IEC 61131-3:2003(E)

IEC IEC 61131-3

Edition 2.0 2003-01

INTERNATIONAL
STANDARD

N
Programmable controllers — Q@
Part 3f Programming languages

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

THIS PUBLICATION IS COPYRIGHT PROTECTED
Copyright © 2003 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.

If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office

3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Email: inmail@iec.ch
Web: wwweeeh

About the IEC

The Interfational Electrotechnical Commission (IEC) is the leading global orgapizatign tf publishes
Internatiopal Standards for all electrical, electronic and related technologies.

About IEC publications

The technjcal content of IEC publications is kept under constant review-by B & make slre that yol have the
latest editfon, a corrigenda or an amendment might have been publisied.

= Cataloglue of IEC publications: www.iec.ch/searchpub
The IEC op-line Catalogue enables you to search by a variety of i
It also givés information on projects, withdrawn an ‘ t

mittee,...).

" |EC Jus}t Published: www.iec.ch/online _news/justpu
Stay up td date on all new IEC publications. Just i i gl new publications released| Available
on-line anf also by email.

" Electrogedia: www.electropedia.org
The world|s leading online dictionary of electronic\and i taining more than 20 000 terms and definitions
in English| and French, with equi i Iso known as the International Electrotechnical
Vocabulary online.

® Custompr Service Centre: jnww.ieg. t
If you wish to give us your feedbagk™n this, puklicati

Centre F or contact ys:
Email: csd@iec.ch
Tel.: +41 22 919 02 1

Fax: +41 22 919 03 00 %

d further assistance, please visit the Customgr Service

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch
https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

IEC 61131-3

Edition 2.0 2003-01

INTERNATIONAL
STANDARD

Programmable controllers —
Part 2f Equipment requirements ah

N
INTERNATTONAL
ELECTROTECHNICAL

COMMISSION

COMMISSION

ELECTROTECHNIQUE

INTERNATIONALE PRICE CODE X H
CODE PRIX

ICS 25.040; 35.240.50 ISBN 2-8318-6653-7

® Registered trademark of the International Electrotechnical Commission
Marque déposée de la Commission Electrotechnique Internationale

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—2- 61131-3 © IEC:2003(E)

CONTENTS
FORBEWORDouutititiiitiiii e e e e e e e e e e e e e e e e e e e aeaaeaeaesasasasesesesesessssssnsnnenes 8
LI €T o 1= = PO UPPPPPPPPR 9
LR S Yoo o 1= TSSO ERPPR 9
1.2 NOIMALIVE TEFEIENCES ...ttt saaaassssasesesssesssesssssnsnssbeneeeeees 9
(IR B = 1o 11 (1o o -SRIt 9
1.4 Overview and general reqUIrEMENTSuviiiiiiii it e e e e e e e eeaaae s 14
R o I S Yo i (V=TS Y g T Yo LY ISP
1.4.2 ComMMUNICALION MOAEL........ueieiiiiiiiiiiieeieteteeeteeeeeeeeeeeaereaeeesesesesesesesesesssssssessssssssssssssssssrsrnreeeees
1.4.3 Programming model .
1.5 COMPIANCE.....ouiiiiiee it e e e e e e sirreeeea e e e e s snnnnneeeaeesssssnekreeeeeeeessDes Eoday .
1.5.1 System COMPlIANCEoovviiiiiiiiiieee e e s Koo N TR0 s .

1.5.2 Program compliance

2 Common €lemMENts ... eeeee e NN e NG .
2.1 Use|of printed characters
211 CRaracter Set......ccuviiiiiieiiiiieeee e eeeeeeeeee e o N e R be e e e e N e e eeeeeenn .
2.1.2 IdENEFIEIS .o e e e R N e eeeeeen .
2.1.3 K@YWOITS ...oeiiiiiiiiiiiiiiii ettt rieeeessnneee s enee e s DN 50 e e e e e N e e e e e emreeernnneeesanns .
2.1.4 Usk of white Spacecccccevveeeiieieeieeiiiiiieeeeeeeeee e e SN e .
215 COMMENtS ..o
2.1.6 Pagmascccoooeeeiiiiiieeeniee e LN
2.2 Extgrnal representation of data
2.2.1 NUmeric literalS ... NG
2.2.2 Character string literalscoocoofoiinicc DD
2.2.3 Timeliteralsccccoiiepeeeiii e

2.2.3.1 Durationccccoee e NG NG N e .
2.2.3.2 Time of day and date.....\\L . c.eeee s N NZo e IV e .
2.3 Data types ..ol N N NG NG

2.3.1 Elementary data type sy . N e e N e ettt e e e e e e e e e e e e e e e e e neeeeeeaan .
2.3.2 Generic des ..)
2.3.3 DIrived [0 F= E= 0 707 £ N N e N OSSR .
DG T Ty B B =Tl F=T = 1o 1 N N N R .
2.3.3.2 Initializatic ..\ e N N et .

PR TG TS B U oY= (o [T U N N N TR .
2.4 Varipbles.........xQ L0000

2.4.3.1 Fype-assignm o EEEEETEE L L SR
2.4.3.2 Initial value assignmentoii i e
2.5 Program organization UNISoooiiiiiiiiiiiie et e e e
P2 T B U] T[] o - PSP
2.5.1.1 REPrESENTALIONeeiiiii e
2.5.1.2 EXECULION CONTIOL.....eiiiiiiiiie ittt e ettt e e et e e e e nb e e e ebeee e eneee
2.5.1.3 DECIAratioNcoo i et neeas
2.5.1.4 Typing, overloading, and type CONVEISION..........cccuiieiiiiiiie e 52
2.5.1.5 Standard fUNCHONS.couiiiieee et e e e et e e e e e e 55
2.5.1.5.1 Type conversion fUNCHONS.........cuiiiiiiiii e e 55
2.5.1.5.2 NUMETICAl fUNCHONSeiiiiiiiiii et e s e e e e e eneee 56
2.5.1.5.3 Bit StHNG FUNCHONS ... et 59
2.5.1.5.4 Selection and comparison fUNCHONS.ccueiiiiiiiie e 59
2.5.1.5.5 Character string fUNCHONSoouiiiiiii e 62
2.5.1.5.6 Functions of time data tyPesoooiiiiiiiiii s 64
2.5.1.5.7 Functions of enumerated data typesccceeiiiiiii i 66

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -3-

PR T2 ol ¥ o o3 1 o] o TN o[0T < T 66
2 T I o= o1 = 1=] £= o o 67
2.5.2.1a) Use of EN and ENO in function BIOCKSueviiiiiiiiiiieeee e 68
I B 1ol F- T = (o] o 69
2.5.2.3 Standard funNCtioN DIOCKSeeiiieeeeeeeeee et 77
2.5.2.3.1 BisStable EIEMENLScoo o 77
2.5.2.3.2 Edge detCHON.......oiiiiiii e 78
T T T O TV 14| (=] TR 78
T N S 10 1= =R 81
2.5.2.3.5 Communication fuNCtion DIOCKS.............uoiiiiiiiieeee e 83
PTG T o oo = 0 0 S SO SRR 83
2.6 Sequential Function Chart (SFC) elements...........coooiiiiiiiii e e 84

2.6.1 Geéneral

A\ssociation with steps
Action blocks

A\ction qualifiers
Action control

4.1.1 Representation of lin€s and BIOCKScoiuiiiiiiiiiiiii e 135

4.1.2 Direction of flOW iN NEIWOIKS.........iiiiiiieeee e e e e e e e e e eereees 135
4.1.3 EVvaluation Of NEIWOIKScoeeiiiii e e e e e e et e e e e e e e e e e e e e e e eeereees 136
4.1.4 Execution CONtrol €IEMENTSuiiiiiiieeee e e e e e e et eeeeaeees 138
4.2 Ladder diagram (LD)oooiiiiiieiiiiiie ettt e e e e e s neee s 139
R B oo YTl = 11 = 139
4.2.2 Link elements and StateS...........eiiiiiiiiiiee e aa e 139
T T 070 o] =To3 (= J 140
R 0o 1| = 140
4.2.5 Functions and fUNCON DIOCKScooiiiiiiie e e e e e 140
4.2.6 Order of NetWOrk @Valuationooooiuiiiiiii e e e e e e e e 141
4.3 Function Block Diagram (FBD).........coiiiuiiiiiiiiiee ettt st s e e es 143
R Nt B C 7= T =Y = | 143
4.3.2 Combination Of EIEMENES...........uueiiiiiieeeeeee et e e e e e 143

4.3.3 Order of NEIWOIK @ValIUBLIONccoeeeeieeeeeeeee et e e 143

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-4 - 61131-3 © IEC:2003(E)

ANNEX A (normative) Specification method for textual languagescccccvveveieiiiiiciieieneeen. 144
N B Y] =) USRS 144
It O =Y 0 ¢ 1T = LIRS} Y o) PP 144
A.1.2 Non-terminal SYMDOISuuuiiiiiiiiiiieiiii e eaeeeaasesessrerernrnsnsnnneees 144
A.1.3 ProdUCHION FUIESeeeiiiiei et e e e e e e e s e neeeeeeas 145
A2 SEIMANTICS ..ieeeii ettt e et e e e sttt e e e eate e e e e eabeeeeeanbeeeeeanteeeeeanbeeeeeanbeeeeeanraeeeanreeeeeas 145
ANNEX B (normative) Formal specifications of language elements............cccccceeeveeiiiiiiieeeneeen. 146
B.0 Programming MOdEl ..o 146
B.1 COMMON EIEMENESeeiiiiiiiiie ettt et e e et e e et e e e et e e e e nbee e e enreeennnee 146
B.1.1 Letters, digits and identifiersccuuviiiiiei i 146
[T I 070] = | TP R 147

irectly represented variables
ulti-element variables................~ \......,
eclaration and initialization

C (normative)”Delimiters and keywords

ANNEX D (normative) Implementation-dependent parameters..........cccccoviiiiiiiiiiiiiiiiieeneeen, 165
ANNEX E (normative) Error CONditioNSeeeiiiiiiiiiii e 167
ANNEX F (informative) EXamPIEScooiiiiiiieii et e 169
F. 1 FUNCHON WEIGH ...ttt e neeeeas 169
F.2 Function block CMD_MONITOReoiiiiiie e e e e e eas 170
F.3 Function block FWD_REV_MON ...t e e 173
F.4 Function bIOCK STACK INT ... e e a e e e e e e e e e e e e e e e e e e aeaeeas 178
F.5 Function block MIX_2_BRIX ...ttt st 183
F.6 ANalog SigNal PrOCESSING ...eeeiiiiiiiiiiiiieii ettt e e e e e e e e e e anrnre s 186
T A W o (o T T o[Yo I 1 187

F.6.2 FUNCHON DIOCK DELAY ..oeeniiieiieiieee ettt et e et e et e e e et e e e e et e e e e e e e s e b e eereaaaas 187

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

F.6.3 Function bloCk AVERAGE ... 188
F.6.4 Function bloCK INTEGRAL ...ttt eneneeees 188
F.6.5 Function bloCk DERTVATIVEouiiiiiiiiiii ettt 189
F.6.6 Function block HYSTERESHESooiiiiiiiii e 189
F.6.7 Function block LIMITS_ALARMc.ooiiiiiiiiiii s 190
F.6.8 Structure ANALOG _LEMITS ..o ittt e e e et e et e e e e e e e e nees 190
F.6.9 Function block ANALOG_MONEITOR........ccooiiiiiiiiiiiiiiei 191
F.6.10 FUNCLON DIOCK P D ...ttt e e e e 192
F.6.11 Function bIOCK DEFFEQceoiiiiiiieie et et e e e e e e e e e e e e e e nneees 193
F.6.12 Function BIOCK RAMP ...ttt e nneeees 194
F.6.13 Function block TRANSFER...... ..ot 195
F.7 Program GRAVELcccueeeiiiiiiiiiieee e T 195
F.8 Prod;ram AGV e LN O
F.9 Use|of enumerated data types ... oo (CON 50N
F.10 Fupction block RTC (Real Time ClocK).........cccoviiiiiiiiniiieceiee e

F.11 Fuhction block ALRM_ENT ..o geee)

ANNEX [G (informative) Reference character set

L T L= USRI Z oS

Table 1 { Character set features.............ccconceeeeennne, .

Table 2 1 Identifier features

Table 3 { Comment feature

Table 33

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

Table 16 .
Table 16b - Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations 41
Table 17 - Variable type assignment features...........cooooiiiiiiiiii e 41
Table 18 - Variable initial value assignment features. ... 43
Table 19 - Graphical negation of Boolean signalsccoeveiiiiiiiiiiiic e 47
Table 19a - Textual invocation of functions for formal and non-formal argument list 49
Table 20 - Use of EN input and ENO OULPULuuiiiiieiiiiiiiiieee et a e 50
Table 20a - FUNCLION fEALUIES........cooiiiiiie e e 51
Table 21 - Typed and overloaded fUNCHONScooiiiiiiiii e 53
Table 22 - Type conversion fuNCtion fEALUIESccoiiiiiiiiiiiie e 55
Table 23 - Standard functions of one numeric variable............c.cooii e 57
Table 24 - Standard arithmetic fUNCHONS...........oooiiiii e 58

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-6- 61131-3 © IEC:2003(E)

Table 25 - Standard bit shift fUNCHONSocuiiiiie e 59
Table 26 - Standard bitwise Boolean funNCtionsoooiii oo 60
Table 27 - Standard Selection FUNCHONS.............c..oiieeeeeeeeeeeeee oo 61
Table 28 - Standard comparison fUNCHONS........ ... 62
Table 29 - Standard character string fuNCHONSooiiiiiiiiiie e 63
Table 30 - Functions of time data typesc..eeiiiiiii e 64
Table 31 - Functions of enumerated data typesS..........coovcuiiiiiiii i 66
Table 32 - Examples of function block 1/0 variable usage...........cccccoiiiiiiiiiiiii s 68
Table 33 - Function block declaration and usage featuresccccvceveeeiiiiciiiieeie e 71
Table 34 - Standard bistable function BIOCkS ®ccoovoviviiiieieeeeeeeeee e e eneanrans 77
Table 3§ - Standard edge detection function blocks.............cccceeeiiiiiiiiiiinccens

Table 34 - Standard counter function bIOCKS..............euviiiiiiiiiiiii A e DG N)
Table 37 - Standard timer function bIOCKS...............coviiiiiiiii SN e DG LI N)
Table 3§ - Standard timer function blocks - timing diagrams
Table 39 - Program declaration features.............cccceeeiiiiciiieiee e Do e N NN e .
Table 40 - Step features G N BN e oo D e mmereeeeas .
Table 41 - Transitions and transition CONAItIONSvvves i N 2T e e N eeenererenernnnnnnened .
Table 49 - Declaration of aCtONS ®.......ceveeeeeeeeeeeeeeeeeeeeeeeee oo e e e v eereeeeereeereneees .
Table 43 - Step/action associationac.ccueeeee, .
Table 44 - Action block features............. ... S

Table 45 - Action qualifiers...........cccoeecieee . NG
Table 45a - Action control features
Table 44 - Sequence evolution..................\.....
Table 47
Table 48
Table 49
Table 5(
Table 51
Table 51
Table 52
Table 53
Table 54
Table 55
Table 56
Table 57

Table 60 - LINK ElEMENTSuuiiiiiiiiiiiiitiiie e ae e e baaaasaaasasaaasssssasssssssssssssnseeeeees
TabIE 671 - CONACIS ? ...ttt et e et e e e e e e e e e eaeeeeeeeeeeeeeeennas
=1 o) X G YA 0o | TSSOSO RO PP
Table C.1 - DEIIMITEIS ... i e e e e e e e e e e e e e e et reeeeaeeeeraseeeaeas
TabIe C.2 - KEYWOIASeiiiiiiiie ittt ettt e ea bt e e e e bt e e e sabe e e e s aabaeeessbeeeeeas
Table D.1 - Implementation-dependent parameterseeueieieiiiiiiiiiiiiieiieieeeeeeeeeeeeenaeee
Table E.1 - Error CONAITIONSeeiiiieiiiiieieeeeee ettt aet et teae e tebebeasbabebebsbabesaassssssssssassssssssnneeeees

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -7-

Table G.1 - Character repreSeNntationS...........cc.uuiiiiiiei i e 208
Table G.2 - Character @NCOAINGSoouuiiiiiiii it e s rneees 209
Figure 1 - SOftWare MOEloooiiiiiiiee e e e e e e e e sareeaa s 15
Figure 2 a) - Data flow connection within @ program ... 16
Figure 2 b) - Communication via GLOBAL Variables............cccuuiiiieeiiiiiiiieeee e 16
Figure 2 ¢) - Communication function bIOCKScooiiiiiiiiiiiiic e

Figure 2 d) - Communication via access Pathsccoiuiiiiiiiiiiii e
Figure 3 - Combination of programmable controller language elements.............ccccceeeeeiiiiinennn...
Figure 4 - Examples of fUNCLON USAQE........coiuiiiiiiiiiii st e
Figure 5[- Use of formal argument Names............cccceeeeeiiiiiiiiiieee e [NG (e .
Figure 6]- Examples of function declarations and usagecccoocveeenieee o Ko DO .
Figure 7|- Examples of explicit type conversion with overloaded functions
Figure 8
Figure 9
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 1
Figure 18 a) -
Figure 18 b) -
Figure 1
Figure 1
Figure 2

Figure 2
Figure 2
Figure 2
Figure 2

Figure 23 - Feedback path €Xample..........coo e
Figure 24 - Boolean OR @XamPIESuuiiiiiiiiiiiiieii e

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-8- 61131-3 © IEC:2003(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROGRAMMABLE CONTROLLERS -

Part 3: Programming languages

FOREWORD

The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote

intern§ fields. To
this ehd and in addition to other activities, the IEC publishes International Standa aration is
entru with may
participate in this preparatory work s liaising
with {he >nat|ona|
Organfization for Standardization (ISO) in accordance with conditions dete ween the
two ornganizations

2) The fprmal decisions or agreements of the IEC on technical majte sible, an
interngtional consensus of opinion on the relevant subjects since e8 sentation
from i

3) The dpcuments produced have the form of recommendations/for internationa the form
of st , technical specifications, technical reports of gu{des National
Comnyittees in that sense.

4) In order to promote international unificatig ernational
Standprds transparently to the maximum rds. Any
divergence between the |IEC Standard andt be clearly
indicafed in the latter.

5) The IE e for any
equip

6) Attent e subject
of pate

Internat , of IEC

technice

The tex{ of this st rd i based on\the following documents:

FDIS Report on voting
'65B/456/FDIS 65B/465/RVD

Full infdrmatiofgon the voting for the approval of this standard can be found in the r¢port on

voting deicated imthe’above table.

This second edition of IEC 61131-3 cancels and replaces the first edition, published in 1993,
and constitutes a technical revision.

This International Standard has been reproduced without significant modification to its original
contents or drafting.

The committee has decided that the contents of this publication will remain unchanged until
2007. At this date, the publication will be

reconfirmed;

withdrawn;

replaced by a revised edition, or
amended.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -9-
PROGRAMMABLE CONTROLLERS -

Part 3: Programming languages

1 General

1.1 Scope

This part of IEC 61131 specifies syntax and semantics of programming languages-for programmable

controlleys as defined in part 1 of IEC 61131.
The fungtions of program entry, testing, monitoring, operating system, ete

IEC 61181.

1.2 Normative references

The foll
For date
of the rd

IEC 600
IEC 605
IEC 606
IEC 606
IEC 608
IEC 611
IEC 611

ISO/AFN

spegi

d in\Part 1 of

jon of this document.
ences, the lates} edition

ISO/IEC . \/nformation technology — Universal Multiple-Octet Coded Character Sgt (UCS)

— Part 1;

1.3 Definitions

For the purposes of this part of IEC 61131, the following definitions apply. Definitions applying to all

parts of IEC 61131 are given in part 1.

NOTE 1 Terms defined in this subclause are italicized where they appear in the bodies of definitions.

NOTE 2 The notation “(ISO)” following a definition indicates that the definition is taken from the

ISO/AFNOR Dictionary of computer science.

NOTE 3 The ISO/AFNOR Dictionary of computer science and the IEC 60050 should be consulted for

terms not defined in this standard.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-10- 61131-3 © IEC:2003(E)

1.3.1 absolute time: the combination of time of day and date information.

1.3.2 access path: the association of a symbolic name with a variable for the purpose of open
communication.

1.3.3 action: Boolean variable, or a collection of operations to be performed, together with an
associated control structure, as specified in 2.6.4.

1.3.4 action block: graphical language element which utilizes a Boolean input variable to determine
the value of a Boolean output variable or the enabling condition for an action, according to a
predetermined control structure as defined in 2.6.4.5.

1.3.5 @ggregate: structured collection of data objects forming a data type. (ISU)

1.3.6 argument: synonymous with input variable, output variable or in-o

1.3.7 array: aggregate that consists of data objects, with identical 4 may be

uniquely|referenced by subscripting. (ISO)

1.3.8

1.3.9

1.3.10 or more

inputs.

1.3.11
s to be
oked.
hpact on
machine
stem as

1.3.18 counter function block: function block which accumulates a value for the number of changes
sensed at one or more specified inputs.

1.3.19 data type: set of values together with a set of permitted operations. (ISO)

1.3.20 date and time: the date within the year and the time of day represented as a single language
element.

1.3.21 declaration: the mechanism for establishing the definition of a language element. A
declaration normally involves attaching an identifier to the language element, and allocating attributes
such as data types and algorithms to it.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E) —11-

1.3.22 delimiter: character or combination of characters used to separate program language
elements.

1.3.23 direct representation: means of representing a variable in a programmable controller

program

from which a manufacturer-specified correspondence to a physical or logical location may be

determined directly.

1.3.24 double word: data element containing 32 bits.

1.3.25 evaluation: the process of establishing a value for an expression or a function, or for the
outputs of a network or function block, during program execution.

executio

N.

1.3.26 ¢xecufion control element: A J/anguage element which controls the ﬂwprogram

1.3.27 f{alling edge: the change from 1 to 0 of a Boolean variable.

utex
data element and possibly additional output variables (which ot mple, an
array or|structure), and whose invocation can be used in 3t) hd in an
expressipn.

1.3.29 {function block instance (function block): /73

1) thed
2) aset
the funct

1.3.31 1function block diag

represer

ting of:

of operations to be performed upg ce of

: pphically
ted functions (procedixes), varrk

1.3.32 esents more than one type of data, as spégcified in
2.3.2.

1.3.33 global scope; S : within a
resource t [

1.3.34

e§sing: the direct representation of a data element as a memper of a

physical|or logicakhi hy, for example, a point within a module which is contained in a ragk, which
in turn is|contained in~d cubicle, etc.
1.3.36 identifier: combination of letters, numbers, and underline characters, as specified in 2.1.2,

which begins with a letter or underline and which names a language element.

1.3.37 i

1.3.38 i

1.3.39 i

n-out variable: variable that is declared in a VAR_IN_OUT. . .END_VAR block.
nitial value: the value assigned to a variable at system start-up.

nput variable (input): variable which is used to supply an argument to a program

organization unit.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-12 - 61131-3 © IEC:2003(E)

1.3.40 instance: individual, named copy of the data structure associated with a function block type or
program type, which persists from one invocation of the associated operations to the next.

1.3.41 instance name: identifier associated with a specific instance.
1.3.42 instantiation: the creation of an instance.

1.3.43 integer literal: literal which directly represents a value of type SINT, INT, DINT, LINT, BOOL,
BYTE, WORD, DWORD, or LWORD, as defined in 2.3.1.

1.3.44 invocation: the process of initiating the execution of the operations specified in a program
organization unit.

1.3.45 keyword: lexical unit that characterizes a language element, for exa ,

1.3.46 label: language construction naming an instruction, network, ok'h wob(s, and

including an identifier.

1.3.47 language element: any item identified by a symbol o tion rule

in the formal specification given in annex B of this standard.

1.3.48 literal: lexical unit that directly represents a value.

applying y to the program organization unit

in which

h may or
may not outputs,
and memory.
1.3.51 long real: real nus

jata and

) (rising)

1.3.57 operand: language element on which an operation is performed.

1.3.58 operator: symbol that represents the action to be performed in an operation.

1.3.59 output variable (output): variable which is used to return the result(s) of the evaluation of a
program organization unit.

1.3.60 overloaded: with respect to an operation or function, capable of operating on data of different
types, as specified in 2.5.1.4.

1.3.61 power flow: the symbolic flow of electrical power in a ladder diagram, used to denote the
progression of a logic solving algorithm.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -13 -

1.3.62 pragma: language construct for the inclusion of text in a program organization unit which may
affect the preparation of the program for execution.

1.3.63 program (verb): to design, write, and test user programs.

1.3.64 program organization unit: function, function block, or program.
NOTE This term may refer to either a type or an instance.
1.3.65 real literal: Jiteral representing data of type REAL or LREAL.

1.3.66 resource: /anguage element corresponding to a “signal processing function” and its “man-
machine interface” and “sensor and actuator interface functions”, if any, as defined in IEC 61131-1.

1.3.67
down /p

a power

1.3.68 B to the

executio

1.3.69

1.3.71 s$emantics: the relationships betwgen the
their me

age and

1.3.75 step: siti ts inputs

and outd
1.3.76 ¢ RUCT or
FUNCTI
1.3.77 ¢ cference
and one

1.3.78 symbolic representation: the use of identifiers to name variables.

1.3.79 task: execution control element providing for periodic or triggered execution of a group of
associated program organization units.

1.3.80 time literal: literal representing data of type TIME, DATE, TIME_OF DAY, or
DATE_AND_TIME.

1.3.81 transition: the condition whereby control passes from one or more predecessor steps to one
or more successor steps along a directed link.

1.3.82 unsigned integer: integer literal not containing a leading plus (+) or minus (-) sign.

1.3.83 wired OR: construction for achieving the Boolean OR function in the LD language by
connecting together the right ends of horizontal connectives with vertical connectives.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—14 - 61131-3 © IEC:2003(E)

1.4 Overview and general requirements

This part of IEC 61131 specifies the syntax and semantics of a unified suite of programming
languages for programmable controllers (PCs). These consist of two textual languages, IL (Instruction
List) and ST (Structured Text), and two graphical languages, LD (Ladder Diagram) and FBD (Function
Block Diagram).

Sequential Function Chart (SFC) elements are defined for structuring the internal organization of
programmable controller programs and function blocks. Also, configuration elements are defined
which support the installation of programmable controller programs into programmable controller

systems

In additi
other co

The prog

such an
formats

presentg
provides]
requirent

1.4.1 Sq

The bas|
consist

program
global v
program

bn, features are defined which facilifaie communication among progra
mponents of automated systems.

ablé&tro

llers and

ramming
owever,

ion in the

ents are
hbclause
general

I. These
that is,
s, tasks,
lation of

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -15-

CONFIGURATION

RESOURCE RESOURCE
TASK TASK TASK TASK
I \ I 1
1 AN \ 1 1
PROGRAM \\PROGRAM PROGRAM PROGRAM
N \ [

T I|FB||_|_|:|""‘|
Z N

GLOBAL and DIRECTLY MREPRESENTED V BMNES

and INSTANCE-SPECIFIC | INITIALIZATIONS >

ACCESS PATHS N\ \\/

EC 2468/02

NOT

NOT explicitly

A config e element which corresponds to a programmable controller system as
defined . K resource corresponds to a “signal processing function” and ifs “man-
machine] intefface~and ’sensor and actuator interface” functions (if any) as defined in IEC 61[131-1. A
configuration,contains’one or more resources, each of which contains one or more programs g¢xecuted
under the—controtof-zeroormoretasks—A progranrmay containzero-or-more-functionrbtocks or other
language elements as defined in this part.

"«

Configurations and resources can be started and stopped via the “operator interface”, “programming,
testing, and monitoring”, or “operating system” functions defined in IEC 61131-1. The starting of a
configuration shall cause the initialization of its global variables according to the rules given in 2.4.2,
followed by the starting of all the resources in the configuration. The starting of a resource shall cause
the initialization of all the variables in the resource, followed by the enabling of all the tasks in the
resource. The stopping of a resource shall cause the disabling of all its tasks, while the stopping of a
configuration shall cause the stopping of all its resources. Mechanisms for the control of tasks are
defined in 2.7.2, while mechanisms for the starting and stopping of configurations and resources via
communication functions are defined in IEC 61131-5.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-16 - 61131-3 © IEC:2003(E)

Programs, resources, global variables, access paths (and their corresponding access privileges), and
configurations can be loaded or deleted by the “communication function” defined in IEC 61131-1. The
loading or deletion of a configuration or resource shall be equivalent to the loading or deletion of all the
elements it contains.

Access paths and their corresponding access privileges are defined in 2.7.1.

The mapping of the language elements defined in this subclause on to communication objects is
defined in IEC 61131-5.

1.4.2 Communication model

Figure 2 illustrates the ways that values of variables can be communicated among software elements.

by cdnnection
explicitly in

As showLw In figure Z a), variable values within a program can be communicated direc
of the olitput of one program element to the input of another. This connectiomi
graphical languages and implicitly in textual languages.

Variable| values can be communicated between programs in the same oconfigurat global
variable§ such as the variable x illustrated in figure 2 b). These vari ¢ lared as|GLOBAL
in the configuration, and as EXTERNAL in the programs, as specified in 2.4.3;

As illustdated in figure 2 c), the values of variables can be communica een different garts of a
program| between programs in the same or different canfi i n a programmable
controller program and a non-programmable controller sysg i function

blocks defined in IEC 61131-5 and described in 2.57 iti ollers or
non-programmable controller systems ¢ i /1>aths, as
illustratefd in figure 2 d), using the mechani

X i)

Z
IEC 2469/02
igure - Data flow connection within a program
\) CONFIGURATION C
PROGRAM A PROGRAM B
VAR_EXTERNAL VAR_EXTERNAL
x: BOOL; x: BOOL;
END_VAR END_VAR
FB1 FB2
FB_X VAR_GLOBAL FB_Y
albbm—x — | B xBoOL. | BBPx b
END_VAR

IEC 2470/02

Figure 2 b) - Communication via GLOBAL variables

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -17 -

CONFIGURATION C CONFIGURATION D
PROGRAM A
send1 rcv1 PROGRAM B
SEND RCV
FB1 SD1 RD1 FB2
FB_X _L FB_Y
b
al— A
~
\\ \
\ \/ IEC 2471/02
Figure 2 c) - Communication function ks
A\ /LS
CONFIGURATION C <‘ WURATION D
P1
PROGRAM A
FB1

Q \> PROGRAM B
FB_X

- \ > TO_FB2 FB2
a7 READ FBY
\> RD1 b

Sas

Eiqur -
4

'CSX'=1VAR_1

IEC 2472/02

NOTE 1 This figure is illustrative only. The graphical representation is not normative.

NOTE 2 In these examples, configurations C and D are each considered to have a single
resource.

NOTE 3 The details of the communication function blocks are not shown in this figure. See
2.5.2.3.5and IEC 61131-5.

NOTE 4 As specified in 2.7, access paths can be declared on directly represented variables,

global variables, or input, output, or internal variables of programs or function block
instances.

NOTE 5 IEC 61131-5 specifies the means by which both PC and non-PC systems can use
access paths for reading and writing of variables.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—18-— 61131-3 © IEC:2003(E)

1.4.3 Programming model

The elements of programmable controller programming languages, and the subclauses in which they

appear in this part, are classified as follows:

Data types (2.3)
Variables (2.4)
Program organization units (2.5)
Functions (2.5.1)
Function blocks (2.5.2)
Programs (2.5.3)
Sequential Function Chart (SFC) elements (2.6)

Configuration elements (2.7)
Global variables (2.7.1)
Resources (2.7.1)
Access paths (2.7.1)
Tasks (2.7.2)

As shown in figure 3, the combination of these elements shall obgy

1) Derjved data types shall be declared as specified in 2.3:3
in 213.1 and 2.3.2 and any previously derived data types.

2) Derjved functions can be declared as.specified|in
the [standard functions defined in 256.1.5 2
shall use the mechanisms defined for

3) Dernved function blocks can be declared

language, and

5) Pro

var and access paths.

Referen
intended
example, i
a derived element type

as_sp S
typgs and functions, thestandard fu ctioks defingd in 2.5.2.3, and any previously
fungtion blocks. This d i se«the)m anisms defined for the IL, ST, LD

language, and can include Sey i inction Chart (SFC) elements as defined in 2.6.
4) A program shat\be d ified i
and function . Lhis déclaration skhall*use the mechanisms defined for the IL, ST, LD

Q_coffigurations using the elements defined in 2.7, that

hall not be contained within the declaration of another derived elemer

5pecified

fa types,
claration

ved data
derived
or FBD

inctions,
,or FBD

S, global

rules is
able, for
ration of

t type.

A programming Tanguage other than one of those defined in this standard may be used in the
declaration of a function or function block. The means by which a user program written in one of the
languages defined in this standard invokes the execution of, and accesses the data associated with,

such a derived function or function block shall be as defined in this standard.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -19 -
LIBRARY ELEMENTS PRODUCTIONS DERIVED ELEMENTS
1 -
DATA TYPES M Derived
Standard (See 2.3.1,2.3.2) [Declaration (See 2.3.3) | data
Derived
types
2 .
FUNCTIONS @ Declaration (See 2.5.1.3) Derived
Standard (See 2.5.1.5) IL, ST, LD, FBD - functions
Derived OTHERS
FUNCTION BLOCKS (3) Declaration (See 2.5.2.2) < Dehved
IL, ST, LD, FBD %
S a”dggri(\z%e 2.523) P> SFC clements (See 2.6) fbl ctio
OTHERS x
4)
Declaratjon\(ee
IL, PROGRAM

C Iemens(Se 2

PROGRAMS
See 2.5.3
() B X \ N (5)
ion 7.1)
N \(\ lobalvarlables (Bee 2.7.1) || CONFIGURATIQN
ss paths*(See 2.7.1)
ee 2.7.2)
RESOURCES
(See @ \/
AN
N
IEC 2473/02
NOT enthesized’numbers (1) to (5) refer to the corresponding paragraphs in 1.4.3.

NOT

LD - Ladder Diagram (4.2)

ombination of programmable controller language elements

FBD - Function Block Diagram (4.3)

IL - Instruction List (3.2)

ST - Structured Text (3.3)

OTHERS - Other programming languages (1.4.3)

1.5 Compliance

This subclause defines the requirements which shall be met by programmable controller systems and
programs which claim compliance with this part of IEC 61131.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-20- 61131-3 © IEC:2003(E)

1.5.1 System compliance

A programmable controller system, as defined in IEC 61131-1, which claims to comply, wholly or
partially, with the requirements of this part of IEC 61131 shall do so only as described below.

A compliance statement shall be included in the documentation accompanying the system, or shall be
produced by the system itself. The form of the compliance statement shall be:

“This system complies with the requirements of IEC 61131-3, for the following language
features:”,

followed[by a set of compliance tables In the following format:

Table title
Table No. Feature No. Fea es\Qescrl ok\\/
gures deseroh
kgt oo
Table and feature numbers and descriptigns are t@ b enApom the tables given in the|relevant
subclauges of this part of IEC 61131. Ta@g e takien & ollowing table.

Table title PN “For features in:

Common elements ((] biqbsq 2>

Common textual elegﬁéal\s /\\ \Subérguse 3.1

I} language elements N L SuMauses 3.21t03.2.3
$T language elebwe}rts’\ \ \§chlauses 3.3.1103.3.24
Commonﬁra@aicaeleme)@ts Subclause 4.1
up IanguageAq(en\eb(s\ W Subclause 4.2
ABD Iangu{g%\m&@) Subclause 4.3
For the mpliance, tables 9, 11, 13, 16a, 16b, 32, 38, 47, 48 and|51 shall
not be ¢ S.
A progrs stem complying with the requirements of this standard with respect to a

a) shall not require the inclusion of substitute or additional language elements in lorder to
accomplish any of the features specified in this standard, unless such elements are identified
and treated as noted in rules e) and f) below;

b) shall be accompanied by a document that specifies the values of all implementation-
dependent parameters as listed in annex D;

c) shall be able to determine whether or not a user's language element violates any
requirement of this standard, where such a violation is not designated as an error in annex
E, and report the result of this determination to the user. In the case where the system does
not examine the whole program organization unit, the user shall be notified that the
determination is incomplete whenever no violations have been detected in the portion of the
program organization unit examined,;

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —21-

d)

e)

f)

)]

h)

The phrase 7be

with whi

shall treat each user violation that is designated as an error in annex E in at least one of the

following ways:

1) there shall be a statement in an accompanying document that the error is not

reported,;

2) the system shall report during preparation of the program for execution
occurrence of that error is possible;

that an

3) the system shall report the error during preparation of the program for execution;

4) the system shall report the error during execution of the program and initiate

appropriate system- or user-defrined error handling procedures;

bres 2
01131-3";

fose functionality differs from that deg
this standard, ified and treated as noted in rules {

above;

shall '* 2 ent defining, in the form specified in annex A, th

thdheuser may control the reporting of errors.

Cribed in

cribed in
) and f)

e formal

b defined
e syntax
table 1 -

e tod is used in this subclause to permit the implementation of a softwafe switch

In cases where compilation or program entry is aborted due to some limitation of tables, etc., an
incomplete determination of the kind “no violations were detected, but the examination is incomplete”
will satisfy the requirements of this subclause.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—22- 61131-3 © IEC:2003(E)

1.5.2 Program compliance

A programmable controller program complying with the requirements of IEC 61131-3:

a)
b)

c)

shall use only those features specified in this standard for the particular language used;

shall not use any features identified as extensions to the language;

shall not rely on any particular interpretation of implementation-dependent features.

The results produced by a complying program shall be the same when processed by any complying
system which supports the features used by the program, such results are influenced by program

executio
program

i iming, the use of implementation-dependent features (as lisie
and the execution of error handling procedures.

@%
Sa

m@

) in the

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —23-

2 Common elements
This clause defines textual and graphic elements which are common to all the programmable
controller programming languages specified in this Part of IEC 61131.

2.1 Use of printed characters

2.1.1 Character set

Textual [anguages and textual elements of graphic languages shall be represente ternis of the
“ISO-646 IRV” given as table 1 - Row 00 of ISO/IEC 10646-1. d\

The use|of characters from additional character sets, for example, the “I'a ment” 9iven as
table 2 {Row 00 of ISO/IEC 10646-1, is a typical extension of this g ing of such
charactdrs shall be consistent with ISO/IEC 10646-1.

The reqtiired character set consists of all the characters in 07 of the {1ISO-646

IRV” as gefined above, except for lower-case letters.

Tablemargé\g%t fe tu
No. \D\}sgrial‘@n \/

2 Lower case characters® (~ \>

3a Number sign (# Q
3b i

Pound sign $\£) \>
4a Dollar sign ($) o~

4b Curr@r@\si (=)

5a| | Verticanbz

5b Excla@at\i(\b\:ix\)i\/k>

NQTE The m& b\m,tﬁs table is such as to maintain consistency with the fifst

2 \WHenlowersgase rs (\ft/aature 2) are supported, the case of letters shall not be
significanty age>elements except within comments as defined in 2.1.5, string litefjals
as$ defi

21.2 Id

An identifier is a string of letters, digits, and underline characters which shall begin with a letter or
underline character.

The case of letters shall not be significant in identifiers, for example, the identifiers abcd, ABCD, and
aBCd shall be interpreted identically.

Underlines shall be significant in identifiers, for example, A_BCD and AB_CD shall be interpreted as
different identifiers. Multiple leading or multiple embedded underlines are not allowed; for example, the
character sequences _ LIM_SW5 and LIM__SW5 are not valid identifiers. Trailing underlines are
not allowed; for example, the character sequence LIM_SW5_is not a valid identifier.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

24— 61131-3 © IEC:2003(E)

At least six characters of uniqueness shall be supported in all systems which support the use of
identifiers, for example, ABCDE1 shall be interpreted as different from ABCDEZ2 in all such systems. The
maximum number of characters allowed in an identifier is an implementation-dependent parameter.

Identifier features and examples are shown in table 2.

Table 2 - Identifier features

No. Feature description Examples
1 Upper case and numbers IW215 1W215Z QX75 IDENT
2 Upper and lower case, numbers, Allthe above plus
embedded underlines LIM_SW_5 L|mSw5 cd ab d

3 Upper and lower case, numbers, All the above pl 1RV7
leading or embedded underlines

2.1.3 Ke¢ywords

Keywords are unique combinations of characters utilized gg"indivig i ents as defined in
annex B. All keywords used in this standard are listg¢d in=a X Cv rds shall nof contain
imbedded spaces. The case of characters shall n ignifi i ords; for instance, the
keywordp “FOR” and “for” are syntactically~equivaley ed in annex C shgll not be
used for|any other purpose, for example,variab - X ds defined in 1.5.1.
NOTE National standards organizatigns can publis kles of translations of the keywords given
in

annex C.

2.1.4 Usk of white spag

The usef shall b
programmable controjié

& characters of “white space” anywhere in the text of
yithin keywords, literals, enumerated values, identifiers,

directly ibéd in subclause 2.4.1.1, or delimiter combinatjons (for
example .5). “White space” is defined as the SPACE character with
encoded i z all as non-printing characters such as tab, newline, etc. for which no
encoding i

User comiments shall be delimited at the beginning and end by the special character compinations
‘e anc! >y Tespectivety, as shown i tabte—3——Comments shattbe permitted—anywhete in the

program where spaces are allowed, except within character string literals as defined in 2.2.2.
Comments shall have no syntactic or semantic significance in any of the languages defined in this
standard.

The use of nested comments, for example, (* (* NESTED *) *), shall be treated as an error
according to the provisions of 1.5.1 d).

The maximum number of characters allowed in a comment is an implementation-dependent
parameter.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 25—

Table 3 - Comment feature

No. | Feature description Example
1 Comments ()
(& A framed comment *)
(*)
NOTE The example given above represents three separate comments.

2.1.6 Pragmas

As illustiated in table 3 a), pragmas shall be delimited at the beginning and end (by cur
and "H', respectively. The syntax and semantics of particular prag

implementation dependent. Pragmas shall be permitted anywhere in th
allowed,|except within character string literals as defined in 2.2.2.

NOTE Curly brackets inside a comment have no semanii

No. | Feature desc/ms(ion

1 Pragma

External
consist g

as a degimal \ ed/humber. The maximum number of digits for each kind of
literal shill be icte press the entire range and precision of values of all the data typ

Single underline charaeters (_) inserted between the digits of a numeric literal shall not be si

Kets ""{"'

ipns are

§GS are

de curly

ign.

jes shall

defined
numeric
Bs which

pnificant.

No othel| use’ of underline characters in numeric literals is allowed.

Decimal literals shall be represented in conventional decimal notation. Real literals shall be
distinguished by the presence of a decimal point. An exponent indicates the integer power of ten by
which the preceding number is to be multiplied to obtain the value represented. Decimal literals and

their exponents can contain a preceding sign (+ or -).

Integer literals can also be represented in base 2, 8, or 16. The base shall be in decimal notation. For

base 16, an extended set of digits consisting of the letters A through F shall be used,

with the

conventional significance of decimal 10 through 15, respectively. Based numbers shall not

contain a leading sign (+ or -).

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 26— 61131-3 © IEC:2003(E)

Boolean data shall be represented by integer literals with the value zero (0) or one (1), or the
keywords FALSE or TRUE, respectively.

Numeric literal features and examples are shown in table 4.
The data type of a boolean or numeric literal can be specified by adding a type prefix to the literal,
consisting of the name of an elementary data type and the '# sign. For examples see feature 9 in

table 4.

Table 4 - Numeric literals

No. Feature description Examples

-—

nteger literals -12 0 123 456 +986 /\(

2 |Real literals -12.0 0.0 0.4560 3.14159/2&\ \
-1.34E-12 or -1.34e-12
3 | Real literals with exponents 1.0E+6 or 1.0e+6
1.234E6 or 1.234e6
4 |Base 2 literals 2#1111_1111 (25 \)
2#1110_0000 (4 deC|
5 |Blase 8 literals 8#377 (25 e
/8#*360 C |mal (\
6 |Base 16 literals 6HT \\?;?)a
or 0.\ (224 mal)

7 |Boolean zero and one O (\1
8 |Boolean FALSE and{RD& F\EQ\\SE\IR,\UE\>
9 | Typed literals k i

9AF)

y.

A singlet cterystring literal is a sequence of zero or more characters from Row (0 of the
ISO/IEC| 10646-1 character set prefixed and terminated by the single quote character ('). Ih single-
byte character—strings,—the—three-character—combination—of the—dollarsign—{$)followed! by two
hexadecimal digits shall be interpreted as the hexadecimal representation of the eight-bit character
code, as shown in feature 1 of table 5.

A double-byte character string literal is a sequence of zero or more characters from the ISO/IEC
10646-1 character set prefixed and terminated by the double quote character ("). In double-byte
character strings, the five-character combination of the dollar sign ($) followed by four hexadecimal
digits shall be interpreted as the hexadecimal representation of the sixteen-bit character code, as
shown in feature 2 of table 5.

Two-character combinations beginning with the dollar sign shall be interpreted as shown in table 6
when they occur in character strings.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 27—

Table 5 - Character string literal features

No. Example Explanation
1 Single-byte character strings

" Empty string (length zero)
"AT String of length one containing the single character A
" String of length one containing the “space” character
=== String-efength-one-containing-the—“single-guote” uha.,aﬂ\cr
String of length one containing the “double quoteAémacfteR
"SREL" String of length two containing CR and LF chan{ctéﬁs
"$OA*" String of length one containing the LF cha@c\tef\ \ x
"$$1.00" String of length five which would pr|n as %\QO\

"AE" Equivalent strings of length two \/
"$C4$CB™

2 Doub]e-byte c@?\cje) ftr,ﬁq \

Empty string ngh\{é@‘ < \ ™)\/

AT String of Iength/o% co}t{%iqgh\isir@e{haracter A

String of length\one(co aim\ﬂw\tajépace” character

S(ﬁirhgf/@ﬁ&h\o\ﬂg c\o\ma)nigg}e “single quote” character

g [\Qtrﬁg\of‘ Ier(‘tkko%\é)mgiml)mg the “double quote” character

"RL"/\ Str|n>o}\lQng \\No\co taining CR and LF characters

"$$1.00\//\\S\mqgéi\ler%{Qf§ which would print as “$1.00”

“AE™ E ins of length two
"$009\$ CBX

3 \ \ \ \) Single-byte typed string literals

Q\W&\ S\glng of length two containing two single-byte characters

4 - \ Double-byte typed string literals

WSTRING#"OK" | String of length two containing two double-byte characters

NOTE If a particular implementation supports feature #4 but not feature #2, the
implementor may specify implementation-dependent syntax and semantics for
the use of the double-quote character.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 28 —

Table 6 - Two-character combinations in character strings

61131-3 © IEC:2003(E)

No. Combination Interpretation when printed
2 | 3% Dollar sign
3 $" Single quote
4 | $L or $I Line feed
5 $N or $n Newline
6 P—er—$p Fermfeed-{page) 7
7 bR or $r Carriage return A(\\ N\
8 pT or $t Tab < \
9 B Double quote (\ \ \
NOTE[1 The “newline” character provides an implement i ean< of d bfining
NOTE
NOTE
223 Ti
The nee pes of time-related data is redognized:
duration of a control event, and time of Hay data

an absol

Duration
2.2.3.2.

2231

Duration
duration
shall be
without 3

ited on the left by the keyword T# or TIME#. The represen
, hours, minutes, seconds, and milliseconds, or any combinatior

event to

.3.1 and

tation of
thereof,
notation

The units of duration Titerals can be separated by underline characters.

“Overflow” of the most significant unit of a duration literal is permitted, for example, the notation

T#25h_15m is permitted.

Time units, for example, seconds, milliseconds, etc., can be represented in upper- or lower- case

letters.

As illustrated in table 7, both positive and negative values are allowed for durations.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —29 -

Table 7 - Duration literal features

No. Feature description Examples

Duration literals without underlines: | T#14ms T#-14ms T#14.7s T#14.7m
1a short prefix T#14.7h tH#14.7d t#25h15m
t#5d14h12m18s3.5ms

1b Iong;weﬂx TIME#14ms TIME#-14ms time#l1l4.7s
Duration literals with underlines:

2a short prefix t#25h_15m t#5d_14h 12m 18s_3.5ms

2b long prefix TIME#25h_15m

time#5d_14h_12m_185_3-5ms(

2.2.3.2 Time of day and date

Prefix kgywords for time of day and date literals shall be as shown ir \ As.i in table 9,
represerjtation of time-of-day and date information shall be as_specifi { given in
B.1.2.3.2.

Table 8 - Date and tipg f day/litera

No. Feature dgéé‘igtiqﬁ\\ % (\) W%fix Keyword
Date literals (@_{9 r}a@\)\ _DK{' E#
Date literals (éhortrpgfib\ \) D#
Tig@@(de}yfhts@s\(lo\g\m fi‘xk TIME_OF_DAY#
i i TOD#
Qat\é/a}mg\@ Ng?élﬁ(h\g prefix) DATE_AND_TIME#
/Qg@ ané\&me\i\ergts\(\f%rt prefix) DT#

O || WIDN|[=
=
3
[0)
é
>y
—~
'2
g-.
S

abl amples of date and time of day literals

\n@ é(lx ta}}o Short prefix notation
DATE#] D#1984-06-25
date#]§*4\ d#1984-06-25

TIME_QF DAY#IE\QBJEB 36 TOD#15:36:55.36
time_qgf day#15:36-55.36 tod#15:36:55.36
DATE_AND_TIME#1984-06-25-15:36:55.36 DT#1984-06-25-15:36:55.36
date_and_time#1984-06-25-15:36:55.36 dt#1984-06-25-15:36:55.36

2.3 Data types

A number of elementary (pre-defined) data types are recognized by this standard. Additionally,
generic data types are defined for use in the definition of overloaded functions (see 2.5.1.4). A
mechanism for the user or manufacturer to specify additional data types is also defined.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-30- 61131-3 © IEC:2003(E)

2.3.1 Elementary data types

The elementary data types, keyword for each data type, number of bits per data element, and range
of values for each elementary data type shall be as shown in table 10.

Table 10 - Elementary data types

No. Keyword Data type N?
1 BOOL Boolean 10
2 SINT Short integer , 8¢
3 INT Integer /\\ 16 °
4 DINT Double integer (\ \ \3%°
5 LINT Long mtege(\ e
6 | | USINT Unsigned shattni ger\\ \ 8¢
7| uint U”W\ \\/ 16 ¢
8 | | upINT UnS|g(14ed(d9ub\lQ}&r\) d

10 REAL \ \ ‘ (Qeal ‘wm%érg/

11| | LreaL /X tnqg reals

12| | TIvE \(\ \Qy%tion 17
13| | DATE Q (N @ate (only) P

N N BN N O
a

3
9| | uLinT @é&r{ /f r?/\\nte}e; 6
3
6

14 TIME_OF_DAM }\QD\) (\ _Time of day (only) 1P
15 DATEMT}yE or @r) Date and time of Day 40
16 STRING /\ N V%iable-length single-byte character string q'9
17| | BYTE (\) Bit string of length 8 g'e
18 Wgﬁb\ \ \ Bit string of length 16 169
19] Anadrp N\ Bit string of length 32 3pi9

20 | uwokey \ N Bit string of length 64 6419
21 WSTM} Variable-length double-byte character string 16 "9

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -31-

Table 10 - Elementary data types

° Entries in this column shall be interpreted as specified in the footnotes.

® The range of values and precision of representation in these data types is implementation-
dependent.

° The range of values for variables of this data type is from -(2"1) to (2""1)-1.

4 The range of values for variables of this data type is from 0 to (2V)-1.

° The range of values for variables of this data type shall be as defined in IEC 60559 for the
basic single width floating-point format.

2.3.2 Glneric data types

table 11
cks (see
bric data

In additipn to the data types shown in tabl
can be Used in the specification of inputs ans
subclauge 2.5.1.4). Generic data types &
types is pubject to the following rules:

1) Gen ed in
2.5.

2) The

3) The generic
type

4) The

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-32- 61131-3 © IEC:2003(E)

Table 11 - Hierarchy of generic data types

ANY
ANY_DERIVED (Derived data types - see preceding text)
ANY_ELEMENTARY

ANY_MAGNITUDE
ANY_NUM
ANY_REAL
LREAL
REAL
ANY_INT
LINT, DINT, INT, SINT
ULTNT, UUINT, UINT, USTNI
TIME
ANY_BIT
LWORD, DWORD, WORD, BYTE, BOOL
ANY_STRING
STRING
WSTRING
ANY_DATE
DATE_AND_TIME
DATE, TIME_OF_DAY

2.3.3 De¢rived data types

2.3.3.1 Declaration

Derived | (i.e., user- or ing the
TYPE. .| END_TYPE textual’co then be
used, in|addition to the efined in
2.4.3.

An enunperated d Q can only
take on [one of the_yalu (2. The
enumerdtion list definé f the list,
and endi fiers for
enumers \ num>alldwed number of enumerated values is an implemgntation-
dependé¢

To enab qualified
by a pr d literals
defined |n 2.2 préefix shall not be used inside an enumeration list. It is an error if pufficient

informatfon is not provided in an enumerated literal to determine its value unambiguously.

A subrahge“’declaration specifies that the value of any data element of that type can only

values between and including the specified upper and lower limits, as illustrated in table 12.

error if the value of a value of a subrange type falls outside the specified range of values.

take on
It is an

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of specified
types which can be accessed by the specified names. For instance, an element of data type
ANALOG_CHANNEL_CONFIGURATION as declared in table 12 will contain a RANGE sub-element of
type ANALOG_SIGNAL_RANGE, a MIN_SCALE sub-element of type ANALOG_DATA, and a MAX_SCALE
element of type ANALOG_DATA. The maximum number of structure elements, the maximum amount of
data that can be contained in a structure, and the maximum number of nested levels of structure

element addressing are implementation-dependent parameters.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 33—

An ARRAY declaration specifies that a sufficient amount of data storage shall be allocated for each
element of that type to store all the data which can be indexed by the specified index subrange(s).
Thus, any element of type ANALOG_16_ INPUT_CONFIGURATION as shown in table 12 contains
(among other elements) sufficient storage for 16 CHANNEL elements of type
ANALOG_CHANNEL_CONFIGURATION. Mechanisms for access to array elements are defined in
2.41.2. The maximum number of array subscripts, maximum array size and maximum range of
subscript values are implementation-dependent parameters.

2.3.3.2 Initialization

The default |n|t|al value of an enumerated data type shall be the first |dent|f|er in the associated

enumeratio hown in
table 12 a types
ANALOG| R 1 5V,
respecti

For data Librange,

unless d 12, the
default initi - ; Wh e for the
FILTER| PARAMETER sub-element of elements of type ANA S RYT X z | is zero.
In contrgst, the default initial value of elements of type ANA a 258 i is zero.
For other derived data types, the default initial valugs, t i g$e of the
assignment operator “:=" in the TYPE degls j nderlying

elementary data types as defined in tabl operator
for initialjzation are given in 2.4.2.

The defgult maximum length of elements NG and WSTRING shall be an implemgntation-
dependént value unless specified otherwi gized maximum length (which ghall not
exceed the implementation<depe) in the associated declaration. For example, if
type STR10 is declared Q

I'YPE STRlO END_TYPE

the maximum Ie initia gfault initial length of data elements of type STR10 are
10 chargcters, * 8 respectively. The maximum allowed length of| STRING

and WSTRING vari

e 12 - Data type declaration features

No. \ \ Feature/textual example

1)ire%mn from elementary types, e.g.:
TYPENRU_R REAL ; END_TYPE

2 Enumerated datatypes, €9
TYPE ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ; END_TYPE

3 Subrange data types, e.g.:
TYPE ANALOG_DATA : INT (-4095..4095) ; END_TYPE

4 Array data types, e.g.:
TYPE ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG_DATA ; END_TYPE

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—34- 61131-3 © IEC:2003(E)

Table 12 - Data type declaration features

No. Feature/textual example

5 Structured data types, e.g.:
TYPE
ANALOG_CHANNEL_CONFIGURATION :
STRUCT
RANGE : ANALOG_SIGNAL_RANGE ;
MIN_SCALE : ANALOG_DATA ;
MAX_SCALE : ANALOG_DATA ;
END_STRUCT ;
ANALOG_16_ INPUT_CONFIGURATION :
STRUCT
SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
FILTER_PARAMETER : SINT (0..99) ;
CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CO URAT KON
END_STRUCT ;
END_TYPE

NN
NOTE| For examples of the use of these types in variabl jons\se 2\3\3/3 2.4.1.2|and
table 17. ~

Table 13 - Default @Q@Ie entaer ata types

Data type(s) Initial value
BOOL, SINT, INT, DINT4 LINT \ \ \/

0
)
USINT, UINT, UDINI, IN 0

BYTH, WORD, DWORI#,\W,Q@\ K ‘O/

REAL, LREAL<> 2 { \/ 0.0

TIME < W T#0S

DATH < \ \/ D#0001-01-01

TIME _OFAéAY \ 3 TOD#00:00:00

DATE@D\ ME\\ \ DT#0001-01-01-00:00:00

STRING LN \\/ "* (the empty string)

WSTRING \\\\\/> " (the empty string)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 35—

Table 14 - Data type initial value declaration features

No. Feature/textual example

1 Initialization of directly derived types, e.g.:
TYPE FREQ : REAL := 50.0 ; END_TYPE

2 Initialization of enumerated data types, e.g.:
TYPE ANALOG_SIGNAL_RANGE :

(BIPOLAR_10V, (* -10 to +10 VDC *)
UNIPOLAR_10V, (¢ 0 to +10 VDC *)
UNIPOLAR_1 5V, ¢+ 1to+5VDC *)
UNIPOLAR_O_5V, (* Oto+5VDC *
UNIPOLAR_4 20 _MA (* + 4 to +20 mADC *)
UNIPOLAR_O_20_MA & o0

: : : to +20 mADC *)
) := UNIPOLAR 1_5V ;
END_TYPE (/\\\\

3 Initialization of subrange data types, e.g.:
TYPE ANALOG_DATAZ : INT (-4095..4095) : ENDN PN

4 Initialization of array data types, e.g.:
TYPE ANALOG_16_INPUT_DATAI

ARRAY [1..16] OF ANALOG DATA 40
END_TYPE

5 Initialization of structured data type ements,

TYPE ANALOG_CHANNEL_CONFI
STRUCT

RANGE :

MAX_
END_STRU

END_;YﬁE\

6 Initializatid

:= 0, MAX_SCALE := 4000);

2.3.3.3

The usapesof.varia which are declared (as defined in 2.4.3.1) to be of derived data ty

conform|tothe following rules:

Tes shall

1) A single-element variable, as defined in 2.4.1.1, of a derived type, can be used anywhere that a
variable of its “parent's” type can be used, for example variables of the types RU_REAL and
FREQ as shown in tables 12 and 14 can be used anywhere that a variable of type REAL could
be used, and variables of type ANALOG_DATA can be used anywhere that a variable of type INT

could be used.

This rule can be applied recursively. For example, given the declarations below, the variable R3

of type R2 can be used anywhere a variable of type REAL can be used:

TYPE R1 : REAL := 1.0 ; END_TYPE
TYPE R2 - R1 ; END_TYPE
VAR R3: R2; END_VAR

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-36- 61131-3 © IEC:2003(E)

2) An element of a multi-element variable, as defined in 2.4.1.2, can be used anywhere the
“parent” type can be used, for example, given the declaration of ANALOG_16 INPUT_DATA in
table 12 and the declaration

VAR INS : ANALOG_16_INPUT_DATA ; END_VAR
the variables INS[1] through INS[16] can be used anywhere that a variable of type INT
could be used.

This rule can also be applied recursively, for example, given the declarations of
ANALOG_16_INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION, and ANALOG_-

DATA in table 12 and the declaration
that aM of type

VAR _CONE_ - ANALOG 16 INPUT CONEIGURATION —END VAR

the variable CONF.CHANNEL[2] .MIN_SCALE can be used anywhe
INT could be used.

2.4 Variables

In contrgst to the external representations of data describ 2, vl provide a means of
identifying data objects whose contents may change, for' exampie, da Qciated with the inputs,
outputs, |or memory of the programmable controller. A(variable c¢an® be~degtared to be orle of the
elementary types defined in 2.3.1, or one of the ived1 e@vhi h_are declared as dgfined in
2.3.3.1.

2.4.1 Re¢presentation
2.4.1.1 Bingle-element variable

A singleielement variable s defi < iakle~which represents a single data element of ohe of the

elementary types defineqd in2.3) ived enuxperation or subrange type as defined in 2.3/3.1; or a
derived fype whg Mmentary,
enumerdgtion or subrapge type. IS 2 ariables
symbolid > i g element
with phy, i ions inthe programmable controller's input, output, or memory striicture.
Identifie

Direct re i rmed by
the conca i ‘ e ISO/IEC
10646-1 i ntegers,

In the case that a directly represented variable is used in a location assignment to an internal variable
in the declaration part of a program or a function block type as defined in 2.4.3.1, an asterisk “*” shall
be used in place of the size prefix and the one or several unsigned integers in the concatenation to
indicate that the direct representation is not yet fully specified. The percent sign and the location prefix
I, QorMfrom table 15 shall always be present in the direct representation.

In both cases, the use of this feature requires that the location of the variable so declared shall be fully
specified inside the VAR_CONFI1G. . _.END_VAR construction of the configuration as defined in 2.7.1 for
every instance of the containing type.

It is an error if any of the full specifications in the VAR_CONFIG. . .END_VAR construction is missing
for any incomplete address specification expressed by the asterisk notation in any instance of
programs or function block types which contain such incomplete specifications.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)
EXAMPLES

%QX75 and %Q75
%IW215
%QB7
%MD48
%IW2.5.7.1
%Q*
The manufa
and the
represer
a hierar
hierarch

%IW2.5]
second °

The use
access d

The use

levels offhi

— 37 -

Output bit 75

Input word location 215

Output byte location 7

Double word at memory location 48

See explanation below

Output at a not yet specified location

directly represented variables

variable
a direct
reted as

of the
| variable
k” of the

ystem to

defined in 2.5.2, programs
1. The maximum npmber of

Ng. Prefix Default data type
i<
2 Q
4| W\
4 >\ BOOL
5< nx BOOL
6 e (8 bits) size BYTE
7 N\/ Word (16 bits) size WORD

D Daouble word 2 bits) | DWORD
9 L (quad) word (64 | LWORD

bits) size

10 Use of an asterisk (*) to indicate a not yet specified

location (NOTE 2)

prefixes.

NOTE 1 National standards organizations can publish tables of translations of these

NOTE 2 Use of feature 10 in this table requires feature 11 of table 49 and vice versa.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-38- 61131-3 © IEC:2003(E)

2.4.1.2 Multi-element variables
The multi-element variable types defined in this standard are arrays and structures.

An array is a collection of data elements of the same data type referenced by one or more subscripts
enclosed in brackets and separated by commas. In the ST language defined in subclause 3.3, a
subscript shall be an expression yielding a value corresponding to one of the sub-types of generic type
ANY_INT as defined in table 11. The form of subscripts in the IL language defined in 3.2, and the
graphic languages defined in clause 4, is restricted to single-element variables or integer literals.

An exam plp of the use of array variables in the ST angllagp as defined in 33 is:

DUTARY[%MB6,SYM] := INARY[O] + INARY[7] - INARY[%MB

A structyred variable is a variable which is declared to be of a type\which\has i ;»y been
specified to be a data structure, i.e., a data type consisting of a collection.of\game

An elempnt of a structured variable shall be represented by two Qre | ifi ccesses
separatdd by single periods (.). The first identifier represents tife_nam ki ent, and
subsequent identifiers represent the sequence of comporent 3 rIlar data
element|within the data structure.

For indtance, if the variable MODULE_5_ CONf of type
ANALOG| 16_INPUT_CONFIGURATION g the ST
languag¢ defined in 3.3 would cause t element
SIGNAL| bssigned

to the RA

2.4.2 Injtialization

configure Y 6 ornfiguration) is “started” as defined in 1.4.1, eagch of the

associated guration efement and its programs can take on one of the following

When a
variableg
initial va

- the i : e configuration element was “stopped” (a retained valye);

The usef canxdeclare\that"a variable is to be retentive by using the RETAIN qualifier spgcified in
table 16a), when this feature is supported by the implementation.

The initial value of a variable upon starting of i1S associated coniiguration element shatl be determined
according to the following rules:

1) If the starting operation is a “warm restart” as defined in IEC 61131-1, the initial values of retentive
variables shall be their retained values as defined above.

2) If the operation is a “cold restart” as defined in IEC 61131-1, the initial values of retentive variables
shall be the user-specified initial values, or the default value, as defined in 2.3.3.2, for the
associated data type of any variable for which no initial value is specified by the user.

3) Non-retained variables shall be initialized to the user-specified initial values, or to the default value,
as defined in 2.3.3.2, for the associated data type of any variable for which no initial value is
specified by the user.

4) Variables which represent inputs of the programmable controller system as defined in IEC 61131-1
shall be initialized in an implementation-dependent manner.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -39-

2.4.3 Declaration

Each declaration of a program organization unit type (i.e., each declaration of a program, function, or
function block, as defined in 2.5) shall contain at its beginning at least one declaration part which
specifies the types (and, if necessary, the physical or logical location) of the variables used in the
organization unit. This declaration part shall have the textual form of one of the keywords VAR,
VAR_INPUT, or VAR_OUTPUT as defined in table 16 a), followed in the case of VAR by zero or one
occurrence of the qualifiers RETAIN,NON_RETAIN or the qualifier CONSTANT, and in the case of
VAR_INPUT or VAR_OUTPUT by zero or one occurrence of the qualifier RETAIN or NON_RETAIN,
followed by one or more declarations separated by semicolons and terminated by the keyword
END_VAR. When a programmable controller supports the declaration by the user of initial values for
variables, this declaration shall be accomplished in the declaration part(s) as defined._in this subclause.

Table 16 a) - Variable declaration keywordé/\d %

Keyword Variable usagé\ \ \

~N
VAR Internal to organization unit <\\ \ \
VAR | INPUT Externally supplied, not modifiable” wit 'wati\@}m{

VAR |OUTPUT Supplied by orgamzatlon unit tc{ ex@al e}thN

VAR |IN _OUT Supplied by ex/emql en an b‘é n(é)ﬂed\ynthm organization upit
VAR |EXTERNAL Supplied by configuration GRhOBAL (2.7.1)

Can be modified in Oorga |zat an uni
VAR |GLOBAL Global variable ecl ratiQn (7

VAR |ACCESS A 7.
. Qe&@fﬁ%&@x{ua}x@ 7 1\>
VAR |TEMP \T\em\po\rary @ﬁ{gM@b@s in function blocks and programs (2.4.3)

VAR |CONFIG /\ nstar@e\sgeaﬁgmali}ation and location assignment.

RETAINP-¢-d-e /\\Re)‘ze\ntbe\vairs@eé(see preceding text)

—d

NON__RETAIN”'C({’\ N&Krétegtive)riables (see preceding text)

CONS TANT7\ C\m\stﬁ%(variable cannot be modified)

AT \ K caMassignment (2.4.3.1)
NN

Wese keywords is a feature of the program organization unit or
onfiguration’element in which they are used. Normative requirements for the yse

NOTE2 Examples of the use of VAR IN QUT variables are given in fignrnc 1band 12

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

40— 61131-3 © IEC:2003(E)

Table 16 a) - Variable declaration keywords

@ The CONSTANT qualifier shall not be used in the declaration of function block instances as
described in 2.5.2.1.

® The RETAIN and NON_RETAIN qualifiers may be used for variables declared in VAR,
VAR_INPUT, VAR_OUTPUT, and VAR_GLOBAL blocks but not in VAR_IN_OUT blocks
not for individual elements of structures.

¢ Usage of RETAIN and NON_RETAIN for function block and program instances is allowed.
The effect is that all members of the instance are treated as RETAIN or NON_RETAIN,
except if:

and

RE[TAIN nor as NON_RETAI N the “warm start” beh

the member is explicitly declared as RETAIN or NON_RETAIN in the fuhctionslock g
program type definition;

the member itself is a function block.

=

dependent.

Within f -BEND_VAR
construdfi e of the
program|organization unit
The scope (range of val|dity) ¢ i ined in the declaration part shall be logal to the
program| organizatioq unit in whi gration part is contained. That is, the declared yariables
shall no{ be accés pization units except by explicit argument pasgsing via
variables e¢ S $ or outputs of those units. The one exception tq this rule
is the c4 beer Yeclared to be global, as defined in 2.7.1. Such variables
are only ation unit via a VAR_EXTERNAL declaration. The {ype of a
variable RO XTNAL block shall agree with the type declared in the VAR [GLOBAL
block of configuration or resource
It shall b
e any program-erganization unit attempts to modify the value of a variable that has been |declared

with [the .CONSTANT qualifier;

e a variable declared as VAR_GLOBAL CONSTANT in a configuration element or program
organization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (without the
CONSTANT qualifier) of any element contained within the containing element as illustrated below.

The maximum number of variables allowed in a variable declaration block is an implementation-
dependent parameter.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E)

41—

Table 16 b) — Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations

Declaration in containing element Declaration in contained element Allowed?
VAR_GLOBAL X ... VAR_EXTERNAL CONSTANT X... Yes
VAR_GLOBAL X ... VAR_EXTERNAL X... Yes
VAR_GLOBAL CONSTANT X ... VAR_EXTERNAL CONSTANT X ... Yes
VAR_GLOBAL CONSTANT X ... VAR_EXTERNAL X ... NO

2.4.3.1 Type assignment
As shown in table 17, the VAR. . _END_ VAR construction shall be us es and
retentivity for directly represented variables. This construction shalk also be rify data
types, retentivity, and (where necessary, in programs and VAR_GLOB physical
or logicgl location of symbolically represented single- or multi- ge of the
VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions is
The assignment of a physical or logical address to a Symbolical shall be
accomplished by the use of the AT keyword. Where ng utomatic
allocatioh of the variable to an appropriate location g kle controller memory|shall be
provided.
The asterisk notation (feature No. 10 i be\used /in address assignmenis inside
programp and function block types to den not pecified locations for directly repfesented
variableg. %
Table 1V - Variakl e assignment features
/\m pe a9
No. /\ g \\F\ea re/lexamples
1° {\\/\Qe%t\{bq Qdirectly represented variables
AR J
AT~%1 6-bit string (note 2)
T %) 16-bit integer, initial value = 0
POVAR N\
2° \ \\Qgélaration of directly represented retentive variables
AR REW At cold restart, will be initialized to a 16-bit string with Yalue
AT ,%QW5 - ~WORD ; 16#0000
3 Declaration of locations of symbolic variables

VAR_GLOBAL Assigns input bit 27 to the Boolean variable
LIM_SW_S5 AT %IX27 : BOOL; LIM_SW_5 (note 2)
CONV_START AT %QX25 : BOOL; Assigns output bit 25 to the Boolean variable
CONV_START
TEMPERATURE AT %IW28: INT; Assigns input word 28 to the integer variable
TEMPERATURE (note 2)
VAR C2 AT %Q* : BYTE ; Assigns not yet located output byte to bitstring
END_VAR variable C2 of length 8 bits

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—42- 61131-3 © IEC:2003(E)

Table 17 - Variable type assignment features

No. Feature/examples
4° Array location assignment
VAR Declares an array of 10 integers to be allocated to contiguous
INARY AT %IW6 : input locations starting at %1W6 (note 2)
ARRAY [0..9] OF INT;
END_ VAR
5 Automatic memory allocation of symbolic variables
AR Allocates a memory bit to the iable
CONDITION_RED : BOOL; CONDITION_RED.
IBOUNCE : WORD ; Allocates a memory word §ariable
I1BOUNCE.
MYDUB : DWORD ; Allocates a double if-string
variable MYDUB,
AWORD, BWORD, CWORD : INT; Allocates 3 separateNqQemady integer
variables - F
MYSTR: STRING[10] ; Allocateg m
END_ VAR maxi igliza-
6 rr ﬁe{:la}yon
AR THREE : Gs%%#oo memory words for a three-
ARRAY[1..5,1..10, OF _IN Q dimensighal array of integers
END_ VAR {\
7 (‘F\te\n@e\d declaration
AR RETA : \> Declares retentive array RTBT with “cold
ARRAY INTS restart” initial values of O for all element$
END VAR
8 ecl ration of structured variables
m Declaration of a variable of derived data
NALOG_16NINRUT I1GURATION; type (see table 12)
.@M

NOTE|1 I\nall atiorf of system inputs is implementation-dependent; see 2.4.2.

NOTE|2 Th es to table 16 a) also apply to this table.

a |f dilbbt:y IUPIEDCIItEd valiabicb dlc C)\pilblt:y :UbdtUd, fcatwca 1 tU 4 wdall UII:y bc uacd iII
PROGRAM and VAR_GLOBAL declarations, as defined in 2.5.3 and 2.7.1, respectively. If the
asterisk notation of feature 10 in table 15 is used to indicate instance specific location
assignment of a partly specified directly represented variable, features 1 and 2 can not be used,
and features 3 and 4 can only be used in declarations of internal variables of function blocks and
programs, as defined in 2.5.2 and 2.5.3, respectively.

2.4.3.2 Initial value assignment

The VAR...END_VAR construction can be used as shown in table 18 to specify initial values of
directly represented variables or symbolically represented single- or multi-element variables.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 43—

Initial values can also be specified by using the instance-specific initialization feature provided by the
VAR_CONFIG. . .END_VAR construct described in 2.7.1 (table 49, feature 11). Instance-specific initial
values always override type-specific initial values.

NOTE The usage of the VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions is defined
in subclause 2.5.
Initial values cannot be given in VAR_EXTERNAL declarations.

During initialization of arrays, the rightmost subscript of an array shall vary most rapidly with respect to
filling the array from the list of initialization variables.

Parentheses ¢z otitionfactor in-array initialization lists, for example 2,3)is
equivalept to the |n|t|aI|zat|on sequence 1,2,3,1, 2 3.
If the number of initial values given in the initialization list exceeds the 4 E'es, the
excess (rightmost) initial values shall be ignored. If the number o&initi an the
number pf array entries, the remaining array entries shall be filled with th ds initj alugs for the
correspdnding data type. In either case, the user shall be warn i ¥ paration
of the prpgram for execution.
When a jvariable is declared to be of a derived, structured datatype efi in 2.3.3.1, initigl values
for the elements of the variable can be declared j i ata type
identifien, as shown in table 18. Element value list
shall ha
When a s for the
inputs a bized list
following able 18.
Elements or those
elements i
No. - >Feature/examples
1° I\t\allza\pn of directly represented variables
%Q OL =1; Boolean type, initial value = 1
INT := Initializes a memory word to integer §
RN VA&
2° \ \\n)ﬁallzatlon of directly represented retentive variables
VAR RETAI At cold restart, the 8 most significant bjts of
AT %QWS : WORD := 16#FF00 ; the 16-bit string at output word 5 are td be
|| u Linitialized to 1 and the 8 least significamt bits
to0
3@ Location and initial value assignment to symbolic variables
VAR Assigns output word 28 to the
VALVE_POS AT %QW28 : INT := 100; integer variable VALVE_POS, with
END_VAR an initial value of 100
4° Array location assignment and initialization
VAR OUTARY AT %QW6 : Declares an array of 10 integers to be
ARRAY[0..9] OF INT := [10(1)]; allocated to contiguous output locations
END_VAR starting at %QW6, each with an initial
value of 1

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—44 —

61131-3 © IEC:2003(E)

Table 18 - Variable initial value assignment features

ARRAY(1..2,12253) OENT <::ETS'
= [:Lm
END_VAR [\\\/«\ <:\\\

No. Feature/examples
5 Initialization of symbolic variables
VAR Allocates a memory bit to the Boolean
MYBIT - BOOL := 1 : variable MYBIT with an initial value of 1
OKAY : STRING[10] := "OK"; Allocates memory to contain a string with a
END VAR maximum length of 10 characters. After
- initialization, the string has a length of 2 and
contains the two-byte sequence of characters
"OK" (decimal 79 and 75 regpectively), in an
order appropriate for pri;t@g as acharagter
string ~
6 Array initialization \
VAR Allocates 8 me taininitied
BITS : ARRAY[O..7] OF BOOL
:= [1,1,0,0,0,1,0,0] ; 1.-4-»
0.
TBT : ARRAY [1..2,1..3] T with
OF INT
-= [1,2.3(4),6] : ;
END_VAR ’
7 Retentive array a‘e@‘a(ati}q and-inifialization
VAR RETAIN RTBT : De retentive array RTBT with “cold reptart”

| of:

[1.3] :
BT[2.2] :

1, RTBT[1,2] :
4, RTBT[2,1] :
4, RTBT[2,3] :

2
4,
0

8 N

VAR Wﬁﬁj

o,
500D

} \lqitﬁi'\zétwp%f structured variables
FI16x

Initialization of a variable of
derived data type (see table 12)

This example illustrates the
declaration of a non-default initial
value for the fifth element of the
CHANNEL array of the variablg
MODULE_8 CONFIG.

9 Initialization of constants
VAR CONSTANT Pl : REAL := 3.141592 ; END_VAR
10 Initialization of function block instances
VAR TempLoop : Allocates initial values to inputs and
PID :-= outputs of a function block instance
(PropBand := 2.5,
Integral := T#5s);
END_VAR

@Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations, as defined in

2.5.3 and 2.7.1 respectively.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 45—

2.5 Program organization units

The program organization units defined in this part of IEC 61131 are the function, function block, and
program. These program organization units can be delivered by the manufacturer, or programmed by
the user by the means defined in this part of the standard.

Program organization units shall not be recursive; that is, the invocation of a program organization unit
shall not cause the invocation of another program organization unit of the same type.

The information necessary to determine execution times of program organization units may consist of
one or more implementation-dependent parameters.

2.5.1 Functions

For the [purposes of programmable controller programming languages, ! defiqed as a
program|organization unit which, when executed, yields exactly one data ele idered
to be the function result, and arbitrarily many additional outp UT and
VAR_IN| OUT). As for any data element, the function result can bg multi-va an array
or strucfure. The invocation of a function can be used in textua nd in an

expressipn. For example, the SIN and COS functions couy)eﬂs\

a) VAR X,Y,Z,RES1,RES2 : REAL;

RES1 := DIV(INL :
RES2 := MUL (SIN(
Z: = ADD(EN := ENI1, S2, ENO => V);

b) | = 4+ \;},---+
SN ENOJ--- V

| |
|-4---] ADD |--- Z

L

IEC 2474/02

a) Structured Text (ST) language - see subclause 3.3
b) Function Block Diagram (FBD) language - see subclause 4.3
NOTE This figure shows two different representations of the same functionality. It is not required
to support any automatic transformation between the two forms of representation.
Figure 4 - Examples of function usage

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 46— 61131-3 © IEC:2003(E)

Functions shall contain no internal state information, i.e., invocation of a function with the same
arguments (input variables VAR_INPUT and in-out variables VAR _IN_OUT) shall always yield the
same values (output variables VAR_OUTPUT, in-out variables VAR_IN_OUT and function result). It
shall be an error if external variables as defined in 2.4.3 cause the violation of this rule.

Any function type which has already been declared can be used in the declaration of another program
organization unit, as shown in figure 3.
2.5.1.1 Representation

Functions and their invocation can be represented either graphically or textually.

In the tgxtual languages defined in clause 3 of this standard, the invocatigm\of functigns'|shall be
according to the following rules:

1) Input argument assignment shall follow the rules given in table 19

2) Assi
3) Assi
4) Assi ;
varig nent.
In the g i i i c 3 ‘ ctions shall be represe¢nted as
graphic
5) The
6) Thelsi her
infor
7) The direction he left
and putput variable
8) Thelfunction
9) Proisi ut and output variable names appearing at the inside left and right
side
- Lides the

moadditinnal 'Fllnr\hr\n Anr\lorc\r] ac conacifiad in 2 5 1 13
f S oo Rartt ec—aS-SpecHea—=o—1o-

This usage is subject to the following provisions:

a) Where no names are given for input variables in standard functions, the default names
IN1, IN2, ... shall apply in top-to-bottom order.

b) When a standard function has a single unnamed input, the default name IN shall apply.

c) The default names described above may, but need not appear at the inside left-hand side
of the graphic representation.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC

:2003(E) —47 -

10) An additional input EN and/or output ENO as specified in 2.5.1.2 may be used. If present, they shall
be shown at the uppermost positions at the left and right side of the block, respectively.

11) The function result shall be shown at the uppermost position at the right side of the block, except if
there is an ENO output, in which case the function result shall be shown at the next position below
the ENO output. Since the name of the function is used for the assignment of its output value as

specified in

2.5.1.3, no output variable name shall be shown at the right side of the block.

12) Argument connections (including function result) shall be shown by signal flow lines.

13) Negation of Boolean signals shall be shown by placing an open circle just outside of the input or

output line

intersection with the block. In the character set defined inAL this shall be

représented by the upper case alphabetic "0O°, as shown in table 19.

14) All i
repre
elen

15) Fun
inpu

16) It sh
invog
itis ¢
a vari
VAR|
VAR|

17) A “pfoperly

funclion invocation ¢

ate
block of the
lead|to an a

shall be
fhe data

,|lused as

function
apped” if
ation, to
N |OUT, or
iofr unit, or to a “properly mapped”
s or function invocation.

mapped” (QVE variable of a function block instgnce or a

S e right, or assigned using the “:=” operator in
eClared in a VAR, VAR_OUT or VAR_EXTERNAL
it. It shall be an error if such a connectipn would

qa.

\\ \}>eatu re® Representation

O

No
1 Negated input ---Q | ---
+--- 4+
2

+-- -+
Negated output - | O --
+-- -+

2 |If either of these features is supported for functions, it shall also
be supported for function blocks as defined in 2.5.2, and vice
versa.

® The use of these constructs is forbidden for in-out variables.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—48 —

61131-3 © IEC:2003(E)

Figure 5 illustrates both the graphical and equivalent textual use of functions, including the use of a
standard function (ADD) with no defined formal argument names; a standard function (SHL) with
defined formal argument names; the same function with additional use of EN input and negated ENO
output; and a user-defined function (INC) with defined formal argument names.

Example Explanation

o + Graphical use of ADD function

| ADD | (See 2.5.1.5.2)

B-—-1 |---A (FBD language; see 4.3)
C-—| | (No formal variable parnes)
DF-T 1

e +

Textual usef fun @w\/
(STI uage; see

e +

| SHL |

B-——]IN |-—-A
c-f-In |

e +

« \/ @ use of SHL function
language; see 3.3)

S +
| SHL |
ENABLE--- | EN
B——-]IN

Fopmal argument names; use of EN ingut

Gra \ﬁl'gl use of SHL function
(See 2.5.1.5.3)
(FBD language; see 4.3)

and negated ENO output)

Textual use of SHL function
(ST language; see 3.3)

(Formal argument names for VAR_IN_ODT)

Graphical use of user-defined
INC function
(FBD language, see 4.3)

Textual use of INC function
(ST language, see 3.3)

C 2475/02

Figure 5 - Use of formal argument names

Features for the textual invocation of functions are defined in table 19 a). The textual invocation of a
function shall consist of the function name followed by a list of arguments. In the ST language defined
in subclause 3.3, the arguments shall be separated by commas and this list shall be delimited on the

left and right by parentheses.

In feature 1 of table 19 a) (formal invocation), the argument list has the form of a set of assignments of
actual values to the formal argument names (formal argument list), that is:

1) assignments of values to input and in-out variables using the **:

="' operator, and

2) assignments of the values of output variables to variables using the "'=>"" operator.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 49—

The ordering of arguments in the list shall be insignificant. In feature 1 of table 19 a), any variable not
assigned a value in the list shall have the default value, if any, assigned in the function specification,
or the default value for the associated data type.

In feature 2 of table 19 a) (non-formal invocation), the argument list shall contain exactly the same

number of arguments, in exactly the same order and of the same data types as given in the function
definition, except the execution control arguments EN and ENO.

Table 19 a) - Textual invocation of functions for formal and non-formal argument list

Feature Example
No. Invocation| Variable | Variable | Number of In Structured Text((ST) language
type assighme order variables -s e 3
nt

1 formal yes any any A = LIM%\T\?&
= L)

2? | pon-formal no fixed fixed A : 4\\'\‘@\ N)

°Fe i i i i ions definedin subclauke
2.8.1. tfeature #1 shall be usdd if

NOTE 1 In the example given in fegtur arigple wil the default value O

(zero).

EN
NOTE 2 The example given in featu
invocation with formal varia Ie

re #1):

ol

2.5.1.2 Execution con
As shown in table;, an_additi lean, EN (Enable) input or ENO (Enable Out) output, or both,
can be provided by ths ~ e according to the declarations

: END_VAR
END_VAR

When th i are ysed, the execution of the operations defined by the function [shall be
controlle e following rules:

1) » is FALSE (0) when the function is invoked, the operations defined by the
fynétion body shall not be executed and the value of ENO shall be reset to FALSE ((i)) by the

kbl + U £
pl uyranmnimavic CUTNMIuUiicl S yolTIiT.

2) Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system,
and the operations defined by the function body shall be executed. These operations can
include the assignment of a Boolean value to ENO.

3) If any of the errors defined in table E.1 for subclauses of 2.5.1.5 occurs during the execution of
one of the standard functions defined in 2.5.1.5, the ENO output of that function shall be reset to
FALSE (0) by the programmable controller system, or the manufacturer shall specify other
disposition of such an error according to the provisions of 1.5.1.

4) If the ENO output is evaluated to FALSE (0), the values of all function outputs (VAR_OUTPUT,
VAR_IN_OUT and function result) shall be considered to be implementation-dependent.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—-50— 61131-3 © IEC:2003(E)

NOTE It is a consequence of these rules that the ENO output of a function must be explicitly
examined by the invoking entity if necessary to account for possible error conditions.

Table 20 - Use of EN input and ENO output

No. Feature Example®
o —— + |
Use of EN and ENO | ADD_EN | + | ADD_OK |
1 Shown in LD (Ladder Diagram) +=—=[1---IEN ENO|---()---+

L} L]
| Al
| B

tfanguage; see 4.2

2 Usage without EN and ENO
Shown in FBD (Function Block
Diagram) language; see 4.3

3 Usage with EN and without ENO
Shown in FBD (Function Bloc
Diagram) language; see 4.

4 Usage witho
Shown in FB (Fu A-—=] + |---C
Dlagra B-—-1 I
e +

[
Dl

[he grapkica age cho n Wnstratlng the features above are given only I
xemples. chosgn by a vendor, shall be in effect for all languages supportgd
y the ven /or\ , LR, 'F

raphical declaration of functions are listed in table 20 a).

2513

Features

As illustratedtin figure B, the textual declaration of a function shall consist of the following elements:
1) TPWMWWW, i ifi ifyi fon being

declared, a colon (:), and the data type of the value to be returned by the function;

2) AVAR_INPUT. . .END_VAR construct as defined in 2.4.3, specifying the names and types of the
function's input variables;

3) VAR_IN_OUT...END VAR and VAR_OUTPUT. . .END_VAR constructs (see F.11 for an example
of the use of the latter construct) as defined in 2.4.3, if required, specifying the names and types
of the function's in-out and output variables;

4) A VAR.._END_VAR construct, if required, specifying the names and types of the function's
internal variables;

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 51—

5) A function body, written in one of the languages defined in this standard, or another
programming language as defined in 1.4.3, which specifies the operations to be performed upon
the variable(s) in order to assign values dependent on the function's semantics to a variable
with the same name as the function, which represents the function result to be returned by the
function (function result), as well as to in-out or output variables;

6) The terminating keyword END_FUNCT ION.
If the generic data types given in table 11 are used in the declaration of standard function variables,

then the rules for inferring the actual types of the arguments of such functions shall be part of the
function definition.

The vari It values
of functipn |nputs and initial values of their internal and output variables.
The valdes of variables which are passed to the function via a VAR _IN_0Y - gmdified
from within the function
As illustr ments:
1) TH
2) A alues of
the
3) A q used in
the
4) A
The mI is an
implem

No. i Example

1 <\{h\ \agé\dgcla tion (textual) VAR_IN_OUT A: INT; END|VAR
2 (\l@n\@r\c@e\dgclaratlon (graphical) See figure 6 b)

3 raphi I&nn ction’of in-out variable to different See figure 6 d)
G& variables(graphical)

T

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

52— 61131-3 © IEC:2003(E)

a) FUNCTION SIMPLE_FUN : REAL
VAR_INPUT
A,B : REAL ; (* External interface specification *)
C : REAL := 1.0;
END_VAR
VAR_IN_OUT COUNT : INT ; END_VAR
VAR COUNTP1 : INT ; END_VAR

COUNTP1 := ADD(COUNT,1); (*Function body specification *)
COUNT := COUNTP1 ;
SIMPLE_FUN := A*B/C;
END_FUNCTION
NOTE In the above example, the input variable is given a default valuge of 120, as

specified in 2.4.3.2, to avoid a “division by zero” error if the ifput is-not specified
when the function is invoked, for example, if a graphical inp is
left unconnected.

b) FUNCTION

S + (* External inter
| SIMPLE_FUN |
REAL----]A |----REAL
REAL----|B |
REAL--—-|C |
INT-———- | COUNT--—COUNT | ----INT

c)
d) . +
| SIMPLE_FUN |
X---—]A |----RESULT
Y----|B |
Z----|C |
COUNT1---] COUNT-==COUNT | -~-——COUNT2
o +

NOTE The effect of this invocation of this function is identical to that
in figure 6 c)

a) Textual declaration in ST language (subclause 3.3)

b) Graphical declaration in FBD language (subclause 4.3)

¢) Usage of a function in ST language

d) Usage of a function in FBD language (subclause 4.3)

Figure 6 - Examples of function declarations and usage

IEC 2476/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —- 53—

2.5.1.4 Typing, overloading, and type conversion

A standard function, function block type, operator, or instruction is said to be overloaded when it can
operate on input data elements of various types within a generic type designator as defined in 2.3.2.
For instance, an overloaded addition function on generic type ANY_NUM can operate on data of types
LREAL, REAL, DINT, INT, and SINT.

When a programmable controller system supports an overloaded standard function, function block
type, operator, or instruction, this standard function, function block type, operator, or instruction shall
apply to all data types of the given generic type which are supported by that system. For example, if a
programmable controller system supports the overloaded function ADD and the data types SINT, INT,
and REAL, then the system shall support the ADD function on inputs of type SINT, INT, and REAL.

When a’l'unction which normally represents an overloaded operator is to be {yped, i-e., thextypes of its
inputs a i i this shall
be done|by appending an “underline” character followed by the required t i }21.

No. Feature

1 Overloaded functions <

NOTE mﬂgsh\gﬁnon-standard functions or function block types is beyond the scqpe of
“this stadard

? If fedture(2 is\w{p;?ted, the manufacturer shall provide a table of which functions are
overloaded and wHich are typed in the implementation.

When the type of the result of a standard function defined in 2.5.1.5 is generic, then the actual types of
all input variables of the same generic type shall be of the same type as the actual type of the function
value in a given invocation of the function. If necessary, the type conversion functions defined in
2.5.1.5.1 can be used to meet this requirement. Examples of the application of this rule are given in
figures 7 and 8.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—54 - 61131-3 © IEC:2003(E)
Type declaration Usage
(ST language - see 3.3) (FBD language - see 4.3)
(ST language - see 3.3)

VAR ot

A - INT ; A-—] + |---C

B - INT ; B——1] |

C - INT ; F——
END_VAR C = A+B:

NOTE Type conversion is not requi

red in the example shown above.

VAR e g
A - INT ; A-——]INT_TO REAL|———| + |---C
B - REAL ; R | |
C : REAL; 2 |
END_VAR e
C := INT_TO REAL(A)+B<i\\\\\\
VAR
A - INT ;
B - INT ;
C : REAL;
END_VAR

(A B
Figure 7 - Examples of exph%/\\m\ve\Werloaded functions

Type de

cl tlon
(ST languag 3)
P\ N

Usage
language - see 4.3)
ST language - see 3.3)

(

O

A---] ADD_INT |---C
B-—-1

A———|INT TO REAL|———| ADD_REAL |---C
e + | |
: B | |
END_VAR T — +
C := ADD_REAL(INT_TO_REAL(A),B)
VAR o + Fom————— +
A - INT ; A-—-] ADD_INT |--—-]INT_TO_REAL]---C
B o INT ; | | Fom - +
C : REAL; B--—-] |
END_VAR Fom +
C := INT_TO_REAL(ADD_INT(A,B));

IEC 2478/02

Figure 8 - Examples of explicit type conversion with typed functions

IEC 2477/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 55—

2.5.1.5 Standard functions

Definitions of functions common to all programmable controller programming languages are given in
this subclause. Where graphical representations of standard functions are shown in this subclause,

equivalent textual declarations may be written as specified in 2.5.1.3.

A standard function specified in this subclause to be extensible is allowed to have two or more inputs
to which the indicated operation is to be applied, for example, extensible addition shall give as its
output the sum of all its inputs. The maximum number of inputs of an extensible function is an
implementation-dependent parameter. The actual number of inputs effective in a formal call of an
extensible function is determined by the formal input name with the highest position in the sequence of

parameter names.

EXAMPLE 1 The statement
X = ADD(Y1,Y2,Y3);
is equivalent to
X = ADD(IN1 := Y1, IN2 := Y2, IN3 := Y3

EXAMPLE 2 The following statements are equivalent
| MUX_INT(K:=3,INO = 1, IN2 :=
1 := 0;

2.5.1.5.1 Type conversion functions

As shown in table 22, type conversion functie
the input variable IN, and “**” the type of/the outp

type conpersion operations,dreiimp ati ent parameters.

__TO_**, where “*” is th
8 OUT, for example, INT_TO_RE
effects df type conversions on accuracy, s Of errors that may arise during exe

b type of
AL. The
cution of

No.

Usage example

1a,b,e

A =1

NT_TO_REAL(B) ;

o +
2° AdNREAL | TREMC AR NT A TRUNC(R)
o +
B +
3 *-—| *_BCD_TO_** |---** A := WORD_BCD_TO_INT(B);
e +
o +
d - To_ 3 L - 7o 3 :
4 **_—| **_TO_BCD_* |---* A := INT_TO_BCD_WORD(B)
o +

NOTE Usage examples are given in the ST language defined in 3.3.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 56— 61131-3 © IEC:2003(E)

Table 22 - Type conversion function features

REA

@ A statement of conformance to feature 1 of this table shall include a list of the specific type
conversions supported, and a statement of the effects of performing each conversion.

® Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round according to
the convention of IEC 60559, according to which, if the two nearest integers are equally
near, the result shall be the nearest even integer, e.g.:

REAL_TO_INT(1.6) isequivalentto 2
REAL_TO_INT(-1.6) isequivalentto -2

TO_INT(1.5) isequivalentto 2

REAL

REAL
REAL

REAL
REAL
°Th

on

TRU
TRU

TRU
TRU
4 Th
be
US
CcO
va
wo

e

WSTH
of 1
2.1

_TO_INT(-1.5) isequivalentto -2

_TO_INT(1.4) isequivalentto 1
_TO_INT(-1.4) is equivalentto -1

__TO_INT(2.5) isequivalentto 2
_TO_INT(-2.5) isequivalentto —2

e function TRUNC shall be used for truncation toward zérq
e of the integer types, for instance,

C(1-6) is equivalent to 1
C(-1.6) is equivalent to -1

C(1-4) is equivalent to 1
C(-1.4) is equivalent to -1

'responding bit-

RD_BCD_}\Q U
When an\in

ING, the shall conform to the external represents
he corr pecified In 2.2, in the character set defindg
1.

the

D

NG or
tion
d in

2.5.1.5.2

The stan
descripti
shall be

ph|ca representation, function names, input and output variable types, and
bns of fun of a single numeric variable shall be as defined in table 23. These
overloaded on the defined generic types, and can be typed as defined in 2.5.1.4. H

functions, the types of the input and output shall be the same.

function
unctions
or these

The standard graphical representation, function names and symbols, and descriptions of arithmetic
functions of two or more variables shall be as shown in table 24. These functions shall be overloaded

on all nu

meric types, and can be typed as defined in 2.5.1.4.

The accuracy of numerical functions shall be expressed in terms of one or more implementation-
dependent parameters.

It is an error if the result of evaluation of one of these functions exceeds the range of values specified
for the data type of the function output, or if division by zero is attempted.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

_57—

Table 23 - Standard functions of one numeric variable

Graphical form

Usage example

(*) - Input/Output (I/O) type
(**) - Function name

A = SIN(B) ;
(ST language - see 3.3)

No. | Function name 1/0 type Description
General functions
1 | MBS ANY_NUM Absolute val}@
2 SORT ANY_REAL Square/i\&{t) (\
Logarithmic functions
LN ANY_REAL Nat&al Mh}n\)
4 | 0G ANY_REAL {Qg\asi&@m1 0\
5 EXP ANY_REAL / M}a@po%@\ntial
Trigonome}pi{:&un/etﬂ)%
6 | $IN ANY_REAL /\ A } (Si@f i\@ﬁ in radians
7 [0S ANY_REAL \ We in radians
8 TAN ANY_REAL (—~ \ Tangent in radians
9 ASIN WEA}/\ \\ \ Principal arc sine
10 \COS AMREAL . Y Principal arc cosine
11 ATAN WL \ \ Principal arc tangent
)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 58— 61131-3 © IEC:2003(E)

Table 24 - Standard arithmetic functions

Graphical form Usage example
o +
ANY_NUM ———] *** |-—— ANY_NUM A := ADD(B,C,D) ;
ANY_NUM ———] I or
-—1 | A = B+C+D ;
. -—1 |
ANY_NUM ———] |
o +
(***) - Name or Qymhnl ,
No.*¢|[Name | Symbol Description /\\ .y
Extensible arithmetic functions /\ \
12° |[AaDD | + OUT := IN1 + IN2 + ... + IN
1 * OUT = IN1 * IN2 * ... *JdN
[TSNV

14° |lsuB | - OUT := INL - IN2

Non-extensible arithmg@uq::?% \ >

/N

15° |lpiv | 7 OUT := IN1 / IN%’\\)/ /Q

16° || mop ouT :<.h1\mc@}o sz k) M

17° || expT | ** Exponenﬁigtiﬁ\: ou}\:}mﬂﬁ/

18" || move | := ouT ::(lN (N
NOTE|1 i

NOTE|2

extual

NOTE|3 i .

@ IN1 engric _INT for this function. The result of evaluating th
funct uivalentaf exetuting the following statements in the ST language a
defin

IF (1IN LSE OUT:=IN1 - (IN1/IN2)*IN2 ; END_IF

® IN1 ANY \REAL, and IN2 of type ANY_NUM for this function. The output sh
of the

¢ The fesulf of*divisiopYof integers shall be an integer of the same type with truncation towarg

forinstanee, 7/3 = 2and (-7)/3 = -2.

S

12

all be

Zero,

4 When the named representation of a function is supported, this shall be indicated by the suffix “n

in the compliance statement. For example, “12n” represents the notation “ADD”.

¢ When the symbolic representation of a function is supported, this shall be indicated by the suffix

“a

s” in the compliance statement. For example, “12s” represents the notation “+”.

" The MOVE function has exactly one input (IN) of type ANY and one output (OUT) of type ANY.

9 The generic type of the inputs and outputs of these functions is ANY_MAGNITUDE.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

2.5.1.5.3 Bit string functions

— 59—

The standard graphical representation, function names and descriptions of shift functions for a single
bit-string variable shall be as defined in table 25. These functions shall be overloaded on all bit-string
types, and can be typed as defined in 2.5.1.4.

The standard graphical representation, function names and symbols, and descriptions of bitwise
Boolean functions shall be as defined in table 26. These functions shall be extensible, except for NOT,
and overloaded on all bit-string types, and can be typed as defined in 2.5.1.4.

Table 25 - Standard bit shift functions (

Graphical form

I **k*k I
ANY_BIT -——]IN
ANY_INT -——|N |

(***) - Function Name

|--- ANY_BIT

@,
RO T

No. Name
1 | ne OUT N Teft'shiftedd by NNbits, zero-flled on right
2 bHR ouT -1 right\-s\hl‘fgd N bits, zero-filled on left
3 ROR OQQ’ :S\Ngf%@‘aw{i by N bits, circular
4 \ \((}U{\\ Wefwm{ated by N bits, circular

NOTE

The notation (I{UWs\tot Tu{ctb&\t&pﬂ/t

2.51 .5.41
Selectio
represer

The star
functions

Compari

It shgll be an er}n‘t e val of\th\ N\L;()S/Iess than zero.
N

jraphical

lble 27.
parison

s defjned in table 28. All comparison functions (except NE) shall be extensjble.

ons of bit string data shall be made bitwise from the maost significant to the least significant

bit, and shorter bit strings shall be considered to be filled on the left with zeros when compared to
longer bit strings; that is, comparison of bit string variables shall have the same result as comparison

of unsigned integer variables.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-60— 61131-3 © IEC:2003(E)

Table 26 - Standard bitwise Boolean functions

Graphical form Usage examples
Fom—m + A = AND(B,C,D) ;
ANY_BIT -——] *** |-—— ANY_BIT or
ANY_BIT -—] |
: - | A:=B&C&D ;
: -1 |
ANY_BIT -—] |
[—— +
(***) - Name or symbol
No.?® || Name Symbol Description /\(
5 AND & (NOTE 1) OUT := IN1 & IN2 & ... & |Nn/\ \
6 OR >=1 (NOTE2) | OUT := IN1 OR IN2 OR ...
7 | xor =2k+1 (NOTE 2) | OUT := INL1 XOR IN2 xo/Fe/\\xo@% \ N
8 NOT OUT := NOT IN1 N/IQ\\\\)
NOTE[1 This symbol is suitable for use as an operatof i \ngw Bbles
52 and 55.
NOTE|2 This symbol is not suitable f
NOTE[3 The notations IN1, IN2, ..., 1 fers to
the output.
NOTE[4 Graphic negation of signals of tyge BOOIcanalso [in[table
19.
NOTE|5 Usage exaN)Ie an es(%iptl i i i in 3.3.
Whan the named represen ioh\i , thi indi Liffix
“n” inlthe comy e gtatem
® When the symboli suffix
“s”in

the comp&éﬁi

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

—61 -

Table 27 - Standard selection functions®

No. Graphical form Explanation/example
e + Binary selection®:
| SEL | OUT := INO if G = O
1 | BooL--]G | --ANY OUT := INLif G =1
ﬁsi:::::mg : EXAMPLE:
e + A = SEL(G:=0,INO:=X,IN1:=5) ;
F———— + Extensible maximum function:
| MAX | OUT := MAX (IN1,IN2, , INN)
2a — —
Al Y_ELEMENI I:\HI__ : : ANY_ELEMENTARY EXAMPLE:
ANY_ELEMENTARY--] | A = MAX(B.C,
[— +
F———— + \N\>
| MIN |
2b | ANy ELEMENTARY——l | --ANY_ELEMENTARY
—1
ANY ELEMENTARY——l |
[— +
o +
| LIMIT |
3 ANY_ELEMENTARY--|MN
ANY_ELEMENTARY--]IN |
NY_ELEMENTARY--MX |
Extensible multiplexer
Select one of N inputs
4° depending on input K
EXAMPLE:
A = MUX(0, B, C, D);
would have the same effect ap
A =B ;
NOTE The tians ..., INn refer to the inputs in top-to-bottom order; OUT|refers
ut
NOTE 2 gee les and descriptions are given in the ST language defined in 3.3.
®The un named inputs im the MUX function shall have the default names INO, IN1,...,INn-1in
top-to bottom order;where n is the total number of these inputs. These names may, but negd not,

be ShUVVII LLIL} lI < Hlaplllbdl IUPICOCIILGLIUI L

® The MUX function can be typed as defined in 2.5.1.4 in the form MUX_*_**_ where * is the type
of the K input and ** is the type of the other inputs and the output.

°lt is allowed, but not required, that the manufacturer support selection among variables of derived
data types, as defined in 2.3.3, in order to claim compliance with this feature.

4 |tis an error if the inputs and the outputs to one of these functions are not all of the same actual
data type, with the exception of the G input of the SEL function and the K input of the MUX function.

® Itis an error if the actual value of the K input of the MUX function is not within the range {0. .n-1}.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-62— 61131-3 © IEC:2003(E)

Table 28 - Standard comparison functions

Graphical form Usage examples

ANY_ELEMENTARY --] ***]--- BOOL A

-1 |
ANY_ ELEMENTARY -1 |

GT(B,C,D) ;
or
(B>C) & (C>D) ;

+
I

I

I

I

|
+
>
1

(***) - Name or Symbol

No. | Name?® | Symbol® Description

5 5T > Decreasing sequence:
OUT := (IN1>IN2) & (IN2>IN3) &

6 bE >= Monotonic sequence: \\\\h)
ouT := (IN1>:IN2)&(IN2>—IN3)&//\\\ S2\UN

7 EQ = Equality:
OUT := (IN1=IN2) & (|N2_|ﬂ§55&\\ \QF\JN = INn)

8 LE <= Monotonic sequence:
OUT := (IN1<=IN2)&(NZj‘tNB) n-1 <= INn)

9 LT < Increasm equenc Q
ouT : <I 2) & ((IN2xl & (INn-1 < INn)
10 \E <> Inequali |b\)J
ouUT := (N1 <>

NOTE|1 The notationg IN1, IN2, .) h\e\u’(puts in top-to-bottom order; OUT
refers to the outpdt.

V

NOTE iR, thi are/suitable for use as operators in textual

NOTE - i s are given in the ST language defined in 3.3.

@ Whe function is supported, this shall be indicated by the syffix “n”
in the r example, “5n” represents the notation “GT”.

® Whe i ion of a function is supported, this shall be indicated by the suffix

s” in

All the fudetions defified in 2.5.1.5.4 shall be applicable to character strings. For the purposes of
comparison-of-two-stringsof unequat-tength;,-the-shorter-string—shatt-be—considered-tobeextended on
the right to the length of the longer string by characters with the value zero. Comparison shall proceed
from left to right, based on the numeric value of the character codes in the character set defined in
2.1.1. For example, the character string "Z" shall be greater than the character string "AZ", and “AZ*"
shall be greater than "ABC*".

The standard graphical representations, function names and descriptions of additional functions of
character strings shall be as shown in table 29. For the purpose of these operations, character
positions within the string shall be considered to be numbered 1,2,...,L, beginning with the
leftmost character position, where L is the length of the string.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) - 63—

It shall be an error if:
- the actual value of any input designated as ANY__INT in table 29 is less than zero;

- evaluation of the function results in an attempt to (1) access a non-existent character position in
a string, or (2) produce a string longer than the implementation-dependent maximum string
length.

Table 29 - Standard character string functions

No. Graphical form? Explanation/example

1 e + String Ienqth ﬁuﬁcllon

e + h 1= LEN A T G'
is equiv.

| LEFT |
ANY_STRING--] IN |--ANY_STRING
ANY_INT---—- IL |

| RIGHT |
ANY_STRING--] IN |--ANYSSTRING ="ASTR",L:=

ANY_INT----- IL I is equivalent to
A * A = "STR" ;

L characters of IN,
beginning at the P-th
Example:

A = MID(IN:="ASTR",L:=2,P1=2);
is equivalent to
A = "ST" ;

Extensible concatenation

Example:

A :-= CONCAT("AB","CD","E") ;
is equivalent to

A :-= "ABCDE" ;

Insert IN2 into IN1 after the
P-th character position

ANN. _CTORMNC
N T _ I T INEINT

L1
II
ANY_STRING--] IN
ANY_INT-—-—- IP

i = Example:
I AZ=INSERT(IN1:="ABC",IN2:="XY",P=2
):
is equivalent to
A = "ABXYC" ;

7 Fommm + Delete L characters of IN, beginning
| DELETE | at the P-th character position

ANY_STRING--] IN | --ANY_STRING
ANY_INT---—- IL | Example:

- A := DELETE(IN:="ABXYC",L:=2,
ANY_INT--——- P | P-=3)
is equivalent to
A = "ABC" ;

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 64—

61131-3 © IEC:2003(E)

Table 29 - Standard character string functions

No. Graphical form? Explanation/example
8 Fomm e + Replace L characters of IN1 by IN2,
| REPLACE | starting at the P-th character position
ANY_STRING--] IN1 | --ANY_STRING E le:
ANY_STRING-—] IN2 I XAa"_‘ge'
ANY_INT----- It I REPLACE(IN1:="ABCDE", IN2:="X",
ANY_INT-———- IP | L:=2, P:=3) ;
A + is equivalent to
9 S + Find the character p inning of
| FIND | the first occurr NIf no
ANY_STRING--] IN1 |--ANY_INT occurrence of | > =0.
ANY STRING--] IN2 |
A " A :=F "BC")
NOTE| The examples in this table are given in theﬂ&’w};TKWage 3.3.
2.5.1.5.4 Functions of time data types
In additipn to the comparison_and selectign f in 2.5.1.5.4, the combinationg of input

and outgut time data types ghowq i

It shall he an error if the\tesult of evaluating

on
able shall b& allo

d with the associated functions.

N\ nctions of time data types
Mic and concatenation functions
No. Name-\ (| Symbol INL IN2 ouT
ALY

12%¢ \QD\D\ \ + TIME TIME TIME

16°¢] | ADRSTHVEN + | TIve TIVE TIME

2a | ppD? +° TIME_OF_DAY TIME TIME_OF_DAY
2b | ADD_TOD_TIME = TIME_OF_DAY TIME TIME_OF_DAY
3a | apD® - DATE_AND_TIME TIME DATE_AND_TIME
3b | ADD DT_TIME - DATE_AND_TIME TIME DATE_AND_TIME
42> suB - TINE TIME TIME
4b°?| SUB_TIME - TINE TIME TIME

5a | suB® =" DATE DATE TIME

Sb | suB_DATE_DATE =" DATE DATE TIME

6a | suB® =" TIME_OF_DAY TIME TIME_OF_DAY
6b | suB TOD TIME =" TIME_OF_DAY TIME TIME_OF_DAY
7a | suB® =" TIME_OF_DAY TIME_OF_DAY TIME

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

— 65—

Table 30 - Functions of time data types

Numeric and concatenation functions
No. Name Symbol IN1 IN2 ouT
7b | suB_TOD_TOD =" TIME_OF_DAY TIME_OF_DAY TIME
8a | suB® =" DATE_AND_TIME TIME DATE_AND_TIME
8b | suB DT_TIME =" DATE_AND_TIME TIME DATE_AND_TIME
9a | suB® =" DATE_AND_TIME DATE_AND_TIME TIME
9b | suB DT DT =" DATE_AND_TIME DATE_AND_TIME TIME
10a foc” = TIME ANY_NUM TIMES
% b
10b | juLTIME TIME ANY_NUM /\< T@R
11a | piv® /° TIME ANY_NUM \ \ Tlhs\
11b | pIvTIME /7° | TivE ANY NU!\K \ Tl\wF\ >
12 | CONCAT DATE_TOD DATE TIMQW 5\TE_AND_1 IME
Type conversion nct|
13: DT_TO_TOD \/
14° | pT_TO DATE (\ /\
NOTE|1 Non-blank entries in the Sy sth as operators in textdial
languages, as shown in tables
NOTE|2 The notations IN1, IN2, ..., i in top-to-bottom order; OUT refers to
the output.
NOTE|3 Itis possible td d DIVTIME, e.g., the operands of
MULTIME_ REAL, respectively
NOTE|4 The effects|of e data types and types STRING and WSTRING
are @@
NOTE|5 The effé setween time data types and other data types not
deﬂne;ir\ this entation-dependent.
., the
X = DT#1986-04-28-08:40:00 ;

DATE#1986-04-28 ;
= TIME_OF_DAY#08:40:00; .

o <
X

s” in the compliance statement. For example,

This usage is deprecated and will not be included in future editions of this standard.

° When the named representation of a function is supported, this shall be indicated by the suffix “n”
in the compliance statement. For example, “1n” represents the notation “ADD”.

4 When the symbolic representation of a function is supported, this shall be indicated by the suffix
“1s” represents the notation “+”.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

2.51.5.7

— 66— 61131-3 © IEC:2003(E)

Functions of enumerated data types

The selection and comparison functions listed in table 31 can be applied to inputs which are of an
enumerated data type as defined in 2.3.3.1.

Table 31 - Functions of enumerated data types

No. | Name Symbol Feature No. in tables 27 and 28
1 SEL 1
2 MUX 4

2.5.2 Fu

For the purposes of programmable controller progra es, a funcCtion block is a
organizgtion unit wh|ch when executed, ~yi

(copies)
instance

the implémentation, values of or reference its i iakles. All the values of the output

and the all persist from one executig
function block with the same argumer
variables

Only the]i € outside of an instance of a function b
the funcfi hidden from the user of the function block.
Executig < ungtion btock shall be invoked as defined in clause 3 fg
languagg¢s, accordingt 3 twork evaluation given in clause 4 for graphic langy

under the

Any fungti

function

The sco

is instanfi

a

EQ = 7

3 A

4° NE <> 10 /\\ \

NOTE The provisions of NOTES 1-2 of table 28 apply tothis\table- \
2 The provisions of footnotes a and b of table 28 app‘tho t?is&a\{e.

nction blocks \ \>

g an associated iden

¢hart (SFC) elements as defined in 2.6.

already been declared can be used in the declaration of
type as shown in figure 3.

program

Multiple, named ihstances

ifier (the

name), and a data structure cont'mn it outpt and\interpal variables, and, depephding on

ariables
n of the
ts (input

ock, i.e.,

r textual
ages, or

another

which it

As illustrated in 2.5.2.2, the instance name of a function block instance can be used as the input to a
function or function block if declared as an input variable in a VAR _INPUT declaration, or as an
input/output variable of a function block in a VAR_IN_OUT declaration, as defined in 2.4.3.

The maximum number of function block types and instantiations for a given resource are
implementation-dependent parameters.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 67—

2.5.2.1 Representation

As illustrated in figure 9, an instance of a function block can be created textually, by declaring a data
element using the declared function block type in a VAR. . _.END_VAR construct, identically to the use
of a structured data type, as defined in 2.4.3.

As further illustrated in figure 9, an instance of a function block can be created graphically, by using a
graphic representation of the function block, with the function block type name inside the block, and
the instance name above the block, following the rules for representation of functions given in 2.5.1.1.

As shown in figure 9, input and output variables of an instance of a function block can be represented
as elements of structured data types as defined in 2.3.3.1.

If either pf the two graphical negation features defined in table 19 is suppo for_function’blocks, it
shall alsp be supported for functions as defined in 2.5.1, and vice versa. Q

Graphical (FBD language) Textu;l\(g‘(lan\l.ﬁg \

%]
%]

a--|
b--1
_',
IEC 2479/02
Assignmy ithin the
function ds part of
the invog nall keep
their init the values from the latest previous invocation, if any. Allowable ugages of

function |block inputs and outputs are summarized in table 32, using the function block FF7% of type
SR shown'infigure 9. The examples are shown In the ST language.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-68 - 61131-3 © IEC:2003(

Table 32 - Examples of function block I/O variable usage

E)

Usage Inside function block Outside function block
Input read IF IN1 THEN ... Not allowed (Notes 1 and 2)
Input assignment Not allowed (Note 1) FB_INST(IN1:=A,IN2:=B);
Output read OUT := OUT AND NOT IN2; C = FB_INST.OUT;
Output assignment OUT := 1; Not Allowed (Note 1)
In-out read IF INOUT THEN ... IF FB1.INOUT THEN...
In-out assignment INOUT := OUT OR IN1; (Note 3) FB_INST(INOUT:=D);
NOTE|1 Those usages listed as “not allowed” in this table could lead toA iof-
dependent, unpredictable side effects.
NOTE|2 Reading and writing of input, output and internal variables\of a functiow bl %ay
be performed by the “communication function”, “operator i
“programming, testing, and monitoring functions” defined i
NOTE|3 As illustrated in 2.5.2.2, modification within the iable de¢lared
in a VAR_IN_OUT block is permitted.

2.5.21a
As shown in table 20 for functions, for functio additionaiBoolean EN (Enable) input or ENO
(Enable i anufacturer or user according to the
declarations

VAR_INPUT

VAR_OUTPUT

When th
controlle

1) If
of

d according’to

the value’of ENO shall be set to TRUE (1) by the programmable controller

pse vari ion“of the operations defined by the function block shall be

en the function block instance is invoked, the assignments
ion block inputs may or may not be made in an implementation-

ted

stem,

the asSignments gf actual values to the function block inputs shall be made and the opefations

3) If the ENO output is evaluated to FALSE (0), the values of the function block outputs
(VAR_OUTPUT) keep their states from the previous invocation.

NOTE Itis a consequence of these rules that the ENO output of a function block must be explicitly

examined by the invoking entity if necessary to account for possible error condition

S.

EXAMPLES The figures below illustrate the use of EN and ENO in association with the standard

TP, TON and TOF blocks (represented by T**) defined in subclause 2.5.2.3.4,

and the

CTU and CTD blocks (represented by CT*) defined in subclause 2.5.2.3.3. In accordance
with the above rules, a FALSE value of the EN input may be used to “freeze” the operation
of the associated function block; that is, the output values do not change irrespective of

changes in any of the other input values. When the EN input value becomes TRUE,

normal

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 69—

operation of the function block may resume. The value of the ENO output is FALSE after
each evaluation of the function block for which the EN input is FALSE. When EN is TRUE, a
TRUE value of ENO reflects a normal evaluation of the block, and a FALSE value of ENO

may be used to indicate an implementation-dependent error condition.

o + o +
I T | | Ccm™ |
BOOL---]EN ENO]---BOOL BOOL---]EN ENO]---BOOL
BOOL---]IN Q] ---BOOL BOOL--->CU Q] ---BOOL
TIME-—-|PT ET]---TIME BOOL---]R CV]---INT
Fom - + INT-—|PV |
o ——_ +
2.5.2.2 Declaration
As illustfated in figure 10, a function block shall be declared tex{uall he same
manner fs defined for functions in 2.5.1.3, with the differences d i arized in
table 33

1) The delimiting keywords for all be
FUNCTION_BLOCK...END_FUNCTION_BLOC

2) The RETAIN qualifier defined in 2.4 function
blpck, as shown in features 1, 2, and

3) The values of variables which are pa construct
cgdn be modified from within the fun

4) The output values of & 2 plock via
a MAR_INPUT, VAR_ AE onstruct can be accessed, but not odified,
from within the furcti i '

5) Affunction btos | OUT or
VAR_EXTERNA hown in
feptures 6 and ¢

6) In e R_EDGE and F_EDGE qualifiers can be used to indicate an edge-
de function
bl required
eq and the
aq

7T jraphical
decldarations ising and falling edge detection. When the character set defined in 2.1.1 is
uged."the “greater than” (>) or ‘I than” (<) character shall in line with th je of the

function block. When graphic or semigraphic representations are employed, the notation of IEC

60617-12 for dynamic inputs shall be used.

8) If the generic data types given in table 11 are used in the declaration of standard function block
inputs and outputs, then the rules for inferring the actual types of the outputs of such function
block types shall be part of the function block type definition. In textual invocations of such
function blocks assignments of the outputs to variables shall be made directly in the invocation

statement (using the operator ‘=>).

9) The asterisk notation (feature No. 10 in table 15) can be used in the declaration of internal

variables of a function block.
10) ENZENO inputs and outputs shall be declared and used as described in 2.5.1.2a).

11) It shall be an error if no value is specified for: (i) an in-out variable of a function block instance;
(i) a function block instance used as an input variable of another function block instance.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-70- 61131-3 © IEC:2003(E)

As illustrated in figure 12, only variables or function block instance names can be passed into a
function block via the VAR_IN_OUT construct, i.e., function or function block outputs cannot be passed
via this construction. This is to prevent the inadvertent modifications of such outputs. However,
“cascading” of VAR_IN_OUT constructions is permitted, as illustrated in figure 12 c).

(* a) Textual declaration in ST language (see 3.3) *)

FUNCTION_BLOCK DEBOUNCE
(*** External Interface ***)

VAR_INPUT
IN - BOOL ; (* Default = 0 *)
DB_TIME : TIME := t#lOms ; (* Default = t#10ms *)
END_VAR
VAR_OUTPUT OUT : BOOL ; (* Default = 0 *)
ET_OFF : TIME ; (* Default = t#0s *)
END_VAR
VAR DB_ON : TON ; * Internal
DB_OFF : TON ; * and FB
DB_FF : SR ;
END_VAR

(** Function Block Body **)
DB_ON(CIN := IN, PT := DB _TIME) ;
DB_OFF(IN := NOT IN, PT:=DB_TIME)
DB_FF(S1 :=DB_ON.Q, R :=
OUT := DB_FF.Q ;

ET_OFF := DB_OFF.ET ;

END_FUNCTION_BLOCK

(* b) Graphic

FUNCTION_BLIOCK
(** Externg

OUT|---BOOL
ET_OFF|---TIME

DB_FF
et
I SR |
IS1 Q]---OuT
| “+-—]PT ET] +—|JR |
1 [p——— F [
1 |
11 DB_OFF |
[B +
I I 1 ToNT |
+-=]--O]IN Q]--+
DB_TIME——+-——]PT ET|--——-————————— ET_OFF
S—— +

END_FUNCTION_BLOCK

IEC 2480/02

Figure 10 - Examples of function block declarations

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -71-

Table 33 - Function block declaration and usage features

No. Description Example
1a RETAIN qualifier on internal variables VAR RETAIN X : REAL ; END_VAR
1b NON_RETAIN qualifier on internal VAR NON_RETAIN X : REAL ; END_VAR
variables
2a RETAIN qualifier on output variables VAR_OUTPUT RETAIN X : REAL ; END_VAR
2b RETAIN qualifier on input variables VAR_INPUT RETAIN X : REAL ; END_VAR
2c —Rﬁwmuaﬁﬁmmurmrmmﬁ%mo_vm
2d RETAIN qualifier on input variables VAR_INPUT NON_RETAIN<g\:\ R@\K;\EQE_VAR
3a RETAIN qualifier on internal function blocks VAR RETAIN T@l\}&q B\ R
3b [NON_RETAIN qualifier on internal function blocks | VAR NON @TW%\ \Q\l >EN) VAR
4a VAR_IN_OUT declaration (textual) VAR_IN OUM \Q) Vk&
4b VAR_IN_OUT declaration and usag/e@ra\pm\'c\al\ \ See figure 12
4c | VAR _IN_OUT declaration with assignment to g@f&re@r%t%s\(g\rap%al) See figuyre 12d
5a Function block instance nam inpu AR |NPQT>| TWR: TON ; END_VAR
(textual) EXPIRED T= 1 TMR.Q; (* Note 1 %)
5b Function block instanpénam\%pﬁ\(gra?ﬁic/al) | See figlire 11a
6a Function block instance na W_OUT 10_TMR: TOF ; END_VAR
VAR_IN/QUT (t al }_ MR(IN:=A_VAR, PT:=T#10S);
PIRED := 10_TMR.Q; (* Note 1 [*)
6b Functdn\b@@sta e amw IN_OUT (graphical) See figyire 11b
7a Funch@c instan me s\exte)‘)al VAR_EXTERNAL EX_TMR : TOF ;END_|VAR
ble EX_TMR(IN:=A VAR, PT:=T#10S);
EXPIRED := EX_TMR.Q; (* Notg 1 *)
7b Fuﬁct@g\@c\q ce jlame as external variable (graphical) | See figlire 11c
' }JNCTION_BLOCK AND_EDGE (* Note 2 *)
8a AR_INPUT X : BOOL R_EDGE;
8b Y : BOOL F_EDGE;
END_ VAR
VAR_OUTPUT Z : BOOL ; END VAR
Z = XAND Y ; (* ST language example *)
END FUNCTION BLOCK (*— see 3.3 *)
FUNCTION_BLOCK (* Note 2 *)
Fomm + (* External interface *)
Graphical declaration of: | AND_EDGE |
9a rising edge inputs BOOL ————>X Z|---BooL
9b falling edge inputs BOOL————lY :
| |
- +
+-——+ (* Function block body *)
X———] & |---Z (* FBD language example *)
Y———] | (* - see 4.3 *)
et
END_FUNCTION_BLOCK
10a VAR_EXTERNAL declarations within function block type declarations

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—72- 61131-3 © IEC:2003(E)

Table 33 - Function block declaration and usage features

No. Description Example

10b VAR_EXTERNAL CONSTANT declarations within function block type declarations
1 VAR_TEMP declarations (see 2.4.3) within function block type declarations
NOTE 1 Itis assumed in these examples that the variables EXPIRED and A_VAR have been

declared of type BOOL.

NOTE 2 The declaration of function block AND_EDGE in the above examples is equivalent to:

FUNCTION_BLOCK AND_EDGE

H

VAR INPUT X : BOOL; Y - BOOL

X_TRIG(CLK := X) ;

Y TRIG(CLK := Y) ;

Z = X_TRIG.Q AND Y_TRIG.Q;
ND_FUNCTION_BLOCK

See 2.5.2.3.2 for the definition of the edge detectionfunction biosks R YRIG and

F_TRIG.

; END_VAR
VAR X_TRIG : R_TRIG ; Y_TRIG :

F_TRIG ; END_VAR

=3

&

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 73—

FUNCTION_BLOCK

Fom + (* External interface *)
| INSIDE_A |
TON---]1_TMR EXPIRED|---BOOL
o +
e + (* Function Block body *)
| MOVE |
1_TMR.Q---] | -——EXPIRED
Fe—— +

HND_FUNCTION_BLOCK

HUNCTION_BLOCK

| EXAMPLE_ A |
BOOL---]GO DONE | ---BOOL

| TON |
GO---1IN Q]
t#100ms-—-|PT ET]

NOTE 1_TMR is ng

I_TMR with
feat)
Figure

e of a function block name as an input variable
able 33, feature 5b)

q

q

IEC 2481/02

Cation of
Bee also

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

74— 61131-3 © IEC:2003(E)

FUNCTION_BLOCK
Fom + (* External interface *)
| INSIDE_B |
TON-=-]1_TMR--=-1_TMR|---TON
BOOL-- | TMR_GO EXPIRED]---BOOL

1_TMR (* Function Block body *)

| _TON |

TMR_GO--]IN Q]---EXPIRED

HUNCTION_BLOCK

IPT ET|
S +
HND_FUNCTION_BLOCK

oo + (* External interface
| EXAMPLE_B |

BOOL---]GO DONE | ---BOOL
S
E_TMR
Fm————
| TON |
1IN Q]
t#100ms--—-|PT EL]

END_FUNCTION_BﬁbQﬁ/\

Figure 11 aphic fa function block name as an in-out variable
@ le 33, feature 6b)

EC 2482/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 75—

FUNCTION_BLOCK
Fom + (* External interface *)
| INSIDE_C |
BOOL-- | TMR_GO EXPIRED]---BOOL

VAR_EXTERNAL X_TMR : TON ; END_VAR
X_TMR (* Function Block body *)

|_TON |

TMR_GO---]IN Q]---EXPIRED

PRQGRAM

o + (* External interface*
| EXAMPLE_C |

gooL---]GO DONE | ---BOOL

MAR_GLOBAL X_TMR : TON ;

| INSIDE
6Q-—--—- ITMR_GO

ENOQ_PROGRAM

IPT ET|
S S +
END_FUNCTION_BLOCK

A
;

eP claration mechanism is defined in 2.5.3.

(table 33, feature 7b)

Fig 10c) \G | use of a function block name as an external variable

IEC 2483/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—76 —

61131-3 © IEC:2003(E)

12a) Fomm +
| ACCUM | FUNCTION_BLOCK ACCUM
INT-—-JA-———- A]---INT VAR_IN_OUT A - INT ; END VAR
INT---|X | VAR_INPUT X : INT ; END VAR
o + A = A+X ;
+o——t END_FUNCTION_BLOCK
A-—-] + |-—-A
X-—-1 |
et
12b) ACC1 A declaration such as
Fo—————= ¥ VAR
| ACCUM |
ACC—————————— |A-———- A]---ACC
t——t | |
ot I e nis
X2———J|r_“J|r Fom——— + AC
12c) ACC1 \Deot%rations as in
oo 12b) are assuined for
ACC, X1, X2, X3,
\NCCm———— e 1A and X4.; the effect of
ot execution is
1-—] * |-—-]X ACC :=
2| T ACC+X1*X2+X3*X4;
+———t

12d)

INT ;

INT ;

- INT ;

... X4 I INT ;
END_VAR

is assumed: the effect of execution is
X3 1= X3+X1*X2 ;
X4 = X3 ;

~
12¢)

ILLEGAL USAGE!!!
Connection to in-out variable A is not a
variable or function block name [see

preceding text)

IEC 2484/02

Figure 12 - Declaration and usage of in-out variables in function blocks
a) Graphical and textual declarations
b), c), d) Legal usage, e) lllegal usage

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 77—

2.5.2.3 Standard function blocks

Definitions of function blocks common to all programmable controller programming languages are
given in this subclause.

Where graphical declarations of standard function blocks are shown in this subclause, equivalent
textual declarations, as specified in 2.5.2.2, can also be written, as for example in table 35.

Standard function blocks may be overloaded and may have extensible inputs and outputs. The
definitions of such function block types shall describe any constraints on the number and data types of

such inputs and outputs. The use of such capabilities in non-standard function blocks is beyond the
scope of this Standard

2.5.2.3.1 Bistable elements

The graphical form and function block body of standard bistable eleménis a
notation|for these elements is chosen to be as consistent as possible wi
12-09-02 of IEC 60617-12.

Table 34 - Standard bistfrbis u |0Nlo s?
No. Graphical form Q h < \ \F{mﬁt{)n block body
1 Bistable/fhnctiér\}chk et dominant)

I SR |
BOOL---|S1 Q

BOOL--- |
——P

2 block (reset dominant)
B
Rl-——m oo o] & |---Q1
oo + 11
S-—mmm—- | >=1 |-—1 |
Ql---—--- | | 11
[—— + et

NOTE| “The function block body is specified in the Function Block Diagram (FBD) language
defined in 4.3.

@ The initial state of the output variable Q1 shall be the normal default value of zero for Boolean
variables.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—-78- 61131-3 © IEC:2003(E)

2.5.2.3.2 Edge detection

The graphic representation of standard rising- and falling-edge detecting function blocks shall be as
shown in table 35. The behaviors of these blocks shall be equivalent to the definitions given in this
table. This behavior corresponds to the following rules:

1) The Q output of an R_TRIG function block shall stand at the BOOL#1 value from one execution
of the function block to the next, following the O to 1 transition of the CLK input, and shall return
to O at the next execution.

2) The Q output of an F_TRIG function block shall stand at the BOOL#1 value from one execution
of the function block to the next, following the 1 to O transition of the CLK input, and shall return
to|O at the next execution.

Table 35 - Standard edge detection functlgﬁ}@x

No. Graphical form ltlon
T Ia ua se 3.3)

1 Rising edge F(e:te/;gor >
Spa

Fo—————— + K: BOOL; END_VAR
| R_TRIG | Q: BOOL; END_VAR
BOOL-—-]CLK Q|---BooOL OL; END_VAR
[T —— +
" _Palling edgp
2 [\ N edge detector

FUNCTION_BLOCK F_TRIG
VAR_INPUT CLK: BOOL; END_VAR
VAR_OUTPUT Q: BOOL; END_VAR
VAR M: BOOL; END_VAR

Q := NOT CLK AND NOT M

M = NOT CLK;

END FUNCTION_BLOCK

NOTE] K input of an instance of the R_TRIG type is connected to a value of
t will stand at BOOL#1 after its first execution following a “cold restart”

he same applies to an F_TRIG instance whose CLK input is disconneg¢ted
orMs connected to a value of FALSE.

2.5.2.3.3 Counters

The graphic representations of standard counter function blocks, with the types of the associated
inputs and outputs, shall be as shown in table 36. The operation of these function blocks shall be as
specified in the corresponding function block bodies.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

—79—

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)
Up-counter
1a S + IF R THEN CV = 0 ;
| CTU | ELSIF CU AND (CV < PVmax)
BOOL--->CU Q] ---BOOL THEN CV 1= CV+1;
BOOI ——=|R] END IF :
INT--—]PV CV|---INT Q := (CV >= PV) ;
[— +
1b S + Sane as\a
| CTU_DINT |
BOOL--->CU Q]---BooL
BOOL---|R |
DINT---]PV CV|---DINT
Fom e + /\
1c T —— + u ame-ds 1a
| CTU_LINT | <z>
BOOL--->CU Q]---B0O
BOOL---|R |
LINT---]PV CV]---LINT
1d Same as 1a
1e Same as 1a
CV]---ULINT
—-———1t
Down-counter
2a e + IF LD THEN CV := PV ;
| CTD | ELSIF CD AND (CV > PVmin)
BOOL--->CD Q] ---BOOL THEN CV := CV-1;
BOOL---|LD | END_IF ;
INT--—|PV CV]---INT Q = (CV <= 0) ;
[— +
2b o + Same as 2a
| CTD_DINT |
BOOL--->CD Q] ---BOOL
BOOL---]LD |
DINT---]PV CV]---DINT

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)
2c oo + Same as 2a
| CTD_LINT |
BOOL--->CD Q] ---BoOL
BOOL---|LD |
LINT---]PV CV]---LINT
e - +
2d oo + Same as 2a—~.
| CTD_UDINT |
BOOL--->CD Q] ---BOOL
BOOL---|LD |
UDINT---|PV CV]---UDINT
o + <(\\\\\
2e I + a % 2a
| CTD_ULINT |
BOOL--->CD Q] ---BOOL
BOOL---|LD |
ULINT---|PV CV]---ULINT
e + /\ G
Ub-down courtsr.__
3a Fom R EN CV := ;
| CTUD | THEN CV := PV ;
BOOL--->CU
BOOL--->CD NOT (CU AND CD) THEN
BOOL---|R IF CU AND (CV < PVmax)
BOOL--- LD THEN CV := CV+1;
INT—1<iE§ ELSIF CD AND (CV > PVmin)
- THEN CV := CV-1;
END_IF;
END_IF;
END_IF ;
QU := (CV >= PV) ;
e QD = (CV <= 0) ;
3b N2 + Same as 3a
| CTUD_DINT |
BOQL--- QU]---BOOL
BOOL--->CD QD] ---BOOL
BOOL——-|R I
BOOL---]LD |
DINT---]PV CV]---DINT
- +
3c o + Same as 3a
| CTUD_LINT |
BOOL--->CU QU]---BOOL
BOOL--->CD QD] ---BOOL
BOOL---|R |
BOOL---]LD |
LINT-—-]PV CV]---LINT

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E)

—81 -

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)
3d o + Same as 3a
| CTUD_ULINT |
BOOL--->CU QU]---BOOL
BOOL--->CD QD] ---BOOL
BOOL---|R |
BOOL---]LD |
ULINT---|PV CV]---ULINT
Fo—————— +
NOTE

(
The numerical values of the limit variables PVmin and PVmax a?i\@\ew

dependent.

2.5.2.3.4 Timers

The gra

phic form for standard timer function blocks shall be
these fupction blocks shall be as defined in the timing diagr

Table 37 - Standard tir(e\\

'or}/b{oc

ration of

N N\
No. Description \ \ \ \)afaphical form
1 ** is: TP (Pulse) % e ——— +
I *xk I

2a TON (On-delay) % OL-——]IN 0] ---BOOL

2b° T---0 -d TIME-—-|PT ET]---TIME

3a TOF |(eff-del H—— "

3b® IONT \(OFF-)

NOTE| The effett6f .the*valueof the PT input during the timing operation, e.g., fhe
setting of RN{o t#0sto're peration of a TP instance, is an implementation
dependeént parameter.

@ In tey

tual ngﬁe@g\,\fsaws;) and 3b shall not be used.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 82—

61131-3 © IEC:2003(E)

Table 38 - Standard timer function blocks - timing diagrams

Pulse (TP) timing

S + ++ ++ S +
IN] | i1 |
—+ Fom -ttt S
t0 tl t2 t3 t4 5
ot S —
Q]]] |]
—+ o + +——t o
t0 tO+PT t2 t2+PT t4 t4+PT
ot + +o——t

———————— + +———t [S
IN | | | | | |
—— S + +———+t o ——
t0 tl 2 t3 t4 | 55)
o + R +
Q | [|
—— [— S
t0 t1+PT t2 TS+PT
PT [— Fom——
: / | + /
ET : / | /1 /
: / | 7 | /
: / | /7 | /
0O-——————————— + +———+t [ST —— +
tl t3 |)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) - 83—

2.5.2.3.5 Communication function blocks

Standard communication function blocks for programmable controllers are defined in IEC 61131-5.
These function blocks provide programmable communications functionality such as device verification,
polled data acquisition, programmed data acquisition, parametric control, interlocked control,

programmed alarm reporting, and connection management and protection.

2.5.3 Programs

A program is defined in IEC 61131-1 as a “logical assembly of all the programming language elements
and constructs necessary for the intended signal processing required for the control of a machine or

process Py a programmable controller system.

Subclau
program
commun

The dec
2.5.2.2,

1) The
2) A program can contain a VAR_ACCESS. . .END
sped
speq
inter]
2.7.1

3) Prog
only

4) A program car_captai
declarations a@
représentation a$ descrip
varigbles of a prag

The dec

Limitatione

Table 39 - Program declaration features

del of a

{program

.3.2.1 and

heans of
services
butput or
cribed in

bcks can

P in the
ed direct
f internal

neters.

No. DESCRIPTION

1to9b Same as features 1 to 9b, respectively, of table 33

10 Formal input and output variables

11to 14 | Same as features 1 to 4, respectively, of table 17

15t0 18 | Same as features 1 to 4, respectively, of table 18

19 Use of directly represented variables (subclause 2.4.1.1)
20 VAR_GLOBAL . . .END_VAR declaration within a PROGRAM (see 2.4.3 and 2.7.1)
21 VAR_ACCESS. . _.END_VAR declaration within a PROGRAM

22a VAR_EXTERNAL declarations within PROGRAM type declarations

22b VAR_EXTERNAL CONSTANT declarations within PROGRAM type declarations

23 VAR_GLOBAL CONSTANT declarations within PROGRAM type declarations

24 VAR_TEMP declarations (see 2.4.3) within PROGRAM type declarations

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-84 - 61131-3 © IEC:2003(E)

2.6 Sequential Function Chart (SFC) elements

2.6.1 General

This subclause defines sequential function chart (SFC) elements for use in structuring the internal
organization of a programmable controller program organization unit, written in one of the languages
defined in this standard, for the purpose of performing sequential control functions. The definitions in
this subclause are derived from IEC 60848, with the changes necessary to convert the representations
from a documentation standard to a set of execution control elements for a programmable controller
program organization unit.

The SFC elements provide a means of partitioning a programmable controller program organization
unit into a set of steps and transitions interconnected by directed links. Associated with each step is a
set of adfions, and with each transition IS associated a transition condition.

Since SFC elements require storage of state information, the only progra ts which

can be structured using these elements are function blocks and programs

If any program
organization unit shall be so partitioned. hnization
unit, the| entire program organization unit shall be considered 16 be '8 sing] ich executes

under thg control of the invoking entity.

2.6.2 Steps

A step rg ect to its
inputs a ¢ a is either
active ol inactive. At any given moment, the state o 2 izati it i ingd by the
set of active steps and the values of its intgrnal and sutp i

As shown in table 40, a step s i ini ne in the
form of |[an identifier as defi in/ 2.) IIy by a STEP. . .END STEP constructipn. The
directed [link(s) into the st 2 bp of the
step. The directed link(s b bottom
of the sfep. Alterrative [ION. ..
END_TRANSITI @

The stef Boolean

structurg
has the
variable

the step name, as shown in table 40. This Boolean| variable
ponding step is active, and 0 when it is inactive. The stafe of this
gonnection at the right side of the step as shown in table 40.
Similarly *_T, since initiation of a step can be represented by a structure| element
of type T in table 40. When a step is deactivated, the value of the step elapsed time
shall remain,at'the ¢ it had when the step was deactivated. When a step is activated, the| value of
the steplelapsed time shall be reset to t#0s.

The scope of step names, step flags, and step times shall be /ocal to the program organization unit in
which the steps appear.

The initial state of the program organization unit is represented by the initial values of its internal and
output variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC
network, or its textual equivalent, shall have exactly one initial step.

An initial step can be drawn graphically with double lines for the borders. When the character set
defined in 2.1.1 is used for drawing, the initial step shall be drawn as shown in table 40.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) - 85—

For system initialization as defined in 2.4.2, the default initial elapsed time for steps is t#0s, and the
default initial state is BOOL#0 for ordinary steps and BOOL#1 for initial steps. However, when an
instance of a function block or a program is declared to be retentive (for instance, as in feature 3 of
table 33), the states and (if supported) elapsed times of all steps contained in the program or function

block shall be treated as retentive for system initialization as defined in 2.4.2.

The maximum number of steps per SFC and the precision of step elapsed time are implementation-

dependent parameters.

It shall be an error if:
1) an SFC network does not contain exactly one initial step;
2) aus

No

of isitial step

| Initial s @p ic;l forry with-directed links
(1 n HH

END_STEP kRt = step name

2| | STEP *** : \) tep - textual form
(* Step 70%\ withelt directed links (see 2.6.3)

INIT TE *x \) Initial step - textual form
. without directed links (see 2.6.3)
(5 e "kkXT = name of initial step

END S'I)ZF\

Step flag - general form
txkx = step name

*** _X = BOOL#1 when *** js active, BOOL#0 otherwise

Step flag - direct connection
of Boolean variable ***_X to
right side of step ""***""

Step elapsed time - general form
47 | wxxx T Haxx = step name
*** _T = a variable of type TIME

(See 2.6.2)

NOTE The upper directed link to an initial step is not present if it has no predecessors.

@ When feature 3a, 3b, or 4 is supported, it shall be an error if the user program attempts
to modify the associated variable. For example, if S4 is a step name, then the following
statements would be errors in the ST language defined in 3.3:

S4.X := 1 ; (* ERROR *)
S4.T := t#100ms ; (* ERROR *)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 86— 61131-3 © IEC:2003(E)

2.6.3 Transitions

A transition represents the condition whereby control passes from one or more steps preceding the
transition to one or more successor steps along the corresponding directed link. The transition shall
be represented by a horizontal line across the vertical directed link.

The direction of evolution following the directed links shall be from the bottom of the predecessor
step(s) to the top of the successor step(s).

Each transition shall have an associated transition condition which is the result of the evaluation of a
single Boolean expression. A transition condition which is always true shall be represented by the
symbol 1 or the keyword TRUE.

A transit
table 41

1) Byq
logiq

2) By 4
the

3) By 3
direq

4) By g
defir

5) Bya
- th

is

sy
- th

th
- th

6) By 3
shal

- thg

is

cd

- th

on condition can be associated with a transition by one of the follo

ally adjacent to the vertical directed link.

ladder diagram network in the LD language defined i
ertical directed link.

ted link.

LD or FBD network whose o
edin4.1.1.

- the keyword TO follo

b assighm
b transiti
b terminating

Sy

cCessor, by a parenthesized list of successor steps);

Ehown in
}cally or

acent to

ector as

nsist of:
[, if there

han one

becifying

2. This

[, if there
ed by a

han one

- beginning on a separate line, a list of instructions in the IL language, the result of whose
evaluation determines the transition condition;

- the terminating keyword END_TRANSITION on a separate line.

7) By the use of a transition name in the form of an identifier to the right of the directed link. This
identifier shall refer to a TRANSITION.. .END_TRANSITION construction defining one of the
following entities, whose evaluation shall result in the assignment of a Boolean value to the
variable denoted by the transition name:

- a network in the LD or FBD language;

-al
-an

ist of instructions in the IL language;
assignment of a Boolean expression in the ST language.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

The scope of a transition name shall be local to the program organization unit in which the transition is

located.

It shall be an error in the sense of 1.5.1 if any “side effect” (for instance, the assignment of a value to

a variable other than the transition name) occurs during the evaluation of a transition condition.

The maximum number of transitions per SFC and per step are implementation-dependent

parameters.

Table 41 - Transitions and transition conditions

No Exampie

DE'Scrip'FiGn\

Predecessor step
Transition condition physically 0|
logically adjacent to the transitio

using LD language (see 4.2)

Successor step

-

Predecessor step

Transition condition physically 0|
logically adjacent to the transitio

o B

using FBD language

(see 4.3)

Successor step

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 88 —

61131-3 © IEC:2003(E)

Table 41 - Transitions and transition conditions

Use of connector:

E +
|STEP7] predecessor step
E +
a |
4 >TRANX>————————————- + transition connector
|
o +
| STEP8] successor step
F———— ¥
|
| %IX2.4 %IX2.3
4a R) [— | |---->TRANX>
|
o +
I & 1
4b BIX2.4-—-| | -->TRANX>
%IX2.3---| |
o +
STEP STEP7: END_STEP]
5° Textual equivalent

TRANSITION FROM STEP7 TO
= %IX2.4 & %IX2.3 ;
END TRANSITIO

STEP STEP8'
N

of feature 1
using ST language
(see 3.3)

STEP STEPY:

Textual equivalent
of feature 1
using IL language
(see 3.2)

Use of transition name|:

predecessor step

successor step

7a

TRANSITION TRAN78 FROM STEP7 TO STEPS8:

| |
| %1X2.4 %1X2.3 TRAN78 |

END_TRANSITION

Transition condition
using LD language
(see 4.2)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E) -89 -

Table 41 - Transitions and transition conditions

TRANSITION TRAN78 FROM STEP7 TO STEPS8:

Fom——— +
7b I & | Transition condition
%IX2.4-—-| | --TRAN78 using FBD language
%IX2.3---] | (see 4.3)
o ——— +

END_TRANSITION

7c TRANSITION TRAN78 FROM STEP7 TO STEPS: Transition condition
LD %IX2.4 using llAarnguage
AND %I1X2.3 e 3. 2)

END_TRANSITION

7d

TRANSITION TRAN78 FROM STEP7 TO STEPS8 Tra Sm nconditio @Q
= %IX2.4 & %IX2.3 ; T lan se
END_TRANSITION

[V

o

f feature 1 of table 40 is supported, then one or more
fable shall be supported.

f feature 2 of table 40 is supported, then feature/5 or
supported.

2.6.4 Actions

Zero or I actions
shall be dition to
become

An actio in 3.2, a
collectio pnguage
defined function
chart (Sk

Actions shall be
associat tep bodies or graphical action blocks, as deflned |n 2.64.2. The
details 9 on are defined in 2.6.4.3. Control of actions shall be expr¢ssed by

Declaratio

A programmable controller implementation WhICh Supporis SFC elements shall provide one o
the mechanisms defined in table 42 for the declaration of actions. The scope of the declaration of an
action shall be local to the program organization unit containing the declaration.

more of

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—-90 -

Table 42 - Declaration of actions *°

61131-3 © IEC:2003(E)

No. Feature
1 Any Boolean variable declared in a VAR or VAR_OUTPUT block, or their graphical
equivalents, can be an action.

No. Example Feature
gy +
| ACTION_4 |
Ly +)

2l [%IXT %X3 S8.X_ %OX17 | I Graphica
I | e | e | e O R claratiopim.D
I I I I langage((see 4.2)
| | o + | |
| +-————]|EN ENOJ| %MX10 | |
I o B B -+ | N\
| | D--1 | | |
| | o + |
+-_ -+ >
R A\
| OPEN_VALVEX
e
| | ---

2s|| | + + Inclusion of SEC
111 VALVE_l_%Pb\I elements in action

+

2f

ACTION_4

__ +
i et 1 Graphical

| %IX1--] & | | declaration

| %MX3--1 |--%QX17 | in FBD language
| S8 . X———— - | | | (see 4.3)

| R S— FF28 |

| ot |

| I SR | |

| o +] Q1]-%Mx10 |

| C—1 LT [--IS1 | |

| D--1 |+t |

| o + |

A +

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E) -91-

Table 42 - Declaration of actions *°

No. Feature
3s | ACTION ACTION_4: Textual declaration
%QX17 := %IX1 & %MX3 & S8.X ; in ST language
FF28(S1 := (C<D)); (see 3.3)
%MX10 := FF28.Q;
END_ACTION
3i | ACTION ACTION_4:
LD S8.X
AND %IX1 Textual declaration
AND YMX3 ~——inll
ST %QX17
LD o
LT D
s1 FF28
LD FF28.Q
ST %MX10
END_ACTION

NG

TE The step flag S8.X is used in these exampl to ob desired result such
that, when S8 is deactivated, %QX17 :=,\

2 If
fd

o
» =

feature 1 of table 40 is supported

en on 51/
ature 4 of table 43, shall be supporte
feature 2 of table 40 is supported, then 0 moxe of
hall be supported.

in this table, or

es 1,3 s, or 3i of this tabl

[¢)

2.6.4.2

A progrg
the mecl
of action|

Association with step

blocks

ple A rts SFC elements shall provide one of more of
hanisms ditine 3 ssogiation of actions with steps. The maximumn] number

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—92- 61131-3 © IEC:2003(E)

Table 43 - Step/action association

No. Example Feature
| Action block
Fomeet e o ot physically or
1 | S8 |--] L | ACTION_1 |DN1] logically
adjacent to the
+-———+ |t#10s] 11 step
I M ot ee 2.6.4.3)
+ DNI1
|
|
et e i B p——
2 | S8 I--1 L 1| ACTION_1 IDN1]
+-———+ |t#10s] 11
| o e et jacent tofthe
+DN1 | P | ACTION_2 step
| e B L L
| | N | ACTION_3
I — I A
STEP S8: U\/

3 ACTION_1(L,t#10s,DN1) ; Textual
ACTION_2(P) ; step body
ACTION_3(N) ;

END_STEP /\
e s
-———| N
4° @ - i Action blofk
| - < - "d" field
(see 2.6.4|3)
R N N T +
* When eatu\reKiS seWorresponding action name cannot be used in any other
a;tfbn\b ck\
2643 AM
As shown'in“table 44, an action block is a graphical element for the combination of a Boolean| variable

with one of the action qualifiers specified in subclause 2.6.4.4 to produce an enabling condition,
according to the rules given in subclause 2.6.4.5, for an associated action.

The action block provides a means of optionally specifying Boolean “indicator” variables, indicated by
the “c” field in table 44, which can be set by the specified action to indicate its completion, timeout,
error conditions, etc. If the “c” field is not present, and the “b” field specifies that the action shall be a
Boolean variable, then this variable shall be interpreted as the “c” variable when required. If the (c)
field is not defined, and the (b) field does not specify a Boolean variable, then the value of the

“indicator” variable is considered to be always FALSE.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -93-

When action blocks are concatenated graphically as illustrated in table 43, such concatenations can
have multiple indicator variables, but shall have only a single common Boolean input variable, which
shall act simultaneously upon all the concatenated blocks.

As well as being associated with a step, an action block can be used as a graphical element in the LD

or FBD languages specified in clause 4. In this case, signal or power flow through an action block
shall follow the rules specified in 4.1.1.

Table 44 - Action block features

No. Feature Graphical form

1% |a' : Qualifier as per 2.6.4.4
2b b : Action name

37 ["c' : Boolean "indicator"
variables

"'d"™ : Action using:

- IL language (3.2)

- ST language (3.3)

- LD language (4.2)

- FBD language (4.3)

@)
No Featty\gE\ém/ ’é /\ \
8 Use of actnoﬁlec%l\ngacft{er d\a\gramg\/ see 4.2):

~No oah

° Hield “a” ¢ qualifier is “N”.
® Hield “¢* %«ut d when no indicator variable is used.

2644

Associa on block
as defingd‘in2.6.4.3, haII be an actlon qua//f/er The value of this qualifier shall be one of the values
listed in Iration of

type TIME.

NOTE IEC 60848 gives informal definitions and examples of the use of these qualifiers.
This standard formalizes these definitions, redefining the S qualifier and introducing
the R qualifier. The control of actions using these qualifiers is defined in the
following subclause, and additional examples of their use are given in annex F.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—94 - 61131-3 © IEC:2003(E)

Table 45 - Action qualifiers

2.6.4.5

No. Qualifier Explanation

1 None Non-stored (null qualifier)

2 N Non-stored

3 R overriding Reset

4 S Set (Stored)

5 L time Limited

6 D time Delayed

7 P Pulse /{
8 SD Stored and time Delay

9 DS Delayed and Styed\

10 | sU Stored and t@e\l_?miteq\ N
11 | p1 Pulse (risingedgely "\
12 | po Pul?é (f?,lJ{ng\an\e}\

Action control

1) Ag
ACTION_CONTROL fup asa
BIoIean variable, as o S
Bgolean variable. defined
in|2.6.4.1, then this collé continually while the A (activation) outplit of the
ACTION_C tQ
(chlled the "actio an

Thevalue of A will be TRUE for only one execution of an action invoked by a H

hose

is being

and P1

1 or PO

NOTE 4

NOTE 5

qnalifior Eor all other qualifinre A will ha trug for ane additional -execution—faolla
HaHHB——oF—aH—OHied HaHHBFS—A—WHH—B8—HUHB8HOT Re—a3G6HHoRA3T—8Xx86HHe o+
falling edge of Q.

Access to the functional equivalent of the Q or A outputs of an ACTION_CONTROL
block from outside of the associated action is an implementation-dependent featur

The manufacturer may opt for a simpler implementation as shown in figure 15 b)

ving the

function
e.

. In this

case, if the action is declared as a collection of statements or networks, as defined in 2.6.4.1,
then this collection shall be executed continually while the Q output of the ACTION_CONTROL
function block stands at BOOL#1. In any case the manufacturer shall specify which of the

features given in table 45 a) is supported.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E)

-95

2) A Boolean input to the ACTION_CONTROL block for an action shall be said to have an
association with a step as defined in 2.6.4.2, or with an action block as defined in 2.6.4.3, if the
corresponding qualifier is equivalent to the input name (N, R, S, L, D, P, PO, P1, SD,
DS, orSL). The association shall be said to be active if the associated step is active, or if the
associated action block's input has the value BOOL#1. The active associations of an action are
equivalent to the set of active associations of all inputs to its ACTION_CONTROL function block.

A Boolean input to an ACTION_CONTROL block shall have the value BOOL#1 if it has at least one
active association, and the value BOOL#0 otherwise.

3) The value of the T input to an ACTION_CONTROL block shall be the value of the duration portion
of a time-related qualifier (L, D, SD, DS, or SL) of an active association. If ng-such association

€X

4) It

eXist:

5) It

cd
ag
ng
ad

or SL).

s not required that the ACTION_£ONYROL'b
ntrol of actions be equivalent to the presedi
propriate to a particular action nee

ists, the value of the T input shall be t#0s.

b) The SD input to an ACTION_CONTROL block has i
SL_FF block has the value BOOL#1.
c) The SL input to an ACTION_CONTROL block
its SD_FF block has the value BOOL#1.

nted, but only that the
e portions of the action) control
rated in figure 16. In particular,
fice for control of Boolean variable

ifions
SD, DS,
put of its

butput of

| ACTION_CONTROL

BOOL---|N Q]---BOOL

BOOL-—-|R
BOOL-—-|S
BOOL-—-|L
BOOL-—-|D
BOOL-—-|P
BOOL---|P1
BOOL---| PO
BOOL---|SD

BOOL=--|DS BOOL---|DS
BOSL—}Sk BOSL——}Sk
TIME-——|T TIME-—|T

IEC 2485/02

Figure 14 - ACTION_CONTROL function block - External interface (Not visible to the user)
a) With “final scan” logic - see figure 15 a); b) Without “final scan” logic - see figure 15 b)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 96— 61131-3 © IEC:2003(E)

+———+
Fomm e ———— ol & |---Q

| tomet ||
| | >=1 11 |

| S_FF | | +——+
-+ R |
| | RS | | NOTE 1
----———————— IS 1)]--—————----—————- | Instances of this
o IR1 | | function block
Fo———t -+t | are not visible

|
|
|
|
|
____________________ | & |-——--——-—] | to the user
l
|
|
|
|

+
| TMR +--0] | +-———-
I p—
| | | TON | |
| e L S bt
——==F-——————————————————== PT i Fo——— + —=1
o + | F_TRIG | Qo——-1 |---A
b + Q---ICLK Ql---=----- I
| R_TRIG | Fomm + | |
—————————————— L B I
o ———— + e ——_—— + | |
| F_TRIG | | |
————————————————————————————— ICLK Qlemmmmmmmmmmeeeo] |
o + o +

Figure 15 a) - ACTION_CONTROL function block body with “final scan” logic

IEC 2486/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -97 -

+———+
e o] & |---Q
| tomet ||
e | >=1 11 |
| S_FF | | +——+
R-——+ S |
| | RS | | NOTE 1 -
S—-l---—-—--—-——— Is 1]--—-—--"—---"—-"—"-——- | instances of this
o IR1 | | function block
Fo———t -+t | are not visible
L] — ——

|
|
|
|
|
____________________ | & |-——--——-—] | to the user
l
|
|
|
|

IEC 2487/02

Figure 15 b) - ACTION_CONTROL function block body without “final scan” logic

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 98— 61131-3 © IEC:2003(E)

S + S, . +
| S22 |---] N | HV_BREAKER | HV_BRKR_CLOSED |
S + S, . +
| S | START_INDICATOR |
S +

E S —— + o +

| S23 |---] SL | RUNUP_MONITOR |

+-——— + | t#1m] |
| o +
| | D | START_WAIT |
| | t#1s]| |
| o +
+ START_WAIT
|

S +
| S24 |---] N
S + Fom S e SJ—
| | L | START_MONITOR
| | t#30s]
|
+ STARTER_ADVANCED
|

__i__ + S |
//r\fi:?\\:— T +

NOTE]

he p SFCynetwork and its associated declarations are not shown in this ex
igare 16 a) - Action control example - SFC representation

EC 2488/02

ample.

Table 45 a) - Action control features

No. Description

1 per figures 14 a) and 15 a)
2 per figures 14 b) and 15 b)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

Wl

RUN

S23
S27

S23}

© IEC:2003(E) 99—
K HV_BREAKER
K ADVANCE_STARTER
K RETRACT_STARTER
START_INDICATOR_S_FF

ot

| RS |
D IS QL] —————m—mmmmmm START_INDICATOR
S IRL |

ot
X
5 ________________________
JP_MONITOR_SL_FF

ot

I RS |

[X-——]R1 |

The initi

| situation of 2 SEC network is characterized by tha initial sten which is in tha act
H—SHHAHOA-OHa—o o RetWOH—IS—GHa| 68 HL8 6By —HeHHHE—-STep-WHHEHISH—He-—a6t

upon initialization of the program or function block containing the network.

EC 2489/02

ve state

Evolutions of the active states of steps shall take place along the directed links when caused by the
clearing of one or more fransitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol
by directed links, are active. The clearing of a transition occurs when the transition is enabled and
when the associated transition condition is true.

The clearing of a transition causes the deactivation (or "resetting") of all the immediately preceding
steps connected to the corresponding transition symbol by directed links, followed by the activation of
all the immediately following steps.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

~100 - 61131-3 © IEC:2003(E)

The alternation step/transition and transition/step shall always be maintained in SFC element
connections, that is:

- Two steps shall never be directly linked; they shall always be separated by a transition.
- Two transitions shall never be directly linked; they shall always be separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time, the
sequences to which these steps belong are called simultaneous sequences. After their simultaneous
activation, the evolution of each of these sequences becomes independent. In order to emphasize the
special nature of such constructs, the divergence and convergence of simultaneous sequences shall
be indicated by a double horizontal line.

It shall be an error if the possibility can arise that non-prioritized transitions in a selection divergence,
as showh In feature Za of table 46, are simultaneously frue. The user may mage provsions|to avoid
this errof as shown in features 2b and 2c of table 46.

The cledring time of a transition may theoretically be considered as Y i ut it can
never b ontroller
implem ever be considened to be
zero

Several ransitions which can be cleared simultaneousl i ithin the
timing cgnstraints of the particular programmable coniroller in [nstraints
defined i

Testing [pf the successor transition conditi i until the
effects f the step activation have propaga ogré izati it in which the

gute, the active state of a step is indicated
. This notation is used for illustrafion only,
and is nq

The applicati r is\subgclause cannot prevent the formulation of “unsafg¢” SFCs,
such as hiCh may exhibit uncontrolled proliferation ofl tokens.
Likewisd, prevent the formulation of “unreachable” SFCs) such as
the one S y exhibit “locked up” behavior. The programmable ¢ontroller
system g i uch ¢onditions as errors as defined in 1.5.1.

The maki [dths\ o the “divergence” and “convergence” constructs in tablg¢ 46 are

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

- 101 -

Table 46 - Sequence evolution

No.

Example

Rule

Single sequence:
The alternation step-transition is repeated in
series.

Example:
An evolution from step S3 to step S4 shall take
place if and only if step S3 is in the active state
and the transition condjtien_c is true.

2a

S is

5, under
ossible
Lright

b only if
is true,
is true
and e is false.

2b

\J Divergence of sequence selection:
The asterisk, followed by numbered brafches,
indicates a user-defined priority of trangition
evaluation, with the lowest-numbered banch
having the highest priority.
Example:
An evolution shall take place from S5 to S8 only if
S5 is active and the transition condition ffis true,
or from S5 to S6 only if S5 is active, and €|is true,
and T is false.

2c

R
| S5 |
R
|
F Fo—
| |
+e +NOT e & F
| |
-t -t
| S6 | | S8 |
+————t -t

Divergence of sequence selection:
The connection of the branch indicates that the
user must assure that transition conditions are
mutually exclusive, as specified by IEC 60848.

Example:
An evolution shall take place from S5 to S6 only if
S5 is active and the transition condition e is true,
or from S5 to S8 only if S5 is active and e is false
and F is true.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

~102 - 61131-3 © IEC:2003(E)

Table 46 - Sequence evolution

No. Example Rule
3 | | Convergence of sequence selection:
ot ot The end of a sequence selection is
1 S7 1 | SO | represented by as many transition
et et symbols, above the horizontal line, as there are
I I selection paths to be ended.
+ h +j Example:
| | An evolution shall take place
R S S R from S7 to S10 only if S7 is active and the
| transition condition h is true, or from S9 to S10
f————+ only if S9 is active gnd j is\{rue,
S10 |
QS
4 ce:
S bl be
S11 | ine of
F————+
+ b D S12,
Sition
== mm—=m—f === == bnsition
pf S12,
F————+ e evolution of each sequence

proceeds independently.

Simultaneous sequences - convergence:
Only one common transition symbol shall be
possible, under the double horizontal line of

synchronization.

Example:

An evolution shall take place from S13, §15,... to
S16 only if all steps above and connected to the

double horizontal line are active and the triansition
condition “d” associated to the common transition
is true.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

- 103 -

Table 46 - Sequence evolution

branches returns to a preceding step. Fe

6a, 6b, and 6¢ correspond to the represe

options given in features 2a, 2b, and
respectively.

Example:
(feature 6a shown)
An evolution shall take place from S32 tg
“c” is false and “d” is true, that is, the seg
(S31, S32) will be repeated.

No. Example Rule
5a | Sequence skip:
5b N + A “sequence skip” is a special case of
5c | S30 | sequence selection (feature 2) in which one or
o + more of the branches contain no steps. features
I 5a, 5b, and 5c¢ correspond to the representation
ey options given in features 2a, 2b, and 2c,
I I respectively.
+ a +d Example:
| | (feature 5a shown)
—— + | An evolution shall take placg fromrs30.1d S33 if
S31 | | “a” is false and “d” is tru at is, thecsequence
o + I (S31, S32) be skipped:
| |
+ b |
| |
f————— + |
S32 | |
f————— + |
| |
+ C |
| |
[S S
|
R Sy —— +
| S33 |
F———— +)
I N
6a — Sequence loop:
6b | ———— + A “sequence loop” is a special case of sefjuence
6c selection (feature 2) in which one or mor¢ of the

atures
htation
Pc,

S31 if
uence

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—104 - 61131-3 © IEC:2003(E)

Table 46 - Sequence evolution

No. Example Rule
7 | Directional arrows:
R + When necessary for clarity, the “less than” (<)
| S30 | character of the character set defined in 2.1.1 can
R + be used to indicate right-to-left control flow, and
| the “greater than” (>) character to represent left-
+a to-right control flow. When this feature is used,
| the corresponding character shall be located
et between two “-” characters, that is, in the
I I character sequence “-<-” or “->-" as shown in the
PR T 0 JCCOMpanyimng exampie.
| S31 | |
[—— + |
| |
+ b |
| |
[— + |
| S32 | |
[— + |
| |
*_____ + I
| 1
+c +d|
| 1
B + +->—+
S33 |)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

a) Transition not
enabled
X =0o0r1)

- 105 -
| | | |
Fomm + S R S + ————— +
| STEP10] |STEP9] |STEP13] |STEP22]
| | | P> 11> 1
Fomm + S R S I S +

b) Transition enabled
buit not cleared

X =0)

NOTE

ISTEP15] |STEP16]
| 11 |
S + e +
| |
| | |
o e - e - +
ISTEP9] |STEP13]| |STEP22]
| 1 1 |
o + e + e +
| | |
+ + +
|
+ X
|
| |
oo + e +
ISTEP15] |STEP16]
I~ 11 * |1
o + e +

IEC 2490/02

In this figure, the active state of a step is indicated by the presence of an asterisk (*) in

the corresponding block. This notation is used for illustration only, and is not a required
language feature.

Figure 17 - Examples of SFC evolution rules

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 106 -

61131-3 © IEC:2003(E)

a) » Examples of SFC errors:
(see 2.6.5)

an “unsafe” SFC

IEC 2491/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) ~107 -

IEC 2492/02

amples of SFC errors: an “unreachable” SFC
(see 2.6.5)

26.6 C

SFCs can be represented graphically or textually, utilizing the elements defined above. Table 47
summarizes for convenience those elements which are mutually compatible for graphical and textual
representation, respectively.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 108 —

61131-3 © IEC:2003(E)

Table 47 - Compatible SFC features

Table Graphical representation Textual representation
40 1,3a, 3b, 4 2,3a3,4
41 1,2,3,4,4a,4b,7,7a,7b 5,86, 7c, 7d
42 1, 21, 2s, 2f 3s, 3i
43 1,2, 4 3
44 1t09 -
45 1t0 10 1 to 10 (textual equivalent)
46 1107 14d 6
57 Al AN\

2.6.7 SEC Compliance requirements

In order

to claim compliance with the requirements of 2.6
supportdd and the compatibility requirements defined in 2/6.6

Table 48 - sm{m\qa@}g%

table 48

shall be

Tlable Graphical repres}ntat%t{ \T{extual representation
40 1 O 2
41 1 orm&@»)\> 50r6

oF\(7 d(orrzb 0 or 7d))
42 [Ohor 2hgraf 1 or 3s or 3i
a3 K> 2 {tongors 3
45 K Oror2n 1or2
46 \ }\aN(ZE\Qr\Zb\oyic) and 3 and 4 Same (textual equivalent)
57 ong)and (3>or 4) and (5 or 6) and Not required
\(r 8) and9 or 10) and (11 or 12)
2.7 Configuration elements

As desgribéd in 1.4.1, a configuration consists of resources, tasks (which are defing

d within

resourc

S), global variables, accesSS patns and Instance SpecInic Inializations.

elements is defined in detail in this subclause.

Each

f these

A graphic example of a simple configuration is shown in figure 19 a). Skeleton declarations for the
corresponding function blocks and programs are given in figure 19 b). This figure serves as a
reference point for the examples of configuration elements given in the remainder of this subclause
such as in figure 20.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

- 109 -

CONFIGURATION CELL_1

RESOURCE STATION_1 RESOURCE STATION_2
SLOW_1 FAST 1 PER 2 INT_2
TASK TASK TASK TASK

P1 P2 P1 P4

F H
FB1_© " FB1 FB2

A
K] 1 outt rl ' o ¢ gh |°
[y | Lol 2
2 y2 [asd) |c§| y=
SLOW_1 FBBZ = f&jﬁ
—[CoUNT b1 PER_2| N N
—P2 \k&ou S
SLOW_1 FAST_1 PER_2 T \ N\

N

! CORNEN

——paxey] 4 2 ez
/A
GLOBAL AND DIRECTLY [REPRES Q{En)v RIABLES
AND |N$T,?46\5§PEC NI anuz 10
\]
L 4
BAKER] [[1 COUNTI [ABLEI @HAR@E] GAM BLPHA ETA

PATHS [OMEGA

W (See IEC 1131-5)
/\

igute 1) Graphical example of a configuration

IEC 2493/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-110 -

61131-3 © IEC:2003(E)

FUNCTION_BLOCK A

FUNCTION_BLOCK B

C3: INT:

VAR_OUTPUT VAR_INPUT
yl - UINT ; y2 - BYTE ; bl : UINT ; b2 : BYTE ;
END_VAR END_VAR
END_FUNCTION_BLOCK END_FUNCTION_BLOCK
FUNCTION_BLOCK C FUNCTION_BLOCK D
VAR_OUTPUT cl1l : BOOL ; END_VAR VAR_INPUT d1 : BOOL ; END_VAR
VAR C2 AT %Q*: BYTE; VAR_OUTPUT y2 : INT ; END_VAR

END_FUNCTION_BLOCK

END_VAR
D_FUNCTION_BLOCK

EN

PROGRAM F
VAR_INPUT x1 - BOOL ; x2 : UINT ;
VAR_OUTPUT y1 - BYTE ; END_VAR
VAR COUNT: INT; TIME1: TON; END_VAR
END_PROGRAM

END_VAR

PROGRAM G
VAR_OUTPUT outl : UINT ; END_VAR
VAR_EXTERNAL z1 : BYTE ; AEND_VA

VAR FB1 - A ; FB2 : B{;

RN
0

FB1(...); outl = FBl.yl
FB2(bl1 := FBl.yl, b2 := E
END_PROGRAM
PROGRAM H
VAR_OUTPUT HOWJ1:
VAR FB1

FB1(. .)

FBZ@<;;>;
END_PROSRAM

resources, and access paths

/
Figurp 19 b).- Skeleton un\'o}bi?ck and program declarations for configuration exlmple

EC 2494/02

5, global

Table 4 tes the language features for declaration of configurations, resource
variable§, access path$ and instance specific initializations. Partial enumeration of TASK dgclaration
featureslis_also given; additional information on tasksis providedin 272 The formal syntax

or these

features is given in B.1.7. Figure 20 provides examples of these features, corresponding to the
example configuration shown in figure 19 a) and the supporting declarations in figure 19 b).

The ON qualifier in the RESOURCE. . .ON. . .END_RESOURCE construction is used to specify the type of
“processing function” and its “man-machine interface” and “sensor and actuator interface” functions
upon which the resource and its associated programs and tfasks are to be implemented. The
manufacturer shall supply an implementation-dependent resource library of such functions, as
illustrated in figure 3. Associated with each element in this library shall be an identifier (the resource

type name) for use in resource declaration.

NOTE The RESOURCE. . .ON...END RESOURCE construction is not required in a configuration
with a single resource. See the production single_resource_declaration in B.1.7

for the syntax to be used in this case.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —111 -

The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource in which it is
declared, with the exception that an access path can be declared to a global variable in a resource
using feature 10d in table 49.

The VAR_ACCESS. . _.END_VAR construction provides a means of specifying variable names which
can be used for remote access by some of the communication services specified in IEC 61131-5. An
access path associates each such variable name with a global variable, a directly represented variable
as defined in 2.4.1.1, or any input, output, or internal variable of a program or function block.

The association shall be accomplished by qualifying the name of the variable with the complete
hierarchical concatenation of instance names, beginning with the name of the resource (if any),
followed by the name of the program instance (if any), followed by the name(s) of the function block
instance’ts) (if any). The name of the variable is concatenated at the end of the ghain. All namles in the
concatenation shall be separated by dots. If such a variable is a multi-ele iable(strlicture or
array), ah access path can also be specified to an element of the variable.

It shall [not be possible to define access paths to variables that™a i _TEMP,
VAR_EXTERNAL or VAR_IN_OUT declarations.

The direftion of the access path can be specified as READ W RE \ that the
communication services can both read and modify the value of th i the first case} or read
but not modify the value in the second case. If no djrection i ifi e default direction is
READ_ONLY.

Access [to variables that are declared) o<furction block inputs that are gxternally

connectgd to other variables shall be READ

NOTE The effect of i function block output varigbles is

The VAR_CONFIG.. .E i | means to assign instance specific logations to
symbolidally representefd vari ichy areNnominated for the respective purpose by ysing the

asterisk |notation describsd in 24. , respectively, or to assign instance specffic initial
values t@ symbolically’re

The ass hitialized
with the e of the
resource 5) of the
function htenated
at the ¢ location
assignm n 2.4.3.1

and 2.4.8.

Instance|_specific initial values provided by the VAR CONFIG...END_ VAR construction always
override type specific initial values. It shall not be possible to define instance specific initializations to
variables which are declared in VAR_TEMP, VAR_EXTERNAL, VAR CONSTANT or VAR_IN_OUT
declarations.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—112- 61131-3 © IEC:2003(E)

Table 49 - Configuration and resource declaration features

No. Description

CONFIGURATION. . .END_CONFIGURAT ION construction

VAR_GLOBAL . . .END_VAR construction within CONFI1GURAT ION

RESOURCE. . .ON. . .END_RESOURCE construction

VAR_GLOBAL . . .END_VAR construction within RESOURCE

5a | Periodic TASK construction (see note 1)

5b | Non-periodic TASK construction (see note 1)

6a |WITH construction for PROGRAM to TASK association (see note 1)‘ (\

6b | WITH construction for Function Block to TASK association %eé\n\&e h\

6c | PROGRAM declaration with no TASK association (see r@te\ﬂ\)\ \ x

7 Declaration of directly represented variables in VAR}@QBA*\(ée Frqte))/

8a | Connection of directly represented variables/te—R@GQAMpB\N

8b | Connection of GLOBAL variables to PROGI(AM (Lﬁguts

9a | Connection of PROGRAM outputs to dlfé@/\,eﬁpés?h{ \qlables

9b | Connection of PROGRAM <tpht§t(<G\OB@L vé(lab\ieé j\/

10a [VAR_ACCESS...END_VAR capstruction

10b | Access paths to directly reéresg.n@d\a\r\lagle%

10c | Access path/sA@\PRO/GRAM h\put\s\ \

10d [Access pathsito GQBAL variales in RESCURCES

10e |Access faths to.BLOBAL Variables imCONF IGURAT IONs

10f | AcCess paths to PROSRAMquiputs’

10g | Acces; {E&Q\S/RPF}G\B@Nn}}rnaI variables

10h | A es\s@qths\iq M:tionblock inputs

10i /Acgégs })@th\s\to}uqction block outputs

}L VAR\Gﬁ{\IIE\G \EIGD VAR construction®

42a [WARCGLOBAL) CONSTANT in RESOURCE declarations

12b \\(QR_G\BQBAL CONSTANT in CONFIGURAT ION declarations

134 "/VAR “EXTERNAL in RESOURCE declarations

t3b VAR_EXATERNAL CUNSTANT TN RESUURCLE decClarations

NOTE 1 See 2.7.2 for further descriptions of TASK features.
NOTE 2 See 2.4.3.1 for further descriptions of related features.

@ This feature shall be supported if feature 10 in table 15 is supported.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) ~113-

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

No. Example
1 CONFIGURATION CELL_1
2 VAR_GLOBAL w. U NT; END_VAR

RESOURCE STATION_1 ON PROCESSOR_TYPE_1

4 VAR _GLOBAL z1: BYTE; END_VAR

5a TASK SLOW_1(INTERVAL := t#20ms, PRIORITY := 2) ;
5 TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;
6 PROGRAM P1 WITH SLOW 1 :

8 FOL 1= %IX1.1) ;

9b PROGRAM P2 : G(OUT1 => w,

6b FB1 WITH SLOW_ 1,

6b FB2 WITH FAST 1)

END_RESOURCE

RESOURCE STATION_2 ON PROC PE
VAR_GLOBAL z2

AT %QW

mm_h =~ D (%] (%]

PRIORITY := 2) ;

b PRIORITY := 1) ;
6a

8b

6

9

6

10a

10b STATION 1.%IX1.1 : BOOL READ ONLY ;
10c STATION_1.P1.x2 : UINT READ_WRITE ;
10d CHARLIE : STATION 1.z1 : BYTE :
10e DOG Tw : UINT READ_ONLY ;
10f ALPHA : STATION 2.P1.yl : BYTE READ_ONLY ;
10f BETA : STATION_2.P4.HOUT1 : INT READ ONLY ;
10d GAMMA : STATION 2.z2 : BOOL READ_WRITE ;
10g S1_COUNT : STATION_1.P1.COUNT : INT;

10h THETA : STATION_2.P4.FB2.d1 : BOOL READ_WRITE;
10i ZETA : STATION_2.P4.FBl.cl : BOOL READ_ONLY;

10k OMEGA : STATION_2_.P4.FB1.C3 : INT READ_WRITE;

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—114 - 61131-3 © IEC:2003(E)

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

No. Example
10a END_VAR
11 VAR_CONFIG

STATION_1.P1.COUNT : INT := 1;
STATION_2.P1.COUNT : INT := 100;
STATION_1.P1.TIMEL : TON := (PT := T#2.5s);
STATION_2.P1.TIMEL : TON := (PT := T#4.5s);
STATION_2.P4.FB1.C2 AT %QB25 : BYTE;

END_VAR

1 END_CONF IGURAT ION (

NQTE 1 Graphical and semigraphic representation of these features i
beyond the scope of this part of IEC 61131.

NQTE 2 ltis an error if the data type declared for a variable in
statement is not the same as the data type declared fi
e.g., if variable BAKER is declared of type WORD igﬁe\a oveexamples.

\/ lEC 2495/02

2.7.2 T3sks

For the purposes of this part of IEC 61131, a task is(definec tion control element|which is
capable [of invoking, either on a periodic k he rising edge of a gpecified
Boolean|variable, the execution of a set &) yanhization unjts, which can include grograms
and fundti i i

The marimum number of t - i i i ntation-
dependént parameters

Tasks dnd their assocjati ' izafi i ically or
textually|using the WI'T ithi idurations.
A task is implici hanisms
defined |n 1.4.1. e m to the

following

1) The 3 isjng edge
of the

2) If the theduled
for e ro (0). If
the 1 program

orgarjization units shall occur.

3) The PRIORITY input of a task establishes the scheduling priority of the associated program
organization units, with zero (0) being highest priority and successively lower priorities having
successively higher numeric values. As shown in table 50, the priority of a program organization
unit (that is, the priority of its associated task) can be used for preemptive or non-preemptive
scheduling.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 115

a) In non-preemptive scheduling, processing power becomes available on a resource when
execution of a program organization unit or operating system function is complete. When
processing power is available, the program organization unit with highest scheduled priority
shall begin execution. If more than one program organization unit is waiting at the highest
scheduled priority, then the program organization unit with the longest waiting time at the
highest scheduled priority shall be executed.

b) In preemptive scheduling, when a program organization unit is scheduled, it can interrupt the
execution of a program organization unit of lower priority on the same resource, that is, the
execution of the lower-priority unit can be suspended until the execution of the higher-priority
unit is completed. A program organization unit shall not interrupt the execution of another unit
of the same or higher priority.

NQTE Depending on schedule priorities, a program organization unit

will be met in a proposed configuration.

4) A prggram with no task association shall have the lowest sys
be sgheduled for execution upon “starting” of its resource
schedluled for execution as soon as its execution ter

5) When a function block instance is associated wi [a tas
contrpl of the task mdependent of th rules okevaluati
the t3 \ i

gram organization unit|in which

6) Execlti [i ich i associated with a task shall fpllow the
norm e rhents for the program organizdtion unit
(which can itself be undef th which>the function block instance is declgred.

7) The gxecution of fupction blocks \within~a\progrem shall be synchronized to ensure that data

conclirrency |s<$
a) If fa function\bto ecei e than one input from another function block, then when the
fof i all i W the latter shall represent the results of the same evaluation.

Fq gented by figure 21 a), when Y2 is evaluated, the inppts Y2_.A
ar - outputs Y1.C and Y1.D from the same (not two fifferent)
eV

b) If function blocks receive inputs from the same function block, arld if the
“destinati all explicitly or implicitly associated with the same task, then the inputs

to dest ation” blocks at the time of their evaluation shall represent the results of the
sg f the “source” block. For instance, in the example represented by figures 21
b)and21 c), when Y2 and Y3 are evaluated in the normal course of evaluating program P1, the
inputs Y2_A and Y2 .B shall be the results of the same evaluation of Y1 as the inputs Y3.A and
Y3.B.

Provision shall be made for storage of the outputs of functions or function blocks which have explicit
task associations, or which are used as inputs to program organization units which have explicit task
associations, as necessary to satisfy the rules given above.

It shall be an error in the sense of subclause 1.5.1 if a task fails to be scheduled or to meet its
execution deadline because of excessive resource requirements or other task scheduling conflicts.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

116 - 61131-3 © IEC:2003(E)

Table 50 - Task features

No. Description/Examples
1a Textual declaration of periodic TASK (feature 5a of table 49)
1b Textual declaration of non-periodic TASK (feature 5b of table 49)

Graphical representation of TASKs (general form)

TASKNAME
o +
| TASK |
BOPL---|SINGLE |
TIPE-——] INTERVAL |
UINT---]PRIORITY |
o — +
23 Graphical representation ojpério{MS& >
SLOW_1
o +
| TASK |
ISINGLE |
t#20ms——- | INTERVAL |
2———|PRIORITY |
2b
3a Q N&t&\}omatlon with PROGRAMSs (feature 6a of table 49)
3B \ tua}\§ssomatlon with function blocks (feature 6b of table 49)
N
4a \ Graphical association with PROGRAMs
RESOURCEVETATION_2
P1 P4
Fom—— + Fom—_—— +
1 F 1 I H 1
| | | [
| | | [
Fom—— + Fom—_—— +
| PER 2 | | INT 2 |
Fom——— + Fom—_—— +

END_RESOURCE

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —117 -

Table 50 - Task features

No. Description/Examples
4b Graphical association with function blocks within PROGRAMs
RESOURCE STATION_1
P2
oy +
| G |
| |
! EBR1 ER2 !
| Fom—— + Fom— +
I A I B			
Fom——— + Fom—_——— +			
	SLow_1]	FAST 1]	
oo + R +			
+————------———————————————————————i/ffjj>>\;;\\
END RESOURCE /§77
— N
5a

EXAMPLE 1:

————e £ A
N/

akt =

t(ms)

Waiting

< > 2 < :SQHEQMrepeats every 40 ms)
O\ Breciting 7

0

\/ P1@2. P2.FB1@2. P2

P2_FB1@2, P2

P2
™
P2_FB20@1
P2
16 P2 (P2 restarts)
20 P2 P2.FB2@1, P1@2, P2.FB1@2
24 P2 _FB2@1 P1@2, P2.FB1@2, P2
26 P1@2 P2_.FB1@2, P2
28 P2_FB1@2 P2
30 P2.FB2@1 P2
32 P2
40 P2_.FB2@1 P1@2, P2.FB1@2, P2

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

118 - 61131-3 © IEC:2003(E)

Table 50 - Task features

No. Description/Examples
5a Non-preemptive scheduling
EXAMPLE 2:
- RESOURCE STATION_2 as configured in figure 20
- Execution times: P1 =30 ms, P4 =5 ms, P4.FB1 = 10 ms (see note 4)
- INT_2 is triggered at t = 25, 50, 90, ... ms
- STATION 2 startsatt=0
SCHEDULE 7
t(ms) Executing Waitin .
0 P1@2 P4.FB1@2 < \
25 | P1@2 P4.FB102, P4@1(\ \ \
N
30 | Pa@1 P4_.FB1@2 {\\ D
35 P4_FB1@2 N \\/
50 | P4@1 Pl@z(PA(ﬁpl@z \)
5 | oz RS
85 | Pa.FB102 N\ X 7))
90 | P4.FB1G2 | radag
95 P4@1 \ C \/
100 | proz \ \(P4 FB102
5k nptive’scheduling

- RESO igured in figure 20

- Executi =8 ms; P2.FB1=P2.FB2 =2 ms (see note 3)
- STAT{%V&(
AN\ X SCHEDULE
\t@i@ \\ \E)Mting Waiting
K\ \lsag,@i P1@2, P2.FB1@2, P2
2 @ P2_FB1@2, P2
4 P2_FB1@2 P2
6 P2
10 P2_FB2@1 P2
12 P2
16 P2 (P2 restarts)
20 P2_FB2@1 P1@2, P2.FB1@2, P2

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) -119-—
Table 50 - Task features
No. Description/Examples
5b Preemptive scheduling
EXAMPLE 4:
- RESOURCE STATION_2 as configured in figure 20
- Execution times: P1 =30 ms, P4 =5 ms, P4.FB1 = 10 ms (note 4)
- INT_2 is triggered at t = 25, 50, 90, ... ms
- STATION_ 2 startsatt=0
SCHEDULE ,
t(ms) Executing Waiting{\\ ~
0 P1@2 P4 _FB1@2 <\ \
25 P4@1 P1@2, P4. FBl@?(\ \ \
30 | P1@2 P4.FB102 \ \\ \
35 | pa.FB162 RN
50 P4@1 Pl@Z(P@Bl@?\
5 | e Sl
85 P4 _FB1@2 \ \ \ ~)\/
90 | Pa@1 /l‘ \@\EB}@{
95 | P4_FB1@2 \ (\ \)
100 | prez <\ (—ParEpia2
NO[TE 1 Details ESOURCE &nd, PROGRAM dedlarations are not shown; see 2.7 and
NO
NO
NO

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-120 - 61131-3 © IEC:2003(E)
RESOURCE R1
fastl slowl
Fom + S +
| TASK | | TASK |
t#10ms-—-] INTERVAL | t#20ms-—-] INTERVAL |
1--—|PRIORITY | 2-——|PRIORITY |
S + Fom +
P1
PROGRAM X
Y1 Y2
E — + E +
1Y |1 1Y |1
-——]JA Cl--——+-——————- A C]---
-——|B D|-——-|--+---—-- IB D|---
e + I 1 R +
|slowl] I 1 | fastl]
e + I 1 R +
1
I 1 Y3
|1+t
|
+
stl
+ —+
END_P@N‘K\ \J\

Figure ZWYm blocks with explicit task associationg

IEC 2496/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —121-

RESOURCE R1

fastl slowl
Fom e + Fommm +
| TASK | | TASK
t#10ms---| INTERVAL | t#20ms-—--| INTERVAL
1---]PRIORITY | 2-——|PRIORITY |
Fommm + Fommm e +
P1
PROGRAM X
Y1 Y2
Fomm—— + Fomm +
1Y |1
-——]JA C]----
-—-|B D|----
Fom—— +
| fastl]
Fom—— +

END_PROGRAM

s'°w1/\ NN S \

2497/02
Figure 2 Wm blocks with implicit task associationg

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-122 - 61131-3 © IEC:2003(E)
RESOURCE R1
fastl slowl
S, + S, +
| TASK | | TASK
t#10ms-—-] INTERVAL | t#20ms-—-] INTERVAL |
1--—|PRIORITY | 2-——|PRIORITY |
S, + S, +
P1
L
PROGRAM X
Y1 Y2
Fom + R +
1 Y |
-—]A Cl--—-+
---1B D|----1]
e + |
| fastl] |
e + |
|
|
|
|
+

\/

c) < Ex

icit task associations equivalent to figure 21 b)

IEC

2498/02

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) ~123-

3 Textual languages

The textual languages defined in this standard are IL (Instruction List) and ST (Structured Text). The
sequential function chart (SFC) elements defined in 2.6 can be used in conjunction with either of these
languages.

3.1 Common elements
The textual elements specified in clause 2 shall be common to the textual languages (IL and ST)

defined in this clause. In particular, the following program structuring elements shall be common to
textual Ignguages:

TYPE. . .END_TYPE
VAR. . .END_VAR
VAR_INPUT. . .END_VAR
VAR_OUTPUT. . .END_VAR
VAR_IN_OUT...END_VAR
VAR_EXTERNAL . . .END_VAR

VAR_TEMP. . .END_VAR
VAR_ACCESS. . .END_VAR

(2.5.1.3)
(2.5.2.2)
(2.5.3)
(2.6.2)
(2.6.3)
(2.6.4)

3.2 Insf]

This subclause
given in B.2-

finesythe semantics of the IL (Instruction List) language whose formal gyntax is

3.2.1 Instructions

As illustrated in table 51, an instruction list is composed of a sequence of instructions. Each
instruction shall begin on a new line and shall contain an operator with optional modifiers, and, if
necessary for the particular operation, one or more operands separated by commas. Operands can
be any of the data representations defined in 2.2 for literals, in 2.3.3 for enumerated values, and in 2.4
for variables.

The instruction can be preceded by an identifying /abel followed by a colon (:). Empty lines can be
inserted between instructions.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—124 - 61131-3 © IEC:2003(E)

Table 51 a) - Examples of instruction fields

LABEL OPERATOR OPERAND COMMENT
START: LD %IX1 (* PUSH BUTTON *)
ANDN %MXS (* NOT INHIBITED *)
ST %QX2 (* FAN ON *)

3.2.2 Operators, modifiers and operands

Standarg
of opera

Unless @

That is,
the oper

The com
the oper
Boolean

0 otherwji

The mod

The left

parenthdsi

sequendg

operators with their allowed modifiers and operands shall be as liste
ors shall conform to the conventions of 2.5.1.4.

therwise defined in table 52, the semantics of the operators shall be

Shown. Both features in table 51 b) shall be interpreted as

result := result OP operand

operated
X1 is interprete

result := result AND (%I1X1 OR %IX2)

he typing

upon by
0 as

ison and
have the
an result

nstance,

of same

il a right
thesized

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E) —125-

Table 51 b) - Parenthesized expression features for IL language

No. DESCRIPTION/EXAMPLE

1 Parenthesized expression beginning with explicit operator:
AND(
LD %IX1 (NOTE 1)
OR %lIX2
)

2 Parenthesized expression (short form):
AND(%IX1
OR %1X2
)

NOTE In form 1 the LD operator may be modified or the LD op ma b
replaced by another operation or function invocat|on/@ ct

The modifier “C” indicates that the associated instruction shal

currently

evaluated result is Boolean 1 (or Boolean O if the o

Table 52 - Instruction | st

e of the
odifier).

No. | OPERATOR? | MODIFIERS \%d ICS
ot L0 (i

1 et\sere}rt\tesélt equal to operand

2 étcxwrr t result to operand location

3 etjoper Xto 1 if current result is Boolean 1
eset pperand to O if c1urrent result is Boolean

4 j Logical AND

5 Logical AND

6 Logical OR

7 Logical exclusive OR

Logical negation (one's complement)

BN | ¢ Addition
9 (Subtraction
1071 muL (Multiplication
1 | biv (Division
11a | moD (Modulo-division
12 | 671 (Comparison: >
13 | GE (Comparison: >=
14 | EQ (Comparison: =
15 | NE (Comparison: <>
16 | LE (Comparison: <=
17 LT (Comparison: <
18 | Jmp® C, N Jump to label
19 CAL® C, N Call function block (See table 53)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—126 - 61131-3 © IEC:2003(E)

Table 52 - Instruction list operators

No. | OPERATOR? | MODIFIERS SEMANTICS
(Note 1)
20 RETT C, N Return from called function, function block or
program
21)f Evaluate deferred operation

NOTE See preceding text for explanation of modifiers and evaluation of
expressions.

? Unless otherwise noted, these operators shall be either overloaded or typed as
defined in 2.5.1.4 and 2.5.1.5.6.

execution is to be transferred. When a JMP instruction is contained i
ACTION... END_ACTION construct, the operand shall be a labgl\yi

be invoked.

4 The result of this operation shall be the bitwise Boolea
complement) of the current result.

° The type of the operand of this instruction shdll b OLg¢

3.2.3 Fu

Function
shown in
a functio
function

The argy
and feat

A non-fa

' This instruction does not have gn operanqg./\ /N
AY

nctions and function blocks

function calls apply.

ment list of\fun
Jresdefi ;

s as defined in 2.5.1 shall be in unction name in the operatorifield. As
features 4 and 5 gftab i ke one of two forms. The value returned by
n upon the success ion or upon reaching the physical epd of the
shall become theXcurre

53) is equivalent to feature 1 in table 19 a) . The rules

rules an d table 19 a) for function calls apply. In contragt to the
example ahguage, the first argument is not contained in the ngn-formal
input list i rrent result shall be used as the first argument of the function. Additional
argumer , if required, shall be given in the operand field, separated by
commas(i

Function astdefinedh 2.5.2 can be invoked conditionally and unconditionally via the CAL (Call)
operator| ble 32. As shown in features 1a, 1b, 2 and 3 of table 53, this invocation [can take
one of fqurforms.

A formal argument Tist of a funcfion block invocation (feature Ta in table 53) is equivalent fo feature 1

in table 19 a). A non-formal argument list of a function block invocation (feature 1b in table 53) is
equivalent to feature 2 in table 19 a). The rules and features defined in 2.5.1.1 and table 19 a) for
function calls apply correspondingly, by replacing each occurrence of the term ‘function’ by the term

‘function

block’ in these rules.

All assignments in an argument list of a conditional function block invocation shall only be performed

together

with the invocation, if the condition is true.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —127 -

Table 53 - Function block invocation and
Function invocation features for IL language

No.

DESCRIPTION/EXAMPLE

1a

CAL of function block with non-formal argument list:

CAL C10(%1X10, FALSE, A, OUT, B)
CAL CMD_TMR(%IX5, T#300ms, OUT, ELAPSED)

1b

CAL of function block with formal argument list:

CAlL Cl1l0(
\

CU := %IX10,
Q => O0UT)

CAL CMD_TMR(
IN = %IX5,
PT = T#300ms,
Q => ouT,
ET => ELAPSED

ENO => ERR) ////—\\\\\

N

CAL of function block with IgaQ/L\to/é 9]f %@u nt\(“r/te 2)

LD
ADD
ST C10 PV

LD %1X10
ST 10 CU
CAL

AN

Uquffb&g blogk input operators:

F)chon invocation with formal argument list:

/7

N
LIMIR(
TE;T¥2> COND,
I

N:= B,
N:= 1,
MX:z= 5,
ENO=> TEMPL
)
ST A
5 Function invocation with non-formal argument list:
LD 1

LIMIT

B, 5
ST A

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—128 - 61131-3 © IEC:2003(E)

Table 53 - Function block invocation and
Function invocation features for IL language

No. DESCRIPTION/EXAMPLE
NOTE 1 A declaration such as
VAR
C10 : CTU;
CMD_TMR : TON;
A, B - INT;

ELAPSED : TIME;
OUT, ERR, TEMPL, COND : BOOL;

END_VAR
is assumed in the above examples.

NOTE 2 This usage is an exception to the rule giv
that “The assignment of a value to the inputs

with the @up ed, are taken from

assignm parts problem situation

events a change from one call to the next.
EXAMPLE 1

Together with the.declaration

EXAMBLE 2

XN\ N
The inpyit operators shown in table 54 can be used in onjunctis ith featyre 3 of table
method n{y list, ich tains only one

53. This
variable
the last
5, Where

CU input
ot

With bistable function blocks, taking a declaration
VAR FORWARD: SR; END_VAR
this results into an implicit conditional behavior. The sequence
LD FALSE
S1 FORWARD
does not change the state of the bistable FORWARD. A following sequence
LD TRUE
R FORWARD
resets the bistable.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) ~129 -

Table 54 - Standard function block input operators for IL language

No. Operators FB Type Reference
4 S1,R SR 25231
5 S,R1 RS 25.2.3.1
6 CLK TRIGGER 25232
8 CU,R,PV CTU 25233
9 CD,PV CTD 2.5.2.3.3 (note 1)
10 CU,CD,R,PV CTUD 25.2.3.3 (noI;e,-Q
11 IN,PT TP 2.5.2/&@ .
12 IN,PT TON 2@“2\\3\4 \
13 | aneT TOF 25234

NOTE 1 LD is not necessary as a Standard Funttion B1‘s§k i
operator, because the LD functionality ig/inc i

NOTE 2 The feature numbering in thjgtable~s
maintain consistency with the fir ed'{ti'?n ofJEC

3.3 Stryctured Text (ST)

efined in
acter, as

This subclause defines the semantics of the <
B.3. In this language, the end of a textual(line
defined in 2.1.4.

3.3.1 Expressions

An expréssion is
types de;[ined in 2. 3

dependént paramete

the data
ntation-

and operands. An operand shall be a literal as defingd in 2.2,

Express 5
.3.3, a variable as defined in 2.4, a function invocation ag defined

an enum
in2.5.1,

The opse guage are summarized in table 55. The evaluation of an eXpression
consists tRg the\operators to the operands in a sequence defined by the operator prgcedence
shown in table 55. e operator with highest precedence in an expression shall be applied first,
followedlbythe operator of next lower precedence, etc., until evaluation is complete. Opédlrators of
equal precedence shall be applied as written in the expression from left to right. For example, if A, B,
C, and D are of type INT with values 1, 2, 3, and 4, respectively, then

A+B-C*ABS(D)

shall evaluate to -9, and
(A+B-C)*ABS(D)
shall evaluate to 0.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

~130 - 61131-3 © IEC:2003(E)

When an operator has two operands, the leftmost operand shall be evaluated first. For example, in

the expression
SIN(A)*COS(B)

the expression SIN(A) shall be evaluated first, followed by COS(B), followed by evaluation of the

product.

The following conditions in the execution of operators shall be treated as errors in the sense of

subclause 1.5.1:
1) An attempt is made to divide by zero.

2) Operands are not of the correct data type for the operation.

3) Thejresult of a numerical operation exceeds the range of values for its data type-

Boolean|expressions may be evaluated only to the extent necessary to de value.
For instgnce, if A<=B, then only the expression (A>B) would be evaly e value
of the expression

is Boolean zero.

Functions shall be invoked as elements of expressions ¢onsisting & on name folloyed by a
parenthgsized list of arguments, as defined.in 2.5.1.1

When an operator in an expression can b efined in

2.5.1.5, gonversion of operands and results

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

-131 -

Table 55 - Operators of the ST language

functw(\E{T(&\) as'\definéd in table 24.

No. Operation® Symbol Precedence
1 Parenthesization (expression) HIGHEST
2 Function evaluation identifier(argument list)

EXAMPLES LN(A), MAX(X,Y), etc
4 Negation -
5 Complement NOT
3 Exponentiation” ** (
6 Multiply * K
7 Divide /
8 Modulo MOD
9 Add v x \

10 Subtract - /\ \>
1 Comparison <, >, <= /\>% Q p \/

12 Equality Q \>
13 Inequality Q < & /

14 Boolean AND
15 Boolean AND s

16 Boolean Exclusi ON Xa\ v

17 Boolea O LOWEST
NOTE| The feature u@&h&&téﬁ%\\sﬁch as to maintain consistency with the first g¢dition

of IEC 6

@ The game restricti app to\{ifg/?ands of these operators as to the inputs of the
corre i 5.1.5.

®The rp ingJthe expression A**B shall be the same as the result of evaluating the

3.3.2 sth

The stat

bments of the ST Iangnngp are summarized in table 56 Statements shall be termihated by

semicolons as specified in the syntax of B.3. The maximum allowed length of statements is an
implementation-dependent parameter.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-132-

61131-3 © IEC:2003(E)

Table 56 - ST language statements

No. Statement type/Reference Examples
1 Assignment (3.3.2.1) A := B; CV := CV+1l; C := SIN(X);
2 Function block Invocation and FB output CMD_TMR(IN:=%1X5, PT:=T#300ms) ;
usage (3.3.2.2)
A = CMD_TMR.Q ;
RETURN (3.3.2.2) RETURN ;
4 IF (3.3.2.3) D := B*B - 4*A*C ;
5 CASE (3.3.2.3)
DISPLAY := OVEN_TEMP;
DISPLAY := MOTOR_SPEED;
DISPLAY := GROSS - TARE;
4,6..10: DISPLAY := STATUS(TW|- 4);
ELSE DISPLAY = 0 ;
TW_ERROR := 1;
END_CASE;
QW100 := INT_TO_BCD(DISPLAY);
6 J =101 ;
FOR I =1 TO 100 BY 2 DO
IF WORDS[1] = "KEY" THEN
J=1;
EXIT ;
END_IF ;
END_FOR ;
7 WHTLE (3.3.2.4) J = 1;
WHILE J <= 100 & WORDS[J] <> "KEY*" DO
J = J+2 ;
END_WHILE ;
8 REPEAT (3.3.2.4) J = -1 ;
REPEAT
J = J+2 ;
UNTIL J = 101 OR WORDS[J] = "KEY*
END_REPEAT ;
9 EXIT (3.3.2.4) EXIT ;
10 Empty Statement :

?If the EXIT statement (9) is supported, then it shall be supported for all of the iteration statements
(FOR, WHILE, REPEAT) which are supported in the implementation.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) ~133 -

3.3.2.1 Assignment statements

The assignment statement replaces the current value of a single or multi-element variable by the
result of evaluating an expression. An assignment statement shall consist of a variable reference on
the left-hand side, followed by the assignment operator “:=", followed by the expression to be

evaluated. For instance, the statement
A =B ;

would be used to replace the single data value of variable A by the current value of variable B if both
were of type INT. However, if both A and B were of type ANALOG_CHANNEL_CONFIGURATION as
described in table 12, then the values of all the elements of the structured variable A would be
replaced by the current values of the corresponding elements of variable B.

As illustrated in figure 6, the assignment statement shall also be used to assign tHeval urned by

a functiop, by placing the function name to the left of an assignment opera function
declaratipn. The value returned by the function shall be the result of the most re }uch an
assignment. It is an error to return from the evaluation of a function wigh an or with a

non-exisfent ENO output, unless at least one such assignment has been Rade.

3.3.2.2 Function and function block control statemen

isms for invoking functign blocks

Function and function block control statements consist & ¢ n
p of a’function or function |block.

and for returning control to the invoking ertti

Function| evaluation shall be invoked as parta , as specified in 3.3.1.

Function| blocks shall be invoked by a statemeit cansisti e name of the function block|instance
followed|by a parenthesize¢"list\of arguments, asiillustratey in table 56. The rules and feature$ defined
in 2.5.1.1 and table 19 a) forNunctian calls appty ‘correspondingly, by replacing each occurrenge of the
term ‘furction’ by the term\ i :

The RETURN stat
as the rgsult of the ®

3.3.23

a function, function block or program (for ¢xample,

Selectio [the’ IF and CASE statements. A selection statement selects gne (or a
group) ofN t statements for execution, based on a specified condition. Examples of
selectior

The IF gtatément specifies that a group of statements is to be executed only if the associated|Boolean
expression evaluates to the vatue t{true).if the condition 5 fatse, then either no statement is to be
executed, or the statement group following the ELSE keyword (or the ELSIF keyword if its associated
Boolean condition is true) is to be executed.

The CASE statement consists of an expression which shall evaluate to a variable of type ANY_INT or
of an enumerated data type (the “selector”), and a list of statement groups, each group being labeled
by one or more integer or enumerated values or ranges of integer values, as applicable. It specifies
that the first group of statements, one of whose ranges contains the computed value of the selector,
shall be executed . If the value of the selector does not occur in a range of any case, the statement
sequence following the keyword ELSE (if it occurs in the CASE statement) shall be executed.
Otherwise, none of the statement sequences shall be executed.

The maximum allowed number of selections in CASE statements is an implementation-dependent
parameter.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—134 - 61131-3 © IEC:2003(E)

3.3.2.4 lteration statements

Iteration statements specify that the group of associated statements shall be executed repeatedly. The
FOR statement is used if the number of iterations can be determined in advance; otherwise, the WHILE
or REPEAT constructs are used.

The EXIT statement shall be used to terminate iterations before the termination condition is satisfied.

When the EXIT statement is located within nested iterative constructs, exit shall be from the innermost
loop in which the EXIT is located, that is, control shall pass to the next statement after the first loop
terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT statement. For instance, after
executing the statements shown in figure 22, the value of the variable SUM shall be 15 if the value of
the Boolgan variable FLAG is 0, and 6 if FLAG=1.

SUM ;
FOR I =1 T0 3 DO

FOR J =1 TO 2 DO
IF FLAG THEN EXIT ; END_I

SUM = SUM + J ;
END_FOR : §\

SUM = SUM + 1 ;
Q/EC 2499/02
|

END_FOR ;

The FOR statement indicates that a statement sequance “shall be repeatedly executed, Up to the
END_FOR keyword, while a progressmn es_istassigned>to the FOR loop control variabhle. The
control variable, initial valye
example, SINT, INT, or DI any of the repeated statements. [The FOR
statement increments t { n from an initial value to a final |value in
increments determiied by 't ession; this value defaults to 1. The test for the

o

terminatjon conditi
executed if the inifia) V2 g finakvalue. The value of the control variable after cqmpletion
of the F(i ; :

An exan
FOR loop i
numberggd e an agray of strings WORDS with a subscript range of (1..100). If no ocurrence
is found,

atement is given in feature 6 of table 56. In this example, the

The WH auses the sequence of statements up to the END_WHILE keyword to be
executed repeatedly until the assomated Boolean expressmn is false If the expression is initially
false, the
given in table 56 can be rewrltten using the WHILE. . . END WHILE construct|on shown in table 56.

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be executed
repeatedly (and at least once) until the associated Boolean condition is true. For instance, the
WHILE. . _.END_WHILE example given in table 56 can be rewritten using the REPEAT . . _.END_REPEAT
construction shown in table 56.

The WHILE and REPEAT statements shall not be used to achieve interprocess synchronization, for
example as a "wait loop" with an externally determined termination condition. The SFC elements
defined in 2.6 shall be used for this purpose.

It shall be an error in the sense of 1.5.1 if a WHILE or REPEAT statement is used in an algorithm for
which satisfaction of the loop termination condition or execution of an EXIT statement cannot be
guaranteed.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —135-

4 Graphic languages

The graphic languages defined in this standard are LD (Ladder Diagram) and FBD (Function Block
Diagram). The sequential function chart (SFC) elements defined in 2.6 can be used in conjunction
with either of these languages.

4.1 Common elements

The elements defined in this clause apply to both the graphic languages in this standard, that is, LD
(Ladder Diagram) and FBD (Function Block Diagram), and to the graphic representation of sequential
function chart (SFC) elements.

4.1.1 Representation of lines and blocks

aracters
in table

data or
to avoid
name of

5sed as

ic elements, excluding the left pnd right
L2. Provision shall be made to gssociate
ge a network label delimited on the right by
i efined in
itlin which

or more
system,
s to the flow of signals between elements of a signal processing system,

ion block diagrams;

pgous to the flow of control between elements of an organization, or [between
the steps of arf electromechanical sequencer, typically used in sequential function chalts.

The appropriate conceptual quantity shall flow along lines between elements of a network according to
the following rules:

1) Power flow in the LD language shall be from left to right.

2) Signal flow in the FBD language shall be from the output (right-hand) side of a function or
function block to the input (left-hand) side of the function or function block(s) so connected.

3) Activity flow between the SFC elements defined in 2.6 shall be from the bottom of a step
through the appropriate transition to the top of the corresponding successor step(s).

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

~136 - 61131-3 © IEC:2003(E)

Table 57 - Representation of lines and blocks

No. Feature Example
Horizontal lines:
1 ISO/IEC 10646-1 “minus” character =~ | _____
2 Graphic or semigraphic
Vertical lines:
3 ISO/IEC 10646-1 “vertical line” character |
4 Graphic or semigraphic
Horizontal/vertical connection: |
5 ISO/IEC 10646-1 “plus” character g
|
6 Graphic or semigraphic
Line crossings without connection:
7 ISO/IEC 10646-1 characters
8 Graphic or semigraphic (\
Connected and non-connected corners;
9 ISO/IEC 10646-1 characters G
10 Graphic or serm
- :] N |
Fomm +
-1 |
1 | 1--+
-1 |
o +
12 I
13 i 46 1 characters:
onnec r | >0TTO>
ontjnuation onnected line SOTTO>—m— e
14 igraphic connectors
4.1.3 EN
The ord networks and their elements are evaluated is not necessarily the samle as the
order in re labeled or d|splayed Similarly, it is not necessary that all networks be
evaluated-before-the—evaluationef a—givernetworkcanberepeated—However—whentheHody of a

program organization unit consists of one or more networks, the results of network evaluation within
the said body shall be functionally equivalent to the observance of the following rules:

1) No element of a network shall be evaluated until the states of all of its inputs have been

evaluated.

2) The evaluation of a network element shall not be complete until the states of all of its outputs
have been evaluated.

3) The evaluation of a network is not complete until the outputs of all of its elements have been
evaluated, even if the network contains one of the execution control elements defined in 4.1.4.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —137 -

4) The order in which networks are evaluated shall conform to the provisions of 4.2.6 for the LD
language and 4.3.3 for the FBD language.

A feedback path is said to exist in a network when the output of a function or function block is used as
the input to a function or function block which precedes it in the network; the associated variable is
called a feedback variable. For instance, the Boolean variable RUN is the feedback variable in the
example shown in figure 23. A feedback variable can also be an output element of a function block
data structure as defined in 2.5.2.

Feedback paths can be utilized in the graphic languages defined in 4.2 and 4.3, subject to the
following rules:

1) Explicit loops such as the one shown in figure 23 a) shall only appear in the FBD language
dgfined in 4.3.

2) It shall be possible for the user to utilize an implementation-depe
the order of execution of the elements in an explicit loop, for instance
vdriables to form an implicit loop as shown in figure 23 b).

3) Feedback variables shall be initialized by one of the mech@nism il i . The initial
vdlue shall be used during the first evaluation of the n . hail be an dback
vgriable is not initialized.

4) Once the element with a feedback variable as 6u e of the
val

fepdback variable shall be used UWG

a)

/\ N
b) \\\\\J;> et
ENABLE-——| & |-—-—- RUN

+——1 |
[— | [——
//\\\\§§\ TARTL-—-|>=1]-——+
\\\\\\ TART2-——| |
RUN-——] |
[——

C) [STARTI ENABLE RON |
t-—] |--—-+-—] |------)--—-+
| START2 | |
t-——] |-+ |
| RUN | |
t-——] |----+ |

|

IEC 2500/02

Figure 23 - Feedback path example
a) Explicit loop
b) Implicit loop
c) LD language equivalent

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

~138 - 61131-3 © IEC:2003(E)

4.1.4 Execution control elements

Transfer of program control in the LD and FBD languages shall be represented by the graphical
elements shown in table 58.

Jumps shall be shown by a Boolean signal line terminated in a double arrowhead. The signal line for
a jump condition shall originate at a Boolean variable, at a Boolean output of a function or function
block, or on the power flow line of a ladder diagram. A transfer of program control to the designated
network label shall occur when the Boolean value of the signal line is 1 (TRUE); thus, the unconditional
jump is a special case of the conditional jump.

The tardet of a jump shall be a network Tabel within the program organization/ unit hich the
jump ocg¢urs. If the jump occurs within an ACTION. . _.END_ACTION constr the jump
shall be within the same construct.

Conditiopal returns from functions and function blocks shall be/im ~ i RETURN
construdtion as shown in table 58. Program execution shall be transferread i ng entity
when thé Boolean input is 1 (TRUE), and shall continue in the i an input
is 0 (FALSE). Unconditional returns shall be provided by t function
block, oflby a RETURN element connected to the left rail i 58.

Table 58 - Graphic exec@q

i
No. SymboIlE)émbig < A C \ \J)\éxplanation

nconditional Jjump:
1 1---->>LABELA FBD language
| <::z>
2 eSS L ABEL LD language
AN (\\>

Conditional jump
(FBD language)

Example:
jump condition

jump target
|
RS
[X Conditiormatjump
4 +-] |---->>LABELB (LD language)
|
I .
| %I1X20 %MX50 ~ Example:
] |----- | |--->>NEXT jump condition
|
,!lEXT_ jump target
| %IX25 %QX100 |
t-——] |-t)---+
| %MXe0 | I

Sl B B |

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) ~139 -

Table 58 - Graphic execution control elements

No. Symbol/Example Explanation
| X Conditional return:
5 +--] |---<RETURN> LD language
|
6 X———<RETURN> FBD language
7 Unconditional return:
END_FUNCTION_BLOCK from FUNCTION_BLOCK
Attermative Tepresentation

4.2 Ladder diagram (LD)

8 | in LD language
+-——<RETURN>
' N\ &

This supclause defines the LD language for ladder diag i f progr@ammable
controllers.

A LD prggram enables the programmable controller
graphic symbols. These symbols are laid aut i
ladder Iggic diagram. LD networks are bo

dardized
f a relay

4.2.1 Power rails
As shown in table 59, the LR the left by a vertical line known ak the left

power rdil, and on the right by s icaNine Rk e right power rail. The right power rail may be
explicit gr implied.

¢ 59 - Power rails

/\<\ ‘
No. \SWI Description
1 N Left power rail
/\ -- (with attached horizontal link)
N
|

Right power rail
-t (with attached horizontal link)
|

4.2.2 Link elements and states

As shown in table 60, link elements may be horizontal or vertical. The state of the link element shall
be denoted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. The term
link state shall be synonymous with the term power flow.

The state of the left rail shall be considered ON at all times.. No state is defined for the right rail.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the
state of the element on its immediate left to the element on its immediate right.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 140 - 61131-3 © IEC:2003(E)

The vertical link element shall consist of a vertical line intersecting with one or more horizontal link
elements on each side. The state of the vertical link shall represent the inclusive OR of the ON states
of the horizontal links on its left side, that is, the state of the vertical link shall be:

- OFF if the states of all the attached horizontal links to its left are OFF;

- ON if the state of one or more of the attached horizontal links to its left is ON.

The state of the vertical link shall be copied to all of the attached horizontal links on its right. The state
of the vertical link shall not be copied to any of the attached horizontal links on its left.

Table 60 - Link elements

No. Symbol Description /\& .
1 | e Horizontal Iir{(\ \
2 I

e
—_-et

R

4.2.3 Contacts

A contagt is an element which imparts a g equal to
the Boolean AND of the state of the horiz i pn of an
associated Boolean input, ¢ i e of the
associat

o the link on its right without modification, and gtores an
ition of the left link into the associated Boolean |variable.

below, the value of the Boolean output a is always TRUE, While the
dkand e\upon completion of an evaluation of the rung is equal to the vallie of the

4.2.5 Functions and function blocks

The representation of functions and function blocks in the LD language shall be as defined in clause 2,
with the following exceptions:

1) Actual variable connections may optionally be shown by writing the appropriate data or variable
outside the block adjacent to the formal variable name on the inside.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —141 -

2) At least one Boolean input and one Boolean output shall be shown on each block to allow for
power flow through the block.

4.2.6 Order of network evaluation
Within a program organization unit written in LD, networks shall be evaluated in top to bottom order as

they appear in the ladder diagram, except as this order is modified by the execution control elements
defined in 4.1.4.

Table 61 - Contacts ®

I Static contacts ,
lllo. Symbol Description /\\ ~
Fek Normally open ¢
1 -1 1= The state of the left link is ¢
or state of the associated Bool
2 Y T P
3 | -—-171--
or
4 | ——1/1--
;raQs\t\ion\ie}Qing\c\Mcts
Pstiti transition-sensing contact
5 he right link is ON from one evaluation of
is element to the next when a transition of the
soejgated variable from OFF to ON is sensed at the
ametime that the state of the left link is ON. The state
6 \ of the right link shall be OFF at all other times.
Negative transition-sensing contact
7 The state of the right link is ON from one evaluation of
L~ this element to the next when a transition of the
\ associated variable from ON to OFF is sensed at the
same time that the state of the left link is ON. The state
8 of the right link shall be OFF at all other times.
As specifiea’/in 2.1.1, the exclamation mark “1” shall be used when a national
character setdoes ot support the verticat bar“1-

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 142 - 61131-3 © IEC:2003(E)

Table 62 - Coils
No. Symbol Description
Momentary coils
folelel Coil
1 —()-- The state of the left link is copied to the associated
Boolean variable and to the right link.
Negated coil
Hxk The state of the left link is copied to the right link. The
2 | ——()-- inverse of the state of the left link is copied to the

W

assoclated Boolean variable, that is, If thie state of the
left link is OFF, then the state of the a iated variabl
is ON, and vice ve}s\a\@.

Latched Coils \

FHK The associated Boolean' vani

3 | —-(5)-- when the left link is-inth
untilreset b

E

4 | —-®--

) coil

N state, and remains
a SET caoil.

Traﬁsitipnise}}s\.i}tqc&gs

siti \trénsition-sensing coil

transition of the left link from OFF to ON is sensed. Th
ate.of the left link is always copied to the right link.

14

Negative transition-sensing coil
state of the associated Boolean variable is ON from

one evaluation of this element to the next when a
transition of the left link from ON to OFF is sensed. Th
state of the left link is always copied to the right link.

14

N@w and 7 of the first edition are deleted in this edition.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

4.3 Fun

© IEC:2003(E) — 143 -

ction Block Diagram (FBD)

4.3.1 General

This subclause defines FBD, a graphic language for the programming of programmable controllers
which is consistent, as far as possible, with IEC 60617-12. Where conflicts exist between this
standard and IEC 60617-12, the provisions of this standard shall apply for the programming of

program

mable controllers in the FBD language.

The provisions of clause 2 and subclause 4.1 shall apply to the construction and interpretation of

program

Example

mable controller programs in the FBD language.

s of the use of the FBD language are given in annex F

4.3.2 Combination of elements

Element
of 4.1.2.

Outputs
the LD
instead,

433 O

When a
manufad
order of

as shown in figure 24.

a)
I a o |
el | BRSSO
| b | |
+—=|]---+
(\ RN
N \) IEC 2501/02

written in the FBD language contains more than one net
plementation-dependent means by which the user may deter

;entions

struct of
required

vork, the
mine the

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 144 - 61131-3 © IEC:2003(E)

ANNEX A
(normative)
Specification method for textual languages

Programming languages are specified in terms of a synfax, which specifies the allowable
combinations of symbols which can be used to define a program; and a set of semantics, which
specify the relationship between programmed operations and the symbol combinations defined by the

syntax.

A.1 Syntax

A syntay is defined by a set of terminal symbols to be utilized for program sp
terminal|symbols defined in terms of the terminal symbols; and a set of productii
those definitions.

A.1.1 Terminal symbols

the characters in the character set defined in 2.1.1.

ificationy arse
rales. s

t of non-
becifying

btions of

For the [purposes of this part, terminal textual syl g the appropriate character string
enclosed in paired single or double quotes, 1 by the
character string ABC can be represented

or

This allgws the represent tance, a
terminal|symbol consisting o

A specidl terminal i ax isthe end-of-line delimiter, which is representgd by the
unquotedl charac S bparator”
character defined as

A secon ized in this syntax is the “null string”, that is, a string cpntaining

no chargcters by the terminal symbol NIL.

The casg atters & be significant in terminal symbols.

A.1.2 Non-terminal symbols

Non-ter! hinal taxtual svmbaols-shall ha renresented-byv strinas of lowear-case letters numhbhaers
HAgtextHdat-SyRbos—Sshat-betepresehteaby-—SstHhg —HOWeH +1SH8S,— D6

underline character (_), beginning with a lower-case letter. For instance, the strings

nonterml

and
non_term_2

are valid non-terminal symbols, while the strings

3nonterm

and
_nonterm4

are not.

and the

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 145 -

A.1.3 Production rules

The production rules for textual programmable controller programming languages shall form an
extended grammar in which each rule has the form

non_terminal_symbol ::= extended_structure
This rule can be read as:

“A non_terminal_symbol can consist of an extended_structure.”

Extended structures can be constructed according to the following rules:

1) The null string, NIL, is an extended structure.

2)A 1ermina| symbol is an extended structure.

3) A mpon-terminal symbol is an extended structure.
4) If $ is an extended structure, then the following expressions are also d, stryct e?
S), meaning S itself.

S}, closure, meaning zero or more concatenations of S

S], option, meaning zero or one occurrence of S.

5) If $1 and S2 are extended structures, then the i xp@asi s are extended strucures:

6) Cq is equivalentto S1 | (S2 SB),
A.2 Semantics

Programmable co ing” language semantics are defined in this pait of IEC

61131 by appropriate accompanying the production rules, which refergnces the
descripti clauses. Standard options available to the yser and
manufad

ent to embed semantic information in an extended structure.| In such
delimited by paired angle brackets, for example, <sgmantic

In some
cases,
inform

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 146 -

ANNEX B
(normative)

61131-3 © IEC:2003(E)

Formal specifications of language elements

B.0 Programming model

The contents of this annex are normative in the sense that a compiler which is capable of recognizing
all the syntax in this annex shall be capable of recognizing the syntax of any textual language
implementation complying with this standard.

PRODUCTION RULES:

librlary_element_name ::=

librlary_element_declaration ::=
| function_declaration | function_block dec .rat QR
| program_declaration | configuration_decla

SEMANTICS: These productions reflect the basic pro
declarations are the basic mechanism for the production/of

data_type_declars

data_type_name | function_name
| function_block_type name | program_type_ name
| resource_type name | configuration_name

.3, where

htax and

semanti¢s of the non-terminal symbols given above ar /\

Non-terminal symbol < < A CSynf@xU)\/ Semantics
data_type_name 43N 23
dIta type_declaration }r \
fiynction_name \\> \1/§1 251
f:|:nct|on declar \ \3
f:tnctlon block\typ ~__/ B.152 2.5.2
f nctlonmcm&

o] ogram B.1.5.3 253
program d(;@\ ratio
re
C(B.1.7 2.7
C(
B.1 Common elemen
B.1.1 L;[rzrs,—mgw:rrd'rd?mﬁm
PRODUCTION RULES:
letter ::= "A" | "B | <...> | "z | "a*~ | "b" | <...> | "z*
digit -:= "0" | "1 | "2 | "3 | "4] "5 | "6] "7 | "8"] "9
octal_digit :-:= "0" | "1 | "2 | "3 | "4 | "5] "6 | "7"
hex_digit ::= digit | "A"]"B"|]"C"]"D"|"E"|"F"
identifier ::= (letter | ("_" (letter | digit))) {["_"1 (letter | digit)}

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 147 -

SEMANTICS:
The ellipsis <. . .> here indicates the ISO/IEC 10646-1 sequence of 26 letters.

Characters from national character sets can be used; however, international portability of the printed
representation of programs cannot be guaranteed in this case.

B.1.2 Constants

PRODUCTION RULE:

constant ::= numeric_literal | character_string | time_literal
| bit_string literal | boolean_literal

SEMANTICS:

The extgrnal representations of data described in 2.2 are designated as “c

ex.

B.1.2.1 |Numeric literals

PRODUCTION RULES:
numgric_literal ::= integer_literal | reg

intgger_literal ::= [integer_type_na
(signed_integer | binary i

er | hex_intege
signed_integer :-:= ["+" |"-
integer ::= digit {["_"] digi
bindry_integer ::

bit [::= "1" |

octgl _integer :

hex_integez;:if
reall literak 7;

expag
bit_
| "DWORD® | "LWORD") "#"]
ger | binary_integer | octal _integer | hex_ integer)
bool

SEMANTICS: see 2.2.1.

B.1.2.2 Character strings

PRODUCTION RULES:

character_string ::=
single_byte character_string | double byte character_string

single_byte character_string ::=
"= Isingle_byte character_representation} """

double_byte character_string ::=
""" {double_byte character_representation} """

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 148 - 61131-3 © IEC:2003(E)

single_byte character_representation ::= common_character_representation
| "$™" | """] "$" hex_digit hex_digit

double_byte character_representation ::= common_character_representation
| "$"" | "] "$" hex_digit hex_digit hex_digit hex_ digit

common_character_representation ::=
<any printable character except "$",
| "$$" | "$L" | "SN" | "$P" | "$R" | "$T"
I I$I - I l$nl I l$pI I I$rI I I$t.
SEMANTICS: see 2.2.2.

or ""'>

B.1.2.3 Time literals

PRODUCTION RULE:
timg _literal ::= duration | time_of _day | date |

SEMANTICS: see 2.2.3.

B.1.2.3.1 Duration

PRODUCTION RULES:
durgtion -:= (°T" | "TIME") X#*
intgrval
days
fixe
houn
minu
secg
millji

SEMAN]

NOT hours,

B.1.2.3.2

PRODUCTION RUL
time_of _day ::= (TTIME_OF_DAY" ["TOD") T“#" daytime
daytime ::= day hour ":" day minute ":" day_second
day_hour ::= integer
day minute ::= integer
day second ::= fixed_point
date :-:= ("DATE" | "D") "#" date_literal
date_literal ::= year "-" month "-" day

year ::= integer

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 149 -

month ::= integer
day ::= integer
date_and_time :-:= ("DATE_AND TIME® | "DT") "#" date_literal "-" daytime

SEMANTICS: see 2.2.3.2.

NOTE The semantics of 2.2.3.2 impose additional constraints on the allowable values of
day hour, day minute, day_second, year, month, and day.

B.1.3 Data types

PRODUCTION RULES:

datg type name ::= non_generic_type name | generic_type/
non_[generic_type name ::= elementary_ type name | d
SEMANTICS: see 2.3.

B.1.3.1 Elementary data types

PRODUCTION RULES:

elenentary_type name ::= numeric_type
| bit_string type name

numgric_type _name ::

intgger_type name ::= signed

signed_integer_typé na | "DINT®" | “LINT"
"UINT®] “UDINT® | “ULINT"

unsifgned_intege
reall type n N
date_type_§::§ :
| “DT*

bit [string - gOL™ | "BYTE" | "WORD" | "DWORD" | "LWORD"
SEMAN]

E_OF_DAY" | "TOD" | "DATE_AND_TIME

B.1.3.2

PRODU

gendri€/ type_name ::= "ANY" | "ANY_DERIVED" | "ANY_ELEMENTARY"
["ANY_WMAGNTTUDE™ [“ANY_NUM™ [“ANY_REAL™ ["ANY_INT™ [“ANY_BIT"
| "ANY_STRING" | "ANY_DATE"

SEMANTICS: see 2.3.2.

B.1.3.3 Derived data types

PRODUCTION RULES:

derived_type name ::= single_element _type name | array_type_name
| structure_type _name | string_type_name

single_element_type name ::= simple_type name | subrange_type_ name
| enumerated_type name

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—150 — 61131-3 © IEC:2003(E)

simple_type name ::= identifier
subrange_type _name ::= identifier
enumerated_type _name ::= identifier
array_type _name ::= identifier
structure_type_name ::= identifier

data_type_declaration ::=
"TYPE" type_declaration ";"
{type_declaration ";"}
"END_TYPE"

typgdeclaration ::= single_element_type_declaration
| array_type declaration
| structure_type_declaration | string_type decls

single_element_type_declaration ::= simple_type d

simple_type declaration ::= simple_type_name
simple_spec_init = simple_specification
simple_specification ::= elementary_typ¢

subrjange_type_declaration

2}
c
o
=
Q
>
«Q
I('D
(2}
e
(9%
0
-
)
-
=y

subrjange_spec_init ::= Yol: signed_integer]

subrjange_specification :: ger_typ 5 subrange®)*
| subrange_type name

subrjange ::= signed
enunjerated_type (declarati

enunlerated c_
enunlerated_spe

enumerated_|value]

jumerated_type_name "#"] identifier

II= array_type_name ":" array_spec_init

array_specification [":=" array_initialization]
. 1= array_type_name
[<ARRAY"™ "[" subrange {"," subrange} "]" "OF" non_generic_type name

array_initialization ::=
"[* array_initial_elements {-,

array_initial_elements} "]*

array_initial_elements ::=
array_initial_element | integer "(" [array_initial_element] ")*

array_initial_element ::= constant | enumerated_value
| structure_initialization | array_initialization

structure_type_declaration ::=
structure_type _name ":" structure_specification

structure_specification ::= structure_declaration | initialized_structure

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E) —151 -

initialized structure ::=

structure_type_name [":=" structure_initialization]

structure_declaration ::=

"STRUCT®" structure_element declaration *;*
{structure_element_declaration ";"}
"END_STRUCT™

structure_element _declaration ::= structure_element _name ":*

stru

(simple_spec_init | subrange_spec_init

| array_spec_init | initialized_structure)

cture_element_name ::= identifier

| enumerated_spec_init

str

stru

stri

stri

SEMAN]

cture_initialization -:.=
"(" structure_element_initialization
{"," structure_element_initialization} ")*

cture_element_initialization ::=
structure_element_name ":=" (constant | enur
| array_initialization | structure_initighl

ng_type_name ::= identifier

ng_type_declaration ::= string_type e
("STRING" | "WSTRING®) ["[" integer

[ICS: see 2.3.3.

B.1.4 Variables

PRODU
vari
symb
vari

SEMAN]

B.1.4.1

PRODU
dire

loca

CTION RULES:

able ::=

¢Yvariable
olic variab nawme | multi_element_variable
able n

[ICS: see 2K

= "%" location_prefix size prefix integer {".°
L B

in

teger}

size_preTix

= NIL | LT

<X

B

/A |

o]

SEMANTICS: see 2.4.1.1.

B.1.4.2 Multi-element variables

PRODUCTION RULES:

multi_element variable ::=

array_variable

subscripted_variable ::=

subscript_list :

= "[° subscript {°,

array _variable | structured_variable
::= subscripted_variable subscript_list

symbolic_variable

subscript} "]°

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—152 - 61131-3 © IEC:2003(E)

subscript ::= expression

structured_variable ::= record variable "." field _selector
record_variable ::= symbolic variable
field _selector ::= identifier

SEMANTICS: see 2.4.1.2.

B.1.4.3 Declaration and initialization

PRODUCTION RULES:

input_declarations ::=
"VAR_INPUT" ["RETAIN" | "NON_RETAIN"]

input_declaration *;
{input_declaration ";"}

"END_VAR™
input_declaration :-:= var_init_decl | edge_de
edgq declaration :-:= varl_list ":" "BOOL"

var_linit_decl ::= varl_init_decl | arra
| structured_var_init_decl | fb 41a

varl] init decl ::= varl lis
(simple_spec_init | subra

varl] list ::= variable_name
arrgy var_init_decl
stru
fb_n

fb_n
fb_n

outp
AIN® | "NON_RETAINT]

inpyt_output~declarations ::=
TVAR_IN_OUT"
var_declaration ;.

{var_declaration ";"}

"END_VAR™
var_declaration :-:= temp_var_decl | fb_name_decl
temp_var_decl ::= varl_declaration | array var_declaration

| structured_var_declaration | string_var_declaration

varl_declaration ::= varl list " (simple_specification
| subrange_specification | enumerated_specification)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) - 153 —
array_var_declaration :-:= varl_list ":" array_specification
structured_var_declaration = varl_list ":" structure_type_name

var_declarations ::=

retentive_var_declarations ::

"VAR™ ["CONSTANT"]
var_init_decl *;"
{(var_init_decl ";")}

"END_VAR*

"VAR" "RETAIN*

var_init_decl *;
{var_init decl ";"}

loca

loca

exts

exte

glob
glob

glob

loca

"END_VAR*

ted var_declarations ::=

"VAR®™ ["CONSTANT®™ | "RETAIN® | "NON_RETAIN"]
located var_decl *;*"
{located_var_decl ";"}

"END_VAR*

ted_var_decl ::= [variable_name] loca

rnal_var_declarations :=

"VAR_EXTERNAL" ["CONSTANT"]
external_declaration *;
{external_declaration

"END_VAR*

rnal_declaration ::=

al_var_name|::

al vard

dbal_var_spec ":*
_spec_init | function_block_type_name]

:I= global_var_list | [global_var_name] location

-
=}

ted var_spéc_init ::= simple_spec_init | subrange_spec_init

| single_bytg_str?ng_spec | donIe_Byte_string_spec

location ::= "AT" direct variable
global_var_list ::= global_var_name {"," global_var_name}
string_var_declaration ::= single_byte string_var_declaration

sing

sing

| double_byte string var_declaration

le_byte string var_declaration ::=

varl_list ":" single_byte string_spec

le_byte string_spec ::=

"STRING® ["[" integer "]1"]1 [":=" single_byte_character_string]

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 154 — 61131-3 © IEC:2003(E)

double_byte string var_declaration ::=
varl_list ":" double_ byte string_spec

double_byte string_spec ::=
"WSTRING® ["[" integer "]"] [":=" double_byte character_string]

incompl_located_var_declarations ::=
"VAR®™ ["RETAINT]"NON_RETAIN"]

incompl_located_var_decl ~;
{incompl_located_var_decl ";"}

"END_VAR*
incompl_located var_decl ::= variable_name incompl_location ":" var_spec
incompl location :-:= "AT" "% ("1" | "Q" | "M") ==~
var_|spec ::= simple_specification

| subrange _specification | enumerated_specificat}
| array_specification | structure_type_ name
| "STRING™ ["[" integer "]"] | "WSTRING" [*©

SEMANTICS: see 2.4.2. The non-terminal function_block_type \

B.1.5 Program organization units

B.1.5.1 [Functions

PRODUCTION RULES:

fundgtion_name :: derived_function_name
stanldard_function_name ::] i 9 5.1.5>
derijved_function_n;

fungtion_declar
"FUNCTION*®

fung VAR ["CONSTANT"]

{var2_init_decl ";"} "END_VAR"

fund -dder _diagram | functlon _block _diagram

varZ i
| structured | var_ |n|t decl | string_ var declaration

SEMANTICS: see 2.5.1.

n
<
o
=
|_\
5
H‘
o
®
2]
o)
'S
=
)

“<
<
)
h
5
H'
o
®
'O

NOTE 1 This syntax does not reflect the fact that each function must have at least one input
declaration.

NOTE 2 This syntax does not reflect the fact that edge declarations, function block references and
invocations are not allowed in function bodies.

NOTE 3 Ladder diagrams and function block diagrams are graphically represented as defined in
Clause 4. The non-terminals instruction_list and statement_list are defined in
B.2.1 and B.3.2, respectively.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —155—

B.1.5.2 Function blocks

PRODUCTION RULES:

function_block_type name ::= standard_function_block name
| derived_function_block_name

standard_function_block name ::= <as defined in 2.5.2.3>
derived_function_block name ::= identifier

function_block declaration ::=

"FUNCTION_BLOCK®™ derived_function_block name
{ 1o_var_declarations | other_var_declarations }
Tunction_block_body

"END_FUNCTION_BLOCK™

othgr_var_declarations ::= external var_declaration
| retentive_var_declarations | non_retentive va
| temp_var_decls | incompl_located_var_decldrat

temp _var_decls ::=
"VAR_TEMP*
temp_var_decl *;*
{temp_var_decl ";"}
"END_VAR™

non_|retentive _var_decls ::=
"VAR®™ "NON_RETAIN*

var_init_decl *;
{var_init_decl ";"}

"END_VAR™

fungtion_block_body :: [stdon_chart | ladder_diagram
| function_block 1 ction_list | statement_list
| <other 1s&

SEMANTICS: se :

NOTE i 3 q block diagrams are graphically represented as defifed in

NOTE guential_function_chart, instruction_list, and

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 156 — 61131-3 © IEC:2003(E)

B.1.5.3 Programs

PRODUCTION RULES:
program_type_name :: = identifier

program_declaration ::=
"PROGRAM® program_type_ name
{ 1o_var_declarations | other_var_declarations
| located_var_declarations | program_access_decls }
function_block_body
"END_PROGRAM™

program_access decls :-:=

"VAR_ACCESS*" program_access_decl *;*
{program_access_decl ";" }

"END_VAR™

program_access_decl ::= access _name ":" symbolic xa
non_generic_type_name [direction]

SEMANTICS: see 2.5.3.

B.1.6 Sequential function chart elements

PRODUCTION RULES:
sequential_function_chart ::
sfc_jnetwork ::= initial_step ({st

init

step
step

acti
qualifier] {"," indicator_name} ")*

acti

acti

"P*" | timed_qualifier "," action_time
L | "D" | "Sb" | °"DS®]| "SL-

.57 duration | variable_name

time

actirn_time

indi

ator name --= variable name

transition ::= “TRANSITION”
[transition_name] [*(® "PRIORITY" ":=" integer ")"]
"FROM™ steps "TO" steps
transition_condition
"END_TRANSITION™

transition_name ::= identifier
steps ::= step_name | "(° step_name "," step_nhame {"," step_name} ")*
transition_condition ::= ":" simple_instruction_list | ":=" expression

;" | ":° (fbd_network | rung)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —157 -

action ::= "ACTION" action_name ":*
function_block_body
"END_ACTION™

SEMANTICS: see 2.6. The use of function block diagram networks and ladder diagram rungs,
denoted by the non-terminals fbd_network and rung, respectively, for the expression of transition
conditions shall be as defined in 2.6.3.

NOTE 1 The non-terminals simple_instruction_list and expression are defined in
B.2.1 and B.3.1, respectively.

NOTE 2 The term [transition_name] can only be used in the production for transition

when feature 7 of table 41 is supported. The resulting production is the textual equivalent
of this feature.

B.1.7 Cpnfiguration elements

PRODUCTION RULES:

confliguration_name ::= identifier

identifier

resdurce_type_name ::

confliguration_declaration ::=
"CONFIGURATION" configuration_name
[global_var_declarations]

| (resource_decla
[access_declarations]
[instance_specific_i
"END_CONFIGURATION™

dration}))

reso

sing

claration *;*
'-'1

access
{ahhpqq_dphlarafinn

"END_VAR"

access_declaration ::= access name ":" access path ":*
non_generic_type name [direction]

access_path ::= [resource_name "."] direct variable
| [resource_name "."] [program_name "."]
{fb_name®."} symbolic variable

global_var_reference ::=
[resource name "."] global _var _name ["." structure_element _name]

access_name ::= identifier

program_output _reference ::= program_name "." symbolic_variable

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 158 — 61131-3 © IEC:2003(E)

program_name ::= identifier

direction ::= "READ _WRITE®" | "READ_ONLY"®

task_configuration ::= "TASK" task name task initialization
task _name := identifier

task _initialization ::=
*(" ["SINGLE®" ":=" data_source *,"]
[T INTERVAL®" ":=" data_source *,"]
"PRIORITY" ":=" integer ")"

data_source ::= constant | global_var_reference
| program output reference | direct variable

program_configuration ::=
"PROGRAM™ [RETAIN | NON_RETAIN]
program_name ["WITH®" task name] ":" program_
[F(C" prog_conf _elements *)"]
prog conf_elements ::= prog_conf _element {","
prog conf _element ::= fb_task | prog_cnxn
fb_tlask ::= fb_name “WITH" task name
prog cnxn ::= symbolic_variable *
| symbolic_variable

prod data_source ::=

datgq sink :: ariable

instlance_specific <
"VAR_CONFI
instance

s

inst s
program_name *.° {fb_name "_."}

ion] ":" located_var_spec_init) |
sion_block_type _name *

SEMAN]

NOTE

constant | enumerated_value _reference | direct_variable

does not reflect the fact that location assignments are only allpwed for
réferences to variables which are marked by the asterisk notation at type declaraT

tion level.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —159 —

B.2 Language IL (Instruction List)

B.2.1 Instructions and operands
PRODUCTION RULES:

instruction_list ::= il_instruction {il_instruction}
il_instruction ::= [label":-"] [il_simple_operation
| il _expression
| il_jump_operation

| il_fb_call

[iT_fTormal_ftunct_call

| il_return_operator 1 EOL {EOL}
labgl ::= identifier
il_gimple_operation ::= (il_simple_operator [il

| (function_name [il_operand_list])

il_gxpression ::= il_expr_operator (" [il_op
[simple_instr_list] ")*

il_jlump_operation :-:= il_jump_operator
il fb call ::=

il _gperand ::=
il_gperand_list ::

simple_instr_list ::

(il_swufple
EOL {EOL

il_param_lIi

pression | il_formal_funct_call)

il_param_out_assignment :-:= 1l_assign_out_operator variable
B.2.2 Operators
PRODUCTION RULES:
il_simple_operator ::= "LD® | "LDN®" | *ST" | °STN®"] °NOT" | =°S-
| "R™] "S1® | "R1" | "CLK" | "CU" | *CD" | "PV"
| "IN® | "PT" | il_expr_operator
il_expr_operator ::= “AND" | "&" | "OR®™ | "XOR®™ | "ANDN" | "&N" |

| "XORN®" | “ADD" | °"SuB®" | °"MUL" | "DIV" | °"MOD" | *"GT" | "GE-"

- I ILTI I ILEI I INEI

ment)

{EOL}

"ORN"
| "EQ

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 160 — 61131-3 © IEC:2003(E)

il_assign_operator ::= variable _name®:="
il_assign_out_operator ::= ["NOT"] variable_name®=>"
il_call _operator ::= "CAL" | "CALC® | "CALCN*
il_return_operator ::= "RET" | "RETC" | "RETCN*
il_jump operator ::= "JMP" | "JMPC® | "JMPCN*

SEMANTICS: see 3.2. This syntax does not reflect the possibility for typing IL operators as noted in

table 52.

B.3 Lanjguage ST (Structured Text)
B.3.1 Expressions
PRODUCTION RULES:

expriession ::= xor_expression {"OR" xor_expressid

Xor_lexpression ::= and_expression {"XOR" and_g
and_|expression ::= comparison {("&" |
comparison ::= equ_expression { (="

equ_lexpression ::=
comparison_operator ::
add_|expression :-:=
add_|operator ::
tern ::= power_expfessio

multiply_operatg

powgr_expregssio
unarly_expre 9

unary_

prim
ed_value | variable | (" expression ")*
" param_assignment {",*

SEMANTIGS: thege iqiti

the variqus, Kinds 0 ressions. Further discussion of the semantics of these definitions i
3.3.1. Spe2/5.1.1 for details of the semantics of function calls.

param_assignment})

: s have been arranged to show a top-down derivation of exXpression
structurgd. Thexpgecedepce of operations is then implied by a “bottom-up” reading of the defirrtions of

s| given in

B.3.2 Statements
PRODUCTION RULE:

statement_list ::= statement ";" {statement ";"}

statement ::= NIL | assignment_statement | subprogram control_statement

| selection_statement | iteration_statement

SEMANTICS: see 3.3.2.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —161 -

B.3.2.1 Assignment statements
PRODUCTION RULE:

assignment_statement ::= variable ":=" expression
SEMANTICS: see 3.3.2.1.
B.3.2.2 Subprogram control statements
PRODUCTION RULES:
subprogram_control_statement ::= fb_invocation | "RETURN"
fb_ijnvocation ::= fb_name "(" [param_assignment {"," papam_assignmgnt}]
I) -
pargm_assignment ::= ([variable_name ":="] expressi
| (I"NOT"] variable_name "=>" variable)

SEMANTICS: see 3.3.2.2.

B.3.2.3 [Selection statements

PRODUCTION RULES:
selgction_statement ::= if_s

if _dJtatement ::=
"IF" expression "THEN" s
{"ELSIF" expression "T,
[FTELSE" statement list
"END_IF*®
caseg statement ::
"CASE" expriessio
case_element

caseg statement_list

casg element {"," case_list_element}

caseg li
SEMAN

brange | signed_integer | enumerated_value

B.3.2.4
PRODU

iteration_statement ::=
for_statement | while_statement | repeat_statement | exit_statement

for_statement ::=
"FOR" control _variable ":=" for_list "DO" statement list "END_FOR"

control_variable ::= identifier
for_list :-:= expression "TO" expression ["BY" expression]
while_statement :-:= "WHILE®" expression "DO" statement_list "END WHILE"®

repeat_statement ::=
"REPEAT" statement_list "UNTIL" expression "END_REPEAT"

exit statement ::= "EXIT"
SEMANTICS: see 3.3.2.4.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—162 - 61131-3 © IEC:2003(E)

ANNEX C
(normative)
Delimiters and keywords

The usages of delimiters and keywords in this standard is summarized in tables C.1 and C.2. National
standards organizations can publish tables of translations for the textual portions of the delimiters
listed in table C.1 and the keywords listed in table C.2.
Table C.1 - Delimiters
Delipﬂters——Sub'clause Usage 7
e N
S;Lace 21.4 As specified in 2.1.4. /\< (\

* 21.5 Begin comment
) End comment (\
+ 221 Leading sign of decimal ljtér N
3.3.1 Addition operator \

2.21 Leading sign of degimalliter:

- 2232 Year-month- da separator
3.3.1 Sub action, eratar
411 rizo aI ne

221 Based\numbhehrsep ator\/
223 ellter_{se rafor
221 w
24.1.
2 2

215.2. nction block structure separator

e or E)2/& \i{ea\[\e{(p nent delimiter
' /\<2\2>\ Vnd end of character string

$ \81/art of special character in strings

\ - Time literal delimiters, including:
TH#, /5\H\ D TE# D#, TIME_OF_DAY#, TOD#, DATE_AND_TIME#, |DT#

Time of day separator
Type name/specification separator

4.2 Variable/type separator
26.2 Step name terminator
2.7 RESOURCE namef/type separator
2.7 PROGRAM name/type separator
2.7 Access name/path/type separator
3.2.1 Instruction label terminator
41.2 Network label terminator
2.3.3.1 Initialization operator
== 271 Input connection operator
3.3.2.1 Assignment operator

@) 2.3.3.1 Enumeration list delimiters

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E)

- 163 -

Table C.1 - Delimiters

Delimiters Subclause Usage

@) 2.3.3.1 Subrange delimiters

[1 2412 Array subscript delimiters

[] 242 String length delimiters

O 242 Multiple initialization

@) 3.2.2 Instruction List modifier/operator

@) 3.3.1 Function arguments

@) 3.3.1 Subexpression hierarchy

) 3.3.2.2 Function block input list delimiters :
2.3.3.1 Enumeration list separator
2.3.3.2 Initial value separator
241 Array subscript separator
242 Declared variable separator

, 25.21 Function block initial value se
2521 Function block input list s
3.21 Operand list separator
3.31 Function argument Jist separa
3.3.2.3 CASE value list se ara

: 2.3.3.1 declar ion tor@
3.3 St te nt epargtor
2.3.3.1 Subr p ato
3.3.2.3 CA range S

% 2.4.1)/\ /Qrégt re\p\re}gnt;tR efix

~> t onnectl Operator

erators, including

-l @%Q% A

&, AND, XOR, OR

| for !

\(%hc lines

Table C.2 - Keywords

Keywords Subclayse
ACTION. \s\AanQ 264
ARRAY] . <OF 2.3.3.1
AT 243
CASE...OF...ELSE.._END_CASE 3.3.2.3
CONFIGURATION. . .END_CONFIGURATION 271
CONSTANT 24.3
Data type names 2.3
EN, ENO 251.2,2521a
EXIT 3.3.24
FALSE 2.2.1
F_EDGE 2522
FOR...TO...BY...DO...END_FOR 3.3.24

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 164 — 61131-3 © IEC:2003(E)

Table C.2 - Keywords

Keywords Subclause
FUNCTION. . .END_FUNCTION 2513
Function names 2.51
FUNCTION_BLOCK. . .END_FUNCTION_BLOCK 2522
Function Block names 252
IF._.THEN...ELSIF.. _ELSE.._END_IF 3.3.23
INITIAL_STEP. . _END_STEP 2.6:2

NOT, NOD, AND, XOR, OR

PROGRAM. . _WITH. ..

PROGRAM. . _END_PROGRAM

v
N
o
N
NJ

R_EDGE

READ_QNLY, READ_WRITE

REPEAT. . .UNTIL...END_REPEAT

RESOURCE. . .ON. . .END_RESOURCE

RETAIN, NON_RETAIN

RETURN

STEP. | .END_STEP /\ /\\ \\ \ 2.6.2
STRUCT. . .END_STRUCTN N ~ y/ 2.3.3]
TASK k \/\ \ \ 2.7.2
TRANSHTION. . .&@?./ﬁg-) -@_Ms\pﬁ(2.6.3

TRUE /\& \/\ 2.2.1
TYPE. | END_TYPE \ N 233
VAR. .] END&AR \ \ \) 2.4.3
VAR_INRUT S ENDRMAR 243
VAR_Ol TPURE\ND_NR 243
VAR_IN_QUTZ. .END™YAR 243
VAR_TEMP. . _END_VAR 2.4.3
VAR_EXTERNAL. . _END_VAR 2.4.3
VAR_ACCESS. . .END_VAR 2.71
VAR_CONFIG. . .END_VAR 271
VAR_GLOBAL. . .END_VAR 271
WHILE...DO...END_WHILE 3.3.24
WITH 271

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 165

ANNEX D
(normative)
Implementation-dependent parameters

The implementation-dependent parameters defined in this standard, and the primary reference clause
for each, are listed in table D.1.

NOTE Other implementation-dependent parameters such as the accuracy, precision and
repeatability of timing and execution control features may have significant effects on the
portability of programs but are beyond the scope of this part of IEC 61131.

Table D.1 - Implementation-dependent parameters/<

Suplause Parameters /\ \

21.2 Maximum length of identifiers
21.5 Maximum comment length \ \\\ \ \/

21.6 Syntax and semantics of pragmas \\ \ >

222 Syntax and semantics for the use of thie double- Wter when a
particular implementation supports/f\e tur bLII\t not fea 2 of table 5.

2.3.1 Range of values and presision of\teprese ati@o vafiables of type TIME
DATE, TIME_OF _DAXan E_AND <PNVE

of secondsyintypes TIME, TIME_OF_DAY and

Precision of represent
DATE_AND_TIME

2.3.3|1 Maximup numberofen m&a@valu

2.3.3|2 De maxim length of STRING and WSTRING variables
/\N@m urm allowed length of STRING and WSTRING variables
241 &im nMer of hierarchical levels
ical ok physical mapping

242 ‘Iniﬁ‘a\lization of system inputs

243 imum number of variables per declaration
Effect of ucing AT qunlifinr indeclaration of function block instances

Warm start behavior if variable is declared as neither RETAIN nor NON_RETAIN

2.5 Information to determine execution times of program organization units
2512 Values of outputs when ENO is FALSE
2513 Maximum number of function specifications
2515 Maximum number of inputs of extensible functions
2.5.1.5.1 Effects of type conversions on accuracy
Error conditions during type conversions
25152 Accuracy of numerical functions
25156 Effects of type conversions between time data types and other data types not

defined in table 30

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 166 — 61131-3 © IEC:2003(E)

Table D.1 - Implementation-dependent parameters

Sublause Parameters

25.2 Maximum number of function block specifications and instantiations

2521a Function block input variable assignment when EN is FALSE

25233 Pvmin, Pvmax of counters

25234 Effect of a change in the value of a PT input during a timing operation

253 Program size limitations

2.6.2 Precision of step elapsed time A
Maximum number of steps per SFC N\

2.6.3 Maximum number of transitions per SFC and per step< \

2.6.4|2 Maximum number of action blocks per step (\ \ \

2.6.4|5 Access to the functional equivalent of the Q Muts\\ \

26.5 Transition clearing time
Maximum width of diverge/converge M
271 Contents of RESOURCE libraries \)/
271 Effect of using READ @R\TE <\ss@o fur{\ctlo(n.ﬂlopk/outputs
272 Maximum number of tas

Task interval resolutio

3.3.1 Maximurp/lQngth of exéaeséiq& \/

3.3.2 MaX|mu B{[f of sta

-
3323 Mam[n\uw ber &\\OQ\SE\Q\C'GO/

3.3.2/4 \@u Ef contiolba(\Te\Wermmanon of FOR loop

4.1.1 B\étr%@/n\s{)n\ﬁeuV\Wpology

41.3 E\/\A\Non\o\rwﬁeédback loops

AKX W

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) — 167 -

ANNEX E
(normative)
Error conditions

The error conditions defined in this standard, and the primary reference clause for each, are listed in
table E.1. These errors may be detected during preparation of the program for execution or during
execution of the program. The manufacturer shall specify the disposition of these errors according to
the provisions of subclause 1.5.1 of this part of IEC 61131.

Table E.1 - Error conditions

Subclause Error conditions ;

21.5 Nested comments /\\ ~

2.3.3.1 Ambiguous enumerated value

2.8.3.1 Value of a variable exceeds the specified sgﬁ?ang\\ \ \

2hA.11 Missing configuration of an incomplete/adckég \\lﬁca\lt@n ¥ nptation)

243 Attempt by a program organizatio }ﬁ(a‘variablé which has been
declared CONSTANT

243 Declaration of a variable ST\Kﬁ in a containing
element having nta| el n |n ch theé same variable is dgclared

VAR_EXTERNA W|th utthe CONSTANT ¢ aI ier.

Improper use of ga%stly\eQ\eQe@ or external variables in functions

A VAR_IN_OUT &ari@k\'\s %\le mapped”

Aé\b@qg\%e\}@s\dﬂy MR IN_OUT connection
[\T\;@;@o\nver i0 err s

umericalesu e%{e/& range for data type
ivisiomby.zero

mqg\l\s less zero in a bit-shift function
ixed\ pMa types to a selection function
elector {K) out of range for MUX function

N
Inwalid character position specified
ult exceeds maximum string length

ANY_INT input is less than zero in a string function

2p45.6 Result exceeds range for data type

2522 No value specified for a function block instance used as input variable

2522 No value specified for an in-out variable

2.6.2 Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

2.6.3 Side effects in evaluation of transition condition

26.4.5 Action control contention error

2.6.5 Simultaneously true, non-prioritized transitions in a selection divergence
Unsafe or unreachable SFC

271 Data type conflict in VAR_ACCESS

2.7.2 A task fails to be scheduled or to meet its execution deadline

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

— 168 — 61131-3 © IEC:2003(E)

Table E.1 - Error conditions

Subclause Error conditions

3.2.2 Numerical result exceeds range for data type
Current result and operand not of same data type

3.3.1 Division by zero
Numerical result exceeds range for data type
Invalid data type for operation

3.3.2.1 Return from function without value assigned

3p24 fteration-faitstoterminate 7

4an.1 Same identifier used as connector label and eIemg@N@\
4f.3 Uninitialized feedback variable N\

oV

3

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —169 -

ANNEX F
(informative)
Examples

F.1 Function WEIGH

Example function WEIGH provides the functions of BCD-to-binary conversion of a gross-weight input
from a scale, the binary integer subtraction of a tare weight which has been previously converted and
stored in the memory of the programmable controller, and the conversion of the resulting net weight
back to BCD form, for example, for an output display. The “EN” input is used to indicate that the scale
is ready to perform the weighing operation.

The “ENO” output indicates that an appropriate command exists (for ex
pushbutfon), the scale is in proper condition for the weight to be read, an
result.

operator
B correct

A textua| form of the declaration of this function is:

FUNCTHON WEIGH : WORD (* BCD encoded *)
VAR |INPUT (> "EN" input is used to indicate ”
wgigh_command : BOOL;
grjoss_weight : WORD ; (* BCD encoded *),
tdre_weight : INT ;
END_|VAR
(* Function Body *)
END_FUNCTION

The bod

(* No weighing, 0 to "ENO'[*)

WEIGH] | gross_weight
tare_weight
(* Return evaluated weigh§ *)

WEIGH

The body of function WEIGH in the ST language is:

IF weigh_command THEN
WEIGH := INT_TO_BCD (BCD_TO_INT(gross_weight) - tare_weight);

END_IF ;

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 170 -

An equivalent graphical declaration of function WEIGH is:

61131-3 © IEC:2003(E)

| WEIGH |
BOOL---]EN
BOOL---|weigh_command
WORD---]gross_weight |
INT--—-]tare_weight |

The fungtier-bedy-in-the-LB-tanrgduage-is:

| [T —— + [T ———— +

| we

BCD

+——=4

gh_command | TO_INT |
-1 1--—--IEN
|

SUB

ENO]--]EN ENO]---]EN

INT_

| TO BCD |
ENO|----

| grgss_weight--|
| o
| tare_
|

The fungtion body in the FBD lan
+

|
| TO_
weigh_command---]EN
gross_weight--—-| | --WEIGH

tare|

dependingon-the sta
input is provi i
input.

If confirmation of command completion is not received on the FDBK input within a predetermined time
specified by the T_CMD_MAX input, the command is cancelled and an alarm condition is signalled via
the ALRM output. The alarm condition may be cancelled by the ACK (acknowledge) input, enabling
further operation of the command cycle.

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3

© IEC:2003(E)

—171 -

A textual form of the declaration of function block CMD_MONITOR is:

FUNCTION_BLOCK CMD_MONITOR

VAR_INPUT AUTO_CMD : BOOL ; (* Automated command *)
AUTO_MODE : BOOL ; (* AUTO_CMD enable *)
MAN_CMD : BOOL ; (* Manual Command *)
MAN_CMD_CHK : BOOL ; (* Negated MAN_CMD to debounce *)
T_CMD_MAX : TIME ; (* Max time from CMD to FDBK *)
FDBK : BOOL ; (* Confirmation of CMD completion
by operative unit *)
ACK : BOOL ; (* Acknowledge/cancel ALRM *)
END VAR
VAR_OUTPUT CMD : BOOL ; (* Command to operative unit *)
ALRM = BOOL ; (* T_CMD_MAX expired without RDBR *
END_VAR
VAR CMD_TMR : TON ; (* CMD-to-FDBK timer *)
ALRM_FF : SR ; (* Note over-riding S inp
END_VAR (* Command must be cancell

(* Function Block Body
END_FUNCTION_BLOCK

*)

An equiV

The bod

alent graphical declaration is:

9,

y of functi@xc CM w in the ST language is:

M

N

& AUTO_MODE
AN_CMD & NOT MAN_CMD_CHK & NOT AUTO_MODE ;
= CMD, PT := T_CMD_MAX);

AERMNEF (51 := CMD_TMR.Q & NOT FDBK, R :=

ACK);

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

-172 -

61131-3 © IEC:2003(E)

The body of function block CMD_MONITOR in the IL language is:

The bod

LD T_CMD_MAX
ST CMD_TMR.PT (* Store an input to the TON FB *)
LD AUTO_CMD

AND AUTO_MODE

OR(MAN_CMD

ANDN AUTO_MODE

ANDN MAN_CMD_CHK

)

ST CMD

IN CMD_TMR (* Invoke the TON FB *)

LD CMD_TMR.Q

ANDN FDBK

ST ALRM_FF_S1 (* Store an

LD ACK

R ALRM_FF > Inv

LD ALRM_FF.Q1

ST ALRM

/ of function block €MD "MOK1TO X@a

%

uage is:
\/ |
CMD |
---------------- +-—-()--+
| |
MAN_CMD_CHECK | |
------ 1/]-—-—--—————+ I
|
ALRM |
--------------------------------- (R)-——+
|
|
FDBK ALRM |
—————— 1/1---——-———=()-——+

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 173 -

The body of function block CMD_MONITOR in the FBD language is:

+-+ +——t
AUTO_CMD------ [&]-——-]>=1] -+ CMD
AUTO_MODE--+--] | +--] 1 1
| +-+ 1 +——+ |
| | |
| ++] | CMD_TMR ALRM_FF
+-0l&] | | +-——- + PR +
MAN_CMD------- | 1-+ | | TON | -t | SR |
MAN_CMD_CHK--0O] | +——]IN Q]--———- |&]--—-]1S1 Q1]--ALRM
ot | 1 +-Ol | +-IR |
—T_CMD WA | L= | | = [T-——— +
F——— +

F.3 Function block FWD_REV_MON

Examplqg function block FWD_REV_MON illustrates the control
positionihg action, for example, a motor-operated valve.
are posgible, with alarm capabilities provj > ' , as

the cangellation of both commands and si i \) sondifion. The Boolean OR of

conditions is made available as a KLAXON

A graphi

KLAXON | -—-BOOL
D_REV_ALRM]---BOOL
FWD_CMD] ---BOOL

<i: FWD_ALRM| ---BOOL

_ |

TRIE-><| T_FWD_MAX I

00D -—fFWD_FDBK I
‘ BROL-~~ | AUTO_REV REV_CMD | ---BOOL
\\\\\\\\\\\// BOOL--- | MAN_REV REV_ALRM| ---BOOL

OL---|MAN_REV_CHK |
TIME---|T_REV_MAX |
BOOL--- |REV_FDBK |

it capable of
manual contrg

two-way
| modes
function
5 causes
all alarm

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

—174 - 61131-3 © IEC:2003(E)

A textual form of the declaration of function block FWD_REV_MON is:

FUNCTION_BLOCK FWD_REV_MON
VAR_INPUT AUTO : BOOL ;(* Enable automated commands *)

ACK : BOOL ; (* Acknowledge/cancel all alarms *)
AUTO_FWD : BOOL ; (* Automated forward command *)
MAN_FWD : BOOL ; (* Manual forward command *)

MAN_FWD_CHK : BOOL ; (* Negated MAN_FWD for debouncing *)

T_FWD_MAX : TIME ; (* Maximum time from FWD_CMD to FWD_FDBK *)

FWD_FDBK : BOOL ; (* Confirmation of FWD_CMD completion *)
(* by operative unit *)

AUTO_REV : BOOL ; (* Automated reverse command *)
MAN_REV : BOOL ; (* Manual reverse command *)
MAN_REV_CHK : BOOL ; (* Negated MAN_REV for debounci
T_REV_MAX : TIME ; (* Maximum time from REV_CMD to REV_|
REV_FDBK : BOOL ; (* Confirmation of REV_CMD gompiet

END_ VAR (& by operative unit *
AR_OUTPUT KLAXON : BOOL ; (* Any alarm active
FWD_REV_ALRM : BOOL; (* Forward/reverse comm
FWD_CMD : BOOL ; &
FWD_ALRM : BOOL ; &
REV_CMD : BOOL ; (& ative unlt *)

{ r
REV_ALRM : BOOL ; (* tﬁgﬁk R
END_ VAR
AR FWD_MON : CMD_MONITOR;
REV_MON : CMD_MONITOR;
FWD_REV_FF : SR ;

END_ VAR

(* Function B ock od *)
END_FUNCTION_BL

The bod

y of func@o%WD %\antten in the ST language as:
ate |on blocks *)
U MOD = AUTO,
= ACK,
UTQ CMD := AUTO_FWD,
e MAN_CMD 1= MAN_FWD,
N MAN_CMD_CHK := MAN_FWD_CHK,
T CMD_MAX := T_FWD_MAX,
FDBK := FWD_FDBK);
(AUTO_MODE := AUTO,
ACK —ACKS
AUTO_CMD := AUTO_REV,
MAN_CMD 1= MAN_REV,
MAN_CMD_CHK := MAN_REV_CHK,
T_CMD_MAX := T_REV_MAX,
FDBK := REV_FDBK);

FWD_REV_FF (S1 := FWD_MON.CMD & REV_MON.CMD, R := ACK);
(* Transfer data to outputs *)

FWD_REV_ALRM := FWD_REV_FF.Q1;

FWD_CMD := FWD_MON.CMD & NOT FWD_REV_ALRM;

FWD_ALRM :-= FWD_MON.ALRM;

REV_CMD := REV_MON.CMD & NOT FWD_REV_ALRM;

REV_ALRM := REV_MON.ALRM;

KLAXON := FWD_ALRM OR REV_ALRM OR FWD_REV_ALRM;

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) —175-

The body of function block FWD_REV_MON in the IL language is:

(* Evaluate internal function blocks *)
CAL FWD_MON(

AUTO_MODE:= AUTO,

ACK:== ACK,

AUTO_CMD:= AUTO_FWD,

MAN_CMD:= MAN_FWD,

MAN_CMD_CHK:= MAN_FWD_CHK,

T_CMD_MAX:= T_FWD_MAX,

FDBK:= FWD_FDBK

CAL REMV_MON(

\UTO_MODE:= AUTO,
\CK:= ACK,

A\UTO_CMD:= AUTO_REV, <::§
AN_CMD:= MAN_REV,
AN_CMD_CHK:= MAN_REV_CHK,
[CMD_MAX:= T_REV_MAX,
~DBK:= REV_FDBK
)
CAL FWD_REV_FF(
51 :=(

LD FWD_MON.CMD

AND REV_MON.CMD

),

R:= ACK,

h => FWD REV_ ALRM (* Cont

)
(* Trdnsfer data to o
LD
ANDN
ST
LD
ST
LD
ANDN
ST
LD
ST
OR alarms *)
OR
ST

pmrand and al arm *)

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

- 176 -

61131-3 © IEC:2003(E)

The body of function block FWD_REV_MON in the FBD language is:

FWD_MON
S +
| CMD_MONITOR |
AUTO_FWD---——————- |AUTO_CMD CMD|--+
AUTO-———————— +---—]AUTO_MODE ALRM|--]------- FWD_ALRM
MAN_FWD-—---—- | ----MAN_CMD 11
MAN_FWD_CHK-~-] ---- | MAN_CMD_CHK 1 1
FWD_FDBK----— | ---- | FDBK 11
ACK=————————— |-+--]ACK 11
T_FWD_MAX---—]-]--] T_CMD_MAX | | +--—+
!!4- _______________ ++__!}?I ____________ -
11 -1 |
11 REV_MON [— |
| | 4o + |
I 1 | CMD_MONITOR | | 9
AUTO_REV-----]-]--]AUTO_CMD CMD|-—+ |
+=]--]AUTO_MODE ~ ALRM|-=——————-
MAN_REV--—————— | -- | MAN_CMD
MAN_REV_CHK--——]-- |[MAN_CMD_CHK
REV_FDBK--—--——- | -- | FDBK |
+-—] ACK |
T _REV_MAX---—————— |
|

FWD_REV_ALRM

KLAXON

FWD_CMD

REV_CMD

REV_MON.CMD

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3 © IEC:2003(E) 177 -

The body of function block FWD_REV_MON in the LD language is:

| FWD_MON |
| o + |
| AUTO_FWD | CMD_MONITOR | |
+— |--—----- JAUTO_CMD CMD] |
| AUTO | | FWD_ALRM |
+— |- JAUTO_MODE ALRM|------- ()——+
| MAN_FWD | | |
+— |- | MAN_CMD | |
| MAN_FWD_CHK | | |
+— |- | MAN_CMD_CHK | |
|—EWD_EDBK]]]
e B | FDBK | [
I ACK | | |
e I IACK |

|

|

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

