

IEC 61131-3
Edition 2.0 2003-01

INTERNATIONAL
STANDARD

Programmable controllers –
Part 3: Programming languages

IE
C

 6
11

31
-3

:2
00

3(
E

)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

 THIS PUBLICATION IS COPYRIGHT PROTECTED
 Copyright © 2003 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from
either IEC or IEC's member National Committee in the country of the requester.
If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication,
please contact the address below or your local IEC member National Committee for further information.

IEC Central Office
3, rue de Varembé
CH-1211 Geneva 20
Switzerland
Email: inmail@iec.ch
Web: www.iec.ch

About the IEC
The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes
International Standards for all electrical, electronic and related technologies.

About IEC publications
The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the
latest edition, a corrigenda or an amendment might have been published.
 Catalogue of IEC publications: www.iec.ch/searchpub

The IEC on-line Catalogue enables you to search by a variety of criteria (reference number, text, technical committee,…).
It also gives information on projects, withdrawn and replaced publications.
 IEC Just Published: www.iec.ch/online_news/justpub

Stay up to date on all new IEC publications. Just Published details twice a month all new publications released. Available
on-line and also by email.
 Electropedia: www.electropedia.org

The world's leading online dictionary of electronic and electrical terms containing more than 20 000 terms and definitions
in English and French, with equivalent terms in additional languages. Also known as the International Electrotechnical
Vocabulary online.
 Customer Service Centre: www.iec.ch/webstore/custserv

If you wish to give us your feedback on this publication or need further assistance, please visit the Customer Service
Centre FAQ or contact us:
Email: csc@iec.ch
Tel.: +41 22 919 02 11
Fax: +41 22 919 03 00

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

mailto:inmail@iec.ch
http://www.iec.ch/
http://www.iec.ch/searchpub
http://www.iec.ch/online_news/justpub
http://www.electropedia.org/
http://www.iec.ch/webstore/custserv
mailto:csc@iec.ch
https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

IEC 61131-3
Edition 2.0 2003-01

INTERNATIONAL
STANDARD

Programmable controllers –
Part 2: Equipment requirements and tests

INTERNATIONAL

ELECTROTECHNICAL

COMMISSION

COMMISSION

ELECTROTECHNIQUE

INTERNATIONALE XH
ICS 25.040; 35.240.50

PRICE CODE

CODE PRIX

ISBN 2-8318-6653-7

® Registered trademark of the International Electrotechnical Commission
 Marque déposée de la Commission Electrotechnique Internationale

®

 Warning! Make sure that you obtained this publication from an authorized distributor.

 Attention! Veuillez vous assurer que vous avez obtenu cette publication via un distributeur agréé.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

 – 2 – 61131-3  IEC:2003(E)

CONTENTS

FOREWORD ..8

1 General ..9
1.1 Scope...9
1.2 Normative references ..9
1.3 Definitions..9
1.4 Overview and general requirements ...14
1.4.1 Software model...14
1.4.2 Communication model..16
1.4.3 Programming model ...18
1.5 Compliance..19
1.5.1 System compliance ..20
1.5.2 Program compliance...22

2 Common elements ...23
2.1 Use of printed characters ..23
2.1.1 Character set ..23
2.1.2 Identifiers ..23
2.1.3 Keywords..24
2.1.4 Use of white space ..24
2.1.5 Comments ..24
2.1.6 Pragmas ...25
2.2 External representation of data ...25
2.2.1 Numeric literals...25
2.2.2 Character string literals ..26
2.2.3 Time literals ..28
2.2.3.1 Duration ...28
2.2.3.2 Time of day and date...29
2.3 Data types ...29
2.3.1 Elementary data types..30
2.3.2 Generic data types ...31
2.3.3 Derived data types..32
2.3.3.1 Declaration ..32
2.3.3.2 Initialization..33
2.3.3.3 Usage ...35
2.4 Variables..36
2.4.1 Representation ...36
2.4.1.1 Single-element variables ...36
2.4.1.2 Multi-element variables ...38
2.4.2 Initialization...38
2.4.3 Declaration ...39
2.4.3.1 Type assignment ...41
2.4.3.2 Initial value assignment ...42
2.5 Program organization units ...45
2.5.1 Functions ..45
2.5.1.1 Representation ..46
2.5.1.2 Execution control ...49
2.5.1.3 Declaration ..50
2.5.1.4 Typing, overloading, and type conversion...52
2.5.1.5 Standard functions...55
2.5.1.5.1 Type conversion functions..55
2.5.1.5.2 Numerical functions..56
2.5.1.5.3 Bit string functions ..59
2.5.1.5.4 Selection and comparison functions...59
2.5.1.5.5 Character string functions ..62
2.5.1.5.6 Functions of time data types ..64
2.5.1.5.7 Functions of enumerated data types..66

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 3 –

2.5.2 Function blocks...66
2.5.2.1 Representation ..67
2.5.2.1a) Use of EN and ENO in function blocks ..68
2.5.2.2 Declaration ..69
2.5.2.3 Standard function blocks ...77
2.5.2.3.1 Bistable elements ...77
2.5.2.3.2 Edge detection..78
2.5.2.3.3 Counters ...78
2.5.2.3.4 Timers...81
2.5.2.3.5 Communication function blocks..83
2.5.3 Programs ..83
2.6 Sequential Function Chart (SFC) elements...84
2.6.1 General ...84
2.6.2 Steps...84
2.6.3 Transitions ..86
2.6.4 Actions..89
2.6.4.1 Declaration ..89
2.6.4.2 Association with steps ...91
2.6.4.3 Action blocks ...92
2.6.4.4 Action qualifiers ...93
2.6.4.5 Action control...94
2.6.5 Rules of evolution ...99
2.6.6 Compatibility of SFC elements ...107
2.6.7 SFC Compliance requirements ..108
2.7 Configuration elements..108
2.7.1 Configurations, resources, and access paths ..110
2.7.2 Tasks ..114

3 Textual languages ..123
3.1 Common elements ..123
3.2 Instruction list (IL) ..123
3.2.1 Instructions ...123
3.2.2 Operators, modifiers and operands..124
3.2.3 Functions and function blocks ..126
3.3 Structured Text (ST) ..129
3.3.1 Expressions ..129
3.3.2 Statements ...131
3.3.2.1 Assignment statements ...133
3.3.2.2 Function and function block control statements ..133
3.3.2.3 Selection statements ...133
3.3.2.4 Iteration statements ...134

4 Graphic languages ...135
4.1 Common elements ..135
4.1.1 Representation of lines and blocks ...135
4.1.2 Direction of flow in networks...135
4.1.3 Evaluation of networks ...136
4.1.4 Execution control elements ..138
4.2 Ladder diagram (LD) ...139
4.2.1 Power rails ..139
4.2.2 Link elements and states..139
4.2.3 Contacts ...140
4.2.4 Coils..140
4.2.5 Functions and function blocks ..140
4.2.6 Order of network evaluation ...141
4.3 Function Block Diagram (FBD)..143
4.3.1 General ...143
4.3.2 Combination of elements..143
4.3.3 Order of network evaluation ...143

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 4 – 61131-3  IEC:2003(E)

ANNEX A (normative) Specification method for textual languages ..144
A.1 Syntax ...144
A.1.1 Terminal symbols ...144
A.1.2 Non-terminal symbols ..144
A.1.3 Production rules ..145
A.2 Semantics ...145

ANNEX B (normative) Formal specifications of language elements...146
B.0 Programming model..146
B.1 Common elements ..146
B.1.1 Letters, digits and identifiers ...146
B.1.2 Constants ...147
B.1.2.1 Numeric literals ..147
B.1.2.2 Character strings...147
B.1.2.3 Time literals..148
B.1.2.3.1 Duration..148
B.1.2.3.2 Time of day and date ...148
B.1.3 Data types ...149
B.1.3.1 Elementary data types ..149
B.1.3.2 Generic data types ..149
B.1.3.3 Derived data types ..149
B.1.4 Variables ..151
B.1.4.1 Directly represented variables ..151
B.1.4.2 Multi-element variables ...151
B.1.4.3 Declaration and initialization ...152
B.1.5 Program organization units ..154
B.1.5.1 Functions...154
B.1.5.2 Function blocks ...155
B.1.5.3 Programs...156
B.1.6 Sequential function chart elements..156
B.1.7 Configuration elements ..157
B.2 Language IL (Instruction List) ...159
B.2.1 Instructions and operands..159
B.2.2 Operators ...159
B.3 Language ST (Structured Text) ..160
B.3.1 Expressions..160
B.3.2 Statements ...160
B.3.2.1 Assignment statements...161
B.3.2.2 Subprogram control statements..161
B.3.2.3 Selection statements...161
B.3.2.4 Iteration statements...161

ANNEX C (normative) Delimiters and keywords ...162

ANNEX D (normative) Implementation-dependent parameters ..165

ANNEX E (normative) Error conditions ...167

ANNEX F (informative) Examples ...169
F.1 Function WEIGH ...169
F.2 Function block CMD_MONITOR...170
F.3 Function block FWD_REV_MON ..173
F.4 Function block STACK_INT...178
F.5 Function block MIX_2_BRIX ...183
F.6 Analog signal processing ..186
F.6.1 Function block LAG1 ..187
F.6.2 Function block DELAY ..187

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 5 –

F.6.3 Function block AVERAGE ..188
F.6.4 Function block INTEGRAL..188
F.6.5 Function block DERIVATIVE ...189
F.6.6 Function block HYSTERESIS ...189
F.6.7 Function block LIMITS_ALARM ...190
F.6.8 Structure ANALOG_LIMITS..190
F.6.9 Function block ANALOG_MONITOR...191
F.6.10 Function block PID..192
F.6.11 Function block DIFFEQ ...193
F.6.12 Function block RAMP ..194
F.6.13 Function block TRANSFER..195
F.7 Program GRAVEL...195
F.8 Program AGV ...203
F.9 Use of enumerated data types ..206
F.10 Function block RTC (Real Time Clock)..206
F.11 Function block ALRM_INT...206

ANNEX G (informative) Reference character set..208

Index ..210

Table 1 - Character set features...23
Table 2 - Identifier features...24
Table 3 - Comment feature...25
Table 3a - Pragma feature..25
Table 4 - Numeric literals..26
Table 5 - Character string literal features ...27
Table 6 - Two-character combinations in character strings ...28
Table 7 - Duration literal features ...29
Table 8 - Date and time of day literals..29
Table 9 - Examples of date and time of day literals ...29
Table 10 - Elementary data types ..30
Table 11 - Hierarchy of generic data types ..32
Table 12 - Data type declaration features ..33
Table 13 - Default initial values of elementary data types..34
Table 14 - Data type initial value declaration features ...35
Table 15 - Location and size prefix features for directly represented variables.............................37
Table 16a - Variable declaration keywords ..39
Table 16b - Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations41
Table 17 - Variable type assignment features..41
Table 18 - Variable initial value assignment features...43
Table 19 - Graphical negation of Boolean signals ...47
Table 19a - Textual invocation of functions for formal and non-formal argument list49
Table 20 - Use of EN input and ENO output ..50
Table 20a - Function features..51
Table 21 - Typed and overloaded functions ...53
Table 22 - Type conversion function features ..55
Table 23 - Standard functions of one numeric variable..57
Table 24 - Standard arithmetic functions..58

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 6 – 61131-3  IEC:2003(E)

Table 25 - Standard bit shift functions..59
Table 26 - Standard bitwise Boolean functions..60
Table 27 - Standard selection functionsd..61
Table 28 - Standard comparison functions...62
Table 29 - Standard character string functions ..63
Table 30 - Functions of time data types ...64
Table 31 - Functions of enumerated data types...66
Table 32 - Examples of function block I/O variable usage ...68
Table 33 - Function block declaration and usage features ..71
Table 34 - Standard bistable function blocks a ...77
Table 35 - Standard edge detection function blocks ..78
Table 36 - Standard counter function blocks..79
Table 37 - Standard timer function blocks..81
Table 38 - Standard timer function blocks - timing diagrams...82
Table 39 - Program declaration features..83
Table 40 - Step features ...85
Table 41 - Transitions and transition conditions...87
Table 42 - Declaration of actions a,b..90
Table 43 - Step/action association ...92
Table 44 - Action block features...93
Table 45 - Action qualifiers ...94
Table 45a - Action control features ..98
Table 46 - Sequence evolution...101
Table 47 - Compatible SFC features..108
Table 48 - SFC minimal compliance requirements ..108
Table 49 - Configuration and resource declaration features ..112
Table 50 - Task features...116
Table 51a - Examples of instruction fields..124
Table 51b - Parenthesized expression features for IL language..125
Table 52 - Instruction List operators...125
Table 53 - Function Block invocation and Function invocation features for IL language.............127
Table 54 - Standard Function Block input operators for IL language...129
Table 55 - Operators of the ST language...131
Table 56 - ST language statements ...132
Table 57 - Representation of lines and blocks ...136
Table 58 - Graphic execution control elements..138
Table 59 - Power rails...139
Table 60 - Link elements ..140
Table 61 - Contacts a ..141
Table 62 - Coils ..142
Table C.1 - Delimiters...162
Table C.2 - Keywords ...163
Table D.1 - Implementation-dependent parameters ..165
Table E.1 - Error conditions..167

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 7 –

Table G.1 - Character representations...208
Table G.2 - Character encodings ...209

Figure 1 - Software model ..15
Figure 2 a) - Data flow connection within a program..16
Figure 2 b) - Communication via GLOBAL variables...16
Figure 2 c) - Communication function blocks ...17
Figure 2 d) - Communication via access paths ..17
Figure 3 - Combination of programmable controller language elements19
Figure 4 - Examples of function usage...45
Figure 5 - Use of formal argument names..48
Figure 6 - Examples of function declarations and usage ...52
Figure 7 - Examples of explicit type conversion with overloaded functions54
Figure 8 - Examples of explicit type conversion with typed functions ..54
Figure 9 - Function block instantiation examples ...67
Figure 10 - Examples of function block declarations..70
Figure 11 a) - Graphical use of a function block name as an input variable73
Figure 11 b) - Graphical use of a function block name as an in-out variable.................................74
Figure 11 c) - Graphical use of a function block name as an external variable75
Figure 12 - Declaration and usage of in-out variables in function blocks.......................................76
Figure 14 - ACTION_CONTROL function block - External interface (Not visible to the user)95
Figure 15 a) - ACTION_CONTROL function block body with “final scan” logic96
Figure 15 b) - ACTION_CONTROL function block body without “final scan” logic97
Figure 16 a) - Action control example - SFC representation..98
Figure 16 b) - Action control example - functional equivalent ..99
Figure 17 - Examples of SFC evolution rules...105
Figure 18 a) - Examples of SFC errors: an “unsafe” SFC..106
Figure 18 b) - Examples of SFC errors: an “unreachable” SFC...107
Figure 19 a) - Graphical example of a configuration ..109
Figure 19 b) - Skeleton function block and program declarations for configuration example110
Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features........................113
Figure 21 a) - Synchronization of function blocks with explicit task associations120
Figure 21 b) - Synchronization of function blocks with implicit task associations121
Figure 21 c) - Explicit task associations equivalent to figure 21 b) ..122
Figure 22 - EXIT statement example ...134
Figure 23 - Feedback path example...137
Figure 24 - Boolean OR examples ..143

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 8 – 61131-3  IEC:2003(E)

INTERNATIONAL ELECTROTECHNICAL COMMISSION

PROGRAMMABLE CONTROLLERS –

Part 3: Programming languages

FOREWORD

1) The IEC (International Electrotechnical Commission) is a worldwide organization for standardization comprising
all national electrotechnical committees (IEC National Committees). The object of the IEC is to promote
international co-operation on all questions concerning standardization in the electrical and electronic fields. To
this end and in addition to other activities, the IEC publishes International Standards. Their preparation is
entrusted to technical committees; any IEC National Committee interested in the subject dealt with may
participate in this preparatory work. International, governmental and non-governmental organizations liaising
with the IEC also participate in this preparation. The IEC collaborates closely with the International
Organization for Standardization (ISO) in accordance with conditions determined by agreement between the
two organizations.

2) The formal decisions or agreements of the IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has representation
from all interested National Committees.

3) The documents produced have the form of recommendations for international use and are published in the form
of standards, technical specifications, technical reports or guides and they are accepted by the National
Committees in that sense.

4) In order to promote international unification, IEC National Committees undertake to apply IEC International
Standards transparently to the maximum extent possible in their national and regional standards. Any
divergence between the IEC Standard and the corresponding national or regional standard shall be clearly
indicated in the latter.

5) The IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with one of its standards.

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject
of patent rights. The IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC 61131-3 has been prepared by subcommittee 65B: Devices, of IEC
technical committee 65: Industrial-process measurement and control.

The text of this standard is based on the following documents:

FDIS Report on voting

65B/456/FDIS 65B/465/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This second edition of IEC 61131-3 cancels and replaces the first edition, published in 1993,
and constitutes a technical revision.

This International Standard has been reproduced without significant modification to its original
contents or drafting.

The committee has decided that the contents of this publication will remain unchanged until
2007. At this date, the publication will be

• reconfirmed;
• withdrawn;
• replaced by a revised edition, or
• amended.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 9 –

PROGRAMMABLE CONTROLLERS –

Part 3: Programming languages

1 General

1.1 Scope

This part of IEC 61131 specifies syntax and semantics of programming languages for programmable
controllers as defined in part 1 of IEC 61131.

The functions of program entry, testing, monitoring, operating system, etc., are specified in Part 1 of
IEC 61131.

1.2 Normative references

The following referenced documents are indispensable for the application of this document.
For dated references, only the edition cited applies. For undated references, the latest edition
of the referenced document (including any amendments) applies.

IEC 60050 (all parts): International Electrotechnical Vocabulary (IEV)

IEC 60559:1989, Binary floating-point arithmetic for microprocessors systems

IEC 60617-12:1997, Graphical symbols for diagrams – Part 12: Binary logic elements

IEC 60617-13:1993, Graphical symbols for diagrams – Part 13: Analogue elements

IEC 60848:2002, GRAFCET specification language for sequential function charts

IEC 61131-1, Programmable controllers – Part 1: General information

IEC 61131-5, Programmable controllers – Part 5: Communications

ISO/AFNOR: 1989, Dictionary of computer science – The standardised vocabulary

ISO/IEC 10646-1:1993, Information technology – Universal Multiple-Octet Coded Character Set (UCS)
– Part 1: Architecture and Basic Multilingual Plane

1.3 Definitions

For the purposes of this part of IEC 61131, the following definitions apply. Definitions applying to all
parts of IEC 61131 are given in part 1.

NOTE 1 Terms defined in this subclause are italicized where they appear in the bodies of definitions.

NOTE 2 The notation “(ISO)” following a definition indicates that the definition is taken from the
ISO/AFNOR Dictionary of computer science.

NOTE 3 The ISO/AFNOR Dictionary of computer science and the IEC 60050 should be consulted for
terms not defined in this standard.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 10 – 61131-3  IEC:2003(E)

1.3.1 absolute time: the combination of time of day and date information.

1.3.2 access path: the association of a symbolic name with a variable for the purpose of open
communication.

1.3.3 action: Boolean variable, or a collection of operations to be performed, together with an
associated control structure, as specified in 2.6.4.

1.3.4 action block: graphical language element which utilizes a Boolean input variable to determine
the value of a Boolean output variable or the enabling condition for an action, according to a
predetermined control structure as defined in 2.6.4.5.

1.3.5 aggregate: structured collection of data objects forming a data type. (ISO)

1.3.6 argument: synonymous with input variable, output variable or in-out variable.

1.3.7 array: aggregate that consists of data objects, with identical attributes, each of which may be
uniquely referenced by subscripting. (ISO)

1.3.8 assignment: mechanism to give a value to a variable or to an aggregate. (ISO)

1.3.9 based number: number represented in a specified base other than ten.

1.3.10 bistable function block: function block with two stable states controlled by one or more
inputs.

1.3.11 bit string: data element consisting of one or more bits.

1.3.12 body: that portion of a program organization unit which specifies the operations to be
performed on the declared operands of the program organization unit when its execution is invoked.

1.3.13 call: language construct for invoking the execution of a function or function block.

1.3.14 character string: aggregate that consists of an ordered sequence of characters.

1.3.15 comment: language construct for the inclusion of text in a program and having no impact on
the execution of the program. (ISO)

1.3.16 compile: to translate a program organization unit or data type specification into its machine
language equivalent or an intermediate form.

1.3.17 configuration: language element corresponding to a programmable controller system as
defined in IEC 61131-1.

1.3.18 counter function block: function block which accumulates a value for the number of changes
sensed at one or more specified inputs.

1.3.19 data type: set of values together with a set of permitted operations. (ISO)

1.3.20 date and time: the date within the year and the time of day represented as a single language
element.

1.3.21 declaration: the mechanism for establishing the definition of a language element. A
declaration normally involves attaching an identifier to the language element, and allocating attributes
such as data types and algorithms to it.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 11 –

1.3.22 delimiter: character or combination of characters used to separate program language
elements.

1.3.23 direct representation: means of representing a variable in a programmable controller
program from which a manufacturer-specified correspondence to a physical or logical location may be
determined directly.

1.3.24 double word: data element containing 32 bits.

1.3.25 evaluation: the process of establishing a value for an expression or a function, or for the
outputs of a network or function block, during program execution.

1.3.26 execution control element: A language element which controls the flow of program
execution.

1.3.27 falling edge: the change from 1 to 0 of a Boolean variable.

1.3.28 function (procedure): program organization unit which, when executed, yields exactly one
data element and possibly additional output variables (which may be multi-valued, for example, an
array or structure), and whose invocation can be used in textual languages as an operand in an
expression.

1.3.29 function block instance (function block): instance of a function block type.

1.3.30 function block type: programmable controller programming language element consisting of:
1) the definition of a data structure partitioned into input, output, and internal variables; and
2) a set of operations to be performed upon the elements of the data structure when an instance of
the function block type is invoked.

1.3.31 function block diagram: network in which the nodes are function block instances, graphically
represented functions (procedures), variables, literals, and labels.

1.3.32 generic data type: data type which represents more than one type of data, as specified in
2.3.2.

1.3.33 global scope: scope of a declaration applying to all program organization units within a
resource or configuration.

1.3.34 global variable: variable whose scope is global.

1.3.35 hierarchical addressing: the direct representation of a data element as a member of a
physical or logical hierarchy, for example, a point within a module which is contained in a rack, which
in turn is contained in a cubicle, etc.

1.3.36 identifier: combination of letters, numbers, and underline characters, as specified in 2.1.2,
which begins with a letter or underline and which names a language element.

1.3.37 in-out variable: variable that is declared in a VAR_IN_OUT...END_VAR block.

1.3.38 initial value: the value assigned to a variable at system start-up.

1.3.39 input variable (input): variable which is used to supply an argument to a program
organization unit.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 12 – 61131-3  IEC:2003(E)

1.3.40 instance: individual, named copy of the data structure associated with a function block type or
program type, which persists from one invocation of the associated operations to the next.

1.3.41 instance name: identifier associated with a specific instance.

1.3.42 instantiation: the creation of an instance.

1.3.43 integer literal: literal which directly represents a value of type SINT, INT, DINT, LINT, BOOL,
BYTE, WORD, DWORD, or LWORD, as defined in 2.3.1.

1.3.44 invocation: the process of initiating the execution of the operations specified in a program
organization unit.

1.3.45 keyword: lexical unit that characterizes a language element, for example, “IF”.

1.3.46 label: language construction naming an instruction, network, or group of networks, and
including an identifier.

1.3.47 language element: any item identified by a symbol on the left-hand side of a production rule
in the formal specification given in annex B of this standard.

1.3.48 literal: lexical unit that directly represents a value. (ISO)

1.3.49 local scope: the scope of a declaration or label applying only to the program organization unit
in which the declaration or label appears.

1.3.50 logical location: the location of a hierarchically addressed variable in a schema which may or
may not bear any relation to the physical structure of the programmable controller's inputs, outputs,
and memory.

1.3.51 long real: real number represented in a long word.

1.3.52 long word: 64-bit data element.

1.3.53 memory (user data storage): functional unit to which the user program can store data and
from which it can retrieve the stored data.

1.3.54 named element: element of a structure which is named by its associated identifier.

1.3.55 network: arrangement of nodes and interconnecting branches.

1.3.56 off-delay (on-delay) timer function block: function block which delays the falling (rising)
edge of a Boolean input by a specified duration.

1.3.57 operand: language element on which an operation is performed.

1.3.58 operator: symbol that represents the action to be performed in an operation.

1.3.59 output variable (output): variable which is used to return the result(s) of the evaluation of a
program organization unit.

1.3.60 overloaded: with respect to an operation or function, capable of operating on data of different
types, as specified in 2.5.1.4.

1.3.61 power flow: the symbolic flow of electrical power in a ladder diagram, used to denote the
progression of a logic solving algorithm.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 13 –

1.3.62 pragma: language construct for the inclusion of text in a program organization unit which may
affect the preparation of the program for execution.

1.3.63 program (verb): to design, write, and test user programs.

1.3.64 program organization unit: function, function block, or program.
NOTE This term may refer to either a type or an instance.

1.3.65 real literal: literal representing data of type REAL or LREAL.

1.3.66 resource: language element corresponding to a “signal processing function” and its “man-
machine interface” and “sensor and actuator interface functions”, if any, as defined in IEC 61131-1.

1.3.67 retentive data: data stored in such a way that its value remains unchanged after a power
down / power up sequence.

1.3.68 return: language construction within a program organization unit designating an end to the
execution sequences in the unit.

1.3.69 rising edge: the change from 0 to 1 of a Boolean variable.

1.3.70 scope: that portion of a language element within which a declaration or label applies.

1.3.71 semantics: the relationships between the symbolic elements of a programming language and
their meanings, interpretation and use.

1.3.72 semigraphic representation: representation of graphic information by the use of a limited set
of characters.

1.3.73 single data element: data element consisting of a single value.

1.3.74 single-element variable: variable which represents a single data element.

1.3.75 step: situation in which the behavior of a program organization unit with respect to its inputs
and outputs follows a set of rules defined by the associated actions of the step.

1.3.76 structured data type: aggregate data type which has been declared using a STRUCT or
FUNCTION_BLOCK declaration.

1.3.77 subscripting: mechanism for referencing an array element by means of an array reference
and one or more expressions that, when evaluated, denote the position of the element.

1.3.78 symbolic representation: the use of identifiers to name variables.

1.3.79 task: execution control element providing for periodic or triggered execution of a group of
associated program organization units.

1.3.80 time literal: literal representing data of type TIME, DATE, TIME_OF_DAY, or
DATE_AND_TIME.

1.3.81 transition: the condition whereby control passes from one or more predecessor steps to one
or more successor steps along a directed link.

1.3.82 unsigned integer: integer literal not containing a leading plus (+) or minus (-) sign.

1.3.83 wired OR: construction for achieving the Boolean OR function in the LD language by
connecting together the right ends of horizontal connectives with vertical connectives.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 14 – 61131-3  IEC:2003(E)

1.4 Overview and general requirements

This part of IEC 61131 specifies the syntax and semantics of a unified suite of programming
languages for programmable controllers (PCs). These consist of two textual languages, IL (Instruction
List) and ST (Structured Text), and two graphical languages, LD (Ladder Diagram) and FBD (Function
Block Diagram).

Sequential Function Chart (SFC) elements are defined for structuring the internal organization of
programmable controller programs and function blocks. Also, configuration elements are defined
which support the installation of programmable controller programs into programmable controller
systems.

In addition, features are defined which facilitate communication among programmable controllers and
other components of automated systems.

The programming language elements defined in this part may be used in an interactive programming
environment. The specification of such environments is beyond the scope of this standard; however,
such an environment shall be capable of producing textual or graphic program documentation in the
formats specified in this standard.

The material in this part is arranged in “bottom-up” fashion, that is, simpler language elements are
presented first, in order to minimize forward references in the text. The remainder of this subclause
provides an overview of the material presented in this part and incorporates some general
requirements.

1.4.1 Software model

The basic high-level language elements and their interrelationships are illustrated in figure 1. These
consist of elements which are programmed using the languages defined in this standard, that is,
programs and function blocks; and configuration elements, namely, configurations, resources, tasks,
global variables, access paths, and instance-specific initializations, which support the installation of
programmable controller programs into programmable controller systems.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 15 –

CONFIGURATION

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

RESOURCE

TASK TASK

PROGRAM PROGRAM

FB FB

GLOBAL and DIRECTLY REPRESENTED VARIABLES
and INSTANCE-SPECIFIC INITIALIZATIONS

ACCESS PATHS

Execution control path

Variable access paths

FB Function block

Variable

or

Communication function (See IEC 61131-5)

NOTE 1 This figure is illustrative only. The graphical representation is not normative.

NOTE 2 In a configuration with a single resource, the resource need not be explicitly
represented.

Figure 1 - Software model

A configuration is the language element which corresponds to a programmable controller system as
defined in IEC 61131-1. A resource corresponds to a “signal processing function” and its “man-
machine interface” and “sensor and actuator interface” functions (if any) as defined in IEC 61131-1. A
configuration contains one or more resources, each of which contains one or more programs executed
under the control of zero or more tasks. A program may contain zero or more function blocks or other
language elements as defined in this part.

Configurations and resources can be started and stopped via the “operator interface”, “programming,
testing, and monitoring”, or “operating system” functions defined in IEC 61131-1. The starting of a
configuration shall cause the initialization of its global variables according to the rules given in 2.4.2,
followed by the starting of all the resources in the configuration. The starting of a resource shall cause
the initialization of all the variables in the resource, followed by the enabling of all the tasks in the
resource. The stopping of a resource shall cause the disabling of all its tasks, while the stopping of a
configuration shall cause the stopping of all its resources. Mechanisms for the control of tasks are
defined in 2.7.2, while mechanisms for the starting and stopping of configurations and resources via
communication functions are defined in IEC 61131-5.

IEC 2468/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 16 – 61131-3  IEC:2003(E)

Programs, resources, global variables, access paths (and their corresponding access privileges), and
configurations can be loaded or deleted by the “communication function” defined in IEC 61131-1. The
loading or deletion of a configuration or resource shall be equivalent to the loading or deletion of all the
elements it contains.

Access paths and their corresponding access privileges are defined in 2.7.1.

The mapping of the language elements defined in this subclause on to communication objects is
defined in IEC 61131-5.

1.4.2 Communication model

Figure 2 illustrates the ways that values of variables can be communicated among software elements.

As shown in figure 2 a), variable values within a program can be communicated directly by connection
of the output of one program element to the input of another. This connection is shown explicitly in
graphical languages and implicitly in textual languages.

Variable values can be communicated between programs in the same configuration via global
variables such as the variable x illustrated in figure 2 b). These variables shall be declared as GLOBAL
in the configuration, and as EXTERNAL in the programs, as specified in 2.4.3.

As illustrated in figure 2 c), the values of variables can be communicated between different parts of a
program, between programs in the same or different configurations, or between a programmable
controller program and a non-programmable controller system, using the communication function
blocks defined in IEC 61131-5 and described in 2.5.2.3.5. In addition, programmable controllers or
non-programmable controller systems can transfer data which is made available by access paths, as
illustrated in figure 2 d), using the mechanisms defined in IEC 61131-5.

PROGRAM A

FB_X
a

FB1
FB_Y

b

FB2

Figure 2 a) - Data flow connection within a program

PROGRAM A

FB_X
a

FB1

PROGRAM B

FB_Y
b

FB2

x x
VAR_GLOBAL

x: BOOL;
END_VAR

VAR_EXTERNAL
x: BOOL;

END_VAR

VAR_EXTERNAL
x: BOOL;

END_VAR

CONFIGURATION C

Figure 2 b) - Communication via GLOBAL variables

IEC 2469/02

IEC 2470/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 17 –

PROGRAM A

FB_X
FB1

CONFIGURATION C

SEND

send1

a

SD1
FB_Y

b

FB2

CONFIGURATION D

RCV

rcv1

RD1

PROGRAM B

Figure 2 c) - Communication function blocks

PROGRAM A

FB_X
FB1

a Z

VAR_ACCESS
CSX: P1.Z : REAL READ_ONLY;

PROGRAM B

FB_Y
b

FB2

CONFIGURATION C CONFIGURATION D

READ
TO_FB2

RD1
'CSX' VAR_1

P1

Figure 2 d) - Communication via access paths

NOTE 1 This figure is illustrative only. The graphical representation is not normative.

NOTE 2 In these examples, configurations C and D are each considered to have a single
resource.

NOTE 3 The details of the communication function blocks are not shown in this figure. See
2.5.2.3.5 and IEC 61131-5.

NOTE 4 As specified in 2.7, access paths can be declared on directly represented variables,
global variables, or input, output, or internal variables of programs or function block
instances.

NOTE 5 IEC 61131-5 specifies the means by which both PC and non-PC systems can use
access paths for reading and writing of variables.

IEC 2472/02

IEC 2471/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 18 – 61131-3  IEC:2003(E)

1.4.3 Programming model

The elements of programmable controller programming languages, and the subclauses in which they
appear in this part, are classified as follows:

Data types (2.3)
Variables (2.4)
Program organization units (2.5)

Functions (2.5.1)
Function blocks (2.5.2)
Programs (2.5.3)

Sequential Function Chart (SFC) elements (2.6)
Configuration elements (2.7)

Global variables (2.7.1)
Resources (2.7.1)
Access paths (2.7.1)
Tasks (2.7.2)

As shown in figure 3, the combination of these elements shall obey the following rules:

1) Derived data types shall be declared as specified in 2.3.3, using the standard data types specified
in 2.3.1 and 2.3.2 and any previously derived data types.

2) Derived functions can be declared as specified in 2.5.1.3, using standard or derived data types,
the standard functions defined in 2.5.1.5, and any previously derived functions. This declaration
shall use the mechanisms defined for the IL, ST, LD or FBD language.

3) Derived function blocks can be declared as specified in 2.5.2.2, using standard or derived data
types and functions, the standard function blocks defined in 2.5.2.3, and any previously derived
function blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD
language, and can include Sequential Function Chart (SFC) elements as defined in 2.6.

4) A program shall be declared as specified in 2.5.3, using standard or derived data types, functions,
and function blocks. This declaration shall use the mechanisms defined for the IL, ST, LD, or FBD
language, and can include Sequential Function Chart (SFC) elements as defined in 2.6.

5) Programs can be combined into configurations using the elements defined in 2.7, that is, global
variables, resources, tasks, and access paths.

Reference to “previously derived” data types, functions, and function blocks in the above rules is
intended to imply that once such a derived element has been declared, its definition is available, for
example, in a “library” of derived elements, for use in further derivations. Therefore, the declaration of
a derived element type shall not be contained within the declaration of another derived element type.

A programming language other than one of those defined in this standard may be used in the
declaration of a function or function block. The means by which a user program written in one of the
languages defined in this standard invokes the execution of, and accesses the data associated with,
such a derived function or function block shall be as defined in this standard.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 19 –

LIBRARY ELEMENTS PRODUCTIONS DERIVED ELEMENTS

DATA TYPES
Standard (See 2.3.1, 2.3.2)

Derived

FUNCTIONS
Standard (See 2.5.1.5)

Derived

FUNCTION BLOCKS
Standard (See 2.5.2.3)

Derived

PROGRAMS

RESOURCES

Declaration (See 2.5.1.3)
IL, ST, LD, FBD

OTHERS

Declaration (See 2.5.2.2)
IL, ST, LD, FBD

SFC elements (See 2.6)
OTHERS

Declaration (See 2.5.3)
IL, ST, LD, FBD

SFC elements (See 2.6)

Tasks (See 2.7.2)

Declaration (See 2.7.1)
Global variables (See 2.7.1)
Access paths (See 2.7.1)

Derived

data
types

Derived
functions

Derived
function
blocks

PROGRAM

CONFIGURATION

Declaration (See 2.3.3)

(1)

(2)

(3)

(4)

(5)
(See 2.5.3)

(See 2.7.1)

NOTE 1 The parenthesized numbers (1) to (5) refer to the corresponding paragraphs in 1.4.3.

NOTE 2 Data types are used in all productions. For clarity, the corresponding linkages are
omitted in this figure.

Figure 3 - Combination of programmable controller language elements
LD - Ladder Diagram (4.2)

FBD - Function Block Diagram (4.3)
IL - Instruction List (3.2)
ST - Structured Text (3.3)

OTHERS - Other programming languages (1.4.3)

1.5 Compliance

This subclause defines the requirements which shall be met by programmable controller systems and
programs which claim compliance with this part of IEC 61131.

IEC 2473/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 20 – 61131-3  IEC:2003(E)

1.5.1 System compliance

A programmable controller system, as defined in IEC 61131-1, which claims to comply, wholly or
partially, with the requirements of this part of IEC 61131 shall do so only as described below.

A compliance statement shall be included in the documentation accompanying the system, or shall be
produced by the system itself. The form of the compliance statement shall be:

“This system complies with the requirements of IEC 61131-3, for the following language
features:”,

followed by a set of compliance tables in the following format:

Table title

Table No. Feature No. Features description

...

Table and feature numbers and descriptions are to be taken from the tables given in the relevant
subclauses of this part of IEC 61131. Table titles are to be taken from the following table.

Table title For features in:
Common elements Clause 2
Common textual elements Subclause 3.1
IL language elements Subclauses 3.2.1 to 3.2.3
ST language elements Subclauses 3.3.1 to 3.3.2.4
Common graphical elements Subclause 4.1
LD language elements Subclause 4.2
FBD language elements Subclause 4.3

For the purposes of determining compliance, tables 9, 11, 13, 16a, 16b, 32, 38, 47, 48 and 51 shall
not be considered tables of features.

A programmable controller system complying with the requirements of this standard with respect to a
language defined in this standard:

a) shall not require the inclusion of substitute or additional language elements in order to
accomplish any of the features specified in this standard, unless such elements are identified
and treated as noted in rules e) and f) below;

b) shall be accompanied by a document that specifies the values of all implementation-
dependent parameters as listed in annex D;

c) shall be able to determine whether or not a user's language element violates any
requirement of this standard, where such a violation is not designated as an error in annex
E, and report the result of this determination to the user. In the case where the system does
not examine the whole program organization unit, the user shall be notified that the
determination is incomplete whenever no violations have been detected in the portion of the
program organization unit examined;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 21 –

d) shall treat each user violation that is designated as an error in annex E in at least one of the
following ways:

1) there shall be a statement in an accompanying document that the error is not
reported;

2) the system shall report during preparation of the program for execution that an
occurrence of that error is possible;

3) the system shall report the error during preparation of the program for execution;

4) the system shall report the error during execution of the program and initiate
appropriate system- or user-defined error handling procedures;

and if any violations that are designated as errors are treated in the manner described in
d)1) above, then a note referencing each such treatment shall appear in a separate section
of the accompanying document;

e) shall be accompanied by a document that separately describes any features accepted by the
system that are prohibited or not specified in this standard. Such features shall be described
as being "extensions to the <language> language as defined in IEC 61131-3";

f) shall be able to process in a manner similar to that specified for errors any use of any such
extension;

g) shall be able to process in a manner similar to that specified for errors any use of one of the
implementation-dependent features specified in annex D;

h) shall not use any of the standard data type, function or function block names defined in this
standard for manufacturer-defined features whose functionality differs from that described in
this standard,unless such features are identified and treated as noted in rules e) and f)
above;

i) shall be accompanied by a document defining, in the form specified in annex A, the formal
syntax of all textual language elements supported by the system;

j) shall be capable of reading and writing files containing any of the language elements defined
as alternatives in the production library_element_declaration in B.0, in the syntax
defined in requirement i) above, encoded according to the “ISO-646 IRV” given as table 1 -
Row 00 of ISO/IEC 10646-1.

The phrase “be able to” is used in this subclause to permit the implementation of a software switch
with which the user may control the reporting of errors.

In cases where compilation or program entry is aborted due to some limitation of tables, etc., an
incomplete determination of the kind “no violations were detected, but the examination is incomplete”
will satisfy the requirements of this subclause.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 22 – 61131-3  IEC:2003(E)

1.5.2 Program compliance

A programmable controller program complying with the requirements of IEC 61131-3:

a) shall use only those features specified in this standard for the particular language used;

b) shall not use any features identified as extensions to the language;

c) shall not rely on any particular interpretation of implementation-dependent features.

The results produced by a complying program shall be the same when processed by any complying
system which supports the features used by the program, such results are influenced by program
execution timing, the use of implementation-dependent features (as listed in annex D) in the
program, and the execution of error handling procedures.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 23 –

2 Common elements

This clause defines textual and graphic elements which are common to all the programmable
controller programming languages specified in this Part of IEC 61131.

2.1 Use of printed characters

2.1.1 Character set

Textual languages and textual elements of graphic languages shall be represented in terms of the
“ISO-646 IRV” given as table 1 - Row 00 of ISO/IEC 10646-1.

The use of characters from additional character sets, for example, the “Latin-1 Supplement” given as
table 2 - Row 00 of ISO/IEC 10646-1, is a typical extension of this standard. The encoding of such
characters shall be consistent with ISO/IEC 10646-1.

The required character set consists of all the characters in columns 002 through 007 of the “ISO-646
IRV” as defined above, except for lower-case letters.

Table 1 - Character set features

No. Description

2 Lower case charactersa

3a
3b

Number sign (#) OR
Pound sign (£)

4a
4b

Dollar sign ($) OR
Currency sign (¤)

5a
5b

Vertical bar (|) OR
Exclamation mark (!)

NOTE The feature numbering in this table is such as to maintain consistency with the first
edition of IEC 61131-3,.

a When lower-case letters (feature 2) are supported, the case of letters shall not be
significant in language elements except within comments as defined in 2.1.5, string literals
as defined in 2.2.2, and variables of type STRING and WSTRING as defined in 2.3.1.

2.1.2 Identifiers

An identifier is a string of letters, digits, and underline characters which shall begin with a letter or
underline character.

The case of letters shall not be significant in identifiers, for example, the identifiers abcd, ABCD, and
aBCd shall be interpreted identically.

Underlines shall be significant in identifiers, for example, A_BCD and AB_CD shall be interpreted as
different identifiers. Multiple leading or multiple embedded underlines are not allowed; for example, the
character sequences __LIM_SW5 and LIM__SW5 are not valid identifiers. Trailing underlines are
not allowed; for example, the character sequence LIM_SW5_ is not a valid identifier.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 24 – 61131-3  IEC:2003(E)

At least six characters of uniqueness shall be supported in all systems which support the use of
identifiers, for example, ABCDE1 shall be interpreted as different from ABCDE2 in all such systems. The
maximum number of characters allowed in an identifier is an implementation-dependent parameter.

Identifier features and examples are shown in table 2.

Table 2 - Identifier features

No. Feature description Examples

1 Upper case and numbers IW215 IW215Z QX75 IDENT

2 Upper and lower case, numbers,
embedded underlines

All the above plus:
LIM_SW_5 LimSw5 abcd ab_Cd

3 Upper and lower case, numbers,
leading or embedded underlines

All the above plus: _MAIN _12V7

2.1.3 Keywords

Keywords are unique combinations of characters utilized as individual syntactic elements as defined in
annex B. All keywords used in this standard are listed in annex C. Keywords shall not contain
imbedded spaces. The case of characters shall not be significant in keywords; for instance, the
keywords “FOR” and “for” are syntactically equivalent. The keywords listed in annex C shall not be
used for any other purpose, for example, variable names or extensions as defined in 1.5.1.

NOTE National standards organizations can publish tables of translations of the keywords given
in
annex C.

2.1.4 Use of white space

The user shall be allowed to insert one or more characters of “white space” anywhere in the text of
programmable controller programs except within keywords, literals, enumerated values, identifiers,
directly represented variables as described in subclause 2.4.1.1, or delimiter combinations (for
example, for comments as defined in 2.1.5). “White space” is defined as the SPACE character with
encoded value 32 decimal, as well as non-printing characters such as tab, newline, etc. for which no
encoding is given in IEC/ISO 10646-1.

2.1.5 Comments

User comments shall be delimited at the beginning and end by the special character combinations
“(*” and “*)”, respectively, as shown in table 3. Comments shall be permitted anywhere in the
program where spaces are allowed, except within character string literals as defined in 2.2.2.
Comments shall have no syntactic or semantic significance in any of the languages defined in this
standard.

The use of nested comments, for example, (* (* NESTED *) *), shall be treated as an error
according to the provisions of 1.5.1 d).

The maximum number of characters allowed in a comment is an implementation-dependent
parameter.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 25 –

Table 3 - Comment feature

No. Feature description Example

1 Comments (*****************************)
(* A framed comment *)
(*****************************)

NOTE The example given above represents three separate comments.

2.1.6 Pragmas

As illustrated in table 3 a), pragmas shall be delimited at the beginning and end by curly brackets "{"
and "}", respectively. The syntax and semantics of particular pragma constructions are
implementation dependent. Pragmas shall be permitted anywhere in the program where spaces are
allowed, except within character string literals as defined in 2.2.2.

NOTE Curly brackets inside a comment have no semantic meaning; comments inside curly
brackets may or may not have semantic meaning depending on the implementation.

Table 3 a) - Pragma feature

No. Feature description Examples

1 Pragmas {VERSION 3.1}
{AUTHOR JHC}
{x := 256, y := 384}

2.2 External representation of data

External representations of data in the various programmable controller programming languages shall
consist of numeric literals, character strings, and time literals.

2.2.1 Numeric literals

There are two classes of numeric literals: integer literals and real literals. A numeric literal is defined
as a decimal number or a based number. The maximum number of digits for each kind of numeric
literal shall be sufficient to express the entire range and precision of values of all the data types which
are represented by the literal in a given implementation.

Single underline characters (_) inserted between the digits of a numeric literal shall not be significant.
No other use of underline characters in numeric literals is allowed.

Decimal literals shall be represented in conventional decimal notation. Real literals shall be
distinguished by the presence of a decimal point. An exponent indicates the integer power of ten by
which the preceding number is to be multiplied to obtain the value represented. Decimal literals and
their exponents can contain a preceding sign (+ or -).

Integer literals can also be represented in base 2, 8, or 16. The base shall be in decimal notation. For
base 16, an extended set of digits consisting of the letters A through F shall be used, with the
conventional significance of decimal 10 through 15, respectively. Based numbers shall not
contain a leading sign (+ or -).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 26 – 61131-3  IEC:2003(E)

Boolean data shall be represented by integer literals with the value zero (0) or one (1), or the
keywords FALSE or TRUE, respectively.

Numeric literal features and examples are shown in table 4.

The data type of a boolean or numeric literal can be specified by adding a type prefix to the literal,
consisting of the name of an elementary data type and the '#' sign. For examples see feature 9 in
table 4.

Table 4 - Numeric literals

No. Feature description Examples

1 Integer literals -12 0 123_456 +986

2 Real literals -12.0 0.0 0.4560 3.14159_26

3 Real literals with exponents
-1.34E-12 or -1.34e-12
1.0E+6 or 1.0e+6
1.234E6 or 1.234e6

4 Base 2 literals 2#1111_1111 (255 decimal)
2#1110_0000 (224 decimal)

5 Base 8 literals 8#377 (255 decimal)
8#340 (224 decimal)

6 Base 16 literals 16#FF or 16#ff (255 decimal)
16#E0 or 16#e0 (224 decimal)

7 Boolean zero and one 0 1

8 Boolean FALSE and TRUE FALSE TRUE

9 Typed literals DINT#5 (DINT representation of 5)

UINT#16#9AF (UINT representation of the hexadecimal value 9AF)

BOOL#0 BOOL#1 BOOL#TRUE BOOL#FALSE

NOTE The keywords FALSE and TRUE correspond to Boolean values of 0 and 1, respectively.

2.2.2 Character string literals

Character string literals include single-byte or double-byte encoded characters.

A single-byte character string literal is a sequence of zero or more characters from Row 00 of the
ISO/IEC 10646-1 character set prefixed and terminated by the single quote character ('). In single-
byte character strings, the three-character combination of the dollar sign ($) followed by two
hexadecimal digits shall be interpreted as the hexadecimal representation of the eight-bit character
code, as shown in feature 1 of table 5.

A double-byte character string literal is a sequence of zero or more characters from the ISO/IEC
10646-1 character set prefixed and terminated by the double quote character ("). In double-byte
character strings, the five-character combination of the dollar sign ($) followed by four hexadecimal
digits shall be interpreted as the hexadecimal representation of the sixteen-bit character code, as
shown in feature 2 of table 5.

Two-character combinations beginning with the dollar sign shall be interpreted as shown in table 6
when they occur in character strings.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 27 –

Table 5 - Character string literal features

No. Example Explanation

1 Single-byte character strings

'' Empty string (length zero)

'A' String of length one containing the single character A

' ' String of length one containing the “space” character

'$'' String of length one containing the “single quote” character

'"' String of length one containing the “double quote” character

'RL' String of length two containing CR and LF characters

'$0A' String of length one containing the LF character

'$$1.00' String of length five which would print as “$1.00”

'ÄË'
'$C4$CB'

Equivalent strings of length two

2 Double-byte character strings

"" Empty string (length zero)

"A" String of length one containing the single character A

" " String of length one containing the “space” character

"'" String of length one containing the “single quote” character

"$"" String of length one containing the “double quote” character

"RL" String of length two containing CR and LF characters

"$$1.00" String of length five which would print as “$1.00”

"ÄË"
"$00C4$00CB"

Equivalent strings of length two

3 Single-byte typed string literals

STRING#'OK' String of length two containing two single-byte characters

4 Double-byte typed string literals

WSTRING#'OK' String of length two containing two double-byte characters

NOTE If a particular implementation supports feature #4 but not feature #2, the
implementor may specify implementation-dependent syntax and semantics for
the use of the double-quote character.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 28 – 61131-3  IEC:2003(E)

Table 6 - Two-character combinations in character strings

No. Combination Interpretation when printed

2 $$ Dollar sign

3 $' Single quote

4 $L or $l Line feed

5 $N or $n Newline

6 $P or $p Form feed (page)

7 $R or $r Carriage return

8 $T or $t Tab

9 $" Double quote
NOTE 1 The “newline” character provides an implementation-independent means of defining

the end of a line of data for both physical and file I/O; for printing, the effect is that of
ending a line of data and resuming printing at the beginning of the next line.

NOTE 2 The $' combination is only valid inside single quoted string literals.

NOTE 3 The $" combination is only valid inside double quoted string literals.

2.2.3 Time literals

The need to provide external representations for two distinct types of time-related data is recognized:
duration data for measuring or controlling the elapsed time of a control event, and time of day data
(which may also include date information) for synchronizing the beginning or end of a control event to
an absolute time reference.

Duration and time of day literals shall be delimited on the left by the keywords defined in 2.2.3.1 and
2.2.3.2.

2.2.3.1 Duration

Duration data shall be delimited on the left by the keyword T# or TIME#. The representation of
duration data in terms of days, hours, minutes, seconds, and milliseconds, or any combination thereof,
shall be supported as shown in table 7. The least significant time unit can be written in real notation
without an exponent.

The units of duration literals can be separated by underline characters.

“Overflow” of the most significant unit of a duration literal is permitted, for example, the notation
T#25h_15m is permitted.

Time units, for example, seconds, milliseconds, etc., can be represented in upper- or lower- case
letters.

As illustrated in table 7, both positive and negative values are allowed for durations.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 29 –

Table 7 - Duration literal features

No. Feature description Examples

1a
Duration literals without underlines:

 short prefix
T#14ms T#-14ms T#14.7s T#14.7m
T#14.7h t#14.7d t#25h15m
t#5d14h12m18s3.5ms

1b long prefix TIME#14ms TIME#-14ms time#14.7s

2a
Duration literals with underlines:

 short prefix t#25h_15m t#5d_14h_12m_18s_3.5ms

2b long prefix TIME#25h_15m
time#5d_14h_12m_18s_3.5ms

2.2.3.2 Time of day and date

Prefix keywords for time of day and date literals shall be as shown in table 8. As illustrated in table 9,
representation of time-of-day and date information shall be as specified by the syntax given in
B.1.2.3.2.

Table 8 - Date and time of day literals

No. Feature description Prefix Keyword

1 Date literals (long prefix) DATE#

2 Date literals (short prefix) D#

3 Time of day literals (long prefix) TIME_OF_DAY#

4 Time of day literals (short prefix) TOD#

5 Date and time literals (long prefix) DATE_AND_TIME#

6 Date and time literals (short prefix) DT#

Table 9 - Examples of date and time of day literals

Long prefix notation Short prefix notation

DATE#1984-06-25
date#1984-06-25

D#1984-06-25
d#1984-06-25

TIME_OF_DAY#15:36:55.36
time_of_day#15:36:55.36

TOD#15:36:55.36
tod#15:36:55.36

DATE_AND_TIME#1984-06-25-15:36:55.36
date_and_time#1984-06-25-15:36:55.36

DT#1984-06-25-15:36:55.36
dt#1984-06-25-15:36:55.36

2.3 Data types

A number of elementary (pre-defined) data types are recognized by this standard. Additionally,
generic data types are defined for use in the definition of overloaded functions (see 2.5.1.4). A
mechanism for the user or manufacturer to specify additional data types is also defined.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 30 – 61131-3  IEC:2003(E)

2.3.1 Elementary data types

 The elementary data types, keyword for each data type, number of bits per data element, and range
of values for each elementary data type shall be as shown in table 10.

Table 10 - Elementary data types

No. Keyword Data type N a

1 BOOL Boolean 1 h

2 SINT Short integer 8 c

3 INT Integer 16 c

4 DINT Double integer 32 c

5 LINT Long integer 64 c

6 USINT Unsigned short integer 8 d

7 UINT Unsigned integer 16 d

8 UDINT Unsigned double integer 32 d

9 ULINT Unsigned long integer 64 d

10 REAL Real numbers 32 e

11 LREAL Long reals 64 f

12 TIME Duration -- b

13 DATE Date (only) -- b

14 TIME_OF_DAY or TOD Time of day (only) -- b

15 DATE_AND_TIME or DT Date and time of Day -- b

16 STRING Variable-length single-byte character string 8 i,g

17 BYTE Bit string of length 8 8 j,g

18 WORD Bit string of length 16 16 j,g

19 DWORD Bit string of length 32 32 j,g

20 LWORD Bit string of length 64 64 j,g

21 WSTRING Variable-length double-byte character string 16 i,g

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 31 –

Table 10 - Elementary data types
a Entries in this column shall be interpreted as specified in the footnotes.
b The range of values and precision of representation in these data types is implementation-

dependent.
c The range of values for variables of this data type is from -(2N-1) to (2N-1)-1.
d The range of values for variables of this data type is from 0 to (2N)-1.
e The range of values for variables of this data type shall be as defined in IEC 60559 for the

basic single width floating-point format.
f The range of values for variables of this data type shall be as defined in IEC 60559 for the

basic double width floating-point format.
g A numeric range of values does not apply to this data type.
h The possible values of variables of this data type shall be 0 and 1, corresponding to the

keywords FALSE and TRUE, respectively.
i The value of N indicates the number of bits/character for this data type.
j The value of N indicates the number of bits in the bit string for this data type.

2.3.2 Generic data types

In addition to the data types shown in table 10, the hierarchy of generic data types shown in table 11
can be used in the specification of inputs and outputs of standard functions and function blocks (see
subclause 2.5.1.4). Generic data types are identified by the prefix “ANY”. The use of generic data
types is subject to the following rules:

1) Generic data types shall not be used in user-declared program organization units as defined in
2.5.

2) The generic type of a subrange derived type (feature 3 of table 12) shall be ANY_INT.

3) The generic type of a directly derived type (feature 1 of table 12) shall be the same as the generic
type of the elementary type from which it is derived.

4) The generic type of all other derived types defined in table 12 shall be ANY_DERIVED.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 32 – 61131-3  IEC:2003(E)

Table 11 - Hierarchy of generic data types

ANY
 ANY_DERIVED (Derived data types - see preceding text)
 ANY_ELEMENTARY
 ANY_MAGNITUDE
 ANY_NUM
 ANY_REAL
 LREAL
 REAL
 ANY_INT
 LINT, DINT, INT, SINT
 ULINT, UDINT, UINT, USINT
 TIME
 ANY_BIT
 LWORD, DWORD, WORD, BYTE, BOOL
 ANY_STRING
 STRING
 WSTRING
 ANY_DATE
 DATE_AND_TIME
 DATE, TIME_OF_DAY

2.3.3 Derived data types

2.3.3.1 Declaration

Derived (i.e., user- or manufacturer-specified) data types can be declared using the
TYPE...END_TYPE textual construction shown in table 12. These derived data types can then be
used, in addition to the elementary data types defined in 2.3.1, in variable declarations as defined in
2.4.3.

An enumerated data type declaration specifies that the value of any data element of that type can only
take on one of the values given in the associated list of identifiers, as illustrated in table 12. The
enumeration list defines an ordered set of enumerated values, starting with the first identifier of the list,
and ending with the last. Different enumerated data types may use the same identifiers for
enumerated values. The maximum allowed number of enumerated values is an implementation-
dependent parameter.

To enable unique identification when used in a particular context, enumerated literals may be qualified
by a prefix consisting of their associated data type name and the '#' sign, similar to typed literals
defined in 2.2.1. Such a prefix shall not be used inside an enumeration list. It is an error if sufficient
information is not provided in an enumerated literal to determine its value unambiguously.

A subrange declaration specifies that the value of any data element of that type can only take on
values between and including the specified upper and lower limits, as illustrated in table 12. It is an
error if the value of a value of a subrange type falls outside the specified range of values.

A STRUCT declaration specifies that data elements of that type shall contain sub-elements of specified
types which can be accessed by the specified names. For instance, an element of data type
ANALOG_CHANNEL_CONFIGURATION as declared in table 12 will contain a RANGE sub-element of
type ANALOG_SIGNAL_RANGE, a MIN_SCALE sub-element of type ANALOG_DATA, and a MAX_SCALE
element of type ANALOG_DATA. The maximum number of structure elements, the maximum amount of
data that can be contained in a structure, and the maximum number of nested levels of structure
element addressing are implementation-dependent parameters.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 33 –

An ARRAY declaration specifies that a sufficient amount of data storage shall be allocated for each
element of that type to store all the data which can be indexed by the specified index subrange(s).
Thus, any element of type ANALOG_16_INPUT_CONFIGURATION as shown in table 12 contains
(among other elements) sufficient storage for 16 CHANNEL elements of type
ANALOG_CHANNEL_CONFIGURATION. Mechanisms for access to array elements are defined in
2.4.1.2. The maximum number of array subscripts, maximum array size and maximum range of
subscript values are implementation-dependent parameters.

2.3.3.2 Initialization

The default initial value of an enumerated data type shall be the first identifier in the associated
enumeration list, or a value specified by the assignment operator “:=”. For instance, as shown in
table 12, No.2, and table 14, No.2, the default initial values of elements of data types
ANALOG_SIGNAL_TYPE and ANALOG_SIGNAL_RANGE are SINGLE_ENDED and UNIPOLAR_1_5V,
respectively.

For data types with subranges, the default initial values shall be the first (lower) limit of the subrange,
unless otherwise specified by an assignment operator. For instance, as declared in table 12, the
default initial value of elements of type ANALOG_DATA is -4095, while the default initial value for the
FILTER_PARAMETER sub-element of elements of type ANALOG_16_INPUT_CONFIGURATION is zero.
In contrast, the default initial value of elements of type ANALOG_DATAZ as declared in table 14 is zero.

For other derived data types, the default initial values, unless specified otherwise by the use of the
assignment operator “:=” in the TYPE declaration, shall be the default initial values of the underlying
elementary data types as defined in table 13. Further examples of the use of the assignment operator
for initialization are given in 2.4.2.

The default maximum length of elements of type STRING and WSTRING shall be an implementation-
dependent value unless specified otherwise by a parenthesized maximum length (which shall not
exceed the implementation-dependent default value) in the associated declaration. For example, if
type STR10 is declared by

TYPE STR10 : STRING[10] := 'ABCDEF'; END_TYPE

the maximum length, default initial value, and default initial length of data elements of type STR10 are
10 characters, 'ABCDEF', and 6 characters, respectively. The maximum allowed length of STRING
and WSTRING variables is an implementation-dependent parameter.

Table 12 - Data type declaration features

No. Feature/textual example

1 Direct derivation from elementary types, e.g.:
TYPE RU_REAL : REAL ; END_TYPE

2 Enumerated data types, e.g.:
TYPE ANALOG_SIGNAL_TYPE : (SINGLE_ENDED, DIFFERENTIAL) ; END_TYPE

3 Subrange data types, e.g.:
TYPE ANALOG_DATA : INT (-4095..4095) ; END_TYPE

4 Array data types, e.g.:
TYPE ANALOG_16_INPUT_DATA : ARRAY [1..16] OF ANALOG_DATA ; END_TYPE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 34 – 61131-3  IEC:2003(E)

Table 12 - Data type declaration features

No. Feature/textual example

5 Structured data types, e.g.:
TYPE
 ANALOG_CHANNEL_CONFIGURATION :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA ;
 MAX_SCALE : ANALOG_DATA ;
 END_STRUCT ;
 ANALOG_16_INPUT_CONFIGURATION :
 STRUCT
 SIGNAL_TYPE : ANALOG_SIGNAL_TYPE ;
 FILTER_PARAMETER : SINT (0..99) ;
 CHANNEL : ARRAY [1..16] OF ANALOG_CHANNEL_CONFIGURATION ;
 END_STRUCT ;
END_TYPE

NOTE For examples of the use of these types in variable declarations, see 2.3.3.3, 2.4.1.2, and
table 17.

Table 13 - Default initial values of elementary data types

Data type(s) Initial value

BOOL, SINT, INT, DINT, LINT 0

USINT, UINT, UDINT, ULINT 0

BYTE, WORD, DWORD, LWORD 0

REAL, LREAL 0.0

TIME T#0S

DATE D#0001-01-01

TIME_OF_DAY TOD#00:00:00

DATE_AND_TIME DT#0001-01-01-00:00:00

STRING '' (the empty string)

WSTRING "" (the empty string)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 35 –

Table 14 - Data type initial value declaration features

No. Feature/textual example

1 Initialization of directly derived types, e.g.:
TYPE FREQ : REAL := 50.0 ; END_TYPE

2 Initialization of enumerated data types, e.g.:
TYPE ANALOG_SIGNAL_RANGE :
 (BIPOLAR_10V, (* -10 to +10 VDC *)
 UNIPOLAR_10V, (* 0 to +10 VDC *)
 UNIPOLAR_1_5V, (* + 1 to + 5 VDC *)
 UNIPOLAR_0_5V, (* 0 to + 5 VDC *)
 UNIPOLAR_4_20_MA, (* + 4 to +20 mADC *)
 UNIPOLAR_0_20_MA (* 0 to +20 mADC *)
) := UNIPOLAR_1_5V ;
END_TYPE

3 Initialization of subrange data types, e.g.:
TYPE ANALOG_DATAZ : INT (-4095..4095) := 0 ; END_TYPE

4 Initialization of array data types, e.g.:
TYPE ANALOG_16_INPUT_DATAI :
 ARRAY [1..16] OF ANALOG_DATA := [8(-4095), 8(4095)] ;
END_TYPE

5 Initialization of structured data type elements, e.g.:
TYPE ANALOG_CHANNEL_CONFIGURATIONI :
 STRUCT
 RANGE : ANALOG_SIGNAL_RANGE ;
 MIN_SCALE : ANALOG_DATA := -4095 ;
 MAX_SCALE : ANALOG_DATA := 4095 ;
 END_STRUCT ;
END_TYPE

6 Initialization of derived structured data types, e.g.:
TYPE ANALOG_CHANNEL_CONFIGZ :
 ANALOG_CHANNEL_CONFIGURATIONI
 := (MIN_SCALE := 0, MAX_SCALE := 4000);
END_TYPE

2.3.3.3 Usage

The usage of variables which are declared (as defined in 2.4.3.1) to be of derived data types shall
conform to the following rules:

1) A single-element variable, as defined in 2.4.1.1, of a derived type, can be used anywhere that a
variable of its “parent's” type can be used, for example variables of the types RU_REAL and
FREQ as shown in tables 12 and 14 can be used anywhere that a variable of type REAL could
be used, and variables of type ANALOG_DATA can be used anywhere that a variable of type INT
could be used.

This rule can be applied recursively. For example, given the declarations below, the variable R3
of type R2 can be used anywhere a variable of type REAL can be used:

TYPE R1 : REAL := 1.0 ; END_TYPE
TYPE R2 : R1 ; END_TYPE
VAR R3: R2; END_VAR

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 36 – 61131-3  IEC:2003(E)

2) An element of a multi-element variable, as defined in 2.4.1.2, can be used anywhere the
“parent” type can be used, for example, given the declaration of ANALOG_16_INPUT_DATA in
table 12 and the declaration

 VAR INS : ANALOG_16_INPUT_DATA ; END_VAR

the variables INS[1] through INS[16] can be used anywhere that a variable of type INT
could be used.

This rule can also be applied recursively, for example, given the declarations of
ANALOG_16_INPUT_CONFIGURATION, ANALOG_CHANNEL_CONFIGURATION, and ANALOG_-
DATA in table 12 and the declaration

 VAR CONF : ANALOG_16_INPUT_CONFIGURATION ; END_VAR

the variable CONF.CHANNEL[2].MIN_SCALE can be used anywhere that a variable of type
INT could be used.

2.4 Variables

In contrast to the external representations of data described in 2.2, variables provide a means of
identifying data objects whose contents may change, for example, data associated with the inputs,
outputs, or memory of the programmable controller. A variable can be declared to be one of the
elementary types defined in 2.3.1, or one of the derived types which are declared as defined in
2.3.3.1.

2.4.1 Representation

2.4.1.1 Single-element variables

A single-element variable is defined as a variable which represents a single data element of one of the
elementary types defined in 2.3.1; a derived enumeration or subrange type as defined in 2.3.3.1; or a
derived type whose “parentage”, as defined recursively in 2.3.3.3, is traceable to an elementary,
enumeration or subrange type. This subclause defines the means of representing such variables
symbolically, or alternatively in a manner which directly represents the association of the data element
with physical or logical locations in the programmable controller's input, output, or memory structure.

Identifiers, as defined in 2.1.2, shall be used for symbolic representation of variables.

Direct representation of a single-element variable shall be provided by a special symbol formed by
the concatenation of the percent sign “%” (character code 037 decimal in table 1 - Row 00 of ISO/IEC
10646-1), a location prefix and a size prefix from table 15, and one or more unsigned integers,
separated by periods (.).

In the case that a directly represented variable is used in a location assignment to an internal variable
in the declaration part of a program or a function block type as defined in 2.4.3.1, an asterisk “*” shall
be used in place of the size prefix and the one or several unsigned integers in the concatenation to
indicate that the direct representation is not yet fully specified. The percent sign and the location prefix
I, Q or M from table 15 shall always be present in the direct representation.

In both cases, the use of this feature requires that the location of the variable so declared shall be fully
specified inside the VAR_CONFIG...END_VAR construction of the configuration as defined in 2.7.1 for
every instance of the containing type.

It is an error if any of the full specifications in the VAR_CONFIG...END_VAR construction is missing
for any incomplete address specification expressed by the asterisk notation in any instance of
programs or function block types which contain such incomplete specifications.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 37 –

EXAMPLES

%QX75 and %Q75 Output bit 75

%IW215 Input word location 215

%QB7 Output byte location 7

%MD48 Double word at memory location 48

%IW2.5.7.1 See explanation below

%Q* Output at a not yet specified location

The manufacturer shall specify the correspondence between the direct representation of a variable
and the physical or logical location of the addressed item in memory, input or output. When a direct
representation is extended with additional integer fields separated by periods, it shall be interpreted as
a hierarchical physical or logical address with the leftmost field representing the highest level of the
hierarchy, with successively lower levels appearing to the right. For instance, the variable
%IW2.5.7.1 may represent the first “channel” (word) of the seventh “module” in the fifth “rack” of the
second “I/O bus” of a programmable controller system.

The use of hierarchical addressing to permit a program in one programmable controller system to
access data in another programmable controller shall be considered a language extension.

The use of directly represented variables is permitted in function blocks as defined in 2.5.2, programs
as defined in 2.5.3, and in configurations and resources as defined in 2.7.1. The maximum number of
levels of hierarchical addressing is an implementation-dependent parameter.

Table 15 - Location and size prefix features for directly represented variables

No. Prefix Meaning Default data type

1 I Input location

2 Q Output location

3 M Memory location

4 X Single bit size BOOL

5 None Single bit size BOOL

6 B Byte (8 bits) size BYTE

7 W Word (16 bits) size WORD

8 D Double word (32 bits)
size

DWORD

9 L Long (quad) word (64
bits) size

LWORD

10 Use of an asterisk (*) to indicate a not yet specified
location (NOTE 2)

NOTE 1 National standards organizations can publish tables of translations of these
prefixes.

NOTE 2 Use of feature 10 in this table requires feature 11 of table 49 and vice versa.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 38 – 61131-3  IEC:2003(E)

2.4.1.2 Multi-element variables

The multi-element variable types defined in this standard are arrays and structures.

An array is a collection of data elements of the same data type referenced by one or more subscripts
enclosed in brackets and separated by commas. In the ST language defined in subclause 3.3, a
subscript shall be an expression yielding a value corresponding to one of the sub-types of generic type
ANY_INT as defined in table 11. The form of subscripts in the IL language defined in 3.2, and the
graphic languages defined in clause 4, is restricted to single-element variables or integer literals.

An example of the use of array variables in the ST language as defined in 3.3 is:

OUTARY[%MB6,SYM] := INARY[0] + INARY[7] - INARY[%MB6] * %IW62 ;

A structured variable is a variable which is declared to be of a type which has previously been
specified to be a data structure, i.e., a data type consisting of a collection of named elements.

An element of a structured variable shall be represented by two or more identifiers or array accesses
separated by single periods (.). The first identifier represents the name of the structured element, and
subsequent identifiers represent the sequence of component names to access the particular data
element within the data structure.

For instance, if the variable MODULE_5_CONFIG has been declared to be of type
ANALOG_16_INPUT_CONFIGURATION as shown in table 12, the following statements in the ST
language defined in 3.3 would cause the value SINGLE_ENDED to be assigned to the element
SIGNAL_TYPE of the variable MODULE_5_CONFIG, while the value BIPOLAR_10V would be assigned
to the RANGE sub-element of the fifth CHANNEL element of MODULE_5_CONFIG:

MODULE_5_CONFIG.SIGNAL_TYPE := SINGLE_ENDED;
MODULE_5_CONFIG.CHANNEL[5].RANGE := BIPOLAR_10V;

2.4.2 Initialization

When a configuration element (resource or configuration) is “started” as defined in 1.4.1, each of the
variables associated with the configuration element and its programs can take on one of the following
initial values:

- the value the variable had when the configuration element was “stopped” (a retained value);
- a user-specified initial value;
- the default initial value for the variable's associated data type.

The user can declare that a variable is to be retentive by using the RETAIN qualifier specified in
table 16 a), when this feature is supported by the implementation.

The initial value of a variable upon starting of its associated configuration element shall be determined
according to the following rules:

 1) If the starting operation is a “warm restart” as defined in IEC 61131-1, the initial values of retentive
variables shall be their retained values as defined above.

 2) If the operation is a “cold restart” as defined in IEC 61131-1, the initial values of retentive variables
shall be the user-specified initial values, or the default value, as defined in 2.3.3.2, for the
associated data type of any variable for which no initial value is specified by the user.

 3) Non-retained variables shall be initialized to the user-specified initial values, or to the default value,
as defined in 2.3.3.2, for the associated data type of any variable for which no initial value is
specified by the user.

 4) Variables which represent inputs of the programmable controller system as defined in IEC 61131-1
shall be initialized in an implementation-dependent manner.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 39 –

2.4.3 Declaration

Each declaration of a program organization unit type (i.e., each declaration of a program, function, or
function block, as defined in 2.5) shall contain at its beginning at least one declaration part which
specifies the types (and, if necessary, the physical or logical location) of the variables used in the
organization unit. This declaration part shall have the textual form of one of the keywords VAR,
VAR_INPUT, or VAR_OUTPUT as defined in table 16 a), followed in the case of VAR by zero or one
occurrence of the qualifiers RETAIN,NON_RETAIN or the qualifier CONSTANT, and in the case of
VAR_INPUT or VAR_OUTPUT by zero or one occurrence of the qualifier RETAIN or NON_RETAIN,
followed by one or more declarations separated by semicolons and terminated by the keyword
END_VAR. When a programmable controller supports the declaration by the user of initial values for
variables, this declaration shall be accomplished in the declaration part(s) as defined in this subclause.

Table 16 a) - Variable declaration keywords

Keyword Variable usage

VAR Internal to organization unit

VAR_INPUT Externally supplied, not modifiable within organization unit

VAR_OUTPUT Supplied by organization unit to external entities

VAR_IN_OUT Supplied by external entities - can be modified within organization unit

VAR_EXTERNAL Supplied by configuration via VAR_GLOBAL (2.7.1)
Can be modified within organization unit

VAR_GLOBAL Global variable declaration (2.7.1)

VAR_ACCESS Access path declaration (2.7.1)

VAR_TEMP Temporary storage for variables in function blocks and programs (2.4.3)

VAR_CONFIG Instance-specific initialization and location assignment.

RETAINb,c,d,e Retentive variables (see preceding text)

NON_RETAINb,c,d,e Non-retentive variables (see preceding text)

CONSTANTa Constant (variable cannot be modified)

AT Location assignment (2.4.3.1)
NOTE 1 The usage of these keywords is a feature of the program organization unit or

configuration element in which they are used. Normative requirements for the use
of these keywords are given in 2.4.3.1, 2.4.3.2, 2.5 and 2.7.

NOTE 2 Examples of the use of VAR_IN_OUT variables are given in figures 11b and 12.IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 40 – 61131-3  IEC:2003(E)

Table 16 a) - Variable declaration keywords
a The CONSTANT qualifier shall not be used in the declaration of function block instances as

described in 2.5.2.1.
b The RETAIN and NON_RETAIN qualifiers may be used for variables declared in VAR,
VAR_INPUT, VAR_OUTPUT, and VAR_GLOBAL blocks but not in VAR_IN_OUT blocks and
not for individual elements of structures.

c Usage of RETAIN and NON_RETAIN for function block and program instances is allowed.
The effect is that all members of the instance are treated as RETAIN or NON_RETAIN,
except if:

- the member is explicitly declared as RETAIN or NON_RETAIN in the function block or
program type definition;

- the member itself is a function block.
d Usage of RETAIN and NON_RETAIN for instances of structured data types is allowed. The

effect is that all structure members, also those of nested structures, are treated as RETAIN
or NON_RETAIN.

e Both RETAIN and NON_RETAIN are features. If a variable is neither explicitly declared as
RETAIN nor as NON_RETAIN the “warm start” behaviour of the variable is implementation
dependent.

Within function blocks and programs, variables can be declared in a VAR_TEMP...END_VAR
construction. These variables are allocated and initialized at each invocation of an instance of the
program organization unit, and do not persist between invocations.

The scope (range of validity) of the declarations contained in the declaration part shall be local to the
program organization unit in which the declaration part is contained. That is, the declared variables
shall not be accessible to other program organization units except by explicit argument passing via
variables which have been declared as inputs or outputs of those units. The one exception to this rule
is the case of variables which have been declared to be global, as defined in 2.7.1. Such variables
are only accessible to a program organization unit via a VAR_EXTERNAL declaration. The type of a
variable declared in a VAR_EXTERNAL block shall agree with the type declared in the VAR_GLOBAL
block of the associated program, configuration or resource.

It shall be an error if:

• any program organization unit attempts to modify the value of a variable that has been declared
with the CONSTANT qualifier;

• a variable declared as VAR_GLOBAL CONSTANT in a configuration element or program
organization unit (the “containing element”) is used in a VAR_EXTERNAL declaration (without the
CONSTANT qualifier) of any element contained within the containing element as illustrated below.

The maximum number of variables allowed in a variable declaration block is an implementation-
dependent parameter.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 41 –

Table 16 b) – Usages of VAR_GLOBAL, VAR_EXTERNAL and CONSTANT declarations

Declaration in containing element Declaration in contained element Allowed?

VAR_GLOBAL X ... VAR_EXTERNAL CONSTANT X... Yes

VAR_GLOBAL X ... VAR_EXTERNAL X... Yes

VAR_GLOBAL CONSTANT X ... VAR_EXTERNAL CONSTANT X ... Yes

VAR_GLOBAL CONSTANT X ... VAR_EXTERNAL X ... NO

2.4.3.1 Type assignment

As shown in table 17, the VAR...END_VAR construction shall be used to specify data types and
retentivity for directly represented variables. This construction shall also be used to specify data
types, retentivity, and (where necessary, in programs and VAR_GLOBAL declarations only) the physical
or logical location of symbolically represented single- or multi-element variables. The usage of the
VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions is defined in 2.5.

The assignment of a physical or logical address to a symbolically represented variable shall be
accomplished by the use of the AT keyword. Where no such assignment is made, automatic
allocation of the variable to an appropriate location in the programmable controller memory shall be
provided.

The asterisk notation (feature No. 10 in table 15) can be used in address assignments inside
programs and function block types to denote not yet fully specified locations for directly represented
variables.

Table 17 - Variable type assignment features

No. Feature/examples

1a Declaration of directly represented variables

VAR
 AT %IW6.2 : WORD;
 AT %MW6 : INT ;
END_VAR

16-bit string (note 2)
16-bit integer, initial value = 0

2a Declaration of directly represented retentive variables

VAR RETAIN
 AT %QW5 : WORD ;
END_VAR

At cold restart, will be initialized to a 16-bit string with value
16#0000

3a Declaration of locations of symbolic variables

VAR_GLOBAL
 LIM_SW_S5 AT %IX27 : BOOL;

Assigns input bit 27 to the Boolean variable
LIM_SW_5 (note 2)

 CONV_START AT %QX25 : BOOL; Assigns output bit 25 to the Boolean variable
CONV_START

 TEMPERATURE AT %IW28: INT; Assigns input word 28 to the integer variable
TEMPERATURE (note 2)

VAR C2 AT %Q* : BYTE ;
END_VAR

Assigns not yet located output byte to bitstring
variable C2 of length 8 bits

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 42 – 61131-3  IEC:2003(E)

Table 17 - Variable type assignment features

No. Feature/examples

4a Array location assignment

VAR
INARY AT %IW6 :
 ARRAY [0..9] OF INT;
END_VAR

Declares an array of 10 integers to be allocated to contiguous
input locations starting at %IW6 (note 2)

5 Automatic memory allocation of symbolic variables

VAR
 CONDITION_RED : BOOL;
 IBOUNCE : WORD ;

 MYDUB : DWORD ;

 AWORD, BWORD, CWORD : INT;

 MYSTR: STRING[10] ;
END_VAR

Allocates a memory bit to the Boolean variable
CONDITION_RED.
Allocates a memory word to the 16-bit string variable
IBOUNCE.
Allocates a double memory word to the 32-bit-string
variable MYDUB.
Allocates 3 separate memory words for the integer
variables AWORD, BWORD, and CWORD.
Allocates memory to contain a string with a
maximum length of 10 characters. After initializa-
tion, the string has length 0 and contains the empty
string ''.

6 Array declaration

VAR THREE :
ARRAY[1..5,1..10,1..8] OF INT;
END_VAR

Allocates 400 memory words for a three-
dimensional array of integers

7 Retentive array declaration

VAR RETAIN RTBT:
 ARRAY[1..2,1..3] OF INT;
END_VAR

Declares retentive array RTBT with “cold
restart” initial values of 0 for all elements

8 Declaration of structured variables

VAR MODULE_8_CONFIG :
 ANALOG_16_INPUT_CONFIGURATION;
END_VAR

Declaration of a variable of derived data
type (see table 12)

NOTE 1 Initialization of system inputs is implementation-dependent; see 2.4.2.

NOTE 2 The notes to table 16 a) also apply to this table.
a If directly represented variables are explicitly located, features 1 to 4 can only be used in
PROGRAM and VAR_GLOBAL declarations, as defined in 2.5.3 and 2.7.1, respectively. If the
asterisk notation of feature 10 in table 15 is used to indicate instance specific location
assignment of a partly specified directly represented variable, features 1 and 2 can not be used,
and features 3 and 4 can only be used in declarations of internal variables of function blocks and
programs, as defined in 2.5.2 and 2.5.3, respectively.

2.4.3.2 Initial value assignment

The VAR...END_VAR construction can be used as shown in table 18 to specify initial values of
directly represented variables or symbolically represented single- or multi-element variables.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 43 –

Initial values can also be specified by using the instance-specific initialization feature provided by the
VAR_CONFIG...END_VAR construct described in 2.7.1 (table 49, feature 11). Instance-specific initial
values always override type-specific initial values.

NOTE The usage of the VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT constructions is defined
in subclause 2.5.

Initial values cannot be given in VAR_EXTERNAL declarations.

During initialization of arrays, the rightmost subscript of an array shall vary most rapidly with respect to
filling the array from the list of initialization variables.

Parentheses can be used as a repetition factor in array initialization lists, for example, 2(1,2,3) is
equivalent to the initialization sequence 1,2,3,1,2,3.

If the number of initial values given in the initialization list exceeds the number of array entries, the
excess (rightmost) initial values shall be ignored. If the number of initial values is less than the
number of array entries, the remaining array entries shall be filled with the default initial values for the
corresponding data type. In either case, the user shall be warned of this condition during preparation
of the program for execution.

When a variable is declared to be of a derived, structured data type as defined in 2.3.3.1, initial values
for the elements of the variable can be declared in a parenthesized list following the data type
identifier, as shown in table 18. Elements for which initial values are not listed in the initial value list
shall have the default initial values declared for those elements in the data type declaration.

When a variable is declared to be a function block instance, as defined in 2.5.2.2, initial values for the
inputs and any accessible variables of the function block can be declared in a parenthesized list
following the assignment operator that follows the function block type identifier as shown in table 18.
Elements for which initial values are not listed shall have the default initial values declared for those
elements in the function block declaration.

Table 18 - Variable initial value assignment features
No. Feature/examples

1 a Initialization of directly represented variables
VAR AT %QX5.1 : BOOL :=1;
 AT %MW6 : INT := 8 ;
END_VAR

Boolean type, initial value = 1
Initializes a memory word to integer 8

2 a Initialization of directly represented retentive variables
VAR RETAIN
 AT %QW5 : WORD := 16#FF00 ;
END_VAR

At cold restart, the 8 most significant bits of
the 16-bit string at output word 5 are to be
initialized to 1 and the 8 least significant bits
to 0

3 a Location and initial value assignment to symbolic variables
VAR
 VALVE_POS AT %QW28 : INT := 100;
END_VAR

Assigns output word 28 to the
integer variable VALVE_POS, with
an initial value of 100

4 a Array location assignment and initialization
VAR OUTARY AT %QW6 :
 ARRAY[0..9] OF INT := [10(1)];
END_VAR

Declares an array of 10 integers to be
allocated to contiguous output locations
starting at %QW6, each with an initial
value of 1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 44 – 61131-3  IEC:2003(E)

Table 18 - Variable initial value assignment features
No. Feature/examples

5 Initialization of symbolic variables
VAR
 MYBIT : BOOL := 1 ;

 OKAY : STRING[10] := 'OK';
END_VAR

Allocates a memory bit to the Boolean
variable MYBIT with an initial value of 1

Allocates memory to contain a string with a
maximum length of 10 characters. After
initialization, the string has a length of 2 and
contains the two-byte sequence of characters
'OK' (decimal 79 and 75 respectively), in an
order appropriate for printing as a character
string

6 Array initialization
VAR
 BITS : ARRAY[0..7] OF BOOL
 := [1,1,0,0,0,1,0,0] ;

 TBT : ARRAY [1..2,1..3]
 OF INT
 := [1,2,3(4),6] ;
END_VAR

Allocates 8 memory bits to contain initial
values
 BITS[0]:= 1, BITS[1] := 1,...,
 BITS[6]:= 0, BITS[7] := 0.
Allocates a 2-by-3 integer array TBT with
initial values
 TBT[1,1]:=1, TBT[1,2]:=2,
 TBT[1,3]:=4, TBT[2,1]:=4,
 TBT[2,2]:=4, TBT[2,3]:=6.

7 Retentive array declaration and initialization
VAR RETAIN RTBT :
 ARRAY(1..2,1..3) OF INT
 := [1,2,3(4)];
END_VAR

Declares retentive array RTBT with “cold restart”
initial values of:
 RTBT[1,1] := 1, RTBT[1,2] := 2,
 RTBT[1,3] := 4, RTBT[2,1] := 4,
 RTBT[2,2] := 4, RTBT[2,3] := 0.

8 Initialization of structured variables
VAR MODULE_8_CONFIG:
 ANALOG_16_INPUT_CONFIGURATION :=
 (SIGNAL_TYPE := DIFFERENTIAL,
 CHANNEL
 := [4((RANGE := UNIPOLAR_1_5V)),
 (RANGE:= BIPOLAR_10_V,
 MIN_SCALE := 0,
 MAX_SCALE := 500)]);
END_VAR

Initialization of a variable of
derived data type (see table 12)
This example illustrates the
declaration of a non-default initial
value for the fifth element of the
CHANNEL array of the variable
MODULE_8_CONFIG.

9 Initialization of constants
VAR CONSTANT PI : REAL := 3.141592 ; END_VAR

10 Initialization of function block instances
VAR TempLoop :
 PID :=
 (PropBand := 2.5,
 Integral := T#5s);
END_VAR

Allocates initial values to inputs and
outputs of a function block instance

a Features 1 to 4 can only be used in PROGRAM and VAR_GLOBAL declarations, as defined in
2.5.3 and 2.7.1 respectively.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 45 –

2.5 Program organization units

The program organization units defined in this part of IEC 61131 are the function, function block, and
program. These program organization units can be delivered by the manufacturer, or programmed by
the user by the means defined in this part of the standard.

Program organization units shall not be recursive; that is, the invocation of a program organization unit
shall not cause the invocation of another program organization unit of the same type.

The information necessary to determine execution times of program organization units may consist of
one or more implementation-dependent parameters.

2.5.1 Functions

For the purposes of programmable controller programming languages, a function is defined as a
program organization unit which, when executed, yields exactly one data element, which is considered
to be the function result, and arbitrarily many additional output elements (VAR_OUTPUT and
VAR_IN_OUT). As for any data element, the function result can be multi-valued, for example, an array
or structure. The invocation of a function can be used in textual languages as an operand in an
expression. For example, the SIN and COS functions could be used as shown in figure 4.

a) VAR X,Y,Z,RES1,RES2 : REAL; EN1,V : BOOL; END_VAR

RES1 := DIV(IN1 := COS(X), IN2 := SIN(Y), ENO => EN1);
RES2 := MUL (SIN(X), COS(Y));
Z: = ADD(EN := EN1, IN1 := RES1, IN2 := RES2, ENO => V);

b) +-----+ +------+ +------+
X ---+-| COS |--+ -|EN ENO|-----|EN ENO|--- V
 | | | | | | | |
 | +-----+ +---| DIV |-----| ADD |--- Z
 | | | | |
 | +-----+ | | +-| |
Y -+---| SIN |------| | | +------+
			+------+		
	+-----+				
	+-----+ +------+				
+-	SIN	--+ -	EN ENO	-	
+-----+ +- -	MUL	---+			
+-----+					
 +---| COS |------| |
 | | +------+
 +-----+

a) Structured Text (ST) language - see subclause 3.3
b) Function Block Diagram (FBD) language - see subclause 4.3

NOTE This figure shows two different representations of the same functionality. It is not required
to support any automatic transformation between the two forms of representation.

Figure 4 - Examples of function usage

IEC 2474/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 46 – 61131-3  IEC:2003(E)

Functions shall contain no internal state information, i.e., invocation of a function with the same
arguments (input variables VAR_INPUT and in-out variables VAR_IN_OUT) shall always yield the
same values (output variables VAR_OUTPUT, in-out variables VAR_IN_OUT and function result). It
shall be an error if external variables as defined in 2.4.3 cause the violation of this rule.

Any function type which has already been declared can be used in the declaration of another program
organization unit, as shown in figure 3.

2.5.1.1 Representation

Functions and their invocation can be represented either graphically or textually.

In the textual languages defined in clause 3 of this standard, the invocation of functions shall be
according to the following rules:

1) Input argument assignment shall follow the rules given in table 19 a).

2) Assignments of output variables of the function shall be either empty or to variables.

3) Assignments to VAR_IN_OUT arguments shall be variables.

4) Assignments to VAR_INPUT arguments may be empty (feature 1 of table 19 a)), constants,
variables or function calls. In the latter case, the function result is used as the actual argument.

In the graphic languages defined in clause 4 of this standard, functions shall be represented as
graphic blocks according to the following rules:

5) The form of the block shall be rectangular or square.

6) The size and proportions of the block may vary depending on the number of inputs and other
information to be displayed.

7) The direction of processing through the block shall be from left to right (input variables on the left
and output variables on the right).

8) The function name or symbol, as specified below, shall be located inside the block.

9) Provision shall be made for input and output variable names appearing at the inside left and right
sides of the block respectively when the block represents:

- one of the standard functions defined in 2.5.1.5, when the given graphical form includes the
variable names; or

- any additional function declared as specified in 2.5.1.3.

This usage is subject to the following provisions:

a) Where no names are given for input variables in standard functions, the default names
IN1, IN2,... shall apply in top-to-bottom order.

b) When a standard function has a single unnamed input, the default name IN shall apply.

c) The default names described above may, but need not appear at the inside left-hand side
of the graphic representation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 47 –

10) An additional input EN and/or output ENO as specified in 2.5.1.2 may be used. If present, they shall
be shown at the uppermost positions at the left and right side of the block, respectively.

11) The function result shall be shown at the uppermost position at the right side of the block, except if
there is an ENO output, in which case the function result shall be shown at the next position below
the ENO output. Since the name of the function is used for the assignment of its output value as
specified in 2.5.1.3, no output variable name shall be shown at the right side of the block.

12) Argument connections (including function result) shall be shown by signal flow lines.

13) Negation of Boolean signals shall be shown by placing an open circle just outside of the input or
output line intersection with the block. In the character set defined in 2.1.1, this shall be
represented by the upper case alphabetic “O”, as shown in table 19.

14) All inputs and outputs (including function result) of a graphically represented function shall be
represented by a single line outside the corresponding side of the block, even though the data
element may be a multi-element variable.

15) Function results and function outputs (VAR_OUTPUT) can be connected to a variable, used as
input to other function blocks or functions, or can be left unconnected.

16) It shall be an error if any VAR_IN_OUT variable of any function block invocation or function
invocation within a POU is not “properly mapped”. A VAR_IN_OUT variable is “properly mapped” if
it is connected graphically at the left, or assigned using the “:=” operator in a textual invocation, to
a variable declared (without the CONSTANT qualifier) in a VAR_IN_OUT, VAR, VAR_OUT, or
VAR_EXTERNAL block of the containing program organization unit, or to a “properly mapped”
VAR_IN_OUT of another contained function block instance or function invocation.

17) A “properly mapped” (see rule 12 above) VAR_IN_OUT variable of a function block instance or a
function invocation can be connected graphically at the right, or assigned using the “:=” operator in
a textual assignment statement, to a variable declared in a VAR, VAR_OUT or VAR_EXTERNAL
block of the containing program organization unit. It shall be an error if such a connection would
lead to an ambiguous value of the variable so connected.

Table 19 - Graphical negation of Boolean signals

No. Featurea, b Representation

1 Negated input
 +---+
 ---O| |---
 +---+

2 Negated output
 +---+
 ----| |O---
 +---+

a If either of these features is supported for functions, it shall also
be supported for function blocks as defined in 2.5.2, and vice
versa.

b The use of these constructs is forbidden for in-out variables.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 48 – 61131-3  IEC:2003(E)

Figure 5 illustrates both the graphical and equivalent textual use of functions, including the use of a
standard function (ADD) with no defined formal argument names; a standard function (SHL) with
defined formal argument names; the same function with additional use of EN input and negated ENO
output; and a user-defined function (INC) with defined formal argument names.

Example Explanation

 +-----+
 | ADD |
 B---| |---A
C---| |
D---| |
 +-----+

Graphical use of ADD function
(See 2.5.1.5.2)

(FBD language; see 4.3)
(No formal variable names)

A := ADD(B,C,D); Textual use of ADD function
(ST language; see 3.3)

 +-----+
 | SHL |
 B---|IN |---A
C---|N |
 +-----+

Graphical use of SHL function
(See 2.5.1.5.3)

(FBD language; see 4.3)
(Formal argument names)

A := SHL(IN := B,N := C); Textual use of SHL function
(ST language; see 3.3)

 +---------+
 | SHL |
 ENABLE---|EN ENO|O--NO_ERR

 B---|IN |---A
C---|N |
 +---------+

Graphical use of SHL function
(See 2.5.1.5.3)

(FBD language; see 4.3)
(Formal argument names; use of EN input

and negated ENO output)

A := SHL(EN:=ENABLE, IN:=B, N:=C,
NOT ENO => NO_ERR);

Textual use of SHL function
(ST language; see 3.3)

 +-----+
 | INC |
 | |---A
 X---|V---V|---X
 +-----+

Graphical use of user-defined
INC function

(FBD language, see 4.3)

(Formal argument names for VAR_IN_OUT)

A := INC(V := X) ; Textual use of INC function
(ST language, see 3.3)

Figure 5 - Use of formal argument names

Features for the textual invocation of functions are defined in table 19 a). The textual invocation of a
function shall consist of the function name followed by a list of arguments. In the ST language defined
in subclause 3.3, the arguments shall be separated by commas and this list shall be delimited on the
left and right by parentheses.

In feature 1 of table 19 a) (formal invocation), the argument list has the form of a set of assignments of
actual values to the formal argument names (formal argument list), that is:

1) assignments of values to input and in-out variables using the ":=" operator, and
2) assignments of the values of output variables to variables using the "=>" operator.

IEC 2475/02IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 49 –

The ordering of arguments in the list shall be insignificant. In feature 1 of table 19 a), any variable not
assigned a value in the list shall have the default value, if any, assigned in the function specification,
or the default value for the associated data type.

In feature 2 of table 19 a) (non-formal invocation), the argument list shall contain exactly the same
number of arguments, in exactly the same order and of the same data types as given in the function
definition, except the execution control arguments EN and ENO.

Table 19 a) - Textual invocation of functions for formal and non-formal argument list

Feature Example
No. Invocation

type
Variable

assignme
nt

Variable
order

Number of
variables

In Structured Text (ST) language
- see 3.3

1 formal yes any any A := LIMIT(EN:=COND, IN:=B,
 MX:=5, ENO=>TEMPL);

2 a non-formal no fixed fixed A := LIMIT(1, B, 5);
a Feature #2 is required for invocation of any of the standard functions defined in subclause

2.5.1.5 without formal names for one or more input variables, but feature #1 shall be used if
EN/ENO is necessary in function invocations.

NOTE 1 In the example given in feature #1, the MN variable will have the default value 0
(zero).

NOTE 2 The example given in feature #2 is semantically equivalent to the following
invocation with formal variable assignments (feature #1):

A := LIMIT(EN := TRUE,MN := 1, IN := B, MX := 5);

2.5.1.2 Execution control

As shown in table 20, an additional Boolean EN (Enable) input or ENO (Enable Out) output, or both,
can be provided by the manufacturer or user according to the declarations

VAR_INPUT EN: BOOL := 1; END_VAR
VAR_OUTPUT ENO: BOOL; END_VAR

When these variables are used, the execution of the operations defined by the function shall be
controlled according to the following rules:

1) If the value of EN is FALSE (0) when the function is invoked, the operations defined by the
function body shall not be executed and the value of ENO shall be reset to FALSE (0) by the
programmable controller system.

2) Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system,
and the operations defined by the function body shall be executed. These operations can
include the assignment of a Boolean value to ENO.

3) If any of the errors defined in table E.1 for subclauses of 2.5.1.5 occurs during the execution of
one of the standard functions defined in 2.5.1.5, the ENO output of that function shall be reset to
FALSE (0) by the programmable controller system, or the manufacturer shall specify other
disposition of such an error according to the provisions of 1.5.1.

4) If the ENO output is evaluated to FALSE (0), the values of all function outputs (VAR_OUTPUT,
VAR_IN_OUT and function result) shall be considered to be implementation-dependent.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 50 – 61131-3  IEC:2003(E)

NOTE It is a consequence of these rules that the ENO output of a function must be explicitly
examined by the invoking entity if necessary to account for possible error conditions.

Table 20 - Use of EN input and ENO output

No. Feature Examplea

1
Use of EN and ENO

Shown in LD (Ladder Diagram)
language; see 4.2

 +-------+ |
 | ADD_EN | + | ADD_OK |
 +---||---|EN ENO|---()---+
A---		---C
B---		
 +-------+ |

2 Usage without EN and ENO
Shown in FBD (Function Block

Diagram) language; see 4.3

 +-----+
 A---| + |---C
 B---| |
 +-----+

3 Usage with EN and without ENO
Shown in FBD (Function Block

Diagram) language; see 4.3

 +-----+
 ADD_EN---|EN |
 A---| + |---C
 B---| |
 +-----+

4 Usage without EN and with ENO
Shown in FBD (Function Block

Diagram) language; see 4.3

 +-----+
 | ENO|---ADD_OK
 A---| + |---C
 B---| |
 +-----+

a The graphical languages chosen for demonstrating the features above are given only as
exemples. Features, if chosen by a vendor, shall be in effect for all languages supported
by the vendor (IL, ST, LD, FBD).

2.5.1.3 Declaration

Features for the textual and graphical declaration of functions are listed in table 20 a).

As illustrated in figure 6, the textual declaration of a function shall consist of the following elements:

1) The keyword FUNCTION, followed by an identifier specifying the name of the function being
declared, a colon (:), and the data type of the value to be returned by the function;

2) A VAR_INPUT...END_VAR construct as defined in 2.4.3, specifying the names and types of the
function's input variables;

3) VAR_IN_OUT...END_VAR and VAR_OUTPUT...END_VAR constructs (see F.11 for an example
of the use of the latter construct) as defined in 2.4.3, if required, specifying the names and types
of the function's in-out and output variables;

4) A VAR...END_VAR construct, if required, specifying the names and types of the function's
internal variables;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 51 –

5) A function body, written in one of the languages defined in this standard, or another
programming language as defined in 1.4.3, which specifies the operations to be performed upon
the variable(s) in order to assign values dependent on the function's semantics to a variable
with the same name as the function, which represents the function result to be returned by the
function (function result), as well as to in-out or output variables;

6) The terminating keyword END_FUNCTION.

If the generic data types given in table 11 are used in the declaration of standard function variables,
then the rules for inferring the actual types of the arguments of such functions shall be part of the
function definition.

The variable initialization constructs defined in 2.4.3.2 can be used for the declaration of default values
of function inputs and initial values of their internal and output variables.

The values of variables which are passed to the function via a VAR_IN_OUT construct can be modified
from within the function.

As illustrated in figure 6, the graphic declaration of a function shall consist of the following elements:

1) The bracketing keywords FUNCTION...END_FUNCTION or a graphical equivalent.

2) A graphic specification of the function name and the names, types and possibly initial values of
the function's result and variables (input, output and in-out).

3) A specification of the names, types and possibly initial values of the internal variables used in
the function, for example, using the VAR...END_VAR construct.

4) A function body as defined above.

The maximum number of function specifications allowed in a particular resource is an
implementation-dependent parameter.

Table 20 a) - Function features

No. Description Example

1 In-out variable declaration (textual) VAR_IN_OUT A: INT; END_VAR

2 In-out variable declaration (graphical) See figure 6 b)

3 Graphical connection of in-out variable to different
variables(graphical)

See figure 6 d)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 52 – 61131-3  IEC:2003(E)

a) FUNCTION SIMPLE_FUN : REAL
 VAR_INPUT
 A,B : REAL ; (* External interface specification *)
 C : REAL := 1.0;
 END_VAR
 VAR_IN_OUT COUNT : INT ; END_VAR
 VAR COUNTP1 : INT ; END_VAR

 COUNTP1 := ADD(COUNT,1); (*Function body specification *)
 COUNT := COUNTP1 ;
 SIMPLE_FUN := A*B/C;
 END_FUNCTION

NOTE In the above example, the input variable is given a default value of 1.0, as
specified in 2.4.3.2, to avoid a “division by zero” error if the input is not specified
when the function is invoked, for example, if a graphical input to the function is
left unconnected.

b) FUNCTION
 +-------------+ (* External interface specification *)
 | SIMPLE_FUN |
 REAL----|A |----REAL
 REAL----|B |
 REAL----|C |
 INT-----|COUNT---COUNT|----INT
 +-------------+
(* Function body specification *)
 +---+
 |ADD|--- +----+
 COUNT--| |---COUNTP1--| := |---COUNT
 1--| | +----+
 +---+ +---+
 A---| * | +---+
 B---| |---| / |---SIMPLE_FUN
 +---+ | |
 C-----------| |
 +---+
 END_FUNCTION

c)
VAR X,Y,Z,RESULT : REAL:
VAR COUNT1,COUNT2 : INT;
 ...
RESULT := SIMPLE_FUN(A:=X,B:=Y,C:=Z,COUNT:=COUNT1);
COUNT2 := COUNT1;
 ...

d) +-------------+
 | SIMPLE_FUN |
 X----|A |----RESULT
 Y----|B |
 Z----|C |
 COUNT1---|COUNT---COUNT|----COUNT2
 +-------------+

NOTE The effect of this invocation of this function is identical to that
in figure 6 c)

a) Textual declaration in ST language (subclause 3.3)
b) Graphical declaration in FBD language (subclause 4.3)
c) Usage of a function in ST language
d) Usage of a function in FBD language (subclause 4.3)

Figure 6 - Examples of function declarations and usage IEC 2476/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 53 –

2.5.1.4 Typing, overloading, and type conversion

A standard function, function block type, operator, or instruction is said to be overloaded when it can
operate on input data elements of various types within a generic type designator as defined in 2.3.2.
For instance, an overloaded addition function on generic type ANY_NUM can operate on data of types
LREAL, REAL, DINT, INT, and SINT.

When a programmable controller system supports an overloaded standard function, function block
type, operator, or instruction, this standard function, function block type, operator, or instruction shall
apply to all data types of the given generic type which are supported by that system. For example, if a
programmable controller system supports the overloaded function ADD and the data types SINT, INT,
and REAL, then the system shall support the ADD function on inputs of type SINT, INT, and REAL.

When a function which normally represents an overloaded operator is to be typed, i.e., the types of its
inputs and outputs restricted to a particular elementary or derived data type as defined in 2.3, this shall
be done by appending an “underline” character followed by the required type, as shown in table 21.

Table 21 - Typed and overloaded functions

No. Feature Example

1 Overloaded functions

 +-----+
 | ADD |
 ANY_NUM-----| |----ANY_NUM
 ANY_NUM-----| |
 . -----| |
 . -----| |
 ANY_NUM-----| |
 +-----+

2 a Typed functions

 +---------+
 | ADD_INT |
 INT-----| |----INT
 INT-----| |
 . -----| |
 . -----| |
 INT-----| |
 +---------+

NOTE The overloading of non-standard functions or function block types is beyond the scope of
this standard.

a If feature 2 is supported, the manufacturer shall provide a table of which functions are
overloaded and which are typed in the implementation.

When the type of the result of a standard function defined in 2.5.1.5 is generic, then the actual types of
all input variables of the same generic type shall be of the same type as the actual type of the function
value in a given invocation of the function. If necessary, the type conversion functions defined in
2.5.1.5.1 can be used to meet this requirement. Examples of the application of this rule are given in
figures 7 and 8.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 54 – 61131-3  IEC:2003(E)

Type declaration
(ST language - see 3.3)

Usage
(FBD language - see 4.3)
(ST language - see 3.3)

 VAR
 A : INT ;
 B : INT ;
 C : INT ;
 END_VAR

 +---+
 A---| + |---C
 B---| |
 +---+

C := A+B;

NOTE Type conversion is not required in the example shown above.

 VAR
 A : INT ;
 B : REAL ;
 C : REAL;
 END_VAR

 +-----------+ +---+
 A---|INT_TO_REAL|---| + |---C
 +-----------+ | |
 B-------------------| |
 +---+

C := INT_TO_REAL(A)+B;

 VAR
 A : INT ;
 B : INT ;
 C : REAL;
 END_VAR

 +---+ +-----------+
A----| + |---|INT_TO_REAL|---C
B----| | +-----------+
 +---+

C := INT_TO_REAL(A+B);

Figure 7 - Examples of explicit type conversion with overloaded functions

Type declaration
(ST language - see 3.3)

Usage
(FBD language - see 4.3)
(ST language - see 3.3)

 VAR
 A : INT ;
 B : INT ;
 C : INT ;
 END_VAR

 +---------+
 A---| ADD_INT |---C
 B---| |
 +---------+

C := ADD_INT(A,B);

NOTE Type conversion is not required in the example shown above.

 VAR
 A : INT ;
 B : REAL ;
 C : REAL;
 END_VAR

 +-----------+ +----------+
 A---|INT_TO_REAL|---| ADD_REAL |---C
 +-----------+ | |
 B-------------------| |
 +----------+

C := ADD_REAL(INT_TO_REAL(A),B);

 VAR
 A : INT ;
 B : INT ;
 C : REAL;
 END_VAR

 +---------+ +-----------+
 A---| ADD_INT |---|INT_TO_REAL|---C
 | | +-----------+
 B---| |
 +---------+

C := INT_TO_REAL(ADD_INT(A,B));

Figure 8 - Examples of explicit type conversion with typed functions

IEC 2477/02

IEC 2478/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 55 –

2.5.1.5 Standard functions

Definitions of functions common to all programmable controller programming languages are given in
this subclause. Where graphical representations of standard functions are shown in this subclause,
equivalent textual declarations may be written as specified in 2.5.1.3.

A standard function specified in this subclause to be extensible is allowed to have two or more inputs
to which the indicated operation is to be applied, for example, extensible addition shall give as its
output the sum of all its inputs. The maximum number of inputs of an extensible function is an
implementation-dependent parameter. The actual number of inputs effective in a formal call of an
extensible function is determined by the formal input name with the highest position in the sequence of
parameter names.

EXAMPLE 1 The statement
X := ADD(Y1,Y2,Y3);
is equivalent to
 X := ADD(IN1 := Y1, IN2 := Y2, IN3 := Y3);

EXAMPLE 2 The following statements are equivalent:
I := MUX_INT(K:=3,IN0 := 1, IN2 := 2, IN4 := 3);
I := 0;

2.5.1.5.1 Type conversion functions

As shown in table 22, type conversion functions shall have the form *_TO_**, where “*” is the type of
the input variable IN, and “**” the type of the output variable OUT, for example, INT_TO_REAL. The
effects of type conversions on accuracy, and the types of errors that may arise during execution of
type conversion operations, are implementation-dependent parameters.

Table 22 - Type conversion function features

No. Graphical form Usage example

1a,b,e
 +---------+
 * ---| *_TO_** |--- **
 +---------+

 (*) - Input data type, e.g., INT
 (**) - Output data type, e.g., REAL
 (*_TO_**) - Function name, e.g., INT_TO_REAL

A := INT_TO_REAL(B) ;

2c
 +-------+
 ANY_REAL---| TRUNC |---ANY_INT
 +-------+

 A := TRUNC(B) ;

3d
 +-------------+
 *--| *_BCD_TO_** |---**
 +-------------+

A := WORD_BCD_TO_INT(B);

4d
 +-------------+
 **--| **_TO_BCD_* |---*
 +-------------+

A := INT_TO_BCD_WORD(B);

NOTE Usage examples are given in the ST language defined in 3.3.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 56 – 61131-3  IEC:2003(E)

Table 22 - Type conversion function features
a A statement of conformance to feature 1 of this table shall include a list of the specific type

conversions supported, and a statement of the effects of performing each conversion.
b Conversion from type REAL or LREAL to SINT, INT, DINT or LINT shall round according to

the convention of IEC 60559, according to which, if the two nearest integers are equally
near, the result shall be the nearest even integer, e.g.:

REAL_TO_INT(1.6) is equivalent to 2
REAL_TO_INT(-1.6) is equivalent to -2

REAL_TO_INT(1.5) is equivalent to 2
REAL_TO_INT(-1.5) is equivalent to -2

REAL_TO_INT(1.4) is equivalent to 1
REAL_TO_INT(-1.4) is equivalent to -1

REAL_TO_INT(2.5) is equivalent to 2
REAL_TO_INT(-2.5) is equivalent to –2
c The function TRUNC shall be used for truncation toward zero of a REAL or LREAL, yielding

one of the integer types, for instance,

TRUNC(1.6) is equivalent to 1
TRUNC(-1.6) is equivalent to -1

TRUNC(1.4) is equivalent to 1
TRUNC(-1.4) is equivalent to -1
d The conversion functions *_BCD_TO_** and **_TO_BCD_* shall perform conversions

between variables of type BYTE, WORD, DWORD, and LWORD and variables of type
USINT, UINT, UDINT and ULINT (represented by "*" and "**" respectively), when the
corresponding bit-string variables contain data encoded in BCD format. For example, the
value of USINT_TO_BCD_BYTE(25) would be 2#0010_0101, and the value of
WORD_BCD_TO_UINT (2#0011_0110_1001) would be 369.

e When an input or output of a type conversion function is of type STRING or
WSTRING, the character string data shall conform to the external representation
of the corresponding data, as specified in 2.2, in the character set defined in
2.1.1.

2.5.1.5.2 Numerical functions

The standard graphical representation, function names, input and output variable types, and function
descriptions of functions of a single numeric variable shall be as defined in table 23. These functions
shall be overloaded on the defined generic types, and can be typed as defined in 2.5.1.4. For these
functions, the types of the input and output shall be the same.

The standard graphical representation, function names and symbols, and descriptions of arithmetic
functions of two or more variables shall be as shown in table 24. These functions shall be overloaded
on all numeric types, and can be typed as defined in 2.5.1.4.

The accuracy of numerical functions shall be expressed in terms of one or more implementation-
dependent parameters.

It is an error if the result of evaluation of one of these functions exceeds the range of values specified
for the data type of the function output, or if division by zero is attempted.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 57 –

Table 23 - Standard functions of one numeric variable

Graphical form Usage example

 +---------+
* ---| ** |--- *
 +---------+
(*) - Input/Output (I/O) type
(**) - Function name

A := SIN(B) ;

(ST language - see 3.3)

No. Function name I/O type Description

General functions

1 ABS ANY_NUM Absolute value

2 SQRT ANY_REAL Square root

Logarithmic functions

3 LN ANY_REAL Natural logarithm

4 LOG ANY_REAL Logarithm base 10

5 EXP ANY_REAL Natural exponential

Trigonometric functions

6 SIN ANY_REAL Sine of input in radians

7 COS ANY_REAL Cosine in radians

8 TAN ANY_REAL Tangent in radians

9 ASIN ANY_REAL Principal arc sine

10 ACOS ANY_REAL Principal arc cosine

11 ATAN ANY_REAL Principal arc tangent

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 58 – 61131-3  IEC:2003(E)

Table 24 - Standard arithmetic functions
Graphical form Usage example

 +-----+
 ANY_NUM ---| *** |--- ANY_NUM
 ANY_NUM ---| |
 . ---| |
 . ---| |
 ANY_NUM ---| |
 +-----+

(***) - Name or Symbol

A := ADD(B,C,D) ;
or
A := B+C+D ;

No. d,e Name Symbol Description

Extensible arithmetic functions
12 g

ADD + OUT := IN1 + IN2 + ... + INn

13 MUL * OUT := IN1 * IN2 * ... * INn

Non-extensible arithmetic functions
14 g

SUB - OUT := IN1 - IN2

15 c
DIV / OUT := IN1 / IN2

16 a
MOD OUT := IN1 modulo IN2

17 b
EXPT ** Exponentiation: OUT := IN1IN2

18 f
MOVE := OUT := IN

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual
languages, as shown in tables 52 and 55.

NOTE 2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT
refers to the output.

NOTE 3 Usage examples and descriptions are given in the ST language defined in 3.3.
a IN1 and IN2 shall be of generic type ANY_INT for this function. The result of evaluating this

function shall be the equivalent of executing the following statements in the ST language as
defined in 3.3:

IF (IN2 = 0) THEN OUT:=0 ; ELSE OUT:=IN1 - (IN1/IN2)*IN2 ; END_IF
b IN1 shall be of type ANY_REAL, and IN2 of type ANY_NUM for this function. The output shall be

of the same type as IN1.
c The result of division of integers shall be an integer of the same type with truncation toward zero,

for instance, 7/3 = 2 and (-7)/3 = -2.
d When the named representation of a function is supported, this shall be indicated by the suffix “n”

in the compliance statement. For example, “12n” represents the notation “ADD”.
e When the symbolic representation of a function is supported, this shall be indicated by the suffix

“s” in the compliance statement. For example, “12s” represents the notation “+”.
f The MOVE function has exactly one input (IN) of type ANY and one output (OUT) of type ANY.
g The generic type of the inputs and outputs of these functions is ANY_MAGNITUDE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 59 –

2.5.1.5.3 Bit string functions

The standard graphical representation, function names and descriptions of shift functions for a single
bit-string variable shall be as defined in table 25. These functions shall be overloaded on all bit-string
types, and can be typed as defined in 2.5.1.4.

The standard graphical representation, function names and symbols, and descriptions of bitwise
Boolean functions shall be as defined in table 26. These functions shall be extensible, except for NOT,
and overloaded on all bit-string types, and can be typed as defined in 2.5.1.4.

Table 25 - Standard bit shift functions

Graphical form Usage example a

 +-----+
 | *** |
 ANY_BIT ---|IN |--- ANY_BIT
 ANY_INT ---|N |
 +-----+

(***) - Function Name

 A := SHL(IN:=B, N:=5) ;

(ST language - see 3.3)

No. Name Description

1 SHL OUT := IN left-shifted by N bits, zero-filled on right

2 SHR OUT := IN right-shifted by N bits, zero-filled on left

3 ROR OUT := IN right-rotated by N bits, circular

4 ROL OUT := IN left-rotated by N bits, circular
NOTE The notation OUT refers to the function output.
a It shall be an error if the value of the N input is less than zero.

2.5.1.5.4 Selection and comparison functions

Selection and comparison functions shall be overloaded on all data types. The standard graphical
representations, function names and descriptions of selection functions shall be as shown in table 27.

The standard graphical representation, function names and symbols, and descriptions of comparison
functions shall be as defined in table 28. All comparison functions (except NE) shall be extensible.

Comparisons of bit string data shall be made bitwise from the most significant to the least significant
bit, and shorter bit strings shall be considered to be filled on the left with zeros when compared to
longer bit strings; that is, comparison of bit string variables shall have the same result as comparison
of unsigned integer variables.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 60 – 61131-3  IEC:2003(E)

Table 26 - Standard bitwise Boolean functions

Graphical form Usage examples

 +-----+
 ANY_BIT ---| *** |--- ANY_BIT
 ANY_BIT ---| |
 : ---| |
 : ---| |
 ANY_BIT ---| |
 +-----+

(***) - Name or symbol

A := AND(B,C,D) ;

or

A := B & C & D ;

No. a,b Name Symbol Description

5 AND & (NOTE 1) OUT := IN1 & IN2 & ... & INn

6 OR >=1 (NOTE 2) OUT := IN1 OR IN2 OR ... OR INn

7 XOR =2k+1 (NOTE 2) OUT := IN1 XOR IN2 XOR ... XOR INn

8 NOT OUT := NOT IN1 (NOTE 4)

NOTE 1 This symbol is suitable for use as an operator in textual languages, as shown in tables
52 and 55.

NOTE 2 This symbol is not suitable for use as an operator in textual languages.

NOTE 3 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to
the output.

NOTE 4 Graphic negation of signals of type BOOL can also be accomplished as shown in table
19.

NOTE 5 Usage examples and descriptions are given in the ST language defined in 3.3.
a When the named representation of a function is supported, this shall be indicated by the suffix

“n” in the compliance statement. For example, “5n” represents the notation “AND”.
b When the symbolic representation of a function is supported, this shall be indicated by the suffix

“s” in the compliance statement. For example, “5s” represents the notation “&”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 61 –

Table 27 - Standard selection functionsd

No. Graphical form Explanation/example

1

 +-----+
 | SEL |
BOOL--|G |--ANY
ANY---|IN0 |
ANY---|IN1 |
 +-----+

Binary selectionc:
OUT := IN0 if G = 0
OUT := IN1 if G = 1

EXAMPLE:
A := SEL(G:=0,IN0:=X,IN1:=5) ;

2a

 +-----+
 | MAX |
ANY_ELEMENTARY--| |--ANY_ELEMENTARY
 : ---| |
ANY_ELEMENTARY--| |
 +-----+

Extensible maximum function:
OUT := MAX (IN1,IN2, ...,INn)

EXAMPLE:
A := MAX(B,C,D) ;

2b

 +-----+
 | MIN |
ANY_ELEMENTARY--| |--ANY_ELEMENTARY
 : ---| |
ANY_ELEMENTARY--| |
 +-----+

Extensible minimum function:
OUT := MIN (IN1,IN2, ...,INn)

EXAMPLE:
A := MIN(B,C,D) ;

3

 +-------+
 | LIMIT |
ANY_ELEMENTARY--|MN |--ANY_ELEMENTARY
ANY_ELEMENTARY--|IN |
ANY_ELEMENTARY--|MX |
 +-------+

Limiter:
OUT := MIN(MAX(IN,MN),MX)

EXAMPLE:
A := LIMIT(IN:=B,MN:=0,MX:=5);

4e

 +-----+
 | MUX |
ANY_INT--|K |----ANY
ANY------| |
 : ------| |
ANY------| |
 +-----+

Extensible multiplexer a, b, c:
Select one of N inputs
depending on input K

EXAMPLE:
A := MUX(0, B, C, D);
would have the same effect as
 A := B ;

NOTE 1 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers
to the output.

NOTE 2 Usage examples and descriptions are given in the ST language defined in 3.3.
a The unnamed inputs in the MUX function shall have the default names IN0, IN1,...,INn-1 in

top-to-bottom order, where n is the total number of these inputs. These names may, but need not,
be shown in the graphical representation.

b The MUX function can be typed as defined in 2.5.1.4 in the form MUX_*_**, where * is the type
of the K input and ** is the type of the other inputs and the output.

c It is allowed, but not required, that the manufacturer support selection among variables of derived
data types, as defined in 2.3.3, in order to claim compliance with this feature.

d It is an error if the inputs and the outputs to one of these functions are not all of the same actual
data type, with the exception of the G input of the SEL function and the K input of the MUX function.

e It is an error if the actual value of the K input of the MUX function is not within the range {0..n-1}.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 62 – 61131-3  IEC:2003(E)

Table 28 - Standard comparison functions

Graphical form Usage examples

 +-----+
ANY_ELEMENTARY --| *** |--- BOOL
 : --| |
ANY_ELEMENTARY --| |
 +-----+

(***) - Name or Symbol

A := GT(B,C,D) ;

or

A := (B>C) & (C>D) ;

No. Name a Symbol b Description

5 GT > Decreasing sequence:
OUT := (IN1>IN2) & (IN2>IN3) & ... & (INn-1 > INn)

6 GE >= Monotonic sequence:
OUT := (IN1>=IN2)&(IN2>=IN3)& ... & (INn-1 >= INn)

7 EQ = Equality:
OUT := (IN1=IN2) & (IN2=IN3) & ... & (INn-1 = INn)

8 LE <= Monotonic sequence:
OUT := (IN1<=IN2)&(IN2<=IN3)& ... & (INn-1 <= INn)

9 LT < Increasing sequence:
OUT := (IN1<IN2) & (IN2<IN3) & ... & (INn-1 < INn)

10 NE <> Inequality (non-extensible)
 OUT := (IN1 <> IN2)

NOTE 1 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT
refers to the output.

NOTE 2 All the symbols shown in this table are suitable for use as operators in textual
languages, as shown in tables 52 and 55.

NOTE 3 Usage examples and descriptions are given in the ST language defined in 3.3.
a When the named representation of a function is supported, this shall be indicated by the suffix “n”

in the compliance statement. For example, “5n” represents the notation “GT”.
b When the symbolic representation of a function is supported, this shall be indicated by the suffix

“s” in the compliance statement. For example, “5s” represents the notation “>“.

2.5.1.5.5 Character string functions

All the functions defined in 2.5.1.5.4 shall be applicable to character strings. For the purposes of
comparison of two strings of unequal length, the shorter string shall be considered to be extended on
the right to the length of the longer string by characters with the value zero. Comparison shall proceed
from left to right, based on the numeric value of the character codes in the character set defined in
2.1.1. For example, the character string 'Z' shall be greater than the character string 'AZ', and 'AZ'
shall be greater than 'ABC'.

The standard graphical representations, function names and descriptions of additional functions of
character strings shall be as shown in table 29. For the purpose of these operations, character
positions within the string shall be considered to be numbered 1,2,...,L, beginning with the
leftmost character position, where L is the length of the string.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 63 –

It shall be an error if:

- the actual value of any input designated as ANY_INT in table 29 is less than zero;

- evaluation of the function results in an attempt to (1) access a non-existent character position in
a string, or (2) produce a string longer than the implementation-dependent maximum string
length.

Table 29 - Standard character string functions

No. Graphical form a Explanation/example

1 +-----+
 ANY_STRING--| LEN |--ANY_INT
 +-----+

String length function
Example:

A := LEN('ASTRING');
is equivalent to A := 7;

2 +------+
 | LEFT |
 ANY_STRING--|IN |--ANY_STRING
 ANY_INT-----|L |
 +------+

Leftmost L characters of IN

Example:
A := LEFT(IN:='ASTR',L:=3);

is equivalent to
A := 'AST' ;

3 +-------+
 | RIGHT |
 ANY_STRING--|IN |--ANY_STRING
 ANY_INT-----|L |
 +-------+

Rightmost L characters of IN

Example:
A := RIGHT(IN:='ASTR',L:=3);

is equivalent to
A := 'STR' ;

4 +-------+
 | MID |
 ANY_STRING--|IN |--ANY_STRING
 ANY_INT-----|L |
 ANY_INT-----|P |
 +-------+

L characters of IN,
beginning at the P-th

Example:
A := MID(IN:='ASTR',L:=2,P:=2);

is equivalent to
A := 'ST' ;

5 +--------+
 | CONCAT |
 ANY_STRING---| |--ANY_STRING
 : ---| |
 ANY_STRING---| |
 +--------+

Extensible concatenation

Example:
A := CONCAT('AB','CD','E') ;

is equivalent to
A := 'ABCDE' ;

6 +--------+
 | INSERT |
 ANY_STRING--|IN1 |--ANY_STRING
 ANY_STRING--|IN2 |
 ANY_INT-----|P |
 +--------+

Insert IN2 into IN1 after the
P-th character position

Example:
A:=INSERT(IN1:='ABC',IN2:='XY',P=2

);
is equivalent to

A := 'ABXYC' ;

7 +--------+
 | DELETE |
ANY_STRING--|IN |--ANY_STRING
ANY_INT-----|L |
ANY_INT-----|P |
 +--------+

Delete L characters of IN, beginning
at the P-th character position

Example:
A := DELETE(IN:='ABXYC',L:=2,

P:=3) ;
is equivalent to
A := 'ABC' ;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 64 – 61131-3  IEC:2003(E)

Table 29 - Standard character string functions

No. Graphical form a Explanation/example

8 +---------+
 | REPLACE |
ANY_STRING--|IN1 |--ANY_STRING
ANY_STRING--|IN2 |
ANY_INT-----|L |
ANY_INT-----|P |
 +---------+

Replace L characters of IN1 by IN2,
starting at the P-th character position

Example:
A :=

REPLACE(IN1:='ABCDE',IN2:='X',
L:=2, P:=3) ;

is equivalent to
A := 'ABXE' ;

9 +--------+
 | FIND |
ANY_STRING--|IN1 |--ANY_INT
ANY_STRING--|IN2 |
 +--------+

Find the character position of the beginning of
the first occurrence of IN2 in IN1. If no

occurrence of IN2 is found, then OUT := 0.

Example:
A := FIND(IN1:='ABCBC',IN2:='BC')

;
is equivalent to A := 2 ;

NOTE The examples in this table are given in the Structured Text (ST) language defined in 3.3.

2.5.1.5.6 Functions of time data types

In addition to the comparison and selection functions defined in 2.5.1.5.4, the combinations of input
and output time data types shown in table 30 shall be allowed with the associated functions.

It shall be an error if the result of evaluating one of these functions exceeds the implementation-
dependent range of values for the output data type.

Table 30 - Functions of time data types
Numeric and concatenation functions

No. Name Symbol IN1 IN2 OUT

1ac,d ADD + TIME TIME TIME

1bc,d ADD_TIME + TIME TIME TIME

2a ADD b + b
TIME_OF_DAY TIME TIME_OF_DAY

2b ADD_TOD_TIME + b
TIME_OF_DAY TIME TIME_OF_DAY

3a ADD b + b
DATE_AND_TIME TIME DATE_AND_TIME

3b ADD_DT_TIME + b
DATE_AND_TIME TIME DATE_AND_TIME

4ac,d SUB - TIME TIME TIME

4bc,d SUB_TIME - TIME TIME TIME

5a SUB b - b
DATE DATE TIME

5b SUB_DATE_DATE - b
DATE DATE TIME

6a SUB b - b
TIME_OF_DAY TIME TIME_OF_DAY

6b SUB_TOD_TIME - b
TIME_OF_DAY TIME TIME_OF_DAY

7a SUB b - b
TIME_OF_DAY TIME_OF_DAY TIME

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 65 –

Table 30 - Functions of time data types
Numeric and concatenation functions

No. Name Symbol IN1 IN2 OUT

7b SUB_TOD_TOD - b
TIME_OF_DAY TIME_OF_DAY TIME

8a SUB b - b
DATE_AND_TIME TIME DATE_AND_TIME

8b SUB_DT_TIME - b
DATE_AND_TIME TIME DATE_AND_TIME

9a SUB b - b
DATE_AND_TIME DATE_AND_TIME TIME

9b SUB_DT_DT - b
DATE_AND_TIME DATE_AND_TIME TIME

10a MUL b * b
TIME ANY_NUM TIME

10b MULTIME * b
TIME ANY_NUM TIME

11a DIV b / b
TIME ANY_NUM TIME

11b DIVTIME / b
TIME ANY_NUM TIME

12 CONCAT_DATE_TOD DATE TIME_OF_DAY DATE_AND_TIME

Type conversion functions

13a

14a
DT_TO_TOD
DT_TO_DATE

NOTE 1 Non-blank entries in the Symbol column are suitable for use as operators in textual
languages, as shown in tables 52 and 55.

NOTE 2 The notations IN1, IN2, ..., INn refer to the inputs in top-to-bottom order; OUT refers to
the output.

NOTE 3 It is possible to type the functions MULTIME and DIVTIME, e.g., the operands of
MULTIME_REAL would be of type TIME and REAL, respectively.

NOTE 4 The effects of conversion between time data types and types STRING and WSTRING
are defined in footnote (e) of table 22.

NOTE 5 The effects of type conversions between time data types and other data types not
defined in this table are implementation-dependent.

a The type conversion functions shall have the effect of “extracting” the appropriate data, e.g., the
ST language statements

X := DT#1986-04-28-08:40:00 ;
Y := DT_TO_TOD(X) ;
W := DT_TO_DATE(X);

shall have the same result as the statements
X := DT#1986-04-28-08:40:00 ;
W := DATE#1986-04-28 ;
Y := TIME_OF_DAY#08:40:00;.
b This usage is deprecated and will not be included in future editions of this standard.
c When the named representation of a function is supported, this shall be indicated by the suffix “n”

in the compliance statement. For example, “1n” represents the notation “ADD”.
d When the symbolic representation of a function is supported, this shall be indicated by the suffix

“s” in the compliance statement. For example, “1s” represents the notation “+”.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 66 – 61131-3  IEC:2003(E)

2.5.1.5.7 Functions of enumerated data types

The selection and comparison functions listed in table 31 can be applied to inputs which are of an
enumerated data type as defined in 2.3.3.1.

Table 31 - Functions of enumerated data types

No. Name Symbol Feature No. in tables 27 and 28

1 SEL 1

2 MUX 4

3a
EQ = 7

4a
NE <> 10

NOTE The provisions of NOTES 1-2 of table 28 apply to this table.
a The provisions of footnotes a and b of table 28 apply to this feature.

2.5.2 Function blocks

For the purposes of programmable controller programming languages, a function block is a program
organization unit which, when executed, yields one or more values. Multiple, named instances
(copies) of a function block can be created. Each instance shall have an associated identifier (the
instance name), and a data structure containing its output and internal variables, and, depending on
the implementation, values of or references to its input variables. All the values of the output variables
and the necessary internal variables of this data structure shall persist from one execution of the
function block to the next; therefore, invocation of a function block with the same arguments (input
variables) need not always yield the same output values.

Only the input and output variables shall be accessible outside of an instance of a function block, i.e.,
the function block's internal variables shall be hidden from the user of the function block.

Execution of the operations of a function block shall be invoked as defined in clause 3 for textual
languages, according to the rules of network evaluation given in clause 4 for graphic languages, or
under the control of sequential function chart (SFC) elements as defined in 2.6.

Any function block type which has already been declared can be used in the declaration of another
function block type or program type as shown in figure 3.

The scope of an instance of a function block shall be local to the program organization unit in which it
is instantiated, unless it is declared to be global in a VAR_GLOBAL block as defined in 2.7.1.

As illustrated in 2.5.2.2, the instance name of a function block instance can be used as the input to a
function or function block if declared as an input variable in a VAR_INPUT declaration, or as an
input/output variable of a function block in a VAR_IN_OUT declaration, as defined in 2.4.3.

The maximum number of function block types and instantiations for a given resource are
implementation-dependent parameters.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 67 –

2.5.2.1 Representation

As illustrated in figure 9, an instance of a function block can be created textually, by declaring a data
element using the declared function block type in a VAR...END_VAR construct, identically to the use
of a structured data type, as defined in 2.4.3.

As further illustrated in figure 9, an instance of a function block can be created graphically, by using a
graphic representation of the function block, with the function block type name inside the block, and
the instance name above the block, following the rules for representation of functions given in 2.5.1.1.

As shown in figure 9, input and output variables of an instance of a function block can be represented
as elements of structured data types as defined in 2.3.3.1.

If either of the two graphical negation features defined in table 19 is supported for function blocks, it
shall also be supported for functions as defined in 2.5.1, and vice versa.

Graphical (FBD language) Textual (ST language)

 FF75
 +------+
 | SR |
 %IX1---|S1 Q1|---%QX3
 %IX2---|R |
 +------+

VAR FF75: SR; END_VAR (* Declaration *)

FF75(S1:=%IX1, R:=%IX2); (* Invocation *)

%QX3 := FF75.Q1 ; (* Assign Output *)

 MyTon
 +-------+
 +----+ | TON |
a--| NE |---O|EN ENO|--
b--| | r--|IN Q|O-out
 +----+ --|PT ET|--
 +-------+

VAR a,b,r,out : BOOL; MyTon : TON; END_VAR

MyTon(EN := NOT (a <> b),
 IN := r,
 NOT Q => out);

Figure 9 - Function block instantiation examples

Assignment of a value to an output variable of a function block is not allowed except from within the
function block. The assignment of a value to the input of a function block is permitted only as part of
the invocation of the function block. Unassigned or unconnected inputs of a function block shall keep
their initialized values or the values from the latest previous invocation, if any. Allowable usages of
function block inputs and outputs are summarized in table 32, using the function block FF75 of type
SR shown in figure 9. The examples are shown in the ST language.

IEC 2479/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 68 – 61131-3  IEC:2003(E)

Table 32 - Examples of function block I/O variable usage

Usage Inside function block Outside function block

Input read IF IN1 THEN ... Not allowed (Notes 1 and 2)

Input assignment Not allowed (Note 1) FB_INST(IN1:=A,IN2:=B);

Output read OUT := OUT AND NOT IN2; C := FB_INST.OUT;

Output assignment OUT := 1; Not Allowed (Note 1)

In-out read IF INOUT THEN ... IF FB1.INOUT THEN...

In-out assignment INOUT := OUT OR IN1; (Note 3) FB_INST(INOUT:=D);

NOTE 1 Those usages listed as “not allowed” in this table could lead to implementation-
dependent, unpredictable side effects.

NOTE 2 Reading and writing of input, output and internal variables of a function block may
be performed by the “communication function”, “operator interface function”, or the
“programming, testing, and monitoring functions” defined in IEC 61131-1.

NOTE 3 As illustrated in 2.5.2.2, modification within the function block of a variable declared
in a VAR_IN_OUT block is permitted.

2.5.2.1a) Use of EN and ENO in function blocks

As shown in table 20 for functions, for function blocks an additional Boolean EN (Enable) input or ENO
(Enable Out) output, or both, can also be provided by the manufacturer or user according to the
declarations

VAR_INPUT EN: BOOL := 1; END_VAR
VAR_OUTPUT ENO: BOOL; END_VAR

When these variables are used, the execution of the operations defined by the function block shall be
controlled according to the following rules:

1) If the value of EN is FALSE (0) when the function block instance is invoked, the assignments
of actual values to the function block inputs may or may not be made in an implementation-
dependent fashion, the operations defined by the function block body shall not be executed
and the value of ENO shall be reset to FALSE (0) by the programmable controller system.

2) Otherwise, the value of ENO shall be set to TRUE (1) by the programmable controller system,
the assignments of actual values to the function block inputs shall be made and the operations
defined by the function block body shall be executed. These operations can include the
assignment of a Boolean value to ENO.

3) If the ENO output is evaluated to FALSE (0), the values of the function block outputs
(VAR_OUTPUT) keep their states from the previous invocation.

NOTE It is a consequence of these rules that the ENO output of a function block must be explicitly
examined by the invoking entity if necessary to account for possible error conditions.

EXAMPLES The figures below illustrate the use of EN and ENO in association with the standard
TP, TON and TOF blocks (represented by T**) defined in subclause 2.5.2.3.4, and the
CTU and CTD blocks (represented by CT*) defined in subclause 2.5.2.3.3. In accordance
with the above rules, a FALSE value of the EN input may be used to “freeze” the operation
of the associated function block; that is, the output values do not change irrespective of
changes in any of the other input values. When the EN input value becomes TRUE, normal

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 69 –

operation of the function block may resume. The value of the ENO output is FALSE after
each evaluation of the function block for which the EN input is FALSE. When EN is TRUE, a
TRUE value of ENO reflects a normal evaluation of the block, and a FALSE value of ENO
may be used to indicate an implementation-dependent error condition.

 +-------+ +-------+
 | T** | | CT* |
 BOOL---|EN ENO|---BOOL BOOL---|EN ENO|---BOOL
 BOOL---|IN Q|---BOOL BOOL--->CU Q|---BOOL
 TIME---|PT ET|---TIME BOOL---|R CV|---INT
 +-------+ INT---|PV |
 +-------+

2.5.2.2 Declaration

As illustrated in figure 10, a function block shall be declared textually or graphically in the same
manner as defined for functions in 2.5.1.3, with the differences described below and summarized in
table 33:

1) The delimiting keywords for declaration of function blocks shall be
FUNCTION_BLOCK...END_FUNCTION_BLOCK.

2) The RETAIN qualifier defined in 2.4.3 can be used for internal and output variables of a function
block, as shown in features 1, 2, and 3 in table 33.

3) The values of variables which are passed to the function block via a VAR_EXTERNAL construct
can be modified from within the function block, as shown in feature 10 of table 33.

4) The output values of a function block instance whose name is passed into the function block via
a VAR_INPUT, VAR_IN_OUT, or VAR_EXTERNAL construct can be accessed, but not modified,
from within the function block, as shown in features 5, 6, and 7 of table 33.

5) A function block whose instance name is passed into the function block via a VAR_IN_OUT or
VAR_EXTERNAL construction can be invoked from inside the function block, as shown in
features 6 and 7 of table 33.

6) In textual declarations, the R_EDGE and F_EDGE qualifiers can be used to indicate an edge-
detection function on Boolean inputs. This shall cause the implicit declaration of a function
block of type R_TRIG or F_TRIG, respectively, as defined in 2.5.2.3.2, to perform the required
edge detection. For an example of this construction, see features 8a and 8b of table 33 and the
accompanying NOTE.

7) The construction illustrated in features 9a and 9b of table 33 shall be used in graphical
declarations for rising and falling edge detection. When the character set defined in 2.1.1 is
used, the “greater than” (>) or “less than” (<) character shall be in line with the edge of the
function block. When graphic or semigraphic representations are employed, the notation of IEC
60617-12 for dynamic inputs shall be used.

8) If the generic data types given in table 11 are used in the declaration of standard function block
inputs and outputs, then the rules for inferring the actual types of the outputs of such function
block types shall be part of the function block type definition. In textual invocations of such
function blocks assignments of the outputs to variables shall be made directly in the invocation
statement (using the operator ‘=>‘).

9) The asterisk notation (feature No. 10 in table 15) can be used in the declaration of internal
variables of a function block.

10) EN/ENO inputs and outputs shall be declared and used as described in 2.5.1.2a).

11) It shall be an error if no value is specified for: (i) an in-out variable of a function block instance;
(ii) a function block instance used as an input variable of another function block instance.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 70 – 61131-3  IEC:2003(E)

As illustrated in figure 12, only variables or function block instance names can be passed into a
function block via the VAR_IN_OUT construct, i.e., function or function block outputs cannot be passed
via this construction. This is to prevent the inadvertent modifications of such outputs. However,
“cascading” of VAR_IN_OUT constructions is permitted, as illustrated in figure 12 c).

(* a) Textual declaration in ST language (see 3.3) *)

FUNCTION_BLOCK DEBOUNCE
(*** External Interface ***)
VAR_INPUT
 IN : BOOL ; (* Default = 0 *)
 DB_TIME : TIME := t#10ms ; (* Default = t#10ms *)
END_VAR
VAR_OUTPUT OUT : BOOL ; (* Default = 0 *)
 ET_OFF : TIME ; (* Default = t#0s *)
END_VAR
VAR DB_ON : TON ; (** Internal Variables **)
 DB_OFF : TON ; (** and FB Instances **)
 DB_FF : SR ;
END_VAR

(** Function Block Body **)
DB_ON(IN := IN, PT := DB_TIME) ;
DB_OFF(IN := NOT IN, PT:=DB_TIME) ;
DB_FF(S1 :=DB_ON.Q, R := DB_OFF.Q) ;
OUT := DB_FF.Q ;
ET_OFF := DB_OFF.ET ;

END_FUNCTION_BLOCK

(* b) Graphical declaration in FBD language (see 4.3) *)

FUNCTION_BLOCK
(** External Interface **)
 +---------------+
 | DEBOUNCE |
 BOOL---|IN OUT|---BOOL
 TIME---|DB_TIME ET_OFF|---TIME
 +---------------+
(** Function Block Body **)

 DB_ON DB_FF
 +-----+ +----+
 | TON | | SR |
 IN----+------|IN Q|-----|S1 Q|---OUT
 | +---|PT ET| +--|R |
 | | +-----+ | +----+
 | | | | |
 | | DB_OFF |
 | | +-----+ |
 | | | TON | |
 +--|--O|IN Q|--+
 DB_TIME--+---|PT ET|--------------ET_OFF
 +-----+
 END_FUNCTION_BLOCK

Figure 10 - Examples of function block declarations
IEC 2480/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 71 –

Table 33 - Function block declaration and usage features

No. Description Example

1a RETAIN qualifier on internal variables VAR RETAIN X : REAL ; END_VAR

1b NON_RETAIN qualifier on internal
variables

VAR NON_RETAIN X : REAL ; END_VAR

2a RETAIN qualifier on output variables VAR_OUTPUT RETAIN X : REAL ; END_VAR

2b RETAIN qualifier on input variables VAR_INPUT RETAIN X : REAL ; END_VAR

2c RETAIN qualifier on output variables VAR_OUTPUT NON_RETAIN X : REAL ; END_VAR

2d RETAIN qualifier on input variables VAR_INPUT NON_RETAIN X : REAL ; END_VAR

3a RETAIN qualifier on internal function blocks VAR RETAIN TMR1: TON ; END_VAR

3b NON_RETAIN qualifier on internal function blocks VAR NON_RETAIN TMR1: TON ; END_VAR

4a VAR_IN_OUT declaration (textual) VAR_IN_OUT A: INT ; END_VAR

4b VAR_IN_OUT declaration and usage(graphical) See figure 12

4c VAR_IN_OUT declaration with assignment to different variables (graphical) See figure 12d

5a Function block instance name as input
(textual)

VAR_INPUT I_TMR: TON ; END_VAR
EXPIRED := I_TMR.Q; (* Note 1 *)

5b Function block instance name as input (graphical) See figure 11a
6a Function block instance name as

VAR_IN_OUT (textual)
VAR_IN_OUT IO_TMR: TOF ; END_VAR
IO_TMR(IN:=A_VAR, PT:=T#10S);
EXPIRED := IO_TMR.Q; (* Note 1 *)

6b Function block instance name as VAR_IN_OUT (graphical) See figure 11b

7a Function block instance name as external
variable (textual)

VAR_EXTERNAL EX_TMR : TOF ;END_VAR
EX_TMR(IN:=A_VAR, PT:=T#10S);
EXPIRED := EX_TMR.Q; (* Note 1 *)

7b Function block instance name as external variable (graphical) See figure 11c

8a
8b

Textual declaration of:
rising edge inputs
falling edge inputs

FUNCTION_BLOCK AND_EDGE (* Note 2 *)
VAR_INPUT X : BOOL R_EDGE;
 Y : BOOL F_EDGE;
END_VAR
VAR_OUTPUT Z : BOOL ; END_VAR
Z := X AND Y ; (* ST language example *)
END_FUNCTION_BLOCK (*- see 3.3 *)

9a

9b

Graphical declaration of:
rising edge inputs

falling edge inputs

FUNCTION_BLOCK (* Note 2 *)
 +-----------+ (* External interface *)
 | AND_EDGE |
BOOL---->X Z|---BOOL
 | |
BOOL----<Y |
 | |
 +-----------+
 +---+ (* Function block body *)
 X---| & |---Z (* FBD language example *)
 Y---| | (* - see 4.3 *)
 +---+
END_FUNCTION_BLOCK

10a VAR_EXTERNAL declarations within function block type declarations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 72 – 61131-3  IEC:2003(E)

Table 33 - Function block declaration and usage features

No. Description Example

10b VAR_EXTERNAL CONSTANT declarations within function block type declarations
11 VAR_TEMP declarations (see 2.4.3) within function block type declarations

NOTE 1 It is assumed in these examples that the variables EXPIRED and A_VAR have been
declared of type BOOL.

NOTE 2 The declaration of function block AND_EDGE in the above examples is equivalent to:

 FUNCTION_BLOCK AND_EDGE
 VAR INPUT X : BOOL; Y : BOOL; END_VAR
 VAR X_TRIG : R_TRIG ; Y_TRIG : F_TRIG ; END_VAR
 X_TRIG(CLK := X) ;
 Y_TRIG(CLK := Y) ;
 Z := X_TRIG.Q AND Y_TRIG.Q;
 END_FUNCTION_BLOCK

See 2.5.2.3.2 for the definition of the edge detection function blocks R_TRIG and
F_TRIG.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 73 –

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | INSIDE_A |
 TON---|I_TMR EXPIRED|---BOOL
 +--------------+

 +------+ (* Function Block body *)
 | MOVE |
 I_TMR.Q---| |---EXPIRED
 +------+
END_FUNCTION_BLOCK

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | EXAMPLE_A |
 BOOL---|GO DONE|---BOOL
 +--------------+

 E_TMR (* Function Block body *)
 +-----+ I_BLK
 | TON | +--------------+
 GO---|IN Q| | INSIDE_A |
 t#100ms---|PT ET| E_TMR---|I_TMR EXPIRED|---DONE
 +-----+ +--------------+
END_FUNCTION_BLOCK

NOTE I_TMR is not represented graphically in this figure since this would imply invocation of
I_TMR within INSIDE_A, which is forbidden by rules 4) and 5) of 2.5.2.2. See also
feature. 5 a) of table 33.

Figure 11 a) - Graphical use of a function block name as an input variable
(table 33, feature 5b)

IEC 2481/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 74 – 61131-3  IEC:2003(E)

FUNCTION_BLOCK
 +--------------+ (* External interface *)
 | INSIDE_B |
 TON---|I_TMR----I_TMR|---TON
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

 I_TMR (* Function Block body *)
 +-----+
 | TON |
 TMR_GO--|IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

FUNCTION_BLOCK

 +--------------+ (* External interface *)
 | EXAMPLE_B |
 BOOL---|GO DONE|---BOOL
 +--------------+

 E_TMR (* Function Block body *)
 +-----+ I_BLK
 | TON | +---------------+
 |IN Q| | INSIDE_B |
 t#100ms---|PT ET| E_TMR---|I_TMR-----I_TMR|
 +-----+ GO------|TMR_GO EXPIRED|---DONE
 +---------------+
END_FUNCTION_BLOCK

Figure 11 b) - Graphical use of a function block name as an in-out variable
(table 33, feature 6b)

IEC 2482/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 75 –

FUNCTION_BLOCK
 +--------------+ (* External interface *)
 | INSIDE_C |
 BOOL--|TMR_GO EXPIRED|---BOOL
 +--------------+

VAR_EXTERNAL X_TMR : TON ; END_VAR

 X_TMR (* Function Block body *)
 +-----+
 | TON |
 TMR_GO---|IN Q|---EXPIRED
 |PT ET|
 +-----+
END_FUNCTION_BLOCK

PROGRAM
 +--------------+ (* External interface *)
 | EXAMPLE_C |
 BOOL---|GO DONE|---BOOL
 +--------------+

 VAR_GLOBAL X_TMR : TON ; END_VAR

 I_BLK (* Program body *)
 +---------------+
 | INSIDE_C |
 GO------|TMR_GO EXPIRED|---DONE
 +---------------+
END_PROGRAM

NOTE The PROGRAM declaration mechanism is defined in 2.5.3.

Figure 11 c) - Graphical use of a function block name as an external variable
(table 33, feature 7b)

IEC 2483/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 76 – 61131-3  IEC:2003(E)

12a) +-------+
 | ACCUM |
 INT---|A-----A|---INT
 INT---|X |
 +-------+
 +---+
 A---| + |---A
 X---| |
 +---+

FUNCTION_BLOCK ACCUM
 VAR_IN_OUT A : INT ; END_VAR
 VAR_INPUT X : INT ; END_VAR
 A := A+X ;
END_FUNCTION_BLOCK

12b) ACC1
 +-------+
 | ACCUM |
 ACC----------|A-----A|---ACC
 +---+ | |
 X1---| * |---|X |
 X2---| | +-------+
 +---+

A declaration such as
VAR
 ACC : INT ;
 X1 : INT ;
 X2 : INT ;
END_VAR
is assumed: the effect of execution is
ACC := ACC+X1*X2 ;

12c) ACC1 ACC2
 +-------+ +-------+
 | ACCUM | | ACCUM |
ACC----------|A-----A|----------------|A-----A|---ACC
 +---+ | | +---+ | |
X1---| * |---|X | X3---| * |---|X |
X2---| | +-------+ X4---| | +-------+
 +---+ +---+

Declarations as in
12b) are assumed for
ACC, X1, X2, X3,
and X4.; the effect of
execution is
ACC :=
ACC+X1*X2+X3*X4;

12d) ACC1
 +-------+
 | ACCUM |
 X3-----------|A-----A|---X4
 +---+ | |
 X1---| * |---|X |
 X2---| | +-------+
 +---+

A declaration such as
VAR
 X1 : INT ;
 X2 : INT ;
....X3 : INT ;
... X4 : INT ;
END_VAR
is assumed: the effect of execution is
X3 := X3+X1*X2 ;
X4 := X3 ;

12e) ACC1
 +---+ +-------+
 X1---| * | | ACCUM |
 X2---| |---|A-----A|---ACC
 +---+ | |
 X3-----------|X |
 +-------+

ILLEGAL USAGE!!!
Connection to in-out variable A is not a
variable or function block name (see
preceding text)

Figure 12 - Declaration and usage of in-out variables in function blocks
a) Graphical and textual declarations

b), c), d) Legal usage, e) Illegal usage

IEC 2484/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 77 –

2.5.2.3 Standard function blocks

Definitions of function blocks common to all programmable controller programming languages are
given in this subclause.

Where graphical declarations of standard function blocks are shown in this subclause, equivalent
textual declarations, as specified in 2.5.2.2, can also be written, as for example in table 35.

Standard function blocks may be overloaded and may have extensible inputs and outputs. The
definitions of such function block types shall describe any constraints on the number and data types of
such inputs and outputs. The use of such capabilities in non-standard function blocks is beyond the
scope of this Standard.

2.5.2.3.1 Bistable elements

The graphical form and function block body of standard bistable elements are shown in table 34. The
notation for these elements is chosen to be as consistent as possible with symbols 12-09-01 and
12-09-02 of IEC 60617-12.

Table 34 - Standard bistable function blocks a

No. Graphical form Function block body

1 Bistable function block (set dominant)

 +-----+
 | SR |
 BOOL---|S1 Q1|---BOOL
 BOOL---|R |
 +-----+

 +-----+
 S1----------------| >=1 |---Q1
 +---+ | |
 R------O| & |----| |
 Q1------| | | |
 +---+ +-----+

2 Bistable function block (reset dominant)

 +-----+
 | RS |
 BOOL---|S Q1|---BOOL
 BOOL---|R1 |
 +-----+

 +---+
 R1----------------O| & |---Q1
 +-----+ | |
 S-------| >=1 |----| |
 Q1------| | | |
 +-----+ +---+

NOTE The function block body is specified in the Function Block Diagram (FBD) language
defined in 4.3.

a The initial state of the output variable Q1 shall be the normal default value of zero for Boolean
variables.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 78 – 61131-3  IEC:2003(E)

2.5.2.3.2 Edge detection

The graphic representation of standard rising- and falling-edge detecting function blocks shall be as
shown in table 35. The behaviors of these blocks shall be equivalent to the definitions given in this
table. This behavior corresponds to the following rules:

 1) The Q output of an R_TRIG function block shall stand at the BOOL#1 value from one execution
of the function block to the next, following the 0 to 1 transition of the CLK input, and shall return
to 0 at the next execution.

 2) The Q output of an F_TRIG function block shall stand at the BOOL#1 value from one execution
of the function block to the next, following the 1 to 0 transition of the CLK input, and shall return
to 0 at the next execution.

Table 35 - Standard edge detection function blocks

No. Graphical form Definition
(ST language - see 3.3)

1 Rising edge detector

 +--------+
 | R_TRIG |
 BOOL---|CLK Q|---BOOL
 +--------+

FUNCTION_BLOCK R_TRIG
 VAR_INPUT CLK: BOOL; END_VAR
 VAR_OUTPUT Q: BOOL; END_VAR
 VAR M: BOOL; END_VAR
Q := CLK AND NOT M;
M := CLK;
END_FUNCTION_BLOCK

2 Falling edge detector

 +--------+
 | F_TRIG |
 BOOL---|CLK Q|---BOOL
 +--------+

FUNCTION_BLOCK F_TRIG
 VAR_INPUT CLK: BOOL; END_VAR
 VAR_OUTPUT Q: BOOL; END_VAR
 VAR M: BOOL; END_VAR
Q := NOT CLK AND NOT M;
M := NOT CLK;
END_FUNCTION_BLOCK

NOTE When the CLK input of an instance of the R_TRIG type is connected to a value of
BOOL#1, its Q output will stand at BOOL#1 after its first execution following a “cold restart”
as described in 2.4.2. The Q output will stand at BOOL#0 following all subsequent
executions. The same applies to an F_TRIG instance whose CLK input is disconnected
or is connected to a value of FALSE.

2.5.2.3.3 Counters

The graphic representations of standard counter function blocks, with the types of the associated
inputs and outputs, shall be as shown in table 36. The operation of these function blocks shall be as
specified in the corresponding function block bodies.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 79 –

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)

Up-counter

1a +-----+
 | CTU |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 INT---|PV CV|---INT
 +-----+

 IF R THEN CV := 0 ;
 ELSIF CU AND (CV < PVmax)
 THEN CV := CV+1;
 END_IF ;
 Q := (CV >= PV) ;

1b +----------+
 | CTU_DINT |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 DINT---|PV CV|---DINT
 +----------+

Same as 1a

1c +----------+
 | CTU_LINT |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 LINT---|PV CV|---LINT
 +----------+

Same as 1a

1d +-----------+
 | CTU_UDINT |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 UDINT---|PV CV|---UDINT
 +-----------+

Same as 1a

1e +-----------+
 | CTU_ULINT |
 BOOL--->CU Q|---BOOL
 BOOL---|R |
 ULINT---|PV CV|---ULINT
 +-----------+

Same as 1a

Down-counter

2a +-----+
 | CTD |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 INT---|PV CV|---INT
 +-----+

 IF LD THEN CV := PV ;
 ELSIF CD AND (CV > PVmin)
 THEN CV := CV-1;
 END_IF ;
 Q := (CV <= 0) ;

2b +----------+
 | CTD_DINT |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 DINT---|PV CV|---DINT
 +----------+

Same as 2a

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 80 – 61131-3  IEC:2003(E)

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)

2c +----------+
 | CTD_LINT |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 LINT---|PV CV|---LINT
 +----------+

Same as 2a

2d +-----------+
 | CTD_UDINT |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 UDINT---|PV CV|---UDINT
 +-----------+

Same as 2a

2e +-----------+
 | CTD_ULINT |
 BOOL--->CD Q|---BOOL
 BOOL---|LD |
 ULINT---|PV CV|---ULINT
 +-----------+

Same as 2a

Up-down counter
3a +------+

 | CTUD |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 INT---|PV CV|---INT
 +------+

 IF R THEN CV := 0 ;
 ELSIF LD THEN CV := PV ;
 ELSE
 IF NOT (CU AND CD) THEN
 IF CU AND (CV < PVmax)
 THEN CV := CV+1;
 ELSIF CD AND (CV > PVmin)
 THEN CV := CV-1;
 END_IF;
 END_IF;
 END_IF ;
 QU := (CV >= PV) ;
 QD := (CV <= 0) ;

3b +-----------+
 | CTUD_DINT |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 DINT---|PV CV|---DINT
 +-----------+

Same as 3a

3c +-----------+
 | CTUD_LINT |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 LINT---|PV CV|---LINT
 +-----------+

Same as 3a

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 81 –

Table 36 - Standard counter function blocks

No. Graphical form Function block body
(ST language - see 3.3)

3d +------------+
 | CTUD_ULINT |
 BOOL--->CU QU|---BOOL
 BOOL--->CD QD|---BOOL
 BOOL---|R |
 BOOL---|LD |
 ULINT---|PV CV|---ULINT
 +------------+

Same as 3a

NOTE The numerical values of the limit variables PVmin and PVmax are implementation-
dependent.

2.5.2.3.4 Timers

The graphic form for standard timer function blocks shall be as shown in table 37. The operation of
these function blocks shall be as defined in the timing diagrams given in table 38.

Table 37 - Standard timer function blocks

No. Description Graphical form

1
2a

2b a

3a
3b a

*** is: TP (Pulse)

 TON (On-delay)

 T---0 (On-delay)

 TOF (Off-delay)

 0---T (Off-delay)

 +-------+
 | *** |
 BOOL---|IN Q|---BOOL
 TIME---|PT ET|---TIME
 +-------+

NOTE The effect of a change in the value of the PT input during the timing operation, e.g., the
setting of PT to t#0s to reset the operation of a TP instance, is an implementation-
dependent parameter.

a In textual languages, features 2b and 3b shall not be used.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 82 – 61131-3  IEC:2003(E)

Table 38 - Standard timer function blocks - timing diagrams

Pulse (TP) timing
 +--------+ ++ ++ +--------+
 IN | | || || | |
 --+ +-----++-++---+ +---------
 t0 t1 t2 t3 t4 t5

 +----+ +----+ +----+
 Q | | | | | |
 --+ +---------+ +--+ +-------------
 t0 t0+PT t2 t2+PT t4 t4+PT

 PT +---+ + +---+
 : / | /| / |
 ET : / | / | / |
 : / | / | / |
 : / | / | / |
 0-+ +-----+ +--+ +---------
 t0 t1 t2 t4 t5

On-delay (TON) timing

 +--------+ +---+ +--------+
 IN | | | | | |
 --+ +--------+ +---+ +-------------
 t0 t1 t2 t3 t4 t5

 +---+ +---+
 Q | | | |
 -------+ +---------------------+ +-------------
 t0+PT t1 t4+PT t5

 PT +---+ +---+
 : / | + / |
 ET : / | /| / |
 : / | / | / |
 : / | / | / |
 0-+ +--------+ +---+ +-------------
 t0 t1 t2 t3 t4 t5

Off-delay (TOF) timing

 +--------+ +---+ +--------+
 IN | | | | | |
 ---+ +--------+ +---+ +-----------
 t0 t1 t2 t3 t4 t5

 +-------------+ +---------------------+
 Q | | | |
 ---+ +---+ +------
 t0 t1+PT t2 t5+PT

 PT +---+ +------
 : / | + /
 ET : / | /| /
 : / | / | /
 : / | / | /
 0------------+ +---+ +--------+
 t1 t3 t5

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 83 –

2.5.2.3.5 Communication function blocks

Standard communication function blocks for programmable controllers are defined in IEC 61131-5.
These function blocks provide programmable communications functionality such as device verification,
polled data acquisition, programmed data acquisition, parametric control, interlocked control,
programmed alarm reporting, and connection management and protection.

2.5.3 Programs

A program is defined in IEC 61131-1 as a “logical assembly of all the programming language elements
and constructs necessary for the intended signal processing required for the control of a machine or
process by a programmable controller system.”

Subclause 1.4.1 of this part describes the place of programs in the overall software model of a
programmable controller; subclause 1.4.2 describes the means available for inter- and intra-program
communication; and subclause 1.4.3 describes the overall process of program development.

The declaration and usage of programs is identical to that of function blocks as defined in 2.5.2.1 and
2.5.2.2, with the additional features shown in table 39 and the following differences:

1) The delimiting keywords for program declarations shall be PROGRAM...END_PROGRAM.

2) A program can contain a VAR_ACCESS...END_VAR construction, which provides a means of
specifying named variables which can be accessed by some of the communication services
specified in IEC 61131-5. An access path associates each such variable with an input, output or
internal variable of the program. The format and usage of this declaration shall be as described in
2.7.1 and in IEC 61131-5.

3) Programs can only be instantiated within resources, as defined in 2.7.1, while function blocks can
only be instantiated within programs or other function blocks.

4) A program can contain location assignments as described in 2.4.3.1 and 2.4.3.2 in the
declarations of its global and internal variables. Location assignments with not fully specified direct
representation as described in 2.4.1.1 and 2.4.3.1 can only be used in the declaration of internal
variables of a program.

The declaration and use of programs are illustrated in figure 19, and in examples F.7 and F.8.

Limitations on the size of programs in a particular resource are implementation-dependent parameters.

Table 39 - Program declaration features

No. DESCRIPTION

1 to 9b Same as features 1 to 9b, respectively, of table 33
10 Formal input and output variables

11 to 14 Same as features 1 to 4, respectively, of table 17
15 to 18 Same as features 1 to 4, respectively, of table 18

19 Use of directly represented variables (subclause 2.4.1.1)
20 VAR_GLOBAL...END_VAR declaration within a PROGRAM (see 2.4.3 and 2.7.1)
21 VAR_ACCESS...END_VAR declaration within a PROGRAM
22a VAR_EXTERNAL declarations within PROGRAM type declarations
22b VAR_EXTERNAL CONSTANT declarations within PROGRAM type declarations
23 VAR_GLOBAL CONSTANT declarations within PROGRAM type declarations
24 VAR_TEMP declarations (see 2.4.3) within PROGRAM type declarations

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 84 – 61131-3  IEC:2003(E)

2.6 Sequential Function Chart (SFC) elements

2.6.1 General

This subclause defines sequential function chart (SFC) elements for use in structuring the internal
organization of a programmable controller program organization unit, written in one of the languages
defined in this standard, for the purpose of performing sequential control functions. The definitions in
this subclause are derived from IEC 60848, with the changes necessary to convert the representations
from a documentation standard to a set of execution control elements for a programmable controller
program organization unit.

The SFC elements provide a means of partitioning a programmable controller program organization
unit into a set of steps and transitions interconnected by directed links. Associated with each step is a
set of actions, and with each transition is associated a transition condition.

Since SFC elements require storage of state information, the only program organization units which
can be structured using these elements are function blocks and programs.

If any part of a program organization unit is partitioned into SFC elements, the entire program
organization unit shall be so partitioned. If no SFC partitioning is given for a program organization
unit, the entire program organization unit shall be considered to be a single action which executes
under the control of the invoking entity.

2.6.2 Steps

A step represents a situation in which the behavior of a program organization unit with respect to its
inputs and outputs follows a set of rules defined by the associated actions of the step. A step is either
active or inactive. At any given moment, the state of the program organization unit is defined by the
set of active steps and the values of its internal and output variables.

As shown in table 40, a step shall be represented graphically by a block containing a step name in the
form of an identifier as defined in 2.1.2, or textually by a STEP...END_STEP construction. The
directed link(s) into the step can be represented graphically by a vertical line attached to the top of the
step. The directed link(s) out of the step can be represented by a vertical line attached to the bottom
of the step. Alternatively, the directed links can be represented textually by the TRANSITION...
END_TRANSITION construction defined in 2.6.3.

The step flag (active or inactive state of a step) can be represented by the logic value of a Boolean
structure element ***.X, where *** is the step name, as shown in table 40. This Boolean variable
has the value 1 when the corresponding step is active, and 0 when it is inactive. The state of this
variable is available for graphical connection at the right side of the step as shown in table 40.

Similarly, the elapsed time, ***.T, since initiation of a step can be represented by a structure element
of type TIME, as shown in table 40. When a step is deactivated, the value of the step elapsed time
shall remain at the value it had when the step was deactivated. When a step is activated, the value of
the step elapsed time shall be reset to t#0s.

The scope of step names, step flags, and step times shall be local to the program organization unit in
which the steps appear.

The initial state of the program organization unit is represented by the initial values of its internal and
output variables, and by its set of initial steps, i.e., the steps which are initially active. Each SFC
network, or its textual equivalent, shall have exactly one initial step.

An initial step can be drawn graphically with double lines for the borders. When the character set
defined in 2.1.1 is used for drawing, the initial step shall be drawn as shown in table 40.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 85 –

For system initialization as defined in 2.4.2, the default initial elapsed time for steps is t#0s, and the
default initial state is BOOL#0 for ordinary steps and BOOL#1 for initial steps. However, when an
instance of a function block or a program is declared to be retentive (for instance, as in feature 3 of
table 33), the states and (if supported) elapsed times of all steps contained in the program or function
block shall be treated as retentive for system initialization as defined in 2.4.2.

The maximum number of steps per SFC and the precision of step elapsed time are implementation-
dependent parameters.

It shall be an error if:
1) an SFC network does not contain exactly one initial step;
2) a user program attempts to assign a value directly to the step state or the step time.

Table 40 - Step features
No. REPRESENTATION DESCRIPTION
1 |

 +-----+
 | *** |
 +-----+
 |

Step - graphical form
with directed links
"***" = step name

 |
 +=======+
 || *** ||
 || ||
 +=======+
 |

Initial step - graphical form with directed links
"***" = name of initial step

2 STEP *** :
 (* Step body *)
END_STEP

Step - textual form
without directed links (see 2.6.3)

"***" = step name

INITIAL_STEP *** :

 (* Step body *)
END_STEP

Initial step - textual form
without directed links (see 2.6.3)
"***" = name of initial step

3a a
***.X

Step flag - general form
"***" = step name

***.X = BOOL#1 when *** is active, BOOL#0 otherwise

3b a

 |
 +-----+
 | *** |----
 +-----+
 |

Step flag - direct connection
of Boolean variable ***.X to

right side of step "***"

4 a
***.T

Step elapsed time - general form
"***" = step name

***.T = a variable of type TIME
(See 2.6.2)

NOTE The upper directed link to an initial step is not present if it has no predecessors.
a When feature 3a, 3b, or 4 is supported, it shall be an error if the user program attempts

to modify the associated variable. For example, if S4 is a step name, then the following
statements would be errors in the ST language defined in 3.3:

S4.X := 1 ; (* ERROR *)
S4.T := t#100ms ; (* ERROR *)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 86 – 61131-3  IEC:2003(E)

2.6.3 Transitions

A transition represents the condition whereby control passes from one or more steps preceding the
transition to one or more successor steps along the corresponding directed link. The transition shall
be represented by a horizontal line across the vertical directed link.

The direction of evolution following the directed links shall be from the bottom of the predecessor
step(s) to the top of the successor step(s).

Each transition shall have an associated transition condition which is the result of the evaluation of a
single Boolean expression. A transition condition which is always true shall be represented by the
symbol 1 or the keyword TRUE.

A transition condition can be associated with a transition by one of the following means, as shown in
table 41:

1) By placing the appropriate Boolean expression in the ST language defined in 3.3 physically or
logically adjacent to the vertical directed link.

2) By a ladder diagram network in the LD language defined in 4.2, physically or logically adjacent to
the vertical directed link.

3) By a network in the FBD language defined in 4.3, physically or logically adjacent to the vertical
directed link.

4) By a LD or FBD network whose output intersects the vertical directed link via a connector as
defined in 4.1.1.

5) By a TRANSITION...END_TRANSITION construct using the ST language. This shall consist of:
- the keywords TRANSITION FROM followed by the step name of the predecessor step (or, if there

is more than one predecessor, by a parenthesized list of predecessor steps);
- the keyword TO followed by the step name of the successor step (or, if there is more than one

successor, by a parenthesized list of successor steps);
- the assignment operator (:=), followed by a Boolean expression in the ST language, specifying

the transition condition;
- the terminating keyword END_TRANSITION.

6) By a TRANSITION...END_TRANSITION construct using the IL language defined in 3.2. This
shall consist of:
- the keywords TRANSITION FROM followed by the step name of the predecessor step (or, if there

is more than one predecessor, by a parenthesized list of predecessor steps), followed by a
colon (:);

- the keyword TO followed by the step name of the successor step (or, if there is more than one
successor, by a parenthesized list of successor steps);

- beginning on a separate line, a list of instructions in the IL language, the result of whose
evaluation determines the transition condition;

- the terminating keyword END_TRANSITION on a separate line.

7) By the use of a transition name in the form of an identifier to the right of the directed link. This
identifier shall refer to a TRANSITION...END_TRANSITION construction defining one of the
following entities, whose evaluation shall result in the assignment of a Boolean value to the
variable denoted by the transition name:
- a network in the LD or FBD language;
- a list of instructions in the IL language;
- an assignment of a Boolean expression in the ST language.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 87 –

The scope of a transition name shall be local to the program organization unit in which the transition is
located.

It shall be an error in the sense of 1.5.1 if any “side effect” (for instance, the assignment of a value to
a variable other than the transition name) occurs during the evaluation of a transition condition.

The maximum number of transitions per SFC and per step are implementation-dependent
parameters.

Table 41 - Transitions and transition conditions

No. Example Description

1a

 |
 +-----+
 |STEP7|
 +-----+
 |
 + %IX2.4 & %IX2.3
 |
 +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition physically or
logically adjacent to the transition

using ST language (see 3.3)

Successor step

2a

 |
 +-----+
 |STEP7|
 +-----+
 | %IX2.4 %IX2.3 |
 +---||-----||--------+
 | |
 +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition physically or
logically adjacent to the transition

using LD language (see 4.2)

Successor step

3a

 |
 +-----+
 |STEP7|
 +-------+ +-----+
 | & | |
%IX2.4---| |-----+
%IX2.3---| | |
 +-------+ +-----+
 |STEP8|
 +-----+
 |

Predecessor step

Transition condition physically or
logically adjacent to the transition

using FBD language
(see 4.3)

Successor step

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 88 – 61131-3  IEC:2003(E)

Table 41 - Transitions and transition conditions

4a

 |
 +-----+
 |STEP7|
 +-----+
 |
 >TRANX>-------------+
 |
 +-----+
 |STEP8|
 +-----+
 |

Use of connector:

predecessor step

transition connector

successor step

4a

4b

 | %IX2.4 %IX2.3
 +---||-----||---->TRANX>
 |
 +-------+
 | & |
 %IX2.4---| |-->TRANX>
 %IX2.3---| |
 +-------+

Transition condition:
Using LD language

(see 4.2)

Using FBD language
(see 4.3)

5b
STEP STEP7: END_STEP

TRANSITION FROM STEP7 TO STEP8
 := %IX2.4 & %IX2.3 ;
END_TRANSITION

STEP STEP8: END_STEP

Textual equivalent
of feature 1

using ST language
(see 3.3)

6b

STEP STEP7: END_STEP

TRANSITION FROM STEP7 TO STEP 8:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION

STEP STEP8: END_STEP

Textual equivalent
of feature 1

using IL language
(see 3.2)

7a

|
+-----+
|STEP7|
+-----+
|
 + TRAN78
|
+-----+
|STEP8|
+-----+
|

Use of transition name:

predecessor step

transition name

successor step

7a

TRANSITION TRAN78 FROM STEP7 TO STEP8:
 | |
 | %IX2.4 %IX2.3 TRAN78 |
 +---||-----||------()---+
 | |
 END_TRANSITION

Transition condition
using LD language

(see 4.2)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 89 –

Table 41 - Transitions and transition conditions

7b

TRANSITION TRAN78 FROM STEP7 TO STEP8:
 +-------+
 | & |
 %IX2.4---| |--TRAN78
 %IX2.3---| |
 +-------+
END_TRANSITION

Transition condition
using FBD language

(see 4.3)

7c TRANSITION TRAN78 FROM STEP7 TO STEP8:
 LD %IX2.4
 AND %IX2.3
END_TRANSITION

Transition condition
using IL language

(see 3.2)

7d TRANSITION TRAN78 FROM STEP7 TO STEP8
 := %IX2.4 & %IX2.3 ;
END_TRANSITION

Transition condition using
ST language (see 3.3)

a If feature 1 of table 40 is supported, then one or more of features 1, 2, 3, 4, or 7 of this
table shall be supported.

b If feature 2 of table 40 is supported, then feature 5 or 6 of this table, or both, shall be
supported.

2.6.4 Actions

Zero or more actions shall be associated with each step. A step which has zero associated actions
shall be considered as having a WAIT function, that is, waiting for a successor transition condition to
become true.

An action can be a Boolean variable, a collection of instructions in the IL language defined in 3.2, a
collection of statements in the ST language defined in 3.3, a collection of rungs in the LD language
defined in 4.2, a collection of networks in the FBD language defined in 4.3, or a sequential function
chart (SFC) organized as defined in 2.6.

Actions shall be declared via one or more of the mechanisms defined in 2.6.4.1, and shall be
associated with steps via textual step bodies or graphical action blocks, as defined in 2.6.4.2. The
details of action block representation are defined in 2.6.4.3. Control of actions shall be expressed by
action qualifiers as defined in 2.6.4.4.

2.6.4.1 Declaration

A programmable controller implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 42 for the declaration of actions. The scope of the declaration of an
action shall be local to the program organization unit containing the declaration.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 90 – 61131-3  IEC:2003(E)

Table 42 - Declaration of actions a,b

No. Feature

1 Any Boolean variable declared in a VAR or VAR_OUTPUT block, or their graphical
equivalents, can be an action.

No. Example Feature

2l

+--+
| ACTION_4 |
+--+
	%IX1 %MX3 S8.X %QX17					
+---		-----		----		-----()---+
	+------+					
+----	EN ENO	%MX10				
	C--	LT	----------(S)---+			
	D--					
	+------+					
+--+

Graphical
declaration in LD

language (see 4.2)

2s

+--+
| OPEN_VALVE_1 |

+--+
| | ... |
| +=================+ |
| || VALVE_1_READY || |

| +=================+ |
| | |
| + STEP8.X |
| | |
| +-----------------+ +---+-----------+ |
| | VALVE_1_OPENING |--| N |VALVE_1_FWD| |

| +-----------------+ +---+-----------+ |
| | ... |
+--+

Inclusion of SFC
elements in action

2f

+--+
| ACTION_4 |

+--+
| +---+ |
%IX1--	&	
%MX3--		--%QX17
S8.X---------		
+---+ FF28		
+----+		
	SR	
+------+	Q1	-%MX10
C--	LT	--
D--		+----+
+------+		
+--+

Graphical
declaration

in FBD language
(see 4.3)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 91 –

Table 42 - Declaration of actions a,b

No. Feature

3s ACTION ACTION_4:
 %QX17 := %IX1 & %MX3 & S8.X ;
 FF28(S1 := (C<D));
 %MX10 := FF28.Q;
END_ACTION

Textual declaration
in ST language

(see 3.3)

3i ACTION ACTION_4:
 LD S8.X
 AND %IX1
 AND %MX3
 ST %QX17
 LD C
 LT D
 S1 FF28
 LD FF28.Q
 ST %MX10
END_ACTION

Textual declaration
in IL

language (see 3.2)

NOTE The step flag S8.X is used in these examples to obtain the desired result such
that, when S8 is deactivated, %QX17 := 0.

a If feature 1 of table 40 is supported, then one or more of the features in this table, or
feature 4 of table 43, shall be supported.

b If feature 2 of table 40 is supported, then one or more of features 1,3 s, or 3i of this table
shall be supported.

2.6.4.2 Association with steps

A programmable controller implementation which supports SFC elements shall provide one or more of
the mechanisms defined in table 43 for the association of actions with steps. The maximum number
of action blocks per step is an implementation-dependent parameter.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 92 – 61131-3  IEC:2003(E)

Table 43 - Step/action association

No. Example Feature

1

 |
 +----+ +-----+----------+---+
 | S8 |--| L | ACTION_1 |DN1|

 +----+ |t#10s| | |
 | +-----+----------+---+
 + DN1
 |

Action block
physically or

logically
adjacent to the

step
(see 2.6.4.3)

2

 |
 +----+ +-----+---------------------+---+
 | S8 |--| L | ACTION_1 |DN1|
 +----+ |t#10s| | |
 | +-----+---------------------+---+
 +DN1 | P | ACTION_2 | |
 | +-----+---------------------+---+
 | | N | ACTION_3 | |
 | +-----+---------------------+---+

Concatenated
action blocks
physically or

logically
adjacent to the

step

3
STEP S8:
 ACTION_1(L,t#10s,DN1) ;
 ACTION_2(P) ;
 ACTION_3(N) ;
END_STEP

Textual
step body

4 a

 +-----+----------------------+---+
 ----| N | ACTION_4 | |---
 +-----+----------------------+---+
 | %QX17 := %IX1 & %MX3 & S8.X ; |
 | FF28 (S1 := (C<D)); |
 | %MX10 := FF28.Q; |
 +--------------------------------+

Action block
"d" field

(see 2.6.4.3)

a When feature 4 is used, the corresponding action name cannot be used in any other
action block.

2.6.4.3 Action blocks

As shown in table 44, an action block is a graphical element for the combination of a Boolean variable
with one of the action qualifiers specified in subclause 2.6.4.4 to produce an enabling condition,
according to the rules given in subclause 2.6.4.5, for an associated action.

The action block provides a means of optionally specifying Boolean “indicator” variables, indicated by
the “c” field in table 44, which can be set by the specified action to indicate its completion, timeout,
error conditions, etc. If the “c” field is not present, and the “b” field specifies that the action shall be a
Boolean variable, then this variable shall be interpreted as the “c” variable when required. If the (c)
field is not defined, and the (b) field does not specify a Boolean variable, then the value of the
“indicator” variable is considered to be always FALSE.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 93 –

When action blocks are concatenated graphically as illustrated in table 43, such concatenations can
have multiple indicator variables, but shall have only a single common Boolean input variable, which
shall act simultaneously upon all the concatenated blocks.

As well as being associated with a step, an action block can be used as a graphical element in the LD
or FBD languages specified in clause 4. In this case, signal or power flow through an action block
shall follow the rules specified in 4.1.1.

Table 44 - Action block features

No. Feature Graphical form

1 a

2
3 b

4
5
6
7

"a" : Qualifier as per 2.6.4.4
"b" : Action name
"c" : Boolean "indicator"
 variables

"d" : Action using:
 - IL language (3.2)
 - ST language (3.3)
 - LD language (4.2)
 - FBD language (4.3)

+-----+--------------+-----+
---| "a" | "b" | "c" |---
+-----+--------------+-----+
| "d" |
| |
+--------------------------+

No. Feature/Example

8 Use of action blocks in ladder diagrams (see 4.2):

| S8.X %IX7.5 +---+------+---+ OK1 |
+--| |----| |----| N | ACT1 |DN1|--()--+
| +---+------+---+ |

9 Use of action blocks in function block diagrams (see 4.3):

 +---+ +---+------+-----+
 S8.X---| & |-----| N | ACT1 | DN1 |---OK1
 %IX7.5---| | +---+------+-----+
 +---+

a Field “a” can be omitted when the qualifier is “N”.
b Field “c” can be omitted when no indicator variable is used.

2.6.4.4 Action qualifiers

Associated with each step/action association defined in 2.6.4.2, or each occurrence of an action block
as defined in 2.6.4.3, shall be an action qualifier. The value of this qualifier shall be one of the values
listed in table 45. In addition, the qualifiers L, D, SD, DS, and SL shall have an associated duration of
type TIME.

NOTE IEC 60848 gives informal definitions and examples of the use of these qualifiers.
This standard formalizes these definitions, redefining the S qualifier and introducing
the R qualifier. The control of actions using these qualifiers is defined in the
following subclause, and additional examples of their use are given in annex F.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 94 – 61131-3  IEC:2003(E)

Table 45 - Action qualifiers

No. Qualifier Explanation

1 None Non-stored (null qualifier)

2 N Non-stored

3 R overriding Reset

4 S Set (Stored)

5 L time Limited

6 D time Delayed

7 P Pulse

8 SD Stored and time Delayed

9 DS Delayed and Stored

10 SL Stored and time Limited

11 P1 Pulse (rising edge)

12 P0 Pulse (falling edge)

2.6.4.5 Action control

The control of actions shall be functionally equivalent to the application of the following rules:

 1) Associated with each action shall be the functional equivalent of an instance of the
ACTION_CONTROL function block defined in figures 14 and 15. If the action is declared as a
Boolean variable, as defined in 2.6.4.1, the Q output of this block shall be the state of this
Boolean variable. If the action is declared as a collection of statements or networks, as defined
in 2.6.4.1, then this collection shall be executed continually while the A (activation) output of the
ACTION_CONTROL function block stands at BOOL#1. In this case, the state of the output Q
(called the "action flag") can be accessed within the action by reading a read-only boolean
variable which has the form of a reference to the Q output of a function block instance whose
instance name is the same as the corresponding action name, for example, ACTION1.Q.

NOTE 1 The condition Q=FALSE will ordinarily be used by an action to determine that it is being
executed for the final time during its current activation.

NOTE 2 The value of Q will always be FALSE during execution of actions invoked by P0 and P1
qualifiers.

NOTE 3 The value of A will be TRUE for only one execution of an action invoked by a P1 or P0
qualifier. For all other qualifiers, A will be true for one additional execution following the
falling edge of Q.

NOTE 4 Access to the functional equivalent of the Q or A outputs of an ACTION_CONTROL function
block from outside of the associated action is an implementation-dependent feature.

NOTE 5 The manufacturer may opt for a simpler implementation as shown in figure 15 b). In this
case, if the action is declared as a collection of statements or networks, as defined in 2.6.4.1,
then this collection shall be executed continually while the Q output of the ACTION_CONTROL
function block stands at BOOL#1. In any case the manufacturer shall specify which of the
features given in table 45 a) is supported.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 95 –

2) A Boolean input to the ACTION_CONTROL block for an action shall be said to have an
association with a step as defined in 2.6.4.2, or with an action block as defined in 2.6.4.3, if the
corresponding qualifier is equivalent to the input name (N, R, S, L, D, P, P0, P1, SD,
DS, or SL). The association shall be said to be active if the associated step is active, or if the
associated action block's input has the value BOOL#1. The active associations of an action are
equivalent to the set of active associations of all inputs to its ACTION_CONTROL function block.

A Boolean input to an ACTION_CONTROL block shall have the value BOOL#1 if it has at least one
active association, and the value BOOL#0 otherwise.

3) The value of the T input to an ACTION_CONTROL block shall be the value of the duration portion
of a time-related qualifier (L, D, SD, DS, or SL) of an active association. If no such association
exists, the value of the T input shall be t#0s.

4) It shall be an error in the sense of subclause 1.5.1 if one or more of the following conditions
exist:

 a) More than one active association of an action has a time-related qualifier (L, D, SD, DS,
or SL).

 b) The SD input to an ACTION_CONTROL block has the BOOL#1 when the Q1 output of its
SL_FF block has the value BOOL#1.

 c) The SL input to an ACTION_CONTROL block has the value BOOL#1 when the Q1 output of
its SD_FF block has the value BOOL#1.

 5) It is not required that the ACTION_CONTROL block itself be implemented, but only that the
control of actions be equivalent to the preceding rules. Only those portions of the action control
appropriate to a particular action need be instantiated, as illustrated in figure 16. In particular,
note that simple MOVE (:=) and Boolean OR functions suffice for control of Boolean variable
actions if the latter's associations have only “N” qualifiers.

a) b)

 +----------------+
 | ACTION_CONTROL |
BOOL---|N Q|---BOOL
BOOL---|R A|---BOOL
BOOL---|S |
BOOL---|L |
BOOL---|D |
BOOL---|P |
BOOL---|P1 |
BOOL---|P0 |
BOOL---|SD |
BOOL---|DS |
BOOL---|SL |
TIME---|T |
 +----------------+

 +----------------+
 | ACTION_CONTROL |
BOOL---|N Q|---BOOL
BOOL---|R |
BOOL---|S |
BOOL---|L |
BOOL---|D |
BOOL---|P |
BOOL---|P1 |
BOOL---|P0 |
BOOL---|SD |
BOOL---|DS |
BOOL---|SL |
TIME---|T |
 +----------------+

Figure 14 - ACTION_CONTROL function block - External interface (Not visible to the user)
 a) With “final scan” logic - see figure 15 a); b) Without “final scan” logic - see figure 15 b)

IEC 2485/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 96 – 61131-3  IEC:2003(E)

 +---+
 +---O| & |---Q
 | +-----+ | |
N--|---| >=1 |--| |
 | S_FF | | +---+
R--+ +----+ | |
 | | RS | | | NOTE 1
S--|----------------------|S Q1|-----------------| | Instances of this
 +----------------------|R1 | | | function block
 | +----+ +---+ | | are not visible
L--|---------+--------------------| & |----------| | to the user
 | | L_TMR +--O| | | |
 | | +-----+ | +---+ | | NOTE 2
 | | | TON | | | | The external
 | +------|IN Q|---+ D_TMR | | interface of this
 | +-------------|PT | +-----+ | | function block type
 | | +-----+ | TON | | | is given in figure
D--|--|-----------------------------|IN Q|------| | 14 a)
+-----------------------------	PT			
	P_TRIG +-----+			
	+--------+			
		R_TRIG		
P--	--	------------	CLK Q	--------------------
	SD_FF +--------+ SD_TMR			
	+----+ +-----+			
		RS		TON
SD-	--	---	S Q1	----------------
+--	---	R1	+------------	PT
	+----+	DS_TMR +-----+ DS_FF		
+------------+ +-----+ +----+				
		TON		RS
DS-	--	----------------	IN Q	----------
+----------------	PT	+---	R1	
	+-----+	+----+		
+--	-----------------------------+			
	SL_FF			
	+----+			
		RS	+---+	
SL-|--|--------|S Q1|--+------------------| & |--| |
 +--|--------|R1 | | SL_TMR +--O| | +-----+
 | +----+ | +-----+ | +---+
 | | | TON | |
 | +----|IN Q|---+ +-----+
T-----+---------------------|PT | +--------+ | >=1 |
 +-----+ | F_TRIG | Q---| |---A
 +--------+ Q---|CLK Q|---------| |
 | R_TRIG | +--------+ | |
P1--------------|CLK Q|----------------------------------| |
 +--------+ +--------+ | |
 | F_TRIG | | |
P0-----------------------------|CLK Q|-------------------| |
 +--------+ +-----+

Figure 15 a) - ACTION_CONTROL function block body with “final scan” logic
IEC 2486/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 97 –

 +---+
 +---O| & |---Q
 | +-----+ | |
N--|---| >=1 |--| |
 | S_FF | | +---+
R--+ +----+ | |
 | | RS | | | NOTE 1 -
S--|----------------------|S Q1|-----------------| | instances of this
 +----------------------|R1 | | | function block
 | +----+ +---+ | | are not visible
L--|---------+--------------------| & |----------| | to the user
 | | L_TMR +--O| | | |
 | | +-----+ | +---+ | | NOTE 2 -
 | | | TON | | | | The external
 | +------|IN Q|---+ D_TMR | | interface of this
 | +-------------|PT | +-----+ | | function block type
 | | +-----+ | TON | | | is given in figure
D--|--|-----------------------------|IN Q|------| | 14 b)
+-----------------------------	PT			
	P_TRIG +-----+			
	+--------+			
		R_TRIG		
P--	--	------------	CLK Q	--------------------
	SD_FF +--------+ SD_TMR			
	+----+ +-----+			
		RS		TON
SD-	--	---	S Q1	----------------
+--	---	R1	+------------	PT
	+----+	DS_TMR +-----+ DS_FF		
+------------+ +-----+ +----+				
		TON		RS
DS-	--	----------------	IN Q	----------
+----------------	PT	+---	R1	
	+-----+	+----+		
+--	-----------------------------+			
	SL_FF			
	+----+			
		RS	+---+	
SL-|--|--------|S Q1|--+------------------| & |--| |
 +--|--------|R1 | | SL_TMR +--O| | | |
 | +----+ | +-----+ | +---+ | | | |
 | | | TON | | | |
 | +----|IN Q|---+ | |
T-----+---------------------|PT | | |
 +--------+ +-----+ | |
 | R_TRIG | | |
P1--------|CLK Q|-----------------------------| |
 +--------+ +--------+ | |
 | F_TRIG | | |
P0-----------------------|CLK Q|--------------| |
 +--------+ +-----+

Figure 15 b) - ACTION_CONTROL function block body without “final scan” logic
IEC 2487/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 98 – 61131-3  IEC:2003(E)

 |
 +-----+ +---+------------+----------------+
 | S22 |---| N | HV_BREAKER | HV_BRKR_CLOSED |
 +-----+ +---+------------+----------------+
 | | S | START_INDICATOR |
 | +---+-----------------------------+
 + HV_BRKR_CLOSED
 |
 +-----+ +----+---------------+
 | S23 |---| SL | RUNUP_MONITOR |
 +-----+ |t#1m| |
 | +----+---------------+
 | | D | START_WAIT |
 | |t#1s| |
 | +----+---------------+
 + START_WAIT
 |
 +-----+ +-----+-----------------+------------------+
 | S24 |---| N | ADVANCE_STARTER | STARTER_ADVANCED |
 +-----+ +-----+-----------------+------------------+
 | | L | START_MONITOR |
 | |t#30s| |
 | +-----+------------------------------------+
 + STARTER_ADVANCED
 |
 +-----+ +-----+-----------------+-------------------+
 | S26 |---| N | RETRACT_STARTER | STARTER_RETRACTED |
 +-----+ +-----+-----------------+-------------------+
 |
 |
 + STARTER_RETRACTED
 |
 +-----+ +-----+-----------------+
 | S27 |---| R | START_INDICATOR |
 +-----+ +-----+-----------------+
 | | R | RUNUP_MONITOR |
 | +-----+-----------------+

NOTE The complete SFC network and its associated declarations are not shown in this example.

Figure 16 a) - Action control example - SFC representation

Table 45 a) - Action control features

No. Description

1 per figures 14 a) and 15 a)

2 per figures 14 b) and 15 b)

IEC 2488/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 99 –

S22.X---HV_BREAKER

S24.X--ADVANCE_STARTER

S26.X--RETRACT_STARTER

 START_INDICATOR_S_FF
 +----+
 | RS |
S22.X-----------------------|S Q1|-----------------START_INDICATOR
S27.X-----------------------|R1 |
 +----+

 START_WAIT_D_TMR
 +-----+
 | TON |
S23.X-----------------------|IN Q|---------------------START_WAIT
t#1s------------------------|PT |
 +-----+

RUNUP_MONITOR_SL_FF
 +----+
 | RS | +---+
S23.X---|S Q1|--+-----------------------------| & |--RUNUP_MONITOR
S27.X---|R1 | | RUNUP_MONITOR_SL_TMR +--O| |
 +----+ | +-----+ | +---+
 | | TON | |
 +---------|IN Q|---------+
t#1m----------------------|PT |
 +-----+

 +---+
S24.X------------+---------------------------| & |---START_MONITOR
 | START_MONITOR_L_TMR +---O| |
 | +-----+ | +---+
 | | TON | |
 +--------|IN Q|-------+
t#30s---------------------|PT |
 +-----+

Figure 16 b) - Action control example - functional equivalent

2.6.5 Rules of evolution

The initial situation of a SFC network is characterized by the initial step which is in the active state
upon initialization of the program or function block containing the network.

Evolutions of the active states of steps shall take place along the directed links when caused by the
clearing of one or more transitions.

A transition is enabled when all the preceding steps, connected to the corresponding transition symbol
by directed links, are active. The clearing of a transition occurs when the transition is enabled and
when the associated transition condition is true.

The clearing of a transition causes the deactivation (or "resetting") of all the immediately preceding
steps connected to the corresponding transition symbol by directed links, followed by the activation of
all the immediately following steps.

IEC 2489/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 100 – 61131-3  IEC:2003(E)

The alternation step/transition and transition/step shall always be maintained in SFC element
connections, that is:

- Two steps shall never be directly linked; they shall always be separated by a transition.

- Two transitions shall never be directly linked; they shall always be separated by a step.

When the clearing of a transition leads to the activation of several steps at the same time, the
sequences to which these steps belong are called simultaneous sequences. After their simultaneous
activation, the evolution of each of these sequences becomes independent. In order to emphasize the
special nature of such constructs, the divergence and convergence of simultaneous sequences shall
be indicated by a double horizontal line.

It shall be an error if the possibility can arise that non-prioritized transitions in a selection divergence,
as shown in feature 2a of table 46, are simultaneously true. The user may make provisions to avoid
this error as shown in features 2b and 2c of table 46.

Table 46 defines the syntax and semantics of the allowed combinations of steps and transitions.

The clearing time of a transition may theoretically be considered as short as one may wish, but it can
never be zero. In practice, the clearing time will be imposed by the programmable controller
implementation. For the same reason, the duration of a step activity can never be considered to be
zero.

Several transitions which can be cleared simultaneously shall be cleared simultaneously, within the
timing constraints of the particular programmable controller implementation and the priority constraints
defined in table 46.

Testing of the successor transition condition(s) of an active step shall not be performed until the
effects of the step activation have propagated throughout the program organization unit in which the
step is declared.

Figure 17 illustrates the application of these rules. In this figure, the active state of a step is indicated
by the presence of an asterisk (*) in the corresponding block. This notation is used for illustration only,
and is not a required language feature.

The application of the rules given in this subclause cannot prevent the formulation of “unsafe” SFCs,
such as the one shown in figure 18 a), which may exhibit uncontrolled proliferation of tokens.
Likewise, the application of these rules cannot prevent the formulation of “unreachable” SFCs, such as
the one shown in figure 18 b), which may exhibit “locked up” behavior. The programmable controller
system shall treat the existence of such conditions as errors as defined in 1.5.1.

The maximum allowed widths of the “divergence” and “convergence” constructs in table 46 are
implementation-dependent parameters.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 101 –

Table 46 - Sequence evolution
No. Example Rule

1 |
+----+
| S3 |
+----+
|
 + c
|
+----+
| S4 |
+----+
|

Single sequence:
The alternation step-transition is repeated in

series.
Example:

An evolution from step S3 to step S4 shall take
place if and only if step S3 is in the active state

and the transition condition c is true.

2a |
+----+
| S5 |
 +----+
|
 +-----*----+--...
| |
 + e + f
| |
+----+ +----+
| S6 | | S8 |
+----+ +----+
| |

Divergence of sequence selection:
A selection between several sequences is

represented by as many transition symbols, under
the horizontal line, as there are different possible

evolutions. The asterisk denotes left-to-right
priority of transition evaluations.

Example:
An evolution shall take place from S5 to S6 only if
S5 is active and the transition condition e is true,
or from S5 to S8 only if S5 is active and f is true

and e is false.

2b |
 +----+
 | S5 |
 +----+
 |
 +-----*-----+--...
 |2 |1
 + e + f
 | |
 +----+ +----+
 | S6 | | S8 |
 +----+ +----+
 | |

Divergence of sequence selection:
The asterisk, followed by numbered branches,

indicates a user-defined priority of transition
evaluation, with the lowest-numbered branch

having the highest priority.
Example:

An evolution shall take place from S5 to S8 only if
S5 is active and the transition condition f is true,
or from S5 to S6 only if S5 is active, and e is true,

and f is false.

2c |
 +----+
 | S5 |
 +----+
 |
 +------+----+--...
| |
 +e +NOT e & f
| |
+----+ +----+
| S6 | | S8 |
+----+ +----+
| |

Divergence of sequence selection:
The connection of the branch indicates that the
user must assure that transition conditions are
mutually exclusive, as specified by IEC 60848.

Example:
An evolution shall take place from S5 to S6 only if
S5 is active and the transition condition e is true,
or from S5 to S8 only if S5 is active and e is false

and f is true.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 102 – 61131-3  IEC:2003(E)

Table 46 - Sequence evolution
No. Example Rule

3 | |
+----+ +----+
| S7 | | S9 |
+----+ +----+
| |
 + h + j
| |
 +-----+-----+--...
|
+----+
|S10 |
+----+
|

Convergence of sequence selection:
The end of a sequence selection is
represented by as many transition

symbols, above the horizontal line, as there are
selection paths to be ended.

Example:
An evolution shall take place

from S7 to S10 only if S7 is active and the
transition condition h is true, or from S9 to S10

only if S9 is active and j is true.

4 |
+----+
|S11 |
+----+
|
 + b
|
 ==+=====+=====+==...
| |
+----+ +----+
| S12| | S14|
+----+ +----+
| |

Simultaneous sequences - divergence:
Only one common transition symbol shall be
possible, above the double horizontal line of

synchronization.
Example:

An evolution shall take place from S11 to S12,
S14,... only if S11 is active and the transition

condition “b” associated to the common transition
is true. After the simultaneous activation of S12,

S14, etc., the evolution of each sequence
proceeds independently.

| |
+----+ +----+
| S13| | S15|
+----+ +----+
| |
 ==+=====+=====+==...
|
 + d
|
+----+
|S16 |
+----+
|

Simultaneous sequences - convergence:
Only one common transition symbol shall be
possible, under the double horizontal line of

synchronization.
Example:

An evolution shall take place from S13, S15,... to
S16 only if all steps above and connected to the

double horizontal line are active and the transition
condition “d” associated to the common transition

is true.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 103 –

Table 46 - Sequence evolution
No. Example Rule

5a
5b
5c

 |
 +-----+
 | S30 |
 +-----+
 |
 +---*---+
 | |
 + a +d
 | |
+-----+ |
| S31 | |
+-----+ |
 | |
 + b |
 | |
+-----+ |
| S32 | |
+-----+ |
 | |
 + c |
 | |
 +---+---+
 |
 +-----+
 | S33 |
 +-----+
 |

Sequence skip:
A “sequence skip” is a special case of

sequence selection (feature 2) in which one or
more of the branches contain no steps. features
5a, 5b, and 5c correspond to the representation

options given in features 2a, 2b, and 2c,
respectively.
Example:

(feature 5a shown)
An evolution shall take place from S30 to S33 if
“a” is false and “d” is true, that is, the sequence

(S31, S32) will be skipped.

6a
6b
6c

|
+-----+
| S30 |
+-----+
|
 + a
|
 +---------+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +---+
| S33 |
+-----+
|

Sequence loop:
A “sequence loop” is a special case of sequence
selection (feature 2) in which one or more of the
branches returns to a preceding step. Features
6a, 6b, and 6c correspond to the representation

options given in features 2a, 2b, and 2c,
respectively.
Example:

(feature 6a shown)
An evolution shall take place from S32 to S31 if
“c” is false and “d” is true, that is, the sequence

(S31, S32) will be repeated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 104 – 61131-3  IEC:2003(E)

Table 46 - Sequence evolution
No. Example Rule

7 |
+-----+
| S30 |
+-----+
|
 + a
|
 +----<----+
 | |
 +-----+ |
 | S31 | |
 +-----+ |
 | |
 + b |
 | |
 +-----+ |
 | S32 | |
 +-----+ |
 | |
 *-----+ |
 | | |
 + c + d |
 | | |
 +-----+ +->-+
| S33 |
+-----+
|

Directional arrows:
When necessary for clarity, the “less than” (<)

character of the character set defined in 2.1.1 can
be used to indicate right-to-left control flow, and
the “greater than” (>) character to represent left-
to-right control flow. When this feature is used,

the corresponding character shall be located
between two “-” characters, that is, in the

character sequence “-<-” or “->-” as shown in the
accompanying example.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 105 –

a) Transition not
enabled

(X = 0 or 1)

 | | | |
+------+ +-----+ +------+ +------+
|STEP10| |STEP9| |STEP13| |STEP22|
| | | | | * | | * |
+------+ +-----+ +------+ +------+
 | | | |
 + X ====+========+=========+====
 | |
+------+ + X
|STEP11| |
| | ====+====+===+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

b) Transition enabled
but not cleared
(X = 0)

 | | | |
+------+ +-----+ +------+ +------+
|STEP10| |STEP9| |STEP13| |STEP22|
| * | | * | | * | | * |
+------+ +-----+ +------+ +------+
 | | | |
 + X ===+========+=========+====
 | |
+------+ + X
|STEP11| |
| | ====+====+====+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | | | |
 +------+ +------+
 | |

c) Transition
cleared

 (X = 1)

 | | | |
+------+ +-----+ +------+ +------+
|STEP10| |STEP9| |STEP13| |STEP22|
| | | | | | | |
+------+ +-----+ +------+ +------+
 | | | |
 + X ====+========+=========+====
 | |
+------+ + X
|STEP11| |
| * | ====+====+===+====
+------+ | |
 | +------+ +------+
 |STEP15| |STEP16|
 | * | | * |
 +------+ +------+
 | |

NOTE In this figure, the active state of a step is indicated by the presence of an asterisk (*) in
the corresponding block. This notation is used for illustration only, and is not a required
language feature.

Figure 17 - Examples of SFC evolution rules

IEC 2490/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 106 – 61131-3  IEC:2003(E)

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *--------+
| | | |
| | + t2 + t3
| | | |
| | +---+ +---+
| | | D | | E |
| | +---+ +---+
| | | |
| ===+==========+============+=== |
| | |
| + t4 + t5
| | |
| +---+ +---+
| | F | | G |
| +---+ +---+
| | |
| + t6 + t7
| | |
+----------------------+---------------------+

Figure 18 a) - Examples of SFC errors: an “unsafe” SFC
(see 2.6.5)

IEC 2491/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 107 –

+----------------------+
| |
| +=====+
| || A ||
| +=====+
| |
| + t1
| |
| ======+==========+============+=======
| | |
| +-----+ +-----+
| | B | | C |
| +-----+ +-----+
| | |
| | *--------+
| | | |
| | + t2 + t3
| | | |
| | +---+ +---+
| | | D | | E |
| | +---+ +---+
| | | |
| ===+==========+============+=== |
| | |
| + t4 + t5
| | |
| +---+ +---+
| | F | | G |
| +---+ +---+
| | |
| ====+==========+==========+===
| |
| + t6
| |
+---------------------------------+

Figure 18 b) - Examples of SFC errors: an “unreachable” SFC
(see 2.6.5)

2.6.6 Compatibility of SFC elements

SFCs can be represented graphically or textually, utilizing the elements defined above. Table 47
summarizes for convenience those elements which are mutually compatible for graphical and textual
representation, respectively.

IEC 2492/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 108 – 61131-3  IEC:2003(E)

Table 47 - Compatible SFC features

Table Graphical representation Textual representation

40 1, 3a, 3b, 4 2, 3a, 4

41 1, 2, 3, 4, 4a, 4b, 7, 7a, 7b 5, 6, 7c, 7d

42 1, 2l, 2s, 2f 3s, 3i

43 1, 2, 4 3

44 1 to 9 --

45 1 to 10 1 to 10 (textual equivalent)

46 1 to 7 1 to 6

57 All --

2.6.7 SFC Compliance requirements

In order to claim compliance with the requirements of 2.6, the elements shown in table 48 shall be
supported and the compatibility requirements defined in 2.6.6 shall be observed.

Table 48 - SFC minimal compliance requirements

Table Graphical representation Textual representation

40 1 2

41 1 or 2 or 3 or (4 and (4a or 4b))
 or (7 and (7a or 7b or 7c or 7d))

5 or 6

42 1 or 2l or 2f 1 or 3s or 3i

43 1 or 2 or 4 3

45 1 or 2 1 or 2

46 1 and (2a or 2b or 2c) and 3 and 4 Same (textual equivalent)

57 (1 or 2) and (3 or 4) and (5 or 6) and
(7 or 8) and (9 or 10) and (11 or 12)

Not required

2.7 Configuration elements

As described in 1.4.1, a configuration consists of resources, tasks (which are defined within
resources), global variables, access paths and instance specific initializations. Each of these
elements is defined in detail in this subclause.

A graphic example of a simple configuration is shown in figure 19 a). Skeleton declarations for the
corresponding function blocks and programs are given in figure 19 b). This figure serves as a
reference point for the examples of configuration elements given in the remainder of this subclause
such as in figure 20.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 109 –

CONFIGURATION CELL_1
RESOURCE STATION_1

F G

B

RESOURCE STATION_2

C D

GLOBAL AND DIRECTLY REPRESENTED VARIABLES
AND INSTANCE-SPECIFIC INITIALIZATIONS

ACCESS PATHS

TASK
SLOW_1

P1 P2 P1 P4

x1 y1
y2

FB2

FB1 FB2

z1

x2

FAST_1SLOW_1

BAKER ABLE CHARLIE DOG GAMMA ALPHA BETA

x1
x2

PER_2

F H

HOUT1

INT_2

b1
b2

d1

Communication function (See IEC 1131-5)

PER_2COUNT

S1_COUNT

THETA

C2
C3

TASK
FAST_1

TASK
PER_2

TASK
INT_2

%IX1.1

A y1

FB1

y2

SLOW_1

out1

w z2 %QW5

ZETA

%QB25

c1

OMEGA

Figure 19 a) - Graphical example of a configuration

IEC 2493/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 110 – 61131-3  IEC:2003(E)

FUNCTION_BLOCK A
 VAR_OUTPUT
 y1 : UINT ; y2 : BYTE ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK B
 VAR_INPUT
 b1 : UINT ; b2 : BYTE ;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK C
 VAR_OUTPUT c1 : BOOL ; END_VAR
 VAR C2 AT %Q*: BYTE;
 C3: INT;
 END_VAR
END_FUNCTION_BLOCK

FUNCTION_BLOCK D
 VAR_INPUT d1 : BOOL ; END_VAR
 VAR_OUTPUT y2 : INT ; END_VAR
END_FUNCTION_BLOCK

 PROGRAM F
 VAR_INPUT x1 : BOOL ; x2 : UINT ; END_VAR
 VAR_OUTPUT y1 : BYTE ; END_VAR
 VAR COUNT: INT; TIME1: TON; END_VAR
 END_PROGRAM

 PROGRAM G
 VAR_OUTPUT out1 : UINT ; END_VAR
 VAR_EXTERNAL z1 : BYTE ; END_VAR
 VAR FB1 : A ; FB2 : B ; END_VAR
 FB1(...); out1 := FB1.y1; z1 := FB1.y2;
 FB2(b1 := FB1.y1, b2 := FB1.y2) ;
 END_PROGRAM

 PROGRAM H
 VAR_OUTPUT HOUT1: INT ; END_VAR
 VAR FB1 : C ; FB2 : D ; END_VAR
 FB1(...) ;
 FB2(...); HOUT1 := FB2.y2;
 END_PROGRAM

Figure 19 b) - Skeleton function block and program declarations for configuration example

2.7.1 Configurations, resources, and access paths

Table 49 enumerates the language features for declaration of configurations, resources, global
variables, access paths and instance specific initializations. Partial enumeration of TASK declaration
features is also given; additional information on tasks is provided in 2.7.2. The formal syntax for these
features is given in B.1.7. Figure 20 provides examples of these features, corresponding to the
example configuration shown in figure 19 a) and the supporting declarations in figure 19 b).

The ON qualifier in the RESOURCE...ON...END_RESOURCE construction is used to specify the type of
“processing function” and its “man-machine interface” and “sensor and actuator interface” functions
upon which the resource and its associated programs and tasks are to be implemented. The
manufacturer shall supply an implementation-dependent resource library of such functions, as
illustrated in figure 3. Associated with each element in this library shall be an identifier (the resource
type name) for use in resource declaration.

NOTE The RESOURCE...ON...END_RESOURCE construction is not required in a configuration
with a single resource. See the production single_resource_declaration in B.1.7
for the syntax to be used in this case.

IEC 2494/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 111 –

The scope of a VAR_GLOBAL declaration shall be limited to the configuration or resource in which it is
declared, with the exception that an access path can be declared to a global variable in a resource
using feature 10d in table 49.

The VAR_ACCESS...END_VAR construction provides a means of specifying variable names which
can be used for remote access by some of the communication services specified in IEC 61131-5. An
access path associates each such variable name with a global variable, a directly represented variable
as defined in 2.4.1.1, or any input, output, or internal variable of a program or function block.

The association shall be accomplished by qualifying the name of the variable with the complete
hierarchical concatenation of instance names, beginning with the name of the resource (if any),
followed by the name of the program instance (if any), followed by the name(s) of the function block
instance(s) (if any). The name of the variable is concatenated at the end of the chain. All names in the
concatenation shall be separated by dots. If such a variable is a multi-element variable (structure or
array), an access path can also be specified to an element of the variable.

It shall not be possible to define access paths to variables that are declared in VAR_TEMP,
VAR_EXTERNAL or VAR_IN_OUT declarations.

The direction of the access path can be specified as READ_WRITE or READ_ONLY, indicating that the
communication services can both read and modify the value of the variable in the first case, or read
but not modify the value in the second case. If no direction is specified, the default direction is
READ_ONLY.

Access to variables that are declared CONSTANT or to function block inputs that are externally
connected to other variables shall be READ_ONLY.

NOTE The effect of using READ_WRITE access to function block output variables is
implementation-dependent.

The VAR_CONFIG...END_VAR construction provides a means to assign instance specific locations to
symbolically represented variables, which are nominated for the respective purpose by using the
asterisk notation described in 2.4.1.1 and 2.4.3.1, respectively, or to assign instance specific initial
values to symbolically represented variables, or both.

The assignment shall be accomplished by qualifying the name of the object to be located or initialized
with the complete hierarchical concatenation of instance names, beginning with the name of the
resource (if any), followed by the name of the program instance, followed by the name(s) of the
function block instance(s) (if any). The name of the object to be located or initialized is concatenated
at the end of the chain. All names in the concatenation shall be separated by dots. The location
assignment or the initial value assignment follows the syntax and the semantics described in 2.4.3.1
and 2.4.3.2 respectively.

Instance specific initial values provided by the VAR_CONFIG...END_VAR construction always
override type specific initial values. It shall not be possible to define instance specific initializations to
variables which are declared in VAR_TEMP, VAR_EXTERNAL, VAR CONSTANT or VAR_IN_OUT
declarations.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 112 – 61131-3  IEC:2003(E)

Table 49 - Configuration and resource declaration features
No. Description

1 CONFIGURATION...END_CONFIGURATION construction
2 VAR_GLOBAL...END_VAR construction within CONFIGURATION
3 RESOURCE...ON...END_RESOURCE construction
4 VAR_GLOBAL...END_VAR construction within RESOURCE
5a Periodic TASK construction (see note 1)
5b Non-periodic TASK construction (see note 1)
6a WITH construction for PROGRAM to TASK association (see note 1)
6b WITH construction for Function Block to TASK association (see note 1)
6c PROGRAM declaration with no TASK association (see note 1)
7 Declaration of directly represented variables in VAR_GLOBAL (see note 2)
8a Connection of directly represented variables to PROGRAM inputs
8b Connection of GLOBAL variables to PROGRAM inputs
9a Connection of PROGRAM outputs to directly represented variables
9b Connection of PROGRAM outputs to GLOBAL variables
10a VAR_ACCESS...END_VAR construction
10b Access paths to directly represented variables
10c Access paths to PROGRAM inputs
10d Access paths to GLOBAL variables in RESOURCEs
10e Access paths to GLOBAL variables in CONFIGURATIONs
10f Access paths to PROGRAM outputs
10g Access paths to PROGRAM internal variables
10h Access paths to function block inputs
10i Access paths to function block outputs
11 VAR_CONFIG...END_VAR constructiona

12a VAR_GLOBAL CONSTANT in RESOURCE declarations
12b VAR_GLOBAL CONSTANT in CONFIGURATION declarations
13a VAR_EXTERNAL in RESOURCE declarations
13b VAR_EXTERNAL CONSTANT in RESOURCE declarations

NOTE 1 See 2.7.2 for further descriptions of TASK features.
NOTE 2 See 2.4.3.1 for further descriptions of related features.
a This feature shall be supported if feature 10 in table 15 is supported.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 113 –

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

No. Example

1 CONFIGURATION CELL_1

2 VAR_GLOBAL w: UINT; END_VAR

3 RESOURCE STATION_1 ON PROCESSOR_TYPE_1

4 VAR_GLOBAL z1: BYTE; END_VAR

5a TASK SLOW_1(INTERVAL := t#20ms, PRIORITY := 2) ;

5a TASK FAST_1(INTERVAL := t#10ms, PRIORITY := 1) ;

6a
8a

 PROGRAM P1 WITH SLOW_1 :

 F(x1 := %IX1.1) ;

9b PROGRAM P2 : G(OUT1 => w,

6b FB1 WITH SLOW_1,

6b FB2 WITH FAST_1) ;

3 END_RESOURCE

3 RESOURCE STATION_2 ON PROCESSOR_TYPE_2

4 VAR_GLOBAL z2 : BOOL ;

7 AT %QW5 : INT ;

4 END_VAR

5a TASK PER_2(INTERVAL := t#50ms, PRIORITY := 2) ;

5b TASK INT_2(SINGLE := z2, PRIORITY := 1) ;

6a
8b

 PROGRAM P1 WITH PER_2 :

 F(x1 := z2, x2 := w) ;

6a
9a

 PROGRAM P4 WITH INT_2 :

 H(HOUT1 => %QW5,

6b FB1 WITH PER_2);

3 END_RESOURCE

10a VAR_ACCESS

10b ABLE : STATION_1.%IX1.1 : BOOL READ_ONLY ;

10c BAKER : STATION_1.P1.x2 : UINT READ_WRITE ;

10d CHARLIE : STATION_1.z1 : BYTE ;

10e DOG : w : UINT READ_ONLY ;

10f ALPHA : STATION_2.P1.y1 : BYTE READ_ONLY ;

10f BETA : STATION_2.P4.HOUT1 : INT READ_ONLY ;

10d GAMMA : STATION_2.z2 : BOOL READ_WRITE ;

10g S1_COUNT : STATION_1.P1.COUNT : INT;

10h THETA : STATION_2.P4.FB2.d1 : BOOL READ_WRITE;

10i ZETA : STATION_2.P4.FB1.c1 : BOOL READ_ONLY;

10k OMEGA : STATION_2.P4.FB1.C3 : INT READ_WRITE;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 114 – 61131-3  IEC:2003(E)

Figure 20 - Examples of CONFIGURATION and RESOURCE declaration features

No. Example

10a END_VAR

11 VAR_CONFIG
 STATION_1.P1.COUNT : INT := 1;
 STATION_2.P1.COUNT : INT := 100;
 STATION_1.P1.TIME1 : TON := (PT := T#2.5s);
 STATION_2.P1.TIME1 : TON := (PT := T#4.5s);
 STATION_2.P4.FB1.C2 AT %QB25 : BYTE;
 END_VAR

1 END_CONFIGURATION

NOTE 1 Graphical and semigraphic representation of these features is allowed but is
beyond the scope of this part of IEC 61131.

NOTE 2 It is an error if the data type declared for a variable in a VAR_ACCESS
statement is not the same as the data type declared for the variable elsewhere,
e.g., if variable BAKER is declared of type WORD in the above examples.

2.7.2 Tasks

For the purposes of this part of IEC 61131, a task is defined as an execution control element which is
capable of invoking, either on a periodic basis or upon the occurrence of the rising edge of a specified
Boolean variable, the execution of a set of program organization units, which can include programs
and function blocks whose instances are specified in the declaration of programs.

The maximum number of tasks per resource and task interval resolution are implementation-
dependent parameters.

Tasks and their association with program organization units can be represented graphically or
textually using the WITH construction, as shown in table 50, as part of resources within configurations.
A task is implicitly enabled or disabled by its associated resource according to the mechanisms
defined in 1.4.1. The control of program organization units by enabled tasks shall conform to the
following rules:

1) The associated program organization units shall be scheduled for execution upon each rising edge
of the SINGLE input of the task.

2) If the INTERVAL input is non-zero, the associated program organization units shall be scheduled
for execution periodically at the specified interval as long as the SINGLE input stands at zero (0). If
the INTERVAL input is zero (the default value), no periodic scheduling of the associated program
organization units shall occur.

3) The PRIORITY input of a task establishes the scheduling priority of the associated program
organization units, with zero (0) being highest priority and successively lower priorities having
successively higher numeric values. As shown in table 50, the priority of a program organization
unit (that is, the priority of its associated task) can be used for preemptive or non-preemptive
scheduling.

IEC 2495/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 115 –

a) In non-preemptive scheduling, processing power becomes available on a resource when
execution of a program organization unit or operating system function is complete. When
processing power is available, the program organization unit with highest scheduled priority
shall begin execution. If more than one program organization unit is waiting at the highest
scheduled priority, then the program organization unit with the longest waiting time at the
highest scheduled priority shall be executed.

b) In preemptive scheduling, when a program organization unit is scheduled, it can interrupt the
execution of a program organization unit of lower priority on the same resource, that is, the
execution of the lower-priority unit can be suspended until the execution of the higher-priority
unit is completed. A program organization unit shall not interrupt the execution of another unit
of the same or higher priority.

NOTE Depending on schedule priorities, a program organization unit might not begin
execution at the instant it is scheduled. However, in the examples shown in
table 50, all program organization units meet their deadlines, that is, they all
complete execution before being scheduled for re-execution. The manufacturer
shall provide information to enable the user to determine whether all deadlines
will be met in a proposed configuration.

4) A program with no task association shall have the lowest system priority. Any such program shall
be scheduled for execution upon “starting” of its resource, as defined in 1.4.1, and shall be re-
scheduled for execution as soon as its execution terminates.

5) When a function block instance is associated with a task, its execution shall be under the exclusive
control of the task, independent of the rules of evaluation of the program organization unit in which
the task-associated function block instance is declared.

6) Execution of a function block instance which is not directly associated with a task shall follow the
normal rules for the order of evaluation of language elements for the program organization unit
(which can itself be under the control of a task) in which the function block instance is declared.

7) The execution of function blocks within a program shall be synchronized to ensure that data
concurrency is achieved according to the following rules:

a) If a function block receives more than one input from another function block, then when the
former is executed, all inputs from the latter shall represent the results of the same evaluation.
For instance, in the example represented by figure 21 a), when Y2 is evaluated, the inputs Y2.A
and Y2.B shall represent the outputs Y1.C and Y1.D from the same (not two different)
evaluations of Y1.

b) If two or more function blocks receive inputs from the same function block, and if the
“destination” blocks are all explicitly or implicitly associated with the same task, then the inputs
to all such “destination” blocks at the time of their evaluation shall represent the results of the
same evaluation of the “source” block. For instance, in the example represented by figures 21
b) and 21 c), when Y2 and Y3 are evaluated in the normal course of evaluating program P1, the
inputs Y2.A and Y2.B shall be the results of the same evaluation of Y1 as the inputs Y3.A and
Y3.B.

Provision shall be made for storage of the outputs of functions or function blocks which have explicit
task associations, or which are used as inputs to program organization units which have explicit task
associations, as necessary to satisfy the rules given above.

It shall be an error in the sense of subclause 1.5.1 if a task fails to be scheduled or to meet its
execution deadline because of excessive resource requirements or other task scheduling conflicts.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 116 – 61131-3  IEC:2003(E)

Table 50 - Task features

No. Description/Examples

1a Textual declaration of periodic TASK (feature 5a of table 49)

1b Textual declaration of non-periodic TASK (feature 5b of table 49)

Graphical representation of TASKs (general form)

 TASKNAME
 +---------+
 | TASK |
BOOL---|SINGLE |
TIME---|INTERVAL |
UINT---|PRIORITY |
 +---------+

2a Graphical representation of periodic TASKs

 SLOW_1 FAST_1
 +---------+ +---------+
 | TASK | | TASK |
 |SINGLE | |SINGLE |
t#20ms---|INTERVAL | t#10ms---|INTERVAL |
 2---|PRIORITY | 1---|PRIORITY |
 +---------+ +---------+

2b Graphical representation of non-periodic TASK

 INT_2
 +---------+
 | TASK |
 %IX2---|SINGLE |
 |INTERVAL |
 1---|PRIORITY |
 +---------+

3a Textual association with PROGRAMs (feature 6a of table 49)

3b Textual association with function blocks (feature 6b of table 49)

4a Graphical association with PROGRAMs

RESOURCE STATION_2

 P1 P4
 +-------+ +-------+
 | F | | H |
 | | | |
 | | | |
 +-------+ +-------+
 | PER_2 | | INT_2 |
 +-------+ +-------+
END_RESOURCE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 117 –

Table 50 - Task features

No. Description/Examples

4b Graphical association with function blocks within PROGRAMs

RESOURCE STATION_1

 P2
 +---+
 | G |
 | |
 | FB1 FB2 |
 | +------+ +------+ |
	A		B	
+------+ +------+				
	SLOW_1		FAST_1	

 | +------+ +------+ |
 +---+

END_RESOURCE

5a Non-preemptive scheduling

EXAMPLE 1:

- RESOURCE STATION_1 as configured in figure 20

- Execution times: P1 = 2 ms; P2 = 8 ms;

- P2.FB1 = P2.FB2 = 2 ms (see note 3)

- STATION_1 starts at t = 0

SCHEDULE (repeats every 40 ms)

t(ms) Executing Waiting

0 P2.FB2@1 P1@2, P2.FB1@2, P2
2 P1@2 P2.FB1@2, P2

4 P2.FB1@2 P2

6 P2

10 P2 P2.FB2@1

14 P2.FB2@1 P2

16 P2 (P2 restarts)

20 P2 P2.FB2@1, P1@2, P2.FB1@2

24 P2.FB2@1 P1@2, P2.FB1@2, P2

26 P1@2 P2.FB1@2, P2

28 P2.FB1@2 P2

30 P2.FB2@1 P2

32 P2

40 P2.FB2@1 P1@2, P2.FB1@2, P2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 118 – 61131-3  IEC:2003(E)

Table 50 - Task features

No. Description/Examples

5a Non-preemptive scheduling

EXAMPLE 2:
- RESOURCE STATION_2 as configured in figure 20
- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (see note 4)
- INT_2 is triggered at t = 25, 50, 90, ... ms
- STATION_2 starts at t = 0

 SCHEDULE

t(ms) Executing Waiting

0 P1@2 P4.FB1@2

25 P1@2 P4.FB1@2, P4@1

30 P4@1 P4.FB1@2

35 P4.FB1@2

50 P4@1 P1@2, P4.FB1@2

55 P1@2 P4.FB1@2

85 P4.FB1@2

90 P4.FB1@2 P4@1

95 P4@1

100 P1@2 P4.FB1@2

5b Preemptive scheduling

EXAMPLE 3:
- RESOURCE STATION_1 as configured in figure 20
- Execution times: P1 = 2 ms; P2 = 8 ms; P2.FB1 = P2.FB2 = 2 ms (see note 3)
- STATION_1 starts at t = 0

SCHEDULE

t(ms) Executing Waiting

0 P2.FB2@1 P1@2, P2.FB1@2, P2

2 P1@2 P2.FB1@2, P2

4 P2.FB1@2 P2

6 P2

10 P2.FB2@1 P2

12 P2

16 P2 (P2 restarts)

20 P2.FB2@1 P1@2, P2.FB1@2, P2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 119 –

Table 50 - Task features

No. Description/Examples

5b Preemptive scheduling

EXAMPLE 4:
- RESOURCE STATION_2 as configured in figure 20
- Execution times: P1 = 30 ms, P4 = 5 ms, P4.FB1 = 10 ms (note 4)
- INT_2 is triggered at t = 25, 50, 90, ... ms
- STATION_2 starts at t = 0

SCHEDULE

t(ms) Executing Waiting

0 P1@2 P4.FB1@2

25 P4@1 P1@2, P4.FB1@2

30 P1@2 P4.FB1@2

35 P4.FB1@2

50 P4@1 P1@2, P4.FB1@2

55 P1@2 P4.FB1@2

85 P4.FB1@2

90 P4@1 P4.FB1@2

95 P4.FB1@2

100 P1@2 P4.FB1@2

NOTE 1 Details of RESOURCE and PROGRAM declarations are not shown; see 2.7 and
2.7.1.

NOTE 2 The notation X@Y indicates that program organization unit X is scheduled or
executing at priority Y.

NOTE 3 The execution times of P2.FB1 and P2.FB2 are not included in the execution
time of P2.

NOTE 4 The execution time of P4.FB1 is not included in the execution time of P4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 120 – 61131-3  IEC:2003(E)

RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

P1

PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |slow1| | | |fast1|
 +-----+ | | +-----+
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 |fast1|
 +-----+
END_PROGRAM

Figure 21 a) - Synchronization of function blocks with explicit task associations
IEC 2496/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 121 –

RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

P1

PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |fast1| | |
 +-----+ | |
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 END_PROGRAM

slow1

Figure 21 b) - Synchronization of function blocks with implicit task associations
IEC 2497/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 122 – 61131-3  IEC:2003(E)

RESOURCE R1
 fast1
 +----------+
 | TASK |
t#10ms---|INTERVAL |
 1---|PRIORITY |
 +----------+

 slow1
 +----------+
 | TASK |
t#20ms---|INTERVAL |
 2---|PRIORITY |
 +----------+

P1

PROGRAM X
 Y1 Y2
 +-----+ +-----+
 | Y | | Y |
 ---|A C|----+--------|A C|---
 ---|B D|----|--+-----|B D|---
 +-----+ | | +-----+
 |fast1| | | |slow1|
 +-----+ | | +-----+
 | |
 | | Y3
 | | +-----+
 | | | Y |
 +--|--|A C|---
 +--|B D|---
 +-----+
 |slow1|
 +-----+

END_PROGRAM

Figure 21 c) - Explicit task associations equivalent to figure 21 b)
IEC 2498/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 123 –

3 Textual languages

The textual languages defined in this standard are IL (Instruction List) and ST (Structured Text). The
sequential function chart (SFC) elements defined in 2.6 can be used in conjunction with either of these
languages.

3.1 Common elements

The textual elements specified in clause 2 shall be common to the textual languages (IL and ST)
defined in this clause. In particular, the following program structuring elements shall be common to
textual languages:

TYPE...END_TYPE (2.3.3)

VAR...END_VAR (2.4.3)

VAR_INPUT...END_VAR (2.4.3)

VAR_OUTPUT...END_VAR (2.4.3)

VAR_IN_OUT...END_VAR (2.4.3)

VAR_EXTERNAL...END_VAR (2.4.3)

VAR_TEMP...END_VAR (2.4.3)

VAR_ACCESS...END_VAR (2.4.3)

VAR_GLOBAL...END_VAR (2.4.3)

VAR_CONFIG...END_VAR (2.4.3)

FUNCTION ... END_FUNCTION (2.5.1.3)

FUNCTION_BLOCK...END_FUNCTION_BLOCK (2.5.2.2)

PROGRAM...END_PROGRAM (2.5.3)

STEP...END_STEP (2.6.2)

TRANSITION...END_TRANSITION (2.6.3)

ACTION...END_ACTION (2.6.4)

3.2 Instruction list (IL)

This subclause defines the semantics of the IL (Instruction List) language whose formal syntax is
given in B.2.

3.2.1 Instructions

As illustrated in table 51, an instruction list is composed of a sequence of instructions. Each
instruction shall begin on a new line and shall contain an operator with optional modifiers, and, if
necessary for the particular operation, one or more operands separated by commas. Operands can
be any of the data representations defined in 2.2 for literals, in 2.3.3 for enumerated values, and in 2.4
for variables.

The instruction can be preceded by an identifying label followed by a colon (:). Empty lines can be
inserted between instructions.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 124 – 61131-3  IEC:2003(E)

Table 51 a) - Examples of instruction fields

LABEL OPERATOR OPERAND COMMENT

START: LD %IX1 (* PUSH BUTTON *)

ANDN %MX5 (* NOT INHIBITED *)

ST %QX2 (* FAN ON *)

3.2.2 Operators, modifiers and operands

Standard operators with their allowed modifiers and operands shall be as listed in table 52. The typing
of operators shall conform to the conventions of 2.5.1.4.

Unless otherwise defined in table 52, the semantics of the operators shall be

result := result OP operand

That is, the value of the expression being evaluated is replaced by its current value operated upon by
the operator with respect to the operand. For instance, the instruction AND %IX1 is interpreted as

result := result AND %IX1

The comparison operators shall be interpreted with the current result to the left of the comparison and
the operand to the right, with a Boolean result. For instance, the instruction “GT %IW10” will have the
Boolean result 1 if the current result is greater than the value of Input Word 10, and the Boolean result
0 otherwise.

The modifier “N” indicates bitwise Boolean negation (one's complement) of the operand. For instance,
the instruction ANDN %IX2 is interpreted as

result := result AND NOT %IX2

It shall be an error in the sense of subclause 1.5.1 if the current result and operand are not of same
data type, or if the result of a numerical operation exceeds the range of values for its data type.

The left parenthesis modifier “(” indicates that evaluation of the operator shall be deferred until a right
parenthesis operator “)” is encountered. In table 51 b) two equivalent forms of a parenthesized
sequence of instructions are shown. Both features in table 51 b) shall be interpreted as

result := result AND (%IX1 OR %IX2)
IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 61
13

1-3
:20

03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 125 –

Table 51 b) - Parenthesized expression features for IL language

No. DESCRIPTION/EXAMPLE

1 Parenthesized expression beginning with explicit operator:

AND(
LD %IX1 (NOTE 1)
OR %IX2
)

2 Parenthesized expression (short form):

AND(%IX1
OR %IX2
)

NOTE In form 1 the LD operator may be modified or the LD operation may be
replaced by another operation or function invocation respectively.

The modifier “C” indicates that the associated instruction shall be performed only if the value of the
currently evaluated result is Boolean 1 (or Boolean 0 if the operator is combined with the “N” modifier).

Table 52 - Instruction list operators
No. OPERATORa MODIFIERS

 (Note 1)
SEMANTICS

1 LD N Set current result equal to operand

2 ST N Store current result to operand location

3 Se Set operand to 1 if current result is Boolean 1

Re Reset operand to 0 if current result is Boolean
1

4 AND N, (Logical AND

5 & N, (Logical AND

6 OR N, (Logical OR

7 XOR N, (Logical exclusive OR

7a NOTd Logical negation (one's complement)

8 ADD (Addition

9 SUB (Subtraction

10 MUL (Multiplication

11 DIV (Division

11a MOD (Modulo-division

12 GT (Comparison: >

13 GE (Comparison: >=

14 EQ (Comparison: =

15 NE (Comparison: <>

16 LE (Comparison: <=

17 LT (Comparison: <

18 JMPb C, N Jump to label

19 CALc C, N Call function block (See table 53)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 126 – 61131-3  IEC:2003(E)

Table 52 - Instruction list operators
No. OPERATORa MODIFIERS

 (Note 1)
SEMANTICS

20 RETf C, N Return from called function, function block or
program

21)f Evaluate deferred operation

NOTE See preceding text for explanation of modifiers and evaluation of
expressions.

a Unless otherwise noted, these operators shall be either overloaded or typed as
defined in 2.5.1.4 and 2.5.1.5.6.

b The operand of a JMP instruction shall be the label of an instruction to which
execution is to be transferred. When a JMP instruction is contained in an
ACTION... END_ACTION construct, the operand shall be a label within the same
construct.

c The operand of this instruction shall be the name of a function block instance to
be invoked.

d The result of this operation shall be the bitwise Boolean negation (one's
complement) of the current result.

e The type of the operand of this instruction shall be BOOL.
f This instruction does not have an operand.

3.2.3 Functions and function blocks

Functions as defined in 2.5.1 shall be invoked by placing the function name in the operator field. As
shown in features 4 and 5 of table 53, this invocation can take one of two forms. The value returned by
a function upon the successful execution of a RET instruction or upon reaching the physical end of the
function shall become the “current result” described in 3.2.2.

The argument list of functions (feature 4 in table 53) is equivalent to feature 1 in table 19 a) . The rules
and features defined in 2.5.1.1 and table 19 a) for function calls apply.

A non-formal input list of functions (feature 5 in table 53) is equivalent to feature 2 in table 19 a). The
rules and features defined in 2.5.1.1 and table 19 a) for function calls apply. In contrast to the
examples given in table 19 a) for ST language, the first argument is not contained in the non-formal
input list in IL , but the current result shall be used as the first argument of the function. Additional
arguments (starting with the 2nd), if required, shall be given in the operand field, separated by
commas, in the order of their declaration.

Function blocks as defined in 2.5.2 can be invoked conditionally and unconditionally via the CAL (Call)
operator listed in table 52. As shown in features 1a, 1b, 2 and 3 of table 53, this invocation can take
one of four forms.

A formal argument list of a function block invocation (feature 1a in table 53) is equivalent to feature 1
in table 19 a). A non-formal argument list of a function block invocation (feature 1b in table 53) is
equivalent to feature 2 in table 19 a) . The rules and features defined in 2.5.1.1 and table 19 a) for
function calls apply correspondingly, by replacing each occurrence of the term ‘function’ by the term
‘function block’ in these rules.

All assignments in an argument list of a conditional function block invocation shall only be performed
together with the invocation, if the condition is true.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 127 –

Table 53 - Function block invocation and
Function invocation features for IL language

No. DESCRIPTION/EXAMPLE

1a CAL of function block with non-formal argument list:

CAL C10(%IX10, FALSE, A, OUT, B)

CAL CMD_TMR(%IX5, T#300ms, OUT, ELAPSED)

1b CAL of function block with formal argument list:

CAL C10(
 CU := %IX10,
 Q => OUT)

CAL CMD_TMR(
 IN := %IX5,
 PT := T#300ms,
 Q => OUT,
 ET => ELAPSED,
 ENO => ERR)

2 CAL of function block with load/store of arguments (note 2)

LD A
ADD 5
ST C10.PV
LD %IX10
ST C10.CU
CAL C10

3 Use of function block input operators:

LD A
ADD 5
PV C10
LD %IX10
CU C10

4 Function invocation with formal argument list:

LIMIT(
 EN:= COND,
 IN:= B,
 MN:= 1,
 MX:= 5,
 ENO=> TEMPL
)
ST A

5 Function invocation with non-formal argument list:

LD 1
LIMIT B, 5
ST A

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 128 – 61131-3  IEC:2003(E)

Table 53 - Function block invocation and
Function invocation features for IL language

No. DESCRIPTION/EXAMPLE
NOTE 1 A declaration such as

VAR
 C10 : CTU;
 CMD_TMR : TON;
 A, B : INT;
 ELAPSED : TIME;
 OUT, ERR, TEMPL, COND : BOOL;
END_VAR
is assumed in the above examples.

NOTE 2 This usage is an exception to the rule given in 2.5.2.1
that “The assignment of a value to the inputs of a function
block is permitted only as part of the invocation of the
function block.”

The input operators shown in table 54 can be used in conjunction with feature 3 of table 53. This
method of invocation is equivalent to a CAL with an argument list, which contains only one variable
with the name of the input operator. Arguments, which are not supplied, are taken from the last
assignment or, if not present, from initialization. This feature supports problem situations, where
events are predictable and therefore only one variable can change from one call to the next.

EXAMPLE 1
Together with the declaration
VAR C10: CTU; END_VAR
the instruction sequence

LD 15
PV C10

gives the same result as
CAL C10(PV:=15)

The missing inputs R and CU have values previously assigned to them. Since the CU input
detects a rising edge, only the PV input value will be set by this call; counting cannot
happen because an unsupplied argument cannot change. In contrast to this, the
sequence

LD %IX10
CU C10

results in counting at maximum in every second call, depending on the change rate of the
input %IX10. Every call uses the previously set values for PV and R.

EXAMPLE 2
With bistable function blocks, taking a declaration
VAR FORWARD: SR; END_VAR
this results into an implicit conditional behavior. The sequence

LD FALSE
S1 FORWARD

does not change the state of the bistable FORWARD. A following sequence
LD TRUE
R FORWARD

resets the bistable.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 129 –

Table 54 - Standard function block input operators for IL language

No. Operators FB Type Reference

4 S1,R SR 2.5.2.3.1

5 S,R1 RS 2.5.2.3.1

6 CLK TRIGGER 2.5.2.3.2

8 CU,R,PV CTU 2.5.2.3.3

9 CD,PV CTD 2.5.2.3.3 (note 1)

10 CU,CD,R,PV CTUD 2.5.2.3.3 (note 1)

11 IN,PT TP 2.5.2.3.4

12 IN,PT TON 2.5.2.3.4

13 IN,PT TOF 2.5.2.3.4
NOTE 1 LD is not necessary as a Standard Function Block input

operator, because the LD functionality is included in PV.

NOTE 2 The feature numbering in this table is such as to
maintain consistency with the first edition of IEC 61131-3.

3.3 Structured Text (ST)

This subclause defines the semantics of the ST (Structured Text) language whose syntax is defined in
B.3. In this language, the end of a textual line shall be treated the same as a space (SP) character, as
defined in 2.1.4.

3.3.1 Expressions

An expression is a construct which, when evaluated, yields a value corresponding to one of the data
types defined in 2.3.1 and 2.3.3. The maximum allowed length of expressions is an implementation-
dependent parameter.

Expressions are composed of operators and operands. An operand shall be a literal as defined in 2.2,
an enumerated value as defined in 2.3.3, a variable as defined in 2.4, a function invocation as defined
in 2.5.1, or another expression.

The operators of the ST language are summarized in table 55. The evaluation of an expression
consists of applying the operators to the operands in a sequence defined by the operator precedence
shown in table 55. The operator with highest precedence in an expression shall be applied first,
followed by the operator of next lower precedence, etc., until evaluation is complete. Operators of
equal precedence shall be applied as written in the expression from left to right. For example, if A, B,
C, and D are of type INT with values 1, 2, 3, and 4, respectively, then

A+B-C*ABS(D)
shall evaluate to -9, and

(A+B-C)*ABS(D)
shall evaluate to 0.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 130 – 61131-3  IEC:2003(E)

When an operator has two operands, the leftmost operand shall be evaluated first. For example, in
the expression

SIN(A)*COS(B)
the expression SIN(A) shall be evaluated first, followed by COS(B), followed by evaluation of the
product.

The following conditions in the execution of operators shall be treated as errors in the sense of
subclause 1.5.1:

1) An attempt is made to divide by zero.

2) Operands are not of the correct data type for the operation.

3) The result of a numerical operation exceeds the range of values for its data type.

Boolean expressions may be evaluated only to the extent necessary to determine the resultant value.
For instance, if A<=B, then only the expression (A>B) would be evaluated to determine that the value
of the expression

(A>B) & (C<D)
is Boolean zero.

Functions shall be invoked as elements of expressions consisting of the function name followed by a
parenthesized list of arguments, as defined in 2.5.1.1.

When an operator in an expression can be represented as one of the overloaded functions defined in
2.5.1.5, conversion of operands and results shall follow the rule and examples given in 2.5.1.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 131 –

Table 55 - Operators of the ST language

No. Operationa Symbol Precedence

1 Parenthesization (expression) HIGHEST

2 Function evaluation identifier(argument list)

EXAMPLES LN(A), MAX(X,Y), etc.

4 Negation -

5 Complement NOT

3 Exponentiationb **

6 Multiply *

7 Divide /

8 Modulo MOD

9 Add +

10 Subtract -

11 Comparison < , > , <= , >=

12 Equality =

13 Inequality <>

14 Boolean AND &

15 Boolean AND AND

16 Boolean Exclusive OR XOR

17 Boolean OR OR LOWEST
NOTE The feature numbering in this table is such as to maintain consistency with the first edition

of IEC 61131-3.
a The same restrictions apply to the operands of these operators as to the inputs of the

corresponding functions defined in 2.5.1.5.
b The result of evaluating the expression A**B shall be the same as the result of evaluating the

function EXPT(A,B) as defined in table 24.

3.3.2 Statements

The statements of the ST language are summarized in table 56. Statements shall be terminated by
semicolons as specified in the syntax of B.3. The maximum allowed length of statements is an
implementation-dependent parameter.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 132 – 61131-3  IEC:2003(E)

Table 56 - ST language statements
No. Statement type/Reference Examples

1 Assignment (3.3.2.1) A := B; CV := CV+1; C := SIN(X);

2 Function block Invocation and FB output
usage (3.3.2.2)

CMD_TMR(IN:=%IX5, PT:=T#300ms) ;

A := CMD_TMR.Q ;

3 RETURN (3.3.2.2) RETURN ;

4 IF (3.3.2.3) D := B*B - 4*A*C ;
IF D < 0.0 THEN NROOTS := 0 ;
ELSIF D = 0.0 THEN
 NROOTS := 1 ;
 X1 := - B/(2.0*A) ;
ELSE
 NROOTS := 2 ;
 X1 := (- B + SQRT(D))/(2.0*A) ;
 X2 := (- B - SQRT(D))/(2.0*A) ;
END_IF ;

5 CASE (3.3.2.3) TW := BCD_TO_INT(THUMBWHEEL);

TW_ERROR := 0;

CASE TW OF
 1,5: DISPLAY := OVEN_TEMP;

 2: DISPLAY := MOTOR_SPEED;
 3: DISPLAY := GROSS - TARE;
 4,6..10: DISPLAY := STATUS(TW - 4);
ELSE DISPLAY := 0 ;
 TW_ERROR := 1;

END_CASE;
QW100 := INT_TO_BCD(DISPLAY);

6 FOR (3.3.2.4) J := 101 ;
FOR I := 1 TO 100 BY 2 DO
 IF WORDS[I] = 'KEY' THEN
 J := I ;
 EXIT ;
 END_IF ;

END_FOR ;

7 WHILE (3.3.2.4) J := 1;
WHILE J <= 100 & WORDS[J] <> 'KEY' DO
 J := J+2 ;
END_WHILE ;

8 REPEAT (3.3.2.4) J := -1 ;
REPEAT
 J := J+2 ;
UNTIL J = 101 OR WORDS[J] = 'KEY'
END_REPEAT ;

9 EXIT (3.3.2.4)a
EXIT ;

10 Empty Statement ;
a If the EXIT statement (9) is supported, then it shall be supported for all of the iteration statements

(FOR, WHILE, REPEAT) which are supported in the implementation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 133 –

3.3.2.1 Assignment statements

The assignment statement replaces the current value of a single or multi-element variable by the
result of evaluating an expression. An assignment statement shall consist of a variable reference on
the left-hand side, followed by the assignment operator “:=”, followed by the expression to be
evaluated. For instance, the statement

A := B ;

would be used to replace the single data value of variable A by the current value of variable B if both
were of type INT. However, if both A and B were of type ANALOG_CHANNEL_CONFIGURATION as
described in table 12, then the values of all the elements of the structured variable A would be
replaced by the current values of the corresponding elements of variable B.

As illustrated in figure 6, the assignment statement shall also be used to assign the value to be returned by
a function, by placing the function name to the left of an assignment operator in the body of the function
declaration. The value returned by the function shall be the result of the most recent evaluation of such an
assignment. It is an error to return from the evaluation of a function with an ENO value of TRUE, or with a
non-existent ENO output, unless at least one such assignment has been made.

3.3.2.2 Function and function block control statements

Function and function block control statements consist of the mechanisms for invoking function blocks
and for returning control to the invoking entity before the physical end of a function or function block.

Function evaluation shall be invoked as part of expression evaluation, as specified in 3.3.1.

Function blocks shall be invoked by a statement consisting of the name of the function block instance
followed by a parenthesized list of arguments, as illustrated in table 56. The rules and features defined
in 2.5.1.1 and table 19 a) for function calls apply correspondingly, by replacing each occurrence of the
term ‘function’ by the term ‘function block’ in these rules.

The RETURN statement shall provide early exit from a function, function block or program (for example,
as the result of the evaluation of an IF statement).

3.3.2.3 Selection statements

Selection statements include the IF and CASE statements. A selection statement selects one (or a
group) of its component statements for execution, based on a specified condition. Examples of
selection statements are given in table 56.

The IF statement specifies that a group of statements is to be executed only if the associated Boolean
expression evaluates to the value 1 (true). If the condition is false, then either no statement is to be
executed, or the statement group following the ELSE keyword (or the ELSIF keyword if its associated
Boolean condition is true) is to be executed.

The CASE statement consists of an expression which shall evaluate to a variable of type ANY_INT or
of an enumerated data type (the “selector”), and a list of statement groups, each group being labeled
by one or more integer or enumerated values or ranges of integer values, as applicable. It specifies
that the first group of statements, one of whose ranges contains the computed value of the selector,
shall be executed . If the value of the selector does not occur in a range of any case, the statement
sequence following the keyword ELSE (if it occurs in the CASE statement) shall be executed.
Otherwise, none of the statement sequences shall be executed.

The maximum allowed number of selections in CASE statements is an implementation-dependent
parameter.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 134 – 61131-3  IEC:2003(E)

3.3.2.4 Iteration statements

Iteration statements specify that the group of associated statements shall be executed repeatedly. The
FOR statement is used if the number of iterations can be determined in advance; otherwise, the WHILE
or REPEAT constructs are used.

The EXIT statement shall be used to terminate iterations before the termination condition is satisfied.

When the EXIT statement is located within nested iterative constructs, exit shall be from the innermost
loop in which the EXIT is located, that is, control shall pass to the next statement after the first loop
terminator (END_FOR, END_WHILE, or END_REPEAT) following the EXIT statement. For instance, after
executing the statements shown in figure 22, the value of the variable SUM shall be 15 if the value of
the Boolean variable FLAG is 0, and 6 if FLAG=1.

SUM := 0 ;
FOR I := 1 TO 3 DO
 FOR J := 1 TO 2 DO
 IF FLAG THEN EXIT ; END_IF
 SUM := SUM + J ;
 END_FOR ;
 SUM := SUM + I ;
END_FOR ;

Figure 22 - EXIT statement example

The FOR statement indicates that a statement sequence shall be repeatedly executed, up to the
END_FOR keyword, while a progression of values is assigned to the FOR loop control variable. The
control variable, initial value, and final value shall be expressions of the same integer type (for
example, SINT, INT, or DINT) and shall not be altered by any of the repeated statements. The FOR
statement increments the control variable up or down from an initial value to a final value in
increments determined by the value of an expression; this value defaults to 1. The test for the
termination condition is made at the beginning of each iteration, so that the statement sequence is not
executed if the initial value exceeds the final value. The value of the control variable after completion
of the FOR loop is implementation-dependent.

An example of the usage of the FOR statement is given in feature 6 of table 56. In this example, the
FOR loop is used to determine the index J of the first occurrence (if any) of the string 'KEY' in the odd-
numbered elements of an array of strings WORDS with a subscript range of (1..100). If no occurrence
is found, J will have the value 101.

The WHILE statement causes the sequence of statements up to the END_WHILE keyword to be
executed repeatedly until the associated Boolean expression is false. If the expression is initially
false, then the group of statements is not executed at all. For instance, the FOR...END_FOR example
given in table 56 can be rewritten using the WHILE...END_WHILE construction shown in table 56.

The REPEAT statement causes the sequence of statements up to the UNTIL keyword to be executed
repeatedly (and at least once) until the associated Boolean condition is true. For instance, the
WHILE...END_WHILE example given in table 56 can be rewritten using the REPEAT...END_REPEAT
construction shown in table 56.

The WHILE and REPEAT statements shall not be used to achieve interprocess synchronization, for
example as a "wait loop" with an externally determined termination condition. The SFC elements
defined in 2.6 shall be used for this purpose.

It shall be an error in the sense of 1.5.1 if a WHILE or REPEAT statement is used in an algorithm for
which satisfaction of the loop termination condition or execution of an EXIT statement cannot be
guaranteed.

IEC 2499/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 135 –

4 Graphic languages

The graphic languages defined in this standard are LD (Ladder Diagram) and FBD (Function Block
Diagram). The sequential function chart (SFC) elements defined in 2.6 can be used in conjunction
with either of these languages.

4.1 Common elements

The elements defined in this clause apply to both the graphic languages in this standard, that is, LD
(Ladder Diagram) and FBD (Function Block Diagram), and to the graphic representation of sequential
function chart (SFC) elements.

4.1.1 Representation of lines and blocks

The graphic language elements defined in this clause are drawn with line elements using characters
from the character set defined in 2.1.1, or using graphic or semigraphic elements, as shown in table
57.

Lines can be extended by the use of connectors as shown in table 57. No storage of data or
association with data elements shall be associated with the use of connectors; hence, to avoid
ambiguity, it shall be an error if the identifier used as a connector label is the same as the name of
another named element within the same program organization unit.

Any restrictions on network topology in a particular implementation shall be expressed as
implementation-dependent parameters.

4.1.2 Direction of flow in networks

A network is defined as a maximal set of interconnected graphic elements, excluding the left and right
rails in the case of networks in the LD language defined in 4.2. Provision shall be made to associate
with each network or group of networks in a graphic language a network label delimited on the right by
a colon (:). This label shall have the form of an identifier or an unsigned decimal integer as defined in
clause 2. The scope of a network and its label shall be local to the program organization unit in which
the network is located. Examples of networks and network labels are shown in annex F.

Graphic languages are used to represent the flow of a conceptual quantity through one or more
networks representing a control plan, that is:

- “Power flow”, analogous to the flow of electric power in an electromechanical relay system,
typically used in relay ladder diagrams;

- “Signal flow”, analogous to the flow of signals between elements of a signal processing system,
typically used in function block diagrams;

- “Activity flow”, analogous to the flow of control between elements of an organization, or between
the steps of an electromechanical sequencer, typically used in sequential function charts.

The appropriate conceptual quantity shall flow along lines between elements of a network according to
the following rules:

1) Power flow in the LD language shall be from left to right.

2) Signal flow in the FBD language shall be from the output (right-hand) side of a function or
function block to the input (left-hand) side of the function or function block(s) so connected.

3) Activity flow between the SFC elements defined in 2.6 shall be from the bottom of a step
through the appropriate transition to the top of the corresponding successor step(s).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 136 – 61131-3  IEC:2003(E)

Table 57 - Representation of lines and blocks

No. Feature Example

1
2

Horizontal lines:
ISO/IEC 10646-1 “minus” character

Graphic or semigraphic

3
4

Vertical lines:
ISO/IEC 10646-1 “vertical line” character

Graphic or semigraphic
|

5

6

Horizontal/vertical connection:
ISO/IEC 10646-1 “plus” character

Graphic or semigraphic

 |
--+--
 |

7

8

Line crossings without connection:
ISO/IEC 10646-1 characters

Graphic or semigraphic

 | |
--------|----
 | |

9

10

Connected and non-connected corners:

ISO/IEC 10646-1 characters

Graphic or semigraphic

 | |
 ----+ +----
 |
 ----+-+ +----
 | | |

11

12

Blocks with connecting lines:

ISO/IEC 10646-1 characters

Graphic or semigraphic

 |
 +--------+
 ---| |
 | |---
 ---| |
 +--------+
 |

13

14

Connectors using ISO/IEC 10646-1 characters:
Connector

Continuation of a connected line
Graphic or semigraphic connectors

---------->OTTO>
>OTTO>----------

4.1.3 Evaluation of networks

The order in which networks and their elements are evaluated is not necessarily the same as the
order in which they are labeled or displayed. Similarly, it is not necessary that all networks be
evaluated before the evaluation of a given network can be repeated. However, when the body of a
program organization unit consists of one or more networks, the results of network evaluation within
the said body shall be functionally equivalent to the observance of the following rules:

1) No element of a network shall be evaluated until the states of all of its inputs have been
evaluated.

2) The evaluation of a network element shall not be complete until the states of all of its outputs
have been evaluated.

3) The evaluation of a network is not complete until the outputs of all of its elements have been
evaluated, even if the network contains one of the execution control elements defined in 4.1.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 137 –

4) The order in which networks are evaluated shall conform to the provisions of 4.2.6 for the LD
language and 4.3.3 for the FBD language.

A feedback path is said to exist in a network when the output of a function or function block is used as
the input to a function or function block which precedes it in the network; the associated variable is
called a feedback variable. For instance, the Boolean variable RUN is the feedback variable in the
example shown in figure 23. A feedback variable can also be an output element of a function block
data structure as defined in 2.5.2.

Feedback paths can be utilized in the graphic languages defined in 4.2 and 4.3, subject to the
following rules:

1) Explicit loops such as the one shown in figure 23 a) shall only appear in the FBD language
defined in 4.3.

2) It shall be possible for the user to utilize an implementation-dependent means to determine
the order of execution of the elements in an explicit loop, for instance by selection of feedback
variables to form an implicit loop as shown in figure 23 b).

3) Feedback variables shall be initialized by one of the mechanisms defined in clause 2. The initial
value shall be used during the first evaluation of the network. It shall be an error if a feedback
variable is not initialized.

4) Once the element with a feedback variable as output has been evaluated, the new value of the
feedback variable shall be used until the next evaluation of the element.

a) +---+
 ENABLE---| & |-----RUN---+
 +---| | |
 +---+ | +---+ |
 START1---|>=1|---+ |
 START2---| | |
 +--| | |
 | +---+ |
 +------------------------------+

b) +---+
 ENABLE---| & |-----RUN
 +---| |
 +---+ | +---+
 START1---|>=1|---+
 START2---| |
 RUN---| |
 +---+

c) | START1 ENABLE RUN |
 +---| |----+---| |------()---+
 | START2 | |
 +---| |----+ |
 | RUN | |
 +---| |----+ |
 | |

Figure 23 - Feedback path example
a) Explicit loop
b) Implicit loop

c) LD language equivalent

IEC 2500/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 138 – 61131-3  IEC:2003(E)

4.1.4 Execution control elements

Transfer of program control in the LD and FBD languages shall be represented by the graphical
elements shown in table 58.

Jumps shall be shown by a Boolean signal line terminated in a double arrowhead. The signal line for
a jump condition shall originate at a Boolean variable, at a Boolean output of a function or function
block, or on the power flow line of a ladder diagram. A transfer of program control to the designated
network label shall occur when the Boolean value of the signal line is 1 (TRUE); thus, the unconditional
jump is a special case of the conditional jump.

The target of a jump shall be a network label within the program organization unit within which the
jump occurs. If the jump occurs within an ACTION...END_ACTION construct, the target of the jump
shall be within the same construct.

Conditional returns from functions and function blocks shall be implemented using a RETURN
construction as shown in table 58. Program execution shall be transferred back to the invoking entity
when the Boolean input is 1 (TRUE), and shall continue in the normal fashion when the Boolean input
is 0 (FALSE). Unconditional returns shall be provided by the physical end of the function or function
block, or by a RETURN element connected to the left rail in the LD language, as shown in table 58.

Table 58 - Graphic execution control elements
No. Symbol/Example Explanation

1

2

 1---->>LABELA

 |
 +---->>LABELA
 |

Unconditional Jjump:
FBD language

LD language

3 X---->>LABELB

 +---+
 %IX20---| & |--->>NEXT
 %MX50---| |
 +---+
 NEXT:
 +---+
 %IX25---|>=1|---%QX100
 %MX60---| |
 +---+

Conditional jump
(FBD language)

Example:
jump condition

jump target

4
 | X
 +-| |---->>LABELB
 |
 |
 | %IX20 %MX50
 +---| |-----| |--->>NEXT
 |
 |
 NEXT:
 | %IX25 %QX100 |
 +----| |----+----()---+
 | %MX60 | |
 +----| |----+ |
 | |

Conditional jump
(LD language)

Example:
jump condition

jump target

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 139 –

Table 58 - Graphic execution control elements
No. Symbol/Example Explanation

5

6

 | X
 +--| |---<RETURN>
 |

 X---<RETURN>

Conditional return:
LD language

FBD language

7

8

END_FUNCTION

END_FUNCTION_BLOCK

 |
 +---<RETURN>
 |

Unconditional return:
from FUNCTION

from FUNCTION_BLOCK
Alternative representation

in LD language

4.2 Ladder diagram (LD)

This subclause defines the LD language for ladder diagram programming of programmable
controllers.

A LD program enables the programmable controller to test and modify data by means of standardized
graphic symbols. These symbols are laid out in networks in a manner similar to a “rung” of a relay
ladder logic diagram. LD networks are bounded on the left and right by power rails.

4.2.1 Power rails

As shown in table 59, the LD network shall be delimited on the left by a vertical line known as the left
power rail, and on the right by a vertical line known as the right power rail. The right power rail may be
explicit or implied.

Table 59 - Power rails

No. Symbol Description

1 |
 +---
 |

Left power rail
(with attached horizontal link)

2 |
 ---+
 |

Right power rail
(with attached horizontal link)

4.2.2 Link elements and states

As shown in table 60, link elements may be horizontal or vertical. The state of the link element shall
be denoted “ON” or “OFF”, corresponding to the literal Boolean values 1 or 0, respectively. The term
link state shall be synonymous with the term power flow.

The state of the left rail shall be considered ON at all times.. No state is defined for the right rail.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the
state of the element on its immediate left to the element on its immediate right.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 140 – 61131-3  IEC:2003(E)

The vertical link element shall consist of a vertical line intersecting with one or more horizontal link
elements on each side. The state of the vertical link shall represent the inclusive OR of the ON states
of the horizontal links on its left side, that is, the state of the vertical link shall be:

- OFF if the states of all the attached horizontal links to its left are OFF;

- ON if the state of one or more of the attached horizontal links to its left is ON.

The state of the vertical link shall be copied to all of the attached horizontal links on its right. The state
of the vertical link shall not be copied to any of the attached horizontal links on its left.

Table 60 - Link elements

No. Symbol Description

1 ----------- Horizontal link

2 |
 ----+----
 ----+
 |
 +----

Vertical link
(with attached horizontal links)

4.2.3 Contacts

A contact is an element which imparts a state to the horizontal link on its right side which is equal to
the Boolean AND of the state of the horizontal link at its left side with an appropriate function of an
associated Boolean input, output, or memory variable. A contact does not modify the value of the
associated Boolean variable. Standard contact symbols are given in table 61.

4.2.4 Coils

A coil copies the state of the link on its left to the link on its right without modification, and stores an
appropriate function of the state or transition of the left link into the associated Boolean variable.
Standard coil symbols are given in table 62.

EXAMPLE In the rung shown below, the value of the Boolean output a is always TRUE, while the
value of outputs c, d and e upon completion of an evaluation of the rung is equal to the value of the
input b.

| a b c d |
+--()--| |--+--()---()--+
| | e |
| +-----()-----+
| |

4.2.5 Functions and function blocks

The representation of functions and function blocks in the LD language shall be as defined in clause 2,
with the following exceptions:

1) Actual variable connections may optionally be shown by writing the appropriate data or variable
outside the block adjacent to the formal variable name on the inside.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 141 –

2) At least one Boolean input and one Boolean output shall be shown on each block to allow for
power flow through the block.

4.2.6 Order of network evaluation

Within a program organization unit written in LD, networks shall be evaluated in top to bottom order as
they appear in the ladder diagram, except as this order is modified by the execution control elements
defined in 4.1.4.

Table 61 - Contacts a

Static contacts

No. Symbol Description

1

2

--| |--

or

--! !--

Normally open contact
The state of the left link is copied to the right link if the
state of the associated Boolean variable (indicated by
"***") is ON. Otherwise, the state of the right link is

OFF.

3

4

--|/|--

or

--!/!--

Normally closed contact
The state of the left link is copied to the right link if the

state of the associated Boolean variable is OFF.
Otherwise, the state of the right link is OFF.

Transition-sensing contacts

5

6

--|P|--

or

--!P!--

Positive transition-sensing contact
The state of the right link is ON from one evaluation of

this element to the next when a transition of the
associated variable from OFF to ON is sensed at the

same time that the state of the left link is ON. The state
of the right link shall be OFF at all other times.

7

8

--|N|--

or

--!N!--

Negative transition-sensing contact
The state of the right link is ON from one evaluation of

this element to the next when a transition of the
associated variable from ON to OFF is sensed at the

same time that the state of the left link is ON. The state
of the right link shall be OFF at all other times.

a As specified in 2.1.1, the exclamation mark “!” shall be used when a national
character set does not support the vertical bar “|”.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 61
13

1-3
:20

03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 142 – 61131-3  IEC:2003(E)

Table 62 - Coils

No. Symbol Description

Momentary coils

1

--()--

Coil
The state of the left link is copied to the associated

Boolean variable and to the right link.

2

--(/)--

Negated coil
The state of the left link is copied to the right link. The

inverse of the state of the left link is copied to the
associated Boolean variable, that is, if the state of the

left link is OFF, then the state of the associated variable
is ON, and vice versa.

Latched Coils

3

--(S)--

SET (latch) coil
The associated Boolean variable is set to the ON state
when the left link is in the ON state, and remains set

until reset by a RESET coil.

4

--(R)--

RESET (unlatch) coil
The associated Boolean variable is reset to the OFF

state when the left link is in the ON state, and remains
reset until set by a SET coil.

Transition-sensing coils

8

--(P)--

Positive transition-sensing coil
The state of the associated Boolean variable is ON from

one evaluation of this element to the next when a
transition of the left link from OFF to ON is sensed. The

state of the left link is always copied to the right link.

9

--(N)--

Negative transition-sensing coil
The state of the associated Boolean variable is ON from

one evaluation of this element to the next when a
transition of the left link from ON to OFF is sensed. The

state of the left link is always copied to the right link.

NOTE Features 5, 6 and 7 of the first edition are deleted in this edition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 143 –

4.3 Function Block Diagram (FBD)

4.3.1 General

This subclause defines FBD, a graphic language for the programming of programmable controllers
which is consistent, as far as possible, with IEC 60617-12. Where conflicts exist between this
standard and IEC 60617-12, the provisions of this standard shall apply for the programming of
programmable controllers in the FBD language.

The provisions of clause 2 and subclause 4.1 shall apply to the construction and interpretation of
programmable controller programs in the FBD language.

Examples of the use of the FBD language are given in annex F.

4.3.2 Combination of elements

Elements of the FBD language shall be interconnected by signal flow lines following the conventions
of 4.1.2.

Outputs of function blocks shall not be connected together. In particular, the “wired-OR” construct of
the LD language is not allowed in the FBD language; an explicit Boolean “OR” block is required
instead, as shown in figure 24.

a) b)

| a c |
+---||--+--()--+
| b | |
+--||---+ |
| |

 +-----+
 a---| >=1 |---c
 b---| |
 +-----+

Figure 24 - Boolean OR examples
a) “Wired-OR” in LD language
b) Function in FBD language

4.3.3 Order of network evaluation

When a program organization unit written in the FBD language contains more than one network, the
manufacturer shall provide implementation-dependent means by which the user may determine the
order of execution of networks.

IEC 2501/02

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 144 – 61131-3  IEC:2003(E)

ANNEX A
(normative)

Specification method for textual languages

Programming languages are specified in terms of a syntax, which specifies the allowable
combinations of symbols which can be used to define a program; and a set of semantics, which
specify the relationship between programmed operations and the symbol combinations defined by the
syntax.

A.1 Syntax

A syntax is defined by a set of terminal symbols to be utilized for program specification; a set of non-
terminal symbols defined in terms of the terminal symbols; and a set of production rules specifying
those definitions.

A.1.1 Terminal symbols

The terminal symbols for textual programmable controller programs shall consist of combinations of
the characters in the character set defined in 2.1.1.

For the purposes of this part, terminal textual symbols consist of the appropriate character string
enclosed in paired single or double quotes. For example, a terminal symbol represented by the
character string ABC can be represented by either

"ABC"
or

'ABC'

This allows the representation of strings containing either single or double quotes; for instance, a
terminal symbol consisting of the double quote itself would be represented by '"'.

A special terminal symbol utilized in this syntax is the end-of-line delimiter, which is represented by the
unquoted character string EOL. This symbol shall normally consist of the “paragraph separator”
character defined as hexadecimal code 2029 by ISO/IEC 10646-1.

A second special terminal symbol utilized in this syntax is the “null string”, that is, a string containing
no characters. This is represented by the terminal symbol NIL.

The case of letters shall not be significant in terminal symbols.

A.1.2 Non-terminal symbols

Non-terminal textual symbols shall be represented by strings of lower-case letters, numbers, and the
underline character (_), beginning with a lower-case letter. For instance, the strings

nonterm1
and

non_term_2

are valid non-terminal symbols, while the strings

3nonterm
and

_nonterm4
are not.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 145 –

A.1.3 Production rules

The production rules for textual programmable controller programming languages shall form an
extended grammar in which each rule has the form

non_terminal_symbol ::= extended_structure

This rule can be read as:

“A non_terminal_symbol can consist of an extended_structure.”

Extended structures can be constructed according to the following rules:

1) The null string, NIL, is an extended structure.

2) A terminal symbol is an extended structure.

3) A non-terminal symbol is an extended structure.

4) If S is an extended structure, then the following expressions are also extended structures:

(S), meaning S itself.

{S}, closure, meaning zero or more concatenations of S.

[S], option, meaning zero or one occurrence of S.

5) If S1 and S2 are extended structures, then the following expressions are extended structures:

S1 | S2, alternation, meaning a choice of S1 or S2.

S1 S2, concatenation, meaning S1 followed by S2.

6) Concatenation precedes alternation, that is, S1 | S2 S3 is equivalent to S1 | (S2 S3),
 and S1 S2 | S3 is equivalent to (S1 S2) | S3.

A.2 Semantics

Programmable controller textual programming language semantics are defined in this part of IEC
61131 by appropriate natural language text, accompanying the production rules, which references the
descriptions provided in the appropriate clauses. Standard options available to the user and
manufacturer are specified in these semantics.

In some cases it is more convenient to embed semantic information in an extended structure. In such
cases, this information is delimited by paired angle brackets, for example, <semantic
information>.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 146 – 61131-3  IEC:2003(E)

ANNEX B
(normative)

Formal specifications of language elements

B.0 Programming model

The contents of this annex are normative in the sense that a compiler which is capable of recognizing
all the syntax in this annex shall be capable of recognizing the syntax of any textual language
implementation complying with this standard.

PRODUCTION RULES:

library_element_name ::= data_type_name | function_name
| function_block_type_name | program_type_name
| resource_type_name | configuration_name

library_element_declaration ::= data_type_declaration
| function_declaration | function_block_declaration
| program_declaration | configuration_declaration

SEMANTICS: These productions reflect the basic programming model defined in 1.4.3, where
declarations are the basic mechanism for the production of named library elements. The syntax and
semantics of the non-terminal symbols given above are defined in the subclauses listed below.

Non-terminal symbol Syntax Semantics
data_type_name

data_type_declaration

B.1.3 2.3

function_name

function_declaration

B.1.5.1 2.5.1

function_block_type_name

function_block_declaration

B.1.5.2 2.5.2

program_type_name

program_declaration

B.1.5.3 2.5.3

resource_type_name

configuration_name B.1.7 2.7
configuration_declaration

B.1 Common elements

B.1.1 Letters, digits and identifiers

PRODUCTION RULES:

letter ::= 'A' | 'B' | <...> | 'Z' | 'a' | 'b' | <...> | 'z'

digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

octal_digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7'

hex_digit ::= digit | 'A'|'B'|'C'|'D'|'E'|'F'

identifier ::= (letter | ('_' (letter | digit))) {['_'] (letter | digit)}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 147 –

SEMANTICS:

The ellipsis <...> here indicates the ISO/IEC 10646-1 sequence of 26 letters.

Characters from national character sets can be used; however, international portability of the printed
representation of programs cannot be guaranteed in this case.

B.1.2 Constants

PRODUCTION RULE:

constant ::= numeric_literal | character_string | time_literal
| bit_string_literal | boolean_literal

SEMANTICS:

The external representations of data described in 2.2 are designated as “constants” in this annex.

B.1.2.1 Numeric literals

PRODUCTION RULES:

numeric_literal ::= integer_literal | real_literal

integer_literal ::= [integer_type_name '#']
(signed_integer | binary_integer | octal_integer | hex_integer)

signed_integer ::= ['+' |'-'] integer

integer ::= digit {['_'] digit}

binary_integer ::= '2#' bit {['_'] bit}

bit ::= '1' | '0'

octal_integer ::= '8#' octal_digit {['_'] octal_digit}

hex_integer ::= '16#' hex_digit {['_'] hex_digit}

real_literal ::= [real_type_name '#']
signed_integer '.' integer [exponent]

exponent ::= ('E' | 'e') ['+'|'-'] integer

bit_string_literal ::=
[('BYTE' | 'WORD' | 'DWORD' | 'LWORD') '#']
(unsigned_integer | binary_integer | octal_integer | hex_integer)

boolean_literal ::=
(['BOOL#'] ('1' | '0'))| 'TRUE' | 'FALSE'

SEMANTICS: see 2.2.1.

B.1.2.2 Character strings

PRODUCTION RULES:

character_string ::=
single_byte_character_string | double_byte_character_string

single_byte_character_string ::=
"'" {single_byte_character_representation} "'"

double_byte_character_string ::=
'"' {double_byte_character_representation} '"'

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 148 – 61131-3  IEC:2003(E)

single_byte_character_representation ::= common_character_representation
| "$'" | '"' | '$' hex_digit hex_digit

double_byte_character_representation ::= common_character_representation
| '$"' | "'"| '$' hex_digit hex_digit hex_digit hex_digit

common_character_representation ::=
<any printable character except '$', '"' or "'">
| '$$' | '$L' | '$N' | '$P' | '$R' | '$T'
| '$l' | '$n' | '$p' | '$r' | '$t'

SEMANTICS: see 2.2.2.

B.1.2.3 Time literals

PRODUCTION RULE:

time_literal ::= duration | time_of_day | date | date_and_time

SEMANTICS: see 2.2.3.

B.1.2.3.1 Duration

PRODUCTION RULES:

duration ::= ('T' | 'TIME') '#' ['-'] interval

interval ::= days | hours | minutes | seconds | milliseconds

days ::= fixed_point ('d') | integer ('d') ['_'] hours

fixed_point ::= integer ['.' integer]

hours ::= fixed_point ('h') | integer ('h') ['_'] minutes

minutes ::= fixed_point ('m') | integer ('m') ['_'] seconds

seconds ::= fixed_point ('s') | integer ('s') ['_'] milliseconds

milliseconds ::= fixed_point ('ms')

SEMANTICS: see 2.2.3.1.

NOTE The semantics of 2.2.3.1 impose additional constraints on the allowable values of hours,
minutes, seconds, and milliseconds.

B.1.2.3.2 Time of day and date

PRODUCTION RULES:

time_of_day ::= ('TIME_OF_DAY' | 'TOD') '#' daytime

daytime ::= day_hour ':' day_minute ':' day_second

day_hour ::= integer

day_minute ::= integer

day_second ::= fixed_point

date ::= ('DATE' | 'D') '#' date_literal

date_literal ::= year '-' month '-' day

year ::= integer

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 149 –

month ::= integer

day ::= integer

date_and_time ::= ('DATE_AND_TIME' | 'DT') '#' date_literal '-' daytime

SEMANTICS: see 2.2.3.2.

NOTE The semantics of 2.2.3.2 impose additional constraints on the allowable values of
day_hour, day_minute, day_second, year, month, and day.

B.1.3 Data types

PRODUCTION RULES:

data_type_name ::= non_generic_type_name | generic_type_name

non_generic_type_name ::= elementary_type_name | derived_type_name

SEMANTICS: see 2.3.

B.1.3.1 Elementary data types

PRODUCTION RULES:

elementary_type_name ::= numeric_type_name | date_type_name
| bit_string_type_name | 'STRING' | 'WSTRING' | 'TIME'

numeric_type_name ::= integer_type_name | real_type_name

integer_type_name ::= signed_integer_type_name
| unsigned_integer_type_name

signed_integer_type_name ::= 'SINT' | 'INT' | 'DINT' | 'LINT'

unsigned_integer_type_name ::= 'USINT' | 'UINT' | 'UDINT' | 'ULINT'

real_type_name ::= 'REAL' | 'LREAL'

date_type_name ::= 'DATE' | 'TIME_OF_DAY' | 'TOD' | 'DATE_AND_TIME'
| 'DT'

bit_string_type_name ::= 'BOOL' | 'BYTE' | 'WORD' | 'DWORD' | 'LWORD'

SEMANTICS: See 2.3.1.

B.1.3.2 Generic data types

PRODUCTION RULE:

generic_type_name ::= 'ANY' | 'ANY_DERIVED' | 'ANY_ELEMENTARY'
| 'ANY_MAGNITUDE' | 'ANY_NUM' | 'ANY_REAL' | 'ANY_INT' | 'ANY_BIT'
| 'ANY_STRING' | 'ANY_DATE'

SEMANTICS: see 2.3.2.

B.1.3.3 Derived data types

PRODUCTION RULES:

derived_type_name ::= single_element_type_name | array_type_name
| structure_type_name | string_type_name

single_element_type_name ::= simple_type_name | subrange_type_name
| enumerated_type_name

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 150 – 61131-3  IEC:2003(E)

simple_type_name ::= identifier

subrange_type_name ::= identifier

enumerated_type_name ::= identifier

array_type_name ::= identifier

structure_type_name ::= identifier

data_type_declaration ::=
'TYPE' type_declaration ';'
{type_declaration ';'}
'END_TYPE'

type_declaration ::= single_element_type_declaration
| array_type_declaration
| structure_type_declaration | string_type_declaration

single_element_type_declaration ::= simple_type_declaration
| subrange_type_declaration | enumerated_type_declaration

simple_type_declaration ::= simple_type_name ':' simple_spec_init

simple_spec_init := simple_specification [':=' constant]

simple_specification ::= elementary_type_name | simple_type_name

subrange_type_declaration ::= subrange_type_name ':' subrange_spec_init

subrange_spec_init ::= subrange_specification [':=' signed_integer]

subrange_specification ::= integer_type_name '(' subrange')'
| subrange_type_name

subrange ::= signed_integer '..' signed_integer

enumerated_type_declaration ::=
enumerated_type_name ':' enumerated_spec_init

enumerated_spec_init ::= enumerated_specification [':=' enumerated_value]

enumerated_specification ::=
('(' enumerated_value {',' enumerated_value} ')')
| enumerated_type_name

enumerated_value ::= [enumerated_type_name '#'] identifier

array_type_declaration ::= array_type_name ':' array_spec_init

array_spec_init ::= array_specification [':=' array_initialization]

array_specification ::= array_type_name
| 'ARRAY' '[' subrange {',' subrange} ']' 'OF' non_generic_type_name

array_initialization ::=
'[' array_initial_elements {',' array_initial_elements} ']'

array_initial_elements ::=
array_initial_element | integer '(' [array_initial_element] ')'

array_initial_element ::= constant | enumerated_value
| structure_initialization | array_initialization

structure_type_declaration ::=
structure_type_name ':' structure_specification

structure_specification ::= structure_declaration | initialized_structure

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 151 –

initialized_structure ::=
structure_type_name [':=' structure_initialization]

structure_declaration ::=
'STRUCT' structure_element_declaration ';'
{structure_element_declaration ';'}
'END_STRUCT'

structure_element_declaration ::= structure_element_name ':'
(simple_spec_init | subrange_spec_init | enumerated_spec_init
| array_spec_init | initialized_structure)

structure_element_name ::= identifier

structure_initialization ::=
'(' structure_element_initialization
{',' structure_element_initialization} ')'

structure_element_initialization ::=
structure_element_name ':=' (constant | enumerated_value
| array_initialization | structure_initialization)

string_type_name ::= identifier

string_type_declaration ::= string_type_name ':'
('STRING'|'WSTRING') ['[' integer ']'] [':=' character_string]

SEMANTICS: see 2.3.3.

B.1.4 Variables

PRODUCTION RULES:

variable ::= direct_variable | symbolic_variable

symbolic_variable ::= variable_name | multi_element_variable

variable_name ::= identifier

SEMANTICS: see 2.4.1.

B.1.4.1 Directly represented variables

PRODUCTION RULES:

direct_variable ::= '%' location_prefix size_prefix integer {'.' integer}

location_prefix ::= 'I' | 'Q' | 'M'

size_prefix ::= NIL | 'X' | 'B' | 'W' | 'D' | 'L'

SEMANTICS: see 2.4.1.1.

B.1.4.2 Multi-element variables

PRODUCTION RULES:

multi_element_variable ::= array_variable | structured_variable

array_variable ::= subscripted_variable subscript_list

subscripted_variable ::= symbolic_variable

subscript_list ::= '[' subscript {',' subscript} ']'

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 152 – 61131-3  IEC:2003(E)

subscript ::= expression

structured_variable ::= record_variable '.' field_selector

record_variable ::= symbolic_variable

field_selector ::= identifier

SEMANTICS: see 2.4.1.2.

B.1.4.3 Declaration and initialization

PRODUCTION RULES:

input_declarations ::=
'VAR_INPUT' ['RETAIN' | 'NON_RETAIN']
input_declaration ';'
{input_declaration ';'}
'END_VAR'

input_declaration ::= var_init_decl | edge_declaration

edge_declaration ::= var1_list ':' 'BOOL' ('R_EDGE' | 'F_EDGE')

var_init_decl ::= var1_init_decl | array_var_init_decl
| structured_var_init_decl | fb_name_decl | string_var_declaration

var1_init_decl ::= var1_list ':'
(simple_spec_init | subrange_spec_init | enumerated_spec_init)

var1_list ::= variable_name {',' variable_name}

array_var_init_decl ::= var1_list ':' array_spec_init

structured_var_init_decl ::= var1_list ':' initialized_structure

fb_name_decl ::= fb_name_list ':' function_block_type_name
[’:=’ structure_initialization]

fb_name_list ::= fb_name {',' fb_name}

fb_name ::= identifier

output_declarations ::=
'VAR_OUTPUT' ['RETAIN' | 'NON_RETAIN']
 var_init_decl ';'
 {var_init_decl ';'}
'END_VAR'

input_output_declarations ::=
'VAR_IN_OUT'
var_declaration ';'
{var_declaration ';'}
'END_VAR'

var_declaration ::= temp_var_decl | fb_name_decl

temp_var_decl ::= var1_declaration | array_var_declaration
| structured_var_declaration | string_var_declaration

var1_declaration ::= var1_list ':' (simple_specification
| subrange_specification | enumerated_specification)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 153 –

array_var_declaration ::= var1_list ':' array_specification

structured_var_declaration ::= var1_list ':' structure_type_name

var_declarations ::=
'VAR' ['CONSTANT']
var_init_decl ';'
{(var_init_decl ';')}
'END_VAR'

retentive_var_declarations ::=
'VAR' 'RETAIN'
var_init_decl ';'
{var_init_decl ';'}
'END_VAR'

located_var_declarations ::=
'VAR' ['CONSTANT' | 'RETAIN' | 'NON_RETAIN']
 located_var_decl ';'
 {located_var_decl ';'}
'END_VAR'

located_var_decl ::= [variable_name] location ':' located_var_spec_init

external_var_declarations :=
'VAR_EXTERNAL' ['CONSTANT']
external_declaration ';'
{external_declaration ';'}
'END_VAR'

external_declaration ::= global_var_name ':'
(simple_specification | subrange_specification
| enumerated_specification | array_specification
| structure_type_name | function_block_type_name)

global_var_name ::= identifier

global_var_declarations :=
'VAR_GLOBAL' ['CONSTANT' | 'RETAIN']
global_var_decl ';'
{global_var_decl ';'}
'END_VAR'

global_var_decl ::= global_var_spec ':'
[located_var_spec_init | function_block_type_name]

global_var_spec ::= global_var_list | [global_var_name] location

located_var_spec_init ::= simple_spec_init | subrange_spec_init
| enumerated_spec_init | array_spec_init | initialized_structure
| single_byte_string_spec | double_byte_string_spec

location ::= 'AT' direct_variable

global_var_list ::= global_var_name {',' global_var_name}

string_var_declaration ::= single_byte_string_var_declaration
| double_byte_string_var_declaration

single_byte_string_var_declaration ::=
var1_list ':' single_byte_string_spec

single_byte_string_spec ::=
'STRING' ['[' integer ']'] [':=' single_byte_character_string]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 154 – 61131-3  IEC:2003(E)

double_byte_string_var_declaration ::=
var1_list ':' double_byte_string_spec

double_byte_string_spec ::=
'WSTRING' ['[' integer ']'] [':=' double_byte_character_string]

incompl_located_var_declarations ::=
'VAR' ['RETAIN'|'NON_RETAIN']
 incompl_located_var_decl ';'
 {incompl_located_var_decl ';'}
'END_VAR'

incompl_located_var_decl ::= variable_name incompl_location ':' var_spec

incompl_location ::= 'AT' '%' ('I' | 'Q' | 'M') '*'

var_spec ::= simple_specification
| subrange_specification | enumerated_specification
| array_specification | structure_type_name
| 'STRING' ['[' integer ']'] | 'WSTRING' ['[' integer ']']

SEMANTICS: see 2.4.2. The non-terminal function_block_type_name is defined in B.1.5.2.

B.1.5 Program organization units

B.1.5.1 Functions

PRODUCTION RULES:
function_name ::= standard_function_name | derived_function_name

standard_function_name ::= <as defined in 2.5.1.5>
derived_function_name ::= identifier

function_declaration ::=
'FUNCTION' derived_function_name ':'

(elementary_type_name | derived_type_name)
{ io_var_declarations | function_var_decls }
function_body

'END_FUNCTION'
io_var_declarations ::= input_declarations | output_declarations |

input_output_declarations

function_var_decls ::= 'VAR' ['CONSTANT']
var2_init_decl ';' {var2_init_decl ';'} 'END_VAR'

function_body ::= ladder_diagram | function_block_diagram
| instruction_list | statement_list | <other languages>

var2_init_decl ::= var1_init_decl | array_var_init_decl
| structured_var_init_decl | string_var_declaration

SEMANTICS: see 2.5.1.

NOTE 1 This syntax does not reflect the fact that each function must have at least one input
declaration.

NOTE 2 This syntax does not reflect the fact that edge declarations, function block references and
invocations are not allowed in function bodies.

NOTE 3 Ladder diagrams and function block diagrams are graphically represented as defined in
Clause 4. The non-terminals instruction_list and statement_list are defined in
B.2.1 and B.3.2, respectively.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 155 –

B.1.5.2 Function blocks

PRODUCTION RULES:

function_block_type_name ::= standard_function_block_name
| derived_function_block_name

standard_function_block_name ::= <as defined in 2.5.2.3>

derived_function_block_name ::= identifier

function_block_declaration ::=
'FUNCTION_BLOCK' derived_function_block_name
 { io_var_declarations | other_var_declarations }
 function_block_body
'END_FUNCTION_BLOCK'

other_var_declarations ::= external_var_declarations | var_declarations
| retentive_var_declarations | non_retentive_var_declarations
| temp_var_decls | incompl_located_var_declarations

temp_var_decls ::=
'VAR_TEMP'
 temp_var_decl ';'
 {temp_var_decl ';'}
'END_VAR'

non_retentive_var_decls ::=
'VAR' 'NON_RETAIN'
 var_init_decl ';'
 {var_init_decl ';'}
'END_VAR'

function_block_body ::= sequential_function_chart | ladder_diagram
| function_block_diagram | instruction_list | statement_list
| <other languages>

SEMANTICS: see 2.5.2.

NOTE 1 Ladder diagrams and function block diagrams are graphically represented as defined in
clause 4.

NOTE 2 The non-terminals sequential_function_chart, instruction_list, and
statement_list are defined in B.1.6, B.2.1, and B.3.2, respectively.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 156 – 61131-3  IEC:2003(E)

B.1.5.3 Programs

PRODUCTION RULES:

program_type_name :: = identifier

program_declaration ::=
'PROGRAM' program_type_name
 { io_var_declarations | other_var_declarations
 | located_var_declarations | program_access_decls }
 function_block_body
'END_PROGRAM'

program_access_decls ::=
'VAR_ACCESS' program_access_decl ';'
 {program_access_decl ';' }
'END_VAR'

program_access_decl ::= access_name ':' symbolic_variable ':'
non_generic_type_name [direction]

SEMANTICS: see 2.5.3.

B.1.6 Sequential function chart elements

PRODUCTION RULES:

sequential_function_chart ::= sfc_network {sfc_network}

sfc_network ::= initial_step {step | transition | action}

initial_step ::=
'INITIAL_STEP' step_name ':' {action_association ';'} 'END_STEP'

step ::= 'STEP' step_name ':' {action_association ';'} 'END_STEP'

step_name ::= identifier

action_association ::=
action_name '(' [action_qualifier] {',' indicator_name} ')'

action_name ::= identifier

action_qualifier ::=
'N' | 'R' | 'S' | 'P' | timed_qualifier ',' action_time

timed_qualifier ::= 'L' | 'D' | 'SD' | 'DS' | 'SL'

action_time ::= duration | variable_name

indicator_name ::= variable_name

transition ::= ‘TRANSITION’
[transition_name] ['(' 'PRIORITY' ':=' integer ')']
'FROM' steps 'TO' steps
transition_condition
'END_TRANSITION'

transition_name ::= identifier

steps ::= step_name | '(' step_name ',' step_name {',' step_name} ')'

transition_condition ::= ':' simple_instruction_list | ':=' expression
';' | ':' (fbd_network | rung)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 157 –

action ::= 'ACTION' action_name ':'
 function_block_body
 'END_ACTION'

SEMANTICS: see 2.6. The use of function block diagram networks and ladder diagram rungs,
denoted by the non-terminals fbd_network and rung, respectively, for the expression of transition
conditions shall be as defined in 2.6.3.

NOTE 1 The non-terminals simple_instruction_list and expression are defined in
B.2.1 and B.3.1, respectively.

NOTE 2 The term [transition_name] can only be used in the production for transition
when feature 7 of table 41 is supported. The resulting production is the textual equivalent
of this feature.

B.1.7 Configuration elements

PRODUCTION RULES:
configuration_name ::= identifier

resource_type_name ::= identifier

configuration_declaration ::=
'CONFIGURATION' configuration_name
 [global_var_declarations]
 (single_resource_declaration
 | (resource_declaration {resource_declaration}))
 [access_declarations]
 [instance_specific_initializations]
'END_CONFIGURATION'

resource_declaration ::=
'RESOURCE' resource_name 'ON' resource_type_name
 [global_var_declarations]
 single_resource_declaration
 'END_RESOURCE'

single_resource_declaration ::=
{task_configuration ';'}
program_configuration ';'
{program_configuration ';'}

resource_name ::= identifier

access_declarations ::=
'VAR_ACCESS'
 access_declaration ';'
 {access_declaration ';'}
'END_VAR'

access_declaration ::= access_name ':' access_path ':'
non_generic_type_name [direction]

access_path ::= [resource_name '.'] direct_variable
| [resource_name '.'] [program_name '.']
 {fb_name'.'} symbolic_variable

global_var_reference ::=
[resource_name '.'] global_var_name ['.' structure_element_name]

access_name ::= identifier

program_output_reference ::= program_name '.' symbolic_variable

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 158 – 61131-3  IEC:2003(E)

program_name ::= identifier

direction ::= 'READ_WRITE' | 'READ_ONLY'

task_configuration ::= 'TASK' task_name task_initialization

task_name := identifier

task_initialization ::=
'(' ['SINGLE' ':=' data_source ',']
 ['INTERVAL' ':=' data_source ',']
 'PRIORITY' ':=' integer ')'

data_source ::= constant | global_var_reference
| program_output_reference | direct_variable

program_configuration ::=
'PROGRAM' [RETAIN | NON_RETAIN]
 program_name ['WITH' task_name] ':' program_type_name
 ['(' prog_conf_elements ')']

prog_conf_elements ::= prog_conf_element {',' prog_conf_element}

prog_conf_element ::= fb_task | prog_cnxn

fb_task ::= fb_name 'WITH' task_name

prog_cnxn ::= symbolic_variable ':=' prog_data_source
| symbolic_variable '=>' data_sink

prog_data_source ::=
constant | enumerated_value | global_var_reference | direct_variable

data_sink ::= global_var_reference | direct_variable

instance_specific_initializations ::=
'VAR_CONFIG'
 instance_specific_init ';'
 {instance_specific_init ';'}
'END_VAR'

instance_specific_init ::=
resource_name '.' program_name '.' {fb_name '.'}
((variable_name [location] ':' located_var_spec_init) |
 (fb_name ':' function_block_type_name ':='
structure_initialization))

SEMANTICS: see 2.7.

NOTE This syntax does not reflect the fact that location assignments are only allowed for
references to variables which are marked by the asterisk notation at type declaration level.IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 61
13

1-3
:20

03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 159 –

B.2 Language IL (Instruction List)

B.2.1 Instructions and operands

PRODUCTION RULES:

instruction_list ::= il_instruction {il_instruction}

il_instruction ::= [label':'] [il_simple_operation
 | il_expression
 | il_jump_operation
 | il_fb_call
 | il_formal_funct_call
 | il_return_operator] EOL {EOL}

label ::= identifier

il_simple_operation ::= (il_simple_operator [il_operand])
| (function_name [il_operand_list])

il_expression ::= il_expr_operator '(' [il_operand] EOL {EOL}
[simple_instr_list] ')'

il_jump_operation ::= il_jump_operator label

il_fb_call ::= il_call_operator fb_name ['('
(EOL {EOL} [il_param_list]) | [il_operand_list] ')']

il_formal_funct_call ::= function_name '(' EOL {EOL} [il_param_list] ')'

il_operand ::= constant | variable | enumerated_value

il_operand_list ::= il_operand {',' il_operand}

simple_instr_list ::= il_simple_instruction {il_simple_instruction}

il_simple_instruction ::=
(il_simple_operation | il_expression | il_formal_funct_call)
EOL {EOL}

il_param_list ::= {il_param_instruction} il_param_last_instruction

il_param_instruction ::= (il_param_assignment | il_param_out_assignment)
',' EOL {EOL}

il_param_last_instruction ::=
(il_param_assignment | il_param_out_assignment) EOL {EOL}

il_param_assignment ::= il_assign_operator (il_operand | ('(' EOL {EOL}
simple_instr_list ')'))

il_param_out_assignment ::= il_assign_out_operator variable

B.2.2 Operators

PRODUCTION RULES:

il_simple_operator ::= 'LD' | 'LDN' | 'ST' | 'STN' | 'NOT' | 'S'
| 'R' | 'S1' | 'R1' | 'CLK' | 'CU' | 'CD' | 'PV'
| 'IN' | 'PT' | il_expr_operator

il_expr_operator ::= 'AND' | '&' | 'OR' | 'XOR' | 'ANDN' | '&N' | 'ORN'
| 'XORN' | 'ADD' | 'SUB' | 'MUL' | 'DIV' | 'MOD' | 'GT' | 'GE' | 'EQ
' | 'LT' | 'LE' | 'NE'

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 160 – 61131-3  IEC:2003(E)

il_assign_operator ::= variable_name':='

il_assign_out_operator ::= ['NOT'] variable_name'=>'

il_call_operator ::= 'CAL' | 'CALC' | 'CALCN'

il_return_operator ::= 'RET' | 'RETC' | 'RETCN'

il_jump_operator ::= 'JMP' | 'JMPC' | 'JMPCN'

SEMANTICS: see 3.2. This syntax does not reflect the possibility for typing IL operators as noted in
table 52.

B.3 Language ST (Structured Text)

B.3.1 Expressions

PRODUCTION RULES:

expression ::= xor_expression {'OR' xor_expression}

xor_expression ::= and_expression {'XOR' and_expression}

and_expression ::= comparison {('&' | 'AND') comparison}

comparison ::= equ_expression { ('=' | '<>') equ_expression}

equ_expression ::= add_expression {comparison_operator add_expression}

comparison_operator ::= '<' | '>' | '<=' | '>=' '

add_expression ::= term {add_operator term}

add_operator ::= '+' | '-'

term ::= power_expression {multiply_operator power_expression}

multiply_operator ::= '*' | '/' | 'MOD'

power_expression ::= unary_expression {'**' unary_expression}

unary_expression ::= [unary_operator] primary_expression

unary_operator ::= '-' | 'NOT'

primary_expression ::=
constant | enumerated_value | variable | '(' expression ')'
| function_name '(' param_assignment {',' param_assignment} ')'

SEMANTICS: these definitions have been arranged to show a top-down derivation of expression
structure. The precedence of operations is then implied by a “bottom-up” reading of the definitions of
the various kinds of expressions. Further discussion of the semantics of these definitions is given in
3.3.1. See 2.5.1.1 for details of the semantics of function calls.

B.3.2 Statements

PRODUCTION RULE:

statement_list ::= statement ';' {statement ';'}

statement ::= NIL | assignment_statement | subprogram_control_statement
| selection_statement | iteration_statement

SEMANTICS: see 3.3.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 161 –

B.3.2.1 Assignment statements

PRODUCTION RULE:

assignment_statement ::= variable ':=' expression

SEMANTICS: see 3.3.2.1.

B.3.2.2 Subprogram control statements

PRODUCTION RULES:
subprogram_control_statement ::= fb_invocation | 'RETURN'

fb_invocation ::= fb_name '(' [param_assignment {',' param_assignment}]
')'

param_assignment ::= ([variable_name ':='] expression)
| (['NOT'] variable_name '=>' variable)

SEMANTICS: see 3.3.2.2.

B.3.2.3 Selection statements

PRODUCTION RULES:
selection_statement ::= if_statement | case_statement

if_statement ::=
'IF' expression 'THEN' statement_list
 {'ELSIF' expression 'THEN' statement_list}
 ['ELSE' statement_list]
'END_IF'

case_statement ::=
'CASE' expression 'OF'
 case_element
 {case_element}
 ['ELSE' statement_list]
'END_CASE'

case_element ::= case_list ':' statement_list

case_list ::= case_list_element {',' case_list_element}

case_list_element ::= subrange | signed_integer | enumerated_value

SEMANTICS: see 3.3.2.3.

B.3.2.4 Iteration statements

PRODUCTION RULES:
iteration_statement ::=

for_statement | while_statement | repeat_statement | exit_statement

for_statement ::=
'FOR' control_variable ':=' for_list 'DO' statement_list 'END_FOR'

control_variable ::= identifier

for_list ::= expression 'TO' expression ['BY' expression]

while_statement ::= 'WHILE' expression 'DO' statement_list 'END_WHILE'

repeat_statement ::=
'REPEAT' statement_list 'UNTIL' expression 'END_REPEAT'

exit_statement ::= 'EXIT'

SEMANTICS: see 3.3.2.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 162 – 61131-3  IEC:2003(E)

ANNEX C
(normative)

Delimiters and keywords

The usages of delimiters and keywords in this standard is summarized in tables C.1 and C.2. National
standards organizations can publish tables of translations for the textual portions of the delimiters
listed in table C.1 and the keywords listed in table C.2.

Table C.1 - Delimiters

Delimiters Subclause Usage

Space 2.1.4 As specified in 2.1.4.

(* 2.1.5 Begin comment
*) End comment

+ 2.2.1 Leading sign of decimal literal
3.3.1 Addition operator

2.2.1 Leading sign of decimal literal
- 2.2.3.2 Year-month-day separator

3.3.1 Subtraction, negation operator
4.1.1 Horizontal line

2.2.1 Based number separator
2.2.3 Time literal separator

. 2.2.1 Integer/fraction separator
2.4.1.1 Hierarchical address separator
2.4.1.2 Structure element separator
2.5.2.1 Function block structure separator

e or E 2.2.1 Real exponent delimiter

' 2.2.2 Start and end of character string

$ 2.2.2 Start of special character in strings

2.2.3 - Time literal delimiters, including:
T#, D, H, M, S, MS, DATE#, D#, TIME_OF_DAY#, TOD#, DATE_AND_TIME#, DT#

2.2.3.2 Time of day separator
2.3.3.1 Type name/specification separator
2.4.2 Variable/type separator
2.6.2 Step name terminator

: 2.7 RESOURCE name/type separator
2.7 PROGRAM name/type separator
2.7
3.2.1
4.1.2

Access name/path/type separator
Instruction label terminator
Network label terminator

:=

2.3.3.1
2.7.1
3.3.2.1

Initialization operator
Input connection operator
Assignment operator

() 2.3.3.1 Enumeration list delimiters

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 163 –

Table C.1 - Delimiters

Delimiters Subclause Usage
() 2.3.3.1 Subrange delimiters
[] 2.4.1.2 Array subscript delimiters
[] 2.4.2 String length delimiters
() 2.4.2 Multiple initialization
() 3.2.2 Instruction List modifier/operator
() 3.3.1 Function arguments
() 3.3.1 Subexpression hierarchy
() 3.3.2.2 Function block input list delimiters

2.3.3.1 Enumeration list separator
2.3.3.2 Initial value separator
2.4.1 Array subscript separator
2.4.2 Declared variable separator

, 2.5.2.1 Function block initial value separator
2.5.2.1 Function block input list separator
3.2.1 Operand list separator
3.3.1 Function argument list separator
3.3.2.3 CASE value list separator

; 2.3.3.1 Type declaration separator
3.3 Statement separator

.. 2.3.3.1 Subrange separator
3.3.2.3 CASE range separator

% 2.4.1.1 Direct representation prefix

=> 2.7.1 Output connection operator

3.3.1 - Infix operators, including:
**, NOT, *, /, MOD, +, -, <, >, <= >=, =, <>, &, AND, XOR, OR

| or ! 4.1.1 Vertical lines

Table C.2 - Keywords

Keywords Subclause

ACTION...END_ACTION 2.6.4.1

ARRAY...OF 2.3.3.1

AT 2.4.3

CASE...OF...ELSE...END_CASE 3.3.2.3

CONFIGURATION...END_CONFIGURATION 2.7.1

CONSTANT 2.4.3

Data type names 2.3

EN, ENO 2.5.1.2, 2.5.2.1a

EXIT 3.3.2.4

FALSE 2.2.1

F_EDGE 2.5.2.2

FOR...TO...BY...DO...END_FOR 3.3.2.4

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 164 – 61131-3  IEC:2003(E)

Table C.2 - Keywords

Keywords Subclause

FUNCTION...END_FUNCTION 2.5.1.3

Function names 2.5.1

FUNCTION_BLOCK...END_FUNCTION_BLOCK 2.5.2.2

Function Block names 2.5.2

IF...THEN...ELSIF...ELSE...END_IF 3.3.2.3

INITIAL_STEP...END_STEP 2.6.2

NOT, MOD, AND, XOR, OR 3.3.1

PROGRAM...WITH... 2.7.1

PROGRAM...END_PROGRAM 2.5.3

R_EDGE 2.5.2.2

READ_ONLY, READ_WRITE 2.7.1

REPEAT...UNTIL...END_REPEAT 3.3.2.4

RESOURCE...ON...END_RESOURCE 2.7.1

RETAIN, NON_RETAIN 2.4.3

RETURN 3.3.2.2

STEP...END_STEP 2.6.2

STRUCT...END_STRUCT 2.3.3.1

TASK 2.7.2

TRANSITION...FROM...TO...END_TRANSITION 2.6.3

TRUE 2.2.1

TYPE...END_TYPE 2.3.3.1

VAR...END_VAR 2.4.3

VAR_INPUT...END_VAR 2.4.3

VAR_OUTPUT...END_VAR 2.4.3

VAR_IN_OUT...END_VAR 2.4.3

VAR_TEMP...END_VAR 2.4.3

VAR_EXTERNAL...END_VAR 2.4.3

VAR_ACCESS...END_VAR 2.7.1

VAR_CONFIG...END_VAR 2.7.1

VAR_GLOBAL...END_VAR 2.7.1

WHILE...DO...END_WHILE 3.3.2.4

WITH 2.7.1

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 165 –

ANNEX D
(normative)

Implementation-dependent parameters

The implementation-dependent parameters defined in this standard, and the primary reference clause
for each, are listed in table D.1.

NOTE Other implementation-dependent parameters such as the accuracy, precision and
repeatability of timing and execution control features may have significant effects on the
portability of programs but are beyond the scope of this part of IEC 61131.

Table D.1 - Implementation-dependent parameters

Sublause Parameters

2.1.2 Maximum length of identifiers

2.1.5 Maximum comment length

2.1.6 Syntax and semantics of pragmas

2.2.2 Syntax and semantics for the use of the double-quote character when a
particular implementation supports feature 4 but not feature 2 of table 5.

2.3.1 Range of values and precision of representation for variables of type TIME,
DATE, TIME_OF_DAY and DATE_AND_TIME

Precision of representation of seconds in types TIME, TIME_OF_DAY and
DATE_AND_TIME

2.3.3.1 Maximum number of enumerated values
Maximum number of array subscripts
Maximum array size
Maximum number of structure elements
Maximum structure size
Maximum range of subscript values
Maximum number of levels of nested structures

2.3.3.2 Default maximum length of STRING and WSTRING variables
Maximum allowed length of STRING and WSTRING variables

2.4.1.1 Maximum number of hierarchical levels
Logical or physical mapping

2.4.2 Initialization of system inputs

2.4.3 Maximum number of variables per declaration
Effect of using AT qualifier in declaration of function block instances
Warm start behavior if variable is declared as neither RETAIN nor NON_RETAIN

2.5 Information to determine execution times of program organization units

2.5.1.2 Values of outputs when ENO is FALSE

2.5.1.3 Maximum number of function specifications

2.5.1.5 Maximum number of inputs of extensible functions

2.5.1.5.1 Effects of type conversions on accuracy
Error conditions during type conversions

2.5.1.5.2 Accuracy of numerical functions

2.5.1.5.6 Effects of type conversions between time data types and other data types not
defined in table 30

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 166 – 61131-3  IEC:2003(E)

Table D.1 - Implementation-dependent parameters

Sublause Parameters

2.5.2 Maximum number of function block specifications and instantiations

2.5.2.1a Function block input variable assignment when EN is FALSE

2.5.2.3.3 Pvmin, Pvmax of counters

2.5.2.3.4 Effect of a change in the value of a PT input during a timing operation

2.5.3 Program size limitations

2.6.2 Precision of step elapsed time
Maximum number of steps per SFC

2.6.3 Maximum number of transitions per SFC and per step

2.6.4.2 Maximum number of action blocks per step

2.6.4.5 Access to the functional equivalent of the Q or A outputs

2.6.5 Transition clearing time
Maximum width of diverge/converge constructs

2.7.1 Contents of RESOURCE libraries

2.7.1 Effect of using READ_WRITE access to function block outputs

2.7.2 Maximum number of tasks
Task interval resolution

3.3.1 Maximum length of expressions

3.3.2 Maximum length of statements

3.3.2.3 Maximum number of CASE selections

3.3.2.4 Value of control variable upon termination of FOR loop

4.1.1 Restrictions on network topology

4.1.3 Evaluation order of feedback loops

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 167 –

ANNEX E
(normative)

Error conditions

The error conditions defined in this standard, and the primary reference clause for each, are listed in
table E.1. These errors may be detected during preparation of the program for execution or during
execution of the program. The manufacturer shall specify the disposition of these errors according to
the provisions of subclause 1.5.1 of this part of IEC 61131.

Table E.1 - Error conditions

Subclause Error conditions

2.1.5 Nested comments

2.3.3.1 Ambiguous enumerated value

2.3.3.1 Value of a variable exceeds the specified subrange

2.4.1.1 Missing configuration of an incomplete address specification ("*" notation)

2.4.3 Attempt by a program organization unit to modify a variable which has been
declared CONSTANT

2.4.3 Declaration of a variable as VAR_GLOBAL CONSTANT in a containing
element having a contained element in which the same variable is declared
VAR_EXTERNAL without the CONSTANT qualifier.

2.5.1 Improper use of directly represented or external variables in functions

2.5.1.1 A VAR_IN_OUT variable is not “properly mapped”

2.5.1.1 Ambiguous value caused by a VAR_IN_OUT connection

2.5.1.5.1 Type conversion errors

2.5.1.5.2 Numerical result exceeds range for data type
Division by zero

2.5.1.5.3 N input is less than zero in a bit-shift function

2.5.1.5.4 Mixed input data types to a selection function
Selector (K) out of range for MUX function

2.5.1.5.5 Invalid character position specified
Result exceeds maximum string length
ANY_INT input is less than zero in a string function

2.5.1.5.6 Result exceeds range for data type

2.5.2.2 No value specified for a function block instance used as input variable

2.5.2.2 No value specified for an in-out variable

2.6.2 Zero or more than one initial steps in SFC network
User program attempts to modify step state or time

2.6.3 Side effects in evaluation of transition condition

2.6.4.5 Action control contention error

2.6.5 Simultaneously true, non-prioritized transitions in a selection divergence
Unsafe or unreachable SFC

2.7.1 Data type conflict in VAR_ACCESS

2.7.2 A task fails to be scheduled or to meet its execution deadline

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 168 – 61131-3  IEC:2003(E)

Table E.1 - Error conditions

Subclause Error conditions

3.2.2 Numerical result exceeds range for data type
Current result and operand not of same data type

3.3.1 Division by zero
Numerical result exceeds range for data type
Invalid data type for operation

3.3.2.1 Return from function without value assigned

3.3.2.4 Iteration fails to terminate

4.1.1 Same identifier used as connector label and element name

4.1.3 Uninitialized feedback variable

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 169 –

ANNEX F
(informative)
Examples

F.1 Function WEIGH

Example function WEIGH provides the functions of BCD-to-binary conversion of a gross-weight input
from a scale, the binary integer subtraction of a tare weight which has been previously converted and
stored in the memory of the programmable controller, and the conversion of the resulting net weight
back to BCD form, for example, for an output display. The “EN” input is used to indicate that the scale
is ready to perform the weighing operation.

The “ENO” output indicates that an appropriate command exists (for example, from an operator
pushbutton), the scale is in proper condition for the weight to be read, and each function has a correct
result.

A textual form of the declaration of this function is:

FUNCTION WEIGH : WORD (* BCD encoded *)
 VAR_INPUT (* "EN" input is used to indicate "scale ready" *)
 weigh_command : BOOL;
 gross_weight : WORD ; (* BCD encoded *)
 tare_weight : INT ;
 END_VAR
(* Function Body *)
END_FUNCTION (* Implicit "ENO" *)

The body of function WEIGH in the IL language is:

LD weigh_command

JMPC WEIGH_NOW

ST ENO (* No weighing, 0 to "ENO" *)

RET

WEIGH_NOW: LD gross_weight

BCD_TO_INT

SUB tare_weight

INT_TO_BCD (* Return evaluated weight *)

ST WEIGH

The body of function WEIGH in the ST language is:

IF weigh_command THEN

 WEIGH := INT_TO_BCD (BCD_TO_INT(gross_weight) - tare_weight);

END_IF ;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 170 – 61131-3  IEC:2003(E)

An equivalent graphical declaration of function WEIGH is:

 +-------------------------+
 | WEIGH |
 BOOL---|EN ENO|---BOOL
 BOOL---|weigh_command |---WORD
 WORD---|gross_weight |
 INT----|tare_weight |
 +-------------------------+

The function body in the LD language is:

| +--------+ +--------+ |
| | BCD_ | +-------+ | INT_ | |
| weigh_command | TO_INT | | SUB | | TO_BCD | ENO |
+-------| |-----|EN ENO|--|EN ENO|---|EN ENO|----()------+
gross_weight--		--		---		--WEIGH
+--------+		+--------+				
tare_weight---------------						
+-------+						

The function body in the FBD language is:

 +--------+ +--------+
 | BCD_ | +-------+ | INT_ |
 | TO_INT | | SUB | | TO_BCD |
weigh_command---|EN ENO|---|EN ENO|---|EN ENO|---ENO
gross_weight----| |---| |---| |--WEIGH
 +--------+ | | +--------+
tare_weight------------------| |
 +-------+

F.2 Function block CMD_MONITOR

Example function block CMD_MONITOR illustrates the control of an operative unit which is capable of
responding to a Boolean command (the CMD output) and returning a Boolean feedback signal (the
FDBK input) indicating successful completion of the commanded action. The function block provides
for manual control via the MAN_CMD input, or automated control via the AUTO_CMD input,
depending on the state of the AUTO_MODE input (0 or 1 respectively). Verification of the MAN_CMD
input is provided via the MAN_CMD_CHK input, which must be 0 in order to enable the MAN_CMD
input.

If confirmation of command completion is not received on the FDBK input within a predetermined time
specified by the T_CMD_MAX input, the command is cancelled and an alarm condition is signalled via
the ALRM output. The alarm condition may be cancelled by the ACK (acknowledge) input, enabling
further operation of the command cycle.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 171 –

A textual form of the declaration of function block CMD_MONITOR is:

FUNCTION_BLOCK CMD_MONITOR
 VAR_INPUT AUTO_CMD : BOOL ; (* Automated command *)
 AUTO_MODE : BOOL ; (* AUTO_CMD enable *)
 MAN_CMD : BOOL ; (* Manual Command *)
 MAN_CMD_CHK : BOOL ; (* Negated MAN_CMD to debounce *)
 T_CMD_MAX : TIME ; (* Max time from CMD to FDBK *)
 FDBK : BOOL ; (* Confirmation of CMD completion
 by operative unit *)
 ACK : BOOL ; (* Acknowledge/cancel ALRM *)
 END_VAR
 VAR_OUTPUT CMD : BOOL ; (* Command to operative unit *)
 ALRM : BOOL ; (* T_CMD_MAX expired without FDBK *)
 END_VAR
 VAR CMD_TMR : TON ; (* CMD-to-FDBK timer *)
 ALRM_FF : SR ; (* Note over-riding S input: *)
 END_VAR (* Command must be cancelled before
 "ACK" can cancel alarm *)
(* Function Block Body *)
END_FUNCTION_BLOCK

An equivalent graphical declaration is:

 +---------------+
 | CMD_MONITOR |
BOOL---|AUTO_CMD CMD|---BOOL
BOOL---|AUTO_MODE ALRM|---BOOL
BOOL---|MAN_CMD |
BOOL---|MAN_CMD_CHK |
TIME---|T_CMD_MAX |
BOOL---|FDBK |
BOOL---|ACK |
 +---------------+

The body of function block CMD_MONITOR in the ST language is:

 CMD := AUTO_CMD & AUTO_MODE
 OR MAN_CMD & NOT MAN_CMD_CHK & NOT AUTO_MODE ;
 CMD_TMR (IN := CMD, PT := T_CMD_MAX);
 ALRM_FF (S1 := CMD_TMR.Q & NOT FDBK, R := ACK);
 ALRM := ALRM_FF.Q1;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 172 – 61131-3  IEC:2003(E)

The body of function block CMD_MONITOR in the IL language is:

LD T_CMD_MAX

ST CMD_TMR.PT (* Store an input to the TON FB *)

LD AUTO_CMD

AND AUTO_MODE

OR(MAN_CMD

ANDN AUTO_MODE

ANDN MAN_CMD_CHK

)

ST CMD

IN CMD_TMR (* Invoke the TON FB *)

LD CMD_TMR.Q

ANDN FDBK

ST ALRM_FF.S1 (* Store an input to the SR FB *)

LD ACK

R ALRM_FF (* Invoke the SR FB *)

LD ALRM_FF.Q1

ST ALRM

The body of function block CMD_MONITOR in the LD language is:

 | |
 | AUTO_MODE AUTO_CMD CMD |
 +--| |--------| |-------------------+---()--+
 | | |
 | AUTO_MODE MAN_CMD MAN_CMD_CHECK | |
 +--|/|-------| |------|/|-----------+ |
 | |
 | ACK ALRM |
 +--| |---------------------------------(R)---+
 | CMD_TMR |
 | +-----+ |
 | CMD | TON | FDBK ALRM |
 +--| |-------|IN Q|------|/|----------(S)---+
 | T_CMD_MAX--|PT ET| |
 | +-----+ |
 | |

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 173 –

The body of function block CMD_MONITOR in the FBD language is:

 +-+ +---+
AUTO_CMD------|&|----|>=1|--+-------------------------------CMD
AUTO_MODE--+--| | +--| | |
 | +-+ | +---+ |
 | | |
 | +-+ | | CMD_TMR ALRM_FF
 +-O|&| | | +-----+ +-----+
MAN_CMD-------| |-+ | | TON | +-+ | SR |
MAN_CMD_CHK--O| | +--|IN Q|------|&|----|S1 Q1|--ALRM
 +-+ | | +--O| | +--|R |
T_CMD_MAX----------------------|PT ET| | +-+ | +-----+
 +-----+ | |
FDBK------------------------------------+ |
ACK---+

F.3 Function block FWD_REV_MON

Example function block FWD_REV_MON illustrates the control of an operative unit capable of two-way
positioning action, for example, a motor-operated valve. Both automated and manual control modes
are possible, with alarm capabilities provided for each direction of motion, as described for function
block CMD_MONITOR above. In addition, contention between forward and reverse commands causes
the cancellation of both commands and signalling of an alarm condition. The Boolean OR of all alarm
conditions is made available as a KLAXON output for operator signaling.

A graphical declaration of this function block is:

 +----------------------+
 | FWD_REV_MON |
BOOL---|AUTO KLAXON|---BOOL
BOOL---|ACK FWD_REV_ALRM|---BOOL
BOOL---|AUTO_FWD FWD_CMD|---BOOL
BOOL---|MAN_FWD FWD_ALRM|---BOOL
BOOL---|MAN_FWD_CHK |
TIME---|T_FWD_MAX |
BOOL---|FWD_FDBK |
BOOL---|AUTO_REV REV_CMD|---BOOL
BOOL---|MAN_REV REV_ALRM|---BOOL
BOOL---|MAN_REV_CHK |
TIME---|T_REV_MAX |
BOOL---|REV_FDBK |
 +----------------------+IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 174 – 61131-3  IEC:2003(E)

A textual form of the declaration of function block FWD_REV_MON is:

FUNCTION_BLOCK FWD_REV_MON
VAR_INPUT AUTO : BOOL ;(* Enable automated commands *)
 ACK : BOOL ; (* Acknowledge/cancel all alarms *)
 AUTO_FWD : BOOL ; (* Automated forward command *)
 MAN_FWD : BOOL ; (* Manual forward command *)
 MAN_FWD_CHK : BOOL ; (* Negated MAN_FWD for debouncing *)
 T_FWD_MAX : TIME ; (* Maximum time from FWD_CMD to FWD_FDBK *)
 FWD_FDBK : BOOL ; (* Confirmation of FWD_CMD completion *)
 (* by operative unit *)
 AUTO_REV : BOOL ; (* Automated reverse command *)
 MAN_REV : BOOL ; (* Manual reverse command *)
 MAN_REV_CHK : BOOL ; (* Negated MAN_REV for debouncing *)
 T_REV_MAX : TIME ; (* Maximum time from REV_CMD to REV_FDBK *)
 REV_FDBK : BOOL ; (* Confirmation of REV_CMD completion *)
END_VAR (* by operative unit *)
VAR_OUTPUT KLAXON : BOOL ; (* Any alarm active *)
 FWD_REV_ALRM : BOOL; (* Forward/reverse command conflict *)
 FWD_CMD : BOOL ; (* "Forward" command to operative unit *)
 FWD_ALRM : BOOL ; (* T_FWD_MAX expired without FWD_FDBK *)
 REV_CMD : BOOL ; (* "Reverse" command to operative unit *)
 REV_ALRM : BOOL ; (* T_REV_MAX expired without REV_FDBK *)
END_VAR
VAR FWD_MON : CMD_MONITOR; (* "Forward" command monitor *)
 REV_MON : CMD_MONITOR; (* "Reverse" command monitor *)
 FWD_REV_FF : SR ; (* Forward/Reverse contention latch *)
END_VAR
(* Function Block body *)
END_FUNCTION_BLOCK

The body of function block FWD_REV_MON can be written in the ST language as:

(* Evaluate internal function blocks *)
 FWD_MON (AUTO_MODE := AUTO,
 ACK := ACK,
 AUTO_CMD := AUTO_FWD,
 MAN_CMD := MAN_FWD,
 MAN_CMD_CHK := MAN_FWD_CHK,
 T_CMD_MAX := T_FWD_MAX,
 FDBK := FWD_FDBK);
 REV_MON (AUTO_MODE := AUTO,
 ACK := ACK,
 AUTO_CMD := AUTO_REV,
 MAN_CMD := MAN_REV,
 MAN_CMD_CHK := MAN_REV_CHK,
 T_CMD_MAX := T_REV_MAX,
 FDBK := REV_FDBK);
 FWD_REV_FF (S1 := FWD_MON.CMD & REV_MON.CMD, R := ACK);
(* Transfer data to outputs *)
 FWD_REV_ALRM := FWD_REV_FF.Q1;
 FWD_CMD := FWD_MON.CMD & NOT FWD_REV_ALRM;
 FWD_ALRM := FWD_MON.ALRM;
 REV_CMD := REV_MON.CMD & NOT FWD_REV_ALRM;
 REV_ALRM := REV_MON.ALRM;
 KLAXON := FWD_ALRM OR REV_ALRM OR FWD_REV_ALRM;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 175 –

The body of function block FWD_REV_MON in the IL language is:

(* Evaluate internal function blocks *)
CAL FWD_MON(

AUTO_MODE:= AUTO,
ACK:= ACK,
AUTO_CMD:= AUTO_FWD,
MAN_CMD:= MAN_FWD,
MAN_CMD_CHK:= MAN_FWD_CHK,
T_CMD_MAX:= T_FWD_MAX,
FDBK:= FWD_FDBK

)
CAL REV_MON(

AUTO_MODE:= AUTO,
ACK:= ACK,
AUTO_CMD:= AUTO_REV,
MAN_CMD:= MAN_REV,
MAN_CMD_CHK:= MAN_REV_CHK,
T_CMD_MAX:= T_REV_MAX,
FDBK:= REV_FDBK

)
CAL FWD_REV_FF(

S1:=(
LD FWD_MON.CMD
AND REV_MON.CMD
),

R:= ACK,
Q => FWD_REV_ALRM (* Contention alarm *)

)
(* Transfer data to outputs *)
LD FWD_MON.CMD (* "Forward" command and alarm *)

ANDN FWD_REV_ALRM

ST FWD_CMD

LD FWD_MON.ALRM

ST FWD_ALRM

LD REV_MON.CMD (* "Reverse" command and alarm *)

ANDN FWD_REV_ALRM

ST REV_CMD

LD REV_MON.ALRM

ST REV_ALRM
OR FWD_ALRM (* OR all alarms *)
OR FWD_REV_ALRM

ST KLAXON

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

– 176 – 61131-3  IEC:2003(E)

The body of function block FWD_REV_MON in the FBD language is:

 FWD_MON
 +---------------+
 | CMD_MONITOR |
AUTO_FWD----------|AUTO_CMD CMD|--+
AUTO---------+----|AUTO_MODE ALRM|--|-------FWD_ALRM
MAN_FWD------|----|MAN_CMD | |
MAN_FWD_CHK--|----|MAN_CMD_CHK | |
FWD_FDBK-----|----|FDBK | |
ACK----------|-+--|ACK | |
T_FWD_MAX----|-|--|T_CMD_MAX | | +---+
 | | +---------------+ +--| & |-------------+
 | | +--| | | |
 | | REV_MON | +---+ |
 | | +---------------+ | |
 | | | CMD_MONITOR | | |
AUTO_REV-----|-|--|AUTO_CMD CMD|--+ |
 +-|--|AUTO_MODE ALRM|---------REV_ALRM |
MAN_REV--------|--|MAN_CMD | |
MAN_REV_CHK----|--|MAN_CMD_CHK | |
REV_FDBK-------|--|FDBK | |
 +--|ACK | |
T_REV_MAX---------|T_CMD_MAX | |
 +---------------+ |
 +--+
 | FWD_REV_FF
 | +------+
 | | SR |
 +-----|S1 Q1|--+----------------FWD_REV_ALRM
ACK------------|R | |
 +------+ | +-----+
 +---| >=1 |------KLAXON
FWD_MON.ALRM-------------|---| |
REV_MON.ALRM-------------|---| |
 | +-----+
 |
 | +---+
 +--O| & |--------FWD_CMD
FWD_MON.CMD--------------|---| |
 | +---+
 |
 | +---+
 +--O| & |--------REV_CMD
REV_MON.CMD------------------| |
 +---+

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

61131-3  IEC:2003(E) – 177 –

The body of function block FWD_REV_MON in the LD language is:

| FWD_MON |
| +---------------+ |
| AUTO_FWD | CMD_MONITOR | |
+--| |---------|AUTO_CMD CMD| |
| AUTO | | FWD_ALRM |
+--| |---------|AUTO_MODE ALRM|-------()---+
| MAN_FWD | | |
+--| |---------|MAN_CMD | |
| MAN_FWD_CHK | | |
+--| |---------|MAN_CMD_CHK | |
| FWD_FDBK | | |
+--| |---------|FDBK | |
| ACK | | |
+--| |---------|ACK | |
| | | |
| T_FWD_MAX---|T_CMD_MAX | |
| +---------------+ |
| |
| REV_MON |
| +---------------+ |
| AUTO_REV | CMD_MONITOR | |
+--| |---------|AUTO_CMD CMD| |
| AUTO | | REV_ALRM |
+--| |---------|AUTO_MODE ALRM|-------()---+
| MAN_REV | | |
+--| |---------|MAN_CMD | |
| MAN_REV_CHK | | |
+--| |---------|MAN_CMD_CHK | |
| REV_FDBK | | |
+--| |---------|FDBK | |
| ACK | | |
+--| |---------|ACK | |
| | | |
| T_REV_MAX---|T_CMD_MAX | |
| +---------------+ |
| |
| ACK FWD_REV_ALRM |
+-----| |--------------------------(R)-------+
| |
| FWD_MON.CMD REV_MON.CMD FWD_REV_ALRM |
+-----| |-----------| |------------(S)-------+
| |
| FWD_MON.CMD FWD_REV_ALRM FWD_CMD |
+-----| |-----------|/|-------------()------+
| |
| REV_MON.CMD FWD_REV_ALRM REV_CMD |
+-----| |-----------|/|-------------()------+
| |

| FWD_REV_ALRM KLAXON |
+-----| |------+--------------------()------+
| | |
| FWD_ALRM | |
+-----| |------+ |
| | |
| REV_ALRM | |
+-----| |------+ |
| |

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 61

13
1-3

:20
03

https://iecnorm.com/api/?name=2b3c17fff9b722b9992c97479aed43ed

