatype(/* init with data */);

 public SomeDatatype DoSomething1()
 {
 return _someData.Clone();
 }

 public void DoSomething2()
 {
 MyOtherObject anotherObj = new MyOtherObject();
 anotherObj.DoSomethingWithMyData(_someData.Clone());
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 70 – IEC TR 62453-42:2016  IEC 2016

5.5.9 Nullable

Nullable represents an object whose underlying type is a value type to which also ‘null’ can be
assigned. (like a reference type)

5.5.10 Enumeration

Enumeration is a distinct type consisting of a set of named constants.

5.5.11 Protocol-specific datatypes

5.5.11.1 General

Protocol-specific datatypes shall be defined in .NET assemblies which are provided either
together with the corresponding FDT Protocol Annex specifications or by DTM vendors in
case of vendor-specific protocols.

The protocol-specific assemblies shall contain datatypes derived from the corresponding base
classes in the FDT Datatype assembly (see Figure 27).

Figure 27 – Protocol-specific datatypes

Some of the FDT interface methods exchange protocol-specific information. These methods
are defined with the protocol neutral base classes.

Protocol-specific assemblies shall support 32-bit platforms as well as 64-bit platforms. This
means they shall be built using the “any”- platform target.

5.5.11.2 Interaction DTM – Frame Application

Typically, the DTMs create instances from the protocol-specific classes and pass them to the
Frame Application over an FDT interface. The Frame Application then works with the
properties and methods in the base classes. Thus, the Frame Application is able to handle
any DTM independent of the protocol. Subclause 7.5 provides examples for using the
DeviceIdentInfo classes with protocol neutral data and protocol-specific data.

5.5.11.3 Interaction DTM – DTM

If protocol-specific datatypes are used for a DTM to DTM interaction, then one DTM typically
creates an instance of the protocol-specific classes and passes it over the corresponding FDT
interface. The DTM which receives the data then casts the reference back from the base class
to the protocol-specific datatype. Subclause 7.7 contains examples for using the protocol-
specific Communication classes.

IEC

FDT Datatype
 Assembly

(Fdt.

Datatypes.dll)

FDT <Protocol>
Datatype Assembly

(Fdt.Datatypes.<Protocol>.dll)

DTM UI
Object

DTM UI
Object

Datatype
Base
Class

DTM UI
Object

DTM UI
Object

Datatype
Class

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 71 –

5.5.11.4 Installation and registration

The protocol-specific .NET assemblies shall be installed and registered by the DTMs using
the protocol (see 9.4).

The protocol-specific .NET assemblies are installed in the Windows Global Assembly Cache.
The DTM-specific assemblies can use static references in order to load the protocol assembly
automatically together with itself (see 5.4).

In some cases the Frame Application also needs to load the protocol-specific assemblies and
create instances from the contained classes, e.g. for deserialization of a protocol-specific
datatype. In order to support such scenarios the protocol-specific assemblies shall be
registered with a corresponding manifest file (see 9.4.3). The Frame Application can evaluate
the provided information and then load corresponding assembly specifically (see Figure 28).

Figure 28 – Protocol manifest and type info attributes

In addition, the assembly shall expose type information as attributes assigned to the assembly
itself. The Frame Application can use this information to create instances from the protocol-
specific classes. The attribute classes are defined in the FDT Datatype assembly.

Following attributes (and corresponding datatypes) shall be supported by a protocol-specific
assembly:

• ProtocolInfo attribute(see 7.3)

• DeviceIdentInfoType attribute(see 7.5)

• CommunicationType attribute (see 7.7)

• IOSignalInfoType attribute (see 7.11.1)

• DeviceAddressType (see 7.12)

• NetworkDataType attribute (see 7.13)

The example in Figure 29 shows the attributes assigned to the HART-specific datatype
assembly (Fdt.Datatypes.Hart.dll).

IEC

FDT <Protocol>
Datatype Assembly

(Fdt.Datatypes.<Protocol>.dll)

DTM UI
Object

DTM UI
Object

Datatype
ClassDTM UI

Object
DTM UI
Object

Assembly
Attribute

reference

<Protocol>
Manifest

Fdt.<Protocol>.manifest

Frame Application

reference

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 72 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 29 – Example: Protocol assembly attributes

Protocol-specific datatypes shall support the serialization/deserialization mechanisms as
defined in section 5.5.2. The example in Figure 30 shows how the Frame Application can load
a protocol-specific assembly and create an instance of a datatype class by using the
DataContractSerializer.

IEC

Figure 30 – Example: Handling of protocol-specific assemblies in Frame Application

5.5.12 Custom datatypes

The FDT datatypes are not intended for customization, because they are used in cooperation
of software from different parties. That is why most FDT-datatypes are sealed (protected
against changes/inheritance).

The only datatypes that can be extended are the base classes for protocol-specific datatypes
and for UI-messaging datatypes. If extending such datatypes, following rules shall be applied:

– Use the [DataMember] attribute for all newly declared class members.
– All class members must have serializable type. (I.e. it is not allowed to use reference

types, for instances interfaces.)

Protocol-specific datatypes (as described in 5.5.11) also shall be sealed.

public DeviceIdentInfo DeserializeDeviceIdentInfo(ProtocolManifest manifest, Stream stream)
{
 string longName = manifest.AssemblyInfo.Name + ", " +
 "Version=" + manifest.AssemblyInfo.Version + ", " +
 "PublicKeyToken=" + manifest.AssemblyInfo.PublicKeyToken;
 Assembly assembly = Assembly.LoadFrom(longName);

 Type attributeType = typeof(DeviceIdentInfoTypeAttribute);
 DeviceIdentInfoTypeAttribute deviceIdentAttrib =
 (DeviceIdentInfoTypeAttribute)assembly.GetCustomAttributes(attributeType, false)[0];

 DataContractSerializer serializer =
 new DataContractSerializer(deviceIdentAttrib.DeviceIdentInfoType);
 return (DeviceIdentInfo)serializer.ReadObject(stream);
}

[assembly: ProtocolInfoAttribute(ProtocolId = Hart.ProtocolId, ProtocolName =
Hart.ProtocolName)]

[assembly: DeviceIdentInfoType(
 DeviceIdentInfoType = typeof(DeviceIdentInfo<HartDeviceIdentInfo>),
 ProtocolDeviceIdentInfoType = typeof(HartDeviceIdentInfo),
 DeviceScanInfoType = typeof (DeviceScanInfo<HartDeviceScanInfo>),
 ProtocolDeviceScanInfoType = typeof(HartDeviceScanInfo))
]

[assembly: CommunicationType(AbortMessageType = typeof(HartAbortMessage),
 ConnectRequestType = typeof(HartConnectRequest),
 ConnectResponseType = typeof(HartConnectResponse),
 DisconnectRequestType = typeof(HartDisconnectRequest),
 DisconnectResponseType = typeof(HartDisconnectResponse),
 SubscribeRequestType = typeof(HartSubscribeRequest),
 SubscribeResponseType = typeof(HartSubscribeResponse),
 UnsubscribeRequestType = typeof(HartUnsubscribeRequest),
 UnsubscribeResponseType = typeof(HartUnsubscribeResponse))
]

[assembly: IOSignalInfoType(IOSignalInfoType = typeof(IOSignalInfo<HartIOSignalInfo>),
 ProtocolIOSignalInfoType = typeof(HartIOSignalInfo))
]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 73 –

5.6 General object interaction

5.6.1 General

All FDT Objects interact with each other exclusively via the interfaces defined by this
specification. These interfaces are defined according to the services specified in IEC 62453-2
[4].

The interfaces define properties and methods of the server object as well as events, that may
be received by the client object. In order for a client object to receive those events, the client
object has to register delegates for these events. If not explicitly defined otherwise for an
interface it is optional for the client object to register for the events of an interface.

5.6.2 Decoupling of FDT Objects

IEC 62453-42 decouples the FDT Objects from each other. The Frame Application is the one
and only component that directly interacts with the DTM Business Logic, User Interfaces and
Communication Channels via the IEC TR 62453-42 interfaces corresponding to the services
defined for the objects in IEC 62453-2 [4].

Figure 31 – Decoupled FDT Objects in IEC 62453-42

All component interactions are passed through the Frame Application or proxy components
(see Figure 31). The Frame Application shall not change interactions or inject interaction
requests.

This addresses the following objectives:

a) Interoperability
The decoupling of the FDT objects by the Frame Application shall improve interoperability.

b) Tracing
The Frame Application is able to observe the complete interaction between FDT objects.
Thus it can implement a system wide tracing which is useful for diagnosis and trouble-
shooting.

c) Testing
Each component shall also be testable in a component test environment. The test support
can be achieved by tracing, replaying recorded sequences or by error injection. In the
testing use case the Frame Application is allowed to change interactions.

d) Threading / Synchronization
The Frame Application is responsible for the assignment of FDT Objects to processes. An
FDT Object shall not expect to be executed in the same thread, process or host like other

IEC

Frame
Application

Interaction
Management

Instance 1 :
DTM

Business Logic

Instance 2 :
DTM

Business Logic

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 74 – IEC TR 62453-42:2016  IEC 2016

related FDT Objects. The Frame Application can enforce rules in regard to method calls,
whereas the rules may differ between the different FDT Objects (see 5.7).

e) Remoting
The Frame Application can pass the messages to a different process or a remote
computer (see 11.3)

An example for components, which are used for decoupling of FDT Objects, are proxy objects
(e.g. DTM UI-proxy or channel proxy) that are used to interact with the respective FDT Object.

NOTE The Frame Application part handling the interaction between the different FDT objects – called Interaction
Management in Figure 31 – could be separated from the actual Frame Application implementation. It could be
realized as shared component, which is then used by different vendors. This would reduce the implementation
effort for the different Frame Application vendors and increase the interoperability with DTM.

5.6.3 Parameter interchange with .NET datatypes

The arguments of interface methods are defined as .NET datatypes. The definition of these
.NET datatypes includes:

• Type definition (e.g. definition as .NET class/structure)

• Definition of standard methods for
– Serialization to/from XML
– Serialization to/from binary stream
– Verification

The XML format and the format for the binary stream are well defined formats, specified in
this technical report. The XML format is based on W3C schemas and may be used for
backward compatibility to FDT1.2.x and for interaction with external applications

In order to ensure interoperability for FDT components, the .NET interfaces and datatypes
specified by this technical report are implemented in primary assemblies, which are provided
by FDT Group. It is mandatory for all FDT components to use this primary assembly.

5.6.4 Interaction patterns

In this technical report, the following interaction patterns are used:

– Properties
– Synchronous methods
– Asynchronous methods
– Events

These patterns and their usage is explained in the following sections.

5.6.5 Properties

Properties are used for simple get or set operations on simple data objects that are performed
synchronously. Other interfaces of an FDT object are also provided by properties.

5.6.6 Synchronous methods

Synchronous methods are used for simple operations that can be performed synchronously
within the calling thread. The called object shall not block the calling thread, e.g. by waiting
on asynchronous operations to finish or waiting on events.

Examples for synchronous methods are:

– Information Requests (e.g. IDtmInformation.GetDeviceIdentInfo())

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 75 –

– Simple state machine operations (e.g. IDtm.Init(), IDtm.EnableCommunication())
– Frame Application calls that do not require nested calls (e.g. ITopology.GetParentNodes())

5.6.7 Asynchronous methods

5.6.7.1 Introduction

Asynchronous methods are typically used to perform operations that may take a relatively
long time to complete, such as I/O or database operations, communication requests. Such an
asynchronous operation executes in a separate thread. When an application starts an
asynchronous operation, the application can continue execution while the asynchronous
operation is performed. Asynchronous methods are implemented using the IAsyncResult
pattern.

5.6.7.2 IAsyncResult pattern

The IAsyncResult pattern as defined in [14] is used for asynchronous calls to services.

Using this pattern an asynchronous operation is implemented as a set of methods:

– The BeginOperationName() method starts the asynchronous operation OperationName.
The BeginOperationName method shall return control to the calling thread immediately. If
the BeginOperationName method throws exceptions, the exceptions are thrown before the
asynchronous operation is started and the OperationNameCompleted() callback method is
not invoked.

– The EndOperationName() method ends the asynchronous operation OperationName and
retrieves the results of the operation. If the operation has not completed when
EndOperationName is called, EndOperationName blocks until the operation is finished.
Exceptions which occurred during the asynchronous operation are thrown from the
EndOperationName method.

– The Callback delegate OperationNameCompleted() (implemented by the client) is provided
only for a specific service call that triggers one specific event type that can be received.

For further information on how to implement the IAsyncResult pattern see F.1.

One of the advantages of the IAsyncResult-Pattern is, that the client may choose to use the
service in a blocking or in a non-blocking way.

If a service is used in a blocking way, the client calls the Begin() method and immediately the
End() method (see Figure 32). The calling thread of the client will be blocked, until the service
execution is finished.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 76 – IEC TR 62453-42:2016  IEC 2016

Figure 32 – IAsyncResult pattern: blocking call

Figure 33 show an example how blocking use of asynchronous operation may be
implemented.

IEC

Figure 33 – Example: Blocking use of asynchronous interface

In order to simplify the presentation of interactions based on the IAsyncResult pattern, a
simplified presentation for blocking call is used throughout the document. Figure 34 shows the
simplified depiction of IAsyncResult pattern with blocking call:

void SyncUpload(IDtm dtm, ICommunicationChannelProxy channelProxy)
{
 // go online and stay connected (synchronous)
 dtm.EnableCommunication(channelProxy, ConnectMode.StayConnected);

 // perform upload from device (synchronous)
 try
 {
 IOnlineOperation onlineOperations = (dtm as IOnlineOperation);
 IAsyncResult result =
 onlineOperations.BeginReadDataFromDevice(null, null, null);
 onlineOperations.EndReadDataFromDevice(result);

 MessageBox.Show("Upload finished");
 }
 catch (Exception e)
 {
 MessageBox.Show("Upload failed! " + e.Message);
 }

 // go offline (synchronous)
 IAsyncResult offline_result = dtm.BeginStopCommunication(null, null, null);
 dtm.EndStopCommunication(offline_result);
 dtm.DisableCommunication();
}

IEC

sd IAsyncResult pattern: blocking call

: Client : Server

Begin<Method>

: AsynResult

(AsyncResult reference)

End<Method>

Complete +
Set Result

Trigger
execution, e.g.
start worker
thread

Wait

(Wait returns)

<Method> (execution results)

Execute

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 77 –

Figure 34 – IAsyncResult pattern (simplified): blocking call

Rule: If the client follows the pattern for blocking execution, it shall provide no callback.

If a service is used in a non-blocking way, the client calls the BeginOperationName() method
and provides a callback delegate for OperationNameCompleted() (see Figure 35). The
EndOperationName() method is called as part of handling the OperationNameCompleted()
callback.

Figure 35 – IAsyncResult pattern: non-blocking call

IEC

sd IAsyncResult pattern: non-blocking call

: Client : Server

Begin<Method>

: AsynResult
Create

Complete +
Set Result

Wait

Trigger
execution, e.g.
start worker
thread

Execute

(AsyncResult reference)

<Method>Completed

<Method> (execution results)

End<Method>

IEC

sd IAsyncResult pattern (simplified): blocking call

: Client : Server

<Method>

<Method> (execution results)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 78 – IEC TR 62453-42:2016  IEC 2016

Rule: If the callbacks are provided, the client shall follow the pattern for non-blocking
execution.

IEC

Figure 36 – Example: Non-blocking use of asynchronous interface

In the example given in Figure 36, the UploadProgress() delegate is decoupled in order to
avoid blocking of the server.

In order to simplify the presentation of interactions based on the IAsyncResult pattern, a
simplified presentation for non-blocking call is used throughout the document. Figure 37
shows the simplified depiction of IAsyncResult pattern with non-blocking call:

Figure 37 – IAsyncResult pattern (simplified depiction): non-blocking call

IEC

sd IAsyncResult pattern (simplified depiction): non-blocking call

: Client : Server

<Method()>

<Method> (execution results)

void AsyncUpload(IDtm dtm, ICommunicationChannelProxy channelProxy)
{
 // go online and connect only if necessary
 dtm.EnableCommunication(channelProxy, ConnectMode.OnDemand);

 IOnlineOperation onlineParam = (dtm as IOnlineOperation);
 IAsyncResult result = onlineParam.BeginReadDataFromDevice(UploadProgress,
 UploadComplete, dtm);
}

void UploadProgress(ProgressInfo progressInfo)
{
 UpdateProgressBar(progressInfo.PercentComplete, progressInfo.Message);
}

void UploadComplete(IAsyncResult result)
{
 IOnlineOperation onlineParameter = result.AsyncState as IOnlineOperation;

 try
 {
 onlineParameter.EndReadDataFromDevice(result);
 SignalUploadFinishedToUI();
 }
 catch (Exception e)
 {
 SignalUploadErrorToUI();
 throw;
 }

 // go offline (not waiting for results..)
 _stop_result = dtm.BeginStopCommunication(StopCommunicationProgress,
 StopCommunicationComplete, dtm);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 79 –

NOTE Throughout the document the simplified depiction of IAsyncResult pattern is used to show how methods
are using the IAsyncResult pattern. The patterns for blocking and non-blocking calls can be used equivalently. The
use of one of the call pattern in a workflow does not prohibit the use of the other call pattern if not stated explicitly
otherwise.

5.6.7.3 Extended IAsyncResult pattern (Progress pattern)

In addition to the IAsyncResult pattern, the extended IAsyncResult pattern provides the
possibility to cancel an asynchronous operation and to receive progress notifications and
intermediate results during the processing of the operation. This pattern is used for operations
that may have long execution times.

For each operation a set of methods is provided:

– The BeginOperationName() method starts the operation.
– The EndOperationName() method retrieves result of the operation. If the operation is not

finished, the method blocks until the operation is finished. If an error occurred during
execution of the operation, this method will throw an exception with the error information.

– The CancelOperationName() method stops the operation. If the operation was cancelled,
then the EndOperationName() method shall always throw the
FdtOperationCancelledException.

– The Callback delegates (implemented by the client) are provided only for a specific
operation. Possible delegates are: OperationNameProgress(),
OperationNameCompleted().

Figure 38 shows how the method CancelOperationName() may be used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 80 – IEC TR 62453-42:2016  IEC 2016

Figure 38 – IAsyncResult pattern: canceling an operation

If Cancel() can not be executed, it may result in an FdtCancelFailedException. It may also
occur that the operation finished at the same time as Cancel() was called. This may lead to
the caller receiving a positive result.

The Completed() callback shall not be called within a call to Cancel() (avoid call-stacks).

If Cancel() is called for an asynchronous operation, the End<Method> may throw a
corresponding exception. See the documentation for each asynchronous operation.

After a call to Cancel() has succeeded it may occur in an exceptional case that the operation
finishes successfully. Therefore the caller shall be prepared to receive a positive result
instead of the corresponding exception.

Figure 39 shows how the progress callback may be used.

IEC

sd IAsyncResult pattern: canceling an operation

: Client : Server

Begin<Method>

:AsynResult Create

<Method>Completed

(AsyncResult reference)

Cancel execution +
Set Result

Wait

<Method> (execution results)

End<Method>

Cancel<Method>

Execute

Trigger
execution, e.g.
start worker
thread

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 81 –

Figure 39 – IAsyncResult pattern: providing progress events

The Progress() delegate not only allows to pass progress information, but also can be used to
transport partial results of the service execution. The transport of partial results is designed
for each service specifically. Even if the progress delegate is used to transport partial results,
the EndOperationName() method will provide the complete result of the operation.

Rule: If the client follows the pattern for blocking execution, it shall provide no callback. For
non-blocking execution both callbacks shall be provided.

If the callbacks are provided, the client shall follow the pattern for non-blocking execution.

5.6.8 Events pattern

An event is a message sent by an object to signal the occurrence of a condition.

This technical report uses the Events pattern as defined in the .NET Framework which is
based on delegates (see [21]).

Clients provide delegates for receiving events (without trigger). A client registers with a server
for receiving a specific event. Multiple clients may register with one server for receiving the
same event.

IEC

sd IAsyncResult pattern: providing progress events

: Client : Server

Begin<Method>

:AsynResult Create

<Method>Completed

(AsyncResult reference)

Complete +
Set Result

Wait

<Method>(execution results)

End<Method>

<Method>Progress * Execute

Trigger
execution, e.g.
start worker
thread

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 82 – IEC TR 62453-42:2016  IEC 2016

One advantage of the events pattern is that events are defined in the same interface like the
methods that may trigger those events. This allows to define the events methods in the same
context in which they are used.

5.6.9 Exception handling

5.6.9.1 General

Exceptions are the primary means of reporting errors in the .NET Framework. (refer to [10],
Clause 7]). They are used for both hard errors (e.g. passing of invalid arguments) as well as
logical errors (e.g. connection aborted).

An exception provides two pieces of information:

• the exception message, explaining to the developer what went wrong (and how to fix it).
Exception messages should be human readable text in English (not just an error number)
that describes what went wrong

• the exception type that is used by exception handlers to decide what programmatic action
to take

NOTE In general error codes are not used as they can always be replaced by corresponding exception messages
and exception types. However, there is one exception from the rule: communication errors. Communication errors
that occur during communication requests with a device are reported within the communication response. However,
if the server fails to perform the transaction itself, this will throw an appropriate exception.

The FDT specification defines the exceptions which shall be thrown if specific error situations
occur when calling an FDT interface method or accessing a property. This shall be considered
as part of the contract between the client and server of an interface.

5.6.9.2 Throwing exceptions

Exceptions shall be thrown in cases of execution failures. An execution failure occurs
whenever an interface method or property can not do what it was designed for. For example,
if the <ReadDataFromDevice()> method cannot retrieve data from the device, it is considered
an execution failure and an exception shall be thrown. Exceptions are the primary means of
reporting errors in the .NET Framework. Error codes shall not be used.

If an FDT method invokes other FDT methods it shall handle all FDT exceptions that are
defined for these methods. When the FDT method fails because of an FDT exception from an
invoked method, then the FDT method shall throw the most appropriate FDT exception
defined for the FDT method and include any caught exception as an inner exception. One
example for this is if setting IO signal information via the interface IProcessImage to the DTM
fails because the dataset can not be locked. In this case an FdtOperationFailedException
shall be thrown by the IProcessImage:SetIOSignalInfo() method. This shall include the inner
exception, e.g. FdtNoWriteAccessException.

DTM-specific exceptions shall also be included in FDT exceptions as inner exceptions when
they occur within an FDT method.

Event-handlers are not allowed to throw exceptions. If an event-handler calls other methods
that may throw exceptions, the implementation of the event-handler shall catch those
exceptions in order to protect the event-source from those exceptions.

5.6.9.3 Handling exceptions

If an exception is handled, a rich and meaningful message should be provided to the end
user. The message should explain the cause of the problem and describe what could be done
to avoid the problem.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 83 –

Since the exception message is targeted to developers, the user message should be based
on the exception type and the context of the caught exception.

If an exception is just caught in order to re-throw the exception, no user message should be
provided. The goal here is to avoid multiple user messages for a problem that occurred.

5.6.9.4 FDT exception types

For each FDT method a set of exceptions is defined that may occur on invocation of the
method. All FDT exceptions are derived from the serializable class FdtException that is
derived from System.Exception. Exceptions shall be serializable in order to work correctly
across application domain and process boundaries.

The following is the list of FDT Exceptions:

FdtInvalidStateException
This exception shall be thrown when a property can not be set or when a method can not
be executed, because the FDT object is not in an appropriate state (e.g.
IDtm:EnableCommunication() is called in DTM state ‘initialized’). Each implementation of
an FDT interface member shall check whether the called object is in an appropriate state
to execute the requested operation. If this is not the case, FdtInvalidStateException shall
be thrown. For asynchronous operations this exception shall be thrown in the
EndOperationName method.

Example: IDtm:EnableCommunication() is called in state “initialized”

FdtOperationFailedException
This exception shall be thrown when an operation can not be performed or completed
successfully. For all asynchronous operations this exception may be thrown by the
EndOperationName method. If more specific exceptions are available, always the most
specific exception shall be used.
FdtOperationFailedException should not occur under normal operating conditions.

Example: IDtm:LoadData() is called with a valid dataset but still fails. In this case an FdtOperationFailedException
is thrown. However, if IDtm:LoadData() is called with an invalid dataset, FdtInvalidDatasetException is thrown.

FdtOperationCancelledException
This exception shall be thrown if an asynchronous operation has been cancelled by
CancelOperationName and the EndOperationName method is called. This happens under
normal operating conditions. The client shall handle this exception and abort its own
operation.

FdtCancelFailedException
This exception shall be thrown when a CancelOperationName method fails, e.g. because
the operation has been finished already or can not be cancelled for other reasons. Note
that this may happen under normal conditions because of the asynchronous execution of
the operation. The client shall handle this exception and finish the calling operation. If the
user has triggered the cancel operation, the user should be informed that the operation
could not be cancelled.

FdtConfigurationErrorException
This exception shall be thrown when an operation can not be performed because of a
wrong configuration.

Example: A DTM performs a connect request. The Parent DTM can not perform the request as the communication
driver is not properly configured.

FdtCommunicationErrorException
This exception shall be thrown when a communication error occurs. Communication errors
that occur within a communication request are reported with the communication response.

Example: The Device DTM tries to establish a connection by calling ICommunication:BeginConnect() on the
provided Communication Channel proxy. The Communication Channel (or the device) is not able to establish the
connection with the device because of a communication error and throws FdtCommunicationErrorException in
method ICommunication:EndConnect().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 84 – IEC TR 62453-42:2016  IEC 2016

NOTE Protocol-specific communication error exceptions are not defined. However, subclasses may be defined by
protocol annexes if required.

FdtConnectRefusedException
This exception shall be thrown when an online operation can not be performed because
the connect request has been refused.

Example: IDtm:EnableCommunication() is called on a Device DTM. The Device DTM tries to establish a connection
by calling ICommunication.BeginConnect() on its Communication Channel proxy. The Communication Channel (or
the device) refuses the connect and throws FdtConnectRefusedException in method
ICommunication.EndConnect().

FdtConnectionAbortedException
This exception shall be thrown when an online operation can not be performed because
the connection has been aborted.

Example: The connection is aborted by the Communication Channel during a download to the device.
IOnlineOperation.EndWriteDataToDevice() throws an FdtConnectionAbortedException.

FdtDeviceTypeNotSupportedException
This exception shall be thrown when an online operation can not be performed because
the type of the connected device is not supported by the DTM.

Example: A download operation is started with IOnlineOperation.BeginWriteDataToDevice(). The DTM is in state
notConnected and connects to the device. It checks the device type and detects an unsupported device type. The
operation is aborted and IOnlineOperation.EndWriteDataToDevice() throws an
FdtDeviceTypeNotSupportedException.

FdtInvalidUserPermissionsException
This exception shall be thrown when an operation can not be performed because the
operation is not allowed with the current user permissions.

Example: A function is started with ICommandFunction:BeginExecute(). The user is logged in as Observer and has
no access rights to perform this function. The DTM aborts the operation. ICommandFunction:EndExecute() throws
an FdtInvalidUserPermissionsException.

FdtInvalidValueException
This exception shall be thrown when an invalid value was given as an argument in the
request.

Example: A client tries to write a value via IInstanceData/IDeviceData that is out of the valid range.

FdtInvalidTypeIdException
This exception shall be thrown when an invalid type id was given as an argument in the
request.

Example: IDtm:InitData() is called with a typeid that is not supported by the DTM and throws an
FdtInvalidTypeIdException.

FdtInvalidDataObjectException
This exception shall be thrown when an invalid data object was given as an argument in
the request.

Example: An invalid DtmSystemTag is given in ITopology:BeginGetDtm().

FdtInvalidReferenceException
This exception shall be thrown when an invalid reference to another object was given as
an argument in the request. FdtInvalidReferenceException should not occur under normal
operating conditions.

Example: An invalid IAsyncResult object is given in an EndOperationName or in a CancelOperationName method

FdtInvalidCommunicationChannelException
This exception shall be thrown when an invalid Communication Channel is set.

Example: The argument parentCommunicationChannel is set to a channel that is not supported (e.g. protocol is not
supported).

FdtInvalidDatasetException
This exception shall be thrown when an invalid dataset was given as an argument in the
request. FdtInvalidDatasetException should not occur under normal operating conditions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 85 –

Example: IDtm:LoadData() is called with a dataset that is not supported by the DTM type.

FdtNoReadAccessException
This exception shall be thrown when a read operation can not be performed because the
data object is not readable.

Example: A client tries to read a data object that is classified as write only. EndRead() throws an
FdtNoReadAccessException.

FdtNoWriteAccessException
This exception shall be thrown when a write operation can not be performed because the
data object is not writable.

Before writing any data, the DTM shall initiate a transaction on the dataset with
IDataset:StartTransaction() if this fails, the operation shall be aborted and an
FdtLockDatasetException shall be thrown in this case.

Example: A client tries to write a data object that is classified as read only. EndWrite() throws an
FdtNoWriteAccessException.

FdtLockDatasetException
This exception shall be thrown when the dataset can not be locked in order to perform
transactions on the dataset or device.

Example: IOnlineOperation.BeginReadDataFromDevice() is called. The dataset can not be locked as it is currently
locked by another instance. IOnlineOperation.EndReadDataFromDevice() throws an FdtLockDatasetException.

FdtCommitTransactionFailedException
This exception shall be thrown when a commit transaction fails. This may happen e.g.
when the database is located on a remote computer and the network connection is
disrupted.
FdtCommitTransactionFailedException should not occur under normal operating
conditions.

FdtCannotCloseUiException
This exception shall be thrown if a user interface can not be closed. The user interface
may have changed data items that have not been committed yet or some active actions
with the device that need to be finished.
In this case, the Frame Application shall inform the user that he needs to finish active
actions with this user interface before it can be closed.

5.6.9.5 Standard exception types

In general FDT exceptions shall be used where applicable (please refer to the corresponding
FDT interface definitions). Following .NET standard exception types should be used in
situations where no FDT exceptions are applicable.

InvalidOperationException
InvalidOperationException shall be thrown if the object is in an inappropriate state. If the
object is a defined FDT object use FdtInvalidStateException.

ArgumentException, ArgumentNullException, ArgumentOutOfRangeException
ArgumentException or one of its subtypes shall be thrown if bad arguments are passed to
an interface member. The most derived exception type should be used where applicable.
The ParamName property represents the name of the parameter that caused the
exception to be thrown. Note that the property can be set by one of the constructor
overloads. Use “value” for the implicit value parameter of property setters.

5.6.9.6 Other standard exceptions

The following exceptions shall not be thrown by FDT objects. Argument checking shall be
performed to avoid throwing these exceptions.

• NullReferenceException,

• IndexOutOfRangeException,

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 86 – IEC TR 62453-42:2016  IEC 2016

• AccessViolationException

The following exceptions shall not be thrown explicitly by FDT objects:

• StackOverflowException,

• OutOfMemoryException,

• InteropException,

• ComException,

• SEHException,

• ExecutionEngineException

5.7 Threading

5.7.1 Introduction

5.7.1.1 General

Multi-threading as supported by .NET runtime solves several problems with regard to
throughput and responsiveness, but in doing so it introduces new problems such as races and
deadlocks. In order to avoid such problems in FDT2 some rules are defined that shall be
applied by all FDT components.

NOTE The threading terms (e.g. apartment model) as used within the context of COM do not apply in .NET.

Additional information about Multi-threading and concurrency can be found in [30].

5.7.1.2 Races

A race is a failure which occurs because of improper synchronization between threads.
Depending on which of two or more threads reaches a particular block of code first the result
of a program (or a particular piece of code) cannot be predicted. When different threads
access common memory concurrently, the computing result may be correct or not.

There are four conditions required for a race to be possible:

a) There are memory locations that are accessible from more than one thread. Typically,
locations are global/static variables or are heap memory reachable from global/static
variables.

b) There is a property (invariant) associated with these shared memory locations that is
needed for the program to function correctly. Typically, the property needs to hold true
before an update occurs for the update to be correct.

c) The property does not hold during some part of the actual update.
d) Another thread accesses the memory when the invariant is broken, thereby causing

incorrect behavior.

5.7.1.3 Locks

The most common way of preventing races is to use locks to prevent other threads from
accessing shared memory associated with an invariant while it is broken. This removes the
fourth condition mentioned above, thus making a race impossible.

The most common kind of lock is called a monitor (sometimes the same basic functionality is
named a critical section, a mutex, or a binary semaphore). A monitor provides Enter and Exit
methods, and once a thread calls Enter, all attempts by other threads to call Enter will cause
the other threads to block (wait) until a call to Exit is made. The thread that called Enter is the
owner of the lock, and it is considered a programming error if Exit is called by a thread that is
not the owner of the lock. Locks provide a mechanism for ensuring that only one thread can
execute a particular region of code at any given time.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 87 –

5.7.1.4 Deadlocks

A deadlock is a situation wherein two or more concurrent operations are each waiting for the
other to finish, and thus neither can make any further progress.

There are four conditions required for a deadlock to be possible:

a) Mutual exclusion. Only a limited number of threads may utilize a resource concurrently.
b) Hold and wait. A thread holding a resource may request access to other resources and

wait until it gets them.
c) No preemption. Resources are released only voluntarily by the thread holding the

resource.
d) Circular wait. There is a set of {T1, …, TN} threads, where T1 is waiting for a resource

held by T2, T2 is waiting for a resource held by T3, and so forth, up through TN waiting for
a resource held by T1.

Since multiple threads can access an FDT object concurrently, it is necessary to synchronize
the access to internal data objects or to user interface objects by mutual exclusion (see
condition #1). Condition #2 is hard to avoid since multiple resources are often required to
perform an operation. Resources that are locked can not be pre-empted from the current
owner, so condition #3 can not be avoided as well. The most common and actionable
condition in FDT is condition #4, circular waits.

5.7.2 Threading rules

5.7.2.1 Implementation rules

The following rules shall be applied in order to allow multithreading and using locks to avoid
races:

a) Software shall be prepared to receive calls in any thread. Each FDT object shall be able to
receive calls in any thread. Operations that need to be performed in a dedicated thread
(e.g. user interface thread) shall be synchronized to this thread internally.

b) Software shall protect internal data against parallel access. Make static data and instance
data thread safe. Ensure that all thread-shared, read-write data is protected by locks.

c) Each lock shall be assigned to a specific region of memory (not a region of code!). This
assignment shall be well documented in the developer documentation.

d) Each lock shall provide mutual exclusion for the region of memory that it is assigned to.
No writes to that memory can occur without entering the same lock. Data structure
invariants have to hold any time the lock protecting the data structure is not held.

e) If two data structures are related, locks for both structures shall be entered before using
that relationship.

Implementers should also consider the following recommendations:

– Memory regions (e.g. data structures) that are protected by locks should not overlap.
Consider that mutual exclusion may not be guaranteed if you have overlapping regions
with different locks. If it would always be required to enter two or more locks, a single lock
would be more appropriate to protect the overlapping regions.

– Use as few locks as possible. The complexity grows quickly with the number of locks in
the system, so it is best to have few locks that protect large regions of memory and only
split them when lock contention is shown to be a bottleneck on performance. Generally,
the finer the granularity of the locks, the more of them that can be held at once—and the
longer they are held, the higher the risk of deadlock.

– Check whether read locks are required. Entering locks is not only required when writing to
memory but also when reading from shared memory. In general, when code needs a
program invariant, all locks associated with any memory involved with the invariant shall
be entered.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 88 – IEC TR 62453-42:2016  IEC 2016

5.7.2.2 Avoiding deadlocks

For the reasons explained in 5.7.1.4, the following rules are defined to avoid deadlocks (list is
continued from previous subclause):

a) FDT objects are not allowed to call any FDT interface method or wait on incoming FDT
calls, callbacks or events while holding any locks. This avoids a circular wait across
multiple FDT objects.
If it is necessary to call other FDT objects in order to perform a complex operation, then
implementation as a state machine should be considered, because parallel requests may
be refused or queued until the running operation is finished.
Exceptions: It is allowed to call ITrace methods and asynchronous BeginXXX methods
within locked code areas. The interaction management will ensure that these calls are
decoupled and processed in a safe way.

b) Each FDT object shall avoid that a circular wait can happen within a single FDT object.
Multiple threads accessing the object at the same time may perform different tasks and
require multiple resources that need to be locked. Avoiding the circular wait condition is
usually done by acquiring locks always in a specific order or by lock leveling. This is a
strategy where each lock is assigned a level. A thread can only acquire locks with the
same or lower level that it already holds.

5.7.2.3 FDT Object interaction rules

All FDT objects shall apply the following rules (list is continued from previous subclause):

a) Do not call FDT interfaces in the user interface thread.
The user interface thread of a process shall be dedicated to receive user inputs and
perform drawing tasks only. FDT objects shall not use the user interface thread to call
FDT interface methods, perform callbacks or events.

b) Do not block the user interface thread.
The user interface shall always stay responsive. The user interface thread is shared
between the different FDT (user interface) objects for user input and drawing operations.
If one object blocks this thread in order to perform some processing, this would affect the
responsiveness of other objects.

c) Do not block a BeginMethodName method call.
A BeginMethodName method shall only start an asynchronous operation. Therefore it
shall not block the caller.

d) Do not block a synchronous method call.
A thread calling a FDT synchronous method shall not be blocked. It is not allowed to call
any EndMethodName within a synchronous method or to wait on events, because this will
block the calling thread.

e) Process events and callbacks asynchronously.
No FDT operations shall be performed within an event handler or callback method. A work
item shall be created that is processed asynchronously. The calling thread shall not be
blocked.

5.8 Localization support

5.8.1 General

There are two main processes for developing software that supports different languages and
cultures.

– Globalization is the first process to design software that is capable of running with
different cultures and languages. This process is realized by separating the executable
code that is culture or language independent from those parts that are culture or language
dependent. Language dependent parts for example are such as user interfaces,
calendars, numbers, several string manipulation and comparison algorithms. The .NET
Framework as technological basis for IEC 62453-42 supports this process through a

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 89 –

number of classes that are packaged in the .NET Framework under the namespace
System.Globalization.

– Localization is the second process to customize the software to a specific culture and
language. This is primarily achieved by translating the user interface. For .NET Framework
based applications, this results in a primary assembly that contains only culture-neutral
and language-neutral executable code and resources. Each additional culture, region or
language is provided in a separate satellite assembly.

The .NET Framework provides infrastructure to access the hierarchically organized resources.
First the framework classes attempt to access the resources that belong to the specified
region or country. If this access fails, the framework classes attempt to access the resources
that belong to the specified language. If this access also fails, the framework classes attempt
to access culture-neutral or language-neutral resources.

It is recommended to utilize the infrastructure provided by the .NET Framework. There are
several translation tools on the market and the translation agencies know how to deal with the
XML based as well as the binary resource files.

5.8.2 Access to localized resources and culture-dependent functions

The .NET Framework provides two different ways to access the localized resources and
culture-dependent functions.

The preferred way is to use the automatic culture handling. Each thread within an application
provides information about the currently used culture and language setting. It can be retrieved
by reading the properties CurrentCulture and CurrentUICulture from class
System.Threading.Thread. All user interface related functions rely on the property
CurrentUICulture whereas other culture-dependent functions use the property CurrentCulture.
The value of these two properties are initialized to the default values defined in the system
settings “Control Panel – Regional Settings”. The values of the properties can be overridden
by writing the property values.

The second way to access localized resources and culture-dependent functions is needed
only in some rare cases. All culture-dependent functions provide an overloaded variant where
the culture can be specified explicitly.

5.8.3 Handling of cultures

As described in 5.8.2, the .NET Framework handles the culture settings for each thread
separately and derives the start value from the system settings. The Frame Application is
responsible to synchronize the culture settings for all threads with outgoing function calls.

There are two properties defining the used language: Thread.CurrentUICulture and
Thread.CurrentCulture.

The Frame Application indicates the currently used language by setting the property
Thread.CurrentUICulture before the DTM is started. During initialization the DTM Business
Logic and DTM User Interface shall read this property in order to display the DTM User
Interface or any other output that is provided to the user (e.g. labels and descriptors). If the
DTM implementation relies on the resource management classes that are contained in the
.NET Framework class library, no additional implementation will be necessary. Otherwise, the
language-dependent resources need to be handled explicitly. Switching the UI culture by the
Frame Application shall not trigger any notifications from the DTM (e.g. DataInfoChanged).

If a DTM uses additional threads with outgoing function calls or if it raises events from
additional threads, it is responsible to synchronize the language settings of newly created
threads with the settings from the original thread.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 90 – IEC TR 62453-42:2016  IEC 2016

The property Thread.CurrentCulture shall not be changed by any FDT component in order to
reflect the culture settings of the operating system.

The described mechanism results in the following behavior: Texts, pictures and similar user
interface elements will be displayed according to the language that was selected by the user
at the Frame Application (in Thread.CurrentUICulture). Whereas input direction, sort orders,
comparison, number formatting are determined by the culture settings of the operating system
(in Thread.CurrentCulture).

5.8.4 Switching the User Interface language

A Frame Application may provide a mechanism that allows switching the language of the user
interface. It is specific to the Frame Application, whether switching is realized during runtime
or whether it needs the restart of the Frame Application. The Frame Application shall not
switch the user interface language as long as any DTM or DTM component is instantiated.
The Frame Application may need to shutdown and restart the DTM objects in order to switch
the language. The DTMs will start with the new language setting.

At the Frame Application the user might select a language that is not available for certain
DTMs. The DTM Business Logic and DTM User Interface shall operate as expected
independent of the selected language. If a DTM does not support the selected language, it
shall switch to a commonly used fallback language, which is English.

A DTM User Interface may provide a menu, where the user can override the language setting
for this user interface. The DTM Business Logic and DTM User Interface shall not change the
properties Thread.CurrentUICulture and Thread.CurrentCulture, because this would influence
the behavior of other FDT components that share this thread. The language remains active
until the language setting is changed again or until the user interface is closed.

5.9 DTM User Interface implementation

5.9.1 General

A DTM Business Logic is operated by DTM User Interface. Different kinds of user interfaces
for one DTM Business Logic may exist. FDT supports following DTM User Interface types:

• DTM WPF controls [11] can be embedded into the user interface of the Frame Application.
These controls shall derive from the standard .NET WPF UserControl class (namespace
System.Windows.Controls).

• DTM WinForms controls can be embedded into the user interface of the Frame
Application. These controls shall derive from the standard WinForms UserControl class
(namespace System.Windows.Forms).

• DTM Applications are external DTM-specific user interfaces (e.g. executable applications)
which cannot be embedded into the Frame Application. These external applications are
represented in the Frame Application by simple .NET classes (named “DTM UI
Application”, see Figure 65) which manage the interaction between the external user
interface and the Frame Application.

• DTM UI CommandFunctions are similar to the CommandFunctions which can be executed
at the DTM Business Logic (see 7.14), but UI CommandFunctions are allowed to open
private user interfaces (e.g. dialog boxes etc.). Such functions are represented by simple
.NET classes which contain the code to execute.

All four DTM User Interface types implement the same interface (see 6.4).

5.9.2 Resizing

The DTM WPF and WinForms Controls should be implemented in a resizable way. That
means the controls are responsible for supporting re-arrangement of the inner graphical
elements. In addition, a control shall specify its minimum size.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 91 –

The Frame Application may use the minimum size as a hint for the initial size to show the
control. If the Frame Application displays the control's host window smaller than the minimum
size of the control, then the Frame Application has to provide scrollbars.

When the Frame Application allows the user to resize the host window to a size smaller than
the minimum size of the control then the Frame Application has to show scrollbars for the
DTM UI control (see Figure 40).

Figure 40 – Frame Application's host window providing scroll bars

Independent of the scrollbars shown by the Frame Application the control itself may show
additional scrollbars if appropriate. This is needed for example if the application area requires
more space than available (see Figure 41).

Figure 41 – Control using internal scrollbars

IEC

Text

Text

Frame Applications – DTM host WindowFrame Applications – DTM host Window

X
Y
t

Apply

DTM Applica
tio

n Area

CancelOK

DTM status bar

DTM

Navig
atio

n

Area

Text

xyz

Standard Parameters

DTM Identification Area

DTM provided application
area scrollbars

IEC

Frame Applications – DTM host WindowFrame Applications – DTM host Window

ApplyCancelOK

 E
xa

mple

 F
rame

Contro
l

Reset Set to default

Scrollbars
provided by
FrameApplication

Standard buttons
provided by
FrameApplication

DTM
specific
buttons

DTM

Nav
iga

tio
n

Area

Visb
le DTM co

ntro
l area < m

inim
um siz

e

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 92 – IEC TR 62453-42:2016  IEC 2016

5.9.3 Private dialogs

Private dialogs are all kinds of graphical user interfaces such as:

• message boxes (i.e. standard message box);

• file or printer selection dialogs (i.e. provided by operating system);

• (default) web browsers;

• (default) mail clients;

• help file view;

• manual viewer;

• splash screens;

• external stand-alone applications,

• any other windows.

Any DTM UI (control, application and UI command function)is allowed to show private dialogs,
but should prefer use of the services supported by the Frame Application. If a Frame
Application needs to ensure that private DTM UIs are not overlapping critical Frame
Application UIs, then this needs to be implemented Frame Application-specific (e.g. do not run
DTM UIs on such PCs, display on a second screen etc.).

A DTM Business Logic is not allowed to open private dialogs or user interfaces. A DTM
Business Logic shall always use the Frame Application user interface services (see IFrame.Ui
property). This rule is necessary since operations on the DTM Business Logic may be
executed unattended (e.g. batch processing).

5.10 DTM User Interface hosting

5.10.1 General

The Frame Application can dynamically load the DTM User Interface.

For different DTM User Interface types the activation and initialization is similar (see 5.4). The
sequence diagrams in 8.5 describe these operations in more detail.

The DTM WPF controls and DTM WinForms controls additionally need to be embedded in a
Frame Application user interface element. The Frame Application shall implement following
general sequence:

a) Load the assembly and create the control
b) Check the type of the control (UiControlFunctionInfo.Type)
c) Host the control in a parent user interface element
d) Initialize the control (<Init()>)
e) Make the control visible and size it to the parent window size

The Frame Application shall initialize the controls before they are made visible. This enables
the control for example to load the correct device picture before it’s displayed. The initialize
method of an DTM provided control shall return immediately. If the control need to perform
operations taking a longer time (e.g. communicate with the device), then this shall be done
asynchronously.

5.10.2 Hosting DTM WPF controls

A WPF Frame Application shall embed DTM WPF controls in a layout element like Grid
control or Panel controls (see Figure 42).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 93 –

IEC

Figure 42 – Example: Hosting a DTM WPF control in a WPF Frame Application

A WinForms Frame Application shall embed DTM WPF controls in the ElementHost control
(System.Windows.Forms.Integration namespace) (see Figure 43).

IEC

Figure 43 – Example: Hosting a DTM WPF control in a WinForms Frame Application

5.10.3 Hosting DTM WinForms controls

A WinForms Frame Application shall embed DTM WinForms controls in layout elements like
Forms or Panels. (see Figure 44)

void HostWPFControlInWinFormApp (string dtmUiAssemblyPath, string controlClassName)
{
 // Load DTM User Interface assembly
 Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath);

 // Create WPF control
 Type controlType = dtmUiAssembly.GetType(controlClassName);
 UIElement wpfControl = Activator.CreateInstance(controlType);

 // Host WPF control in ElementHost
 ElementHost host = new ElementHost();
 host.Dock = DockStyle.Fill;
 host.Child = wpfControl;
 parent.Controls.Add(host);

 // Initalize
 (wpfControl as IDtmUiFunction).Init(/* parameters */);

 // Make visible
 parent.Visible = true;
}

void HostWPFControlInWPFApp(string dtmUiAssemblyPath, string controlClassName)
{
 // Load DTM User Interface assembly
 Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath);

 // Create WPF control
 Type controlType = dtmUiAssembly.GetType(controlClassName);
 UIElement wpfControl = Activator.CreateInstance(controlType) as UIElement;

 // Host WPF control in layout element (e.g. Panel, Grid)
 Panel parent = this.clientArea;
 parent.Children.Add(wpfControl);

 // Initalize
 (wpfControl as IDtmUiFunction).Init(/* parameters */);

 // Make visible
 parent.Visibility = Visibility.Visible;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 94 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 44 – Example: Hosting DTM WinForms controls in a WinForms Frame Application

A WPF Frame Application shall embed DTM WinForms controls in a WindowsFormsHost. (see
Figure 45)

IEC

Figure 45 – Example: Hosting a DTM WinForms control in a WPF Frame Application

5.11 Static Function implementation

Static Functions are implemented as .NET functions. Each function shall be implemented in a
separate assembly.

A DTM provides information about the available Static Functions (see StaticFunctionInfo in
Annex B) with the method IStaticFunctionInformation.GetStaticFunctions. The information
provided by the DTM describes the supported use case and the arguments of the function.

Since a Static Function can process all .NET datatypes, including FDT-specific datatypes, it is
possible that a Static Function processes CommunicationResponses from a device. In such
cases the description of the input argument contains the CommunicationRequest that is
needed to retrieve the respective CommunicationResponse from the device.

void HostWinFormControlInWPFApp(string dtmUiAssemblyPath, string controlClassName)
{
 // Load DTM User Interface assembly
 Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath);

 // Create WinForm control
 Type controlType = dtmUiAssembly.GetType(controlClassName);
 System.Windows.Forms.Control winFormControl = Activator.CreateInstance(controlType)
as System.Windows.Forms.Control;

 // Host WinForm control in a WPF layout element (grids, panel)
 System.Windows.Controls.Panel parent = this.clientArea;
 WindowsFormsHost host = new WindowsFormsHost();
 host.Child = winFormControl;
 parent.Children.Add(host);

 // Initalize
 (winFormControl as IDtmUiFunction).Init(/* parameters */);

 // Make visible
 parent.Visibility = Visibility.Visible;
}

void HostWinFormControlInWinFormApp(string dtmUiAssemblyPath, string controlClassName)
{
 // Load DTM User Interface assembly
 Assembly dtmUiAssembly = Assembly.LoadFrom(dtmUiAssemblyPath);

 // Create WinForm control
 Type controlType = dtmUiAssembly.GetType(controlClassName);
 Control winFormControl = Activator.CreateInstance(controlType) as Control;

 // Host WinForm control in a WinForm layout element
 Control parent = this;
 winFormControl.Dock = DockStyle.Fill;
 parent.Controls.Add(winFormControl);

 // Initalize
 (winFormControl as IDtmUiFunction).Init(/* parameters */);

 // Make visible
 parent.Visible = true;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 95 –

A StaticFunction and related communication requests are not allowed to change the status of
the device.

Figure 46 – Relation of StaticFunctionDescription to Static Function

Figure 46 shows the relation between description of a static function and the actual function
that may be invoked. The StaticFunctionDescription describes a StaticFunction together with
its input arguments and its result arguments. For each argument of the StaticFunction there is
a corresponding description.

The input and result arguments of a static function may be of any datatype. The values of the
arguments are provided as string. The string contains the serialized value of the datatype.

It is possible to define that a StaticFunction is using a communication response
(TransactionResponse) as an input argument. In such a case the CommRequest attribute of
the corresponding StaticFunctionArgumentDescription contains the communication request
(TransactionRequest) necessary to retrieve the communication response.

In order to optimize the communication access the DTM may use the flad ReadOnce. If
ReadOnce is set to "TRUE", then the FA may issue the CommunicationRequest only one time

IEC

StaticFunctionInfo

1

ApplicationId : enum [0..1]
Descriptor : string [0..1]
FunctionId : int
Label : string
ProtocolId : Guid

StaticFunctionDescription

DataType : string
DefaultValue : string [0..1]
Descriptor : string [0..1]
Id : int
IsOptional : bool
Label : string

FunctionArgumentDescriptionInputParameters

ResultArguments

1

0..*

StaticFunctionItems

1

1..*

ClassWhichContainsTheStaticFunction

1

1

1

CommunicationRequest : string [0..1]
ReadOnce : bool

StaticFunctionArgumentDescription

ClassName : string

DynamicClassReference

Name : string
Path : Uri [0..1]
PublicKeyToken : string
SupportedTargetPlatform : enum [Only32bit, Any, Only64bit]
Version : Version

AssemblyInfo
AssemblyInfo

SupportedCLRVersions

CLRVersionNumber : Version

TargetCLR
1

0..*

Describes a StaticFunction, which
can be called via
IStaticFunction::BeginExecute().

Describes an Input parameter of
IStaticFunction::BeginExecute()

and

Result parameter returned in
FunctionResult of
IStaticFunction::EndExecute()

1

0..*

InputParameter list and
ResultParameter list collect items of
type FunctionArgumentDescription.

When the function description is
evaluated and called, the Frame
Application shall cast the
parameters to type
StaticFunctionArgumentDescriptions
.

SemanticId : string
ApplicationDomain : string

SemanticInfoSemanticInfos
1

0..*

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 96 – IEC TR 62453-42:2016  IEC 2016

(e.g. when starting an observation). The resulting CommunicationResponse can be used as
multiple times when executing the static function. If ReadOnce is set to "FALSE", then the FA
shall retrieve the CommunicationResponse each time when executing the static function.

5.12 Persistence

5.12.1 Overview

In the call to InitData() or LoadData() the DTM receives a reference to the IDataset interface
provided by the Frame Application.

Figure 47 – DTMDataset structure

The DTMDataset contains two DTMDataSubset dictionaries for the actual persistence of data
(see Figure 47): InstanceData dictionary and BulkData dictionary. Each dictionary contains
DTMDataSubsets. The DTMDataSubsets shall be used for grouping of persistence data. The
number and content of the DTMDataSubsets is DTM-specific. In order to improve the system
performance the DTM shall group data which need to be loaded and stored together in one
DTMDataSubset. Furthermore, a DTM shall avoid unnecessary loading of data whenever
possible, especially when starting the DTM Business Logic.

The InstanceData dictionary shall be used for data which is directly related to the represented
device instance, for example the device parameters, network information, etc. The DTM has
to guarantee that it is able to represent the device by loading this data. Following
DTMDataSubsets should be considered:

– Basic data which is needed during the complete lifetime of a DTM instance(e.g.
represented device type information, device tag and address and other identity
information).

– Device parameter information that is needed if corresponding DTM User Interface is
opened (e.g. a page in a dialog) or if the Frame Application requests data (e.g.
DeviceDataInfo (see 7.9))

– IO signal information which is needed if Frame Application requests ProcessDataInfo
(see 4.4.4)

IEC

DTMDataset

DTMDataSubset

1

0..*

1

0..*Bulk
Data

Add(key, data, descriptor): DataSubset
Remove(key)
this[key]: DataSubset
Clear()
...

IDataSubsetDictionary

Instance
Data

StartTransaction()
CommitTransaction()
CloseTransaction()

FormatId : Guid

<<interface>>
IDataset

Key: string
Descriptor: string

ReadData(): byte[]
WriteData(byte[])

<<interface>>
IDataSubset

IEnumerable<KeyValuePair<string, IDataSubset>>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 97 –

The BulkData dictionary shall be used for further device instance-specific data, for example
for bulky trend or historical data, which is only needed in special scenarios. The Frame
Application may implement a special storage mechanism for bulk data, which might be
optimized for handling of big amount of data, but may be slower than the implementation for
the instance data storage.

Beside these data separation and grouping rules the DTM shall also follow the rules defined
for data searching (see 5.12.4) to support a maximum system performance.

5.12.2 Data format

The format of the data persisted in the DTMDataSubsets is DTM-specific, but the DTM shall
store information about the used format in the IDataset.FormatId property. The FormatId is a
unique identifier created by the DTM vendor, it shall correspond to the used FormatId
exposed in the IDtm.ActiveType property.

The DTM shall use the FormatId information to decide how to load the data, e.g. to load data
stored in a different format by an older DTM version.

A DTM may also expose further supported FormatIds in its TypeInfo. This information may be
used by the Frame Application to migrate data stored by a different DTM (see 8.17).

5.12.3 Adding / reading / writing / deleting of data

By default the two DTMDataSubset dictionaries contained in the DTMDataset are empty. The
DTM itself is responsible for adding the needed DTMDataSubsets to the dictionaries, for
example at first start-up in the call to InitData() (see 8.2.1).

The DTMDataSubset dictionaries also provide methods to remove data from the persistence
storage managed by the Frame Application. However, in case of deleting of the DTM instance
the Frame Application itself is responsible to remove the data from the storage after the call to
IDtm.BeginRelease(deleteInstance=true) returned.

The IDataSubset interface provides methods to read and write binary data. The DTM itself is
responsible to serialize / deserialize the data.

Figure 48 shows an example implementation on how a DTM can initialize a DTMDataSubset
with binary data by using the .NET Framework BinaryFormatter class for serialization.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 98 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 48 – Example: Initialization of DTMDataSubset with DTM data

The DTM has to provide a unique key for the DTMDataSubset when adding it to the
dictionary. The DTM can use the key to access DTMDataSubset, for example for reading and
writing of the binary data.

Figure 49 shows an example on how a DTM can write binary data into a DTMDataSubset by
using the .NET Framework BinaryFormatter class for serialization.

IEC

Figure 49 – Example: Writing of DTM data in DTMDataSubset

Figure 50 shows an example on how a DTM can read data from a DTMDataSubset by using
the .NET Framework BinaryFormatter class for deserialization.

protected void SaveBasicData()
{
 // start transaction (needed for writing of DataSubset data)
 _dataset.StartTransaction();

 // create binary formatter needed for serialization of data
 MemoryStream stream = new MemoryStream();
 BinaryFormatter binaryFormatter = new BinaryFormatter();

 // serialize ActiveType(Id) and DeviceAddress
 binaryFormatter.Serialize(stream, _activeDtmDeviceType.Id);
 binaryFormatter.Serialize(stream,
 deviceAddress.ProtocolSpecificDeviceAddress.ShortAddress);
 stream.Close();

 // create datasubset for "basic" DTM data and initalize with default data
 _dataset.InstanceData["basicData"].WriteData(stream.GetBuffer());

 // close transaction with auto commit = true
 _dataset.CloseTransaction(true);
}

public void InitData(Guid dtmDeviceTypeId, IDataset dataset)
{
 // initialize class members
 _dataset = dataset;
 _activeDtmDeviceType = _supportedTypes.Find((item) =>
 item.Id == dtmDeviceTypeId);
 _deviceAddress = new DeviceAddress<HartDeviceAddress>(1,
 new HartDeviceAddress(0, "SHORTTAG", "Long Tag",
 HartDeviceAddress.AddressingModeSelection.ShortAddress,
 new HartLongAddress()));
 // start transaction (needed for adding of DataSubsets)
 _dataset.StartTransaction();

 // create binary formatter needed for serialization of data
 MemoryStream stream = new MemoryStream();
 BinaryFormatter binaryFormatter = new BinaryFormatter();

 // serialize ActiveType(Id) and DeviceAddress
 binaryFormatter.Serialize(stream, _activeDtmDeviceType.Id);
 binaryFormatter.Serialize(stream,
 _deviceAddress.ProtocolSpecificDeviceAddress.ShortAddress);
 stream.Close();

 // create data subset for "basic" DTM data and initialize with default data
 _dataset.InstanceData.Add("basicData", stream.GetBuffer());

 // store used format and close transaction with auto commit = true
 _dataset.FormatId = _activeDtmDeviceType.DatasetFormats.Used;
 _dataset.CloseTransaction(true);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 99 –

IEC

Figure 50 – Example: Reading of DTM data from a DTMDataSubset

The DTM vendor shall consider loading of data created by an “older” version of the DTM.
Even if the format of data has not changed also the deserialization of data to new class
versions shall be considered. In the example in Figure 50 this is achieved by setting the
BinaryFormatter in an Assembly version insensitive mode.

5.12.4 Searching for data

The DTMDataSubset dictionaries provide several methods to find a particular
DTMDataSubset:

– By Key
– By Descriptor

The optional DTMDataSubset.Descriptor property can be utilized by the DTM to implement
advanced searching algorithms.

The content of the Descriptor property is DTM-specific. A DTM can use this property to
provide further information about the DTMDataSubset content. Figure 51 shows an example
how a DTM may save some trend data in the BulkData dictionary with additional descriptor
information.

public void LoadData(IDataset dataset)
{
 _dataset = dataset;

 // read persisted "basic" data
 byte[] data = _dataset.InstanceData["basicData"].ReadData();

 // create binary formatter which is insensitive regarding assembly version
 // in which serialized classes have been defined
 MemoryStream stream = new MemoryStream(data);
 BinaryFormatter binaryFormatter = new BinaryFormatter();
 binaryFormatter.AssemblyFormat = FormatterAssemblyStyle.Simple;

 // deserialize ActiveType and DeviceAddress data
 Guid dtmDeviceTypeId = (Guid)binaryFormatter.Deserialize(stream);
 _activeDtmDeviceType = _supportedTypes.Find((item) =>
 item.Id == dtmDeviceTypeId);

 // deserialize DeviceAddress data
 int shortAddress = (int)binaryFormatter.Deserialize(stream);
 _deviceAddress = new DeviceAddress<HartDeviceAddress>(1,
 new HartDeviceAddress(shortAddress, "SHORTTAG", "Long Tag",
 HartDeviceAddress.AddressingModeSelection.ShortAddress,
 new HartLongAddress()));
 stream.Close();
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 100 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 51 – Example: Creation of a BulkData.DTMDataSubset with descriptor

The Descriptor property shall be used by the DTM to search for-specific DTMDataSubsets
without reading the binary data. This enables the Frame Application to read the binary data
from the persistence storage only if really needed by the DTM. Thus the searching algorithm
is fast and has a low memory footprint.

Figure 52 shows an example on how a DTM can search for DTMDataSubsets with-specific
Descriptors by using a .NET LINQ query.

IEC

Figure 52 – Example: Searching for DTMDataSubsets with specific descriptor

5.13 Comparison of DTM and device data

5.13.1 Comparison of datasets using IDeviceData / IInstanceData

If a DTM does not provide the IComparison interface, then it shall publish all data relevant for
comparison in the IDeviceData / IInstanceData interfaces (at least).

Some of the published data may not be relevant for comparison, for example dynamic data or
process data. Therefore the Frame Application should provide means (e.g. user interface) to
select data which is relevant for comparison.

protected List<SomeTrendData> GetTrendsOfDay(DateTime date)
{
 // (LINQ) query for all DTMDataSubsets containing trend data for a specific day
 IEnumerable<IDataSubset> dataSubsets = from item in _dataset.BulkData
 where item.Value.Descriptor.Contains("TrendData – " +
 date.ToString("yyyy:MM:dd"))
 select item.Value;

 // deserialize found trend data and return list to caller
 List<SomeTrendData> trends = new List<SomeTrendData>();
 BinaryFormatter binaryFormatter = new BinaryFormatter();
 binaryFormatter.AssemblyFormat = FormatterAssemblyStyle.Simple;
 foreach (IDataSubset dataSubset in dataSubsets)
 {
 MemoryStream stream = new MemoryStream(dataSubset.ReadData());
 trends.Add(binaryFormatter.Deserialize(stream) as SomeTrendData);
 }
 return trends;
}

protected void SaveTrend(SomeTrendData someTrendData, DateTime createdAt)
{
 // start transaction (needed for adding of DTMDataSubset)
 _dataset.StartTransaction();

 // create binary formatter and serialize TrendData
 MemoryStream stream = new MemoryStream();
 BinaryFormatter binaryFormatter = new BinaryFormatter();
 binaryFormatter.Serialize(stream, someTrendData);
 stream.Close();

 // create trend data datasubset with Descriptor containing current date / time
 byte[] data = stream.GetBuffer();
 _dataset.BulkData.Add(Guid.NewGuid().ToString(), data,
 "TrendData – " + createdAt.ToString("yyyy:MM:dd hh:mm:ss"));

 // close transaction with auto commit = true
 _dataset.CloseTransaction(true);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 101 –

The Frame Application shall read the data via the IDeviceData and/or the IInstanceData
interface and compare the values of data items with the same identifier. If a data item with the
same identifier is missing, then this shall be evaluated as not equal.

5.13.2 Comparison of datasets using IComparison

DTMs which do not publish all data shall implement the interface IComparison. If a DTM
implements this interface, then the Frame Application shall use this interface for comparison.

The IComparison interface provides methods to compare:

• the currently persisted dataset with the data in the device (Online Comparison)

• the currently persisted dataset with another persisted datasets (Offline Comparison)

Be aware that a DTM can only compare a dataset which has a supported format (format ID is
equal the current format ID or to a supported format ID). The comparison shall include only
the dataset of the DTM. Related FDT Objects (e.g. Child DTMs or Parent DTMs) are not
included in the comparison provided by IComparison.

If it is necessary to compare multiple DTMs, the Frame Application is responsible to execute
the comparison method on all respective DTMs. For example the comparison of a Composite
Device DTM may require also the comparison for the attached Module DTMs.

5.14 Tracing

For troubleshooting or debugging trace information (logging) is essential. Whenever multiple
components need to interact it is of advantage if all components have a common place to put
the trace information. This makes it easier to detect and resolve problems where several
components are involved.

An FDT Frame Application shall implement a dedicated interface ITrace (see 6.2), which is
used by DTMs to send trace messages.

A trace message can be either a human readable description or data as an array of objects.
An array of objects is useful if a DTM developer wants to trace a complete exception object
and not only a description. If a DTM sends a trace message with an array of objects it shall
also provide a corresponding additional message with a human readable description.

A trace message includes an assessment of severity (e.g. verbose, warning or error) and a
classification. To limit the amount of trace messages sent by a DTM an FDT Frame
Application can set the minimum trace level using IDtm and IDtmUifunction.

How messages are collected, stored or displayed to the user is Frame Application-specific. It
is not in the scope of this specification.

A trace message is not intended to be shown to the user directly. It is dedicated to debugging
and troubleshooting. If a message is intended to be displayed to the user one of the message
box methods of interface IFrameUi shall be used.

A trace message shall be in English. It shall not contain a timestamp, because the timestamp
is provided by the Frame Application if necessary.

5.15 Report generation

5.15.1 General

Due to the shared responsibilities for data management in an FDT system, the generation of a
comprehensive report requires the compilation of report fragments delivered by different
components in the system. While the topological information is managed by the Frame

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 102 – IEC TR 62453-42:2016  IEC 2016

Application, all the device-specific information is to be delivered by the constituent DTMs in a
project. To generate a report, a Frame Application uses the IReporting interface provided by
DTMs to request report fragments with the device-specific presentation of configuration or
parameterization data from each DTM.

5.15.2 Report types

Complex devices may have a huge amount of configuration and parameter information. Frame
Applications shall be able to access only a subset of this data for the generation of context-
specific reports, e.g. a report only of network management related data, offline or online data,
IO signal information, bulk data, etc.

A DTM shall offer different types of reports, each covering a distinct subset of its device data.
If the report corresponds to a DTM function (a Function ID or Application ID), it shall be
referenced in the report type. A DTM may provide additional report types for specific purposes
without reference to specific functions. The DTM informs the Frame Application by means of
its ReportInfo property about the available report types. The list of available reports shall not
change over the lifetime of a DTM BL instance.

A Frame Application may use only the report types with an associated Application ID to
generate a standardized report on a specific aspect of a system, collect the data of all report
types from all DTMs to create a full report or offer a user interface based on the ReportInfo
properties to let the end user decide about which data to include in the report.

5.15.3 DTM report data format

A DTM shall deliver its report fragment in form of a strictly conforming XHTML (XTHML 1.0
strict) document as specified in [24] (see Figure 53).

NOTE Since XHTML 1.0 is a reformulation of HTML 4 conforming to the XML 1.0 standard, documents with this
type of markup can be processed by any XML compliant tool or library. This includes the XSL transformation to
paginated output formats like XSL-FO, that can be postprocessed for example to the ISO 19005 1 (PDF/A 1) or
Rich Text Format (RTF). The final report format of a Frame Application is out of scope of this specification.

The report fragment shall not contain any script or style (CSS) elements nor frames. It shall
be self contained, that is it shall contain all the mandatory parts of an XHTML document, so
that any XHTML compliant rendering engine can display it without further modification:

• XML Prolog with character encoding declaration. The default character encoding is UTF 8.
Note: different from the XHTML specification, this element is declared mandatory here to
simplify the postprocessing with standard XML tools and libraries.

• Document type declaration (DOCTYPE) according to the XHTML 1.0 strict standard.

• root <html> element with XHTML 1.0 namespace declaration and declaration of the
content language. The content language shall be the same the DTM uses in its BL and UI;
xml:lang and lang-attributes shall always have the same value.

• <head> section with content type declaration including the character encoding. The
encoding shall be equal to the encoding defined in the XML Prolog; the declaration in the
prolog takes precedence. This declaration is for compatibility with older XHTML rendering
engines.

• <body> section with presentation of the device-specific data. As any other XHTML
document, report fragments may reference external resources, e.g. images.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 103 –

IEC

Figure 53 – Skeleton of a DTM-specific report fragment

5.15.4 Report data exchange

DTM and Frame Application exchange report fragments by means of a file system folder
which can be accessed by the DTM BL. When a Frame Application requests the report
fragment for a device with a call to <GenerateReport()> on the IReporting interface of a DTM
BL, it specifies a destination folder path, the Base-URI. A DTM BL shall store the report result
with an arbitrary filename in the destination folder and return the filename to the Frame
Application as the result of the asynchronous call.

If the report fragment needs to reference external resources, e.g. images, the DTM shall store
them likewise under the specified Base-URI. The DTM is free to create subfolder under the
Base-URI to organize the external resources. A report fragment shall always use relative
references to link to its external resources. A DTM shall assume that the Base-URI is a
temporary identifier – it is only valid until the DTM returns completion of the
<GenerateReport()> call and may change between subsequent calls to <GenerateReport()>.

Frame Applications have to take appropriate measures to prevent name clashes between the
URIs of report fragments and accordingly external resources of different DTMs; e.g. use
different base URIs for the reports of individual instances. Furthermore they are responsible
for disposal of the report fragments and external resources when they are not used any more.
A typical implementation of a Frame Application creates an individual subfolder as Base-URI
for each DTM to be included in the report.

5.16 Security

5.16.1 General

A Frame Application hosts DTM BL or DTM UI which are, from the Frames perspective,
external components provided by third parties. Therefore the system is exposed to possibly
unknown code. The system shall be protected against security threads originating from
unknown code.

5.16.2 Strong naming of assemblies

Strong naming of assemblies allows for checking if an assembly was tampered after it was
published.

All assemblies which are part of a DTM Setup shall have a strong name.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC
 "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Title of report fragment</title>
 </head>

 <body>
 … (Device specific data presentation here)
 </body>

</html>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 104 – IEC TR 62453-42:2016  IEC 2016

5.16.3 Identification of origin

Microsoft Authenticode [25] is a digital signature format to sign executable code, which allows
i.e. checking the origin of an assembly using a public-key cryptography approach.
Authenticode shall be used to allow for verification of origin and genuineness of a DTM.

DTM vendors shall obtain a code-signing certificate issued by one of the certification
authorities (CAs) that are trusted by default in Windows. Such a CA is referred to as
“Windows root certificate program member”. Updates of the trusted root certificates in
Windows are automatically installed during Windows updates or can be downloaded from the
Microsoft website (see [26]).

The following DTM assemblies (DTM binaries) shall be signed using a code-signing
certificate:

• DTM BL assembly

• DTM UI assemblies

• DtmInfoBuilder if implemented in a separate assembly

• StaticFunction assemblies (if available)

• Installer application

Figure 54 shows how a Frame Application can verify the origin of a DTM assembly using the
.NET Framework namespace System.Security.Cryptography.X509Certificates.

IEC

Figure 54 – Example: Authenticode check

5.16.4 Code access security

The .NET Framework provides a security mechanism referred to as “Code Access Security
(CAS)” [27]. This mechanism allows to limit the access permissions (e.g. to file system,
registry or network) of an assembly.

As this could mean limiting essential capabilities of a DTM, a Frame Application is not allowed
to limit code access permissions. That means Code Access Security shall not be used.

5.16.5 Validation of FDT compliance certification

The FDT Group defines an FDT compliance certification procedure for DTMs.

FDT supports the means to enable a Frame Application to validate the compliance
certification of a DTM. Certified DTMs shall install a conformity record file, which is generated
by an authorized FDT certification laboratory and signed using a public-key cryptography
approach.

// Create an X.509 certificate from the signed DTM assembly
X509Certificate x509Certificate = X509Certificate.CreateFromSignedFile(
 @"C:\...\AuthenticodeSignedDemo.dll");

// Create a new X506Certificate2 instance by passing the previously created
// X506Certificate instance
X509Certificate2 x509Certificate2 = new X509Certificate2(x509Certificate);

// Check if the chain of the created X.509 certificate (represented by the
// x509Certificate2 instance) is valid
bool isX509ChainValid = x509Certificate2.Verify();

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 105 –

The conformity record file is digitally signed using a private key which is only known to the
FDT Group and authorized certification labs. Frame Applications can check the conformity
record file by checking the signature using the corresponding public key of the FDT Group.

The certification record file shall be signed according to the W3C XML Signature Syntax and
Processing recommendation [28].

A DTM certification record shall use the exactly same DTM vendor name as used in the
Authenticode signatures of DTM BL and UI assemblies included in the DTM deployment
package.

Figure 55 shows an example for a conformity record file. This is an xml serialized instance of
the datatype “ConformityRecord”.

IEC

Figure 55 – Example: Conformity record file

Figure 56 shows how a Frame Application can check a certification record file.

<?xml version="1.0" encoding="utf-8"?>
<ConformityRecord xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
 <TestedDtmName>Name of DTM</TestedDtmName>
 <TestedDtmVersion xmlns:d2p1="http://schemas.datacontract.org/2004/07/System">
 <d2p1:_Build>0</d2p1:_Build>
 <d2p1:_Major>1</d2p1:_Major>
 <d2p1:_Minor>0</d2p1:_Minor>
 <d2p1:_Revision>1</d2p1:_Revision>
 </TestedDtmVersion>
 <TestedDtmId>6d0ffd65-0936-420e-9e40-42d039fd8a98</TestedDtmId>
 <TestedTypeId>00000000-0000-0000-0000-000000000000</TestedTypeId>
 <DateOfTest>2010-04-29T00:00:00</DateOfTest>
 <TestedOSVersion>
 <OSVersionNumber xmlns:d3p1="http://schemas.datacontract.org/2004/07/System">
 <d3p1:_Build>6002</d3p1:_Build>
 <d3p1:_Major>6</d3p1:_Major>
 <d3p1:_Minor>0</d3p1:_Minor>
 <d3p1:_Revision>131072</d3p1:_Revision>
 </OSVersionNumber>
 <ServicePack>Service Pack 2</ServicePack>
 </TestedOSVersion>
 <VendorName>Vendor Ltd.</VendorName>
 <TestLabName>AccreditedLabName</TestLabName>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <Reference URI="">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>JfVQR8C//MuCpxyqItJCVNBIeM8=</DigestValue>
 </Reference>
 </SignedInfo>

<SignatureValue>IwCJLPq6r3zLc12Auk3ast8KrXXICLWmxHjWSYE61lLpqQQPGFwgQP2aGhL38jNir9OwnKep1NX5gIZGLPMGw
SGsPq3giczAf6QN3aK0eJ28TDLXxXDKvz6f5HDSXT7iCjWwGwYi9JtkJxwKRmi1hOpURXxdNlNGkeaykl2ELTM=</SignatureVal
ue>
 </Signature>
</ConformityRecord>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 106 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 56 – Example: checking conformity record file

6 FDT Objects and interfaces

6.1 General

The FDT interface specification includes the following FDT Objects:

• DTM Business Logic

• Presentation objects
– WPF Control
– WinForms Control
– Standalone Application
– UI Command Function

• Communication Channel

• Frame Application

The behavior of these objects and their interfaces are described in this clause. Developers
implementing DTMs or parts of Frame Application like storage or communication objects shall
implement the functionality as defined in this clause.

This clause also references and defines expected behavior of FDT specific interfaces that
FDT-compliant objects shall implement.

In order to describe the availability of interfaces for the different FDT objects, following
abbreviations are used:

M: mandatory – the interface shall be provided
C: conditional – the interface shall be provided depending on conditions
O: optional – the interface may be provided based on product decisions
-: not allowed – the interface shall not be provided

public static Boolean VerifyXmlFile(String fileName, X509Certificate2 certificate)
{
 // Create a new XML document.
 XmlDocument xmlDocument = new XmlDocument();

 // Load the passed XML file into the document.
 xmlDocument.Load(fileName);

 // Find the "Signature" node and create a new
 // XmlNodeList object.
 XmlNodeList nodeList = xmlDocument.GetElementsByTagName("Signature");
 if (nodeList == null || nodeList.Count != 1)
 {
 return false;
 }

 // Create a new SignedXml object and pass it
 // the XML document class.
 SignedXml signedXml = new SignedXml(xmlDocument);

 // Load the signature node.
 signedXml.LoadXml((XmlElement)nodeList[0]);

 // Check the signature and return the result.
 return signedXml.CheckSignature(certificate, false);
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 107 –

6.2 Frame Application

The class diagram shown in Figure 57 shows the interfaces which shall be implemented by a
Frame Application.

Figure 57 – Frame Application interfaces

IEC

Frame
Application

«interface»
System.Collections:IEnumerable

1

0..n

DTM Dataset

Topology

Trace

AuditTrail

FrameUI

BulkData

InstanceData

Icon UML stereotyp
<<property>>
<<method>>
<<event>>

«interface»
IDataSubsetDictionary

Add()
Clear()

Item()

ContainsKey()
GetEnumerator()
Remove()
TryGetValue()

«interface»
IFrame

FdtVersion()

«interface»
ICommunicationChannelProxy

SupportedProtocols()
Subscription()
Scanning()
Communication()

provides to DTM

«interface»
IDataSubset

ReadData()
WriteData()

Descriptor()
Key()

provides to DTM-UI

ProcessImageValidation «interface»
IProcessImageValidation
BeginValidateProcessImage()
CancelValidateProcessImage()
EndValidateProcessImage()

«interface»
ITopology

«interface»
IProgressUi : IDisposable

UpdateProgress()

«interface»
IFrameUi

BeginCloseDtmUi()
BeginOpenDtmUi()

EndCloseDtmUi()

EndOpenDtmUi()
OpenDtmUiModal()
ShowMessageBox()
ShowProgress()

BeginOpenDtmUiModal()

EndOpenDtmUiModal()

KeyValuePair<string, DataSubset>

PhysicalTopology«interface»
IPhysicalTopology

BeginAddConnection()

EndAddConnection()

BeginRemoveConnection()

EndRemoveConnection()

BeginMoveConnection()
EndMoveConnection()

BeginGetConnections()

EndGetConnections()

«interface»
ITrace

TraceEvent()

«interface»
IAuditTrail

Notify()

BeginAddChild()
BeginGetDtm()
BeginGetSupportedTypes()
BeginMoveChild()
BeginRemoveChild()
BeginRepositionChild()
EndAddChild()
EndGetDtm()
EndGetSupportedTypes()
EndMoveChild()
EndRemoveChild()
EndRepositionChild()
GetChildNodes()
GetDeviceIdentInfo()
GetDtmInfoList()
GetParentNodes()
GetSiblingNodes()

«interface»
IDtmProxy : IDisposable

Comparison()
DeviceData()
DtmType()
DtmSystemGuiLabel()
DtmSystemTag()
HardwareInformation()
InstanceData()
NetworkData()
Ports()
ProcessData()
Reporting()
GetDtmProxyRoleAccess()

«interface»
IDtmUiMessaging

DtmSpecificEventOccured
TransactionClosed
TransactionCommittedd
TransactionStarted

BeginSendMessages()
CancelSendMessages()
EndSendMessages()

UiMessageTypes()

TransactionCommitted

«interface»
IDataset

TransactionClosed
TransactionStarted

CloseTransaction()
CommitTransaction()
StartTransaction()

BulkData()
FormatId()
InstanceData()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 108 – IEC TR 62453-42:2016  IEC 2016

The Frame Application implements the IFrame interface which is passed to the DTM Business
Logic and the DTM User Interface. The properties of IFrame interface, named FrameUi,
Topology, Trace and AuditTrail, provide access to the corresponding interfaces IFrameUi,
ITopology, ITrace and IAuditTrail (see Table 5).

IFrameUi can be implemented in a separate user interface part of the Frame Application.

ICommunicationChannelProxy is implemented as part of the Frame Application and is
provided to the DTM in IDtm.EnableCommunication().

DTMDataSet instances are provided from Frame Applications internal persistent storage for
each device node (DTM instance) in the topology. The corresponding IDataset interface is
implemented by frame-specific instances (shown as DTMDataSet class in the diagram) for
each device node and passed to the DTM Business Logic. The DTMDataSubsets collected in
DTM InstanceData or in DTM BulkData implement the interface IDataSubset.

Table 5 – Frame Application interfaces

Interface Availability Description

IAuditTrail M Interface used to receive audit trail events from DTMs in order to
record changes and actions performed on a device.

ICommunicationChannelProxy M Proxy interface which enables a DTM to interact with the linked
Communication Channel provided by the Parent DTM in the FDT
topology.

IDataset M Interface used to read and store DTM instance-specific data in a
dataset

IDataSubset M The DTMDataSubsets contain the actual DTM persistent data.

IDataSubsetDictionary M Represents a collection of data subsets.

IDisposable .NET interface for disposable objects.

IDtmProxy M This interface is provided by DTM proxy objects. These objects
enable a DTM to interact with another DTM instance
(represented by the proxy object).

IFrame M The IFrame interface is the main interface of a Frame
Application. It includes the services that shall be provided by the
Frame Application to the DTM Business Logic and the DTM User
Interfaces.

The reference to this interface is passed to the DTM Business
Logic and to the DTM User Interface in the call. The interface
provides references to further interfaces.

IFrameUi O This interface provides access to the Frame Application user
interface.

A Frame Application that provides a user interface shall provide
this interface. If the Frame Application does not provide this
interface, the DTM knows explicitly that no GUI is available.

A DTM shall be able to adapt to the situation where it can not
show a user interface.

IPhysicalTopology O Interface used to manage physical connections between DTMs.
The ability to manage physical connections depends on the
availability of the IPorts interface at a DTM.

IProcessImageValidation O In some automation systems it is a requirement to apply changes
to the process image while the PLC is running. This interface
provides the methods needed to validate whether a potential
change can be applied while the PLC is running.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 109 –

Interface Availability Description

IProgressUi O Interface to a Frame Application progress user interface opened
by IFrameUi.ShowProgress.

A Frame Application that provides a user interface shall provide
this interface. The interface can be used by DTM UI to show
progress information.

For asynchronous operations that are executed in the DTM BL
the progress mechanism of extended AsyncResult pattern shall
be used.

ITopology M This interface provides the access to the FDT topology. A DTM
can request and release references to other DTM instances as
well as create and remove Child DTMs.

ITrace M Trace interface that shall be used by DTMs to inform a Frame
Application about trace message.

6.3 DTM Business Logic

6.3.1 DTM BL interfaces

The class diagrams shown in Figure 58 and Figure 59 show the interfaces, which shall be
implemented by a DTM Business Logic class. IDtm is implemented by the DTM Business
Logic and provides access to all other interfaces by corresponding properties.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 110 – IEC TR 62453-42:2016 Ó IEC 2016

Figure 58 – DTM Business Logic interfaces (Part 1)
IEC

DTM Business
Logic

OnlineOperations

Channels

ProcessData
NetworkData

Functions

«interface»
IChannels

«interface»
IDtmUiMessaging

DtmSpecificEventOccured
OnlineStateChanged
TransactionClosed
TransactionCommitted
TransactionStarted

BeginSendMessages()
CancelSendMessages()
EndSendMessages()

«interface»
IProcessData

DtmUiMessaging

ChildDtmEvents

«interface»
INetworkInfoValidation

BeginValidateNetworkInfo()
CancelValidateNetworkInfo()
EndValidateNetworkInfo()

Reporting

NetworkInfoValidation

HardwareInformation«interface»
IHardwareInformation

BeginHardwareScan()
CancelHardwareScan()
EndHardwareScan()

AddressInfoChanged()
DeviceDataInfoChanged()
GeneralChildDataChanged()
InstanceDataInfoChanged()
InstanceDataValueChanged()
NetworkDataInfoChanged()
ProcessDataInfoChanged()

«interface»
IChildDtmEvents

Reports

«interface»
IReporting

BeginGenerateReport()
CancelGenerateReport()
EndGenerateReport()

BeginConfiguration()
BeginRelease()
BeginStopCommunication()
DisableCommunication()

«interface»
IDtm

ActiveTypeChanged

DeviceTypeCheckFinished

ActiveType
FdtVersion

EnableCommunication()
EndConfiguration()
EndRelease()
EndStopCommunication()
Init()
InitData()
LoadData()
Run()

DtmSystemGuiLabel
DtmSystemTag
TraceLevel

CommunicationInProgressChanged

GetDtmRoleAccess()

FunctionInfo

FunctionChanged

«interface»
IFunction

StaticFunctionInfo

CommunicationChannels

ChannelsChanged

ChannelInfos

BeginGetProcessData()
EndGetProcessData()

ProcessDataChanged

SetIOSignalInfo()

«interface»
IOnlineOperation

BeginReadDataFromDevice()

BeginWriteDataToDevice()
CancelReadDataFromDevice()
CancelWriteDataToDevice()
EndReadDataFromDevice()

EndWriteDataToDevice()

BeginReadDeviceStatus()

EndReadDeviceStatus()

SupportedTransfers

DeviceStatusChanged

«interface»
INetworkData

AddressInfoChanged
NetworkDataInfoChanged

GetAddressInfo()
GetNetworkDataInfo()
SetAddressInfo()
SetNetworkData()

ActiveProtocols

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 111 –

Figure 59 – DTM Business Logic interfaces (Part 2)

There is no state machine defined for DtmInfoBuilder instances. DtmInfoBuilder objects are
created with new() and destroyed with Dispose().

Table 6 provides an overview on DTM interfaces, while Table 7 defines under which
conditions interfaces shall be implemented.

IEC

DTM Business
Logic

CommandFunction

InstanceData

DeviceData

DtmInformation

DtmInfoBuilder

DataInfoChanged

«interface»
IData

BeginRead()
BeginWrite()
CancelRead()
CancelWrite()
EndGetDataInfo()
EndRead()
EndWrite()

BeginGetDataInfo()
CancelGetDataInfo()

«interface»
IDeviceData

ModifiedInDevice

ModifiedInDeviceChanged

ProcessImage

«interface»
IComparison

Comparison

«interface»
IProcessImage

ProcessImageChanged

BusMasterInfo

BeginGetProcessImageInfo()
CancelGetProcessImageInfo()
EndGetProcessImageInfo()
SetIOSignalInfo()

«interface»
IInstanceData

ModifiedInDTM

ModifiedInDTMChanged
DataValueChanged

BeginConfiguration()
BeginRelease()
BeginStopCommunication()
DisableCommunication()

«interface»
IDtm

ActiveTypeChanged

DeviceTypeCheckFinished

ActiveType()
FdtVersion()

EnableCommunication()
EndConfiguration()
EndRelease()
EndStopCommunication()
Init()
InitData()
LoadData()
Run()

DtmSystemGuiLabel()
DtmSystemTag()
TraceLevel()

CommunicationInProgressChanged

«interface»
IDtmInformation

GetFdtBitmap()
GetFdtIcon()
GetDeviceIdentInfo()

GetDtmInfo()
EndGetSupportedTypes()
BeginGetSupportedTypes()

«interface»
IDtmInfoBuilder

Init()

StaticFunction
Provider

Ports

DtmMessaging

IPorts

BeginGetPortInfo()
EndGetPortInfo()

«interface»

BeginInstanceDataCompare()
BeginDeviceDataCompare()
CancelInstanceDataCompare()
CancelDeviceDataCompare()
EndInstanceDataCompare()
EndDeviceDataCompare()

«interface»
ICommandFunction

BeginExecute()

CancelExecute()
EndExecute()

«interface»
IDtmMessaging

DtmSpecificEventOccured

BeginSendMessages()
CancelSendMessages()
EndSendMessages()

«interface»

Dispose()

IDisposable

GetDtmRoleAccess()

BeginGetAllDataInfo()

«interface»
ICustomConfiguration

«interface»
IDeviceCustomConfiguration

«interface»
IInstanceCustomConfiguration

EndGetAllDataInfo()
BeginEnableParameters()

EndEnableParameters()

DeviceCustomConfiguration

InstanceCustomConfiguration

«interface»
IStaticFunction

Init()

BeginRelease()

EndRelease()

BeginExecute()

CancelExecute()
EndExecute()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 112 – IEC TR 62453-42:2016  IEC 2016

Table 6 – DTM Business Logic interfaces

Interface Description

IChannels This interface is used for accessing the Communication Channel objects of a
DTM.

IChildDtmEvents Interface used by the Frame Application to inform the DTM about events occurred
in a Child DTM in the FDT topology.

ICommandFunction This interface is used to execute command functions.

IComparison This interface allows a Frame Application to request the DTM to compare the
dataset with another dataset or with the data in the physical device.

IDeviceData This interface provides online access to specific parameters of a device.

IDtm This is the main interface of a DTM. It defines the methods to control the DTM
state-machine and general properties.

IDtmInformation This interface provides general information about the DTM itself and the
supported device types.

IDtmMessaging This interface is used for interaction between the DTM Business Logic of two
DTMs (Composite and Module DTM).

IDtmUiMessaging Interface used for interaction between the Business Logic and DTM User
Interfaces.

IFunction This interface provides access to functions, user interfaces and documents
provided by a DTM.

IHardwareInformation This interface is used by Frame Application to request hardware information from
a device.

IInstanceData This interface provides access to DTM instance data parameters.

INetworkData This interface provides network management relevant information

INetworkInfoValidation In some automation systems it is a requirement to apply changes to the Network
Info (which leads to a change in process image) while the PLC is running. This
interface provides the needed methods to validate if a potential change can be
applied while the PLC is running.

IOnlineOperation This interface allows a Frame Application to request the DTM to exchange online
data with the device.

IPorts The interface allows to request a list of ports from the DTM.

IProcessData This interface provides information related to process data of a field device for the
integration of the device into the control system like datatype, signal direction,
engineering units, and ranges etc.

IProcessImage This interface provides access to the description of the process image provided by
a fieldbus master.

IReporting This interface is used to report the current instance or device dataset of a DTM
(online data allowed here), e.g. for printing or documentation.

The Frame Application may generate reports using IInstanceData/IDeviceData
interfaces.

IStaticFunction This interface is used to execute static functions independently of the DTM.

IDeviceCustomConfiguration
IInstanceCustomConfiguration

These are optional interfaces . Only DTMs that allow customization of parameter
access for User Level “Expert” need to implement these interfaces. These
interfaces are supported only when the DTM is in the running state, before any
function is invoked on the DTM. In all other states, the DTM shall restrict access
to these interfaces.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 113 –

Table 7 – Availability of interfaces depending of type of DTM

Interface Condition Device
DTM

Comm
unicati
on DTM

Gatew
ay

DTM

Compo
site

Device
DTM

Module
DTM

BTM

IChannels Interface shall be provided
by all DTMs that provide
communication access to
other DTMs.

O *) M M M O *) -

ICommandFunction O O O O O O

IComparison Interface shall be provided
if not all parameters of the
DTM/device can be
accessed by IInstanceData
/IDeviceData interfaces.

C C C C C C

IDeviceData Interface shall be provided
for all devices which have
online data.

C C C C C C

IDtm M M M M M M

IDtmInformation M M M M M M

IDtmMessaging May be implemented in
case a tight coupling
between two DTMs of the
same vendor is required.

O O O O O O

IDtmUiMessaging Interface shall be provided
for DTMs with user
interfaces.

C C C C C C

IFunction M M M M M M

IHardwareInformation M M M M M M

IInstanceData M M M M M M

INetworkData M M M M M M

INetworkInfoValidatio
n

Only implemented by DTMs
which represent a fieldbus
Master and which are used
in automation systems with
specific requirements.

 O O

IOnlineOperation Interface shall be provided
for all devices which have
online data and shall be
loaded during
commissioning.

C O O C C C

IPorts The protocol-specific
specification annex defines
the rules for this interface.

M M M M M -

IProcessData The protocol-specific
specification annex, defines
the rules for this interface. If
the protocol supports
process data and the
respective device provides
process data the DTM shall
provide this interface.

C C C C - -

IProcessImage Interface shall be provided
by Communication
/Gateway-DTMs that
provide the layout of a
process image of a master
device.

- C C - - -

IReporting Interface shall be provided
to support advanced
reporting capabilities.

M M M M M M

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 114 – IEC TR 62453-42:2016  IEC 2016

Interface Condition Device
DTM

Comm
unicati
on DTM

Gatew
ay

DTM

Compo
site

Device
DTM

Module
DTM

BTM

IDeviceCustomConfig
uration
IInstanceCustomConf
iguration

 O O O O O O

*) Optional for DeviceDTM and ModuleDTM for instance because of possible BTM support.

For a DTM, which has set the flag TypeInfo.CommunicationSupport to value ‘PassiveDevice’,
all interfaces related to communication (i.e. IChannels, IDeviceData, IHardwareInformation,
IOnlineOperation, IProcessImage) shall not be supported.

6.3.2 State machines related to DTM BL

6.3.2.1 General

The following state machines describe the behavior of the DTM in regard to its interfaces. The
states are defined mainly to describe how a DTM is guided through different stages by a
Frame Application and which interface methods can be used at a specific stage of the lifetime
of a DTM instance. The state machine is based on the general state machine as defined in
IEC 62453-2. It is extended to accommodate the specific needs of .NET based
implementation. The state machines provided here are intended as a general specification for
all types of DTM and are not intended as implementation design (e.g. in order to implement
the “{enter state}” triggers an implementation might define additional states).

For information on which interface methods can be used at specific states refer to 6.6.

6.3.2.2 DTM state machine

The DTM State Machine in Figure 60 shows the states and transitions that are controlled by a
Frame Application (the Frame Application has full control).

The diagram uses following notation:

• Method(): denotes a method used as a trigger for a state transition, the transition taken
only, when the respective method returns

• [condition expression]: denotes a condition (guard) that has to evaluate true for the
transition to be taken

• <method_name>: denotes an asynchronous operation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 115 –

Figure 60 – State machine of DTM BL

Table 8 provides a description of the state transitions with their conditions and actions.

IEC

sm : DTM State Machine

new()

running

released

Release by
Garbage
Collector

initial

initialized

InitData()
[InitData succeeded]

LoadData()
[LoadData succeeded]

BeginRelease()

created

Init()
[Init succeeded]

DisableCommunication()
[<StopCommunication> succeeded]

EnableCommunication()

BeginRelease()

BeginRelease()

configuring

Run()
[<Configuration>

succeeded]

communicationAllowed

releasing

EndRelease()

BeginRelease()

<StopCommunication>

<Configuration>

final

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 116 – IEC TR 62453-42:2016  IEC 2016

Table 8 – Definition of DTM BL state machine

Start state End state Trigger Condition

1 initial created new() new() succeeded

2 created initialized Init() Init() succeeded

3 created releasing BeginRelease() BeginRelease() succeeded

4 initialized running LoadData() LoadData() succeeded

5 initialized configuring InitData() InitData() succeeded

6 initialized releasing BeginRelease() BeginRelease() succeeded

7 configuring configuring BeginConfiguration()/
EndConfiguration()

<Configuration> succeeded

8 configuring running Run() <Configuration> succeeded and
Run() succeeded

9 configuring releasing BeginRelease() BeginRelease() succeeded

10 running communication
Allowed

EnableCommunication() Reference to parent
CommunicationChannel is valid
and EnableCommunication()
succeeded

11 running releasing BeginRelease() all user interfaces are closed,
all operations are finished

12 communication
Allowed

communication
Allowed

BeginStopCommunication()/

EndStopCommunication()

<StopCommunication>
succeeded

13 communication
Allowed

running DisableCommunication() <StopCommunication>
succeeded and
DisableCommunication()
succeeded

14 releasing released EndRelease() *)

 released final Removal by .NET
GarbageCollector

*) This transition is taken, even if the method failed.

6.3.2.3 Online state machine

The following state machine (Figure 61) shows the internal states of state
“communicationAllowed”. The DTM controls the internal states according to this state
machine. The DTM does not expose the substate, but fires events which inform the Frame
Application about internal state transitions (OnlineStateChanged event). In order to prepare
an exit from the state “communicationAllowed”, the Frame Application performs the
asynchronous <StopCommunication()> operation. The actual exit from state
“communicationAllowed” is triggered by DisableCommunication() (see Table 8)

The state machine is used to define state dependent interface and method availability in 6.6. IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 117 –

Figure 61 – Online state machine of DTM

Additional to the diagram notation explained above, Table 9 also shows triggers, that occur
automatically.

The trigger {automatic} is a trigger, that activates automatically after the start state of the
transition has been reached (spontaneous transition).

The trigger {enter state} fires when a state is reached.

These triggers are not associated to specific transitions, but fire every time, when a transition
leads into the state. That is why those triggers are shown in the table without number and
only with the start state.

IEC

sm : Online State Machine

initial

notConnected

connecting disconnecting

3
connect trigger
[connect conditions]

connected

7
connect finished

[connect succeeded]

final

17
disconnect finished
[disconnect succeeded]

14
disconnect trigger /

[disconnect conditions]

11
disconnect finished
[connection aborted ||
(disconnect succeeded &&
device type check failed)]

6
connect finished
[connect failed or
cancelled]

16
disconnect finished
[disconnect failed]

inactive

 18
{automatic} /
[StopCommunication
has been requested]

communicationAllowed

5
cancel connect

standby disturbed

onlinecheckingDevice
12
check finished /
[device type check succeeded]

13
connection
aborted by
communication 10

check finished /
[device type check
failed]

1

2

8

20

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 118 – IEC TR 62453-42:2016  IEC 2016

Table 9 – Definition of online state machine

Start state End state Trigger Condition Action

1 communication
Allowed

notConnected {automatic}

2 notConnected standby

(notConnected
Standby)

{ automatic } raise
OnlineStateChanged(not
ConnectedStandby)

3 notConnected connecting connect trigger
Several triggers possible:

For Child DTMs:

- Immediate connect
because “StayConnected”
was requested in
EnableCommunication()

- online function
started(e.g. Download or
Online-GUI)

- reconnect after lost
connection

For CommDTM:

- Immediate connect
because “StayConnected”
was requested in
EnableCommunication()

- online function
started(e.g. Scan,
Download or Online-GUI)

- Child DTM requested
connection+)

<StopCommunication>
has not been called

4 connecting++) {enter state} raise
OnlineStateChanged
(connecting)

initiate connection:

For Child DTMs:

Call <Connect()>on
parent channel

For Comm DTMs+):

Use driver API to
connect.

5 connecting connecting cancel connect CancelConnect()+)

6 connecting disturbed

(notConnected
Disturbed)

connect finished connect failed or
cancel succeeded

raise
OnlineStateChanged(
NotConnectedDisturbed)

7 connecting connected connect finished connect succeeded

8 connected Checking
Device

(connectedChe
ckingDevice)

{automatic} raise
OnlineStateChanged(
ConnectedCheckingDevi
ce)

9 checkingDevice {enter state} If device has not been
checked, perform device
type check. *)

10 checkingDevice disconnecting device type check finished device type check
failed

raise
OnlineStateChanged
(Disconnecting)

raise
DeviceTypeCheckFinish
ed(UnsupportedDevice)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 119 –

Start state End state Trigger Condition Action

11 disconnecting Disturbed

(notConnected
Disturbed)

disconnect finished connection aborted by
communication ||
(disconnect
succeeded && device
type check failed)

12 checkingDevice

(connectedChe
ckingDevice)

online

(connected
Online)

device type check finished device type check
succeeded

raise
OnlineStateChanged(Co
nnectedOnline)

raise
DeviceTypeCheckFinish
ed(SupportedDevice)

13 connected notConnected connection aborted by
communication

Abort notification received
from parent Communication
Channel+)

 For Child DTMs:

Handle pending
transactions or active
online functions. **)

For ParentDTMs:

Abort all child
connections

14 connected disconnecting disconnect trigger
Several triggers possible:

- all online functions
finished (and DTM is in
ConnectionMode
“OnDemand”)

- call to
<StopCommunication> has
been received

- Child DTM calls
<Disconnect>

15 disconnecting {enter state} raise
OnlineStateChanged(Dis
connecting)

terminate connection:

For Child DTMs:

Call <Disconnect()> on
parent channel

For Comm DTMs+):

Use driver API to
disconnect.

16 disconnecting online

(connected
Online)

disconnect finished disconnect failed raise
OnlineStateChanged(Co
nnectedOnline)

17 disconnecting notConnected disconnect finished disconnect succeeded

18 notConnected inactive {automatic} <StopCommunication>
has been requested

19 inactive {enter state} raise
OnlineStateChanged(Ina
ctive)

20 inactive final {automatic} <StopCommunication>
completed callback

NOTES:

*) Device type check means that the DTM checks if it is connected to the correct device type.
Device type check shall be performed at least once when state “checkingDevice” is entered the first time. The
Frame Application receives an event DeviceTypeCheckFinished, after the device type check has been
performed. For some devices a device type check may not be feasible. In this case, the DTM shall raise
DeviceTypeCheckFinished event with ‘NotChecked’ value.

**) Asynchronous operations shall always be finished by calling the ‘Completed’ callback method. If a connection
is aborted, each aborted transaction will raise an FdtConnectionAbortedException in its ‘End’-method.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 120 – IEC TR 62453-42:2016 Ó IEC 2016

+) Communication DTMs do not call <Connect> or <Disconnect> as they do not have a parent Communication
Channel. Instead Communication DTMs work on a driver API. For the same reason, the abort notif ication is
not valid for Communication DTMs, but a Communication DTM may receive a similar notif ication from the
driver.

++) When <StopCommunication> is called in state ‘connecting’, then the connection establishment is f inished and
<StopCommunication> is handled in the following state.

6.3.3 State machine of instance data

6.3.3.1 General

A DTM BL shall expose the state of the actual instance data to the Frame Application in order
to support Frame Applications in synchronizing DTM datasets with their respective devices.
Two properties reflect the possible states of the data (instance data and online data) in regard
to modifications (see Figure 62):

· modification in DTM: IInstanceData.ModifiedInDtm (see state machine in Figure 63)
reflects changes in the instance data and

· modification in device: IDeviceData.ModifiedInDevice (see state machine in Figure 64)
reflects changes in the online data.

Figure 62 – Modifications of data through a DTM

NOTE For description of the concept of Instance Data and Device Data see 4.12.1.

If the DTM supports the methods <ReadDataFromDevice()> and <WriteDataToDevice()>, then
the Frame Application may use these methods for synchronization of Instance Data Set and
Device Data Set. A DTM indicates in the property IOnlineOperation.SupportedTransfers
whether the respective device supports these methods.

6.3.3.2 Modifications in DTM

The property ModifiedInDtm can be used by a Frame Application to detect which DTMs have
modification of offline data that are not synchronized with the respective device.

IEC

Online DTM GUIOnline DTM GUI Offline DTM-GUIOffline DTM-GUI

Device

Device
Data Set

DTM BL

ModifiedInDevice

ReadDataFrom Device() /
WriteDataToDevice()

Flow of
modifications

Flow of
modifications

Instance Data Set
Offline

Device
Parameters

ModifiedInDTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 121 –

The state “default” indicates the initial status of the dataset (after InitData()).

Any offline modification of device parameters will lead to a state not equal to “default” (device
parameters here means subset of offline data that is synchronized with the device).

<ReadDataFromDevice()> or <WriteDataToDevice()> change the state to “dataLoaded”.

The state shall be exposed in IInstanceData property ModifiedInDtm and shall be read only
(see Figure 63). The DTM shall include the state in its persisted instance dataset and set the
state accordingly in LoadData(). When the state changes, the DTM fires an
IInstanceData.ModifiedInDtmChanged() event.

Figure 63 – ModifiedInDtm: State machine of instance data

The meaning of the different states can be seen in Table 10.

Table 10 – Description of instance dataset states

State Meaning

default This state is set after creation of a new instance dataset in InitData(). The state is only
valid if the newly created dataset contains enough information to establish a proper
communication.

modifiedInDTM The offline instance dataset is modified and not synchronized with the device.

dataLoaded The offline instance dataset has been synchronized with the device. No further change
has been executed on the instance dataset since the synchronization.

IEC

sm : IInstanceData.ModifiedInDTM

default

modifiedInDTM

dataLoaded

First offline
modification

Offline
Modification

initial

Read or write all data

Read or write all data

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 122 – IEC TR 62453-42:2016  IEC 2016

6.3.3.3 Modifications in device

The property ModifiedInDevice can be used by a Frame Application to detect which DTMs
have modified the data in the device and have not synchronized their DTM dataset. Any
change to the device, which is performed or recognized by the DTM will lead to a state
“modifiedOnline”.

NOTE The status "modifiedOnline" is intended to indicate all changes in data intended to configure the device. It
is not intended to reflect changes in dynamic values (e.g. operating hours).

The state shall be exposed in IDeviceData property ModifiedInDevice and shall be read only.
(see Figure 64) The state shall be included in the persisted instance dataset. When the state
changes, an IDeviceData.ModifiedInDeviceChanged() event is fired.

Figure 64 – ModifiedInDevice: State machine related to device data

The meaning of the different states can be seen in Table 11.

Table 11 – Description of dataset states regarding online modifications

State Meaning

noKnownChanges The dataset state regarding the device is unknown because

the DTM was not connected to the device or

the DTM has synchronized at some point of time with the device. The dataset
has been uploaded (<ReadDataFromDevice()> or downloaded
(<WriteDataToDevice()>). No further change has been executed on the
device by the DTM. But there may be changes on the device, which were
triggered from other sources.

modifiedOnline Parameters have been changed in the device but not in instance dataset
(E.g.: see use case Online parameterization, IDeviceData interface
definition)

 ‘modifiedOnline’ status shall be set only once in case the data in the device
has been changed by the DTM.

In case of successful Upload or Download of complete dataset, the state
shall be set to “noKnownChanges”.

Data in the device can also be modified directly by a tool out of the scope of the FDT. In this
case, it is recommended not to set the status to ‘modifiedOnline’.

IEC

sm : IDeviceData.ModifiedInDevice

modifiedOnline

First instantiation of DTM

noKnownChanges

Read or write all dataOnline
Modification by DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 123 –

If an application is started, which may need to change the state in ModifiedInDevice (the
property is part of the instance dataset and can not be changed when the dataset is not
locked), then the dataset shall be locked (StartTransaction()).

For special operations it is useful to keep the device configuration and the instance dataset in
sync. Therefore it is strongly recommended that the DTM should ask the user whether the
data should be synchronized. This is necessary for user interface functions like Online
Parameterization and Offline Parameterization (see Table A.4).

IDeviceData methods shall not modify the instance dataset, but shall set the state in
ModifiedInDevice.

6.4 DTM User Interface

The class diagram shown in Figure 65 shows the interfaces, which shall be implemented by
the different DTM User Interface classes and controls.

Figure 65 – DTM UI interfaces

FDT supports following DTM User Interface types:

· WPF Controls can be embedded into the user interface of the Frame Application. These
controls shall derive from the standard .NET WPF User Control class (namespace
System.Windows).

IEC

DTM UI
Application

DTM UI
Command Function

CancelExecute()

«interface»
ICommandFunction

BeginExectute()

EndExecute()

User Control
«WinForm»

...

User Control
«WPF»

...

«interface»
IDtmUiFunction

DtmSystemGuiLabel()
TraceLevel()

BeginClose()
EndClose()

«interface»
IDtmUiFunctionNonModal

CurrentDataSource()
CurrentParameterSummaryState()
CustomActions()
OperationMode()
StandardActions()

«interface»
IDtmUiFunctionModal

DTM UI
Non Modal

DTM UI
Modal

BeginInit()
EndInit()

«interface»
IDtmUiControlFunction

CreateControl()
ControlLoaded()

DTM UI Control

...

DTM UI Control

...

creates

creates

creates

creates

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 124 – IEC TR 62453-42:2016  IEC 2016

• WinForms Controls can be embedded into the user interface of the Frame Application.
These controls shall derive from the standard WinForms User Control class (namespace
System.Windows.Forms).

• Applications are external DTM-specific user interfaces (e.g. executable applications) which
can not be embedded into the Frame Application. These are represented by simple .NET
classes (called “DTM UI Application”) which may be used by the Frame Application to
control the external user interface via the interface IDtmUiFunction.

• UiCommandFunctions are similar to the command functions which can be executed at the
DTM Business Logic, but UiCommandFunctions are allowed to open own user interfaces
(e.g. dialog boxes, private dialogs etc.). Such functions are represented by simple .NET
classes which contain the code to execute.

The different DTM UI types can be accessed by API interfaces (Table 12):

Table 12 – DTM UI interfaces

Interface Availability Description

ICommandFunction O This interface is used to execute command functions (same
interface as implemented by the DTM Business Logic)

IDisposable M .NET interface for disposable objects.

IDtmUiFunction M This is the main interface of a DTM UI function.

IDtmUiFunctionModal O This interface is implemented by DTM UIs which are executed
modal.

IDtmUiFunctionNonModal O This interface is implemented by DTM UIs which are executed
modless.

6.5 Communication Channel

The following class diagram (Figure 66) shows the interfaces, which shall be implemented by
a Communication Channel. A Communication Channel implements the main interface
ICommunicationChannel and the interfaces ICommunication, ISubscription, IScanning ,and
ISubTopology, which are accessible by corresponding properties of ICommunicationChannel.

Figure 66 – Communication Channel interfaces

Table 13 provides an overview on the interfaces of a Communication Channel.

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 125 –

Table 13 – Communication Channel interfaces

Interface Availability Description

ICommunicationChannel M This is the main interface of a Communication Channel. It
provides access to all other channel interfaces and to channel
related information (e.g. supported protocols).

ICommunication M This interface is the communication entry point of a channel.

IScanning C This interface is used to request a scan of the sub-topology of a
Communication Channel.

This interface shall be provided for communication protocols that
support scanning. The corresponding protocol annex shall define
whether this interface is mandatory or not.

ISubscription C This interface extends the communication entry point of a
channel with device initiated data transfer functionality.

This interface should be provided for communication protocols
that allow for device initiated data transfer. The corresponding
protocol annex shall define whether this interface is mandatory or
not.

ISubTopology M This interface provides methods for management of the sub-
topology for a Communication Channel.

6.6 Availability of interface methods

Frame Application interfaces can always be called from other FDT objects as soon as the
Frame Application provides access to these interfaces.

The availability of interface methods of the DTM-related objects may depend on the state of
the DTM instance.

Table 14 defines the interfaces of a DTM BL which can be used by a Frame Application at the
shown states.

Table 14 – Availability of DTM BL methods in different states

Interface / Method

cr
ea

te
d

in
it

ia
liz

ed

co
nf

ig
ur

in
g

ru
nn

in
g

co
m

m
un

ic
at

io
nA

llo
w

ed

re
le

as
in

g

re
le

as
ed

IChannels +) X X X

ICommandFunction X X

IComparison:<InstanceDataCompare> X X

IComparison:<DeviceDataCompare> X

IDeviceData

 <GetDataInfo()> X X

 (all other methods) X

IDtm +)

 Init() X

 BeginRelease() X X X X

 LoadData() X

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 126 – IEC TR 62453-42:2016  IEC 2016

Interface / Method

cr
ea

te
d

in
it

ia
liz

ed

co
nf

ig
ur

in
g

ru
nn

in
g

co
m

m
un

ic
at

io
nA

llo
w

ed

re
le

as
in

g

re
le

as
ed

 InitData() X

 BeginConfiguration()/
EndConfiguration()

 X

 Run() X

 DtmSystemGuiLabel,
DtmSystemTag, FdtVersion,
TraceLevel

 X X X X X

 All other methods / interface
properties

 X X X

IDtmInformation +) X X X X X

IDtmMessaging X X

IDtmUiMessaging X X

IFunction X X

IHardwareInformation X

IInstanceData X X

INetworkData X X

INetworkInfoValidation X X

IOnlineOperation X

IPorts X X

IProcessData X X

IProcessImage X X

IReporting X X

IDeviceCustomConfiguration
IInstanceCustomConfiguration

 X

+) The Frame Application shall not subscribe to events before the DTM is in state
‘running’

Communication Channel interfaces can always be called from other FDT objects as soon as
the Communication Channel provides access to these interfaces.

DTM UI interfaces can always be called from other FDT objects as soon as the DTM UI
provides access to these interfaces.

7 FDT datatypes

7.1 General

Datatypes are defined in Annex B. This clause provides an overview on top-level datatypes
and how they are used. This clause (figures and tables) does not provide the complete
datatype definition; please refer to Annex B for a complete datatype definition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 127 –

7.2 Datatypes – Base

FDT defines two basic datatypes: FdtDatatype and FdtList<>. Figure 67 shows examples how
FdtDatatype and FdtList<> are used.

Used in:

-/-

Figure 67 – FdtDatatype and FdtList

Table 15 describes the base datatypes.

Table 15 – FDT base datatypes

Datatype Description

FdtDatatype Base class for all FDT datatype classes.

The class provides the base implementation for the Verify() and Clone() methods. The type
parameter T is always set to the derived class and is used to control these methods:

• Verify() checks whether all properties are valid (e.g. mandatory properties have a value
etc.).

• Clone() creates a new object that is a deep-copy of the instance. All objects are
duplicated – the top-level objects are duplicated as well as all the lower levels.

FdtList<> Generic list of FdtDatatypes. The type parameter T defines the type of the list elements,
FdtList<> is derived from System.Collections.Generic.List. and provides all functions of List.
The Verify() method enforces the rule that the list shall not be empty. If an empty list shall be
represented, the respective member shall return ‘null’.

Like FdtDatatype the FdtList<> also provides the methods Verify() and Clone().

7.3 General datatypes

General FDT datatypes are used in various other FDT datatypes.

Table 16 lists and describes the general FDT datatypes

IEC

FdtList

T

Some
FDT Datatype

FdtDatatype

T

1..*

1

«bind» <T->FdtDatatype>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 128 – IEC TR 62453-42:2016  IEC 2016

Table 16 – FDT General datatypes

Datatype name Description

BusCategory A bus category is a Universally Unique Identifier for a fieldbus protocol (or a point-to-
point communication protocol). A property indicates whether the bus category is
‘supported’ or ‘required’.

ChannelReference Unique identifier of a Communication Channel provided by a DTM.

InvokeId Unique identifier for an opened user interface.

PhysicalLayer Unique identifier for a physical layer of a fieldbus like PROFIBUS PA.

PortReference Unique identifier of a Port provided by a DTM.

ProgressInfo Information about progress of an operation.

ProgressInfo<T> Intermediated result and information about progress of an operation.

ProtocolInfoAttribute This attribute class exposes general information about a protocol-specific assembly.

SemanticInfo This class provides semantic information for a data object. For a range of predefined
SemanticIds see Annex J.

UserInfo Description of the user level including information about permissions, current session
etc.

7.4 Datatypes – DtmInfo / TypeInfo

The class diagram shown in Figure 68 describes the relations of DtmInfo, TypeInfo and
associated classes.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 129 –

Used in:

IDtmInformation.GetDtmInfo()

IDtmInformation.BeginGetSupportedTypes() / IDtmInformation.EndGetSupportedTypes()

IDtmInformation.GetDeviceIdentInfo()

IDtm.ActiveType

Figure 68 – DtmInfo / TypeInfo – datatypes

Table 17 describes datatypes related to DtmInfo.

Table 17 – DtmInfo datatype description

Datatype Description

BlockTypeCategory A block type category is a Universally Unique Identifier for a block category (e.g. Analog
Input, Digital Output).

BlockTypeInfo The representation for a particular block type within the DTM is called DTM Block Type.
A DTM may contain one or more DTM Block Types. The concrete design and
implementation of the DTM Block Types is not in scope of FDT. This class provides only
information about these pieces of software like name, version, vendor, supported
protocols etc.

BusCategory A bus category is a Unique Identifier for a fieldbus protocol (or a point-to-point
communication). See also 7.8.

ClassificationId Unique identifier according to its primary measurement (IEC 62390 AnnexG).

IEC

11111

BusCategories
BusCategory

DatasetFormats

1

Bitmaps

Icons

Documents

FdtBitmapInfo

FdtIconInfo

0..*

0..*

Document
0..*

DeviceClassifications

DeviceClassification
1..*

ModuleTypeInfo DeviceTypeInfo

Category

1

ModuleClassifications

1..*

1 1

1

1..*

DtmRef : DynamicClassReference
FdtVersion : Version
Version : Version
Id : Guid
ClassName : string
Vendor : string
Name : string
ProgIdsOfSupportedFdt1DTMs : List<string>

DtmInfo

Used : Guid
ReadSupported : DatasetFormat [0..*]

DatasetFormats

CommunicationSupport : enum
Id : Guid
ProductName : string
ProductManufacturerName : string
ProductRevision : string
Roles : Role [0..*]
Date : string
Descriptor : string

TypeInfo

Profile : int
ProfileRevision : int

BlockTypeInfo

BlockCategory : Guid
BlockCategoryName : string

BlockTypeCategory

PowerDistribution
MotionControl
Measurement
OperatorInterface
ModulesAndControllers
Communication

<<enum>>
ClassificationDomainId

DomainId

<<enum>>
ClassificationId

Id
1

1

0..*

1

DTM Business Logic

GetDtmInfo()

DeviceIdentInfo

<GetSupportedTypes()> GetDeviceIdentInfo()

DtmCategory
DtmCategory

1

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 130 – IEC TR 62453-42:2016  IEC 2016

Datatype Description

ClassificationDomainId Device classification domain groups (IEC 62390 AnnexG).

DatasetFormats Dataset format identifiers of persisted data, used and supported by a DTM

DeviceClassification Classification of a device according IEC 62390, Annex G

DeviceIdentInfo This class is used to describe physical device types which are supported by a Type. It
contains identification elements of a physical device type or device type group.

DeviceTypeInfo The representation for a particular physical device type within the DTM is called DTM
Device Type. A DTM may contain one or more DTM Device Types. The concrete design
and implementation of the DTM Device Types is not in scope of FDT. This class
provides only information about these pieces of software like name, version, vendor,
supported protocols etc.

Document Information about documents on hard disk or in the Web. This could be any device
manual, help file, spare part list etc. which is installed together with the DTM or
available on the Web.

A Document may also provide protocol-specific information for a DeviceType (e.g. EDS).
In such cases the document shall be categorized as ‘Technical Document’ and be
marked with an appropriate protocol-specific SemanticId.

DtmInfo DtmInfo contains general information about a DTM such as name, version, identifier and
vendor of the software, the FDT version to which the DTM complies.

FdtBitmapInfo Description of a bitmap for representation of a device, module or block in BMP format
(high resolution, 24 bit color and 8 bit transparency info (alpha channel))

FdtIconInfo Information about device, module or block icon.

ModuleTypeInfo The representation for a particular physical module type within the DTM is called DTM
Module Type. A DTM may contain one or more DTM Module Types. The concrete design
and implementation of the DTM Module Types is not in scope of FDT. This class
provides information about DTM Module Types like name, version, vendor, supported
protocols etc.

TypeInfo Abstract base class used for definition of device type, block type or module type. A DTM
shall contain one or more TypeInfo objects.

7.5 Datatypes – DeviceIdentInfo

The class diagram shown in Figure 69 describes the relations of the DeviceIdentInfo class.
DeviceIdentInfo can be requested from IDtmInformation.GetDeviceIdentInfo() for a given
TypeIdent and BusCategory.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 131 –

Used in:

IDtmInformation.GetDeviceIdentInfo()

Figure 69 – DeviceIdentInfo – datatypes

Table 18 describes datatypes related to DeviceIdentInfo.

Table 18 – DeviceIdentInfo datatype description

Datatype Description

DeviceIdentInfo This class is used to describe physical device types which are supported by a DTM
Device Type. It contains identification elements of a physical device type or device
type group.

Remark: This class provides a protocol neutral access to the information ,
therefore it typically will be used by the Frame Application if no protocol-specific
handling is needed.

DeviceIdentInfo<T> The derived class DeviceIdentInfo<T> provides a protocol-specific access to the
information which is more type-safe. This class should be used whenever possible.

The generic type parameter T defines the type of the protocol-specific class which
defines the protocol-specific identification properties. These protocol-specific
properties are mapped to the properties:

• ManufacturerId

• DeviceTypeId

• SoftwareRevision

• HardwareRevision

• ProtocolIdentificationProfile

• ProtocolSpecificProperties

which are defined in the base class DeviceIdentInfo.

DeviceIdentValue<T> Represents a single identification element of a physical device type or group. For
example: Device Type Id, Manufacturer Id etc.

IEC

DeviceSupportLevel
SupportLevel

DeviceSpecificProperties

DeviceTypeId

HardwareRevision

ProtocolSpecificProperties

SoftwareRevision

111111

1

0..*

0..1

0..1

0..1

RegularExpressions

1

0..*

1

0..*

ProtocolSpecificName : string
Value : string [0..1]

DeviceIdentValue<string>

ManufacturerId
0..1

ProtocolDeviceIdentInfoType

DeviceIdentInfo

T

1

«bind» <T->ProtocolDeviceIdentInfo>

ProtocolDeviceIdentInfo

1

ProtocolId : Guid

DeviceIdentInfo

RegularExpression

1

ProtocolIdentificationProfile
0..1

<Protocol>DeviceIdentInfo

Different types
for each protocol

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 132 – IEC TR 62453-42:2016  IEC 2016

Datatype Description

DeviceSupportLevel Enumeration which defines the support level of a DTM Device Type for a physical
device.

ProtocolDeviceIdentInfo Abstract base class for protocol-specific device identification properties.

Protocol-specific classes derive from this class and define the-specific device
identification properties. However, these protocol-specific properties can be
accessed in a protocol neutral way by accessing the corresponding properties in
the DeviceIdentInfo class.

ProtocolId Universally Unique Identifier for a fieldbus protocol (or a point-to-point
communication).

ProtocolIdentificationProfile Defines the protocol-specific identification profile which is used for device
identification. (examples for PROFIBUS: I&M, PA, DP). If a protocol does not
support multiple identification profiles then this property shall be empty.

RegularExpression Regular expression that defines which physical device types are supported by a
DTM Device Type.

The class diagram in Figure 70 shows the protocol-specific datatype DeviceIdentInfo<T> for
the example HART protocol.

Used in:

Protocol-specific Device DTM providing values for HART-specific DeviceIdentInfo

Figure 70 – DeviceIdentInfo – Example for HART

Table 19 describes HART datatypes related to DeviceIdentInfo.

IEC

ProtocolDeviceIdentInfo

DeviceCommandRevisionLevel

DeviceFlags

DeviceTypeCode

ManufacturerId

SoftwareRevision

111111

1

1

1

1

1

DeviceIdentValue<Nullable<int>>

T
1

HartDeviceIdentInfo

HardwareRevisionLevel

PhysicalSignalingCode
1

1

BusProtocolVersion
1

1

DeviceProfile

1

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 133 –

Table 19 – DeviceIdentInfo – Example for HART

Datatype Description

DeviceIdentValue<T> Represents an identification element of a device type
for a physical device type or group. For example:
Device Type Id, Manufacturer Id etc.

The generic type parameter T defines the type of the
identification value (e.g. int, float, string etc.)
corresponding to the format defined in the protocol.

The identification element can either be a specific value
or a regular expression (e.g. defining a range of
supported identification values).

HartDeviceIdentInfo HART-specific device identification information.

ProtocolDeviceIdentInfo

Abstract base class for protocol-specific device
identification properties.

Protocol-specific classes derive from this class and
define the specific device identification properties.
However, these protocol-specific properties can be
accessed in a protocol neutral way by accessing
corresponding properties in the DeviceIdentInfo class.

The example in Figure 71 demonstrates how a (HART) Device DTM creates and returns a
DeviceIdentInfo instance:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 134 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 71 – Example: DeviceIdentInfo creation

The example in Figure 72 demonstrates how a Frame Application requests and uses the
DeviceIdentInfo instance created in Figure 71. The protocol-specific properties shown in
Figure 71 are mapped automatically to the protocol-independent properties which are used in
Figure 72.

public DeviceIdentInfo GetDeviceIdentInfo()
{
 // Create the HART specific identification properties first

 // Manufacturer code of the device vendor is 17
 HartDeviceIdentInfo hartSpecificInfo = new HartDeviceIdentInfo();
 hartSpecificInfo.ManufacturerId = new DeviceIdentValue<int?>(17);

 // The ID of the supported device is 123
 var identVal = new DeviceIdentValue<int?>();
 hartSpecificInfo.DeviceTypeCode = new DeviceIdentValue<int?>(123);

 // Device is a HART 5 Device
 hartSpecificInfo.BusProtocolVersion = new DeviceIdentValue<int?>(5);

 // This DTM is able to handle the software versions 1,2 and 3 of the device
 identVal = new DeviceIdentValue<int?>();
 identVal.RegularExpressions = new FdtList<RegularExpression>(

 new RegularExpression("1|2|3"));
 hartSpecificInfo.SoftwareRevision = identVal;

 // This DTM is able to handle only the command revision level 5 of the device
 hartSpecificInfo.DeviceCommandRevisionLevel = new DeviceIdentValue<int?>(5);

 // This DTM is able to handle all hardware versions of this device
 identVal = new DeviceIdentValue<int?>();
 identVal.RegularExpressions = new FdtList<RegularExpression>(

 new RegularExpression(".*"));
 hartSpecificInfo.HardwareRevisionLevel = identVal;

 // Physical Signaling Code is not relevant for identification
 identVal = new DeviceIdentValue<int?>();
 identVal.RegularExpressions = new FdtList<RegularExpression>(

 new RegularExpression(".*"));
 hartSpecificInfo.PhysicalSignalingCode = identVal;

 // Device Flags are not relevant for identification
 identVal = new DeviceIdentValue<int?>();
 identVal.RegularExpressions = new FdtList<RegularExpression>(

 new RegularExpression(".*"));
 hartSpecificInfo.DeviceFlags = identVal;

 // Device ident information (protocol neutral)
 DeviceIdentInfo<HartDeviceIdentInfo> deviceIdentInfo =
 new DeviceIdentInfo<HartDeviceIdentInfo>();

 // This DTM is designed to support a specific device
 deviceIdentInfo.SupportLevel = DeviceSupportLevel.SpecificSupport;

 // Set the protocol specific info
 deviceIdentInfo.ProtocolSpecificIdentInfo = hartSpecificInfo;

 return deviceIdentInfo;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 135 –

IEC

Figure 72 – Example: Using DeviceIdentInfo

The example in Figure 73 demonstrates how the HART-specific datatype assembly
(Fdt.Datatypes.Hart.dll) exposes the type information over the DeviceIdentInfoTypeAttribute:

IEC

Figure 73 – Example: DeviceIdentInfoTypeAttribute

7.6 Datatypes for installation and deployment

7.6.1 Datatypes – SetupManifest

A SetupManifest describes the setup of a DTM. It is used for installation and deployment.
(see 9.6). Figure 74 shows a class diagram with related classes of SetupManifest.

Figure 74 – SetupManifest – datatypes

IEC

ProductCode : Guid
RebootRequired : bool
SetupName : string
SetupUrl : Uri
VendorName : string
SetupVersion : Version
MinimunInstallerVersion : Version

SetupManifest

DtmInfos

1..*
DtmInfo DeviceIdentInfos

This is not referenced directly from
the SetupManifest but serialized as
files located in a subdirectory.
See chapter deployment for details .

1

ProductFeature
ProductFeatures

OSVersion
SupportedWindowsVersions

0..*

1..*

1 1

0..*1

[assembly: DeviceIdentInfoType
(
DeviceIdentInfoType = typeof(DeviceIdentInfo<HartDeviceIdentInfo>),
ProtocolDeviceIdentInfoType = typeof(HartDeviceIdentInfo),
 DeviceScanInfoType = typeof(DeviceScanInfo<HartDeviceScanInfo>),
 ProtocolDeviceScanInfoType = typeof(HartDeviceScanInfo)
)
]

public void ShowDeviceIdentInfo(IDtmInformation dtm, DeviceTypeInfo deviceTypeInfo)
{
 FdtList<DeviceIdentInfo> deviceIdentInfo = dtm.GetDeviceIdentInfo(deviceTypeInfo.Id,
 deviceTypeInfo.BusCategories[0]);
 // Standard FDT2 ident properties
 MessageBox.Show("Manufacturer ID = " + deviceIdentInfo[0].ManufacturerId.Value + "\n" +
 "Device Type ID = " + deviceIdentInfo[0].DeviceTypeId.Value + "\n" +
 "Software Rev. = " + deviceIdentInfo[0].SoftwareRevision.Value + "\n" +
 "Hardware Rev. = " + deviceIdentInfo[0].HardwareRevision.Value + "\n");

 // Ident properties only defined in the protocol
 // (for HART: DeviceCommandRevisionLevel and Device Flag)
 foreach (DeviceIdentValue<string> identValue
 in deviceIdentInfo[0].ProtocolSpecificProperties)
 {
 MessageBox.Show(identValue.ProtocolSpecificName + " = " + identValue.Value);
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 136 – IEC TR 62453-42:2016  IEC 2016

Table 20 describes SetupManifest class and its related classes.

Table 20 – SetupManifest datatype description

Datatype Description

DtmDeviceIdentManifest A DtmDeviceIdentManifest describes additional physical device parameters that are
required for device identification.

DtmInfo DtmInfo contains general information about a DTM such as name, version, identifier and
vendor of the software, the FDT version to which the DTM complies.

OSVersion This class represents a version of the operating system.

ProductFeature This class represents a product feature for installation.

SetupManifest A setup manifest describes the setup of a DTM, including identification of the product,
the vendor, version and included DTMs.

7.6.2 Datatypes – DtmManifest

A DtmManifest describes the components of a DTM (see 9.5.3). Figure 75 shows a class
diagram with related classes of DtmManifest.

Figure 75 – DtmManifest – datatypes

Table 21 describes DtmManifest datatype and its related classes.

Table 21 – DtmManifest datatype description

Datatype Description

AssemblyInfo Information about a .NET assembly.

ConformityRecordRef Reference to a conformity record file.

DtmManifest A DTM manifest describes the assembly of a DTM and the included DTM itself. The
manifest is used to register an installed DTM in order to enable Frame Applications to
find it.

DynamicClassReference Information about a class e.g. a DtmInfoBuilder or a DTM.

DTM User Interface
manifest file

A DTM User Interface manifest file is used to register a DTM User Interface in the
system in order to enable Frame Applications to find it. The file contains a
DtmUiManifest (see 7.6.3).

IEC

DtmInitData : string [0..1]
DtmRootPath : string

DtmManifest

AssemblyInfo

1

1 1

AssemblyInfo

ConformityRecordRef
0..*

ConformityRecords

ClassName : string

DynamicClassReferenceDTMInfoBuilderRef
1

1

DTM User Interface
Manifest file

FileName

FileName : string
ManifestType : string

UiManifestRef

1

0..*

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 137 –

7.6.3 Datatypes – DtmUiManifest

This manifest describes a DTM UI assembly and the included DTM User Interface functions.
The manifest is used to register installed DTM User Interface functions in order to enable the
Frame Applications to find and execute them. Figure 76 shows a class diagram with related
classes of DtmUiManifest.

Figure 76 – DtmUiManifest – datatypes

Table 22 describes DtmUiManifest class and its related classes.

Table 22 – DtmUiManifest datatype description

Datatype Description

DtmUiManifest This manifest describes a DTM User Interface function. The manifest is used to register
installed DTM User Interface functions in order to enable the Frame Applications to find
and execute them.

AssemblyInfo Information about a .NET assembly.

UiFunctionInfo Abstract base class for a DTM User Interface description.

Frame Applications shall use this information to find the user interface function for a
specific function.

UiCommandFunctionInfo Information about a command function which is provided by a DTM User Interface
class.

UiControlFunctionInfo Information about a WinForms control or WPF control that can be embedded into the
Frame Application user interface.

UiAppFunctionInfo Information about an application which can be started by a DTM User Interface class.

UiControlType Enumerates possible user interface control types (WinForms, WPF etc.)

7.7 Datatypes – Communication

The communication datatypes are used to exchange data between a DTM and its parent
Communication Channel in order to:

– Establish a connection to the device

IEC

ManifestType : string

DtmUiManifest

1 1

AssemblyInfo

UiFunctionInfos

1..*

1
AssemblyInfo

FunctionId : int
ClassName : string
InitData : string

UiFunctionInfo

UiAppFunctionInfoUiCommandFunctionInfo UiControlFunctionInfo

1

Type 1 <<enum>>
UiControlType

WinForm
WPF

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 138 – IEC TR 62453-42:2016  IEC 2016

– Perform data exchange transactions with the device
– Release the connection
– Subscribe device initiated data transfer between a DTM and its parent Communication

Channel
– Request scanning of bus topology
– Request address setting of Child DTM

Figure 77 shows a class diagram with datatypes used to establish a connection to the device.

Used in:

ConnectRequest: ICommunication.BeginConnect()

ConnectResponse is returned in ICommunication.EndConnect()

Figure 77 – Communication datatypes – Connect

Figure 78 shows a class diagram with datatypes used to exchange data with the device.

Used in:
TransactionRequest: ICommunication.BeginCommunicationRequest()
TransactionResponse is returned in ICommunication.EndCommunicationRequest()

Figure 78 – Communication datatypes – Transaction

IEC

<Protocol>TransactionRequest <Protocol>TransactionResponse

Different types for each protocol

Id : string [0..1]

TransactionRequest

CommunicationReference : Guid
Id : string [0..1]

TransactionResponse

CommunicationError

1

0..1
ErrorInformation

IEC

ProtocolId : Guid
SystemTag : Guid

ConnectRequest

{Protocol}ConnectRequest

CommunicationReference : Guid

ConnectResponse

{Protocol}ConnectResponse

Different types for each protocol

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 139 –

Figure 79 shows a class diagram with datatypes used to release a connection to the device.

Used in:

DisconnectRequest: ICommunication.BeginDisconnect()

DisconnectResponse is returned in ICommunication.EndDisconnect()

AbortMessage: AbortCallback()

Figure 79 – Communication datatypes – Disconnect

Figure 80 shows a class diagram with datatypes used to subscribe and unsubscribe device
initiated data transfer.

Used in:

SubscribeRequest: ISubscription.BeginSubscriptionInitialization()

SubscribeResponse is returned in ISubscription.EndSubscriptionInitialization()

UnsubscribeRequest: ISubscription.BeginSubscriptionTermination()

UnsubscribeResponse is returned in ISubscription.EndSubscriptionTermination()

Figure 80 – Communication datatypes – Subscribe

Figure 81 shows a class diagram with datatypes used to request scanning of the sub-topology
of a Communication Channel.

IEC

SubscribeRequest

<Protocol>SubscribeRequest

SubscribeResponse

<Protocol>SubscribeResponse

UnsubscribeRequest

<Protocol>UnsubscribeRequest

UnsubscribeResponse

<Protocol>UnsubscribeResponse

Different types for each protocol

IEC

AbortPendingTransactions : bool
CommunicationReference : Guid

DisconnectRequest

<Protocol>DisconnectRequest

CommunicationReference : Guid

DisconnectResponse

<Protocol>DisconnectResponse

CommunicationReference : Guid

AbortMessage

<Protocol>AbortMessage

Different types for each protocol

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 140 – IEC TR 62453-42:2016  IEC 2016

Used in:

ScanRequest: IScanning.BeginScanRequest()

Figure 81 – Communication datatypes – Scanning

Figure 82 shows a class diagram with datatypes used to request setting of device address of
Child DTM of a Communication Channel.

Used in:

DeviceAddressInfo: ISubTopology.BeginSetChildrenAddresses()

DeviceAddressInfo Is returned from ISubTopology.EndSetChildrenAddresses()

Figure 82 – Communication datatypes – Address setting

Table 23 describes the communication datatypes.

IEC

ErrorDescription : string [0..1]
ProtocolId : Guid [0..1]
DtmSystemTag : Guid

DeviceAddressInfo

DeviceAddress
Address

0..1

1

<<enum>>
DeviceAddressSettingResult

SettingResultInformation
1

1

IEC

BusScanAddressRange

ProtocolId : Guid

ScanRequest

1

0..* Ranges

ProtocolSpecificDeviceAddress
DeviceAddress

T

1

<Protocol>DeviceAddress«bind» <T->ProtocolDeviceAddress>

Different types
for each protocol

ProtocolDeviceAddress

1

Address : int
Id : int

DeviceAddressRangeBegin

RangeEnd
1

1

1 1

AllAddresses
RangeOfAddresses
OpenGui

<<enum>>
ScanMode

1

1
ScanMode

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 141 –

Table 23 – Communication datatype description

Datatype Description

ConnectRequest Fieldbus protocol independent base class for information needed to establish a
communication link.

ConnectResponse Fieldbus protocol independent base class for response information about an
established communication link.

TransactionRequest Fieldbus protocol independent base class for transaction request information.

TransactionResponse Fieldbus protocol independent base class for transaction results.

DisconnectRequest Fieldbus protocol independent base class for disconnection information.

DisconnectResponse Fieldbus protocol independent base class for results of disconnect operation.

AbortMessage Information to specify an abort of a communication link.

SubscribeRequest Fieldbus protocol independent base class with information for initialization of device
initiated data transfer.

SubscribeResponse Fieldbus protocol independent base class for information about communication data
subscription.

UnsubscribeRequest Fieldbus protocol independent base class for termination of subscription of device
initiated data transfer.

UnsubscribeResponse Fieldbus protocol independent base class for response to termination of subscription
of device initiated data transfer.

ScanRequest Information for a request to scan the sub-topology of a Communication Channel

BusScanAddressRange Information about the address range of the requested scan

DeviceAddressInfo Address information which is used to request the Communication Channel to set the
address of its Child DTMs.

DeviceAddress Address of the device in the network or fieldbus.

The example given in Figure 83 demonstrates how a (HART) Device DTM may connect to a
device:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 142 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 83 – Example: Communication – Connect for HART

The example given in Figure 84 demonstrates how the HART-specific datatype
assembly(Fdt.Datatypes.Hart.dll) exposes the type information over the CommunicationType
attribute:

bool Connect(Guid mySystemTag, ICommunication commChannel,
 HartDeviceAddress myAddress, ref Guid communicationReference)
{
 //Create ConnectRequest
 //The required SystemTag is set by the Frame Application
 //during creation of the DTM instance
 //The Address will be set by the Communication Channel
 var request = new HartConnectRequest(mySystemTag, myAddress);

 HartConnectResponse response;

 try
 {
 //Request connection from Communication Channel
 var asyncResult =
 commChannel.BeginConnect(request, abortCallback, null, null, null);

 //Wait for finalization of the connect request
 response = commChannel.EndConnect(asyncResult) as HartConnectResponse;
 }
 catch(Exception ex)
 {
 MessageBox.Show("Connection failed\n" + "Details: " + ex.Message);
 return false;
 }

 if (response != null)
 {
 //verify response
 try
 {
 response.Verify();
 }
 catch(Exception ex)
 {
 MessageBox.Show("Connection failed\n" + "Details: " + ex.Message);
 return false;
 }

 //Connection established
 //the response contains the complete address information
 //and the communication reference of the connection
 communicationReference = response.CommunicationReference;
 MessageBox.Show("Successfully connected with device\n" +
 "Short Address: " + response.Address.ShortAddress + "\n" +
 "Short TAG: " + response.Address.ShortTag + "\n" +
 "Long TAG: " + response.Address.LongTag + "\n");
 return true;
 }

 return false;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 143 –

IEC

Figure 84 – Example: Communication – CommunicationType for HART

NOTE Please be aware that the above examples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be used. For
definition of the protocol-specific datatypes please refer to the respective specification document.

7.8 Datatypes – BusCategory

The class diagram shown in Figure 85 describes the relations of the BusCategory class.

Used in:

TypeInfo

Figure 85 – BusCategory – datatypes

Table 24 describes the datatype BusCategory and its elements

Table 24 – BusCategory datatype description

Datatype Description

BusCategory Bus category is a Unique Identifier for a fieldbus protocol (or a point-to-point
communication).

CategoryType Defines whether BusCategory is supported or required.

7.9 Datatypes – Device / Instance Data

7.9.1 General

The Device / Instance Data classes describe device parameters or process values that can be
read from the device / instance data or written into the device / instance data. The class
diagram in Figure 86 shows the classes and relations.

IEC

CommunicationType
1

1

Required
Supported

<<enum>>
CategoryType

ProtocolName : string
ProtocolId : Guid

BusCategory

[assembly: CommunicationType(
 AbortMessageType = typeof(HartAbortMessage),
 ConnectRequestType = typeof(HartConnectRequest),
 ConnectResponseType = typeof(HartConnectResponse),
 DisconnectRequestType = typeof(HartDisconnectRequest),
 DisconnectResponseType = typeof(HartDisconnectResponse),
...
 SubscribeRequestType = typeof(HartSubscribeRequest),
 SubscribeResponseType = typeof(HartSubscribeResponse),
 UnsubscribeRequestType = typeof(HartUnsubscribeRequest),
 UnsubscribeResponseType = typeof(HartUnsubscribeResponse))

]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 144 – IEC TR 62453-42:2016  IEC 2016

Used in:

returned in IDeviceData.EndGetDataInfo() / IInstanceData.EndGetDataInfo()

Figure 86 – Device / Instance data – datatypes

Table 25 describes classes related to Device / Instance Data

IEC

DatatypeInfo

IOSignalRef

SemanticInfos

DatatypeInfo

0..1

1
1

1

1

0..*1

IOSignalRef IOSignalInfo
IOSignalId

DataItems

0..1

DataRefs
0..1

DataInfo

DeviceDataItems

1

0..*

DataRef

DataId SemanticInfo

1

AlarmDataRefs

UnitDataRef

SubstituteDataRef

RangeDataRefs

0..*

0..*

0..1

0..1

1

1
1

1 Data RangeData

DataId

SemanticInfo

1

DataRef

StructDataGroup

ModuleId : string

ModuleDataGroup

1

0..1

0..1

DataId DataId DataId

UnitDataRef

Float
Double
:

<<enum>>
DatatypeDatatype

1 1

UnitDataAlarmData
UnitDataRef
0..1

0..1

1

UnitDataRef

SubstituteData

ApplicationDomain : string [1]
ParameterReadAddress : string [0..1]
ParameterWriteAddress : string [0..1]
SemanticId : string [1]

SemanticInfo

Address : string [0..1]
ApplicationDomain : string [1]
SemanticId : string [1]

SemanticInfo

Descriptor : string [0..1]
Label : string
Name : string

DataItem

Descriptor : string [0..1]
DisplayFormat : string [0..1]
Id : string
IsReadable : bool
IsWritable : bool
IsChangeEnabled : bool [0..1]

AccessibleData
ApplicationId : string [0..1]

DataGroup

Id : string

AccessibleDataInfo

EnumInfoEnumerator
0..1

1

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 145 –

Table 25 – DeviceData datatype description

Datatype Description

AccessibleData Abstract base class for data which is readable or writable.

The DTM shall provide a DisplayFormat for all AccessibleData variables with
numerical values

AlarmData Representation of an alarm parameter. An alarm shall always be of a numeric
type (Float, Double, Int, Long, Uint, Ulong) or Enumerator (checked by the
Verify() method).

Data Describes a device parameter or a process value that can be read or written.
The information contains descriptive attributes like name as well as
information how the item is accessible.

DataGroup Groups information about available device-specific parameters and process
values.

DataInfo Contains information about available device-specific parameters and process
values.

DataItem Abstract base class for device and instance data info classes.

DataRef Reference to an item in DataInfo identified by its Id and optionally also
information about the type (semantic) of the reference.

Datatype List of possible datatypes.

DatatypeInfo Information about type of data (see DataValue).

IOSignalInfo Information about a single device IO signal.

IOSignalRef Reference to an IO signal identified by its identifier.

ModuleDataGroup Groups information about available module-specific parameters and process
values.

RangeData Representation of a range parameter. A range shall always be of a numeric
type (Float, Double, Int, Long, Uint, Ulong) or DateTime (checked by the
Verify() method).

The RangeData may provide a reference to a UnitData. If no reference is
provided, the same unit is applied as in the Data that references the
RangeData.

SemanticInfo This class provides semantic information for a data object.

StructDataGroup Represents a data structure containing specific parameters and/or process
values.

SubstituteData Describes the value which shall be used as a fall back e.g. in case there is a
disturbed communication.

The SubstituteData may provide a reference to a UnitData. If no reference is
provided, the same unit is applied as in the Data that references the
SubstituteData.

UnitData Representation of a unit parameter.
Unit shall always be of type Enumerator (checked by the Verify() method).

Figure 87 shows how DataInfo may expose information on data of a HART device.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 146 – IEC TR 62453-42:2016  IEC 2016

Figure 87 – Example: Providing information on data of a HART device

Figure 88 shows how DataInfo may expose information on data of a PROFIBUS device.

IEC

 : DataInfo

Descriptor : string = "Text that is associated with the field
device. this text can be used by the user in any way . There
is no recommended user"
Id : string = "message"
IsChangeEnabled : bool = true
IsReadable : bool = true
IsWritable : bool = true
Label : string = "Nachricht"
Name : string = "Message"

 : Data

DeviceDataItem[0]

SemanticInfos[0]

ReadParameterAddress : string = "CMD12B0B0L192"
WriteParameterAddress : string = "CMD17B0B0L192"
ApplicationDomain : string = "FDT_HART"
SemanticId : string = "CMD12B0B0L192"

 : SemanticInfo

See e.g. FDT 2 HART
Annex Table "Basic
Variables exported in
IDeviceData and
IInstanceData
interfaces"
- column "Identifier"

Translated string – in
this example German
language is set.

If there is a different address to
write this parameter, an optional

Property is added here :
"WriteParameterAddress"

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 147 –

Figure 88 – Example: Providing information on module data of a PROFIBUS device

The example given in Figure 89 shows how to create DataInfo with one Data-object and a
ModuleDataGroup that contains RangeData-items for lower and upper limit.

IEC

DeviceDataItems[1]
ModuleId : string = „TB2“
Name : string = "TemperatureTransducerBlock_2“
Label : string = "Label"

TempTransducer2
:ModuleDataGroup

DataItems[0]

deviceData:DataInfo

DeviceDataItems[0]

Id : string = „RangeObjIdU"
Name : string = "UPPER_SENSOR_LIMIT“
Label : string = "RangeObjLabel"
isReadable: bool = true
isWritable: bool = false
RangeType : enum = UpperRange
DatatypeInfo.Datatype : enum = Double

rangeDataObjU:RangeData

Id : string = „RangeObjIdL"
Name : string = "LOWER_SENSOR_LIMIT“
Label : string = "RangeObjLabel"
isReadable: bool = true
isWritable: bool = false
RangeType : enum = LowerRange
DatatypeInfo.Datatype : enum = Double

rangeDataObjL:RangeData

DataItems[2]

ApplicationDomain : string = „ApplicationDomain“
SemanticId : string = „UpperLimit“

:SemanticInfo

SemanticInfos[0]

SemanticInfos[0]

dataObjId : string = „ProcessValueId“
dataObjName : string = „Sensor Value“
dataObjLabel : string = „Sensor Value“
dataObjIsReadable : bool = true

dataObj : Data

DataRefs[0]

DataId : string = „DeviceDataId“

deviceData:DataRef

IOSignalRef

IOSignalId : string = „IOSignalId“

deviceData:IOSignalRef

DataItems[1]

ModuleId : string = „TB1“
Name : string = "TemperatureTransducerBlock_1“
Label : string = "Label"

TempTransducer1
:ModuleDataGroup

IOSignalId : string = „RangeObjIdL“

deviceData:IOSignalRef

IOSignalId : string = „RangeObjIdU“

deviceData:IOSignalRef

RangeDataRef[0]

RangeDataRef[1]

ApplicationDomain : string = „ApplicationDomain“
SemanticId : string = „LowerLimit“

:SemanticInfo

Unique identifier of the
module described in
NetworkDataInfo

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 148 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 89 – Example: Providing information on data

If the data is structured data, then the StructDataGroup may be used to show the structure of
the data (see Figure 90).

public DataInfo GetDataInfo()
{
 DataInfo deviceData = new DataInfo();

 // Create a Data object (inherits from AccessibleData and DataItem)
 string dataObjId = "DataObjID";
 string dataObjName = "DataObjName";
 string dataObjLabel = "DataObjLabel";
 bool dataObjIsReadable = true;
 bool dataObjIsWritable = false;
 DatatypeInfo dataObjDatatypeInfo = new DatatypeInfo(Datatype.Long);
 Data dataObj = new Data(dataObjId, dataObjName, dataObjLabel,
 dataObjIsReadable, dataObjIsWritable,
 dataObjDatatypeInfo);
 // Define refences to other DataItems (Optional members)
 dataObj.DataRefs = new FdtList<DataRef>() { new DataRef("DeviceDataID") };
 dataObj.IOSignalRef = new Fdt.Dtm.IO.IOSignalRef("IOSignalID");

 // Create a (Lower)RangeData object
 // (inherits from AccessibleData and DataItem)
 string rangeObjIdL = "RangeObjIdL";
 string rangeObjNameL = "LOWER_SENSOR_LIMIT";
 string rangeObjLabelL = "RangeObjLabel1";
 bool rangeObjIsReadableL = true;
 bool rangeObjIsWritableL = false;
 DatatypeInfo rangeObjDatatypeInfoL = new DatatypeInfo(Datatype.Double);
 RangeType rangeTypeL = RangeType.LowerRange;

 RangeData rangeDataObjL = new RangeData(rangeObjIdL, rangeObjNameL,
 rangeObjLabelL, rangeObjIsReadableL,
 rangeObjIsWritableL,
 rangeObjDatatypeInfoL, rangeTypeL);
 // Define SematicInfo-object for rangeDataObj
 rangeDataObjL.SemanticInfos = new FdtList<SemanticInfo>(
 new SemanticInfo("ApplicationDomain", "LowerLimit"));

 // Create an (Upper)RangeData object
 // (inherits from AccessibleData and DataItem)
 string rangeObjIdU = "RangeObjIdU";
 string rangeObjNameU = "UPPER_SENSOR_LIMIT";
 string rangeObjLabelU = "RangeObjLabel2";
 bool rangeObjIsReadableU = true;
 bool rangeObjIsWritableU = false;
 DatatypeInfo rangeObjDatatypeInfoU = new DatatypeInfo(Datatype.Double);
 RangeType rangeTypeU = RangeType.UpperRange;

 RangeData rangeDataObjU = new RangeData(rangeObjIdU, rangeObjNameU,
 rangeObjLabelU,
 rangeObjIsReadableU,
 rangeObjIsWritableU,
 rangeObjDatatypeInfoU, rangeTypeU);

 // Define SematicInfo-object for rangeDataObj
 rangeDataObjU.SemanticInfos = new FdtList<SemanticInfo>(
 new SemanticInfo("ApplicationDomain", "UpperLimit"));

 //Create a ModuleDataGroup with the two RangeData-items.
 FdtList<DataItem> dataItemsInGroup = new FdtList<DataItem>() {rangeDataObjL,
 rangeDataObjU};

 ModuleDataGroup rangeDataGroupObj = new ModuleDataGroup("TB1",
 "TemperatureTransducerBlock_1",
 "Label",
 dataItemsInGroup);
 // Put DataItem objects into the list
 deviceData.DeviceDataItems = new FdtList<DataItem>() { dataObj,
 rangeDataGroupObj };

 return deviceData;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 149 –

Figure 90 – Example: Providing information on structured data

If the data described in the DataInfo is provided as enumeration (DataValue = EnumValue),
the EnumInfo class is used to provide the description of the value range (see Figure 91).

IEC

DataItems[0]

DataItems[0]

deviceData:DataInfo

Id : string = „ProcessValueFB1Status"
Name : string = "Status“
Label : string = "Status of process value"
isReadable: bool = true
isWritable: bool = false
DatatypeInfo.Datatype : enum = Byte

Status:Data

Id : string = „ProcessValueFB1"
Name : string = "PRIMARY_VALUE“
Label : string = "Primary Value"
DisplayFormat : string „F2“
isReadable: bool = true
isWritable: bool = false
DatatypeInfo.Datatype : enum = Float

ProcessValue:Data

DataItems[1]

SemanticInfos[0]

SemanticInfos[0]

ApplicationDomain : string = „FDT_PROFIBUS_PA“
SemanticId : string = „AnalogInputFB.1.OUT.Value“

:SemanticInfo

Name : string = „OUT“
Label : string = „Main Process Value“

PV : StructDataGroup

ApplicationDomain : string = „FDT_PROFIBUS_PA“
SemanticId : string = „AnalogInputFB.1.OUT.Status“

:SemanticInfo

IOSignalId : string = „ProcessValue_1“

:IOSignalRef
IOSignalRef

Name : string = „AnalogInputFB.1“
Label : string = „Analog Input Temperature 1“
ModuleId : string = „AnalogInputFB.1“

AI_FB1 : ModuleDataGroupDeviceDataItems[0]

Refer to PROFIBUS specification
„PROFIBUS-PA Profile for Process
Control Devices“

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 150 – IEC TR 62453-42:2016  IEC 2016

Used in:

IDeviceData.EndGetDataInfo() / IInstanceData.EndGetDataInfo()

Figure 91 – EnumInfo – datatype

7.9.2 Datatypes used in reading and writing DeviceData

7.9.2.1 General

The IDeviceData interface provides online access to specific parameters of a device. The
following chapters define datatypes used in methods for reading and writing device data.

7.9.2.2 ReadRequest and WriteRequest Datatypes

ReadRequest datatype and the WriteRequest datatype (see Figure 92 and Table 26) are used
to define specific parameters which shall be read or written.

Used in:

ReadRequest: IDeviceData.BeginRead() / IInstanceData.BeginRead()

WriteRequest: IDeviceData.BeginWrite() / IInstanceData.BeginWrite()

Figure 92 – Read and Write Request – datatypes

Table 26 – Reading and Writing datatype description

Datatype Description

AccessibleData Abstract base class for device data which is readable or writable. (See
Figure 86)

ReadRequest Read request for a single entry in DataInfo addressed by its Id.

WriteRequest Write request for a single entry in DataInfo addressed by its Id.

IEC

ReadRequest WriteRequest

DataId DataIdAccessibleData

IEC

EnumInfo

DataType

Descriptor : string [0..1]
Index : uint
Label : string

EnumEntry

NumberEnumerator
BitEnumerator

<<enum>>
EnumType

DataType

EnumEntries

Enumerator

Type

DataTypeInfo

0..1

1

1

1

1..*

11

1

DataTypeDataType
1

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 151 –

7.9.2.3 ResponseInfo Datatype

The ResponseInfo datatype (see Figure 93 and Table 27) is used to return read or written
data requested by ReadRequest or WriteRequest.

Used in:

IDeviceData.EndRead()

IInstanceData.EndRead()

IDeviceData.EndWrite()

IInstanceData.EndWrite()

Figure 93 – ResponseInfo – datatype

Table 27 – Reading and Writing datatype description

Datatype Description

BinaryBitArrayValue A compact array of bit values.

BinaryByteArrayValue A compact array of byte values.

ByteValue An 8-bit unsigned integer.

DataAccessError Information about the type of occurred error

DataAccessErrorInfo Information about a data access error that occurred.

DataInfo Information about available data, e.g. parameters and process
values

DataValue Abstract base class for data values provided by a DTM

DateTime .NET System namespace: Represents an instant in time, typically
expressed as a date and time of day

DateTimeValue DataValue with a DateTime value

DoubleValue A double-precision (64-bit) floating-point number.

EnumValue DataValue with an enumerator value

IEC

ResponseInfo
DataId

DataValue

ErrorInfo

Quality

TimeStamp

DataValue

DataAccessErrorInfo

QualityInfo

DataAccessError

DateTime

FloatValueDoubleValue

ByteValue TimeSpanValueIntValue UIntValue

LongValue StringValueDateTimeValue

EnumValue

DataInfo

ErrorType

1

1

1111

0..1

0..1

1

1

1
1

1

0..1
LimitState

QualityIndicator

LimitState

QualityIndicator

1

BinaryByteArray
Value

BinaryBitArray
Value ULongValue

SignedByte
Value

BooleanValue

DateValue

TimeValue

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 152 – IEC TR 62453-42:2016  IEC 2016

Datatype Description

FloatValue A single-precision (32-bit) floating-point number.

IntValue A 32-bit signed integer.

LimitState Limit status of device data.

LongValue A 64-bit signed integer.

QualityIndicator Quality status of device data.

QualityInfo Description of the quality of device data

ResponseInfo Read or write response for a single entry in DataInfo addressed
by its Id

StringValue A string of Unicode characters.

TimeSpanValue DataValue with a TimeSpan value

UintValue A 32-bit unsigned integer. Not CLS-compliant.

UlongValue A 64-bit unsigned integer. Not CLS-compliant.

7.10 Datatypes for export and import

7.10.1 Datatypes – TopologyImportExport

The class TopologyImportExport (see Figure 94) can be used for the data exchange between
different Frame Applications. The export contains the FDT topology structure information as
well as information about contained (FDT1.2.x / FDT2.x) DTMs and their datasets.

Used in:
<product specific function of Frame Application>

Figure 94 – TopologyImportExport – datatypes

IEC

Description : string
Id : string
Label : string

SourceInfo

TopologyImportExport

Fdt2DtmNode

Dataset : string [0..1]
DtmInfoXML : string

Fdt1DtmNode

Address : string
DtmSystemGuiLabel : string
DtmSystemTag : Guid

DtmNode0..*

DtmNodes

SourceInfo

1

1

Descriptor : string [0..1]
Id : string
Label : string

CommunicationChannel
Node

ChannelNodes

0..*

0..*

ChildDtmNodes

DtmInfo

1

1

1
DtmInfo

TypeInfo
ActiveType

1

1

ImportExportDataset ImportExportDataset
1

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 153 –

Table 28 describes the TopologyImportExport class and its related classes.

Table 28 – TopologyImportExport datatype description

Datatype Description

CommunicationChannelNode Represents a CommunicationChannel in the FDT Topology that is linked to
further Child DTM nodes.

DtmInfo DtmInfo contains general information about a DTM such as name, version,
identifier and vendor of the software, the FDT version to which the DTM
complies.

DtmNode Abstract class for a DTM node in the FDT topology.

Fdt1DtmNode This class represents a FDT1.2.x DTM in a topology export.

Fdt2DtmNode This class represents a FDT2.x DTM in a topology export.

ImportExportDataset Dataset containing the exported DTM Data Subsets.

SourceInfo Information about the source of a topology export like unique identifier, label
and description in the Frame Application that has exported the data.

TopologyImportExport This class can be used for the data exchange between different Frame
Applications. It contains the FDT topology structure information as well as
information about contained (FDT 1.2.x / 2.x) DTMs and their datasets.

TypeInfo Abstract base class used for definition of device type, block type or module
type. A DTM shall contain one or more TypeInfo objects.

7.10.2 Datatypes – ImportExportDataset

The class ImportExportDataset can be used for the data exchange between different Frame
Applications. The dataset contains a DTM dataset (see Figure 95).

Used in:

DataContractSerializer.WriteObject()

Figure 95 – ImportExportDataset – datatypes

Table 29 describes the ImportExportDataset class and its related classes.

Table 29 – ImportExportDataset datatype description

Datatype Description

ImportExportDataset Dataset containing the exported DTM Data Subsets.

ImportExportDataSubset The DTMDataSubsets contains the exported binary DTM data.

IEC

Data : byte[]
Descriptor : string
Key : string

ImportExportDataSubset

FormatId : Guid

ImportExportDataset

1

BulkData

0..*

0..*
InstanceData

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 154 – IEC TR 62453-42:2016  IEC 2016

7.11 Datatypes for process data description

7.11.1 Datatypes – ProcessDataInfo

The ProcessDataInfo class provides IO process data related information for the integration of
the device into the control system. Figure 96 shows a class diagram with related classes of
ProcessDataInfo.

Used in:

Returned in IProcessData.EndGetProcessData()

Figure 96 – ProcessDataInfo – datatypes

Table 30 describes the ProcessDataInfo class and its related classes.

IEC

IOSignalInfo

ProcessDataInfo

ProcessDataItems0..*

ProcessDataGroup

ProcessDataItems

1..*

1

1

Module
ProcessDataGroup

Routed
ProcessDataGroup IOSignalInfo

T > ProtocolIOSignalInfo

<Protocol>IOSignalInfo

ProtocolIOSignalInfo

Different types for each protocol

1

ProtocolSpecificInfo

1

Descriptor : string [0..1]
Label : string

ProcessDataItem

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 155 –

Table 30 – ProcessDataInfo datatype description

Datatype Description

ProcessDataInfo Process data related information for the integration of the device into the
control system like datatype, signal direction, engineering units, and ranges
etc.

ProcessDataItem Abstract base class for process data information.

ProcessDataGroup Group of ProcessData.

RoutedProcessDataGroup Information about routed IO signals which are originally provided by a sub-
device (corresponding Child DTM in the FDT topology).

ModuleProcessDataGroup Information about IO signals provided by a DTM module.

IOSignalInfo Information about a single device IO signal.

IOSignalInfo<T> Information about a single device IO signal where T is protocol-specific
ProtocolIOSignalInfo

ProtocolIOSignalInfo Abstract base class for protocol-specific IO signal class.

< Protocol>IOSignalInfo Protocol-specific IO signal class.

The diagram shown in Figure 97 provides more details on IOSignalInfo, which is used not only
for ProcessDataInfo but also for ProcessImage information.

Used in:

ProcessDataInfo class

ProcessImageSection class

IProcessData.SetIOSignalInfo()

Figure 97 – IOSignalInfo – datatypes

IEC

IOSignalId

IECDatatype
IECDatatype

IOSignalRefs

IOSignalRef

SemanticInfo

AlarmInfoRefs

RangeInfoRefs

SubstituteValueRef

UnitInfoRef

0..*

DeviceDataRef
0..1

0..1

0..* IOSignalRef

1111

0..11

0..1

SemanticInfos

1

0..*

DataRef
0..11

0..11
OnlineDataRef

OfflineDataRef

SignalTypeSignalType

1

1

1 1 1

FrameApplicationTag : string
Id : string
Name : string
RoutedIOSignalId : string [0..*]
IsLocked : bool
IsSafety : bool

IOSignalInfo

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 156 – IEC TR 62453-42:2016  IEC 2016

Table 31 – IOSignalInfo datatype description

Datatype Description

DataRef Reference to an item in DataInfo identified by its Id and optionally also
information about the type (semantic) of the reference.

IECDatatype IEC datatype of the IO signal. (automatically set by protocol-specific IO signal
class).

IOSignalInfo Information about a single device IO signal.

IOSignalInfo<T> Information about a single device IO signal where T is protocol-specific
ProtocolIOSignalInfo

IOSignalRef Reference to an IO signal identified by its identifier.

IOSignalRefs Reference to another IOSignalInfo, and/or DeviceDataInfo. The meaning of the
references depends on the context where this class is used.

SemanticInfo This class provides semantic information for a data object.

SignalType Type of the IO signal.

The object diagram shown in Figure 98 shows for example a ProcessDataInfo describing
analog input values provided by a HART device. Please be aware that the example shows the
expected use of datatypes defined in this document, the definition of HART related datatypes
may differ from this example.

NOTE Please be aware that the examples demonstrate how a protocol -specific datatype can be derived from the
datatypes defined in this document and how such a protocol-specific datatype is intended to be used. For definition
of the protocol-specific datatypes please refer to the respective specification document.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 157 –

Figure 98 – Example: ProcessDataInfo for HART (UML)

The example in Figure 99 demonstrates how a (HART) Device DTM creates and returns a
ProcessDataInfo instance:

IEC

U-Range : IOSignalRefs

DeviceDataRef DeviceData : IOSignalRefs

DataId : string = „AI_URangeId001"

Online : DataRef

L-Range : IOSignalRefs

ApplicationDomain : string = „HART"
SemanticId : string = „CMD1B1B0L32"

Example : SemanticInfo

RangeInfoRefs

RangeInfoRefs

SemanticInfos

Defined in FDT Protocol
HART Annex Specification

DataId : string = „AI_LRangeId001"

Online : DataRef

Id : string = „AI_URangeId001"
RangeType : RangeType = UpperRange

AI_URange : RangeData

DataId : string = „AI_SignalId001"

Online : DataRefOnlineDataRef

Id : string = „AI_SignalId001"

AISignal1 : AccessibleData

Also available via
IDeviceData

DTMs could also refer to
Offline:DataRef if data is
exposed in DataAccess.

Id : string = „AI_LRangeId001"
RangeType : RangeType = LowerRange

AI_LRange : RangeData

ProtocolSpecificInfo

AlarmInfoRefs Alarm : IOSignalRefs

DataId : string = „AI_AlarmId001"

Online : DataRef

Id : string = „AI_AlarmId001"

AIAlarm1 : AlarmData
OnlineDataRef

Example shows that Alarm
is exposed in IDeviceData

SubstituteValueRef SubstitueVal : IOSignalRefs

DataId : string = „AI_SubstitueId001"

Online : DataRefOfflineDataRef

Id : string = „AI_SubstitueId001"

AI_OfflineSubstitute: SubstituteData

UnitInfoRef Unit : IOSignalRefs

DataId : string = „AI_UnitId001"

Offline : DataRefOfflineDataRef

DataId : string = „AI_UnitId001"

Online : DataRefOnlineDataRef

Id : string = „AI_UnitId001"

AI_OfflineUnit : UnitData

Id : string = „AI_UnitId001"

AI_OnlineUnit : UnitData

OnlineDataRef

OnlineDataRef

DeviceVariableCode : Nullable<int> = 246
DeviceVariableAssignment : enum VariableAssignment = PV

DeviceXIOSignal : HartIOSignalInfo

DeviceX_ProcessData : ProcessDataInfo

ProcessDataItems

ref via Id

ref via Id

ref via Id

ref via Id

ref via Id

ref via Id

ref via Id

Legend: Instance

IData provided instances

IProcessData provided instances

Id : string = „AI_SignalId001"
Name : string = „PV.DIGITAL_VALUE"
FrameApplicationTag : string = „PV.DIGITAL_VALUE"
Descriptor : string = „This is the first analog input PV“
IECDatatype : IECDatatype = REAL
IsLocked : bool = false
IsSafety : bool = false
Label : string = „First analog input PV“
RoutedIOSignalId : string = „“ (empty - only used when routed)
SignalType : SignalType = Input

DeviceXIOSignal : IOSignalInfo<HartIOSignalInfo>

See HART 6:
HCF_SPEC-183 : Table 34
Device Variable Code and
HCF_SPEC-127 Cmd 9.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C TR 62
45

3-4
2:2

01
6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 158 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 99 – Example: ProcessDataInfo creation for HART

The example in Figure 100 demonstrates how a Frame Applications requests and uses a
ProcessDataInfo instance. The protocol-specific properties shown in Figure 99 are mapped
automatically to the protocol-independent properties which are used in Figure 100.

protected ProcessDataInfo GetProcessData()
{
 // HART PV information
 HartIOSignalInfo hartPVInfo = new HartIOSignalInfo();
 //This value is the Primary Variable
 hartPVInfo.ProcessVariableAssignment = HartIOSignalInfo.VariableAssignment.PV;
 //Specify the index that is needed to read the value via command #9
 //or command #33
 hartPVInfo.Index = 0;

 // HART PV information
 IOSignalInfo<HartIOSignalInfo> pvInfo = new IOSignalInfo<HartIOSignalInfo>();
 pvInfo.ProtocolSpecificInfo = hartPVInfo;
 pvInfo.Id = "AI_SignalId001";
 pvInfo.Name = "PV.DIGITAL_VALUE";
 pvInfo.Label = "First analog input PV";
 pvInfo.Descriptor = "This is the first analog input PV";
 pvInfo.SignalType = SignalType.Input;
 pvInfo.IECDatatype = IECDatatype.REAL;
 pvInfo.IsLocked = false;
 pvInfo.IsSafety = false;
 //Sematic info as defined in HART FDT Annex
 pvInfo.SemanticInfos = new FdtList<SemanticInfo>(new SemanticInfo("HART",
 "CMD1B1B0L32"));

 // HART PV unit information
 var dataRefPvUnit = new IOSignalRefs();
 dataRefPvUnit.OfflineDataRef = new DataRef("AI_UnitId001");
 pvInfo.UnitInfoRef = dataRefPvUnit;

 // HART PV range information
 var ioURefPvUnit = new IOSignalRefs {IOSignalRef = new IOSignalRef("AI_URangeId001")};
 var ioLRefPvUnit = new IOSignalRefs {IOSignalRef = new IOSignalRef("AI_LRangeId001")};
 pvInfo.RangeInfoRefs = new FdtList<IOSignalRefs>(){ioLRefPvUnit, ioURefPvUnit};
 // other references would come here..
 // pvInfo.SubstituteValueRef = ...

 // Process Data Info
 ProcessDataInfo processData = new ProcessDataInfo();
 processData.ProcessDataItems = new FdtList<ProcessDataItem>();
 processData.ProcessDataItems.Add(pvInfo);

 // other Process Variables may follow here
 // ...
 // processData.ProcessDataItems.Add(svInfo);

 return processData ;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 159 –

IEC

Figure 100 – Example: Using ProcessData for HART

The example in Figure 101 demonstrates how the HART-specific datatype assembly
(Fdt.Datatypes.Hart.dll) exposes the type information over the IOSignalInfoType attribute:

IEC

Figure 101 – Example: IOSignalInfoType attribute

NOTE Please be aware that the above examples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be used. For
definition of the protocol-specific datatypes please refer to the respective specification document.

7.11.2 Datatypes – Process Image

The ProcessImageInfo class provides information about the process image by the bus-master
device which is represented by the DTM. Figure 102 shows a class diagram with related
classes of ProcessImageInfo.

[assembly: IOSignalInfoType(
 IOSignalInfoType = typeof(IOSignalInfo<HartIOSignalInfo>),
 ProtocolIOSignalInfoType = typeof(HartIOSignalInfo))
]

public void ReadIoSignalInfos(IDtm dtm, Guid protocolId)
{
 IAsyncResult asyncResult =
 (dtm as IProcessData).BeginGetProcessData(protocolId, null, null);
 ProcessDataInfo processData =
 (dtm as IProcessData).EndGetProcessData(asyncResult);

 ShowIoSignalInfos(processData.ProcessDataItems);
}

public void ShowIoSignalInfos(FdtList<ProcessDataItem> processDatas)
{
 foreach (ProcessDataItem data in processDatas)
 {
 if (data is IOSignalInfo)
 {
 IOSignalInfo ioSignalInfo = (IOSignalInfo)data;
 MessageBox.Show("ID = " + ioSignalInfo.Id +
 "Name = " + ioSignalInfo.Name +
 "Label = " + ioSignalInfo.Label +
 "SignalType = " + ioSignalInfo.SignalType);
 }
 else
 {
 ShowIoSignalInfos((data as ProcessDataGroup).ProcessDataItems);
 }
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 160 – IEC TR 62453-42:2016  IEC 2016

Used in:

Returned in IProcessImage.EndGetProcessImageInfo()

Figure 102 – ProcessImage – datatypes

Table 32 describes ProcessImage classes.

Table 32 – ProcessImage datatype description

Datatype Description

DeviceProcessImageGroup Groups process image items belonging to a specific device connected to
the fieldbus.

IOSignalInfo Information about a single IO signal.

NOTE The class is also used in IProcessData interface.

ModuleProcessImageGroup Groups process image items belonging to a specific device module
connected to the fieldbus.

ProcessImageInfo Information about the fieldbus master process image, which enables for
example engineering tools to map the device I/O signals to variables in an
IEC program for a PLC.

ProcessImageItem Abstract base class for process image information.

ProcessImageGroup Groups process image information.

ProcessImageSection Represents a single process image section in which an IO signal is
mapped.

StructProcessImageGroup Groups of process image items belonging to a structure IO signal.

7.12 Datatypes – Address information

The AddressInfo class provides information about address(es) of the device which is
represented by the DTM. Figure 103 shows a class diagram with related classes of
AddressInfo.

IEC

BusMasterId : string

ProcessImageInfo

ProcessImageItem

ProcessImageItems0..*

ProcessImageGroup

ProcessImageItems
1..*

1

1

Device
ProcessImageGroup

Module
ProcessImageGroup

Struct
ProcessImageGroup

ProcessImage
Section

IOSignalInfo

1

1

From
Fdt.Dtm.IO namespace

ProcessImage
StatusSection

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 161 –

Used in:

AddressInfo is returned by INetworkData.GetAddressInfo()

Single DeviceAddresses can be set by INetworkData.SetAddressInfo()

Figure 103 – AddressInfo – datatypes

Table 33 describes AddressInfo class and its related classes.

Table 33 – AddressInfo datatype description

Datatype Description

AddressInfo Information about address(es) of the device which is
represented by the DTM.

DeviceAddress Address of the device in the network or fieldbus.
TheDeviceAddress.Id is used to indicate the relation to
the corresponding NetworkData (which has the same Id
value).

DeviceAddress<T> Address of the device in the network or fieldbus.

NOTE T represents the protocol-specific class which
defines the protocol-specific address properties.

ProtocolDeviceAddress Abstract base class for protocol-specific device
addresses.

The example in Figure 104 demonstrates how a (HART) Device DTM creates and returns a
AddressInfo instance:

IEC

DeviceAddress

ProtocolId : Guid

AddressInfo

0..*

1

<protocol>DeviceAddress

ProtocolDeviceAddress

1

T > ProtocolDeviceAddress

1

ProtocolSpecificDeviceAddress

Address : string
Id : int

DeviceAddress

Different types for each protocol

DeviceAddresses

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 162 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 104 – Example: AddressInfo creation

The example in Figure 105 demonstrates how a Frame Application requests and uses the
AddressInfo instance created in Figure 104:

public AddressInfo CreateAddressInfoForHart(int shortAddress,
 string shortTag,
 string longTag,
 HartDeviceAddress.AddressingModeSelection addressingMode,
 HartLongAddress longAddress)
{
 var hartDeviceAddress = new HartDeviceAddress(shortAddress, shortTag,
 longTag, addressingMode,
 longAddress);
 DeviceAddress<HartDeviceAddress> deviceAddress =
 new DeviceAddress<HartDeviceAddress>();
 deviceAddress.ProtocolSpecificDeviceAddress = hartDeviceAddress;
 deviceAddress.Id = 1;
 AddressInfo addressInfo = new AddressInfo(Fdt.Hart.HartFskInfo.ProtocolId);
 addressInfo.DeviceAddresses = new FdtList<DeviceAddress>(deviceAddress);
 return addressInfo;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 163 –

IEC

Figure 105 – Example: Using AddressInfo

The example in Figure 106 demonstrates how the HART-specific datatype assembly
(Fdt.Datatypes.Hart.dll) exposes the type information over the DeviceAddressInfoAttribute:

IEC

Figure 106 – Example: DeviceAddressTypeAttribute

[assembly: DeviceAddressType(
 DeviceAddressType = typeof(DeviceAddress<HartDeviceAddress>),
 ProtocolDeviceAddressType = typeof(HartDeviceAddress))
]

public void ShowDeviceAddress(IDtm dtm, Guid protocolId)
{
 INetworkData networkData = dtm as INetworkData;
 if(networkData == null)
 {
 //this shall never happen because INetworkData is mandatory
 MessageBox.Show("Failure: DTM does not provide INetworkData");
 return;
 }

 AddressInfo addressInfo = networkData.GetAddressInfo(protocolId);
 if (addressInfo == null)
 {
 //this shall never happen because return value of
 //GetAddressInfo() shall never be null
 MessageBox.Show("Failure: DTM does not provide AddressInfo");
 return;
 }

 //Verify result
 try
 {
 addressInfo.Verify();
 }
 catch (Exception ex)
 {
 MessageBox.Show("Failure in verification of AddressInfo:" + ex.Message);
 return;
 }

 if (addressInfo.DeviceAddresses == null)
 {
 //This may happen if the protocol doesn't define an addressing mechanism
 MessageBox.Show("Device provides no address information.");
 }
 else
 {
 foreach (DeviceAddress deviceAddress in addressInfo.DeviceAddresses)
 {
 //verify DeviceAddress
 try
 {
 deviceAddress.Verify();
 }
 catch (Exception ex)
 {
 MessageBox.Show("Failure in verification of DeviceAddress:"
 + ex.Message);
 return;
 }

 MessageBox.Show("Device Address = " + deviceAddress.Address);
 }
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 164 – IEC TR 62453-42:2016  IEC 2016

NOTE Please be aware that the above examples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be used. For
definition of the protocol-specific datatypes please refer to the respective specification document.

7.13 Datatypes – NetworkDataInfo

The NetworkDataInfo class provides network management information which can for example
be used for bus master configuration. Figure 107 shows a class diagram with related classes
of NetworkDataInfo.

Used in:

NetworkDataInfo is returned by INetworkData.GetNetworkDataInfo()

Single NetworkData items can be set by INetworkData.SetNetworkData()

Figure 107 – NetworkDataInfo – datatypes

Table 34 describes NetworkDataInfo class and its related classes.

IEC

NetworkData

NetworkDataInfo

NetworkData
Item

NetworkDataItems0..*

NetworkDataGroup

NetworkDataItems

1..*

1

1

ModuleInfo

<protocol>NetworkData

ProtocolNetworkData

1

T > ProtocolNetworkData

1

ProtocolSpecificNetworkData

Id : int
IsWritable : bool

NetworkData

Different types for each protocol

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 165 –

Table 34 – NetworkDataInfo datatype description

Datatype Description

ModuleInfo Represents a hardware or software module of the device. It provides general
information like name, version, vendor and may also contain further
NetworkDataItems providing protocol-specific information.

NetworkData Base class for a single protocol independent network data item.
The NetworkData.Id is used to indicate the relation to the corresponding
DeviceAddress (which has the same Id value).

NetworkData<T> Represents a single protocol-specific network data item.

NOTE T represents a protocol-specific class which defines the protocol-specific
network data properties.

NetworkDataGroup Group of network data items provided by the DTM.

NetworkDataInfo Contains network-specific information about the device.

NetworkDataItem Abstract base class for network data classes.

ProtocolNetworkData Abstract base class for protocol-specific network data information classes.

The example in Figure 108 demonstrates how a (PROFIBUS) Device DTM creates and returns
a NetworkDataInfo instance:

IEC

Figure 108 – Example: NetworkDataInfo creation example

The example in Figure 109 demonstrates how a Communication DTM (representing a bus-
master device) requests and uses the NetworkDataInfo instance created in Figure 108:

public NetworkDataInfo GetNetworkDataInfo(Guid protocolId)
{
 // verify protocolId
 // ...

 // create network data for Profibus DP/V1 and set properties
 ProfibusNetworkData networkData = new ProfibusNetworkData();
 networkData.PrmDataIdentNumber = 0x1234;
 networkData.PrmDataMinTsdr = 11;
 networkData.PrmDataFreezeMode = false;
 networkData.CfgData = new byte[3];
 networkData.CfgData[0] = 0x30;
 networkData.CfgData[1] = 0x42;
 networkData.CfgData[2] = 0x27;
 // ...
 // ... (properties are device specific)
 // ...

 var nwdi = new NetworkDataInfo(protocolId, false);
 nwdi.NetworkDataItems = new Fdt.FdtList<NetworkDataItem>(
 new NetworkData<ProfibusNetworkData>(1,networkData));
 return nwdi;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 166 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 109 – Example: NetworkDataInfo using example

The example in Figure 110 demonstrates how the PROFIBUS-specific datatype assembly
(Fdt.Datatypes.Profibus.dll) exposes the type information over the NetworkDataTypeAttribute:

IEC

Figure 110 – Example: NetworkDataTypeAttribute example

NOTE Please be aware that the above examples demonstrate how a protocol-specific datatype can be derived
from the datatypes defined in this document and how such a protocol-specific datatype is intended to be used. For
definition of the protocol-specific datatypes please refer to the respective specification document.

7.14 Datatypes – DTM functions

The following class diagram (Figure 111) describes the relations of classes in the context of
FunctionInfo.

[assembly: NetworkDataType(
 NetworkDataType = typeof(NetworkData<ProfibusNetworkData>),
 ProtocolNetworkDataType = typeof(ProfibusNetworkData))
]

 public void CheckNetworkData(INetworkData networkData, Guid protocolId)
 {
 var dtmNetworkData = networkData.GetNetworkDataInfo(protocolId);
 if (dtmNetworkData != null)
 {
 // network data available
 // Verify the data (if invalid data, the method exits with an exception)
 dtmNetworkData.Verify();

 foreach (NetworkDataItem item in dtmNetworkData.NetworkDataItems)
 {
 if ((item is NetworkData<ProfibusNetworkData>))
 {
 var pbDataItem = item as NetworkData<ProfibusNetworkData>;
 ProfibusNetworkData pbData = pbDataItem.ProtocolSpecificNetworkData;

 // use the network data to check master configuration
 // ...
 }
 }
 }
 }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 167 –

Used in:

IFunction.FunctionInfo

ICommandFunction.BeginExecute()

ICommandFunction.EndExecute()

Figure 111 – DTM Function – datatypes

A DTM exposes all functions it provides in FunctionInfo, which can contain one or more
functions. Each of the functions can be a function providing one or more documents, an
executable function or a function group. Function groups contain one or more functions.
ModuleFunctionGroup is a special FunctionGroup. Two types of executable functions are
distinguished: a function which requires opening a user interface and a function, which is
performed in the background without a user interface. UiFunctions provide one or more
FunctionArguments, which describe function-specific information. For a list of functions with
user interface see 5.9.1. CommandFunctions define InputParameters as well as
ResultParameters.

A DTM should not make any assumption in regard to how a Frame Application represents the
available functions of a DTM. For different use cases and on different platforms there are
alternative ways of presenting this information to the user. That is why a DTM should not
provide any customization(e.g. menu accelerators) for menus or for other GUI elements
displaying the function list.

Table 35 describes datatypes in Fdt.Dtm.Functions namespace.

IEC

FunctionInfo

FunctionItem

FunctionItems

ExecutableFunction DocumentFunctionFunctionGroup

CommandFunctionUiFunction

FunctionArgumentDe
scription

Document

Parameters

FunctionItems

InputArguments OutputArguments

DocumentModuleId : string

ModuleFunctionGroup

FunctionResult

ResultParameters

0..*

1

1

1..*

1

1

1

0..*

1 11

0..*

0..* 0..*

FunctionArgument

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 168 – IEC TR 62453-42:2016  IEC 2016

Table 35 – DTM Function datatype description

Datatype Description

FunctionInfo Returns information about functions, user interfaces and documents provided by a
DTM.

FunctionItem Abstract base class for a DTM function description class.

ExecutableFunction Abstract base class for functions of a DTM which are “executable” by calling
corresponding interface on the DTM Business Logic or creating a UI object.

DocumentFunction Description of a document (file) provided by the DTM.

FunctionGroup Group of DTM function descriptions.

FunctionResult Result of a command function or a modal user interface.

UiFunction Description of a graphical DTM User Interface.

CommandFunction Description of a non-GUI function provided by the DTM Business Logic.

FunctionArgument Information about a parameter of a CommandFunction or UiFunction.

Document Information about a document on file disk or in the Web.

7.15 Datatypes – DTM messages

The class diagram shown in Figure 112 describes the relation of classes used for interaction
between DTM Business Logic and DTM User Interface as well as for interaction between
different instances of DTM Business Logic of two related DTMs (e.g. for a Composite DTM).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 169 –

Used in:

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Event IDtmUiMessaging.DtmSpecificEventOccured()

IDtmUiMessaging.UiMessageTypes

And

IDtmMessaging.BeginSendMessages()

IDtmMessaging.EndSendMessages()

IDtmMessaging.PrivateMessageTypes

Figure 112 – DTM Messages – datatypes

Table 34 describes datatypes related to DTM Messages.

Table 36 – DTM Messages datatype description

Datatype Description

DtmRequestMessage This abstract class serves as a base for interaction between the DTM User
Interface and the DTM Business Logic as well as between DTMs (proprietary
DTM to DTM interaction). This class encapsulates a message where a DTM UI
or a DTM Business Logic requests information from a DTM Business Logic.

DTMs shall derive own classes from DtmRequestMessage and use these for
the interaction.

DtmResponseMessage This abstract class serves as a base for interaction between the DTM User
Interface and the DTM Business Logic as well as between DTMs (proprietary
DTM to DTM interaction). This class encapsulates a message where a DTM
Business Logic responses to a previous request.

DTMs shall derive own classes from DtmResponseMessage and use these for
the interaction.

DtmEventMessage This abstract class serves as a base for interaction between the DTM
Business Logic and DTM User Interface.

DTMs shall derive own classes from DtmEventMessage and use these for the
interaction.

IEC

DtmMessageTypes

MessageType

DTM specific
DtmRequestMessage

DTM specific
DtmResponseMessage

DTM specific
DtmEventMessage

DtmRequestMessage DtmResponseMessage DtmEventMessage

<<provides meta information for message serialization>>

DTM specific
DtmRequestMessage

DTM specific
DtmResponseMessage

DTM specific
DtmEventMessage

1 1 1

0..*
0..*
0..*

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 170 – IEC TR 62453-42:2016  IEC 2016

7.16 Datatypes for delegation of DTM UI dialog actions

The ActionItem classes (see Figure 113) are used by DTMs to expose the status of their
standard dialog actions and the set and status of application-specific actions.

Used in:

ApplicationSpecificActionSet delegate

Event IStandardActions.StandardActionItemSetChanged()

Event IApplicationSpecificActions.ApplicationSpecificActionItemSetChanged()

Figure 113 – ActionItem – datatypes

Table 37 describes datatypes related to ActionItem.

Table 37 – ActionItem datatype description

Datatype Description

StandardActionItem Represents standard DTM UI dialog actions with a predefined semantic meaning

ApplicationSpecificActionItem Represents DTM UI dialog actions which do not have a predefined semantic
meaning (application-specific)

7.17 Datatypes – CommunicationChannelInfo

The CommunicationChannelInfo class provides information about the modules and
Communication Channels of a DTM (see Figure 114)

Used in:

IChannels.CommunicationChannelInfos

Figure 114 – CommunicationChannelInfo – datatypes

IEC

CommunicationChannelInfo

ChannelItem

ChannelItems0..*

ModuleId : string

ModuleChannelGroup

ChannelItems
0..*

1

1

Descriptor : string [0..1]
Id : string
Label : string

CommunicationChannelItem

IEC

Enabled : bool
ActionId : StandardActionId

StandardActionItem

Enabled : bool
ActionId : int
Label : string
Descriptor : string

ApplicationSpecificActionItem

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 171 –

Table 38 describes CommunicationChannelInfo class and its related classes.

Table 38 – CommunicationChannelInfo datatype description

Datatype Description

CommunicationChannelInfo Information about Communication Channels (and modules) supported by a DTM.

ChannelItem Abstract base class for module and Communication Channel information

ModuleChannelGroup Information about a group of Communication Channels or underlying modules of a
DTM.

The example in Figure 115 demonstrates how channel information is provided by a DTM with
two modules:

IEC

Figure 115 – Example: Channel information

//Member variables for channel info and channel objects
CommunicationChannelInfo _myChannelInfo;
Dictionary<string,ICommunication> _myCommChannels;

private void buildChannelInfos()
{
 //create first module info
 ModuleChannelGroup module1 = new ModuleChannelGroup("Module1");
 module1.ChannelItems = new FdtList<ChannelItem>();
 CommunicationChannelItem channelModule1 =
 new CommunicationChannelItem("Module1.Chn1", "Channel of Module1");

 module1.ChannelItems.Add(channelModule1);

 //create second module info
 ModuleChannelGroup module2 = new ModuleChannelGroup("Module2");
 module2.ChannelItems = new FdtList<ChannelItem>();
 CommunicationChannelItem channelModule2 =
 new CommunicationChannelItem("Module2.Chn1", "Channel of Module2");

 module2.ChannelItems.Add(channelModule2);

 //create info list
 _myChannelInfo = new CommunicationChannelInfo();
 _myChannelInfo.ChannelItems = new FdtList<ChannelItem>();
 _myChannelInfo.ChannelItems.Add(module1);
 _myChannelInfo.ChannelItems.Add(module2);

 //create Communication Channel objects and add them to dictionary
 _myCommChannels = new Dictionary<string, ICommunication>();

 MyCommChannelType channel1 = new MyCommChannelType();
 _myCommChannels.Add(channelModule1.Id, channel1);

 MyCommChannelType channel2 = new MyCommChannelType();
 _myCommChannels.Add(channelModule2.Id, channel2);

}

//Implementation of IChannels Members
public CommunicationChannelInfo ChannelInfos
{
 get { return _myChannelInfo; }
}

public IEnumerable<KeyValuePair<string, ICommunication>> CommunicationChannels
{
 get { return _myCommChannels; }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 172 – IEC TR 62453-42:2016  IEC 2016

7.18 Datatypes – HardwareIdentification and scanning

7.18.1 General

The interface IHardwareInformation is used by a Frame Application to detect if specific
communication hardware is available or to request information from a field device. The
method EndHardwareScan() returns a list of DeviceScanInfo. If the method is used to detect
communication hardware, multiple DeviceScanInfo entries may be provided. If the method is
used to request information from a field device, a single entry will be returned only.

7.18.2 Datatypes – DeviceScanInfo

The methods of IScanning are used to scan the sub-topology of a Communication Channel.
The result of the scan is returned in DeviceScanInfo and contains protocol-specific
identification information of found devices (see Figure 116).

NOTE DeviceScanInfo properties contain protocol independent identification information as name value pairs in
string format. This allows a Frame Application to display basic identification information of a scanned device in a
human readable style even if the protocol-specific types are unknown.

Used in:

IHardwareInformation.EndHardwareScan()

IScanning.EndScanRequest()

Figure 116 – DeviceScanInfo – datatypes

Table 39 describes the classes related to DeviceScanInfo

Table 39 – DeviceScanInfo datatype description

Datatype Description

DeviceAddress Abstract base class for protocol-specific device address.

For scan result the value of DeviceAddress.Id shall be set to 0.

CommunicationError Description of a fieldbus protocol independent error occurred during nested
communication

DeviceScanInfo This class is used to describe information from one single scanned physical
device

IEC

ProtocolId : Guid

DeviceScanInfo

DeviceScanInfo

T «bind» <T->ProtocolDeviceScanInfo>

<Protocol>DeviceScanInfo

CommunicationErrorCommunicationErrorInformation

DeviceSpecificProperties

DeviceTypeId

HardwareRevision

ManufacturerId

ProtocolSpecificProperties

SerialNumber

SoftwareRevision

Tag

ProtocolSpecificName : string
Value : string

DeviceScanValue

1 1 1 1 1 1 1 1

0..1

0..1

0..1
Address

1

ProtocolDeviceScanInfo

ProtocolSpecificScanInfo

Address : string
Id : int

DeviceAddress
1

ProtocolIdentificationProfile

PhysicalLayer
PhysicalLayer

1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 173 –

Datatype Description

DeviceScanValue Represents an identification element of a scanned device. For example: Device
Type Id, Manufacturer Id etc.

<Protocol>DeviceScanInfo Is a placeholder for a DeviceScanInfo of a specific protocol. Example:
HARTDeviceScanInfo

DeviceScanInfo<T> This class is used to describe information from scanned physical devices

ProtocolDeviceScanInfo Abstract base class for protocol-specific scan properties.

7.18.3 Example – HardwareIdentification and scanning for HART

Figure 117 shows for example the properties of the HartDeviceScanInfo Datatype.

Used in:

IHardwareInformation.EndHardwareScan()

IScanning.EndScanRequest()

Figure 117 – Example: HARTDeviceScanInfo – datatype

Table 40 describes classes related to HARTDeviceScanInfo

Table 40 – Example: HARTDeviceScanInfo datatype description

Datatype Description

ProtocolDeviceScanInfo Abstract base class for protocol-specific scan properties.

HARTDeviceScanInfo Provides protocol-specific information returned in ScanRequest().

ProtocolDeviceAddress Abstract base class for protocol-specific device addresses.

HartDeviceAddress HART-specific device address.

IEC

1

Address

1 LongTag : string [0..1]
LongAddress : HARTLongAddress
ShortAddress : int
ShortTag : string [0..1]

HartDeviceAddress

ProtocolDeviceAddress

HartDeviceScanInfo

ProtocolDeviceScanInfo

Id : Guid
Name : string

PhysicalLayer
ScannedPhysicalLayer

1

1

LongTag
LongAddress : HARTLongAddress
ShortAddress
ShortTag

<<enum>>
AdressingModeSelection

1

1
AddressingMode

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 174 – IEC TR 62453-42:2016  IEC 2016

7.19 Datatypes – DTM report types

The ReportInfo class is used by a DTM to expose information about the report types it
implements. Figure 118 shows the involved classes and their relations.

Used in:

IReporting.Reports

Figure 118 – DTM Report – datatypes

A ReportInfo object comprehends the description of one or many report types. Each report
type (ExecutableReport) has a unique identifier, which can be used by a Frame Application to
request a specific report from a DTM. Report types may be arbitrarily grouped
(ReportGroups). They may have references to an ApplicationId, that associates them with an
FDT standard functionality (see definition of ApplicationID in Annex B and in Annex A), or
they may have a reference to a FunctionId, that links the report type to a DTM-specific
functionality.

Table 41 summarizes the datatypes in the Fdt.Dtm.Reporting namespace.

Table 41 – Reporting datatype description

Datatype Description

ExecutableReport Information about one specific report provided by the DTM.

ReportGroup Group of DTM report descriptions.

ReportInfo Provides information about reports provided by a DTM.

ReportItem Abstract base class for a report description class.

7.20 Information related to device modules in a monolithic DTM

A monolithic DTM provides information about a device with all its modules. The information
regarding the modules is distributed on different datatypes. Figure 119 shows an example
with involved data.

IEC

ReportInfo

ReportItem

AvailableReports

ExecutableReport

ReportItems

0..*

1

1..*

1
ReportGroup

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 175 –

Figure 119 – Information related to device modules

Inside a monolithic DTM the modules of a device are identified by a unique ModuleId.

NOTE Examples for monolithic DTMs are DTMs for PROFIBUS PA devices, where a module would represent a
function block or transducer block, or DTMs for modular devices, where a module would represent a hardware
module.

The same ModuleId is used in the different datatypes (ModuleInfo, ModuleProcessDataGroup,
ModuleProcessImageGroup, ModuleDataGroup, ModuleFunctionGroup, and
ModuleChannelGroup) in order to show that this information describes the same module.

IEC

: NetworkDataInfo

NetworkDataItems

NetworkDataItems

Id : string

Module1 : ModuleInfo

Id : string

Module2 : ModuleInfo

Id : int
IsWritable : bool

: NetworkData

Id : int
IsWritable : bool

: NetworkData

NetworkDataItems

*

*

: CommunicationChannelInfo

ChannelItems

ModuleId : string

Module1 :
ModuleChannelGroup

Descriptor : string [0..1]
Id : string
Label : string

: CommunicationChannelItem

ModuleId : string

Module2 :
ModuleChannelGroup

Descriptor : string [0..1]
Id : string
Label : string

: CommunicationChannelItem

ChannelItems

ChannelItems

*

*

: IOSignalInfo

: ProcessDataInfo

ProcessDataItems

ProcessDataItems

Module1 :
ModuleProcessDataGroup

*

: IOSignalInfo

ProcessDataItems

Module2 :
ModuleProcessDataGroup

*

BusMasterId : string

: ProcessImageInfo

ProcessImageItems

ProcessImageItems

ModuleId : string

Module1 :
ModuleProcessImageGroup

: ProcessImageSection IOSignalInfo
1 1

ProcessImageItems

: ProcessImageSection IOSignalInfo
1 1

ModuleId : string

Module2 :
ModuleProcessImageGroup

*

*

DataItems

: DataInfo

DeviceDataItems

ModuleId : string [0..1]

Module: ModuleDataGroup

: AccessibleData*

DataItems

ModuleId : string [0..1]

Module2 : ModuleDataGroup

: AccessibleData
*

: FunctionInfo

: FunctionItem

FunctionItems

FunctionItems

ModuleId : string

Module1 : ModuleFunctionGroup

*

: FunctionItem

FunctionItems

ModuleId : string

Module2 : ModuleFunctionGroup

*

Device
Module 1

Module 2

...

Network Data Info

Process Data Information

Device Data Information Function Information Communication Channel Information

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 176 – IEC TR 62453-42:2016  IEC 2016

For a monolithic DTM it is expected that the data in IInstanceData and IDeviceData are also
grouped for the modules (see Figure 88).

With ModuleFunctionGroup it is possible to provide functions specifically for modules.

If the device is a modular device and if modules provide communication, it is possible to use
ModuleChannelGroup in order to associate the provided CommunicationChannels to their
respective modules.

8 Workflows

8.1 General

The work flows provided in this chapter are intended to explain the expected behavior.
Implemented behavior may vary, but should follow the general rules explained here and in the
interface definitions.

The conventions for sequence diagrams are explained in H.5.

As explained in 5.6.2 all component interactions are passed through the Frame Application or
through proxy components. Since this passage shall not change interactions or inject
interaction requests, it will not change the general sequence of message calls. In order to
simplify the representation of sequences, the proxy objects often are omitted in the sequence
diagrams in this section. If the proxy objects are important to understand the sequence of
message calls, then they are shown in the sequence diagrams.

8.2 Instantiation, loading and release

8.2.1 Finding a DTM BL object

In order to execute a DTM, the Frame Application needs to find the respective DTM Business
Logic object, which is located in an assembly. This section describes the sequence of finding
the DTM BL object (see Figure 120).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 177 –

Used methods:

IDtmInfoBuilder.Init()

IDtmInfoBuilder.GetDtmInfo()

IDtmInfoBuilder.BeginGetSupportedTypes() / IDtmInfoBuilder.EndGetSupportedTypes()

IDtmInfoBuilder.GetFdtIcon()

IDtmInfoBuilder.GetFdtBitmap()

Figure 120 – Finding a DTM BL object

IEC

sd : Finding a DTM BL object

Find DTM Manifest files in
<FDT_DTMs> folder

Get
ConformityRecords,
DtmInitData

DTM 1 : DTM
Manifest

Create

deserialize manifest file

Get DtmInfoBuilderRef

Destroy

Get UiManifestRefs

Store DTM information in a
frame specific way

: DtmInfoBuilder
Create

Get DtmRootPath

Init(dtmRootPath, ...)

<GetSupportedTypes()>

<GetSupportedTypes()> execution results : list of DTM information

Store in a frame
specific way

Destroy

GetFdtBitmap()

GetFdtIcon()

Get DtmManifest information

Implements the interface
IDtmInfoBuilder, which
could also be implemented
by DtmBusinessLogic.

: Frame
Application

GetDtmInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 178 – IEC TR 62453-42:2016  IEC 2016

Typically a Frame Application stores the information about the DTM BL in a catalogue. For a
more complete sequence for updating the device catalogue refer to 10.4.3.

8.2.2 Instantiation of a new DTM BL

A new DTM Business Logic is instantiated by the Frame Application with its full assembly
class name. The class name can be looked up in the DtmManifest for the selected
DtmDeviceType.

The Frame Application shall create a new DTMDataset object and pass a reference to
IDataSet as a parameter in IDtm.InitData() to the newly created DTM Business Logic
instance. Within the InitData() call, the DTM Business Logic instance adds new
DTMDataSubsets to the DTMDataset and writes its instance data into the DTMDataSubsets
(see Figure 121).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 179 –

Used methods:

IDtm.Init()

IDtm.InitData()

IDataset.StartTransaction()

IDataset.CommitTransaction()

IDataset.CloseTransaction()

Figure 121 – Instantiation of a new DTM BL

IEC

sd Instantiation of a new DTM BL

: Frame
Application

Select
DtmDeviceType
to add

Create

:DTMDataSet
Create

Set Used FormatId

CommitTransaction()

CloseTransaction()

:
DtmDataset.Instance

Data

Init(dtmRootPath, …)

:DataSubset

Add(key,data,descriptor)

Loop all data

InitData(typeId, dtmdataset)

Create

Run()

return DataSubset

Add to
Dictionary

WriteData()

Set descriptor

Register transaction events

StartTransaction()

: DTM Business
Logic

Initialize
instance data

Set state
„ModifiedInDTM“

Set state
„NoKnownChanges“

Multi User Frame
Application specific
transaction handling.

Prepare all data
for a new
DataSubset

E.g. a binary
stream

State running

initialized

configuring<Configuration()>

* Create subtopology

Create

Sequence Finding a DTM BL object

ref

DTM Information is known

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 180 – IEC TR 62453-42:2016  IEC 2016

8.2.3 Configuring access rights

The Frame Application can provide a separate function to configure the access rights for
individual users or for group of users, which will be working with the DTM. The function for
Access Rights configuration is usually available only for System Administrators, which are
responsible for the security of the plant.

To configure the access rights, the administrator has to instantiate the DTM with access rights
set to Engineer, get the list of all Data provided by the DTM by using
ICustomConfiguration::<GetAllDataInfo()>. The Administrator will get the list of all functions
from IFunction.FunctionInfo property. The Administrator will use a specialized user interface,
provided by the Frame Application to define the permissions for changing data and invoking
functions.

This information shall be saved by the Frame Application and used when the DTM of this type
is instantiated.

The user can invoke the DTM with Expert user level (see 8.2.5) and verify the correctness of
the settings. The Administrator may come back to the specialized user interface, provided by
the Frame Application, correct the permissions, save the data with the rest frame data and
invoke the DTM again.

The following sequence diagram illustrates the configuration of the user permissions, when
custom role is invoked (see Figure 122).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 181 –

Used methods:

ICustomConfiguration::BeginGetAllDataInfo()

ICustomConfiguration::EndGetAllDataInfo()

Figure 122 – Configuration of user permissions

8.2.4 Loading a DTM BL

After creation of a DTM Business Logic instance for an existing DTMDataset the Frame
Application shall call Init() and LoadData(), pass the identifier of the represented type (device,
module, block) and the interface of the corresponding DTMDataset. The DTM checks the
FormatId of the DTMDataset and reads the InstanceData from the DTMDataset to initialize its
device data (see Figure 123).

IEC

sd : Configuration of user permission

: DTM Business
Logic

: Frame
Application

set user
permission to DTM

Get Function.Functions : FunctionInfo

<GetAllDataInfo()> execution results

select DTM

collect all data and
functions of all
possible modes

Display all parameters
and functions

for each user role
select parameters and
functions to be enabled

DTM was started with
engineer role.

All parameters and
functions are enabled

set all parameters and
functions to
IsEnabled=false
by default

<GetAllDataInfo()>

save the permission
for DTM Device Type
and particular Frame
defined user role.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 182 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtm.Init()

IDtm.LoadData()

IDataSubset.ReadData()

Event IDeviceData.ModifiedInDeviceChanged()

Event IInstanceData.ModifiedInDtmChanged()

Figure 123 – Loading a DTM BL

A DTM Business Logic shall read DTMDataSubsets of Datasets InstanceData on demand
when the data are required according to a business function context. When transient data are
not accessed any more, a DTM shall release the transient data and reload it from the Dataset
if needed (see 8.3.1).

8.2.5 Loading a DTM with Expert user level

While loading the DTM with Expert user level, the Frame Application shall set the access
rights using the ICustomConfiguration::<EnableParameters()>.

If the Frame Application does not invoke the ICustomConfiguration methods to grant
permissions, the user will have restricted access as if the DTM is invoked by the Observer
(see Figure 124).

IEC

sd Loading a DTM BL

Register transaction events

ReadData()

: Frame
Application

Create : DTM Business
Logic

LoadData(dtmDeviceTypeId, dataset)

Create

Frame specific initialization

Check if
Dataset.FormatId
is „Used“ or
„ReadSupported“

Update transient
instance data

Loop: all DataSubsets in InstanceData required for actual context

:
DTMDataSubset

Dataset.InstanceData[index]

Init()

:DTMDataset

Create

Run()

[optional] Register IDeviceData.ModifiedInDeviceChanged and IInstanceData.ModifiedInDtmChanged Events

State running

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 183 –

Used methods:

IInstanceCustomConfiguration.BeginEnableParameters() / IInstanceCustomConfiguration.EndEnableParameters()

IDeviceCustomConfiguration.BeginEnableParameters() / IDeviceCustomConfiguration.EndEnableParameters()

Figure 124 – Loading a DTM with Expert user level

8.2.6 Release of a DTM BL

In order to release a DTM BL all ongoing activities need to be terminated (see Figure 125).

IEC

sd : Loading a DTM with expert user role

: Frame
Application

: DTM Business
Logic

<EnableParameters()> execution results

Start DTM
with ExpertUser Role

Sequence Instantiation of a new DTM BL

ref

IInstanceCustomConfiguration::<EnableParameters()>

State running

[access enabled data]

Device/Instance DataAccess call

Data change and
change of all
dependent parameters
according to DTM
business rules

Detect that parameter
is disabled

[one or more of accessed
parameters is not change enabled]

alt

Device/Instance DataAccess call
execution results

load the permission for
DTM Device Type and
particular Frame
defined user role.

First call in
running state

Function exception or
FdtNoWriteAccessException or
FdtNoReadAccessException

All parameters
are disabled

<EnableParameters()> execution results

IDeviceCustomConfiguration::<EnableParameters()>

Enable offline
parameters

Enable online
parameters

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 184 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtm.BeginRelease() / IDtm.EndRelease()

Figure 125 – Release of a DTM BL

8.3 Persistent storage of a DTM

8.3.1 Saving instance data of a DTM

The DTM instance saves its instance data on demand in a DataTransaction. The Frame
Application can release a DTM only if no DataTransaction is active. If the Frame Application
performs an action which requires that all data is committed (i.e. saving of a project file) then
it shall check if there are no open transactions. If there are open transactions then the Frame
Application should inform the user and list the DTMs which have open transactions and
thereby may have uncommitted data (see Figure 126).

IEC

sd Release of a DTM BL

: Frame
Application

: DTM Business
Logic

[UI open] Close UI

<Release()>

[DTM is online] Go Offline

Sequence
Release of DTM User Interface

ref

Sequence
GoOffline

ref

<Release()> execution results

Destroyed by .NET Garbage Collector when
last reference to the object is released

Release

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 185 –

Used methods:

IDataSet.StartTransaction()

IDataSet.CommitTransaction()

IDataSet.CloseTransaction()

IDataSubsetDictionary.Add()

Figure 126 – Saving data of a DTM

8.3.2 Copy and versioning of a DTM instance

Saved datasets can be copied by a Frame Application from one device node to a different
device node. The copied Dataset is loaded with LoadData() into instances of the
corresponding device node.

The Frame Application is responsible to handle the Frame Application-specific versioning
aspects and to manage the different instance datasets (e.g. fieldbus address and device tag)
for a device.

IEC

sd : saving data of a DTM

:DTMDataset : DTM Business
Logic

StartTransaction()

CommitTransaction()

CloseTransaction()

Frame internal
Handling, e.g.
propagation of changes

Frame specific
handling

Frame specific
handling

: DtmDataset.
InstanceData

:DataSubset

Add(key,data,descriptor)

Loop all data

Create

DataSubset

Prepare all
data for a new
DataSubset

Add to
Dictionary

WriteData(data)

Descriptor = descriptor

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 186 – IEC TR 62453-42:2016  IEC 2016

8.3.3 Dataset commit failed

The following workflow describes the expected behavior if committing changes in the dataset
fails. This exception is usually caused by a serious problem in the Frame Application. The
Frame Application shall inform the user that the latest changes could not be saved and to
release the DTM (see Figure 127).

Used methods:

IDataSet.StartTransaction()

IDataSet.TransactionStarted()

IDataSet.CommitTransaction()

IDataSet.TransactionClosed()

IDataSet.CloseTransaction()

IDataSubsetDictionary.Add()

Figure 127 – Dataset commit failed

8.3.4 Export a DTM dataset to file

The diagram shown in Figure 128 shows the use of datatypes for exporting the data of a DTM
instance to a file.

IEC

sd: Dataset commit fails

DTM1 : DTM
Business Logic

:DTMDataset DTM2 : DTM
Business Logic

Change values in instance dataset

StartTransaction()

TransactionStartedTransactionStarted

<Write()>

CommitTransaction()

e.g.: writing
DTMDataset to
database failed

e.g. FdtCommitTransactionFailedException

The method fails due to one of
following reasons:
- The operation failed.
- The commit transaction of the
 dataset fails

TransactionClosed TransactionClosed

CloseTransaction(false)

Frame
Application

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 187 –

Used methods:

Figure 128 – Export a DTM dataset to file

8.4 Locking and DataTransactions in multi-user environments

8.4.1 General

Within a multi-user environment it is common, that more than one DTM instance has access
to the same dataset. To synchronize DTMs which are started by several users on different
PCs FDT provides a locking mechanism. Target for this event mechanism is that only one
DTM has read/write access to the instance dataset and to the device data. All other DTMs
have read access only.

For this reason a DTM shall lock its dataset with StartTransaction() only if required and only
during modification of the data. After the data is committed and the data is not further under
modification, the DTM shall unlock its dataset with CloseTransaction() immediately to enable
concurrent access to the data by other DTM instances within a multi-user environment.

• The DTM shall start a DataTransaction before an activity is started, that may change the
instance data (e.g. upload, IInstanceData.<Write()>) or the data in the device (e.g.
OnlineParameterize). The DTM shall close the DataTransaction after the activity is
finished.

IEC

sd: Export a DTM dataset to file

Frame
Application

Dss :
ImportExportDataSubset

Select DeviceNode and
define filepath

Export DTM Dataset

New(DatasetFormatId)

New(key, byteArray)

loop
All data subsets of instance data

Add DataSubset to Instance Data

Ds :
ImportExportDataset

WriteObject(filestream, Ds)

Create filestream

: DataContractSerializernew

Dss :
ImportExportDataSubset

New(key, byteArray)

loop All data subsets of bulk data

Add DataSubset to Bulk Data

Fetch ByteArray for
key from Frame-
specific Storage

Fetch Byte Array for
key

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 188 – IEC TR 62453-42:2016  IEC 2016

If instance data is changed, then the DTM shall save the Dataset before closing the
DataTransaction. E.g.:
– While a DTM UI is opened the DTM shall try to start a DataTransaction if write access

is needed. If successful, all user input fields can be enabled. If the start of the
DataTransaction failed, user input fields shall be disabled. After closing all DTM GUI
controls in case of a locked Dataset the DTM should write modified DTMDataSubsets
and commit the Dataset and close the DataTransaction after the Frame Application has
saved the Dataset.

• A Frame Application shall return a negative result when a DTM calls StartTransaction
while a second DTM has already an open DataTransaction. (The property
LockResult.IsLocked will be set to false.)

• The Frame Application shall throw an exception if a DTM writes DTMDataSubsets while
this DTM does not have an open DataTransaction.

• The DTM shall keep a DataTransaction open as short as possible. It is not allowed to set
the lock for the whole time that a DTM is in states ‘running’ and ‘communicationAllowed”.

• If committing the dataset fails, then the transaction shall be closed without saving
(CloseTransaction(false)) and the user shall be informed. It is recommended to stop
working with the DTM.

• If closing the transaction fails, then the user shall be informed. It is recommended to stop
working with the DTM.

• If a DTM receives the event TransactionCommitted(), it is mandatory to update the
instance data from storage.

8.4.2 Propagation of changes

When multiple DTM instances are executed in a multi-user environment for the same device
(see 4.6.2) and one DTM instance is changing the DataSet, the other DTM instance receives
notifications indicating the process of change (TransactionStarted, TransactionCommitted,
TransactionClosed).

Receiving the event TransactionCommitted indicates that the data in the persisted DataSet
has been changed and that the DTM shall update the instance data from the storage.

The sequence diagram shown in Figure 129 shows how changes in the instance dataset of
one DTM instance (DTM1) are propagated to other DTM instances (DTM2) and to the Parent
DTM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 189 –

Used methods:

IDataset.StartTransaction() / IDataset.CommitTransaction() / IDataset.CloseTransaction()

IDataset.TransactionStarted / IDataset.TransactionCommitted /IDataset.TransactionClosed

IInstanceData.BeginWrite() / IInstanceData.EndWrite()

Event IInstanceData.DataValueChanged()

Event IInstanceData.DataInfoChanged()

Event IChildDtmEvents.InstanceDataValueChanged()

Event IChildDtmEvents.InstanceDataInfoChanged()

Figure 129 – Propagation of changes

The figure above shows how a DTM instance (“DTM2”) receives notifications on changes and
how it updates its instance data, because the dataset was changed by a different DTM
instance (“DTM1”).

NOTE For simplification, it is not shown here how “DTM2” reads already committed data while “DTM1” is still
modifying data in an open transaction (refer to Figure 130, which shows this scenario).

IEC

sd: Propagation of changes

:Parent DTM
Business Logic

DTM1 : DTM
Business Logic

Dataset1 :
DTMDataset

Change values in instance dataset

TransactionCommitted

StartTransaction()

TransactionStarted

DataInfoChanged

InstanceDataInfoChanged()

InstanceDataValueChanged()

CloseTransaction

TransactionClosed

TransactionStarted

TransactionCommitted

TransactionClosed

DataValueChanged

<Write()>

<Write()> execution results

CommitTransaction()

Read changed datasubsets
loop All changed datasubsets

Internal
Data
update

Read data
objects to
update as
required

Frame
Application

DTM2 : DTM
Business Logic

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 190 – IEC TR 62453-42:2016  IEC 2016

8.4.3 Synchronizing DTMs in multi-user environments

The synchronization of DTMs is a mandatory feature to provide a better handling for the user
within a multi-user environment (see Figure 130).

Used methods:

IDtm.Init()

IDtm.LoadData()

IDataset.CloseTransaction()

IDataset.CommitTransaction()

IDataset.StartTransaction()

IDataset.TransactionClosed()

IDataset.TransactionCommitted()

IDataset.TransactionStarted()

Figure 130 – Synchronizing DTMs in multi-user environments

IEC

sd : Synchronizing DTMs in multi-user environments

RegisterTransactionEvents

Read InstanceData Subsets

LoadData(Dataset1)
Register Transaction
Events

new()

Frame specific load from Database

new()

DTM2 : DTM
Business Logic

new()

Frame specific load from Database

new()

Init()

Register Transaction
Events

RegisterTransactionEvents

Initialize instance
data and refresh UI

Read InstanceData Subsets

Initialize instance
data and refresh UI

StartTransaction()
Frame internal TransactionStarted()

TransactionStarted()
Frame internal TransactionStarted()

Indicate WriteLock in
UI and disable UI
elements

[1..n] Write InstanceData

CommitTransaction()
Frame internal TransactionCommitted()

Frame internal TransactionCommitted() TransactionCommitted()

Update instance
data and refresh UI

Read InstanceData Subsets

Update modified datasubsets

CloseTransaction()
Frame internal TransactionClosed()

TransactionClosed()Frame internal TransactionClosed()

Indicate write
permission in UI and
enable UI-elements

StartTransaction()
Frame internal TransactionStarted()

Frame internal TransactionStarted()
RW

ACCESS

RW
ACCESS

R
ACCESS

R
ACCESS

Init()

LoadData(Dataset1*)

Dataset copy
in multiuser
scenario

TransactionStarted()

Indicate WriteLock in
UI and disable UI
elements

: Frame
Application

Dataset1 :
DTMDataset

DTM1 : DTM
Business Logic

Dataset1* :
DTMDataset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 191 –

The sequence diagram in Figure 130 describes an implementation example where a Frame
Application provides a copy of the last committed DTMDataset (Dataset1*) for concurrently
accessing DTM instances in multi-user scenarios. These instances cannot change the dataset
at the same time (FA rejects StartTransaction()), but can read from the dataset last
committed. How the Frame Application synchronizes the two instances of DtmDataset, is not
in scope of FDT but specific to the Frame Application (shown as Frame Internal methods).

8.5 Execution of DTM Functions

8.5.1 General

This specification defines different types of DTM User Interfaces:

• WinForms controls or WPF controls that can be embedded into the Frame Application user
interface

• Applications which can be started by a DTM User Interface class

• Command functions which are provided by a DTM BL or a DTM User Interface class

The sequence diagrams in this subclause show the different handling of these user interface
types.

8.5.2 Finding a DTM User Interface object

The FunctionInfo property of IFunction interface provides access to user interfaces provided
by a DTM. If a DTM provides user interfaces the FunctionInfo property contains a list of
UiFunction objects. A UiFunction object represents a DTM User Interface function. The actual
information about the object which implements this function is provided in a manifest file (see
DtmManifest.UiManifestRefs description). The Frame Application shall use the property
UiFunction.FunctionId to find the information in the manifest (see UiFunction description) (see
Figure 131).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 192 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IFunction.Functioninfo

Figure 131 – Finding a DTM User Interface

8.5.3 Instantiation of an integrated DTM graphical user interface

This sequence diagram outlines the opening of a DTM User Interface for a DTM function
selected by the user (e.g. in a DTM-specific context menu) (see Figure 132). The sequence
may also be started by a different trigger (e.g. by a Frame Application function).

IEC

sd : finding a DTM User Interface

Frame
Application : DTM Business

Logic

Get Function.Functions : FunctionInfo

Select
Function Get IFunction : FunctionInfo

: DtmManifest

Deserialize manifest-file

Create

Lookup local UI
Manifest filename

Deserialize UI manifest-file

: UIManifest

Create

Loop : all UIManifestUIRefs

Get ClassName of FunctionId with required Type

Internal lookup
local DTM manifest-
file path

Close DtmManifest

Close DtmUIManifest

GUI object found

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 193 –

Used methods:

IFunction.FunctionInfo

IDtmUiFunction.BeginInit() / IDtmUiFunction.EndInit()

IDtmUiControlFunction.CreateControl()

IDtmUiControlFunction.ControlLoaded()

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Figure 132 – Instantiation of a DTM User Interface

8.5.4 Instantiation of a DTM UI triggered by the DTM BL

In this scenario the DTM Business Logic requests to open one of its user interfaces (see
Figure 133).

If the user interface is successfully instantiated and initialized, the Frame Application returns
the InvokeId of the new user interface with the EndOpenDtmUi method.

IEC

sd: Instantiation of a DTM User Interface

: Frame
Application

: DTM Business
Logic

Select
Function

[ClassName found] Create
: DTM

UserInterface

IDtmUIFunction::<Init()>

Register IDtmUiMessaging events

Register IDtmUiMessaging events

Sequence Interaction initiated by the DTM User Interface

ref Preparation of response data may
require locking of dataset if the UI
can modify the instance data (e.g.
Offline Parameterization)

GUI object found

The DTM User Interface calls methods of the
IDtmUiMessaging provided in Init() and
implemented by the Frame Application and
DTM Business Logic.
The Frame Application forwards the messages
from and to the DTM Business Logic.

Event registration is done using standard .NET
mechanism.
See Figure 'Interaction between DTM Business
Logic and DTM User Interface'

Create Control

: DTM UI Control
Create

return DTM UI Control

Show UI control

ControlLoaded()

Invoke GUI Thread to
do something

<Init()> execution result

Frame Application must
perform this call in the User
Interface Thread.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 194 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IFrameUi.BeginOpenDtmUi()

IFrameUi.EndOpenDtmUi()

Figure 133 – Instantiation of a DTM UI triggered by DTM BL

8.5.5 Instantiation of a modal DTM UI triggered by DTM BL

In this scenario the DTM Business Logic requests to open one of its user interfaces modally
(see Figure 134).

IFrameUi.OpenDtmUiModal() behaves always modal. The Frame Application has to ensure
that at least all user interface controls of the calling DTM are disabled; no further user input
shall be possible (DTM instance modal).

The opened user interface shall call the delegate CloseMeRequestHandler() if it needs to be
closed. The Frame Application then closes the DTM User Interface and receives the result
when calling the method IDtmUiFunctionModal. EndClose().

IFrameUi.<OpenDtmUiModal()> shall be called in a way that the caller is blocked until the
user interface is closed.

IEC

sd:Instantiation of a DTM UI triggered by DTM BL

 : Frame
Application

: DTM Business
Logic

<OpenDtmUI()>

<OpenDtmUi()> execution result

Sequence Instantiation of a DTM User Interface

ref
: DTM

UserInterface

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 195 –

Used methods:

IFrameUi.BeginOpenDtmUiModal() / IFrameUi.EndOpenDtmUiModal()

CloseMeRequestCallback()

IDtmUiFunction.BeginClose()

IDtmUiFunction.EndClose()

Figure 134 – Instantiation of a modal DTM UI triggered by DTM BL

8.5.6 Release of a DTM User Interface

This sequence diagram outlines the closing of a DTM User Interface for a DTM function as a
result of a request to the Frame Application (e.g. windows system menu – close). If the Frame
Application releases a user interface of a DTM, it has to prepare the release by sending a
notification to the presentation object first (see Figure 135). After receiving the call to
IDtmUiFunction.BeginClose() the user interface shall release its references to other
components and can call DTM-specific releasing methods.

IEC

sd: Instantiation of a modal DTM UI triggered by DTM BL

Frame
Application

: DTM Business
Logic

<OpenDtmUiModal(function)>

Sequence Instantiation of a DTM User Interface

ref

Request may also be sent from an
other DTM User Interface

CloseMeRequestCallback

<Close()> execution result

<Close()>

: DTM
UserInterface

Sequence Interaction initiated by the DTM User Interface
ref

UI reads data from
business logic

Close

Sequence Interaction initiated by the DTM User Interface
ref

Unregister IDtmUiMessaging events

Unregister IDtmUiMessaging events

Optional DTM specific preparations for
releasing the User Interface.
E.g. closing open connections to the device.

Callback provided in
IDtmUiFunction::Init()

Create

Interaction

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 196 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtmUiFunction.BeginClose()

IDtmUiFunction.EndClose()

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Figure 135 – Release of a DTM User Interface

8.5.7 Release of a DTM UI triggered by the DTM BL

This sequence diagram outlines the closing of a DTM User Interface for a DTM function as a
result of a request by the corresponding DTM BL (see Figure 136).

IEC

sd: Release of a DTM User Interface

: Frame
Application

: DTM Business
Logic

: DTM
UserInterface

Close UI

<Close()>

<Close()> execution result

Unregister IDtmUiMessaging events

Unregister IDtmUiMessaging events

Unregister ApplicationSpecificActionItemSetChanged event

Unregister StandardActionItemSetChanged event

Sequence: Interaction initiated by the DTM User Interface

ref Optional DTM specific preparations
for releasing the User Interface.
E.g. closing open connections to the
device.

release

: DTM UI Control

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 197 –

Used methods:

IFrameUI.BeginCloseDtmUi()

IFrameUI.EndCloseDtmUi()

Figure 136 – Release of a DTM UI triggered by the DTM BL

8.5.8 Release of a DTM User Interface triggered by itself

In this scenario the DTM User Interface requests to close itself (e.g. after the user presses the
‘Close’ button on the DTM User Interface). The user interface shall call the delegate
CloseMeRequestHandler(), provided in the IDtmUiFunction.<Init()> method, if it needs to be
closed (see Figure 137). The Frame Application then closes the DTM User Interface.

IEC

sd: Release of a DTM UI triggered by the DTM BL

: Frame
Application

: DTM Business
Logic

: DTM
UserInterface

<CloseDtmUi(invokeId)>

<CloseDtmUi()> execution results

Sequence Release of a DTM User Interface

ref

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 198 – IEC TR 62453-42:2016  IEC 2016

Used methods:

CloseMeRequestCallback()

Figure 137 – Release of a DTM User Interface triggered by itself

8.5.9 Release of a non-modal DTM User Interface triggered by a standard action

For a modeless DTM UI ,which supports the interface IDtmUiFunctionNonModal, the trigger
for closing always comes from the Frame Application. Figure 138 shows the sequence for
closing such a DTM User Interface.

Used methods:

CloseMeRequestCallback()

Figure 138 – Release of a non-modal DTM UI triggered by a standard action

IEC

sd: Release of a non-modal DTM UI triggered by a standard action

: Frame
Application

: DTM Business
Logic

: DTM
UserInterface

Close UI

Sequence Release of a DTM User Interface

ref

CloseMeRequest Callback

InvokeStandardAction()

IEC

sd: Release of a DTM User Interface triggered by itself

: Frame
Application

: DTM Business
Logic

: DTM
UserInterface

Close UI

Sequence Release of a DTM User Interface

ref

CloseMeRequestCallback

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 199 –

8.5.10 Progress indication for prolonged DTM actions

Figure 139 shows how a Frame Application informs the user in the user interface about the
progress of prolonged DTM actions.

Used methods:
IProgressUI.UpdateProgress()
IProgressUI.Dispose()

Figure 139 – Progress indication for prolonged DTM actions

IEC

sd Progress indication for prolonged DTM actions

Device DTM :
DTM Business

Logic

UI : Frame
Application

perform a single step
of the action

Trigger a long
lasting DTM function

Estimate overall
number of steps with
similar duration

loop [all steps or error is detected]

UpdateProgress(PercentComplete = xxx)

UpdateProgress(PercentComplete = 100)

[number of progress steps and/or required duration can not be evaluated]

alt [real progress steps can be evaluated]

UpdateProgress(PercentComplete = -1)

Trigger a long lasting action

return action results or error

IProgressUI::Dispose()

Display progress bar in
context of DTM instance
and action

hide progress bar of this
action

Update progress display percentage

Display generic progress
information

perform long lasting
action

UpdateProgress(PercentComplete = 100)

return action results or error

UpdateProgress ("Name of performed action", PercentComplete=0)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 200 – IEC TR 62453-42:2016  IEC 2016

DTMs shall use UpdateProgress() only for prolonged actions, which are not defined as
"Progress pattern" (see 5.6.7.3).

A Frame Application shall be prepared to handle several UpdateProgress() calls from different
DTM instances and for different actions in parallel.

8.5.11 Starting an application

In general the Frame Application uses the same mechanism to start an application and to
open an embedded DTM GUI. In order to start an application, a DTM has to provide a DTM UI
Application object, which may be used to start the application and to interact with the
application.

The sequence diagram in Figure 140 shows how the Frame Application starts an application
and how the application interacts with the DTM.

Used methods:

IFunction.FunctionInfo

IDtmUiFunction.BeginInit() / IDtmUiFunction.EndInit()

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Figure 140 – Starting an application

The DTM UI Application object acts as an adapter to the external application and implements
the FDT interfaces so that the Frame Application may interact with the application. The
interactions between the DTM UI Application object and the application is not in scope of the
FDT specification and may be implemented with private interfaces.

IEC

sd : Starting an application

: Frame
Application

: DTM Business
Logic

[ClassName found] Create :DTM UI
Application

<Init()>

<SendMessages()>

<SendMessages()>

<SendMessages()> execution results

<SendMessages()> execution results

Register IDtmUiMessaging events

Register IDtmUiMessaging events

Preparation of
response data

GUI object found

:ApplicationCreate

Application specific initialization

Application specific requests data

Application receives data

Preparation of response data may
require locking of dataset if the Ui is
able to modify the instance data
(e.g. Offline Parameterization)

<Init()> execution results

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 201 –

8.5.12 Terminating applications

An application may be terminated similar to an embedded DTM UI. See 8.5.6, 8.5.7 and 8.5.8.

8.5.13 Execution of command functions

The execution of a command function on the DTM BL is started via the ICommandFunction
interface. The execution of the command is triggered by BeginExecute() and EndExecute()
(see Figure 141).

Used methods:

IFunction.FunctionInfo

ICommandFunction.BeginExecute() / ICommandFunction.EndExecute()

Figure 141 – Execute a command function

8.5.14 Execution of a command function with user interface

Some Command Functions may need to open user interfaces and therefore may require
knowing where DTM user interfaces are opened. First the UiCommandFunction is initialized
and then the execution of the command function is triggered. The following workflow
describes how a Frame Application starts the execution and passes command-specific
parameters (see Figure 142).

IEC

sd: Execute a command function on DTM-BL

 : Frame
Application

: DTM Business
Logic

<Execute(...parameter...)>

<Execute()> execution results

Process command
function

Execute command

Select DTM and
Show DTM functions

Get IFunctions.FunctionInfo

Offer available
functions for selection

Determine parameter
values

E.g.:
a) Either Frame requests
values from user

or

b) Frame uses default
parameter values from
FunctionInfo

or

c) preconfigured e.g. by Frame
configuration

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 202 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IFunction.FunctionInfo

ICommandFunction.BeginExecute() / ICommandFunction.EndExecute()

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

Figure 142 – Execute a command function with user interface

8.5.15 Opening of documents

In order to open a document which is provided by a DTM, the Frame Application opens the
default application for the Mime-Type of the document, for instance by calling the method
ProcessStartInfo() (provided by the operating system) (see Figure 143).

IEC

sd: Execute a command function with UICommandFunction

 : Frame
Application

: DTM
UICommandFunction

<Execute(.... parameter ...)>

<Execute()> execution results

Execute command

Select DTM and
Show DTM functions

Get IFunctions.FunctionInfo

Offer available
functions for selection

: DTM
BusinessLogic

e.g. <SendMessages()>

<SendMessages()> execution results

Process
command
function

Determine parameter
values

Create

Refer to
Fdt.Deployment.CommandFunctionInfo

This instance may open
a private user interface

Instantiated on the
computer where the
DTM-UI is shown

Sequence Release of a DTM User Interface

ref

Sequence Instantiation of a DTM User Interface

ref

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 203 –

Used methods:

IFunction.FunctionInfo

Figure 143 – Opening a document

8.5.16 Interaction between DTM User Interface and DTM Business Logic

This sequence diagram outlines the interaction of a DTM User Interface with its Business
Logic over the messaging interface provided by the Frame Application (see Figure 144).

IEC

sd: Opening a document

 : Frame
Application

: Viewer
Application

Select DTM and
Show DTM functions

Get IFunctions.FunctionInfo

Show available
functions

Close Viewer

: DTM Business
Logic

E.g. pdf Reader
or Browser

Create

opens the default application for the
Mime-Type of the document, e.g. with
ProcessStartInfo.

Open window and
show document
content

Select a
document function

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 204 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

ProgressCallback()

Figure 144 – Interaction triggered by the DTM User Interface

NOTE The callback ProgressCallback and the callback SendMessageCompleted are provided as a parameter of
the BeginSendMessage

In this scenario the DTM User Interface requests data from the DTM Business Logic (e.g. to
read measured values from the device) by sending a DTM-specific request message(s)
derived from the abstract DtmRequestMessage class.

The IDtmUiMessaging interface is implemented by the DTM Business Logic and the Frame
Application. The reference to the Frame Application implemented interface shall be passed to
a DTM User Interface with the IDtmUiFunction.<Init()> call. The Frame Application shall
forward the messages between the DTM User Interface and the DTM Business Logic.

The DTM Business Logic evaluates the requests and creates corresponding response
message(s) derived from the abstract DtmResponseMessage class. The response messages
contain the requested data and are sent back by calling the Progress and Callback methods.

More detailed information can be found in descriptions of:

– IDtmUiMessaging
– DtmRequestMessage
– DtmResponseMessage

IEC

sd Interaction triggered by the DTM User Interface

: Frame
Application

: DTM Business
Logic

: DTM
UserInterface

<SendMessages(requestData, ProgressCallback, asyncState)>

<SendMessages(requestData,
Progress, Callback, asyncState)>

ProgressCallBack(ProgressInfo)

ProgressCallback(ProgressInfo)

<SendMessage()> execution results

<SendMessages(AsyncResult)> execution results

Frame application
forwards message

to DTM Business
Logic

Processing of message
data may include
asynchronous
operations e.g. upload of
data from the device.

Update of
UI elements

Update Progress
UI element

Processing of
result data
e.g. update of
UI elements

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 205 –

8.5.17 Interaction between DTM Business Logic and DTM User Interface

This sequence diagram outlines the sending of events from a DTM Business Logic to all its
opened DTM User Interfaces (see Figure 145).

Used methods:

Event IDtmUiMessaging.DtmSpecificEventOccured()

Figure 145 – Interaction triggered by the DTM Business Logic

In this scenario the DTM Business Logic sends data to the DTM User Interface (e.g. in case of
a broken connection to the device).

The DTM User Interface(s) shall register to IDtmUiMessaging events during initialization of
the DTM User Interface in order to receive the events.

The Frame Application shall forward the events from the DTM Business Logic to all DTM User
Interfaces opened for this instance.

Following standard events are defined in IDtmUiMessaging:

– DtmSpecificEventOccured
– TransactionStarted
– TransactionCommitted
– TransactionClosed

The event DtmSpecificEventOccured can be used for DTM-specific notifications. The DTM
Business Logic creates corresponding event message(s) derived from the abstract
DtmEventMessage class and passes it to the event handler.

More detailed information can be found in descriptions of:

– IDtmUiMessaging
– DtmEventMessage

IEC

sd Interaction triggered by the DTM Business Logic

: DTM
UserInterface

: DTM
UserInterface

Frame
Application

:DTM Business
Logic

:DTM
UserInterface

Event:DtmSpecificEventOccured(message data)

Event:DtmSpecificEventOccured(message data)
Processing of
message data
e.g. update of
UI elements

loop For all open DTM User Interfaces of this DTM Business Logic instance

Modification, which
requires UI notification Examples of changes which may

trigger this event:
÷ Changes in instance data by

IInstanceData::Write()
÷ Changes from another DTM-UI
÷ State changes like online

offline state change

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 206 – IEC TR 62453-42:2016  IEC 2016

8.5.18 Interaction between DTM User Interface and DTM Business Logic with Cancel

This sequence diagram outlines the canceling of a pending user interface message on
request of the user (see Figure 146).

Used methods:

IDtmUiMessaging.BeginSendMessages()

IDtmUiMessaging.EndSendMessages()

IDtmUiMessaging.CancelSendMessages()

Used exceptions:

Fdt.FdtOperationCancelledException

Figure 146 – Interaction triggered and canceled by the DTM User Interface

In this scenario the DTM User Interface requests execution of an asynchronous operation
from the DTM Business Logic. During execution, the DTM User Interface sends a cancel
request. The Frame Application shall forward the CancelSendMessages() request to the DTM
Business Logic. The DTM Business Logic shall stop execution and throw an exception in the
EndSendMessages() method.

IEC

sd Interaction triggered and canceled by the DTM User Interface

: Frame
Application

: DTM Business
Logic

: DTM
UserInterface

CancelSendMessages(AsyncResult)

CancelSendMessages(AsyncResult)

<SendMessages()>

<SendMessages()>

<SendMessages()> result
 throws CanceledException

DTM cancels
asynchronous
operation

Frame application forwards
exception to DTM UI

Frame application
forwards message to
DTM Business Logic

Cancel

<SendMessages()> result
throws CanceledException

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 207 –

8.5.19 Retrieving information about available Static Functions

In order to use a Static Function for a specific device, the Frame Application retrieves the
information about available static functions from the corresponding DTM instance (see
Figure 147).

Used methods:

Event IFunction.StaticFunctionsChanged()

IFunction.StaticFunctions()

Figure 147 – Retrieving information about available Static Functions

Figure 148 shows the example for StaticFunctionInfo data, which was retrieved from a DTM.

IEC

sd : Retrieving information about available Static Functions

: Frame Application DTM1 : DTM
Business Logic

return StaticFunctionInfo

get StaticFunctionInfo from IFunction

StaticFunction of device is known

The static functions for the device may be
displayed to the user (e.g. as context menu)

This example describes a HART
object instance of returned
StaticFunctionInfo:

See example instance diagram
below

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 208 – IEC TR 62453-42:2016  IEC 2016

Figure 148 – Example: Information about available Static Functions

8.5.20 Executing a Static Function

After retrieving the information regarding the available static functions, the Frame Application
may provide triggers for execution of the Static Functions to the user (e.g. in a menu) or may
use internal triggers to execute a Static Function (see Figure 149).

IEC

:StaticFunctionInfo

StaticFunctionItem[0]

DataType = "HartTransactionResponse"
Descriptor = "Cmd0 response of the device"
Id = 1
IsOptional = false
Label = "DeviceData"
CommunicationRequest = "..." // insert here
 <Hart CommunicationRequest(Command0) >
 datatype serialized as XML

: StaticFunctionArgumentDescription

InputParameter[0]

ResultArguments[0]

StaticFunctionItem[1]

DataType = "DeviceStatus"
Descriptor = "Device Status as defined by FDT"
Id = 2
IsOptional = false
Label = "DeviceStatus"

: StaticFunctionArgumentDescription

ClassName = "StaticFunctionProviderClass1"

: DynamicClassReference

Name = "ExampleAssembly"
Path = "file://xyz" // Uri
PublicKeyToken = "0123456789ABCDEF"
SupportedPlatforms = Any // enum PlatformSupport
Version = 1.89 // Version

: AssemblyInfo

AssemblyInfo

ClassWhichContainsTheStaticFunction

CLRVersionNumber = 2.0

: RuntimeVersionRuntimeVersions

ApplicationDomain = "FDT"
SemanticId = "NamurStatus"

: Semanticinfo
SemanticInfos[0]

The SemanticId allows a Frame Application
to distinguish different static functions.
These SemanticIds are defined by FDT
Group documents to allow the identification
of same StaticFunctions across different
DTM Vendors.

This string is used by the Frame Application
to identify the FDT defined Datatype –
example here : DataType returned in
CommunicationRequest()

ApplicationId = Diagnosis // optional !
Descriptor = "Retrieves the device status in Namur-Format"
FunctionId = 1
Label = "GetDeviceStatus" // localized
ProtocolId[0] = 036D1498-387B-11D4-86E1-00E0987270B9
ProtocolId[1] = 98503B8F-0FFB-4EB7-BB67-F4D6BD16DB8D
ProtocolId[2] = E8624352-830D-470F-8D89-18A9EC4DB4D1
ProtocolId[3] = 58001A08-C178-4A59-A76B-9EF9111CB83D
ProtocolId[4] = EF708CB7-A2A1-42AF-890C-15CEB680CC12
ProtocolId[5] = 2756000E-5EAB-4049-81B2-4174E4B8F4D2
ProtocolId[6] = D122D172-F0C7-4B03-965B-512CD4C0871E
ProtocolId[7] = 74D29D22-F752-40EF-A747-ACA72C791155

: StaticFunctionDescription

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 209 –

Used methods:

ICommunication.BeginConnect()

ICommunication.EndConnect()

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

ICommunication.BeginDisconnect()

ICommunication.EndDisconnect()

IStaticFunction.BeginExecute()

IStaticFunction.EndExecute()

Figure 149 – Executing a Static Function

8.5.21 Executing a Static Function with multiple arguments

If a Static Function is using multiple input arguments, that are CommunicationResponses,
then the Frame Application shall retrieve the CommunicationResponses in the same order
that is used to list the InputArgumentDescriptions (see Figure 150).

IEC

sd : Executing a Static Function

: Frame Application DeviceX :
HART Device

evaluate
StaticFunctionDescription
for GetDeviceStatus

establish communication

Static Function of device is
known

Parent DTM :
Communication

Channel

show device status

<Connect()>

<Connect()> (execution results)

<CommunicationRequest()>

<CommunicationRequest()> ()
access device

: DTM Static
Function
Assembly

terminate communication

<Disconnect()>

<Disconnect()> (execution results)

Call to StaticFunction passing CommunicationResponse as argument

Static Function Result

show DeviceStatus

Communication
Response is
XML serialized

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 210 – IEC TR 62453-42:2016  IEC 2016

Used methods:

ICommunication.BeginConnect()

ICommunication.EndConnect()

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

ICommunication.BeginDisconnect()

ICommunication.EndDisconnect()

IStaticFunction.BeginExecute()

IStaticFunction.EndExecute()

Figure 150 – Executing a Static Function with multiple Arguments

8.6 DTM communication

8.6.1 General

Each communication connection for a DTM is established as a point-to-point connection. This
subclause describes the field communication related workflows. Communication Channels
implement the interface ICommunicationChannel. The interface ICommunication can be

IEC

sd : Executing a Static Function with multiple arguments

: Frame Application : Profibus
Device

evaluate
StaticFunctionDescription

establish communication

Static Function of device is
known

Parent DTM :
Communication

Channel

show device status

<Connect()>

<Connect()> (execution results)

<CommunicationRequest(Profibus TransactionRequest 1)>

<CommunicationRequest()> (Profibus TransactionResponse 1)
access device

<CommunicationRequest(Profibus TransactionRequest 2)>

<CommunicationRequest()> (Profibus TransactionResponse 2)
access device

: DTM Static
Function
Assembly

terminate communication

<Disconnect()>

<Disconnect()> (execution results)

Call to StaticFunction : GetDeviceStatus (arg1 = ProfibusTransactionResponse_1, arg2 = ProfibusTransactionResponse_2)“

DeviceStatus

show DeviceStatus

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 211 –

accessed by the ICommunicationChannel property “Communication” and provides services for
fieldbus connection and communication requests.

In order to ensure that only the Frame Application can modify the sub-topology of a
Communication Channel, DTMs cannot directly access the ICommunicationChannel interface
of the parent channel. Instead the Frame Application provides a proxy for the channel
implementing the ICommunicationChannelProxy interface. This proxy provides access to all
Communication Channel interfaces except the interface for sub-topology management. The
proxy redirects all method calls to the Communication Channel.

8.6.2 Establishing a communication connection

The following sequence diagram describes the calling sequence of a DTM when connecting to
the field device (see Figure 151).

Used methods:

IDtm.EnableCommunication()

ICommunication.BeginConnect()

ICommunication.EndConnect()

Event IDtm.OnlineStateChanged()

Figure 151 – Establishing a communication connection

IEC

sd Establishing a communication connection

Frame UI :
Frame

Application

OnlineStateChanged() – NotConnectedStandby

State running

EnableCommunication()

Parent DTM :
Communication

Channel

:
Communication
Channel Proxy

<Connect()>

<Connect()>

Online function started

Enable communication

Establish
communication
to the device

<Connect()> (execution results)

 <Connect()> (execution results)

OnlineStateChanged() – Connecting

Lock the DTM dataset by calling
StartTransaction()

Save corresponding
data if necessary

E.g.: update user interface

State connected – checkingDevice
If device type is not checked, use first
communication to check the device type

State notConnected-standby

ConnectMode:
OnDemand or
StayConnected

Sequence Child DTM disconnects

ref [ConnectMode = OnDemand]

DeviceTypeCheckFinished()

Unlock the DTM dataset by calling
CommitTransaction() and CloseTransaction()

State connecting

Necessary only
if device data will
be changed

Sequence Communicating with the device

ref

loop All requests for device type check

Sequence Communicating with the device

ref

Child DTM :
DTM Business

Logic

State connected - online

OnlineStateChanged() – ConnectedOnline

OnlineStateChanged() – ConnectedCheckingDevice

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 212 – IEC TR 62453-42:2016  IEC 2016

Online functions which affect the device data or the instance data require a locked
DtmDataset. Prolonged locks shall be avoided to support multi-user Frame Applications.
Thus, it is a DTM-specific decision to balance between the granularity of online operations
and the drawback of prolonged locks.

8.6.3 Cancel establishment of communication connection

This workflow describes how an ongoing connect request is canceled (see Figure 152).

If the connect action cannot be canceled, the call of the method CancelConnect() throws an
exception.

Used methods:

IDtm.EnableCommunication()

ICommunication.BeginConnect()

ICommunication.CancelConnect()

ICommunication.EndConnect()

Event IDtm.OnlineStateChanged()

Figure 152 – DTM cancels ongoing Connect operation

8.6.4 Communicating with the device

The following sequence diagram explains the Device DTM communication with the device
using a Communication Channel (see Figure 153).

IEC

sd DTM cancels ongoing Connect operation

Device DTM :
DTM Business

Logic

Parent DTM :
Communication

Channel

<Connect()>

CancelConnect()

Cancel

OnlineStateChanged() – Connecting

OnlineStateChanged() – NotConnectedDisturbed

 Stop establishing
connection

Cancel fails

Stop establishing
connection failed.
Connecting is
continued.

OnlineStateChanged() – ConnectedCheckingDevice

<Connect()> (FdtOperationCancelledException)

: Frame
Application

Start establishing
connection

 : Communication
Channel Proxy

<Connect()>

CancelConnect()

CancelConnect()

<Connect()> (execution results)

CancelConnect()CancelConnect()

Exception FdtCannotCancelException

<Connect()> (execution results)

<Connect()> (FdtOperationCancelledException)

CancelConnect()

Exception FdtCannotCancelException

alt

Cancel succeeds

Connect
succeeded

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 213 –

Used methods:

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

Figure 153 – Communicating with the device

8.6.5 Frame Application or Child DTM disconnect a device

Figure 154 shows the flow of messages, when a Frame Application sets a DTM offline.

It depends on the Child DTM, whether pending communication requests are finalized or
aborted.

IEC

sd: Communicating with the device

<CommunicationRequest()>

Communicate
with device

<CommunicationRequest()>

<CommunicationRequest()> (execution results)
<CommunicationRequest()> (execution results)

Parent DTM :
Communication

Channel

:
Communication
Channel Proxy

Child DTM :
DTM Business

Logic

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 214 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtm.BeginStopCommunication()

IDtm.EndStopCommunication()

Event IDtm.OnlineStateChanged()

ICommunication.BeginDisconnect()

ICommunication.EndDisconnect()

IDtm.DisableCommunication()

Figure 154 – Child DTM disconnects

8.6.6 Terminating a communication connection

The sequence diagram shown in see Figure 155 shows how a communication connection is
terminated by a Child DTM.

IEC

sd Child DTM disconnects

Child DTM :
DTM Business

Logic

Parent DTM :
Communication

Channel

:
Communication
Channel Proxy

<Disconnect(DisconnectRequest)>

<Disconnect()>

<Disconnect()> (execution results)
<Disconnect()> (execution results)

alt

Finalize pending
communication

Abort pending
communication

State connected-online

[DisconnectRequest.
AbortPendingTransactions = false]

[DisconnectRequest.
AbortPendingTransactions = true]

<StopCommunication()>
Or all online functions finished

Stop communication

OnlineStateChanged() – Inactive

OnlineStateChanged() – Inactive

<StopCommunication()>

DisableCommunication()

Frame UI :
Frame

Application

alt

[DTM in state connected]

[DTM in state notConnected]

<StopCommunication()> (execution results)

DisconnectRequest.AbortPendingCommuncations
is dependent on online function

State disconnecting

State notConnected

State inactive

OnlineStateChanged() – Disconnecting

State inactive

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 215 –

Used methods:

ICommunication.BeginDisconnect()

ICommunication.EndDisconnect()

Figure 155 – Child DTM terminates a connection

In case of a <Disconnect()> with argument AbortPendingTransactions set to ‘false’, the
Communication Channel executes all outstanding communication requests. The Child DTM
will receive responses with the respective communication data.

8.6.7 DTM aborts communication connection

This sequence (Figure 156) describes the abort of a communication link to a device without
expecting any further communication response.

Used methods:

ICommunication.BeginDisconnect()

ICommunication.EndDisconnect()

Event OnlineStateChanged()

Figure 156 – Child DTM aborts a connection

IEC

sd Child DTM aborts a connection

Child DTM :
DTM Business

Logic

Parent DTM :
Communication

Channel

Frame UI :
Frame

Application

OnlineStateChanged() – disconnecting
<Disconnect()>

 Abort
pending
transactions <Disconnect()> execution results

OnlineStateChanged() – notConnected

DisconnectRequest.AbortPendingTransactions = true

IEC

sd Child DTM terminates a connection

Child DTM :
DTM Business

Logic

Parent DTM :
Communication

Channel

Frame UI :
Frame

Application

OnlineStateChanged() – disconnecting
<Disconnect()>

Finalize pending
requests

<Disconnect()> execution results
OnlineStateChanged() – notConnected

DisconnectRequest.AbortPendingTransactions = false

Release
established
communication

<CommunicationRequest()> execution results

Responses of outstanding
request

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 216 – IEC TR 62453-42:2016  IEC 2016

In case of a <Disconnect ()> with argument AbortPendingTransactions set to ‘true’, the
Communication Channel cancels all outstanding communication requests. The Child DTM will
receive responses with the information that the communication request was not executed.

8.6.8 Communication Channel aborts communication connection

This sequence (Figure 157) describes how a Communication Channel aborts an active
communication connection to a device.

Used methods:

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

Used events:

AbortCallBack delegate

Event OnlineStateChanged()

Figure 157 – Communication Channel aborts a connection

8.7 Nested communication

8.7.1 General

This subclause describes communication related to devices with gateway functionality like
remote I/Os. Nested communication is used to establish the connection to a device on a sub-
system.

The example in Figure 158 shows how a Device DTM communicates to a field device which is
connected to a Communication Channel of a Gateway DTM, which in turn is connected to a
Communication Channel of a Communication DTM. Since the Device DTM represents a HART
field device, it is communicating based on HART protocol. The Gateway DTM represents a
PROFIBUS/HART gateway (e.g. a Remote IO), that is why the Gateway DTM is

IEC

sd Communication Channel aborts a connection

Child DTM :
DTM Business

Logic

Parent Proxy:
Communication
Channel Proxy

AbortCallBack notification

<CommunicationRequest()> *

Parent DTM :
Communication

Channel

<CommunicationRequest()> *
Detect
communication
problems with
deviceAbortCallBack notification

Pass abort reason in
AbortMessage.Details

Connected-online

: Frame
Application

OnlineStateChanged(NotConnectedDisturbed)

<CommunicationRequest()> (execution results)

<CommunicationRequest()> (execution results)

channel aborts all
pending communication
requests

notConnected-disturbed

Corresponding End methods (e.g. EndCommunicationRequest
(IAsyncResult) throws exceptions).
Further calls (e.g. BeginCommunicationRequest() or
BeginDisconnect()) throw exceptions).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 217 –

communicating to the gateway based on PROFIBUS protocol. The Communication DTM
represents the fieldbus interface, the DTM accesses the driver of the fieldbus interface. (This
example will also be used in other subclauses of 8.7).

Figure 158 – Example: Nested communication behavior

Gateway DTMs (e.g. for a remote I/O) have to provide one or more Communication Channels
that are used by other DTMs.

The requirement is that a DTM shall not need to know anything about the communication
hierarchy. Nevertheless, the structure of the sub-system is well known to Frame Application
and by the Gateway DTM.

The functionality for address management is always provided by the Frame Application or by
the Parent DTM. Therefore each DTM has to allow setting the network parameters like ‘tag’
and ‘BusInformation’ according to the communication protocol (see also: INetworkData,
NetworkDataInfo, AddressInfo).

8.7.2 Communication request for a nested connection

The sequence in Figure 159 shows an example how the HART Device DTM from Figure 158
communicates to its field device. The internal communication of the Gateway DTM and the
communication to the PROFIBUS Communication Channel are transparent to the Device
DTM.

To write a parameter to the device, the HART Child DTM calls BeginCommunicationRequest()
at the Communication Channel. The HART request is wrapped in the remote I/O channel to a
PROFIBUS communication message sent to the parent PROFIBUS Communication DTM.

IEC

Fieldbus
Interface

Gateway
(RIO)

HART

PROFIBUS

Field device
Device DTM

represent

represents

represent

HART

PROFIBUS

Gateway DTM

Communication Channel

Communication Channel

Communication DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 218 – IEC TR 62453-42:2016  IEC 2016

The corresponding response is provided by the PROFIBUS Parent Communication DTM. After
extracting the HART response, the remote I/O Gateway DTM sends the response via the
Communication Channel to the HART Device DTM.

Used methods:

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

Figure 159 – Example: Nested communication data exchange

8.7.3 Propagation of errors for a nested connection

In a nested communication hierarchy there may be several sources for communication errors.
If we consider the example from Figure 158, possible sources are:

• Field device responds to communication requests with errors (e.g. wire break)

• Gateway device (RIO) has communication problems (e.g. field device does not
communicate) and responds with errors

• Gateway device (RIO) has internal problems (e.g. module failure) and responds with
errors

• Fieldbus interface has communication problems (e.g. gateway device does not
communicate) and responds with errors

• Fieldbus interface has internal problems (e.g. not configured) and responds with errors

If errors occur during execution of communication requests, the error have to be propagated
back to the origin of the communication request (see 4.9.2).

In order to support fixing the problem, the DTM representing the component, where the error
occurred shall inform the user about the source of error within the CommunicationError. This
helps to avoid a situation, where the user receives several error reports (e.g. if gateway
device detects, that the field device does not respond, the Gateway DTM will produce a user
message and the Device DTM will produce a user message).

IEC

sd Example: Nested communication data exchange

RIO :
Communication

Channel

HART Device DTM :
DTM Business

Logic

Write parameter
to device

Profibus :
Communication

Channel

Sequence Communicating
with the device

ref

connected

RIO :
Gateway DTM

<CommunicationRequest()>

<CommunicationRequest()>
execution results

Internal service response

Internal service request

Protocol
transformation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 219 –

If an intermediate component receives such a communication error, it shall in turn generate a
communication error, provide own additional information and shall pack the received
communication error as inner communication error into the generated communication error
(similar to exceptions/inner exceptions).

If the origin of communication request receives such a communication error, it shall inform the
user with a user message that includes the information from the inner communication errors.

8.8 Topology planning

8.8.1 General

The Frame Application is responsible to generate and manage the topology.

The requirement is that a DTM shall not need to know anything about the communication
hierarchy. Nevertheless, the structure of the whole topology is well known to a Frame
Application.

Subclause 8.8.2 describes how a Frame Application creates a topology. The example in 8.8.5
shows how a Gateway DTM generates a sub-topology.

8.8.2 Adding a DTM to the topology

If a DTM is added new to the topology, a validation is executed whether the DTM fits into the
topology.

This validation is executed by the Communication Channel to which the new Child DTM is
added. During the validation the Communication Channel may access the Child DTM.

Since the Child DTM at this point is not yet part of the topology, the Child DTM does not yet
have a Parent DTM and may not access the Parent DTM (see Figure 160).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 220 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtmInformation.BeginGetInfo()

IDtmInformation.EndGetInfo()

ISubTopology.BeginValidateAddChild() / ISubTopology.EndValidateAddChild()

ISubTopology.BeginChildAdded() / ISubTopology.EndChildAdded()

INetworkData.ActiveProtocols

Figure 160 – Add DTM to topology

8.8.3 Removing a DTM from topology

Figure 161 shows how a DTM is removed from a topology. Before the Frame Application
removes the device node and its dataset from the topology, the Parent DTM shall validate the
removal, release all references to the Child DTM and update the internal list of modules.

IEC

sd : Add DTM to topology

: Frame
Application

Child DTM : DTM
Business Logic

Select and
add new
DTM to topology

Sequence Instantiation of a new DTM BL

ref

Display DTM
Information of installed
DTMs for selection

Create

Parent Channel :
Communication

Channel

<GetDtmInfo()>

<ValidateAddChild(typeInfo, dtmSystemTag ..)>

<GetDtmInfo()> execution results

<ValidateAddChild()> execution results

Access via DtmProxy

<GetDtm()>

<GetDtm()> execution results : DtmProxy

<ChildAdded()>

<ChildAdded()> execution results

Frame internal adding of
the DTM to the topology

opt [child properties are validation relevant]

set ActiveProtocols

Child DTM may use this call
as a trigger to perform
topology related operations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 221 –

Used methods:

ISubTopology.BeginValidateRemoveChild()

ISubTopology.EndValidateRemoveChild()

ISubTopology.BeginChildRemoved()

ISubTopology.EndChildRemoved()

Figure 161 – Removing a DTM from topology

8.8.4 Frame Application creates topology

The following sequence diagram (Figure 162) shows an example workflow how a Frame
Application first adds a Gateway DTM (for a remote IO) to the topology and afterwards adds a
Device DTM (for a HART device).

IEC

sd: Removing a DTM from topology

Select DTM

Remove from topology

Frame
Application

<ValidateRemoveChild()>

<ChildRemoved()>

<ChildRemoved()>

: Parent DTM
Communication

Channel

Releases all references
to Child DTM
and updates internal list
of modules

Validate=succesful

: Child DTM
Business Logic

Sequence Release of a DTM BL

ref

Remove the DTM
Node from the
topology and delete its
dataset

<ValidateRemoveChild()> execution results

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 222 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IChannels.ChannelInfos

Figure 162 – Frame Application creates topology

8.8.5 DTM generates sub-topology

This sequence diagram shows the generation of the sub-topology triggered by a DTM (see
Figure 163).

IEC

sd : Frame Application creates topology

Frame
Application

RIO : DTM
Business Logic

Select and add
RIO DTM

RIO :
Communication

Channel

HART-DTM :
DTM Business

Logic

Frame internal adding of
RIO-DTM to the topology

Sequence Instantiation of a new DTM BL

ref

Get IChannel.ChannelInfos

Display ChannelItems
information

Select DTM with
same protocol

Select a channel

Create

Add a DTM to RIO

Display DtmDeviceTypes with
corresponding protocol for selection

Create

 Sequence Add DTM to topology
ref

Display Dtm
Information of installed
DTMs for selection

Create

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 223 –

Used methods:

ITopology.GetDtmInfoList()

ITopology.BeginAddChild() / ITopology.EndAddChild()

ISubTopology.BeginValidateAddChild() / ISubTopology.EndValidateAddChild()

ISubTopology.BeginChildAdded() / ISubTopology.EndChildAdded()

Figure 163 – DTM generates sub-topology

IEC

sd: DTM generates sub-topology

Frame
Application

Parent DTM :
Communication

Channel

CompositeDTM :
DTM Business

Logic

GetDtmInfoList()

Select DTM to add
<AddChild()>

<AddChild()> execution results

<ValidateAddChild(..dtmSystemTag..)>

<ChildAdded()>

Select and
add a child

new()

<ValidateAddChild()> execution results

<ChildAdded()> execution results

<GetDtm()>

<GetDtm()> execution results : DtmProxy
Access via DtmProxy

Update internal
subtopology
configuration

[Validate = successfull]
Frame internal adding
DTM to the topology

Init()

Run()

InitData()
State initialized

Module DTM :
DTM Business

Logic

<Configuration()>
State configuring

opt

State running

[Composite DTM has default child(ren)]

<AddChild()>

Get Channels

State running

Sequence Add DTM to topology
ref

new()

<Configuration() execution result>

State running

Get Channel Infos

Is also applicable to
other DTM types,
e.g.: with BTM

<AddChild()> execution results

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 224 – IEC TR 62453-42:2016  IEC 2016

The same sequence can be used for adding Module DTMs to a Composite Device DTM and
for adding BTMs to Device DTMs.

8.8.6 Physical Layer and DataLinkLayer

IEC 61158-2 defines a wide range of possible physical media that is used by different fieldbus
protocols. Many fieldbus protocols support different physical media. For example HART
supports wired (4-20 mA) and wireless connections, while PROFIBUS supports RS485,
manchester-coded bus powered (MBP) and optical media. Even if a field device supports the
same fieldbus protocol as a communication component (e.g. fieldbus interface or gateway),
communication may be impossible, because device and communication component support
different physical media. In such cases the use of media converters or gateway devices is
required.

In order to avoid such incompatibility during offline planning of a physical topology, a Frame
Application should use the physical layer information, which is exposed in the property
Port.PhysicalLayers.

On the other hand, different protocols may share the same physical layer (e.g. Ethernet based
protocols). If a physical layer is shared between protocols, it depends additionally on the
IEC 61158-2 Data Link Layer, whether a physical connection is feasible or not.

In order to facilitate such checks, a Frame Application should use the data link layer
information, which is exposed by the property Port.DataLinkLayers.

For comparison of the supported physical layer and data link layer, the properties
PhysicalLayer and DataLinkLayer are used.

The following rules apply for Frame Applications managing the physical topology:

– If PhysicalLayer values do not match and DataLinkLayer values do not match, the Frame
Application shall reject the new connection.

– If PhysicalLayer values match but DataLinkLayer values do not match, the Frame
Application may reject the new connection.

– If PhysicalLayer values do not match but DataLinkLayer values do match, the Frame
Application may issue a warning and accept the new connection, since the planned
physical topology might contain transparent media converters, which are not part of the
physical topology in the Frame Application.

– If both layers match, the Frame Application shall accept the new connection.

See Annex I for examples of PhysicalLayer values.

8.9 Instantiation, configuration, move and release of Child DTMs

8.9.1 General

The following workflows describe interactions between Parent DTM and Child DTMs. Such
interactions may occur for instance between:

– Composite Device DTM and related Module DTMs
– Device DTM and related Block DTMs
– Gateway DTM and related Device DTMs

8.9.2 Instantiation and configuration of Child DTM BL

The Diagram in Figure 164 shows how a Parent DTM can create and configure its sub-
topology. In order to enable configuration of a sub-topology, the Parent DTM has to implement

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 225 –

the <Configuration()> method. The Frame Application shall call <Configuration()> when the
DTM is in state ‘configuring’.

Be aware that a Parent DTM shall add Child DTMs only to its own channels.

Used methods:

IDtm.BeginConfiguration()

IDtm.EndConfiguration()

ITopology.GetDtmInfoList()

ITopology.GetChildNodes()

Figure 164 – Instantiation and configuration of Child DTM BL

8.9.3 Interaction between Parent DTM and Child DTM

Figure 165 shows how a Parent DTM can exchange data with its Child DTM.

Be aware that for interaction between DTMs only the interfaces shall be used which are
provided by IDtmProxy.

IEC

sd Instantiation and configuration of Child DTM BL

Frame
Application

: Parent DTM
Business Logic

<Configuration()>

DTM in state configuring

<Configuration()> execution results

GetDtmInfoList()

GetChildNodes()

Parent DTM checks which
Child DTM types are available

Parent DTM determines which
Child DTMs shall be added to
complete configuration

loop All Child DTMs to add in sub-topology

Sequence: DTM generates sub-topology
(e.g. Composite Device DTM adds Module DTM to its sub-topology)

ref

loop All Block / Module DTM in subtopology

: Module / Block
DTM Business

Logic

: Module / Block
DTM Business

Logic
: Child DTM

Business Logic

Create

Sequence:

Interaction between Parent DTM and Child DTM

ref (e.g. Composite Device DTM reads information from Module DTM:
Composite Device DTM configures Module DTMs using the methods:
� Set Address,
� Read Process Data information,
� Read / Write Network Information,
� Read / Write instance data
� SendMessages)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 226 – IEC TR 62453-42:2016  IEC 2016

Used methods:

ITopology.BeginGetDtm() / ITopology.EndGetDtm()

IDtmProxy.Dispose()

IDtmProxy.DtmType

IDtm.ActiveType

IProcessData.BeginGetProcessData() / IProcessData.EndGetProcessData()

INetworkData.GetAddressInfo() / INetworkData.SetAddressInfo()

INetworkData.GetNetworkDataInfo() / INetworkData.SetNetworkData()

IInstanceData.BeginGetDataInfo() / IInstanceData.EndGetDataInfo()

IInstanceData.BeginRead() / IInstanceData.EndRead()

IInstanceData.BeginWrite() / IInstanceData.EndWrite()

Figure 165 – Interaction between Parent DTM and Child DTM

IEC

sd:Interaction between Parent DTM and Child DTM

Frame
Application

: Parent DTM
Business Logic

: Child Dtm
Business Logic

<GetDtm()>

<GetDtm()> : DtmProxy

GetAddressInfo()

SetAddressInfo()

GetNetworkDataInfo()

SetNetworkData()

<GetProcessData()>

<GetProcessData()> results

<GetDataInfo()>

<GetDataInfo()> results

<Read()>

<Read()> results

<Write()>

<Write()> results

Create
:DtmProxy

<GetProcessData()>

<GetProcessData()> results

GetAddressInfo()

SetAddressInfo()

GetNetworkDataInfo()

SetNetworkData()

<GetDataInfo()>

<GetDataInfo()> results

<Read()>

<Read()> results

<Write()>

<Write()> results

Release

DtmType
ActiveType

Usage of these interactions
depends on protocol and DTM
specific requirements. They may
occur several times and in any
desired order.

<SendMessages()>

<SendMessages()> results

<SendMessages()>

<SendMessages()> results

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 227 –

8.9.4 Interaction between Parent DTM and Child DTM using IDtmMessaging

This sequence diagram outlines the interaction between two DTMs using the IDtmMessaging
interface.

Used methods:

IDtmMessaging.BeginSendMessages()

IDtmMessaging.EndSendMessages()

Figure 166 – Interaction using IDtmMessaging

In this scenario the DTM Business Logic of a Child DTM sends a list of proprietary messages
to its Parent DTM. The Frame Application provides access to the IDtmMessaging by means of
the IDtmProxy. It shall forward the messages to the corresponding DTM.

More detailed information can be found in descriptions of:

– IDtmMessaging
– DtmRequestMessage
– DtmResponseMessage

8.9.5 Parent DTM moves a Child DTM

Figure 167 shows how a Parent DTM can move one of its Child DTMs from one channel to
another channel.

Be aware that a Parent DTM shall move Child DTMs only between its own channels.

IEC

sd Interaction using DtmMessaging interface

: Frame
Application

Parent: DTM
Business Logic

Child: DTM
Business Logic

<SendMessages(requestData, ProgressCallback, asyncState)>

<SendMessages(requestData,
Progress, Callback, asyncState)>

ProgressCallBack(ProgressInfo)

ProgressCallback(ProgressInfo)

<SendMessage()> execution results

<SendMessages(AsyncResult)> execution results

Frame application
forwards message

to DTM Business
Logic of Parent

(or child)

Processing
of progress
information

Processing of
result
messages

All calls via DTM Proxy

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 228 – IEC TR 62453-42:2016  IEC 2016

Used methods:

ITopology.BeginMoveChild() / ITopology.EndMoveChild()

ISubTopology.BeginValidateAddChild() / ISubTopology.EndValidateAddChild()

ISubTopology.BeginChildAdded() / ISubTopology.EndChildAdded()

ISubTopology.BeginValidateRemoveChild() / ISubTopology.EndValidateRemoveChild()

ISubTopology.BeginChildRemoved() / ISubTopology.EndChildRemoved()

Figure 167 – Parent DTM moves a Child DTM

8.9.6 Parent DTM removes Child DTM

Figure 168 shows how a Parent DTM can remove one of its Child DTM

Be aware that a Parent DTM can remove only its own Child DTMs.

IEC

sd:Parent DTM moves Child DTM

Frame
Application

: Parent DTM
Business Logic

Move Child

<ValidateRemoveChild()>

<ValidateRemoveChild()>

<ChildRemoved()>

<ChildRemoved()> execution results

: Parent DTM
Communication

Channel 1

Releases all references to
Child DTM
And updates internal list of
modules

<MoveChild()>

: Parent DTM
Communication

Channel 2

<ValidateAddChild()> execution result

<ValidateAddChild()>

<ChildAdded()>

<ChildAdded()> execution results

Sequence: Interaction between Parent DTM and Child DTM

ref

<MoveChild()> execution results

Validation

Validation

Updates
internal
list of modules

It is expected that a DTM only calls
MoveChild if the preconditions are
fulfilled to avoid that later adding the
child to the target channel will fail.

In case of failed ValidateAddChild, the Frame Application must
move the Module / Block back to the original channel. The DTM
is expected to accept the move to the original channel.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 229 –

Used methods:

ITopology.BeginRemoveChild() / ITopology.EndRemoveChild()

ISubTopology.BeginValidateRemoveChild() / ISubTopology.EndValidateRemoveChild()

ISubTopology.BeginChildRemoved() / ISubTopology.EndChildRemoved()

Figure 168 – Parent DTM removes Child DTM

8.10 Topology scan

8.10.1 General

For a description of the general mechanism see IEC TR 624532:−, 6.2.

8.10.2 Scan of network topology

The following workflow describes, how a Frame Application can request a list of connected
devices and their protocol-specific device identification information from a Communication
Channel (see Figure 169).

IEC

sd:Parent DTM removes Child DTM

Frame
Application

: Parent DTM
Business Logic

Remove child

<ValidateRemoveChild()>

<ChildRemoved()>

<ChildRemoved()> execution results

: Parent DTM
Communication

Channel

Releases all references
to Child DTM
and updates internal list
of modules

Validate=succesful

<RemoveChild()>

: Child DTM
Business Logic

Sequence Release of a DTM BL

ref

<RemoveChild()> execution results

<ValidateRemoveChild()> execution results

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 230 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IScanning.BeginScanRequest()

IScanning.EndScanRequest()

ProgressCallback

Figure 169 – Scan of network topology

The final result data for the scan received with the IScanning.EndScanRequest() contains a
list of DeviceScanInfo objects where each object contains information about a single device
found on the bus. If the order of devices is relevant for the protocol of the Communication
Channel, the order of objects in the final result list shall match the order of the devices on the
bus. Contrary to the final result, the order of devices in the intermediate results may depend
from the scanning algorithm and may differ from the final result.

For information on how a protocol-specific DeviceScanInfo(T) can be transformed into a
protocol-independent DeviceScanInfo, please refer to the datatype definition (see Annex B).

8.10.3 Cancel topology scan

Scanning a sub-topology may take some time. The FDT methods are designed to be called
asynchronously. If a Frame Application calls the scan methods asynchronously,
CancelScanRequest() may be called to cancel an ongoing scanning operation in the
Communication Channel. The following sequence shows the related flow of events (see
Figure 170).

IEC

Sd : Scan of network topology

Frame
Application

Channel1:
Communication

Channel

<ScanRequest(ScanRequest)>

Protocol specific
determination of
device live list.

[1..n] ProgressCallback()

<ScanRequest(DeviceScanInfo)> execution results

Loop: all devices
Get device
identification
information

Update progress indication.
Optional user interface refresh
to update list of found devices

Scan

Sequence
Scan based DTM assignment

ref

Intermediate
DeviceScanInfo

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 231 –

Used methods:

IScanning.BeginScanRequest()

IScanning.CancelScanRequest()

Callback ScanProgress

Figure 170 – Cancel topology scan

8.10.4 Scan based DTM assignment

A Frame Application may use the scanned life list to find appropriate DTMDeviceTypes and
create a sub-topology accordingly. The following sequence chart describes the related flow of
events (see Figure 171).

IEC

sd : cancel topology scan

Frame
Application

Channel1:
Communication

Channel

<ScanRequest()>

Protocol specific
determination of
device life list.

 ProgressCallback()

Get device
identification
information

Update progress indication.
Optional user interface refresh
to update list of found devices

Scan

CancelScanRequest(AsyncResult)

Frame Application specific handling and
indication of incomplete scan.

Stop
requesting
device
identification
information

[cancelled]Break

[all devices]Loop

Cancel

<ScanRequest()> execution results : Fdt.FdtOperationCancelledException

Intermediate
DeviceScanInfo(T)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 232 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IDtmInformation.GetDeviceIdentInfo()

DeviceIdentValue<T>.Match()

Figure 171 – Scan based DTM assignment

8.10.5 Manufacturer-specific device identification

In this scenario a Frame Application scans an existing fieldbus network and uses DTM
implementing IHardwareInformation interface to identify devices for which manufacturer-
specific operation shall be performed (see Figure 172).

IEC

sd : Scan based DTM assignment

Frame
Application

GetDeviceIdentInfo(typeId, busCategory) : FdtList<DeviceIdentInfo>

loop All DtmDeviceTypes of all DTMs with same ProtocolId

Apply Frame Application specific
rules to identify a proper DTM for
the scanned device based on
matching values

Match(DeviceScanInfo) : DeviceIdentMatchResult

Optional: Request user confirmation

Assign DTMDeviceType to device
node. Add DTMDeviceType to
topology

DeviceScanInfo is available
from scanning the

subtopology

Sequence
Scan Network topology

Sequence Set DTM addresses without UI
ref

[IdentSupportDTM] Optional start
of HardwareScan

See Manufacturer
specific device
identification

:
DeviceIdentInfo

DTM1: DTM
Business Logic

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 233 –

Used methods:

IHardwareInformation.BeginHardwareScan()

IHardwareInformation.CancelHardwareScan()

IHardwareInformation.EndHardwareScan()

DeviceScanInfo

Figure 172 – Manufacturer-specific device identification

For more information on manufacturer-specific device identification refer to IEC TR 62453-
2:−, 6.2.4.

IEC

sd : Manufacturer-specific device identification

Frame
Application

IdentSupportDTM:
DTM Business

Logic

Scan

Sequence
Scan of network topology

ref

<HardwareScan()>

IdentSupportDTM
implements
IHardwareInformation

Add DTM to topology and set bus
address at CommChannel

Search for best DtmDeviceType by evaluation of
DeviceIdentMatchResult = DeviceIdentInfo.Match(DeviceScanInfo)

DTM2: DTM
Business Logic

Frame Application specific decision to assign the DTM
with DeviceIdentInfo.SupportLevel.IdentSupport

Create

Search for best DtmDeviceType by evaluation of
DeviceIdentMatchResult = DeviceIdentInfo.Match(DeviceScanInfo)

[DeviceScanInfo with
device ident specific info]

Read device type
specific online
identification from
device

Set DTM online

Set DTM offline

Release DTM

Remove
IdentSupportDTM
from topology

Use protocol specific DeviceScanInfo (e.g.
HARTDeviceScanInfo) returned by
IHardwareInformation::HardwareScan()

[Frame Appliction specific]
opt

DeviceScanInfo available.
One or more matching
DeviceIdentInfos found

<HardwareScan()> execution result

Sequence
Release DTM BL

ref

Sequence
Scan based DTM assignment

(add DTM2 to topology and set address)

ref

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 234 – IEC TR 62453-42:2016  IEC 2016

8.11 Configuration of communication networks

8.11.1 Configuration of a fieldbus master

Device-specific bus parameters are needed to configure the fieldbus master or communication
scheduler. To retrieve these parameters an interaction between DTMs and a master
configuration tool (e.g. provided by Master Communication DTM or by Frame Application) is
required. Bus-specific data information is provided by Device DTMs in NetworkDataInfo and
contains the device specific bus information according to the fieldbus-protocol-specification
(see FDT Protocol Annex specifications for protocol-specific definitions).

When NetworkDataInfo is available from all Slave DTMs, the master configuration tool can
commission the fieldbus (see Figure 173). For that purpose, it uses protocol-specific master
configuration information from each network participant and calculates the bus parameters of
the corresponding master device.

The master configuration can be provided by the DTM (Figure 173) representing the bus
master hardware or by a bus master-specific Frame Application.

Used methods:

INetworkData.GetNetworkDataInfo()

INetworkData.SetNetworkData()

Event IChildDtmEvents.NetworkDataInfoChanged()

Figure 173 – Configuration of a fieldbus master

IEC

sd Configuration of a fieldbus master

Master :
Communication

DTM
Slave :

Device DTM

loop All children GetNetworkDataInfo()

SetNetworkData()

NetworkDataInfoChanged()

Calculate new
configuration parts
for the slave devices

To support this sequence, all Device DTMs
should have write access to their dataset.

May trigger further
protocol specific
actions.

: Frame
Application

IChildDtmEvents::
NetworkDataInfoChanged()

Configure BusMaster

Register to NetworkDataInfoChanged Handler

All children

NetworkDataInfoChanged()

opt Only if busmaster configuration
changes slave data

loop

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 235 –

The transfer of the network information to the network (master device and/or field devices) is
protocol-specific or product-specific. For description of protocol-specific rules please refer to
the respective protocol annex.

8.11.2 Integration of a passive device

This section shows the sequence when integrating information for a passive device as part of
network configuration (see Figure 174).

Used methods:

INetworkData.GetNetworkDataInfo()

Figure 174 – Integration of a passive device

After retrieving the NetworkDataInfo from the Device DTM for the fieldbus power supply and
for the field devices, it is possible to compare the power consumption of the field devices with
the power provided by the fieldbus power supply. If the consumption exceeds the provided
power, the user should be informed.

8.12 Using IO information

8.12.1 Assignment of symbolic name to process data

Figure 175 shows an example workflow of how a PLC Tool Frame Application assigns an IO
Signal defined by IProcessData to a variable used for PLC programming.

NOTE The same mechanism is used for assignment of variables in DCS tools. This process may be referred to as
“DCS channel assignment”.

IEC

sd : Integration of a passive device

Master :
Communication

DTM
Fieldbus Power Supply :

Device DTM

Read Info
Power Supply GetNetworkDataInfo()

Check if power
supply capabilities
are sufficient to
supply all other
devices

: Frame
Application

Configure BusMaster

Optionally register to NetworkDataInfoChanged Handler

Returns information indicating power supply capabilities

GetNetworkDataInfo()loop All other
children

Returns information indicating power consumption of device

Slave :
Device DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 236 – IEC TR 62453-42:2016  IEC 2016

The Frame Application first fetches a list of available process data (IO signals) from the DTM.
It can then offer the user to assign a symbolic name to each of the IO signals contained in the
list of process data. (See IEC 61131-3:2003, 2.4.3.1, Type assignment)

The symbolic variable name defined in the PLC program is stored in the property
“FrameApplicationTag” of IOSignalInfo. If an IO Signal is used by the Frame Application (in a
PLC program or otherwise), then this shall also be indicated by the property “IsLocked” of
IOSignalInfo. Setting of the FrameApplicationTag and IsLocked is done using the method
SetIOSignalInfo().

Used methods:

IProcessData.BeginGetProcessData()

IProcessData.EndGetProcessData()

IProcessData.SetIOSignalInfo()

IDataset.StartTransaction()

IDataset.CloseTransaction()

Event IProcessData.ProcessDataChanged()

Event IChildDtmEvents.ProcessDataInfoChanged()

Figure 175 – Assignment of process data

A Frame Application shall set only the FrameApplicationTag for IO signals provided by a DTM
directly using IProcessData. If a DTM provides IOSignals for Child DTMs (see 4.4.4) then the
Frame Application shall set the respective properties at the Child DTMs, but not at the Parent
DTMs.

Alternatively the interface IProcessImage can be used if it is provided by the corresponding
Parent DTM (see 8.12.4) to change IOSignals properties for Child DTMs.

IEC

sd : Assignment of process data

: Frame
Application : Parent DTM: Child DTM

IProcessData::SetIOSignalInfo ()

ProcessDataInfoChanged()

IDataSet

<GetProcessData()>

<GetProcessData()> execution results

StartTransaction()

ProcessDataChanged

Internal apply

CloseTransaction()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 237 –

Note that assignment of process data to a PLC variable using the interface IProcessData is
protocol-specific. Protocol independent assignment can be done using interface
IProcessImage.

8.12.2 Creation of Process Image

This sequence shows the creation and publishing of the process image by a DTM
representing a busmaster (see Figure 176). Note that this sequence diagram shows no
validation of changes. Validation is described in 8.12.3.

If the user changes the IO Configuration e.g. on a DTM-specific interface of a Device DTM the
Frame Application receives a notification about this change. The notification is then forwarded
to the Busmaster DTM. Since the notification contains the IDs of accessible data which is
changed, the Busmaster DTM can examine the changes. Depending on the kind of changes
the Busmaster DTM might fetch the process data of the Device DTM and cache this
information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 238 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IProcessData.BeginGetProcessData()

IProcessData.EndGetProcessData()

Event IProcessData.ProcessDataChanged()

IProcessImage.BeginGetProcessImageInfo()

IProcessImage.EndGetProcessImageInfo()

IProcessImage.EndGetProcessImageInfo()

Event IChildDtmEvents.ProcessDataInfoChanged()

IDataset.StartTransaction()

IDataset.CloseTransaction()

Figure 176 – Creation of process image

8.12.3 Validation of changes in process image while PLC is running

The sequence diagram shown in Figure 177 shows the validations which can be done in case
a PLC tool Frame Application supports changes of the configuration while the PLC is running.

IEC

sd : Creation of process image

BM : Busmaster
DTM: Device DTM : Frame

Application

Create
Process
Image

BM : DataSet

Change of IO
Configuration

ProcessDataChanged event

ProcessDataInfoChanged()

<GetProcessData()>

<GetProcessData()> execution results

StartTransaction()

Commit and CloseTransaction()

ProcessImageChanged event

<GetProcessImageInfo()>

<GetProcessImageInfo()> execution results

 Change

Write to DataSubset

Register process data changed event

Register processImage changed event

Use for
Application
specific
purpose

Call via Proxy

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 239 –

Used methods:

INetworkInfoValidation.BeginValidateNetworkInfo()

INetworkInfoValidation.EndValidateNetworkInfo()

IProcessImageValidation.BeginValidateProcessImage()

IProcessImageValidation.EndValidateProcessImage()

Figure 177 – Validation of changes while PLC is running

8.12.4 Changing of variable names using process image interface

Figure 178 shows how a PLC Tool Frame Application can change the names of variables
using the Process Image interface.

The DTM shall also forward the call to corresponding Child DTMs by calling SetIOSignalInfo
on the Process Data interface of the Child DTM.

IEC

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 240 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IProcessImage.SetIOSignalInfo()

IProcessData.SetIOSignalInfo()

IDataset.StartTransaction()

IDataset.CommitTransaction()

IDataset.CloseTransaction()

Figure 178 – Changing of variable names using process image interface

8.13 Managing addresses

8.13.1 Set DTM address with user interface

In this scenario the Frame Application requests setting child device addresses at the parent
Communication Channel (e.g.: bus master DTMs). This sequence is started (see Figure 179)
for example when a new DTM is added to the topology. A similar sequence can be applied if a
Frame Application offers changing the address of a DTM manually.

IEC

sd : Changing of variable names using process image interface

: Busmaster
DTM

PLC-Tool :
Frame

Application

Child DS :
DataSet

Child : DTM
Business Logic

[IO signal referenced by a
ProcessImageSection]
IProcessImage::SetIOSignalInfo()

Modify
instance
data

Change name
of a variable

Busmaster DS :
DataSet

StartTransaction()

StartTransaction()

Internal
apply

Write DataSubstet

CloseTransaction()

Via ProxyDTM

ProcessImageChanged

[SetIOSignalInfo failed]

alt

[SetIOSignalInfo() succeeded] CloseTransaction()

CloseTransaction()

Rollback changes,
No CommitTransaction()

CommitTransaction()

FdtOperationFailedException

IProcessData::SetIOSignalInfo()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 241 –

Used methods:

ISubTopology.BeginSetChildrenAddresses() / ISubTopology.EndSetChildrenAddresses()

IFrameUi.BeginOpenDtmUiModal() / IFrameUi.EndOpenDtmUiModal()

IDtmUiFunction.BeginInit() / IDtmUiFunction.EndInit()

IDtmUiMessaging.BeginSendMessages() / IDtmUiMessaging.EndSendMessages

CloseMeRequestHandler

ITopology.BeginGetDtm() / ITopology.EndGetDtm()

INetworkData.GetAddressInfo() / INetworkData.SetAddressInfo()

Event INetworkData.AddressInfoChanged()

Event IChildDtmEvents.AddressInfoChanged()

Figure 179 – Set DTM address with UI

8.13.2 Set DTM addresses without user interface

The following example shows the sequence of setting Child DTM addresses after scanning
and DTM assignment. The Frame Application requests at a Communication Channel to set a
number of known device addresses at Child DTMs (see Figure 180).

IEC

sd Set DTM address with UI

: Frame
Application

Add child

ParentDTM :
DTM

BusinessLogic

ParentDTM :
Communication

Channel

ParentDTM :
DTM

User Interface

ChildDTM : DTM
Business Logic

Register AddressInfoChanged event

<SetChildrenAddresses()>

<OpenDtmUiModal()>

Create

Init

<SendMessages()> (execution result) via Proxy

Show current child
address

Request child bus
address from user

Enter address and close

* <SendMessages()>

<GetDtm()>

<GetDtm()> (execution results)

GetAddressInfo via Child Proxy

SetAddressInfo() via Child Proxy

Check
validity of
address

[Address accepted]:AddressInfoChanged event

AddressInfoChanged

<SendMessages()> (execution results)

OpenDtmUiModal() (execution result)

<SetChildrenAddresses()> (execution result)

[Address set]
Store new
address

CloseMeRequestCallback

Request the current child address info.

Alternatively, the DTM-UI could directly ask the
Frame for the ChildDTM and request address info not
via ist DTM-BL

* <SendMessages()> via Proxy

Sequence Release DTM User Interface

ref

setAddressMode = OpenUserInterface

Sequence Add DTM to topology

ref Create

If address cannot be set,
FdtInvalidValueException is
thrown in SetAddressInfo.
Parent-DTM BL can inform
Parent-DTM UI, which can
handle the situation.

Create Child Proxy

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 242 – IEC TR 62453-42:2016  IEC 2016

Used methods:

ISubTopology.BeginSetChildrenAddresses() / ISubTopology.EndSetChildrenAddresses()

ITopology.GetChildNodes()

ITopology.BeginGetDtm() / ITopology.EndGetDtm()

INetworkData.SetAddressInfo()

Event INetworkData.AddressInfoChanged()

Event IChildDtmEvents.AddressInfoChanged()

Figure 180 – Set DTM addresses without UI

8.13.3 Display or modify addresses of all Child DTMs with user interface

In this scenario Frame Application requests to display or modify all Child DTM addresses at a
Parent DTM. This sequence (see Figure 181) for example is started when a user selects the
corresponding menu entry in context of a Communication DTM or a Gateway DTM.

IEC

sd : Set DTM addresses without UI

loop

loop

 :Frame
Application

Parent DTM :
Communication

Channel

Child DTM :
DTM Business

Logic

Create

Add child
to Frame topology

<SetChildrenAddresses()>

addressList = addresses of scanned devices
setAddressMode = NoUserInterface

SetAddressInfo()

<GetDtm()>

AddressInfoChanged event

DeviceScanInfo[] is available

<SetChildrenAddresses()> execution results

<GetDTM()> execution results

GetChildNodes()

All
scanned
devices

All added
DTMs

Init

Register AddressInfoChanged event

AddressInfoChanged()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 243 –

Used methods:

IFunction.Functioninfo

ITopology.GetChildNodes()

ITopology.BeginGetDtm() / ITopology.EndGetDtm()

INetworkData.GetAddressInfo()

INetworkData.SetAddressInfo()

Event INetworkData.AddressInfoChanged()

Event IChildDtmEvents.AddressInfoChanged()

Event IDtmUiMessaging.DtmSpecificEventOccured()

Figure 181 – Display or modify child addresses with UI

8.14 Device-initiated data transfer

Some protocols support data transfer services which are initiated by the device and not by the
DTM. A Communication Channel supports this by providing the ISubscription interface. For an
example of device initiated data transfer see Figure 182.

A Child DTM requests the ISubscription instance from the Communication Channel of the
Parent DTM to access the subscription services.

IEC

Sd Display or modify child addresses with UI

SetChildDTM
addresses
at the parent
DTM UI

 :Frame
Application

Parent DTM :
DTM Business

Logic

Child DTM :
DTM Business

Logic

Parent DTM :
DTM User
Interface

GetAddressInfo() via Proxy

FunctionInfo()

new()

 Display addresslist
of children

Change
child address

SetAddressInfo() via Proxy

Close DTM User Interface

All children

<GetDtm()>

<GetDtm()> execution results

Sequence
 Instantiation of a DTM User Interface

ref

Sequence
Release DTM User Interface

ref

AddressInfoChanged()

loop

AddressInfoChanged

GetChildNodes()

DtmSpecificEventOccurred

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 244 – IEC TR 62453-42:2016  IEC 2016

The infrastructure (e.g. filter, service queue) for such services is initiated by a protocol-
specific request of the DTM to initialize the subscription.

The device initiated data transfer is transported by multiple invocations of the
SubscriptionCallback() of the DTM with protocol-specific communication responses as
arguments.

The infrastructure for these services is terminated by a protocol-specific request of the DTM
to terminate the subscription.

Used methods:

ICommunicationChannelProxy.Subscription()

ICommunicationChannel.Subscription()

ISubscription.BeginSubscriptionInitialization() / ISubscription.EndSubscriptionInitialization()

Fdt.Communication.SubscriptionCallback()

ISubscription.BeginSubscriptionTermination() / ISubscription.EndSubscriptionTermination()

Figure 182 – Device-initiated data transfer

8.15 Reading and writing data

8.15.1 Read/write instance data

The following sequence diagram (Figure 183) shows how instance data is read from / written
to the instance dataset using IInstanceData interface.

IEC

sd : Device-initiated data transfer

: Device DTM
Parent :

Communication
Channel

Parent :
Communication
ChannelProxy

get Subscription interface
 get Subscription interface

<SubscriptionInitialization()>

<SubscriptionInitialization()> execution results

Data Transfer from Device
SubscriptionCallback(transactionResponse)

<SubscriptionTermination()>

<SubscriptionTermination()> execution results

: Device

SubscriptionCallback(transactionResponse)

Setup of
Communication
Infrastructure

<SubscriptionInitialization()>

<SubscriptionInitialization()> execution results

<SubscriptionTermination()>

<SubscriptionTermination()> execution results

Termination of
communication
Infrastructure

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 245 –

Used methods:

IInstanceData.GetDataInfo()

IDataset.StartTransaction() / IDataset.CommitTransaction() / IDataset.CloseTransaction()

IDataset.TransactionStarted / IDataset.TransactionCommitted /IDataset.TransactionClosed

IInstanceData.BeginRead() / IInstanceData.EndRead()

IInstanceData.BeginWrite() / IInstanceData.EndWrite()

Event IInstanceData.DataValueChanged()

Event IInstanceData.DataInfoChanged()

Figure 183 – Read/write instance data

IEC

Read/write instance data

Frame
Application

: DTM Business
Logic

loop All data objects that shall be read

Change values to be
written

Validate / change
values in instance
dataset

: Dataset

<GetDataInfo()>

<GetDataInfo()> execution results

<Read()>

<Read()> execution results

<Write()>

<Write()> execution results

StartTransaction()

CommitTransaction()
DataValueChanged

ModifiedInDtmChanged

[data structure has changed] DataInfoChanged

CloseTransaction()

DTM in state running

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 246 – IEC TR 62453-42:2016  IEC 2016

8.15.2 Read/write device data

The following sequence diagram (Figure 184) shows how device data is read from / written to
the device using IDeviceData interface.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 247 –

Used methods:

IInstanceData.GetDataInfo()

IDataset.StartTransaction() / IDataset.CommitTransaction() / IDataset.CloseTransaction()

IDataset.TransactionStarted / IDataset.TransactionCommitted /IDataset.TransactionClosed

IDeviceData.BeginRead() / IDeviceData.EndRead()

IDeviceData.BeginWrite() / IDeviceData.EndWrite()

Event IDeviceData.ModifiedInDeviceChanged()

Figure 184 – Read/write device data

IEC

Read/write device data

:
DTM Business

Logic

CommitTransaction()

CloseTransaction()

StartTransaction()

<Write()>

[optional] <CommunicationRequest()>

<CommunicationRequest()

<CommunicationRequest()> execution result

: Dataset
:

Communication
Channel

<GetDataInfo()>

: Frame
Application

<GetDataInfo()> execution results

IDeviceData.<Read()>

<Read()> execution results

Change values to be
written

Validate values

Dataset shall be locked to avoid concurrent
access to device and instance dataset .
In this sequence, values are not changed in
the instance dataset, only in the device!

Optional if business rules require
reading device values for
validation

loop Write all values

ModifiedInDeviceChanged

[data structure has changed] DataInfoChanged

<Write()> execution results

loop All data objects that shall be read

DTM Business Logic
is in state connected

Write
to
device

StartTransaction()

CloseTransaction()

<CommunicationRequest()

<CommunicationRequest()> execution result

loop Read all values

Read
from
device

Ensure there is no
concurrent device
access.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 248 – IEC TR 62453-42:2016  IEC 2016

8.16 Comparing data

8.16.1 Comparing device dataset and instance dataset

In order to compare the data of a DTM instance with the data of the respective device, the
action <DeviceDataCompare()> (defined in 5.13.2) is executed (see Figure 185).

Used methods:

IComparison.BeginDeviceDataCompare() / IComparison.EndDeviceDataCompare()

Figure 185 – Comparing device dataset and instance dataset

The comparison is executed for the data in the DTM dataset and the data that can be
uploaded from the device. The comparison should include all identification, configuration, and
parameterization data. Dynamic data and status data should not be included in the
comparison.

8.16.2 Comparing different instance datasets

In order to compare the data of one DTM instance with the data of a different DTM instance,
the action <InstanceDataCompare()> is executed (see Figure 186).

IEC

sd: compare device data

: Frame
Application

Compare

 : DTM
BusinessLogic

<DeviceDataCompare>

<DeviceDataCompare> execution results

Compare instance
data with device data

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 249 –

Used methods:

IComparison.BeginInstanceDataCompare() / IComparison.EndInstanceDataCompare()

Figure 186 – Compare instance data with persisted dataset

8.17 Reassigning a different DtmDeviceType at a device node

8.17.1 General

Over the lifetime of the FDT Frame Application project it can be necessary to reassign the
DtmDeviceType of a device node to a different DtmDeviceType (see Figure 189). Reasons for
the reassignment may be:

1) An engineer reassigns a DtmDeviceType during offline planning of the FDT topology.
2) A DTM is available which supports the same device type better than the currently

assigned DTM (for instance instead of a Generic DTM, a specific DTM can be assigned).

NOTE The DTM of the DtmDeviceType may be updated or upgraded. If the device of the device node is
unchanged, a reassignment is not required due to FDT rules regarding DTM replacing installations for DTM
Updates and DTM Upgrades (See chapter 10).

3) A physical device was or is going to be exchanged. This means, the device which is
logically connected to a device node in the FDT topology will be replaced. The
replacement may require a reassignment of the DtmDeviceType if the DtmDeviceType,
which is currently in use, does not support the new device type or the version of the new
device.

NOTE Relevant is the identification of the device firmware. A device replacement as well as a firmware update
can be incompatible in respect to the DtmDeviceType.

In regard to cases 1 and 2: Do not consider scanned information from a connected device.
Usually, an existing dataset cannot be migrated in these cases.

Subclause 8.17.2 describes the scenario, where a DTM detects that the device type of the
connected device can be better supported by a different DtmDeviceType.

Subclauses 8.17.3 and 8.17.4 show sequence diagrams explaining the steps in relation to use
case 3(device exchange).

Whenever a DtmDeviceType is reassigned, two post conditions need to be considered:

• Device support:

IEC

sd: Compare instance data with persisted dataset

<InstanceDataCompare(IDataset)>

<InstanceDataCompare> (execution results)

: Frame
Application

Compare

 : DTM
BusinessLogic

Compare instance data
with dataset represented
by IDataset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 250 – IEC TR 62453-42:2016  IEC 2016

The new DtmDeviceType shall be able to operate the device connected to the device node
(refer to lifecycle concept regarding evaluation of device support in advance).

• Dataset support:
Dependent on the dataset format support of old and new DtmDeviceType, the existing
dataset could be migrated to the new DtmDeviceType. The dataset migration is not
possible in all cases. If a migration is not possible, the existing dataset cannot be used by
the new DtmDeviceType. Frame Applications are responsible to inform the user about this
and propose following action: An upload should be performed with the new
DtmDeviceType in order to synchronize and store the device data with the project data.

NOTE In general all descriptions in this chapter do not only apply to DtmDeviceTypes, but also apply to the two
other DtmTypes: DtmModuleTypes and DtmBlockTypes.

8.17.2 DTM detects a change in connected device type

This subclause describes the scenario where a DTM detects that the device type of the
connected device can be better supported by a different DtmDeviceType.

3 possible scenarios are shown in the sequence diagram in Figure 187:

a) The connected device type can be better supported by a different DTM Type. In this case
the DTM internally activates another DTM Type and informs the Frame Application with
ActiveTypeChanged about the change.

b) The connected device type cannot be supported by the DTM
c) The unchanged connected device type: DtmDeviceType is not changed.

Scenario a) may occur if a DTM connects to the device again, after the device has been
replaced by a compatible device type. Also Scenario a) may occur when the DTM was
assigned with a generic DtmDeviceType to the device (e.g. during offline engineering) and
detects that it can provide better support for the connected device with a different
DtmDeviceType.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 251 –

Used methods:

Event IDtm.OnlineStateChanged()

ICommunication.BeginConnect() / ICommunication.EndConnect()

ICommunication.BeginCommunicationRequest()

ICommunication.EndCommunicationRequest()

ICommunication.BeginDisconnect() / ICommunication.EndDisconnect()

Event IDtm.ActiveTypeChanged()

Figure 187 – DTM triggers ActiveTypeChanged event

IEC

sd DTM triggers ActiveTypeChanged

Device DTM :
DTM Business

Logic

<Connect()>

: Frame
Application

Parent DTM :
Communication

Channel

Device Type check

Evaluation of online
found device type
identification

ActiveTypeChanged()

Frame Application specific handling of
new TypeInfo connected to DeviceNode

[DTM internal
data migration]

[device type check failed: new device type can be
supported by another Type (TypeInfo.Id) in this DTM]

Save instance data
of new Type

OnlineStateChanged() - ConnectedOnline

[device type check failed -new type cannot be supported by this DTM]

[device type check succeeded – found online device type is same as active Type]

alt

OnlineStateChanged() - NotConnectedDisturbed

Set DTM online

<Connect()> execution results

Read device type identification

 :
PhysicalDevice

Read device type identification

OnlineStateChanged() - ConnectedCheckingDevice

OnlineStateChanged() - Connecting
establish connection

OnlineStateChanged() - ConnectedOnline

<Disconnect()>

<Disconnect()> execution results

OnlineStateChanged() - Disconnecting

close connection

[migrated data cannot be migrated back]
request confirmation to continue from user

Starting in state
notConnected

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 252 – IEC TR 62453-42:2016  IEC 2016

8.17.3 Search matching DtmDeviceTypes after incompatible device exchange

After a device exchange, a Frame Application should support the verification of the
DtmDeviceType currently assigned to a device node in the FDT topology. In addition to the
identification of the device types supported by installed DTMs, FDT provides a concept to
explore DTM setups and the included DTMs before the DTMs are installed (see chapter 10).
This can be used to find out if there are DTMs available (uninstalled DTMs), which include
DtmDeviceTypes to support a scanned device.

The sequence diagram shown in Figure 188 shows how a list of matching DtmDeviceTypes in
installed DTMs and DTM setups can be determined by a Frame Application.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 253 –

Used methods:

IDtmInformation.GetDtmInfo()

IDtmInformation.GetDeviceIdentInfo()

Figure 188 – Find matching DtmDeviceTypes after incompatible device exchange

8.17.4 Reassign DtmDeviceType after incompatible device exchange

The sequence diagram shown in Figure 189 shows how a Frame Application verifies the
validity of a currently assigned DtmDeviceType after a device change. The sequence diagram

IEC

sd : Find matching DtmTypes after incompatible device exchange

: Frame
Application

Installed DTM :
DTM Business

Logic

Search matching
DtmDeviceTypes

Check if DeviceIdentInfo
matches to DeviceScanInfo

GetDeviceIdentInfo(typeId, protocol)

loop All DeviceIdentInfos

Check Dataset.FormatId against
DtmDeviceType.Id. Note if format is
supported.

GetDtmInfo()

ref Sequence scan

Select DeviceScanInfo of
changed device

[match] Add to list of DtmDeviceType
reassignment candidates

DeviceScanInfo of device has changed,
currently assigned DtmDeviceType

does not support scanned device type
with actual DeviceScanInfo

: DeviceIdentInfos

loop All DTMs

[Search DeviceIdentInfo in DTM Setups]

alt

Create

Deserialize file Setup/SupportedDevices_<DtmInfo.Id>\<Protocol_ID>.DtmDeviceIdent.manifest

[Search DeviceIdentInfo in installed DTMs]

loop All reassignment candidates

Optional: Exit if assigned ActiveType matches new DeviceScanInfo

See figure
"DtmSetup structure"

Or alternatively DtmInfoBuilder

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 254 – IEC TR 62453-42:2016  IEC 2016

describes the DtmDeviceType reassignment if a better matching or newer DtmDeviceType is
found.

Used methods:

IDtm.Init()

IDtm.InitData()

IDtm.LoadData()

IDataSubset.ReadData()

IDataSubset.WriteData()

IDtmInformation.GetDtmInfo()

IDtmInformation.GetDeviceIdentInfo()

Figure 189 – Reassign a DtmDeviceType after incompatible device exchange

IEC

sd : Reassign a DtmDeviceType after incompatible device exchange

Frame
Application

DTM2: DTM
Business Logic

 Create

Init()

[Dataset.FormatId = one of the Supported-Ids] LoadData(Dataset)

Select and confirm
reassignment

List reassign candidates and indicate option
to migrate dataset to the user

read Dataset.InstanceData

Check FormatId and
migrate data

Write data with DTM2 Used DatasetFormat

[Dataset not supported]

alt

[Dataset supported]

ref Sequence: Find matching DtmTypes after incompatible device exchange

Check
Dataset.FormatId = DtmDeviceTypeInfo.DatasetFormats.Used or
included in list of DtmDeviceTypeInfo.DatasetFormats.ReadSupported

InitData(empty Dataset)

Remove DataSubsets from Dataset

Initial write and save

Inform user that dataset is overwritten
and recommend to upload data from
device. Offer Cancel.

Confirm
dataset
overwriting

 Reassign

loop All matching DtmDeviceTypes

ref Sequence Generation of topology by Frame Application

DeviceNode1:
Dataset

Device Node with saved dataset of a DtmDeviceType
Selected. Exchanged device type is not supported by

currently assigned DtmDeviceType

Frame internal replacement of
DtmDeviceType assigned to the
device node in the topology

[no matching DtmDeviceType found]

alt

[Matching DtmDeviceType available]

Inform user about missing
DtmDeviceType and support finding a
required DTM

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 255 –

8.18 Copying part of FDT Topology

8.18.1 Cloning of a single DTM without Children

A Frame Application might provide functionality to copy and paste a DTM which has no
children to the same parent or to another one. Figure 190 shows the workflow for this
functionality.

Used methods:

IDtm.LoadData()

IDtm.Init()

ISubTopology.BeginValidateAddChild()

ISubTopology.EndValidateAddChild()

BeginChildAdded() / EndChildAdded()

Figure 190 – Clone DTM without children

IEC

sd Clone DTM without children

Frame
Application

Sequence
Release DTM

ref

Cloned: DTM
Business Logic

Cloned: DTM
Dataset

Save the copy to the cloned Dataset

Init(new SystemTag)

LoadData (isCloned=true)

Create

Load data

Create

loop
All cloned DTMs with parent DTM in FDT topology <ValidateAddChild()>

Copy/paste

Parent of Clone:
DTM Business

Logic

[ValidateAddChild failed]

alt [ValidateAddChild succeeded]

Delete

<ValidateAddChild()> execution results

Optional:
read validation
relevant information

Frame internal adding
DTM to the topology

<ChildAdded()>

<ChildAdded()> execution results

Create a copy of the original
data of the DTM Dataset

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 256 – IEC TR 62453-42:2016  IEC 2016

8.18.2 Cloning of a DTM with all its Children

A Frame Application might provide functionality to copy and paste a DTM with all its children
to the same parent or to another parent. Figure 191 shows the workflow of this functionality.

Used methods:

IDtm.LoadData()

IDtm.Init()

Figure 191 – Clone DTM with all children

8.19 Sequences for audit trail

8.19.1 General

This section shows how the audit trail concept (described in 4.15) is implemented.

8.19.2 Audit trail of parameter modifications in instance dataset

Figure 192 shows how changes in the instance dataset are traced.

IEC

sd Clone DTM with all children

Frame
Application

Copy/paste

ClonedChild:
DTM Dataset

Frame specific initialization with
copy of original child dataset

Create

ClonedParent:
DTM Business

Logic
Init(new parent DtmSystemTag)

Create

LoadData (parentDataset, isCloned=true, newChildTopology)

Load data

ClonedParent:
DTM Dataset

Create a copy of the original parent DTM data set

Create

loop All cloned DTM child instances

[isCloned=true]
Replace old child
DtmSystemTags by
new DtmSystemTags
according
newChildTopology List

Copy original child
DTM dataset

Enter old / new
systemTag to
newChildTopology list

Store cloned child
dataset with new
systemTag in topology

Release

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 257 –

Used methods:

IAuditTrail.Notify()

Figure 192 – Audit trail of parameter modifications in instance dataset

8.19.3 Audit trail of parameter modifications in device dataset

Figure 193 shows how changes in the device data are tracked.

IEC

sd: Audit trail of parameter modifications in instance dataset

: Frame
Application

Change offline instance parameter

 : DTM
BusinessLogic

Parameter
modification

[modification or save of transaction failed]

alt

[modification and commit succeeded]

IAuditTrail::Notify()

Handle notification

 : Dataset

StartTransaction()

CommitTransaction

Write to DataSubset

No audit trail notification
because any change is
rolled back.

isOnlineNotification = false

CloseTransaction

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 258 – IEC TR 62453-42:2016  IEC 2016

Used methods:

IAuditTrail.Notify()

Figure 193 – Audit trail of parameter modifications in device

8.19.4 Audit trail of function calls

Figure 194 shows how function calls are tracked.

Used methods:

IAuditTrail.Notify()

Figure 194 – Audit trail of function calls

IEC

sd: Audit Trail of function calls

Call function

IAuditTrail::Notify()

Execute
function

: Frame
Application

 : DTM
BusinessLogic

Handle notification

IEC

sd: Audit Trail of parameter modifications in device

: Frame
Application

Change device parameter

 : DTM
BusinessLogic

Write to
device

[Write succeeded] IAuditTrail::Notify()

Handle notification

 :
Communication

Channel

Write Request

Device is connected

Write Response

isOnlineNotification = true

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 259 –

8.19.5 Audit trail of general notification

This shall only be used in case it is not a Function Notification or a Parameter Change
Notification. General notifications are used by the DTM to provide audit trail notifications in
the scenarios like device state information updates.

9 Installation

9.1 General

This chapter describes the installation of FDT core assemblies, FDT communication protocols
and DTMs as well as the structure and rules for creating DTM setups.

9.2 Common rules

9.2.1 Predefined installation paths

This chapter defines the common installation paths where FDT core assemblies, FDT protocol
assemblies and DTMs are installed and registered (see Table 42, Figure 195 and Figure 196).

Table 42 – Predefined FDT installation paths

Path Name Value Description

<GAC> (OS version specific) This is the Windows Global Assembly Cache.

<FDT_Registry> "<CommonApplicationData>\FDT\" Root folder for the registration of IEC 62453-42
DTMs and protocols.

<FDT_DTMs> "<FDT_Registry>\DTMs" Folder contains the vendor-specific subfolders with
DTM manifest files that are used for DTM
registration. Frame Applications search this folder
for installed DTMs in order to create a device
catalog.

<FDT_Protocols> "<FDT_Registry>\Protocols" Folder contains the communication protocol
manifest files. Frame Applications search this
folder for installed communication protocols.

<FDT_GUIs> "<FDT_DTMS>\<Vendor Name>\
 <DTM Name>\User Interfaces"

Folder contains the user interface manifest files.
Frame Applications search this folder for installed
user interfaces.

<FDT_X86> "<CommonProgramFilesX86>\FDT" Folder for 32-bit / Any CPU FDT components.

<FDT> "<CommonProgramFilesX64>\FDT" Folder for 64-bit FDT components.

<DTM_X86> "<FDT_X86>\DTMs\" Folder contains all 32-bit / Any CPU DTMs.

<DTM> "<FDT>\DTMs\"
 Folder contains all 64-bit CPU DTMs.

<DTMs> 32-bit / Any CPU DTM: "<DTM_X86>” The folder name is used as short statement for
“<DTM_X86> or <DTM>”. The actual meaning
depends on the environment supported by the
DTM.

64-bit DTM: "<DTM>

<DTM_root> 32-bit / Any CPU DTM:

"<DTM_X86>\<Vendor Name>\<DTM
Name>”

The folder contains all DTM binaries (assemblies)
and data files. This includes main DTM BL
assembly, DTMInfoBuilder assembly, DTM UI
assemblies, resource assemblies and other files.

NOTE <Vendor Name> is the name of the DTM
vendor.

64-bit DTM:

"<DTM>\<Vendor Name>\<DTM
Name>”

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 260 – IEC TR 62453-42:2016  IEC 2016

NOTE:

<CommonApplicationData> is the folder returned by the System.Environment.GetFolderPath() method for the
special folder ID CommonApplicationData

<CommonProgramFilesX86> is the folder returned by the System.Environment.GetFolderPath() method for the
special folder ID CommonProgramFiles (32-bit application) or CommonProgramFilesX86 (64-bit application)

<CommonProgramFilesX64> is the folder returned to a 64-bit application by the
System.Environment.GetFolderPath() method for the special folder ID CommonProgramFiles. This folder is
accessible from 64-bit applications / on 64-bit OS versions only (see [32])

NOTE It is a product-specific decision whether files are shared between different DTMs. The handling and version
management of these files are out of scope of FDT. One possible approach could be to store these files under the
folder “<DTMs>\<Vendor Name>\" according to vendor-specific needs and use relative paths to reference these
files.

The FDT core assemblies (interfaces, datatypes, and exceptions) and communication protocol
assemblies are installed in the Global Assembly Cache. Shared .NET assemblies may also be
installed in the Global Assembly Cache. Please refer to 5.4.4 when using shared .NET
assemblies.

All DTMs are registered in the predefined path
“...\<CommonApplicationData>\FDT\DTMs”.

All communication protocols are registered in the predefined path
“...\<CommonApplicationData >\FDT\Protocols”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016 Ó IEC 2016 – 261 –

Figure 195 – GAC and FDT_Registry

On 32-bit operating systems all DTMs are installed in the predefined path
“<CommonProgramFilesX86>\FDT\DTMs”.

On 64-bit operating systems all DTMs built for 64-bit are installed in the predefined path
“<CommonProgramFilesX64>\FDT\DTMs”

and all DTMs built for 32-bit or for ‘any’-target are installed in the predefined path
“"<CommonProgramFilesX86>\FDT\DTMs”. (see Figure 196)

IEC

CommonApplicationData

FDT
1

1

<FDT_Registry>

1 *

Protocols

*.protocol.manifest

 <ProtocolGuid>.transformer.manifest

ProtocolGuid as
defined in
protocol annex

1

DTMs1

Global Assembly Cache

Fdt.Interfaces.dll Fdt.Datatypes.dll

Fdt.<ProtocolName>.dll

E.g.:
Fdt.HART.dll

 Fdt.<ProtocolName>TransformerAssembly.dll

E.g.
Fdt.HARTTransformerAssembly.dll

additional FDT common
component assemblies

additional FDT common
component assemblies

additional FDT common
component assemblies

Other shared
components

Other shared
components

Other shared
components additional FDT or vendor

specific protocol assemblies
additional FDT or vendor

specific protocol assemblies
additional FDT or vendor

specific protocol assemblies

Fdt.Exceptions.dll

<DTM_Name>.dtm.manifest
1 *

1

*

<FDT_Protocols>

<FDT_DTMs>

<Vendor Name>

1

*

1

1

<DTM_Name>

UserInterfaces <UI_Name>.dtmui.manifest

1 *
<FDT_GUIs>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 262 – IEC TR 62453-42:2016 Ó IEC 2016

Figure 196 – Installation paths (with example DTM)

9.2.2 Manifest files

All components related to FDT provide manifest files in order to register the component in the
FDT system (except for the FDT core assemblies) or to provide pre-installation information.
Manifest files are XML-files, which follow a defined format. The format corresponds to .NET
datatypes, which are part of the FDT core specification.

IEC

Program Files

ProgramFilesX86

FDT

DTMs

X64 DTMs

FDT

DTMs

X86 DTMs
Any DTMs

Common Files

<DTM_Root>

1

*

1

*

1

1

1 *

1

*

DTMs

<DTM_Name>

UserInterfaces

<DTM>.dll

<DTMUI>.dll

*

Filesystem
of a 64-bit OS

<Vendor_Name>

<DTM_Name>.dtm.manifest

<FDT_DTMs>

The folder structure applies to
X64 DTMs, X86 DTMs as well as
Any DTMs

Filesystem
of a 32-bit OS

Program Files

FDT

DTMs

Common Files

X86 DTMs
Any DTMs

See Figure „GAC and FDT_Registry“

<DTM>

<FDT_X86>

<FDT>

<DTM_X86> <DTM_X86>

<FDT_X86>

Common Files

<FDT_GUIs>

<UI_Name>.dtmui.manifest

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 263 –

9.2.3 Paths in manifest files

All manifest files may include paths to assembly or resource files.

If some parameter in any manifest file represents a path to an assembly, icon, bitmap,
documentation or data file, then it shall be relative to the component root path.

NOTE For example, if a PDF document is provided for a DTM, which is installed in “<DTMs>\Vendor1\MyDtm1”:
The document is located in “<DTMs>\Vendor1\MyDtm1\Documentation\help.pdf”, the reference to the document is
“Documentation\help.pdf”. The component is the DTM BL. The component root path is “<DTMs>\Vendor1\MyDtm1”.

In order to access the referenced files, the Frame Application shall add the component root
path at the beginning of relative paths.

9.2.4 Common command line arguments

DTM setups and its components shall have a unified way for installing and uninstalling by
using the standard Windows Installer command line. This includes support for predefined
setup properties and setup command line parameters.

The following predefined setup properties shall be available (Table 43):

Table 43 – Predefined setup properties

Setup property Value range Default value Description

FDT20_DTMBO “True”, “False”. True Installs only DTM Business Logic components
for selected device types.

FDT20_DTMUI “True”, “False” True Installs only DTM User Interface components
for selected device types.

FDT20_LICENSEKEY String license key Transfers optional setup license key in case if
product should be licensed.

Command line parameters shall be supported as defined in Table 44.

Table 44 – Setup command line parameters

Command line parameter Description Example

/q /i “{msi-file}” Install setup in silent mode. msiexec.exe /q /i “*.msi”

/q /i “{ProductCode}”
REMOVE=”ALL”

Uninstall setup in silent mode. msiexec.exe /q /i “{ProductCode}”
REMOVE=”ALL”

ADDLOCAL=”{feature-list}” Install setup with selected features
(DTMs/DeviceTypes).

msiexec.exe /q /i “*.msi”
ADDLOCAL=”FEATURE1;FEATURE2”

REMOVE=”{feature-list}” Uninstall selected
features(DTMs/DeviceTypes).

msiexec.exe /q /i “{ProductCode}”
REMOVE=”FEATURE1;FEATURE2”

/lv “{log-file}” Install setup with log. msiexec.exe /q /lv “..\log.txt” /i “*.msi”

FDT20_DTMUI=”False” Install DTM Business Logic
components only

msiexec.exe /q /i “*.msi”
FDT20_DTMUI=”False”

FDT20_DTMBO=”False” Install DTM User Interface
components only

msiexec.exe /q /i “*.msi”
FDT20_DTMBO=”False”

FDT20_LICENSEKEY=”ABC” Install DTM using specified license
key.

msiexec.exe /q /i “*.msi”
FDT20_LICENSEKEY=”ABC”

If only some selected DTMs should be installed, then Frame Application should read setup
installation groups (features) for these DTMs from setup manifest file (see 9.6.2 for details). If
this information is not available, then setup does not support this functionality.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 264 – IEC TR 62453-42:2016  IEC 2016

NOTE During development of a setup it is necessary to observe the general limitation of operating systems in
regard to length of command line and length of pathname. For example see [34] and [35].

9.2.5 Digital signatures of setup components

The Windows Installer has an embedded mechanism for checking setup components
correctness based on digital signatures. The Windows Installer performs automatic signatures
verification for signed external cabinet files. If a cabinet file is corrupted during the download,
this will be detected by Windows Installer during the installation process. Additionally the
Windows Installer database (MSI file) can be also protected with a digital signature. Authors
of Windows Installer installations shall adhere to the following to ensure that all parts of the
installation are covered by a digital signature:

• Only signed external cabinet files shall be provided.
(This means that the MsiDigitalSignature table and MsiDigitalCertificate table need to be
authored correctly).

• Custom actions stored within the package or installed with the package shall be used.

• The installation package shall be signed.

NOTE The tool SignTool from CryptoAPI Tools can be used for signing of cabinet files. If the bootstrapper
application is used, then it should check MSI package signature itself using the Crypto API. For more details refer
to [18][19].

Installation files provided by FDT Group (e.g. for core assemblies and protocol-specific files)
will be signed accordingly.

9.3 Installation of FDT core assemblies

FDT core assemblies (see 5.1) shall be installed by each Frame Application and by each DTM
using the standard FDT Group merge modules. The FDT core assemblies are installed in the
Global Assembly Cache and are not registered otherwise.

9.4 Installation of communication protocols

9.4.1 General

Each Communication-/ Gateway-DTM shall install the supported communication protocols.
The protocol assemblies (see 5.5.11) shall be installed in the Global Assembly Cache.

Protocols defined by an FDT Protocol Annex are provided as merge modules by the FDT
Group. The merge modules of supported communication protocols shall be integrated in the
Communication-/ Gateway-DTM setups. Vendor-specific communication protocol assemblies
are installed with vendor-specific Communication-/ Gateway-DTMs.

9.4.2 Registration

Communication protocols are registered by protocol manifest files that are installed in the
<FDT_Protocols> path. A protocol manifest file describes a communication protocol with its ID
and assembly reference.

9.4.3 Protocol manifest

A protocol manifest is used to register additional communication protocol assemblies in the
system in order to enable Frame Applications and DTMs to find it. Protocol manifest files shall
be installed in the <Protocols> path (see 9.2.1). The file name shall be composed of the
unique communication protocol ID and the suffix “.protocol.manifest”.

A protocol manifest xml file contains following information:

• AssemblyInfo: Information about the protocol assembly that contains the communication
protocol classes and data structures.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 265 –

• ProtocolId: Unique identifier of the protocol (as UUID).

• ProtocolName: Human readable name of the protocol

Figure 197 shows an example for a protocol manifest.

IEC

Figure 197 – Example: Protocol manifest

9.5 Installation of DTMs

9.5.1 General

Prior to installation of a DTM, it is possible to retrieve information about a DTM from the
respective DTM Setup Manifest (see 9.6.2).

After installation the respective information can be retrieved within the FDT system.

All DTMs shall be installed in the predefined <DTMs> path (see 9.2.1). Each DTM vendor
creates a subfolder <Vendor Name>. Each DTM is placed in a subfolder <DTM Name>. The
path to this folder is the <DTM_root> path. All DTM assemblies and data files for a single
DTM installation shall be installed in this path. The <DTM_root> folder may have a free
substructure according to product requirements. Following components of a DTM are installed
here:

• DTM BL assembly (see DTM component in Figure 195). It implements the main DTM
Business Logic. This assembly can use or reference some other dependent assemblies.
There are no limitations on file names.

• DTM User Interfaces assemblies (see DtmUI component in Figure 195). This component
implements one or more DTM User Interfaces. There are no limitations on file names.

• DTM Information Builder assembly (see DtmInfoBuilder concept in 4.4.2). This component
implements support for getting dynamic DTM information (e.g. for DD-Interpreter DTMs).
There are no limitations in regard to file name. The DtmInfoBuilder can be integrated with
the main DTM Business Logic assembly.

<?xml version="1.0" encoding="utf-16"?>
<ProtocolManifest xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
 <ProtocolId>b803f1b4-d992-44bc-a62d-08ec71b0b4cd</ProtocolId>
 <ProtocolName>XyzBus</ProtocolName>
 <AssemblyInfo>
 <Name>Fdt.XyzBus</Name>
 <Version xmlns:d3p1="http://schemas.datacontract.org/2004/07/System">
 <d3p1:_Build>0</d3p1:_Build><d3p1:_Major>1</d3p1:_Major>
 <d3p1:_Minor>0</d3p1:_Minor><d3p1:_Revision>0</d3p1:_Revision>
 </Version>
 <PublicKeyToken>1234567890123456</PublicKeyToken>
 <RuntimeVersions>
 <RuntimeVersion>
 <CLRVersionNumber xmlns:d5p1="http://schemas.datacontract.org/2004/07/System">
 <d5p1:_Build>-1</d5p1:_Build><d5p1:_Major>2</d5p1:_Major>
 <d5p1:_Minor>0</d5p1:_Minor><d5p1:_Revision>-1</d5p1:_Revision>
 </CLRVersionNumber>
 </RuntimeVersion>
 <RuntimeVersion>
 <CLRVersionNumber xmlns:d5p1="http://schemas.datacontract.org/2004/07/System">
 <d5p1:_Build>-1</d5p1:_Build><d5p1:_Major>4</d5p1:_Major>
 <d5p1:_Minor>0</d5p1:_Minor><d5p1:_Revision>-1</d5p1:_Revision>
 </CLRVersionNumber>
 </RuntimeVersion>
 </RuntimeVersions>
 <SupportedPlatforms>Any</SupportedPlatforms>
 <Path i:nil="true" />
 </AssemblyInfo>
</ProtocolManifest>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 266 – IEC TR 62453-42:2016 Ó IEC 2016

If a DTM uses some third-party components or re-uses some existing components from other
products (especially COM / ActiveX) that cannot be installed into the path <DTM_root>, then
they may be placed outside of this folder. In this case it shall be guaranteed that such
components do not corrupt other running products or setups (e.g. by updating a shared
component with a new revision).

NOTE Components that are used in multiple DTMs of a vendor could be installed in a common folder (e.g.
“<DTMs>\<vendor name>\Common”).

9.5.2 Registration

The Frame Application shall be able to retrieve information about installed DTMs and
supported device types. The registration of DTMs is performed using manifest files that are
installed in the predefined installation paths (see 9.2.1).

The <FDT_Registry> folder and its subfolders contain all manifest files that describe the
installed DTMs and their DTM User Interfaces. Following manifest files are defined:

– *.dtm.manifest.
This xml file describes an installed DTM (see chapter 9.5.3).

– *.dtmui.manifest.
This xml file describes an installed DTM User Interface (see chapter 9.5.4).

A Frame Application searches for information about installed DTMs in three steps (see
Figure 198):

a) The Frame Application reads all DTM manifest files in <DTMs > path.
b) For each DTM, the Frame Application loads the referenced assembly and starts the

DtmInfoBuilder. Further information about device-, block-, module types, supported
protocols etc. is retrieved from the DtmInfoBuilder.

c) For each DTM, the Frame Application reads the DTM User Interface manifest files
(referenced in *.dtm.manifest) and stores user interface assembly and function information
(e.g. in a device catalogue).

d) After a DTM is found, the DTM Business Logic and the respective DTM User Interface
may be executed.

Figure 198 – Search for installed DTMs

See the descriptions of DTM manifest and DTM UI manifest datatypes for details about
different manifest files that are used for DTM registration.

A Frame Application can check if new DTMs are registered by comparing the date of the DTM
Manifest file with the last checking date.

IEC

Frame
Appliction

DTM
Business Logic

DTM
User Interface

Local File System

1. explore

3. update

User

DTM Info
Builder

2. read

4. execute

Device
Catalog

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 267 –

9.5.3 DTM manifest

A DTM manifest file is used to register a DTM in the system in order to enable Frame
Applications to find it. Therefore it contains references to the main DTM BL assembly and to
the class that implements the DtmInfoBuilder for the DTM. DTM manifest files shall be copied
to the vendor-specific subfolder of the <FDT_DTMs> path by the DTM setup during
installation or during update of the DTM. The file name is composed by a unique DTM name
and the suffix “.dtm.manifest”. A DTM vendor is responsible for the uniqueness of his DTMs
and DTM names within the vendor-specific name space.

A DTM manifest file (DtmManifest) contains following information:

– DynamicClassReference: Information about DtmInfoBuilder class, which shall be used to
request TypeInfos and corresponding device identification information supported by the
DTM.

– DtmRootPath: Root installation path of the DTM (relative path from common FDT
installation path). The DTM main assembly and DtmInfoBuilder assembly (if provided) is
located in this path.

– DtmInitData: [Optional] DTM initialization information. This string is passed to the DTM in
the IDtm.Init call.

– ConformityRecords: [Optional] if the DTM has been certified, then this entry references a
conformity record which tells details about the FDT compliance certification of the DTM.

NOTE Information about DTM device types is not included in the DTM manifest file.

DTM manifest files shall be created by using the DtmManifest datatype. See the description of
DtmManifest datatype in 7.6.2 for further information about DTM manifest files.

Figure 199 shows an example for a DtmManifest.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 268 – IEC TR 62453-42:2016  IEC 2016

IEC

Figure 199 – Example: DtmManifest

9.5.4 DTM User Interface manifest

A DTM User Interface manifest file is used to register a DTM User Interface in the system in
order to enable Frame Applications to find it. These files shall be copied to the <FDT_GUIs>
path by the DTM setup during installation or update of the DTM. The file name is composed of
the DTM User Interface name (unique for the DTM) and the suffix “.dtmui.manifest”. Each
DTM User Interface manifest file shall be referenced and declared in the DTM manifest file.
The DTM User Interface manifest contains following information:

– AssemblyInfo: Information about the DTM User Interface assembly.
– UIFunctionInfos: Information about the DTM User Interface functions included in the

assembly described by AssemblyInfo.
– Information about type of user interface.

See the description of DtmUiManifest datatype in 7.6.3 for the syntax of DTM User Interface
manifest files.

Figure 200 shows an example of a DtmUiManifest.

<?xml version="1.0" encoding="utf-16"?>
<DtmManifest xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
 <DtmRootPath>..\VendorX\DtmY\</DtmRootPath>
 <DtmInfoBuilderRef xmlns:d2p1="http://schemas.datacontract.org/2004/07/Fdt.Dtm">
 <d2p1:AssemblyInfo>
 <Name>Fdt.VendorX.DtmY</Name>
 <Version xmlns:d4p1="http://schemas.datacontract.org/2004/07/System">
 <d4p1:_Build>0</d4p1:_Build><d4p1:_Major>2</d4p1:_Major>
 <d4p1:_Minor>3</d4p1:_Minor><d4p1:_Revision>0</d4p1:_Revision>
 </Version>
 <PublicKeyToken>1234567890123456</PublicKeyToken>
 <RuntimeVersions>
 <RuntimeVersion>
 <CLRVersionNumber xmlns:d6p1="http://schemas.datacontract.org/2004/07/System">
 <d6p1:_Build>1</d6p1:_Build><d6p1:_Major>2</d6p1:_Major>
 <d6p1:_Minor>0</d6p1:_Minor><d6p1:_Revision>23456</d6p1:_Revision>
 </CLRVersionNumber>
 </RuntimeVersion>
 </RuntimeVersions>
 <SupportedPlatforms>Any</SupportedPlatforms>
 <Path>..%5CVendorX%5CDtmY%5C</Path>
 </d2p1:AssemblyInfo>
 <d2p1:ClassName>Fdt.VendorX.DtmY.DtmMainInfoBuilder</d2p1:ClassName>
 </DtmInfoBuilderRef>
 <DtmCategory>DeviceDTM</DtmCategory>
 <UiManifestRefs>
 <UiManifestRef>
 <ManifestType>DtmY.Ui.Type</ManifestType>
 <FileName>DtmY.Ui</FileName>
 </UiManifestRef>
 </UiManifestRefs>
 <ConformityRecords i:nil="true" />
 <DtmInitData>My Initialization Data</DtmInitData>
</DtmManifest>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 269 –

IEC

Figure 200 – Example: DtmUiManifest

9.6 DTM setup

9.6.1 Structure

The DTM setup structure defines the contents and structure of a DTM setup (see Figure 201).
Each DTM setup consists of following mandatory and optional parts:

– MSI file [mandatory]. This is main Windows Installer database file. It contains complete
installation logic and setup user interface. This file is always located in the setup root
folder and is used to start the installation.

– Setup manifest file [mandatory]. This file describes the setup itself and contains
information about included DTMs. This file is always located in the setup root folder.

– Setup Bootstrapper [optional]. This is a simple application (e.g. setup.exe) that can
perform some additional actions before the MSI file is started (e.g. setup localization). In
order to provide better integration, it is not recommended to use a bootstrapper. This file
is always located in setup root folder.

– Cabinet files [optional]. These files contain compressed installation files of the DTM. They
are always located in the Files subfolder.

– Device identification files [optional]. These files describe identification information for
device types that are supported by DTMs in this setup. These protocol-specific files are
always located in SupportedDevices_<DtmInfo.Id> folder. The files can be deserialized to
initialize the class DtmDeviceIdentManifest.

<?xml version="1.0" encoding="utf-16"?>
<DtmUiManifest xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
 <AssemblyInfo>
 <Name>Fdt.VendorX.DtmY.UI</Name>
 <Version xmlns:d3p1="http://schemas.datacontract.org/2004/07/System">
 <d3p1:_Build>0</d3p1:_Build>
 <d3p1:_Major>2</d3p1:_Major>
 <d3p1:_Minor>3</d3p1:_Minor>
 <d3p1:_Revision>0</d3p1:_Revision>
 </Version>
 <PublicKeyToken>1234567890123456</PublicKeyToken>
 <RuntimeVersions>
 <RuntimeVersion>
 <CLRVersionNumber xmlns:d5p1="http://schemas.datacontract.org/2004/07/System">
 <d5p1:_Build>1</d5p1:_Build>
 <d5p1:_Major>2</d5p1:_Major>
 <d5p1:_Minor>0</d5p1:_Minor>
 <d5p1:_Revision>23456</d5p1:_Revision>
 </CLRVersionNumber>
 </RuntimeVersion>
 </RuntimeVersions>
 <SupportedPlatforms>Any</SupportedPlatforms>
 <Path>..%5CVendorX%5CDtmY%5CUserInterfaces%5C</Path>
 </AssemblyInfo>
 <UiFunctionInfos>
 <UiFunctionInfo i:type="UiControlFunctionInfo">
 <FunctionId>1</FunctionId>
 <ClassName>Fdt.VendorX.DtmY.UI01</ClassName>
 <Type>WinForm</Type>
 </UiFunctionInfo>
 <UiFunctionInfo i:type="UiControlFunctionInfo">
 <FunctionId>2</FunctionId>
 <ClassName>Fdt.VendorX.DtmY.UI02</ClassName>
 <Type>WinForm</Type>
 </UiFunctionInfo>
 </UiFunctionInfos>
</DtmUiManifest>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

– 270 – IEC TR 62453-42:2016 Ó IEC 2016

Figure 201 – DTM setup structure

9.6.2 DTM setup manifest

A setup manifest describes a DTM setup and shall be provided together with a DTM setup.
Using this information the Frame Applications can check whether a DTM update is required or
it can install the DTM automatically. The file name shall be composed of the SetupName and
the suffix “setup.manifest”.

A DTM Setup manifest xml file contains following information:

– DtmInfos: Information about DTMs which are included in the setup
– ProductCode: Unique identifier of the product (Windows Installer ProductCode)
– SetupName: Name of the DTM product setup.
– SetupVersion: Version of the product setup.
– PublisherName: Name of the company that provides the DTM
– ProductFeatures: List of setup features that can be installed individually. This may be

used for DTM device types or additional features.
– SetupUrl: Reference to the setup msi file
– SupportedWindowsVersions: Lists the versions (including service pack level) of the

operating system for which the DTMs contained in the Setup manifest are explicitly tested.
– VendorName: Name of the company which provides the DTM.
– MinimumInstallerVersion: Required version of Windows Installer (minimum version). If the

required minimum version is not present on the system, the Frame Application shall use
the setup.exe (bootstrapper) to start the installation instead of the msi file.

See 7.6.1 for further information about setup manifest files.

IEC

setup.manifest
1 1

1

1

0..1

1

0..*

1

0..*

1

0..11

1..*1

Files

SupportedDevices_<DtmInfo.Id>

<file>.cab

setup.exe

setup.msi

 <Protocol_ID>.DtmDeviceIdent.manifest

<Protocol_ID>.DtmDeviceIdent.manifest is an XML
persisted file of an instance of the class
DtmDeviceIdentManifest. It lists all device
identifications of one DTM for the same protocol.

Setup

<ProductCode>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 271 –

Figure 202 shows an example of a SetupManifest.

IEC

Figure 202 – Example: DtmSetupManifest

9.6.3 DTM device identification manifest

The device identification manifest file describes additional physical device parameters that
are required for device identification. These files are dependent on the respective

<?xml version="1.0" encoding="utf-16"?>
<SetupManifest xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
 <VendorName>VendorX</VendorName>
 <SetupName>DtmY</SetupName>
 <ProductCode>6b6719d5-12c0-488f-897c-af440e6c5a36</ProductCode>
 <SetupVersion xmlns:d2p1="http://schemas.datacontract.org/2004/07/System">
 <d2p1:_Build>0</d2p1:_Build><d2p1:_Major>2</d2p1:_Major>
 <d2p1:_Minor>3</d2p1:_Minor><d2p1:_Revision>-1</d2p1:_Revision>
 </SetupVersion>
 <SetupUrl>../setup.msi</SetupUrl>
 <DtmInfos xmlns:d2p1="http://schemas.datacontract.org/2004/07/Fdt.Dtm">
 <d2p1:DtmInfo>
 <d2p1:DtmRef>
 <d2p1:AssemblyInfo>
 <Name>Fdt.VendorX.DtmY</Name>
 <Version xmlns:d6p1="http://schemas.datacontract.org/2004/07/System">
 <d6p1:_Build>0</d6p1:_Build><d6p1:_Major>2</d6p1:_Major>
 <d6p1:_Minor>3</d6p1:_Minor><d6p1:_Revision>0</d6p1:_Revision>
 </Version>
 <PublicKeyToken>1234567890123456</PublicKeyToken>
 <RuntimeVersions>
 <RuntimeVersion>
 <CLRVersionNumber
xmlns:d8p1="http://schemas.datacontract.org/2004/07/System">
 <d8p1:_Build>1</d8p1:_Build><d8p1:_Major>2</d8p1:_Major>
 <d8p1:_Minor>0</d8p1:_Minor><d8p1:_Revision>23456</d8p1:_Revision>
 </CLRVersionNumber>
 </RuntimeVersion>
 </RuntimeVersions>
 <SupportedPlatforms>Any</SupportedPlatforms>
 <Path>..%5CVendorX%5CDtmY%5C</Path>
 </d2p1:AssemblyInfo>
 <d2p1:ClassName>Fdt.VendorX.DtmY.DtmMain</d2p1:ClassName>
 </d2p1:DtmRef>
 <d2p1:Name>DtmY</d2p1:Name>
 <d2p1:Vendor>VendorX</d2p1:Vendor>
 <d2p1:Id>69cde55a-5bf8-45a4-90a3-7bf20184d61f</d2p1:Id>
 <d2p1:Version xmlns:d4p1="http://schemas.datacontract.org/2004/07/System">
 <d4p1:_Build>0</d4p1:_Build><d4p1:_Major>4</d4p1:_Major>
 <d4p1:_Minor>2</d4p1:_Minor><d4p1:_Revision>-1</d4p1:_Revision>
 </d2p1:Version>
 <d2p1:FdtVersion xmlns:d4p1="http://schemas.datacontract.org/2004/07/System">
 <d4p1:_Build>-1</d4p1:_Build><d4p1:_Major>2</d4p1:_Major>
 <d4p1:_Minor>0</d4p1:_Minor><d4p1:_Revision>-1</d4p1:_Revision>
 </d2p1:FdtVersion>
 </d2p1:DtmInfo>
 </DtmInfos>
 <MinimumInstallerVersion xmlns:d2p1="http://schemas.datacontract.org/2004/07/System">
 <d2p1:_Build>0</d2p1:_Build><d2p1:_Major>4</d2p1:_Major>
 <d2p1:_Minor>5</d2p1:_Minor><d2p1:_Revision>0</d2p1:_Revision>
 </MinimumInstallerVersion>
 <SupportedWindowsVersions>
 <OSVersion>
 <OSVersionNumber xmlns:d4p1="http://schemas.datacontract.org/2004/07/System">
 <d4p1:_Build>2600</d4p1:_Build><d4p1:_Major>5</d4p1:_Major>
 <d4p1:_Minor>1</d4p1:_Minor><d4p1:_Revision>196608</d4p1:_Revision>
 </OSVersionNumber>
 <ServicePack>Service Pack 3, v.5657</ServicePack>
 </OSVersion>
 </SupportedWindowsVersions>
 <ProductFeatures i:nil="true" />
</SetupManifest>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 272 – IEC TR 62453-42:2016  IEC 2016

communication protocol. Each file has to be placed into special subfolder that has the same
name as used communication protocol identifier. Device identification manifest files are used
only during setup. They are not required for installed DTMs because the DtmInfoBuilder
deliver the same information.

The file name is composed of a unique name identifier and the fixed suffix
“.deviceident.manifest”.

A device type manifest xml file contains following information:

– DeviceIdentInfo: This information is used to describe physical device types which are
supported by a DTM Device Type. It contains identification elements of a physical device
type or device type group.

– ProductFeatureRefs: [Optional] list of references to product feature(s) listed in the setup
manifest. These features (e.g. device type) represent the required components that shall
be installed to support the detected device type.

Figure 203 shows an example of a DeviceIndentManifest.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

IEC TR 62453-42:2016  IEC 2016 – 273 –

IEC

Figure 203 – Example: DeviceIdentManifest

9.6.4 Setup creation rules

This chapter describes the rules and recommendations that each DTM setup shall follow in
order to achieve a reliable and standardized behavior of setups. This is required in order to
enable a Frame Application to retrieve information about a DTM setup, automatically install or
remove it, perform updates, etc.

The (mandatory) rules are:

a) Use Windows Installer as base installation technology. The required version of
Windows Installer is indicated in the setup manifest for each DTM setup. The minimum
required version is 4.5. This version shall be provided by the Frame Application on each
target system.

<?xml version="1.0" encoding="utf-16"?>
<DtmDeviceIdentManifest xmlns:i="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schemas.datacontract.org/2004/07/Fdt.Deployment">
 <BusCategory xmlns:d2p1="http://schemas.datacontract.org/2004/07/Fdt">
 <d2p1:CommunicationType>Required</d2p1:CommunicationType>
 <d2p1:PhysicalLayers>
 <d2p1:PhysicalLayer>
 <d2p1:Id>bab2091a-c0a7-4614-b9de-fcc2709dcf5d</d2p1:Id>
 <d2p1:Name>HART FSK Physical Layer</d2p1:Name>
 </d2p1:PhysicalLayer>
 </d2p1:PhysicalLayers>
 <d2p1:ProtocolId>036d1498-387b-11d4-86e1-00e0987270b9</d2p1:ProtocolId>
 <d2p1:ProtocolName>HART</d2p1:ProtocolName>
 </BusCategory>
 <DeviceIdentInfos xmlns:d2p1="http://schemas.datacontract.org/2004/07/Fdt.Dtm">
 <d2p1:DeviceIdentInfo i:type="d2p1:DeviceIdentInfo_HartDeviceIdentInfo">
 <d2p1:DeviceSpecificProperties i:nil="true" />
 <d2p1:SupportLevel>SpecificSupport</d2p1:SupportLevel>
 <d2p1:ProtocolSpecificIdentInfo
xmlns:d4p1="http://schemas.datacontract.org/2004/07/Fdt.Dtm.Hart">
 <d4p1:BusProtocolVersion>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true"
/><d2p1:Value>5</d2p1:Value>
 </d4p1:BusProtocolVersion>
 <d4p1:DeviceCommandRevisionLevel>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>4</d2p1:Value>
 </d4p1:DeviceCommandRevisionLevel>
 <d4p1:DeviceFlags>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>3</d2p1:Value>
 </d4p1:DeviceFlags>
 <d4p1:DeviceProfile>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>0</d2p1:Value>
 </d4p1:DeviceProfile>
 <d4p1:DeviceTypeCode>
 <d2p1:ProtocolSpecificName i:nil="true" /><d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>123</d2p1:Value>
 </d4p1:DeviceTypeCode>
 <d4p1:HardwareRevisionLevel>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true"
/><d2p1:Value>1</d2p1:Value>
 </d4p1:HardwareRevisionLevel>
 <d4p1:ManufacturerId>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>98</d2p1:Value>
 </d4p1:ManufacturerId>
 <d4p1:PhysicalSignalingCode>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>0</d2p1:Value>
 </d4p1:PhysicalSignalingCode>
 <d4p1:SoftwareRevision>
 <d2p1:ProtocolSpecificName i:nil="true" /> <d2p1:RegularExpressions i:nil="true" />
<d2p1:Value>3</d2p1:Value>
 </d4p1:SoftwareRevision>
 </d2p1:ProtocolSpecificIdentInfo>
 </d2p1:DeviceIdentInfo>
 </DeviceIdentInfos>
 <ProductFeatures i:nil="true" />
</DtmDeviceIdentManifest>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

 – 274 – IEC TR 62453-42:2016  IEC 2016

b) All Windows Installer rules should be followed. In order to achieve correct Windows
Installer setups all Windows Installer rules should be followed (see [15], [16], [17]). It is
strongly recommended for a setup, that it should not require a restart of the system. If the
setup may require a restart of the system, the documentation for the setup and the setup
manifest shall indicate this situation.

NOTE Especially for a DCS the reboot of a system is not a normal operation.

c) DTM setup shall be provided as standalone MSI package. The Windows Installer setup
file format is “.msi”. This file can be used for standalone installation as well as in context
of other installations. Output (progress, running actions, log and error messages) can be
integrated into external user interface (e.g. into Frame Application). Additionally, it
automatically supports full Windows Installer command line syntax. Setup bootstrapper
(e.g. setup.exe) may be used in addition if required.

d) MSI packages shall be always executable in silent mode (when user interface tables
are not processed). If custom actions are used, they should be started independent from
the setup user interface.

e) Always sign external CAB files and MSI file with a digital signature. This activates
automatic check of setup consistency. If downloaded files are broken, then digital
signature differs from the signature stored in the MSI file.

f) DTM setup features shall be self-consistent. Each feature in setup components tree
that represents one DTM should be independent from other features. This means if such
feature is selected for installation, the DTM will be fully installed and work. Uninstall of
such feature removes the DTM completely. All dependent components, shared
components etc. are installed or removed automatically.

g) All DTM components (assemblies) shall have strong name. This avoids DLL version
conflicts if some shared components are used between different DTMs or between
different versions of the same DTM.

h) All FDT components shall be installed using official FDT merge modules. FDT binary
files cannot be used directly in setups (e.g. as automatic dependencies). All central FDT
settings (e.g. Registry entries) shall be entered by FDT merge modules only. FDT
components that are installed in Global Assembly Cache shall be marked as shared.

i) An installation package shall be uniquely identifiable within the operating system
dialog ‘Add / Remove Programs’. That means support information (version number and
build index) shall be available to identify the version of the installation package. The
visible entry shown in ‘Add / Remove Programs’ shall start with the name of the DTM
vendor.

The recommendations are:

j) DeviceTypes should be used as setup-features. Other features are also possible. All
Setup-features shall be listed in setup manifest. Categories for setup features shall be
defined. This also allows identifying the device types that are provided with a DTM setup.
In order to install only BL or UI components a frame will use command line options
(realized as properties of the setup)

k) DTM setups should use features of Windows Installer 4.5. Newer versions of Windows
Installer engine (> 4.5) have many advanced features. On the other hand, OS version
limitations exist (e.g. Windows Vista is required). In this case also the additional Windows
Installer runtime distribution is required what is not convenient for the end user and makes
setup much larger (Windows Installer runtime shall be delivered too).

9.7 DTM deployment

A DTM setup shall support the features listed below in order to enable Frame Applications to
perform automatic DTM deployment.

• A DtmSetup manifest file containing basic DTM information (also used for DTM
registration, 9.6.2) is provided together with the setup

• The DTM setup can be executed from command line without a user interface (silent setup)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C TR 62

45
3-4

2:2
01

6

https://iecnorm.com/api/?name=d892a0aeac6973269f7e1b9f88bd833c

	CONTENTS
	FOREWORD
	INTRODUCTION
	1 Scope
	2 Normative references
	3 Terms, definitions, abbreviations and conventions
	3.1 Terms and definitions
	3.2 Abbreviations
	3.3 Conventions

	4 Implementation concept
	4.1 Technological orientation
	4.2 Implementation of abstract FDT object model
	4.3 FDT Frame Application (FA)
	4.4 DTM Business Logic
	4.4.1 General
	4.4.2 Implementation of DTM, DTM Device Type, and Device Ident Info
	4.4.7 Function Info
	4.4.8 Report Info
	4.4.9 Document Reference Info

	4.5 Implementation of DTM Functions
	4.5.1 DTM User Interface
	4.5.2 Function access control
	4.5.3 Handling of standard UI elements in modeless DTM UI interfaces
	4.5.4 Command functions

	4.6 User management
	4.6.1 General
	4.6.2 Multi-user access
	4.6.3 User levels

	4.7 Implementation of FDT and system topology
	4.7.1 General
	4.7.2 Topology management
	4.7.3 Data exchange between Frame Applications

	4.8 Implementation of Modularity
	4.9 Implementation of FDT communication
	4.9.1 Handling of communication requests
	4.9.2 Handling of communication errors
	4.9.3 Handling of loss of connection
	4.9.4 Point–to-point communication
	4.9.5 Nested communication
	4.9.6 Dynamic changes in network

	4.10 Identification
	4.10.1 DTM instance identification
	4.10.2 Hardware identification

	4.11 Implementation of DTM data persistence and synchronization
	4.11.1 Persistence overview
	4.11.2 Relations of DTMDataSet
	4.11.3 DTMDataSet structure
	4.11.4 Types of persistent DTM data
	4.11.5 Data synchronization

	4.12 Implementation of access to device data and IO information
	4.12.1 Exposing device data and IO information
	4.12.2 Data access control
	4.12.3 Routed IO information
	4.12.4 Comparison of DTM and device data
	4.12.5 Support for multirole devices

	4.13 Clone of DTM instances
	4.13.1 General
	4.13.2 Replicating a part of topology with Parent DTM and a subset of its Child DTMs
	4.13.3 Cloning of a DTM without its children
	4.13.4 Delayed cloning

	4.14 Lifecycle concepts
	4.15 Audit trail
	4.15.1 General
	4.15.2 Audit trail events

	5 Technical concepts
	5.1 General
	5.2 Support of .NET Common Language Runtime versions
	5.2.1 General
	5.2.2 Rules for FDT .NET assemblies
	5.2.3 DTM rules
	5.2.4 Frame Application rules
	5.2.5 FDT CLR extension concept

	5.3 Support for 32-bit and 64-bit target platforms
	5.4 Object activation and deactivation
	5.4.1 General
	5.4.2 Assembly loading and object creation
	5.4.3 Assembly dependencies
	5.4.4 Shared assemblies
	5.4.5 Object deactivation and unloading

	5.5 Datatypes
	5.5.1 General
	5.5.2 Serialization / deserialization
	5.5.3 Support of XML
	5.5.4 Optional elements
	5.5.5 Verify
	5.5.6 Clone
	5.5.7 Equals
	5.5.8 Lists
	5.5.9 Nullable
	5.5.10 Enumeration
	5.5.11 Protocol-specific datatypes
	5.5.12 Custom datatypes

	5.6 General object interaction
	5.6.1 General
	5.6.2 Decoupling of FDT Objects
	5.6.3 Parameter interchange with .NET datatypes
	5.6.4 Interaction patterns
	5.6.5 Properties
	5.6.6 Synchronous methods
	5.6.7 Asynchronous methods
	5.6.8 Events pattern
	5.6.9 Exception handling

	5.7 Threading
	5.7.1 Introduction
	5.7.2 Threading rules

	5.8 Localization support
	5.8.1 General
	5.8.2 Access to localized resources and culture-dependent functions
	5.8.3 Handling of cultures
	5.8.4 Switching the User Interface language

	5.9 DTM User Interface implementation
	5.9.1 General
	5.9.2 Resizing
	5.9.3 Private dialogs

	5.10 DTM User Interface hosting
	5.10.1 General
	5.10.2 Hosting DTM WPF controls
	5.10.3 Hosting DTM WinForms controls

	5.11 Static Function implementation
	5.12 Persistence
	5.12.1 Overview
	5.12.2 Data format
	5.12.3 Adding / reading / writing / deleting of data
	5.12.4 Searching for data

	5.13 Comparison of DTM and device data
	5.13.1 Comparison of datasets using IDeviceData / IInstanceData
	5.13.2 Comparison of datasets using IComparison

	5.14 Tracing
	5.15 Report generation
	5.15.1 General
	5.15.2 Report types
	5.15.3 DTM report data format
	5.15.4 Report data exchange

	5.16 Security
	5.16.1 General
	5.16.2 Strong naming of assemblies
	5.16.3 Identification of origin
	5.16.4 Code access security
	5.16.5 Validation of FDT compliance certification

	6 FDT Objects and interfaces
	6.1 General
	6.2 Frame Application
	6.3 DTM Business Logic
	6.3.1 DTM BL interfaces
	6.3.2 State machines related to DTM BL
	6.3.3 State machine of instance data

	6.4 DTM User Interface
	6.5 Communication Channel
	6.6 Availability of interface methods

	7 FDT datatypes
	7.1 General
	7.2 Datatypes – Base
	7.3 General datatypes
	7.4 Datatypes – DtmInfo / TypeInfo
	7.5 Datatypes – DeviceIdentInfo
	7.6 Datatypes for installation and deployment
	7.6.1 Datatypes – SetupManifest
	7.6.2 Datatypes – DtmManifest
	7.6.3 Datatypes – DtmUiManifest

	7.7 Datatypes – Communication
	7.8 Datatypes – BusCategory
	7.9 Datatypes – Device / Instance Data
	7.9.1 General
	7.9.2 Datatypes used in reading and writing DeviceData

	7.10 Datatypes for export and import
	7.10.1 Datatypes – TopologyImportExport
	7.10.2 Datatypes – ImportExportDataset

	7.11 Datatypes for process data description
	7.11.1 Datatypes – ProcessDataInfo
	7.11.2 Datatypes – Process Image

	7.12 Datatypes – Address information
	7.13 Datatypes – NetworkDataInfo
	7.14 Datatypes – DTM functions
	7.15 Datatypes – DTM messages
	7.16 Datatypes for delegation of DTM UI dialog actions
	7.17 Datatypes – CommunicationChannelInfo
	7.18 Datatypes – HardwareIdentification and scanning
	7.18.1 General
	7.18.2 Datatypes – DeviceScanInfo
	7.18.3 Example – HardwareIdentification and scanning for HART

	7.19 Datatypes – DTM report types
	7.20 Information related to device modules in a monolithic DTM

	8 Workflows
	8.1 General
	8.2 Instantiation, loading and release
	8.2.1 Finding a DTM BL object
	8.2.2 Instantiation of a new DTM BL
	8.2.3 Configuring access rights
	8.2.4 Loading a DTM BL
	8.2.5 Loading a DTM with Expert user level
	8.2.6 Release of a DTM BL

	8.3 Persistent storage of a DTM
	8.3.1 Saving instance data of a DTM
	8.3.2 Copy and versioning of a DTM instance
	8.3.3 Dataset commit failed
	8.3.4 Export a DTM dataset to file

	8.4 Locking and DataTransactions in multi-user environments
	8.4.1 General
	8.4.2 Propagation of changes
	8.4.3 Synchronizing DTMs in multi-user environments

	8.5 Execution of DTM Functions
	8.5.1 General
	8.5.2 Finding a DTM User Interface object
	8.5.3 Instantiation of an integrated DTM graphical user interface
	8.5.4 Instantiation of a DTM UI triggered by the DTM BL
	8.5.5 Instantiation of a modal DTM UI triggered by DTM BL
	8.5.6 Release of a DTM User Interface
	8.5.7 Release of a DTM UI triggered by the DTM BL
	8.5.8 Release of a DTM User Interface triggered by itself
	8.5.9 Release of a non-modal DTM User Interface triggered by a standard action
	8.5.10 Progress indication for prolonged DTM actions
	8.5.11 Starting an application
	8.5.12 Terminating applications
	8.5.13 Execution of command functions
	8.5.14 Execution of a command function with user interface
	8.5.15 Opening of documents
	8.5.16 Interaction between DTM User Interface and DTM Business Logic
	8.5.17 Interaction between DTM Business Logic and DTM User Interface
	8.5.18 Interaction between DTM User Interface and DTM Business Logic with Cancel
	8.5.19 Retrieving information about available Static Functions
	8.5.20 Executing a Static Function
	8.5.21 Executing a Static Function with multiple arguments

	8.6 DTM communication
	8.6.1 General
	8.6.2 Establishing a communication connection
	8.6.3 Cancel establishment of communication connection
	8.6.4 Communicating with the device
	8.6.5 Frame Application or Child DTM disconnect a device
	8.6.6 Terminating a communication connection
	8.6.7 DTM aborts communication connection
	8.6.8 Communication Channel aborts communication connection

	8.7 Nested communication
	8.7.1 General
	8.7.2 Communication request for a nested connection
	8.7.3 Propagation of errors for a nested connection

	8.8 Topology planning
	8.8.1 General
	8.8.2 Adding a DTM to the topology
	8.8.3 Removing a DTM from topology
	8.8.4 Frame Application creates topology
	8.8.5 DTM generates sub-topology
	8.8.6 Physical Layer and DataLinkLayer

	8.9 Instantiation, configuration, move and release of Child DTMs
	8.9.1 General
	8.9.2 Instantiation and configuration of Child DTM BL
	8.9.3 Interaction between Parent DTM and Child DTM
	8.9.4 Interaction between Parent DTM and Child DTM using IDtmMessaging
	8.9.5 Parent DTM moves a Child DTM
	8.9.6 Parent DTM removes Child DTM

	8.10 Topology scan
	8.10.1 General
	8.10.2 Scan of network topology
	8.10.3 Cancel topology scan
	8.10.4 Scan based DTM assignment
	8.10.5 Manufacturer-specific device identification

	8.11 Configuration of communication networks
	8.11.1 Configuration of a fieldbus master
	8.11.2 Integration of a passive device

	8.12 Using IO information
	8.12.1 Assignment of symbolic name to process data
	8.12.2 Creation of Process Image
	8.12.3 Validation of changes in process image while PLC is running
	8.12.4 Changing of variable names using process image interface

	8.13 Managing addresses
	8.13.1 Set DTM address with user interface
	8.13.2 Set DTM addresses without user interface
	8.13.3 Display or modify addresses of all Child DTMs with user interface

	8.14 Device-initiated data transfer
	8.15 Reading and writing data
	8.15.1 Read/write instance data
	8.15.2 Read/write device data

	8.16 Comparing data
	8.16.1 Comparing device dataset and instance dataset
	8.16.2 Comparing different instance datasets

	8.17 Reassigning a different DtmDeviceType at a device node
	8.17.1 General
	8.17.2 DTM detects a change in connected device type
	8.17.3 Search matching DtmDeviceTypes after incompatible device exchange
	8.17.4 Reassign DtmDeviceType after incompatible device exchange

	8.18 Copying part of FDT Topology
	8.18.1 Cloning of a single DTM without Children
	8.18.2 Cloning of a DTM with all its Children

	8.19 Sequences for audit trail
	8.19.1 General
	8.19.2 Audit trail of parameter modifications in instance dataset
	8.19.3 Audit trail of parameter modifications in device dataset
	8.19.4 Audit trail of function calls
	8.19.5 Audit trail of general notification

	9 Installation
	9.1 General
	9.2 Common rules
	9.2.1 Predefined installation paths
	9.2.2 Manifest files
	9.2.3 Paths in manifest files
	9.2.4 Common command line arguments
	9.2.5 Digital signatures of setup components

	9.3 Installation of FDT core assemblies
	9.4 Installation of communication protocols
	9.4.1 General
	9.4.2 Registration
	9.4.3 Protocol manifest

	9.5 Installation of DTMs
	9.5.1 General
	9.5.2 Registration
	9.5.3 DTM manifest
	9.5.4 DTM User Interface manifest

	9.6 DTM setup
	9.6.1 Structure
	9.6.2 DTM setup manifest
	9.6.3 DTM device identification manifest
	9.6.4 Setup creation rules

	9.7 DTM deployment
	9.8 Paths and file information
	9.8.1 Path information provided by a DTM
	9.8.2 Paths and persistence
	9.8.3 Multi-user systems

	10 Life cycle concept
	10.1 General
	10.2 Technical concept
	10.2.1 General
	10.2.2 DtmManifest / DtmInfo
	10.2.3 TypeInfo
	10.2.4 Supported DataSet formats
	10.2.5 DeviceIdentInfo
	10.2.6 Dataset
	10.2.7 DeviceScanInfo

	10.3 DTM setup
	10.4 Life Cycle Scenarios
	10.4.1 Overview
	10.4.2 Search for device type in DTM setups
	10.4.3 Search for installed DTMs
	10.4.4 Dataset migration for reassigned DTM

	11 Frame Application architectures
	11.1 General
	11.2 Standalone application
	11.3 Remoted user Interface
	11.4 Distributed multi-user application
	11.5 OPC UA

	Annex A (normative)FDT2 Use case model
	A.1 Use case model overview
	A.2 Actors
	A.3 Use cases
	A.3.1 Use case overview
	A.3.2 Observation use cases
	A.3.3 Operation use cases
	A.3.4 Maintenance use cases
	A.3.5 Planning use cases
	A.3.6 Main Operation
	A.3.7 OEM Service
	A.3.8 Administration

	Annex B (normative)FDT interface definition and datatypes
	Annex C (normative)Mapping of services to interface methods
	C.1 General
	C.2 DTM services
	C.3 Presentation object services
	C.4 General channel services
	C.5 Process channel services
	C.6 Communication Channel Services
	C.7 Frame Application Services

	Annex D (normative)FDT version interoperability guide
	D.1 Overview
	D.2 General
	D.3 Component interoperability

	Annex E (normative)FDT1.2.x / IEC 62453-42 Backward-Compatibility
	E.1 Overview
	E.2 Parallel FDT topologies
	E.3 Mixed FDT topologies
	E.4 FDT1.2.x / IEC 62453-42 Adapters
	E.5 FDT1.2.x XML / IEC TR 62453-42 Datatype Transformers
	E.5.1 General
	E.5.2 Installation and Registration of Protocol-specific Transformers
	E.5.3 Interaction between FDT2 and FDT1.2 components using Transformers

	E.6 Sequences related to backward compatibility
	E.6.1 General
	E.6.2 Dataset migration from FDT1.x DTM to FDT2.x DTM

	Annex F (informative)Implementation Hints
	F.1 IAsyncResult pattern
	F.2 Threading Best Practices

	Annex G (informative)Trade names
	Annex H (informative)UML Notation
	H.1 General
	H.2 Class diagram
	H.3 Statechart diagram
	H.4 Use case diagram
	H.5 Sequence diagram
	H.6 Object diagram

	Annex I (informative)Physical Layer Examples
	I.1 General
	I.2 Interbus S
	I.3 PROFIBUS
	I.4 PROFINET

	Annex J (informative)Predefined SemanticIds
	J.1 General
	J.2 Data
	J.3 Images
	J.4 Documents

	Bibliography
	Figures
	Figure 1 – Relation of IEC 62453-42 to the IEC 62453 series
	Figure 2 – IEC 62453-42 Object Model
	Figure 3 – Frame Application
	Figure 4 – DTM Business Logic
	Figure 7 – Logical topology and physical topology
	Figure 8 – FDT and logical topology
	Figure 9 – DTMs and physical topology
	Figure 10 – Point–to-point communication
	Figure 11 – Nested communication
	Figure 12 – Identification of connected devices
	Figure 13 – FDT storage and synchronization mechanism
	Figure 14 – Relation between DTMDataSet, DTM instance, and device
	Figure 15 – DTMDataSet structure
	Figure 16 – Data Synchronization
	Figure 17 – Routed IO information
	Figure 18 – Multirole Device
	Figure 19 – FDT .NET Assemblies
	Figure 20 – FDT Object implementation
	Figure 21 – FDT CLR extension concept
	Figure 22 – Example: Assembly.LoadFrom()
	Figure 23 – Example: Assembly dependencies
	Figure 24 – Example: Datatype definition
	Figure 25 – Example: Data cloning
	Figure 26 – Example: Methods without data cloning
	Figure 27 – Protocol-specific datatypes
	Figure 28 – Protocol manifest and type info attributes
	Figure 29 – Example: Protocol assembly attributes
	Figure 30 – Example: Handling of protocol-specific assemblies in Frame Application
	Figure 31 – Decoupled FDT Objects in IEC 62453-42
	Figure 32 – IAsyncResult pattern: blocking call
	Figure 33 – Example: Blocking use of asynchronous interface
	Figure 34 – IAsyncResult pattern (simplified): blocking call
	Figure 35 – IAsyncResult pattern: non-blocking call
	Figure 36 – Example: Non-blocking use of asynchronous interface
	Figure 37 – IAsyncResult pattern (simplified depiction): non-blocking call
	Figure 38 – IAsyncResult pattern: canceling an operation
	Figure 39 – IAsyncResult pattern: providing progress events
	Figure 40 – Frame Application's host window providing scroll bars
	Figure 41 – Control using internal scrollbars
	Figure 42 – Example: Hosting a DTM WPF control in a WPF Frame Application
	Figure 43 – Example: Hosting a DTM WPF control in a WinForms Frame Application
	Figure 44 – Example: Hosting DTM WinForms controls in a WinForms Frame Application
	Figure 45 – Example: Hosting a DTM WinForms control in a WPF Frame Application
	Figure 46 – Relation of StaticFunctionDescription to Static Function
	Figure 47 – DTMDataset structure
	Figure 48 – Example: Initialization of DTMDataSubset with DTM data
	Figure 49 – Example: Writing of DTM data in DTMDataSubset
	Figure 50 – Example: Reading of DTM data from a DTMDataSubset
	Figure 51 – Example: Creation of a BulkData.DTMDataSubset with descriptor
	Figure 52 – Example: Searching for DTMDataSubsets with specific descriptor
	Figure 53 – Skeleton of a DTM-specific report fragment
	Figure 54 – Example: Authenticode check
	Figure 55 – Example: Conformity record file
	Figure 56 – Example: checking conformity record file
	Figure 57 – Frame Application interfaces
	Figure 58 – DTM Business Logic interfaces (Part 1)
	Figure 59 – DTM Business Logic interfaces (Part 2)
	Figure 60 – State machine of DTM BL
	Figure 61 – Online state machine of DTM
	Figure 62 – Modifications of data through a DTM
	Figure 63 – ModifiedInDtm: State machine of instance data
	Figure 64 – ModifiedInDevice: State machine related to device data
	Figure 65 – DTM UI interfaces
	Figure 66 – Communication Channel interfaces
	Figure 67 – FdtDatatype and FdtList
	Figure 68 – DtmInfo / TypeInfo – datatypes
	Figure 69 – DeviceIdentInfo – datatypes
	Figure 70 – DeviceIdentInfo – Example for HART
	Figure 71 – Example: DeviceIdentInfo creation
	Figure 72 – Example: Using DeviceIdentInfo
	Figure 73 – Example: DeviceIdentInfoTypeAttribute
	Figure 74 – SetupManifest – datatypes
	Figure 75 – DtmManifest – datatypes
	Figure 76 – DtmUiManifest – datatypes
	Figure 77 – Communication datatypes – Connect
	Figure 78 – Communication datatypes – Transaction
	Figure 79 – Communication datatypes – Disconnect
	Figure 80 – Communication datatypes – Subscribe
	Figure 81 – Communication datatypes – Scanning
	Figure 82 – Communication datatypes – Address setting
	Figure 83 – Example: Communication – Connect for HART
	Figure 84 – Example: Communication – CommunicationType for HART
	Figure 85 – BusCategory – datatypes
	Figure 86 – Device / Instance data – datatypes
	Figure 87 – Example: Providing information on data of a HART device
	Figure 88 – Example: Providing information on module data of a PROFIBUS device
	Figure 89 – Example: Providing information on data
	Figure 90 – Example: Providing information on structured data
	Figure 91 – EnumInfo – datatype
	Figure 92 – Read and Write Request – datatypes
	Figure 93 – ResponseInfo – datatype
	Figure 94 – TopologyImportExport – datatypes
	Figure 95 – ImportExportDataset – datatypes
	Figure 96 – ProcessDataInfo – datatypes
	Figure 97 – IOSignalInfo – datatypes
	Figure 98 – Example: ProcessDataInfo for HART (UML)
	Figure 99 – Example: ProcessDataInfo creation for HART
	Figure 100 – Example: Using ProcessData for HART
	Figure 101 – Example: IOSignalInfoType attribute
	Figure 102 – ProcessImage – datatypes
	Figure 103 – AddressInfo – datatypes
	Figure 104 – Example: AddressInfo creation
	Figure 105 – Example: Using AddressInfo
	Figure 106 – Example: DeviceAddressTypeAttribute
	Figure 107 – NetworkDataInfo – datatypes
	Figure 108 – Example: NetworkDataInfo creation example
	Figure 109 – Example: NetworkDataInfo using example
	Figure 110 – Example: NetworkDataTypeAttribute example
	Figure 111 – DTM Function – datatypes
	Figure 112 – DTM Messages – datatypes
	Figure 113 – ActionItem – datatypes
	Figure 114 – CommunicationChannelInfo – datatypes
	Figure 115 – Example: Channel information
	Figure 116 – DeviceScanInfo – datatypes
	Figure 117 – Example: HARTDeviceScanInfo – datatype
	Figure 118 – DTM Report – datatypes
	Figure 119 – Information related to device modules
	Figure 120 – Finding a DTM BL object
	Figure 121 – Instantiation of a new DTM BL
	Figure 122 – Configuration of user permissions
	Figure 123 – Loading a DTM BL
	Figure 124 – Loading a DTM with Expert user level
	Figure 125 – Release of a DTM BL
	Figure 126 – Saving data of a DTM
	Figure 127 – Dataset commit failed
	Figure 128 – Export a DTM dataset to file
	Figure 129 – Propagation of changes
	Figure 130 – Synchronizing DTMs in multi-user environments
	Figure 131 – Finding a DTM User Interface
	Figure 132 – Instantiation of a DTM User Interface
	Figure 133 – Instantiation of a DTM UI triggered by DTM BL
	Figure 134 – Instantiation of a modal DTM UI triggered by DTM BL
	Figure 135 – Release of a DTM User Interface
	Figure 136 – Release of a DTM UI triggered by the DTM BL
	Figure 137 – Release of a DTM User Interface triggered by itself
	Figure 138 – Release of a non-modal DTM UI triggered by a standard action
	Figure 139 – Progress indication for prolonged DTM actions
	Figure 140 – Starting an application
	Figure 141 – Execute a command function
	Figure 142 – Execute a command function with user interface
	Figure 143 – Opening a document
	Figure 144 – Interaction triggered by the DTM User Interface
	Figure 145 – Interaction triggered by the DTM Business Logic
	Figure 146 – Interaction triggered and canceled by the DTM User Interface
	Figure 147 – Retrieving information about available Static Functions
	Figure 148 – Example: Information about available Static Functions
	Figure 149 – Executing a Static Function
	Figure 150 – Executing a Static Function with multiple Arguments
	Figure 151 – Establishing a communication connection
	Figure 152 – DTM cancels ongoing Connect operation
	Figure 153 – Communicating with the device
	Figure 154 – Child DTM disconnects
	Figure 155 – Child DTM terminates a connection
	Figure 156 – Child DTM aborts a connection
	Figure 157 – Communication Channel aborts a connection
	Figure 158 – Example: Nested communication behavior
	Figure 159 – Example: Nested communication data exchange
	Figure 160 – Add DTM to topology
	Figure 161 – Removing a DTM from topology
	Figure 162 – Frame Application creates topology
	Figure 163 – DTM generates sub-topology
	Figure 164 – Instantiation and configuration of Child DTM BL
	Figure 165 – Interaction between Parent DTM and Child DTM
	Figure 166 – Interaction using IDtmMessaging
	Figure 167 – Parent DTM moves a Child DTM
	Figure 168 – Parent DTM removes Child DTM
	Figure 169 – Scan of network topology
	Figure 170 – Cancel topology scan
	Figure 171 – Scan based DTM assignment
	Figure 172 – Manufacturer-specific device identification
	Figure 173 – Configuration of a fieldbus master
	Figure 174 – Integration of a passive device
	Figure 175 – Assignment of process data
	Figure 176 – Creation of process image
	Figure 177 – Validation of changes while PLC is running
	Figure 178 – Changing of variable names using process image interface
	Figure 179 – Set DTM address with UI
	Figure 180 – Set DTM addresses without UI
	Figure 181 – Display or modify child addresses with UI
	Figure 182 – Device-initiated data transfer
	Figure 183 – Read/write instance data
	Figure 184 – Read/write device data
	Figure 185 – Comparing device dataset and instance dataset
	Figure 186 – Compare instance data with persisted dataset
	Figure 187 – DTM triggers ActiveTypeChanged event
	Figure 188 – Find matching DtmDeviceTypes after incompatible device exchange
	Figure 189 – Reassign a DtmDeviceType after incompatible device exchange
	Figure 190 – Clone DTM without children
	Figure 191 – Clone DTM with all children
	Figure 192 – Audit trail of parameter modifications in instance dataset
	Figure 193 – Audit trail of parameter modifications in device
	Figure 194 – Audit trail of function calls
	Figure 195 – GAC and FDT_Registry
	Figure 196 – Installation paths (with example DTM)
	Figure 197 – Example: Protocol manifest
	Figure 198 – Search for installed DTMs
	Figure 199 – Example: DtmManifest
	Figure 200 – Example: DtmUiManifest
	Figure 201 – DTM setup structure
	Figure 202 – Example: DtmSetupManifest
	Figure 203 – Example: DeviceIdentManifest
	Figure 204 – DTM deployment
	Figure 205 – Overview DTM identification
	Figure 206 – Identification attributes in DTM setup
	Figure 207 – Check DTM Setup for list of supported types
	Figure 208 – Scan installed DTMs
	Figure 209 – Dataset migration to a reassigned DtmDeviceType
	Figure 210 – Client / Server Application
	Figure 211 – Example for distributed multi-user application
	Figure 212 – OPC UA server based on IEC TR 62453-42
	Figure A.1 – Main use case diagram
	Figure A.2 – Observation use cases
	Figure A.3 – Operation use cases
	Figure A.4 – Maintenance use cases
	Figure A.5 – Planning use cases
	Figure E.1 – Example: IEC TR 62453-42 Frame Applicationwith FDT1.2.x backward-compatibility support
	Figure E.2 – IEC TR 62453-42 Frame Application with FDT1.2.x Device DTM
	Figure E.3 – IEC TR 62453-42 Frame Application with FDT1.2.x Comm. and Gateway DTM
	Figure E.4 – IEC TR 62453-42 Frame Application with FDT1.2.x Gateway DTM
	Figure E.5 – IEC TR 62453-42 – FDT1.2 interaction using transformer
	Figure E.6 – Dataset migration from FDT1.x DTM to FDT2.x DTM
	Figure H.1 – Note
	Figure H.2 – Class
	Figure H.3 – Association
	Figure H.4 – Navigable Association
	Figure H.5 – Composition
	Figure H.6 – Aggregation
	Figure H.7 – Dependency
	Figure H.9 – Abstract class, Generalization and Interface
	Figure H.10 – Interface related notations
	Figure H.11 – Multiplicity
	Figure H.12 – Enumeration datatype
	Figure H.13 – Elements of UML statechart diagrams
	Figure H.14 – Example of UML state chart diagram
	Figure H.15 – UML use case syntax
	Figure H.16 – UML sequence diagram
	Figure H.17 – Empty UML sequence diagram frame
	Figure H.18 – Object with life line and activation
	Figure H.19 – Method calls
	Figure H.20 – Modeling guarded call and multiple calls
	Figure H.21 – Call to itself
	Figure H.22 – Continuation / StateInvariant
	Figure H.23 – Alternative fragment
	Figure H.24 – Option fragment
	Figure H.25 – Loop combination fragment
	Figure H.26 – Break notation
	Figure H.27 – Sequence reference
	Figure H.28 – Objects
	Figure H.29 – Object association

	Tables
	Table 1 – FDT User levels
	Table 2 – Role dependent Access Rights and User Interfaces for DTMs
	Table 3 – Description of properties related to data access control
	Table 4 – Supported CLR versions
	Table 5 – Frame Application interfaces
	Table 6 – DTM Business Logic interfaces
	Table 7 – Availability of interfaces depending of type of DTM
	Table 8 – Definition of DTM BL state machine
	Table 9 – Definition of online state machine
	Table 10 – Description of instance dataset states
	Table 11 – Description of dataset states regarding online modifications
	Table 12 – DTM UI interfaces
	Table 13 – Communication Channel interfaces
	Table 14 – Availability of DTM BL methods in different states
	Table 15 – FDT base datatypes
	Table 16 – FDT General datatypes
	Table 17 – DtmInfo datatype description
	Table 18 – DeviceIdentInfo datatype description
	Table 19 – DeviceIdentInfo – Example for HART
	Table 20 – SetupManifest datatype description
	Table 21 – DtmManifest datatype description
	Table 22 – DtmUiManifest datatype description
	Table 23 – Communication datatype description
	Table 24 – BusCategory datatype description
	Table 25 – DeviceData datatype description
	Table 26 – Reading and Writing datatype description
	Table 27 – Reading and Writing datatype description
	Table 28 – TopologyImportExport datatype description
	Table 29 – ImportExportDataset datatype description
	Table 30 – ProcessDataInfo datatype description
	Table 31 – IOSignalInfo datatype description
	Table 32 – ProcessImage datatype description
	Table 33 – AddressInfo datatype description
	Table 34 – NetworkDataInfo datatype description
	Table 35 – DTM Function datatype description
	Table 36 – DTM Messages datatype description
	Table 37 – ActionItem datatype description
	Table 38 – CommunicationChannelInfo datatype description
	Table 39 – DeviceScanInfo datatype description
	Table 40 – Example: HARTDeviceScanInfo datatype description
	Table 41 – Reporting datatype description
	Table 42 – Predefined FDT installation paths
	Table 43 – Predefined setup properties
	Table 44 – Setup command line parameters
	Table 45 – DTM identification
	Table 46 – DtmType – user readable description of supported types
	Table 47 – TypeInfo identification
	Table 48 – DtmType – Dataset support identification
	Table 49 – Dataset identification
	Table 50 – DeviceScanInfo – scanned device identification
	Table 51 – Setup information
	Table 52 – Changing DTM–- overview
	Table A.1 – Actors
	Table A.2 – Observation use cases
	Table A.3 – Operation use cases
	Table A.4 – Maintenance use cases
	Table A.5 – Planning use cases
	Table C.1 – General services
	Table C.2 – DTM services related to installation
	Table C.3 – DTM service related to DTM Information
	Table C.4 – DTM services related to DTM state machine
	Table C.5 – DTM services related to function
	Table C.6 – DTM services related to documentation
	Table C.7 – DTM services to access the instance data
	Table C.8 – DTM services to access diagnosis
	Table C.9 – DTM services to access to device data
	Table C.10 – DTM services related to network management information
	Table C.11 – DTM services related to online operation
	Table C.12 – DTM services related to FDT-Channel objects
	Table C.13 – DTM services related to import and export
	Table C.14 – DTM services related to data synchronization
	Table C.15 – DTM UI state control
	Table C.16 – General channel service
	Table C.17 – Channel services for IO related information
	Table C.18 – Channel services related to communication
	Table C.19 – Channel services related sub-topology management
	Table C.20 – Channel services related to functions
	Table C.21 – Channel services related to scan
	Table C.22 – FA services related to general events
	Table C.23 – FA services related to topology management
	Table C.24 – FA services related to redundancy
	Table C.25 – FA services related to storage of DTM data
	Table C.26 – FA services related to DTM data synchronization
	Table C.27 – FA related to presentation
	Table C.28 – FA services related to audit trail
	Table D.1 – Interoperability between components of different versions
	Table E.1 – Adapter interface mappings

